SIEMENS

SIMATIC

Programming with STEP 7

Function Manual

04/2017

A5E41552389-AA

Preface

Introducing the Product and
Installing the Software

Installation

Working Out the Automation
Concept

Basics of Designing a
Program Structure

Startup and Operation

Setting Up and Editing the
Project

Editing Projects with
Different Versions of STEP 7

Defining Symbols

Creating Blocks and
Libraries

© o0 N oo O | 0o DN

Basics of Creating Logic
Blocks

Creating Data Blocks

Parameter Assignment for
Data Blocks

Creating STL Source Files

Displaying Reference Data

Checking Block Consistency
and Time Stamps as a Block
Property

Continued on next page

Siemens AG A5E41552389-AA Copyright © Siemens AG 2017.
Division Digital Factory ® 04/2017 Subject to change All rights reserved

Postfach 48 48

90026 NURNBERG

GERMANY

SIEMENS

SIMATIC

Programming with STEP 7

Function Manual

04/2017

A5E41552389-AA

Continued

Configuring Messages 1 6
Controlling and Monitoring 1 7
Variables

Establishing an Online

Connection and Making CPU 18
Settings

Downloading and Uploading 1 9
Testing with the Variable

Table 20
Testing Using Program 21
Status

Testing using the Simulation 22
Program (Optional Package)
Diagnostics 23
Printing and Archiving 24
Tips and Tricks 25

Appendix

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

A\DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

AAWARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

A\CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

AAWARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent

editions.
Siemens AG A5E41552389-AA Copyright © Siemens AG 2017.
Division Digital Factory ® 04/2017 Subject to change All rights reserved

Postfach 48 48
90026 NURNBERG
GERMANY

Preface

Purpose

This manual provides a complete overview of programming with STEP 7. It is designed to support
you when installing and commissioning the software. It explains how to proceed when creating
programs and describes the components of user programs.

The manual is intended for people who are involved in carrying out control tasks using STEP 7 and
SIMATIC S7 automation systems.

We recommend that you familiarize yourself with the examples in the manual "Working with
STEP 7 V5.5, Getting Started." These examples provide an easy introduction to the topic
"Programming with STEP 7".

Basic Knowledge Required

In order to understand this manual, general knowledge of automation technology is required. In
addition, you must be familiar with using computers or PC-similar tools (for example, programming
devices) with the MS Windows XP, MS Windows Server 2003 or MS Windows 7 operating system.

Scope of the Manual
This manual is valid for release 5.6 of the STEP 7 programming software package.
You can find the latest information on the service packs:
e in the "readme.rtf" file
e inthe updated STEP 7 online help.

The topic "What's new?" in the online help offers an excellent introduction and overview of the
newest STEP 7 innovations.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 5

Preface

Online Help
The manual is complemented by an online help which is integrated in the software.
This online help is intended to provide you with detailed support when using the software.
The help system is integrated in the software via a number of interfaces:
e There are several menu commands which you can select in the Help menu:
The Contents command opens the index for the Help on STEP 7.
e Using Help provides detailed instructions on using the online help.

The context-sensitive help offers information on the current context, for example, an open dialog
box or an active window. You can open the contextsensitive help by clicking the "Help" button or by
pressing F1.

e The status bar offers another form of context-sensitive help. It displays a short explanation for
each menu command when the mouse pointer is positioned on the menu command.

e A brief explanation is also displayed for each icon in the toolbar when the mouse pointer is
positioned on the icon for a short time.

If you prefer to read the information from the online help in printed format, you can print out
individual help topics, books, or the entire online help.

This manual, as well as the manuals "Configuring Hardware and Communication Connections
STEP 7", "Modifiying the System During Operation via CiR" and "Automation System S7-400H -
Fault-Tolerant Systems" is an extract from the HTML-based Help on STEP 7. For detailed
procedures please refer to the STEP 7 help. As the manuals and the online help share an almost
identical structure, it is easy to switch between the manuals and the online help.

You can find the electronic manuals after installing STEP 7 via the Windows Start menu: Start >
SIMATIC > Documentation.

Further Support

If you have any technical questions, please get in touch with your Siemens representative or
responsible agent.

You will find your contact person at:
http://www.siemens.com/automation/partner

You will find a guide to the technical documentation offered for the individual SIMATIC Products
and Systems at:

http://www.siemens.com/simatic-tech-doku-portal
The online catalog and order system is found under:

http://mall.automation.siemens.com/

Training Centers

Siemens offers a number of training courses to familiarize you with the SIMATIC S7 automation
system. Please contact your regional training center or our central training center in
D 90026 Nuremberg, Germany for details:

Internet: http://www.sitrain.com

Programming with STEP 7
6 Manual, 04/2017, ASE41552389-AA

http://www.siemens.com/automation/partner
http://www.siemens.com/simatic-tech-doku-portal
http://mall.automation.siemens.com/
internet:%20http://www.sitrain.com

Preface

Technical Support
You can reach the Technical Support for all Industry Automation and Drive Technology products
e Via the Web formula for the Support Request

http://www.siemens.com/automation/support-request|Additional information about our Technical
Support can be found on the Internet pages http://www.siemens.com/automation/service

Service & Support on the Internet
In addition to our documentation, we offer our Know-how online on the internet at:

http://www.siemens.com/automation/service&support

where you will find the following:

o The newsletter, which constantly provides you with up-to-date information on your products.
e The right documents via our Search function in Service & Support.

e Aforum, where users and experts from all over the world exchange their experiences.

e Your local representative for Industry Automation and Drive Technology.

¢ Information on field service, repairs, spare parts and consulting.

Security Information:

Siemens provides products and solutions with industrial security functions that support the secure
operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to
implement - and continuously maintain - a holistic, state-of-the-art industrial security concept.
Siemens' products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and
networks. Systems, machines and components should only be connected to the enterprise network
or the internet if and to the extent necessary and with appropriate security measures (e.g. use of
firewalls and network segmentation) in place.

Additionally, Siemens' guidance on appropriate security measures should be taken into account.
For more information about industrial security, please visit

http://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends to apply product updates as soon as available and to always use
the latest product versions. Use of product versions that are no longer supported, and failure to
apply latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
under

http://www.siemens.com/industrialsecurity.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 7

http://www.siemens.com/automation/support-request
http://www.siemens.com/automation/service&support
http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity

Preface

Programming with STEP 7
8 Manual, 04/2017, ASE41552389-AA

Table of Contents

1= =T - N 5
JLIE=1 o] (0o 0] 1 (=Y o | PP PPPPPPPPPPPPPPN POt 9
1 Introducing the Product and Installing the Softwarecccoi i 21
1.1 OVEIVIEW Of STEP 7 .ottt e e e e e e et e e e e e e e e e nteeneeeaeeaaannnnneeaeaeats 21
1.2 The STEP 7 Standard PaCKaQge.........couuiuiiiiiiiei ettt 25
1.3 What's New in STEP 7, VEISION 5.67o et e e eenaaaen 30
1.4 Extended Uses of the STEP 7 Standard Package ..o 31
1.4.1 ENGINEEIING TOOIS ...ttt et nb e e e 32
14.2 RUN-TIME SOIWEAIE ... et e e et e e et e e e e nnbe e e e e nnreeeeennehs 34
14.3 Human Maching INtErfaceooi i e 35
2 LTS3 = 1= o o T 37
2.1 Automation LICENSE MaNAGEToouiiiiiiiiiie et e e 37
211 User Rights Through The Automation License Managereeeviiiiiiiiiiieiee e 37
21.2 Installing the Automation LicenSe Manager..........oouiiiiiiiiiii e ahe 40
21.3 Guidelines for Handling LICENSE KEYSooiiieieiiiie et e et 41
2.2 INSTAlING STEP 7 ... ettt e e e e e et e e e e e e e e s ntneeeeaa e e e e s nnenneeaaaeeaaannhe 42
2.21 INStAllation PrOCEAUIE ... oottt e e e e e e e e e e e e e e e e nneneeeaaaeeeaannhe 44
222 Setting the PG/PC INTEIfACE.cooiiiiii e 46
23 UNINSEallING STEP 7 ... e 48
24 USEI RIGNTS ettt e et e e e e bt e e e e nee e e e eane e 48
3 Working Out the Automation CONCEPt ... 51
3.1 Basic Procedure for Planning an Automation Project...........cccccceeiiiiie e 51
3.2 Dividing the Process into Tasks and AFEaSouiiuiiiiiiiii it aee 52
3.3 Describing the Individual FUNCLONAI Ar€as.........c.ooiiiiiiiiiiii e 54
3.4 Listing Inputs, Outputs, and INJOULScc.uuiiiiiiii e e e e e e e e e e aaaes 56
3.5 Creating an 1/0 Diagram for the MOTOrS............uuviiiiii i ais 56
3.6 Creating an 1/0 Diagram for the VaIVESuiiiiiiii et 57
3.7 Establishing the Safety ReqUIremMents ... 58
3.8 Describing the Required Operator Displays and Controls..............oooiieoiiiiiee e 59
3.9 Creating a Configuration DIagramccooiiiiiiiiiiie e e 60
4 Basics of Designing @ Program STrUCIUIEcooiiiiiiiiiiiiiiiiee e e e e e snn e e e e e e 61
4.1 Programs iN @ CPU ...ttt 61
4.2 Blocks in the USEr Program ...t 62
421 Organization Blocks and Program StrUCIUIEcc.ooiiiiiiiiiiiee e es 63
4.2.2 Call Hierarchy in the USEr Programooiccuiiiiiiee e e ettt e et ee e e e e e e nnnraaeeaae i 69
4.2.3 BlOCK T YD e —————_ 71
4.2.3.1 Organization Block for Cyclic Program Processing (OB1)cccvviiiiiiiiiiicieee e 71
4.2.3.2 FUNCHONS (FC) ooiiiiiiiiiiiiiiii ettt e e e ettt e e e e e e st a b e e e e e e e e e s s baseeeaeesseasntaaneeaeeesaanshs 77
4.2.3.3 FUNCLON BIOCKS (FB).....uiiiiiiiiiiiiiiieiie ettt e e et e e e e e e st a e e e e e e e s e santnaneeaeeeeaannhs 79
4.2.3.4 InsStance Data BIOCKSoooiiiiiiei ettt e et e e e e e e e e e e e annhe 82
4.2.3.5 Shared Data BIOCKS (DB).....ccciiiiiiiiiiiieeiie et 85
4.2.3.6 System Function Blocks (SFB) and System Functions (SFC).........ccccciiiiiiiiiiiineee e 86
424 Organization Blocks for Interrupt-Driven Program Processing..........coocveeviriieieiniieeeiniieee e 88
4.2.4.1 Time-of-Day Interrupt Organization Blocks (OB10 t0 OB17)......cccoiiiiiiiiiiiiiiieeee e 88
4.2.4.2 Time-Delay Interrupt Organization Blocks (OB20 to OB23)cccooiiiiiiiiiiiiiiieeeee e 91
4.2.4.3 Cyclic Interrupt Organization Blocks (OB30 t0 OB38)......c.cccoiiiuiiiiiiiieiiiciiieiee e ee ek 92
4.2.4.4 Hardware Interrupt Organization Blocks (OB40 t0 OBA47)......ccccvimiiiiee it 94
4.2.4.5 Startup Organization Blocks (OB100/ OB101 / OB102)ccciiiuiiiiiieee etk 95
4.2.4.6 Background Organization BIOCK (OBO0).........ceiiiiiiiiiiiiiiie et e e e et ae e e e e e e e enaes 97
4.2.4.7 Error Handling Organization Blocks (OB70 to OB87 / OB121 t0 OB122)ccevvieiiiiiiiiiieeeeeee 99

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 9

Table of Contents

10

Startup and OPEratioN...... ... ———————————————————————————————————— 101
5.1 =T o TR I I =1 APPSR 101
5.2 Starting STEP 7 with Default Start Parameters ... e 102
5.3 Calling the Help FUNCHONScooiiiiii e 104
5.4 Objects and Object HIErarChy ..o e 105
5.4.1 o] [=Tot A @ o] = ox PP PR 1 107
5.4.2 (o] r= T YA O o 1= o1 PRSPPI 108
54.3 S =1 (0] KO] o] 1Y o1 SO PO ERPRRPPN 109
544 Programmable Modulg ODJECToieiiiiiiiieie e e e e e e e e e e e e e e e e 110
54.5 S7 Program ODJECE ...eeiiiiiiiiiieiiiie et e e e e e e e e e e a e e e e e e e anrnae s 112
5.4.6 BIOCK FOIAEr ODJECT.......eiiiiiieiie ettt 114
54.7 Source File FOIder ODJECEoi i e 117
54.8 S7 Program without @ Station or CPU ... e 118
55 User Interface and OpPeration...........ooooo oot e e e e e e e e e e e e 119
5.5.1 Operating PhilOSOPNYcooi e e 119
5.5.2 WiINAOW AITANGEMENT ..ot e e e e e e e e 120
55.3 Elements in DIalog BOXEScooo oo 121
554 Creating and Managing ODJECLScoiiiiiiiiiie e a e 122
5.5.5 Selecting Objects in @ Dialog BOX.........uuuiiiiiiiiiiiiiiiiiee et a e e e e e e e s s 128
5.5.6 SESSION MEIMOTY ..evtieiiiee ettt e e e et e e e e e e e e et e e eeeaeeesaaabataeeeaaeeesannsnsaeeeeeseeannnsnnedes 129
55.7 Changing the Window ArrangemENt..........cocccuiiiiiiiee e e et e e e e e e e e e s e snnraaeeeae s 129
5.5.8 Saving and Restoring the Window Arrangement............coocciiiiiiee i e 130
5.6 Keyboard OPerationo i 131
5.6.1 (3G oo 1= 1o @7] o1 1] I PO PP ORI 131
5.6.2 Key Combinations for Menu Commandsc.eeiiiiiiiiiiiiie e 131
5.6.3 Key Combinations for Moving the CUISOrouuiii i 133
5.6.4 Key Combinations for Selecting TeXt......coo e 135
5.6.5 Key Combinations for Access 10 ONling HEIPooiviiiiciiiiiiee e 135
5.6.6 Key Combinations for Toggling between Windowscccoeeeiiiiiiiiiiie e 136
Setting Up and Editing the Project..........cc s 137
6.1 o)1=t] (B (o1 (1 PP PRRPR) 137
6.2 What You Should Know About AcCess Protection............cccooeuereiiiiire i e 139
6.3 What You Should Know About The Change Log........c.cccoiiiiiiiiiiiiiii e e 141
6.4 Using Foreign-Language Character SEtScooiiiiiiiiiie it e e 142
6.5 Setting the MS WINdOWS LanQUAaQJE.........ccouiiiiiiiiiiiei ittt 144
6.6 Setting UP @ PrOJECEo 145
6.6.1 Creating @ PrOJECT ... 145
6.6.2 INSEIHING STALIONS ...ttt e et e e et e e e s anbee e e 147
6.6.3 INSErtING AN S7 PrOGramcii ittt b bt e et e e e st e e e s aabe e e e e anbeeee e 148
6.7 EdItiNG @ PrOJEC ... et e e e e 150
6.7.1 Checking Projects for Software Packages USEdc.c.uvviiieeiiiiiiiiiiiiee e 150
6.7.2 Managing MUltilinQUal TeXES ...cooeieee e 151
6.7.2.1 Types of MURIINGUAI TEXESouuiiiiiiiiiieiie e e e e e e e e e e enrnee s 153
6.7.2.2 Structure of the EXPOIt Fileoeeiiiiiiieiee e a et 154
6.7.2.3 Information 0N the LOG Filecooiiiiiieee e e 156
6.7.2.4 Managing User Texts Whose Language Font is Not Installedccccooiniiiinn e 157
6.7.2.5 Optimizing the Source for Translation.............ccccoiiiiii e e 158
6.7.2.6 Optimizing the Translation ProCESSciiiiiiiiiii e 159
6.7.2.7 Hiding Texts in Selected LangUAQJESccouiiiiiiiiiiiiiie e 159
6.7.3 Micro Memory Card (MMC) as @ Data Carrier...........eeiiiiiiiiiiiiee e 160
6.7.3.1 What You Should Know About Micro Memory Cards (MMC)cccooiiiiiiiniiineiniee e e 160
6.7.3.2 Using a Micro Memory Card as a Data Carrier..........cccceeveeuiiieiie e e e 161
6.7.3.3 MeMOTY Card File........cooiiiiiiiiiiiie et e e e e e e e s rr e e e e e e enenae s 161
6.7.3.4 Storing Project Data on a Micro Memory Card (MMC).........ccceeeviiiiiiiieeee e e 162

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Table of Contents

7 Editing Projects with Different Versions of STEP 7 ... 163
7.1 Editing Version 2 Projects and LibDraries ... b 163
7.2 Expanding DP Slaves That Were Created with Previous Versions of STEP 7c.cc.... | 163
7.3 Editing Current Configurations with Previous Versions of STEP 7........ccccccoviiiiiin 165
7.4 Appending SIMATIC PC Configurations of Previous Versions...........ccoccoceivieeeiniiene e 166
7.5 Displaying Modules Configured with Later STEP 7 Versions or Optional Packages................ 168

8 DefiniNg SYMDOIS ..o, 171
8.1 Absolute and Symbolic ADAreSSINGuuuiiiieiiiiiiiiiie e e a e e e 171
8.2 Shared and Local SYMDOIScooiiiiiee e 173
8.3 Displaying Shared or Local SYMDOISuviiiiiiiiiee e ahs 174
8.4 Setting the Address Priority (Symbolic/ADSOIULE)cooiiiiiiiiiiiee e 175
8.5 Symbol Table for Shared SYMDOISoooiiiiiiii e 178
8.5.1 Structure and Components of the Symbol Table..........ccooiii 178
8.5.2 Addresses and Data Types Permitted in the Symbol Tableccccoiiii 180
8.5.3 Incomplete and Non-Unique Symbols in the Symbol Tableccceeiiiiiiii 181
8.6 Entering Shared SYMDOISo.uiiiiii etk 182
8.6.1 General Tips on Entering SYMDOIScoooiiiiiiii e 182
8.6.2 Entering Single Shared Symbols in @ Dialog BOX...........ccceeiiiiiiiiiiiiie ek 183
8.6.3 Entering Multiple Shared Symbols in the Symbol Table............cccccoeeiiiiiiiii e 184
8.6.4 Using Upper and Lower Case for SYMDOIS..........cooiiiiiiiiiee e 185
8.6.5 Exporting and Importing Symbol TabIescoiiiiiiiiiiiiiie e ahs 187
8.6.6 File Formats for Importing/Exporting @ Symbol Tablecccoveeeiiiiiiieee e e 188
8.6.7 Editing Areas in SYmMDbOI TAbIEScocooiiiiiieei ek 191

9 Creating BIOCKS @nd LiDrari@s............cceeiiiiiiieee e e e e s e e n e e e e 193
9.1 Selecting an Editing Methodeiiiiii e 193
9.2 Selecting the Programming LaNQUAGJEcc.ueiiiiiiiiiiiiec e 194
9.2.1 Ladder Logic Programming Language (LAD)coiuiiiiiiiiieiiiee it b 196
9.2.2 Function Block Diagram Programming Language (FBD)ccccoviiiiiiiiiieiiiieeecieee 197
9.2.3 Statement List Programming Language (STL)eeeiiiiiieiiiieieeee e 198
9.24 S7 SCL Programming LAnNQUAGEccuuuiiiiiiiiie ettt 199
9.2.5 S7-GRAPH Programming Language (Sequential Control)...........ccooeciiiieieeei e 200
9.2.6 S7 HiGraph Programming Language (State Graph).........ccccoveiiiiiiiiici e 201
9.2.7 S7 CFC Programming LANQUAGJE.uuvuiiiieiiiiiiiiieeie e e eeeete e e e et e e e e e e s eantae e e e e e e e sennnae s 202
9.3 (07 (=T (] ol =1 o Tor 13 SRRSO 203
9.3.1 =] oTed /€ o] o [T PP PP PPPTPPPPPR o1 203
9.3.2 Using User-Defined Data Types to AcCess Data.........ccoovueeiiiiiiiiiiiiieiiiieeieee e e 204
9.3.3 3] FoTed Qo o =T o 1T OSSR o1 207
9.34 Displaying BlOCK LENGNSccouiiii et 209
9.3.5 ST o o O PP PPPRPRPPPRN Bt 210
9.3.6 ComPAriNg BIOCKS ... 211
9.3.7 Attributes for Blocks and Parameters ... 213
9.4 R A Loy Qo IRT7 L TN T o =T =T A 214
9.4.1 Hierarchical Structure of LIDraries..........coiuiiie ittt seeee e ke 216
9.4.2 Overview of the Standard Libraries. ... 216

10 Basics of Creating LOGIC BIOCKSuuuuiiiiiiiiiiiiiiiiiieeiieeienreeeeeereeeeeeeereseeeeeeeereeeseeeeeesee. 217
10.1 Basics of Creating LOGIC BIOCKS..........coiiiiiiiiiiiiiie ettt e e sneeee e he 217
10.1.1 Structure of the Program Editor WINOWcueiiiiiiiiiiiiiie e 217
10.1.2 Basic Procedure for Creating LOGIC BIOCKSc.uiiiiiiiiiiiiiiiee e 219
10.1.3 Default Settings for the LAD/STL/FBD Program Editor ..o 220
10.1.4 Access Rights to BIocks and SoUrce Filescoooiiiiiiiiiiiiii e 220
10.1.5 Instructions from the Program Elements Table ... 221
10.2 Editing the Variable Declaration..............oouiiiiiiiii e ke 222
10.2.1 Using the Variable Declaration in LOGIiC BIOCKSccuuiiiiiiiiiiiiiiiciicc e 222
10.2.2 Interaction Between The Variable Detail View And The Instruction List.................ccooociii L 224
10.2.3 Structure of the Variable Declaration WindOWcccoiiiiiiiiiiiiiieieee e 225
10.3 Multiple Instances in the Variable Declaration..............ccccooo oo 226

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 11

Table of Contents

11

12

13

12

10.3.1 UsiNg MURIPIE INSANCESeiiiiiiiii e s 226
10.3.2 Rules for Declaring Multiple INStaNCESoooiiiiiiiiiiii e s 227
10.3.3 Entering a Multiple Instance in the Variable Declaration Windowccccccceviiiiiininnnn 227
104 General Notes on Entering Statements and Commentscccccveeeeeeiiicciinieeee e L 228
10.4.1 Structure of the Code SECHON.........cciiiiiiiiii e s 228
10.4.2 Procedure for Entering Statements...........coovoiiiiiii i 229
10.4.3 Entering Shared Symbols in @ Programcccooeiiiiiiiiiiie e 230
10.4.4 Entering Block Comments and Network Comments...........cccceeevvviiiiiiiee e 230
10.4.5 Title and Comments for BIocks and NetwWOrks...........cccccoiiiiiiiiiiiiiiiiiieee e 231
10.4.6 Working with Network Templatescoooiiiii e s 233
10.4.7 Search Function for Errors in the Code Section ... 234
10.5 Editing LAD Elements in the Code SECHONccooiiiiiiiiiiiiiiiee e 235
10.5.1 Settings for Ladder LogiC Programmingccoocuuiiiiiiiiiiiiiiiee et s 235
10.5.2 Rules for Entering Ladder Logic Elementscoooiiiiiiiiiiiiiieeee e 235
10.5.3 lllegal Logic Operations in LAddercoouuiiiiiiiiiiiiiee e e s 238
10.6 Editing FBD Elements in the Code SECHONcooiiiiiiiii e 239
10.6.1 Settings for Function Block Diagram Programming...........cccccceeiiiiiiiiiiie e eecciieeee e 239
10.6.2 Rules for Entering FBD EIEMENTScciiiiiiiiiieiee ettt e e nnvanne e 240
10.7 Editing STL Statements in the Code SECLON...........ccuviiiiiie i 242
10.7.1 Settings for Statement List Programmingcccccooiiiiiiiiiii e 242
10.7.2 Rules for Entering STL Stat@mMentsccoiiiiiiiiiiiic e 242
10.8 Updating BIOCK CallScuuiiiiiiiie ettt et e e e ee el 243
10.8.1 Changing INtErfacescooiuiiiiiii et s 243
10.9 SaVING LOGIC BIOCKS ...t 244
Creating Data BIOCKSt e e e nr e e 247
111 Basic Information on Creating Data BIOCKSccooiiiiiiiiiiiiiiccece e 247
11.2 Declaration View of Data BIOCKS......ccoei it e e 248
11.3 Data View Of Data BIOCKSc..oiiiiiiiiie ettt e e et e e et e e e s aneeeee et 249
1.4 Editing and Saving Data BIOCKS........cccciiiiiiiiiiic et a e e e e et 250
11.4.1 Entering the Data Structure of Shared Data BIocksccccccoevviiiiiiiiie e L 250
11.4.2 Entering and Displaying the Data Structure of Data Blocks Referencing an FB

(INSTANCE DBS) ...viiiiiieeiiectieeee ettt e e e e e et e e e e e e e e st s e e e e e e e s s e ssntaaeeaaeeesennssnnneeeaes s 251
11.4.3 Entering the Data Structure of User-Defined Data Types (UDT).......ccccceeeeeviiiieeeeeeeeeciineen. L 252
11.4.4 Entering and Displaying the Structure of Data Blocks Referencing a UDTccccovieeennnn . 253
11.4.5 Editing Data Values in the Data VIEWc.cooiiiiiiiiiii e 254
11.4.6 Resetting Data Values to their Initial Values...........ccoocueiiiiiieeeee e 254
11.4.7 Saving Data BIOCKScooiiiiiiii e s 255
Parameter Assignment for Data BIOCKSuuuiiiiiiiiiiiiie e 257
121 Assigning Parameters to Technological FUNCLONScooiiiiiiiiiiii e 257
Creating STL SOUICE FilESuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiersirr s ———. 259
13.1 Basic Information on Programming in STL Source Files...........ooooiiiiiiiiiiiieeeeee L 259
13.2 Rules for Programming in STL Source Filescoociiiiiiiiiii i 260
13.2.1 Rules for Entering Statements in STL Source Filesccccciiiiiiiiiie e 260
13.2.2 Rules for Declaring Variables in STL Source Files........cccocuiiiiiiiiiiiieeeee e 261
13.2.3 Rules for Block Order in STL SOUrce Filesccuiiiiiiiiiiiiiiie e 262
13.2.4 Rules for Setting System Attributes in STL Source Filescccceviiiiiiiiiiiiee e 262
13.2.5 Rules for Setting Block Properties in STL Source Files...........coooiiiiiiiiiiiiieeee e L 263
13.2.6 Permitted Block Properties for Each BlIoCK TYpeooiiiiiiiiieieiiieee e 264
13.3 Structure of Blocks in STL SOUrce Files ..o 266
13.3.1 Structure of Logic Blocks in STL Source Files..........oocoiiiiiiiiiiiiiiece e 266
13.3.2 Structure of Data Blocks in STL Source Files..........coooiiiiiie e 267
13.3.3 Structure of User-Defined Data Types in STL Source Filescccooiiiiiiiiiniieeiieecenn 267
13.4 Syntax and Formats for Blocks in STL Source Filescccvvviiiiiiiiciieccec e 268
13.4.1 Format Table of Organization BIOCKS............cccuviiiiiiiiiiiec e 268
13.4.2 Format Table of FUNCHON BIOCKSuiiiiiiiiie ettt s 269
13.4.3 Format Table of FUNCHONSoouiiiiie e s 270
13.4.4 Format Table of Data BIOCKSooiiiiiiiiiiiiiie ettt st s e e e s 271

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Table of Contents

13.5 Creating STL SOUMCE FIlESccoiiiiiiiie e 272
13.5.1 Creating STL SOUMCE FlESccooiiiiiiiee e 272
13.5.2 Editing S7 SOUICE FilES........eiiiiiiiie et 272
13.5.3 Setting The Layout of Source Code TeXt.........ooiiiiiiiiiiiiiii e 272
13.5.4 Inserting Block Templates in STL SOUrce FileScccuuiiiiiiiiiiieeee e, 273
13.5.5 Inserting the Contents of Other STL Source Files............cooviiiiiiiiiiiiiiie e, 273
13.5.6 Inserting Source Code from Existing Blocks in STL Source FileS..........cccccviiiiiiiiiiiiciiieeeeee, 273
13.5.7 Inserting EXternal SOUIMCE FilESoueiiiiiiiiieeee et eaa e, 273
13.5.8 Generating STL Source Files from BIOCKS............ccoiiiiiiiiiiiie e 274
13.5.9 IMPOrting SOUICE FlESuvviiiieiieieeee e e e e e e e e e e e s e reeeeaae e e, 275
13.5.10 EXPOrting SOUICE FIlES ... s 275
13.6 Saving and Compiling STL Source Files and Executing a Consistency Check 276
13.6.1 SaviNg STL SOUICE FilESoeiiiiiiieie et e 276
13.6.2 Checking Consistency in STL SOUICe FileS..........iiiiiiiiiiiii e 276
13.6.3 Debugging STL SOUICE FIlESoiiiiiiiiiiiii e 276
13.6.4 Compiling STL SOUICE FilES ...t e e e e e e s eeeaae e, 277
13.7 Examples Of STL SOUIMCE FilES........uuiiiiiiiioiieiiee et e e e e e e e e, 277
13.7.1 Examples of Declaring Variables in STL Source Filesccooociiiiiiiiiiiiiiieeee e, 277
13.7.2 Example of Organization Blocks in STL Source Filescoooviiiiiiiiiiiiiiieeee e, 278
13.7.3 Example of Functions in STL SOUICE FilESooiiiiiiiiiiiiiiie et 279
13.7.4 Example of Function Blocks in STL Source Filesccueiiiiiiiiiiiiiiee e, 282
13.7.5 Example of Data Blocks in STL Source Filescooeeiiiiiiiiii e 284
13.7.6 Example of User-Defined Data Types in STL Source FileS.........ccueiiiiiiiiiiii e 285
14 Displaying Reference Data.............cccoiroiiiiiiiiiiiree e e e e e e e e s e nn e e e e e e e e nnns 287
141 Overview of the Available Reference Data.............oooiiiiiiiiii e 287
1411 CrosS-Reference Listt e e e e e e e e e e e e e 289
T4.1.2 Program STTUCIUIEeii ittt et e s e bt e e s e bbe e e e anaee e 290
T4.1.3 ASSIGNMENT LIS ...t s e e en e 292
14.1.4 UNUSEA SYMDOIS ...cooiiiiiiiieiie et e e e e e e e s e st e e e e e s sesanbaaeaeaeeesesnsnaeeeeaeseann, 294
14.1.5 Addresses WithOUt SYMDOISuuiiiiiiiii e a e ee e e e, 295
14.1.6 Displaying Block Information for LAD, FBD, @and STLcccceeiiiiiiiiiiiie e, 295
14.2 Working with Reference Dataccooouiiiiiiiii et 296
14.2.1 Ways of Displaying Reference Datacccuuvvieiiiiiiiiiieicee et 296
14.2.2 Displaying Lists in Additional Working WindOWSccooiiiiiiiii e, 297
14.2.3 Generating and Displaying Reference Datacocceviiiiiiiiiii e, 298
14.2.4 Finding Address Locations in the Program QUICKIYccccoiiiiiiiiiii e, 299
14.2.5 Example of Working with Address LOCatioNS............ocueiiiiiiiiiiiiieie e 300
15 Checking Block Consistency and Time Stamps as a Block Property..........ccccvvvviviiiiiiiiiiieeieeeeenneennennn. 303
151 Checking BIOCK CONSISIENCY........uiiiiiiiiei i) 303
15.2 Time Stamps as a Block Property and Time Stamp Conflicts ... 305
156.3 Time Stamps iN LOGIC BIOCKSoiiiiiiiiiiiiie ettt e e e e e e e e e eaaneed 306
15.4 Time Stamps in Shared Data BIOCKScoiiiiiiiiiiiieiicec e 307
156.5 Time Stamps in Instance Data BIOCKScoooiiiiiiiiiiiieecc et 307
15.6 Time Stamps in UDTs and Data Blocks Derived from UDTSc.ccooiiiiiiiiiieeeeicciieeeee e 308
15.7 Correcting the Interfaces in a Function, Function Block, or UDTcccccciiiiiiieiiiiciiiieeeeee, 308
15.8 Avoiding Errors when Calling BIOCKSouiiiiiiiiiiieiice ettt 309
16 CONFIQUIING IMESSAGESeeeviiiiiiiiiiiittitittitettrtrererrrrererera ettt 311
16.1 The MeSSage CONCEPL ...coi ittt e e e e et e e e e e e e st ee e e e e e e e e annenneeaaeeeeaannnes] 311
16.1.1 What Are the Different Messaging Methods?ooouiiiiiiiiiiii e, 311
16.1.2 Choosing a Messaging Methodoooi i) 313
16.1.3 SIMATIC COMPONENES ...t e e e e e e e et e e e e e e e e s neeeneeaeeeaaannnnneeeaaeeenn) 315
16.1.4 Parts Of @ MESSAGEoooiiiiiii e 316
16.1.5 Which Message Blocks Are Available? ... 317
16.1.6 Formal Parameters, System Attributes, and Message BIOCKScccooveiciiiieiieeiiicciieeeeeee, 319
16.1.7 Message TYPe and MESSAJEScccviiiiiiiiiiiiee et e aaaaaaaaeend 320
16.1.8 How to Generate an STL Source File from Message-Type BIOCKScccccvveeeeeiiiiiiiiieeeee, 322
16.1.9 Assigning Message NUMDEISooviviiiiiiiee) 322

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 13

Table of Contents

17

14

16.1.10 Differences Between Project-Oriented and CPU-Oriented Assignment

Of MESSAGE NUMDEIS ... e e e ek 323
16.1.11 Options for Modifying the Message Number Assignment of @ Project ..., 324
16.2 Project-Oriented Message Configuration.............coooocuiiiiiiee oo e e 325
16.2.1 How to Assign Project-Oriented Message NUMDbDErScccccoeviiiiiiiiie e, 325
16.2.2 Assigning and Editing Block-Related MeSSagescoovvvvviviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 325
16.2.2.1 How to Create Block-Related Messages (Project-Oriented)ccooeeiiiiiiieiiiiiiiiciieieee e 325
16.2.2.2 How to Edit Block-Related Messages (Project-Oriented)...........ccceeveeeiiiiiiiiiiice e 328
16.2.2.3 How to Configure PCS 7 Messages (Project-Oriented)..........ccccuvveviieiiiiiiiiiiiiee e 329
16.2.3 Assigning and Editing Symbol-Related MesSsages ..o 330
16.2.3.1 How to Assign and Edit Symbol-Related Messages (Project-Oriented)..........ccccceeviiieiiiiieennl 330
16.2.4 Creating and Editing User-Defined Diagnostic MeSSages..........cc.evvviiiiiiiiiiiiniieee e 331
16.3 CPU-Oriented Message Configuration ... e 332
16.3.1 How to Assign CPU-Oriented Message NUMDEIS ..o, 332
16.3.2 Assigning and Editing Block-Related MeSSagesc.eeviiiiiiiiiiiiiiiiiiiiee e 332
16.3.2.1 How to Create Block-Related Messages (CPU-Oriented).........cceeviiiiiiiiiiiiiiiee e 332
16.3.2.2 How to Edit Block-Related Messages (CPU-Oriented)...........cccuviiiiieiiiiiiiiiiiiee e 335
16.3.2.3 How to Configure PCS 7 Messages (CPU-Oriented)coooiuiiiiiiiiiiiiiiiieieee e 335
16.3.3 Assigning and Editing Symbol-Related MeSSagesc.veviveeiiiiiiiiiiiiee e 337
16.3.3.1 How to Assign and Edit Symbol-Related Messages (CPU-Oriented)ccccoeeevvciviiiieeeeeennns 337
16.3.4 Creating and Editing User-Defined Diagnostic Messages...........cccvvveeeeeeiiicciieieeee e, 338
16.4 Tips fOr EitiNg MESSAUES.......uiiiiiiiiie etk 339
16.4.1 Adding Associated Values 10 MeSSages.........ccuiuiiiiiiiiiiiiiiee e 339
16.4.2 Integrating Texts from Text Libraries into MeSSages........cocuvvviiiiiiiiiiiiiiiiee e 342
16.4.3 Deleting ASSOCIAtEd ValUESoiiiiiiiiiiiie e 343
16.5 Translating and Editing Operator Related Texts..........oooiiiiiiiiii e 344
16.5.1 Translating and Editing USer TeXIS........ccuviiiiiiiiiiiiiiiieeeeeeeeeeeeeeee ettt 344
16.6 Translating and Editing Text LiDraries ... 346
16.6.1 USer TeXt LIDIrariESooeeiieiee ettt e e e e e e e e s e sennnneeeeee e 346
16.6.2 Creating User TeXt LIDrari€scccuuuiiiiiie ettt e et e e e e e e s e ennraneeaa e 346
16.6.3 How to Edit User Text LIDraries ...t 347
16.6.4 System TeXt LIDIAri€Sveiiiiiiiiiiiiiiie et e e e e e e e e a e e e e e e e seennnreneeaee e 347
16.6.5 Translating Text LIDraries ... e 348
16.7 Transferring Message Configuration Data to the Programmable Controllerccccceeeene. 350
16.7.1 Transferring Configuration Data to the Programmable Controller............cocccvviiiiinenennnnd. 350
16.8 Displaying CPU Messages and User-Defined Diagnostic Messages..........ccccoveviiiiiiieneeennn. 351
16.8.1 Configuring CPU MESSAQES......cuuiiiiiiiiiie ettt e e sinee e 354
16.8.2 Displaying Stored CPU MeESSAgES.........cuiiiiiiiiiiiiiie ittt 354
16.9 Configuring the 'Report System Errors'c...eviiiiiii it 355
16.9.1 Overview of 'Report SYStem ErrOr'.........oooo oo e e 355
16.9.2 Configuring the Reporting of SyStem EITOISccooiiiiiiiiiiiie e 355
16.9.3 Supported Components and Functional SCOPEcccccuviiiiiiiiiiiceee e 357
16.9.4 Settings for "RepoOrt SYStemM ErTOr"oooi i e e e e e e s e eanraaeeeae e 361
16.9.5 Generating Blocks for Reporting System Errors.........ccoooiiiiiiiii e 361
16.9.6 Generated ErrOr OBSt e e e e e et ennnneeeaee e 363
16.9.7 Generated BIOCKS. ... ettt et e e e e e e e e e e e e e nnnneeeeae e 365
16.9.8 Assignment of System Errors to Error Classesceevviiiiiiiiiiiiiiiiiee e 367
16.9.9 Generating Foreign-Language Message Texts in 'Report System Error'...........ccccevvieennnnd. 369
Controlling and Monitoring Variables.................uuuuiieiiiiiiiiiiiiiiiiiiieierereeeeeeeeeeeeeeseeeeeerrees 371
171 Configuring Variables for Operator Control and Monitoringccccccveeeiiiiii e, 371
17.2 Configuring Operator Control and Monitoring Attributes with Statement List, Ladder Logic,

and Function BIOCK DIagram.........cooieiiiieeiie et e e 373
17.3 Configuring Operator Control and Monitoring Attributes via the Symbol Table........................ 374
17.4 Changing Operator Control and Monitoring Attributes with CFC...........cccooiiiiiiiiii . 375
17.5 Transferring Configuration Data to the Operator Interface Programmable Controller............... 376

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Table of Contents

18

19

20

Establishing an Online Connection and Making CPU Settingscccoomimmmni e 377
18.1 Establishing Online CONNECHIONScoiiiiiiiiiiie e he 377
18.1.1 Establishing an Online Connection via the "Accessible Nodes" Windowccccccooiiiiiee L 377
18.1.2 Establishing an Online Connection via the Online Window of the Projectccccccciilll 379
18.1.3 Online Access to PLCs in @ MUIIPrOJECT.........ooiiiiiiiiiiie e s 380
18.1.4 Password Protection for Access to Programmable Controllers..........ccccceevviiiieeeeeceecciieeeen 382
18.1.5 Updating the WIindow CONLENTSooiiiiiiiiiiiiiiie e e e ee e e e b 383
18.2 Displaying and Changing the Operating Modeoooiiiiiiiiiiiieee e 384
18.3 Displaying and Setting the Time and Dateccccuviiiiie i 385
18.3.1 CPU Clocks with Time Zone Setting and Summer/Winter Timeccccccevvciiieeeeeeeeccciieeen 386
18.4 Updating the FIMMWare.........ccoo ok 388
18.4.1 Updating Firmware in Modules and Submodules Online............cccccviiiiiiiiiiinieeeeee 388
Downloading and Uploading............ccerriiriii e e e e e e e s e ek 393
191 Downloading from the PG/PC to the Programmable Controlleroccoeeiiiiieiiiiiiieciiieeee 393
19.1.1 Requirements for DOWNIOAAING.cooiiuiiiiiiiiiii e b 393
19.1.2 Differences Between Saving and Downloading BIOCKSoocuiiiiiiiiiiiiiiiiiec e 394
19.1.3 Load Memory and Work Memory in the CPUcoooiiiiiiii e s 395
19.1.4 Download Methods Dependent on the Load MemOrycoovvviviiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeee b 397
19.1.5 Updating Firmware in Modules and Submodules Online............ccccuvviiiieeiiiiiiiiiieee e 398
19.1.6 Downloading a Program t0 the S7 CPUuiiiiiiiiiie e s 401
19.1.6.1 Downloading with Project Management ... 401
19.1.6.2 Downloading without Project Management ... 401
19.1.6.3 Reloading Blocks in the Programmable COontroller..............coooouiiiiiiii i 401
19.1.6.4 Saving Downloaded Blocks on Integrated EPROM..........c.coiiiiiiiiiii e 402
19.1.6.5 Downloading via EPROM MemOry Cards...........ceeoiiiiiiiiiiiee ittt sieeee ek 402
19.2 Compiling and Downloading Several Objects from the PG ... 403
19.2.1 Requirements for and Notes on Downloadingccueiiiiiiiiiiiiiiiiiiiee e s 403
19.2.2 Compiling and Downloading ObJECEScuuiiiiiiiiiiii e s 405
19.3 Uploading from the Programmable Controller to the PG/PC...........ccoiiiiiiiiee e 407
19.3.1 Uploading @ STatioN..........ovviiiiiiii e a e e e aeaaae b 408
19.3.2 Uploading BIOCks from @n S7 CPUcoooiiiieee ettt e e e 409
19.3.3 Editing Uploaded BIOCKS in the PG/PCc.ouiiiiiieeii ettt e 409
19.3.3.1 Editing Uploaded Blocks if the User Program is on the PG/PC............ccccooiiiiiiiiiiiciiieeeee e 410
19.3.3.2 Editing Uploaded Blocks if the User Program is Not on the PG/PCccccoeeiiiiiiiieeeeeele 410
194 Deleting on the Programmable CONtroller ... 411
19.4.1 Erasing the Load/Work Memory and Resetting the CPUccccooiiii e 411
19.4.2 Deleting S7 Blocks on the Programmable Controller ... 411
19.5 Compressing the User Memory (RAM) ...t b 412
19.5.1 Gaps in the User Memory (RAM)......o..uuiiiiiiii ettt e b 412
19.5.2 Compressing the Memory Contents of an S7 CPU ... 413
Testing with the Variable Tableooo o 415
20.1 Introduction to Testing with Variable Tables............ccccoo i 415
20.2 Basic Procedure when Monitoring and Modifying with the Variable Table..................cc..........l. 416
20.3 Editing and Saving Variable Tablescc.uuiiiiiiiiii e ane 416
20.3.1 Creating and Opening a Variable Tablecooiiiiiiiii e 416
20.3.1.1 How to Create and Open a Variable Table..........cccuveiiiiiiiiiiiiieiee e e e 417
20.3.2 Copying/Moving Variable TabIEScoccuiiiiiiie e e e e e e e st re e e e e e e e e anans 418
20.3.3 Saving @a Variable Table ... b 418
20.4 Entering Variables in Variable Table ... 419
20.4.1 Inserting Addresses or Symbols in a Variable Table ... 419
20.4.2 Inserting a Contiguous Address Range in a Variable Table........cccocceiiiiiii e 421
20.4.3 Inserting MOdify ValUES..........coouuiiiiiiiii ettt e e ee e b 421
20.4.4 Upper Limits for ENtering TIMErscooo oo e e e e e e ek 422
20.4.5 Upper Limits for ENtering COUNLEIS.........cuuuiiiiiiee et e e e e e e e aahe 423
20.4.6 Inserting ComMMENE LINESccoiiiiiiiii ettt e e e e e e e e s et e e e e e e e seareaneeaeeeaaanabs 423

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 15

Table of Contents

21

22

23

16

D A &= 0 o1 o] = PSPPSR A 424
20.4.7.1 Example of Entering Addresses in Variable Tables..........cccooiiiiiiini e e 424
20.4.7.2 Example of Entering a Contiguous Address RaNgeccooviveiiiiiieiiiniieee e e 425
20.4.7.3 Examples of Entering Modify and FOrce ValUESs.............cooocuiiiiiiieiiiiiiiieeee e e 426
20.5 Establishing a Connection t0 the CPU...........ooiiiiiiii e 429
20.6 MoNitoring VariabIes ... 430
20.6.1 Introduction to Monitoring Variables ... 430
20.6.2 Defining the Trigger for Monitoring Variablesc.uuveiiiiiiiiciieee e 430
20.7 MOdIfyiNG Vari@bIEs.........oooiiii et e e e a e e e e e e e e e e 432
20.7.1 Introduction to Modifying Variables.............oeei i 432
20.7.2 Defining the Trigger for Modifying Variables.............c.ooiiiiiiiiii e 433
20.8 FOrCING VariabIEsooiiiiiiiii ettt e et e e et e e e e asbeee e e 435
20.8.1 Safety Measures When Forcing Variables ... 435
20.8.2 Introduction to FOrcing Variables ... 436
20.8.3 Differences Between Forcing and Modifying Variablesccccooiiiiiiii e 438
Testing Using Program SEatUus...........ccooiiii oo ceeerrr e e e e e e s s s s r e e e s s e mnn e e e e e e s e e e nnns 439
21.1 Testing Using Program StatUScooiiuiiiiiiie ettt e e e saraae e e e e e e s eannae e e 439
21.2 Program Status DiSPIAYcoiccuuiiiiiie et e e e e e e e e e r e e e e e e e 440
21.3 What You Should Know About Testing in Single-Step Mode/Breakpoints.............cccceeeevennnnn . 442
21.4 What You Should Know About the HOLD MOdEcccceiiiiiiiieiiiiiee e e 444
21.5 Program Status Of Data BIOCKScoiiiiiiiiiiiic et e e a e e e e 445
21.5.1 Setting the Display for Program Status............cceoiiiiiiiiiiiie e 446
Testing using the Simulation Program (Optional Package)cccovimmiiii i 447
221 Testing using the Simulation Program S7 PLCSIM (Optional Package)..........cccocueveinineeennd. 447
I T o Vo1 o PP TRRR 449
23.1 Hardware Diagnostics and TroubleShOOtiNg..........coouiiiiiiiiiiiiiie e 449
23.2 Diagnostics Symbols in the ONliNe VIEWc..ooiiiiiiiiiii e 451
23.3 Diagnosing Hardware: QUICK VIEBWcoiiiiiiiiiiiii et 453
23.3.1 Calling the QUICK VIBWcoiiiiiiiii ettt ettt e st e e s aabe e e e e aabeeee e 453
23.3.2 Information Functions in the QUICK VIEWc.coiiiiiiiiiiiiiie e 453
234 Diagnosing Hardware: DiagnostiC VIEW.........cooo i 454
23.4.1 Calling the DIiagnoSTiC VIEWuuiiiiiiiiiiicieeeeee ettt e e e e s e e e e e e et reeeaeeeaeaanas 454
23.4.2 Information Functions in the DIagnostiC VIEW.........cccuuviiiiiii i 456
23.5 1V ToTe 101N [} o]y 4 F=1 o] o HOU RSP PPURPRSTRSN A 457
23.5.1 Options for Displaying the Module INformation...............coeiiiiiiiiiiiiie e 457
23.5.2 Module Information FUNCHONS.........oooiii e e e e e 458
23.5.3 Scope of the Module Type-Dependent Information ..o 461
23.5.4 Displaying the Module Status of PA Field Devices and DP Slaves After a Y-Link.................... 463
23.6 Diagnosing iN STOP MOGEuiiiiiiiiiie ettt e et rb e e e s aabe e e e 465
23.6.1 Basic Procedure for Determining the Cause of @ STOPocccciiiiiiiiiii e 465
23.6.2 Stack Contents in STOP MOAEooiiiiiiee e e e e e e e e e e 466
23.7 Checking Scan Cycle Times to Avoid Time ErTOrscccuvviiieei it 467
23.7.1 Checking Scan Cycle Times to Avoid Time Errors........cccccevieiiiiiiiii e 467
23.8 Flow of Diagnostic INfOrmation.............oooiiiiiiiiii e e e 468
23.8.1 System Status LISt SSLoocoiiiiiie e e e a e e e 469
23.8.2 Sending Your Own DiagnoStiC MESSAQESeeeeieiiiiiiiiiiiiie e et e e e e e e e e e e e 471
23.8.3 DIiagnostiCc FUNCHONS ..ottt et e et e s et ee e 472
23.9 Program Measures for Handling EITOrSooiuiiiiiiiiiiiie e 473
23.9.1 Evaluating the Output Parameter RET_VAL ... o 474
23.9.2 Error OBs as a Reaction to Detected ErTOrs........ooo i 475
23.9.3 Inserting Substitute Values for Error Detection............ccooiiiiiiiiiiiiiiie e 480
23.9.4 1/O Redundancy Error (OB70)ooueiiiiiiieei ittt ettt e st e e e sabeeee e 482
23.9.5 CPU Redundancy Error (OBT72)........oui oottt a e e st ae e e e e e e e seansaeeeaaeeaeanna 483
23.9.6 TimMeE EITOr (OBB80).......uuiiiiiieeii ittt e et e e e e e e e et e e e e e e e sa bt eeeeaeeeeaannnrreeaaaeeaaaana 484
23.9.7 Power SUPPIY Error (OB81) ...ttt e e e e e e s e e e e e e e s e e e eae e e e e 485
23.9.8 Diagnostic INterrupt (OBB82)uuiiiiiiiiieieeiee e e e e e e e e e e e e e e e 486
23.9.9 Insert/Remove Module Interrupt (OB83)........ueiiiiiiiiiiiiiiiiee e a e e e e 487

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Table of Contents

24

25

26

23.9.10 CPU Hardware Fault (OB84)ccccuuiieiiiiieeeeieee e eeiteee e ettt e st e e e st e e e steeeessnteeeassnnaeeeeanseeeesaoh 488
23.9.11 Program Sequence Error (OBB8D5)ccoiiiiiiiiiiiiie etttk 489
23.9.12 RACK Falilure (OBB8B)cuviiiiiuiiiieieiieie e ettt e ettt e e ettt e e e sttt e e e staeeesstseeassntaeeesanteeeesanseeeessnseeeenash 490
23.9.13 Communication Error (OBB87)ccoiuiiiiiiiie ettt st e e e ek 491
23.9.14 Programming Error (OB121)ttt e et e e e e e st e e e e e e e e e nnanaeeeaeeeeaaaneh 491
23.9.15 /O ACCESS EXTOr (OB 122) ...ttt e e e e e e e e e e e e s et eeeaaeeesannrsseeeeaeeaeanneh 492
23.10 System Diagnostics with 'Report System Error'............ooooiiiiiiiieee e 493
23.10.1 Graphical Output of DIagnostiC EVENESouiiiiiiiiiie e 493
23.10.2 DiagnOStiC SAtUSc.uuviiiiiieie i e e e e e e e s e e e e e e e e sa b rre e e e e e e e e aaaarrreaaaeeaaanih 493
23.10.2.10verview of the Diagnostic STatUS...........veeiiiiiiiie e 493
23.10.2.2PROFIBUS DiagnostiC StAtUSeeiiiiiiiie itk 493
23.10.2.3Example of a DB 125 With @ DP SIQVEcooiiiiiieee e 496
23.10.2.4Example of a Request for the PROFIBUS DP DBoooiiiiiiiiiii e 497
23.10.2.5PROFINET DiagnostiC StAtUSeiiiiiiiie it 499
23.10.2.6 Example of a DB126 with an 10 System 100 and Devices with Device Numbers 2, 3 and 4...502
23.10.2.7 Example of a Request for the PROFINET IO DB.......ooooiiiiiiiee e 503
23.10.2.8Diagnostic STAtUS DB.......ccooiiiiiiiiie e e e e e aaa e e e s 504
23.10.2.9Example of a Diagnostic Status DB QUETY.........ccoiuiiiiiiiiiieiie e 508
23.10.2.10 Importing Error and Help TeXES. i eaeeveaeteeeeeenenenrneeenensnenrnnak 511
Printing @and ArChiVINgcooo i 513
24.1 Printing Project Documentation ... 513
24.1.1 Basic Procedure When Printing ... 514
24.1.2 PriNt FUNCLONS .ottt e e e e e e ettt e e e e e e e e nene e e e e e e e e e e annnneeeeaeeeeaanneh 514
24.1.3 Special Note on Printing the ObJECt TIeeocueiiiiiiiiii ek 515
242 Archiving Projects and LiDraries ... 516
24.2.1 Archiving Projects and LIDrariesoooiiiiiiiiiiiii etttk 516
24.2.2 Uses for SaVviNG/AICRIVINGcooiiiiii ittt st s e e e sabeeee ek 517
24.2.3 Requirements for ArChiVING..........oii ittt e e ee ek 517
24.2.4 Procedure for Archiving/RetrEVINGcccuiiiiiiii e e e e e e 518
TIPS @NA THICKS ..o 519
251 Exchanging Modules in the Configuration Tableccccooiiiiiiiii ek 519
25.2 Projects with a Large Number of Networked Stationscccoveeiiiiiiicciiiice e 519
25.3 REAMANGING ..o ————— 520
254 Editing Symbols Across Multiple NetWOTKS...........ccoocuiiiiiiee e 520
25.5 Testing with the Variable Table. ... 521
25.6 Modifying Variables With the Program EditOr ... 522
25.7 VIrtUAl WOTK MEIMOTY ...ttt e s nb e e ek 523
Y o] o =13 o [GRS UPUPPPPPRPPPP 525
26.1 OPErating IMOUES.oo ittt et e et e s e b e e e nr e e e an ek 525
26.1.1 Operating Modes and Mode TransSitioNS...........cueeiiiiiiiiiii ek 525
26.1.2 STOP MOUEceiiieeetiee ettt ettt ettt e e sttt e e e et e e e e staeeeesataeeessntaeeessnteeeesansenaesanseseesanseneesnch 528
26.1.3 STARTUP MOGE ...ttt ettt ettt e ettt e e e sttt e e e sttt e e e snteeeeeanteeeesanteeeesanseeeesach 529
26.1.4 RUN MOGE ..oiiiiiieieiieie ettt ettt e ettt e e sttt e e e st e e e e smte e e e e anteeeeeanteeeesanseeeesanseeeesch 537
26.1.5 HOLD MOGEeeiiiiiiiiie ettt ettt e ettt e e e sttt e e e s be e e e smtaeee e ambeeeeeanteeeesanseeeesanseeeesach 538
26.2 MemMOry Areas Of S7 CPUS.......cuuiiiiiiei et e e e e e e e e e e s st aeeeeeeeeeaaneh 539
26.2.1 Distribution of the MEMOIY AFEaS.........ccieiuiiiiiiie ettt e e e e e s e e e e e e s ebareeeaaaeeeaaih 539
26.2.2 Load Memory and WOrk MEmMOTY.........cooooi i 540
26.2.3 SYSIEM MEMOIY ..ottt ettt e et e e e e s et e e e e aabe e e e e aabeeeeeik 542
26.2.3.1 Using the System MemOry Ar€as ...tk 542
26.2.3.2 Process-Image Input/Output TabIes ... 544
26.2.3.3 LOCAl DAta StACKeeeiieieiiiieiii ettt e e e e e e e e e e e e e e e e nenne e 548
P 4 (=T 4 B o 0 =T R SS 550
P R T =1L Yo) = o QRS 550
26.2.3.6 DiIiagnoStiC BUFFET........ueiiiiiiiiieeieee et e e e e e e e e e e e s e e e e e e e e et e e s 551
26.2.3.7 Evaluating the DiagnostiC BUFfEI.............uviiiiiii i a e e 551
26.2.3.8 Retentive Memory Areas on S7-300 CPUScuuiiiiiiii it 553
26.2.3.9 Retentive Memory Areas on S7-400 CPUSuuiiiiiiii it 554

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 17

Table of Contents

18

26.2.3.10Configurable Memory Objects in the Work Memory ... 554
26.3 Data Types and Parameter TYPESooi ittt e e 555
26.3.1 Introduction to Data Types and Parameter TYPESccooiiiiiiiiiiiiiiiieee e 555
26.3.2 Elementary Data TYPES ..cccooeeie e, 556
26.3.2.1 Format of the Data Type INT (16-Bit INt€gers)uvvviieiiiie e 557
26.3.2.2 Format of the Data Type DINT (32-Bit INt€QEIS)......uvviiieiiiiiiiiee e 557
26.3.2.3 Format of the Data Type REAL (Floating-Point NUMDErs)ccooviiiiiiiiiiiiiieee e 558
26.3.2.4 Format of the Data Types WORD and DWORD in Binary Coded Decimal Numbers............... 562
26.3.2.5 Format of the Data Type SS5TIME (Time Duration)............ccccuuiiieeiiiiiiiiiieeee e 563
26.3.3 COMPIEX DALA TYPES --eeeeeeiieaeiiiiiiiiiie e et e e e e e e ettt e e e e e e e s e eeeeeaaeaeaaannneeeeeaaeeeaannnnnneeaaeeeaanneh 564
26.3.3.1 Format of the Data Type DATE_AND_TIME ... 565
26.3.3.2 Using CompleX Data TYPESeiiiiiiii ittt e e 567
26.3.3.3 Using Arrays 10 ACCESS Dataocuueiiiiiiiiiiiiiie e 568
26.3.3.4 Using Structures to ACCESS Dataccoiiuiiiiiiiiiie e 571
26.3.4 Parameter TYPES. . oottt e e b e e e e e aabe e e e e aabeeeeaah 573
26.3.4.1 Format of the Parameter Types BLOCK, COUNTER, TIMERcccoiiiiiieiiiiiiiiieee e 574
26.3.4.2 Format of the Parameter Type POINTER..........cccuiiiiiiiii e 574
26.3.4.3 Using the Parameter Type POINTERcooiiiiiiiiiie et e 576
26.3.4.4 Block for Changing the POINTEToouiiiiiiie e a e e 578
26.3.4.5 Format of the Parameter TYPe ANY ...t e e s e e e e e e eennnreeh 581
26.3.4.6 Using the Parameter TYPE ANY ... et eabseetnteeetntssssnsnsnsnsnensnensnnes 584
26.3.4.7 Assigning Data Types to Local Data of LogiC BIOCKSccocuiiiiiiieiiiiiiiieeiee e 587
26.3.4.8 Permitted Data Types when Transferring Parameters ... 589
26.3.4.9 Transferring to IN_OUT Parameters of a Function BIOCK..............ccceeiiiiiiiiiiiiee 594
26.4 Working With Older ProJECES.......ooo i 595
26.4.1 Converting Version 2 ProJECESooiuiiiiiiiiii et 595
26.5 Expanding DP Slaves That Were Created with Previous Versions of STEP 7ccccceeeeel 596
26.5.1 DP-Slaves with Missing or Faulty GSD Fil€S...........ccuuiiiiiiiiiiiceee e 597
26.6 SAMPIE PrOGIAIMS ..eeeiiieiiiiciie ettt e et e e e e e e e s et e e e e e aeeessaabsbaeeeeaeeesenasnseeeaeaeeesnnnssneeh 598
26.6.1 Sample Projects and Sample Programs...........oeeoiiiiiiiiiiie et a e e e 598
26.6.2 Sample Program for an Industrial Blending ProCesS..........ccooiiiiiiiiiiiiiicieeee et 600
26.6.2.1 DefiniNg LOGIC BIOCKS.......cciiieieiiiiee ettt e e e e e e s e e e e e e s e enan e e eaaaeeeannnnnneeh 603
26.6.2.2 Assigning SYMDBOHC NAMESoooiiiiiiiii et 604
26.6.2.3 Creating the FB for the MOOFuiii i 606
26.6.2.4 Creating the FC for the ValVes...........ooo i 611
26.6.2.5 Creating OB ... o enn 613
26.6.3 Example of Handling Time-of-Day INterrupts..........ocueiiiiiiiiiiii e 619
26.6.3.1 Structure of the User Program "Time-of-Day Interrupts” ... 619
26.6.3.2 F A2 . ittt b et h et e e an e e naneah 621
26.6.3.3 OBM0 ...ttt b et et bt et e e e nnre e e e e nnneah 623
26.6.3.4 OB1 @nd OBBO0......ccotiiiiiiiiiie etttk 625
26.6.4 Example of Handling Time-Delay INterruptscoooouiiiiiiii e 627
26.6.4.1 Structure of the User Program "Time-Delay Interrupts”..........ccccoveeiiiiiiieeee e 627
GRS © = 7 O RO 629
2GR S T © = RO 631
26.6.4.4 Example of Masking and Unmasking Synchronous Errorscccccoovieeeiniieeeiniiee e 633
26.6.4.5 Example of Disabling and Enabling Interrupts and Asynchronous Errors

(ST (021 I T Lo IS O 10 RS URRRN | 637
26.6.4.6 Example of the Delayed Processing of Interrupts and Asynchronous Errors

(SFCA1 @NA SFCA2) ...ttt ettt b ettt nnr e e aeeh 638

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Table of Contents

26.7

26.7.1
26.7.2
26.8

26.8.1
26.8.2
26.8.3
26.8.4
26.8.5

Accessing Process and I/O Data Ar€as........cc.ueii it 639
Accessing the Process Data Areaocuevi oo 639
Accessing the Peripheral Data Area..........ooooiiiiiiiii e 641
Setting the Operating BEhaVIOr...........oouuiiiiiii e 643
Setting the Operating BehaVior.............uiiiiiiii e 643
Changing the Behavior and Properties of MOAUIEScccceeeiiiiiiiiiiiiee e 644
Updating the Firmware (of the Operating System) in Modules and Submodules Offline........... 646
Using the CIOCK FUNCHIONS ...t e e e e e e e s s b e e e e e e e eeean b 647
Using Clock MemOry and TIMEIS......ciiiiiiiiiieiie e e e ettt e e e e et e e e e e s et e e e e e e s senbsaneeaaesaennn b 648
... 649

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 19

Table of Contents

20

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

1 Introducing the Product and Installing the Software

1.1 Overview of STEP 7

What is STEP 7?

STEP 7 is the standard software package used for configuring and programming SIMATIC
programmable logic controllers. It is part of the SIMATIC industry software. There are the following
versions of the STEP 7 Standard package:

e STEP 7 Micro/DOS and STEP 7 Micro/Win for simpler stand-alone applications on the
SIMATIC S7-200.

e STEP 7 for applications on SIMATIC S7-300/S7-400 with a wider range of functions:

- Can be extended as an option by the software products in the SIMATIC Industry Software
(see also Extended Uses of the STEP 7 Standard Package)

- Opportunity of assigning parameters to function modules and communications processors
- Forcing and multicomputing mode

- Global data communication

- Event-driven data transfer using communication function blocks

- Configuring connections

STEP 7 is the subject of this documentation, STEP 7 Micro is described in the "STEP 7
Micro/DOS" documentation.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 21

Introducing the Product and Installing the Software

1.1 Overview of STEP 7

Basic Tasks

When you create an automation solution with STEP 7, there are a series of basic tasks. The
following figure shows the tasks that need to be performed for most projects and assigns them to a
basic procedure. It refers you to the relevant chapter thus giving you the opportunity of moving
through the manual to find task-related information.

Install STEP ¥

Plan controller conce pt
and design program structure

v

Start STEF 7
and create a project

&> »| Configue hardware nawe .
|
v == Y
Configure hardware and a connection
* Configure modules

: Metwork stations
Configure connections to partner

? pi Symbalic programming instead of
I ing? I
v vES | Ahsolte programming? _______ J
_ NO
Define symbols
+~l
Create user program
* Program hlocks
« Call blockin program
Define local symhbols
& b{ Cross refarmnes st naw? {for searnmle, or |
| :
v vEg) debvedned gy
MO
Generate reference data
4
Ciption:
+ _______________ - PFDQFEII‘T'I mezzages
* Configure warniables for " O peratar Control
and Montoring”
<;~/ F-—— -~ -~ - - - - - - - ——-—— |
: Hawve wou already corfigured the hardware? :
+ MO e ________ _
Configure hardware and connection —‘YEE

*,"l

Download program

Testprogram and diagnose errars

¥

Frint and archive

Programming with STEP 7
22 Manual, 04/2017, ASE41552389-AA

Introducing the Product and Installing the Software

1.1 Overview of STEP 7

Alternative Procedures

As shown in the figure above, you have two alternative procedures:

You can configure the hardware first and then program the blocks.

You can, however, program the blocks first without configuring the hardware. This is
recommended for service and maintenance work, for example, to integrate programmed blocks
into in an existing project.

Brief Description of the Individual Steps

Install STEP 7 and license keys
The first time you use STEP 7, install it and transfer the license keys from diskette to the hard
disk (see also Installing STEP 7 and Authorization).

Plan your controller

Before you work with STEP 7, plan your automation solution from dividing the process into
individual tasks to creating a configuration diagram (see also Basic Procedure for Planning an
Automation Project).

Design the program structure
Turn the tasks described in the draft of your controller design into a program structure using the
blocks available in STEP 7 (see also Blocks in the User Program).

Start STEP 7
You start STEP 7 from the Windows user interface (see also Starting STEP 7).

Create a project structure

A project is like a folder in which all data are stored in a hierarchical structure and are available
to you at any time. After you have created a project, all other tasks are executed in this project
(see also Project Structure).

Configure a station
When you configure the station you specify the programmable controller you want to use; for
example, SIMATIC 300, SIMATIC 400, SIMATIC S5 (see also Inserting Stations).

Configure hardware

When you configure the hardware you specify in a configuration table which modules you want
to use for your automation solution and which addresses are to be used to access the modules
from the user program. The properties of the modules can also be assigned using parameters
(see also Basic Procedure for Configuring Hardware) .

Configure networks and communication connections

The basis for communication is a pre-configured network. For this, you will need to create the
subnets required for your automation networks, set the subnet properties, and set the network
connection properties and any communication connections required for the networked stations
(see also Procedure for Configuring a Subnet).

Define symbols
You can define local or shared symbols, which have more descriptive names, in a symbol table
to use instead of absolute addresses in your user program (see also Creating a Symbol Table).

Create the program

Using one of the available programming languages create a program linked to a module or
independent of a module and store it as blocks, source files, or charts (see also Basic
Procedure for Creating Logic Blocks and Basic Information on Programming in STL Source
Files).

S7 only: generate and evaluate reference data
You can make use of these reference data to make debugging and modifying your user
program easier (see also Overview of the Available Reference Data).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 23

Introducing the Product and Installing the Software

1.1 Overview of STEP 7

e Configure messages
You create block-related messages, for example, with their texts and attributes. Using the
transfer program you transfer the message configuration data created to the operator interface
system database (for example, SIMATIC WinCC, SIMATIC ProTool), see also Configuring
Messages.

e Configure operator control and monitoring variables
You create operator control and monitoring variables once in STEP 7 and assign them the
required attributes. Using the transfer program you transfer the operator control and monitoring
variables created to the database of the operator interface system WinCC (see also
Configuring Variables for Operator Control and Monitoring).

e Download programs to the programmable controller
After all configuration, parameter assignment, and programming tasks are completed, you can
download your entire user program or individual blocks from it to the programmable controller
(programmable module for your hardware solution). (See also Requirements for Downloading.)
The CPU already contains the operating system.

e Test programs
For testing you can either display the values of variables from your user program or a CPU,
assign values to the variables, or create a variable table for the variables that you want to
display or modify (see also Introduction to Testing with the Variable Table).

e Monitor operation, diagnose hardware
You determine the cause of a module fault by displaying online information about a module.
You determine the causes for errors in user program processing with the help of the diagnostic
buffer and the stack contents. You can also check whether a user program can run on a
particular CPU (see also Hardware Diagnostics and Displaying Module Information).

o Document the plant
After you have created a project/plant, it makes sense to produce clear documentation of the
project data to make further editing of the project and any service activities easier (see also
Printing Project Documentation). DOCPRO, the optional tool for creating and managing plant
documentation, allows you to structure the project data, put it into wiring manual form, and print
it out in a common format.

Specialized Topics

When you create an automation solution there are a number of special topics that may be of
interest to you:

e Multicomputing - Synchronous Operation of Several CPUs (see also Multicomputing -
Synchronous Operation of Several CPUs)

e More than One User Working in a Project (see also More than One User Editing Projects)

Programming with STEP 7
24 Manual, 04/2017, ASE41552389-AA

Introducing the Product and Installing the Software

1.2 The STEP 7 Standard Package

1.2 The STEP 7 Standard Package

Standards Used

The SIMATIC programming languages integrated in STEP 7 are compliant with EN 61131-3. The
standard package matches the graphic and object oriented operating philosophy of Windows and
runs under the operating systems MS Windows 7 Ultimate, Professional und Enterprise (64-bit),
MS Windows 10 Pro and Enterprise (64-bit) as well as MS Windows Server 2008 R2 SP1, 2012 R2
und 2016 (each 64-bit).

Functions of the standard package

The standard software supports you in all phases of the creation process of an automation task,
such as:

Setting up and managing projects

Configuring and assigning parameters to hardware and communications
Managing symbols

Creating programs, for example, for S7 programmable controllers
Downloading programs to programmable controllers

Testing the automation system

Diagnosing plant failures

The STEP 7 software user interface has been designed to meet the latest state-of-the-art
ergonomics and makes it easy for you to get started.

The documentation for the STEP 7 software product provides all the information online in the online
Help and in electronic manuals in PDF format.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 25

Introducing the Product and Installing the Software

1.2 The STEP 7 Standard Package

Applications in STEP 7

The STEP 7 Standard package provides a series of applications (tools) within the software:

26

Standard Package

NETFRO
Symbol Editer SIMATIC Manager Communicaticn
Configuraticn
H ardwa re- Programming Languages Hardware
Confiquration]l i
B LAD FED STL agnastics

You do not need to open the tools separately; they are started automatically when you select the
corresponding function or open an object.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Introducing the Product and Installing the Software

SIMATIC Manager

1.2 The STEP 7 Standard Package

The SIMATIC Manager manages all the data that belong to an automation project. The tools

needed to edit the selected data are started automatically by the SIMATIC Manager.

IS [=] E3

ﬁ SIMATIC Manager - ZEn01_08_5TEP7__ Mix
File Edit PLC “iew DOptions Window Help

02|82 & |B=|@ dn (@ 2| o]t [« No Fiter >

'EEEZEHIH_I]?_STEP?_Dist_II] -- CASIEMENSASTEPR7 .. =] EJ

ZEnD_07_STEPY__Dist_IO
=Bl SIMATIC 300(1)
=-[@ cPU3Is2DP
=l-{=x] 57-Program(1]
-{B] Source Files
--#29 Blocks

'E'_"}‘ZEHIH_I]B_ETEP?_Hix - CASIEMENSASTEPTAER. ..

Insert

Syztem Data

-8 ZEn01_08 STEPY_ Mix System Data -
=R SIMATIC 300-Station(1)

| = OB1
= [§] CPU314(1) o FB1
E@ 57-Program(1] i FC1
~{B] Source Files | | DA

R {Es 3 DB2

Prezs F1 faor help.

Symbol Editor

With the Symbol Editor you manage all the shared symbols. The following functions are available:

e Setting symbolic names and comments for the process signals (inputs/outputs), bit memory,

and blocks

Sort functions

Import/export to/from other Windows programs

The symbol table

created with this tool is available to all the other tools. Any changes to the

properties of a symbol are therefore recognized automatically by all tools.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

27

Introducing the Product and Installing the Software

1.2 The STEP 7 Standard Package

Diagnosing Hardware

These functions provide you with an overview of the status of the programmable controller. An
overview can display symbols to show whether every module has a fault or not. A double-click on
the faulty module displays detailed information about the fault. The scope of this information
depends on the individual module:

e Display general information about the module (for example, order number, version, name) and
the status of the module (for example, faulty)

e Display the module faults (for example, channel fault) for the central I/O and DP slaves

o Display messages from the diagnostic buffer

For CPUs the following additional information is displayed:

e Causes of faults in the processing of a user program

e Display the cycle duration (of the longest, shortest, and last cycle)
e MPI communication possibilities and load

o Display performance data (number of possible inputs/outputs, bit memory, counters, timers,
and blocks)

Programming Languages

The programming languages Ladder Logic, Statement List, and Function Block Diagram for S7-300
and S7-400 are an integral part of the standard package.

e Ladder Logic (or LAD) is a graphic representation of the STEP 7 programming language. Its
syntax for the instructions is similar to a relay ladder logic diagram: Ladder allows you to track
the power flow between power rails as it passes through various contacts, complex elements,
and output coils.

o Statement List (or STL) is a textual representation of the STEP 7 programming language,
similar to machine code. If a program is written in Statement List, the individual instructions
correspond to the steps with which the CPU executes the program. To make programming
easier, Statement List has been extended to include some high-level language constructions
(such as structured data access and block parameters).

e Function Block Diagram (FBD) is a graphic representation of the STEP 7 programming
language and uses the logic boxes familiar from Boolean algebra to represent the logic.
Complex functions (for example, math functions) can be represented directly in conjunction
with the logic boxes.

Other programming languages are available as optional packages.

Programming with STEP 7
28 Manual, 04/2017, ASE41552389-AA

Introducing the Product and Installing the Software

1.2 The STEP 7 Standard Package

Hardware Configuration

You use this tool to configure and assign parameters to the hardware of an automation project. The
following functions are available:

e To configure the programmable controller you select racks from an electronic catalog and
arrange the selected modules in the required slots in the racks.

e Configuring the distributed 1/O is identical to the configuration of the central 1/O.

¢ In the course of assigning parameters to the CPU you can set properties such as startup
behavior and scan cycle time monitoring guided by menus. Multicomputing is supported. The
data entered are stored in system data blocks.

¢ In the course of assigning parameters to the modules, all the parameters you can set are set
using dialog boxes. There are no settings to be made using DIP switches. The assignment of
parameters to the modules is done automatically during startup of the CPU. This means, for
example, that a module can be exchanged without assigning new parameters.

e Assigning parameters to function modules (FMs) and communications processors (CPs) is also
done within the Hardware Configuration tool in exactly the same way as for the other modules.
Module-specific dialog boxes and rules exist for every FM and CP (included in the scope of the
FM/CP function package). The system prevents incorrect entries by only offering valid options
in the dialog boxes.

NetPro (Network Configuration)
Using NetPro time-driven cyclic data transfer via the MPI is possible where you:
e Select the communication nodes

o Enter the data source and data target in a table; all blocks (SDBs) to be downloaded are
generated automatically and completely downloaded to all CPUs automatically

Event-driven data transfer is also possible where you:
e Set the communication connections
e Select the communication or function blocks from the integrated block library

e Assign parameters to the selected communication or function blocks in your chosen
programming language

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 29

Introducing the Product and Installing the Software

1.3 What's New in STEP 7, Version 5.67

1.3 What's New in STEP 7, Version 5.67?

The following subject areas have been updated:
e Operating Systems

e Configuring and Diagnosing Hardware

e System Diagnostics

e SIMATIC_Manager

e Checking Block Consistency

Operating systems

e The operating systems MS Windows 10 Pro and Enterprise MS Windows Server 2012 and MS
Windows Server 2016 are supported as of STEP 7 V5.6. You can find more detailed
information on this in the accompanying file "Readme.rtf".

Configuring and Diagnosing Hardware

e Asof STEP 7 V5.6, you can update the firmware for CPUs 410 as of V8.2 in two separate
steps. You can find more detailed information on this under Online Update of the Firmware for
Modules.

System Diagnostics

e Asof STEP 7 V5.6, you can read out security events for CPU 410-5H as of firmware version
V8.2 and save them on your PG/PC via the "Save Security Events" dialog box.

e In STEP 7 V5.6, the "Process Objects" tab of the module status is renamed to "SEC" (SEC
means System Expansion Card.), and further properties are dsplayed for the license status.

SIMATIC Manager

e As of STEP 7 V5.6, the number of selected objects is shown in the status bar.

Checking Block Consistency

e Asof STEP 7 V5.6, you can perform an extended consistency check with symbolic addressing.
You can find more detailed information on this in the help for block consistency under the entry
"Extended consistency check".

Programming with STEP 7
30 Manual, 04/2017, ASE41552389-AA

Introducing the Product and Installing the Software

1.4

Extended Uses of the STEP 7 Standard Package

The standard package can be extended by optional software packages that are grouped into the
following three software classes:

The following table shows the optional software you can use depending on your programmable

Engineering Tools;
these are higher-level programming languages and technology-oriented software.

Run-Time Software;
these contain off-the-shelf run-time software for the production process.

Human Machine Interfaces (HMI);
this is software especially for operator control and monitoring.

control system:

1.4 Extended Uses of the STEP 7 Standard Package

§7-300
S7-400

Engineering Tools

Borland C/C++

CFC

DOCPRO

HARDPRO

S7-GRAPH

S7-HiGraph

S7-PDIAG

S7-PLCSIM

S7-SCL

TeleService

+ |+ |+ |+ |+ |+ [+ |+ |+

Runtime Software

Fuzzy Control

Modular PID Control

+ PRODAVE MPI

PC-DDE-Server

Standard PID Control

+ [+ |+ |+ |+

Human Machine Interface

ProAgent

SIMATIC ProTool

SIMATIC ProTool/Lite

SIMATIC WinCC

o = absolutely required
+ = optional
" = recommended as of $7-400

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

31

Introducing the Product and Installing the Software

1.4 Extended Uses of the STEP 7 Standard Package

1.4.1

Engineering Tools

Engineering Tools are task-oriented tools that can be used to extend the standard package.
Engineering Tools include:

High-level languages for programmers
Graphic languages for technical staff

Supplementary software for diagnostics, simulation, remote maintenance, plant documentation
etc.

Engineering Tools

High-lewel language s Graphic languages
S7-S0L S7-GRAPH CFC
S7-HiGraph

Supplermentary software

A S P roCiC++ S7-PDIAG S7-PLCSIM

TeleService DOCPRO HARDFPRO

High-Level Languages

32

The following languages are available as optional packages for use in programming the SIMATIC
S7-300/S7-400 programmable logic controllers:

S7 GRAPH is a programming language used to program sequential controls (steps and
transitions). In this language, the process sequence is divided into steps. The steps contain
actions to control the outputs. The transition from one step to another is controlled by switching
conditions.

S7 HiGraph is a programming language used to describe asynchronous, non-sequential
processes in the form of state graphs. To do this, the plant is broken down into individual
functional units which can each take on different states. The functional units can be
synchronized by exchanging messages between the graphs.

S7 SCL is a high-level text-based language to EN 61131-3 (IEC 1131-3). It contains language
constructs similar to those found in the programming languages C and Pascal. S7 SCL is
therefore particularly suitable for users familiar with high-level language programming. S7 SCL
can be used, for example, to program complex or frequently recurring functions.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Introducing the Product and Installing the Software

1.4 Extended Uses of the STEP 7 Standard Package

Graphic Language

CFC for S7 is a programming language for interconnecting functions graphically. These functions
cover a wide range of simple logic operations through to complex controls and control circuits. A

large number of such function blocks are available in the form of blocks in a library. You program
by copying the blocks into a chart and interconnecting the blocks with connecting lines.

Supplementary Software

With DOCPRO you can organize all configuration data created under STEP 7 into wiring
manuals. These wiring manuals make it easy to manage the configuration data and allow the
information to be prepared for printing according to specific standards.

HARDPRO is the hardware configuration system for S7-300 with user support for large-scale
configuration of complex automation tasks.

You can use S7 PLCSIM (S7 only) to simulate S7 programmable controllers connected to the
programming device or PC for purposes of testing.

S7 PDIAG (S7 only) allows standardized configuration of process diagnostics for SIMATIC S7-
300/S7-400. Process diagnostics let you detect faults and faulty states of PLC 1/O (for example,
limit switch not reached).

TeleService is a solution providing functions for online programming and servicing of remote
S7 PLCs via the telecommunications network with your PG/PC.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 33

Introducing the Product and Installing the Software
1.4 Extended Uses of the STEP 7 Standard Package

1.4.2 Run-Time Software
Runtime software provides ready-to-use solutions you can call in user program and is directly
implemented in the automation solution. It includes:
e Controllers for SIMATIC S7, for example, standard, modular and fuzzy logic control

e Tools for linking the programmable controllers with Windows applications

Funtime Softeare

Controllers
Standard PID Cortral [| Madular PID Contral Fuzzy Control
Tools for linking with Windows Feal-time operating system
FRODAYE MPI |M7-DDE-Server h7-5%3 RT

Controllers for SIMATIC S7

e Standard PID Control allows you to integrate closed-loop controllers, pulse controllers, and
step controllers into the user program. The parameter assignment tool with integrated controller
setting allows you to set the controller up for optimum use in a very short time.

e Modular PID Control comes into play if a simple PID controller is not sufficient to solve your
automation task. You can interconnect the included standard function blocks to create almost
any controller structure.

e With Fuzzy Control you can create fuzzy logic systems. These systems are used if the
mathematical definition of processes is impossible or highly complex, if processes and
sequencers do not react as expected, if linearity errors occur and if, on the other hand,
information on the process is available.

Tools for Linking with Windows

e PRODAVE MPI is a toolbox for process data traffic between a PC and S7/M7/C7. It
automatically controls the data flow across the MPI interface.

Programming with STEP 7
34 Manual, 04/2017, ASE41552389-AA

Introducing the Product and Installing the Software

1.4.3 Human Machine Interface

1.4 Extended Uses of the STEP 7 Standard Package

Human Machine Interface (HMI) is a software especially designed for operator control and

monitoring in SIMATIC.

e The open process visualization systems SIMATIC WinCC and SIMATIC WinCC flexible are
basic systems that are not restricted to specific industrial sectors or technology and provide all

the important operator control and monitoring functions.

e SIMATIC ProTool and SIMATIC ProTool/Lite are modern tools for configuring SIMATIC

operator panels (OPs).

o ProAgent is a diagnostics software that acquires information on the location and cause of
errors in plants and machinery and thus offers fast and aimed process diagnostics.

Human Machine Irterface

SIMATIC WinCC

SIMATIC PraTool

Profgent I

SIMATIC WinC Crlexible

SIMATIC ProTool fLite

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

35

Introducing the Product and Installing the Software

1.4 Extended Uses of the STEP 7 Standard Package

36

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

2

2.1

211

Installation

Automation License Manager

User Rights Through The Automation License Manager

Automation License Manager

Licenses

To use STEP 7 programming software, you require a product-specific license key (user rights).
Starting with STEP 7 V5.3, this key is installed with the Automation License Manager.

The Automation License Manager is a software product from Siemens AG. It is used to manage the
license keys (license modules) for all systems.

The Automation License Manager is located in the following places:

¢ On the installation device for a software product requiring a license key

e On a separate installation device

e As a download from the Internet page of A&D Customer Support at Siemens AG

The Automation License Manager has its own integrated online help. To obtain help after the
license manager is installed, press F1 or select the Help > Help on License Manager. This online
help contains detailed information on the functionality and operation of the Automation License
Manager.

Licenses are required to use STEP 7 program packages whose legal use is protected by licenses.
A license gives the user a legal right to use the product. Evidence of this right is provided by the
following:

e The ColL (Certificate of License), and

e The license key

Certificate of License (ColL)

The "Certificate of License" that is included with a product is the legal evidence that a right to use
this product exists. This product may only be used by the owner of the Certificate of License (ColL)
or by those persons authorized to do so by the owner.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 37

Installation

2.1 Automation License Manager

License Keys

38

The license key is the technical representation (an electronic "license stamp") of a license to use
software.

SIEMENS AG issues a license key for all of its software that is protected by a license. When the
computer has been started, such software can only be used in accordance with the applicable
license and terms of use after the presence of a valid license key has been verified.

Notes

« You can use the standard software without a license key to familiarize yourself with the user
interface and functions.

« However, a license is required and necessary for full, unrestricted use of the STEP 7 software
in accordance with the license agreement

« If you have not installed the license key, you will be prompted to do so at regular intervals.

License Keys can be stored and transferred among various types of storage devices as follows:
¢ On license key diskettes or USB memory stick

e On the local hard disk

e On network hard disk

If software products for which no license is available are installed, you can then determine which
license key is needed and order it as required.

For further information on obtaining and using license keys, please refer to the online help for the
Automation License Manager.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Installation
2.1 Automation License Manager

Types of Licenses

The following different types of application-oriented user licenses are available for software
products from Siemens AG. The actual behavior of the software is determined by which type
license key is installed for it. The type of use can be found on the accompanying Certificate of

License.
License Type Description
Single License The software can be used on any single computer desired for an unlimited
amount of time.
Floating License The software can be used on a computer network ("remote use") for an
unlimited amount of time.
Trial License The software can be used subject to the following restrictions:
e A period of validity of up to a maximum of 14 days,
e Atotal number of operating days after the day of first use,
e A use for tests and validation (exemption from liability).
Rental License The software can be used subject to the following restrictions:
e A period of validity of up to a maximum of 50 hours.
Upgrade License Certain requirements in the existing system may apply with regard to software
upgrades:
e An upgrade license may be used to convert an "old version X" of the
software to a newer version X+.
e Anupgrade may be necessary due to an increase in the volume of data
being handled in the given system.
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 39

Installation

2.1 Automation License Manager

21.2

Installing the Automation License Manager
The Automation License Manager is installed by means of an MSI setup process. The installation
software for the Automation License Manager is included on the STEP 7 product DVD.

You can install the Automation License Manager at the same time you install STEP 7 or at a later
time.

Notes

For detailed information on how to install the Automation License Manager, please refer to the current
Readme file

The online help for the Automation License Manager contains all the information you need on the function and
handling of License Keys.

Subsequent installation of license keys

40

If you start the STEP 7 software and no license keys are available, a warning message indicating
this condition will be displayed.

Notes

« You can use the standard software without a license key to familiarize yourself with the user
interface and functions.

« However, a license is required and necessary for full, unrestricted use of the STEP 7 software
in accordance with the license agreement

If you have not installed the license key, you will be prompted to do so at regular intervals.

You can subsequently install license keys in the following ways:
¢ Install license keys from diskettes or USB memory stick

o Install license keys downloaded from the Internet. In this case, the license keys must be
ordered first.

e Use floating license keys available in a network

For detailed information on installing license keys, refer to the online help for the Automation
License Manager. To access this help, press F1 or select the Help > Help on License Manager
menu command.

Notes

In Windows XP/Server 2003, license keys will only be operational if they are installed on a local hard disk and
have write-access status.

Floating licenses can also be used within a network ("remote" use).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Installation

2.1 Automation License Manager

213 Guidelines for Handling License Keys

A Caution

Please note the information on handling license keys that is available in the online help on the
Automation License Manager and also in the STEP 7 Readme file on the installation DVD. If you
do not follow these guidelines, the license keys may be irretrievably lost.

To access online help for the Automation License Manager, press F1 for context-sensitive help or
select the Help > Help on License Manager menu command.

This help section contains all the information you need on the function and handling of license
keys.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 41

Installation

2.2 Installing STEP 7

2.2 Installing STEP 7

The STEP 7 Setup program performs an automatic installation. The complete installation
procedure is menu controlled. Execute Setup using the standard Windows XP/7/Server 2003
software installation procedure.

The major stages in the installation are:

Copying the data to your programming device

Configuration of EPROM and communication drivers

Installing the license keys (if desired)

Note

Siemens programming devices are shipped with the STEP 7 software on the hard disk ready for
installation.

Installation requirements

Operating system:
MS Windows 7 Professional and Enterprise (standard installation).

Basic hardware:
Programming device or PC with:

Pentium processor (600 MHz)
At least 512 MB RAM.

Color monitor, keyboard and mouse, all of which are supported by Microsoft Windows

A programming device (PG) is a PC with a special compact design for industrial use. It is fully
equipped for programming SIMATIC PLCs.

42

Hard disk space:
Refer to the Readme file for information on required hard disk space.

MPI interface (optional):

An MPI interface is only required to interconnect the PG/PC and the PLC if you want to use it
for communication with the PLC under STEP 7.

In this case you require:

A PC USB adapter that is connected to the communications port of your device, or

An MPI module (for example, CP 5611) that is installed in your device.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Installation

2.2 Installing STEP 7

PGs are supplied with an MPI interface.

e External prommer (optional)
An external prommer is only required if you want to program EPROMSs with a PC.

Note
Refer to the information on STEP 7 installation in the Readme file and the "List of SIMATIC
Software Packages compatible to the versions of the standard STEP 7 software package."

The readme file and the compatibility list is found, for example under MS Windows 7 via the Start
menu, under Start > All Programs > Siemens Automation > Documentation.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

43

Installation

2.2 Installing STEP 7

2.21

Installation Procedure

Starting the Installation Program

To install the software, proceed as follows:
1. Insert the DVD and double click on the file "SETUP.EXE".
2. Follow the on-screen step-by-step instructions of the installation program.

The program guides you through all steps of the installation. You can go to the next step or return
to the previous step.

During installation, the dialog boxes prompt you to make your choice from the displayed options.
The following notes will help you to quickly and easily find the right answers.

If a Version of STEP 7 Is Already Installed...

Selecting t

ID Number

If Setup detects another version of STEP 7 on the programming device, a corresponding message
is displayed. You can then choose to:

e Abort the installation (so that you can uninstall the old STEP 7 version under Windows and
then restart Setup, or

e Continue Setup and overwrite the previous version.

For well organized software management you should always uninstall any older versions before
installing the new version. the disadvantage of overwriting previous versions with a new version is
that when you subsequently uninstall the old software version some components of the old version
may not be removed.

he Installation Options
You have three was to select the scope of the installation:

e Standard setup: all dialog languages for the user interface, all applications, and all examples.
Refer to the current Product Information for information on memory space required for this type
of configuration.

e Basic setup: only one dialog language, no examples. Refer to the current Product Information
for information on memory space required for this type of configuration.

e User-defined ("custom") setup: you can determine the scope of the installation, e.g. the
programs, databases, examples, and communication functions.

You will be prompted during setup to enter an ID number (found on the Software Product
Certificate or on your license key storage medium).

Installing License Keys

44

During setup, the program checks to see whether a corresponding license key is installed on the
hard disk. If no valid license key is found, a message stating that the software can be used only
with a license key is displayed. If you want, you can install the license key immediately or continue
setup and then install the key later. If you want to install the license key now, insert the
authorization diskette or use the A&D license stick when prompted to do so.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Installation
2.2 Installing STEP 7

PG/PC Interface Settings

During installation, a dialog box is displayed where you can assign parameters to the programming
device/PC interface. You will find more information on it in "Setting the PG/PC Interface."

Assigning Parameters to Memory Cards
During installation, a dialog box is displayed where you can assign parameters to Memory Cards.

e You do not need an EPROM driver if you are not using any Memory Cards . Select the option
"No EPROM Driver".

o Otherwise, select the entry which applies to your PG.

e If you are using a PC, you can select a driver for an external prommer. Here you must specify
the port to which the prommer is connected (for example, LPT1).

You can change the set parameters after installation by calling the program "Memory Card
Parameter Assignment” in the STEP 7 program group or in the Control Panel.

Flash-File Systems

In the dialog box for assigning memory card parameters, you can select to install a flash-file
system.

The flash-file system is required, for example under SIMATIC M7 when you write individual files to
an EPROM memory card without changing other contents of the Memory Card.

If you are using a suitable programming device (PG 720/PG 740/PG 760, Field PG and Power PG)
or external prommer and you want to use this function, install the flash-file system.

If Errors Occur during the Installation
Setup may be cancelled due to the following errors:

e If an initialization error occurs immediately after the start of Setup, more than likely setup was
not started under Windows.

o Insufficient hard disk space: For the basic software, you require approximately 650 MB to 900
MB of free space on your hard disk depending on the scope of your installation.

e Bad DVD: If the DVD is faulty, please contact your local Siemens representative.

e Operator error: Restart setup follow the instructions carefully.

After the installation has been completed...
An on-screen message reports the successful installation.

If any changes were made to system files during the installation, you are prompted to restart
Windows. After this restart (warm restart) you can start the STEP 7 application, the SIMATIC
Manager.

After successful installation, a program group for STEP 7 has been set up.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 45

Installation
2.2 Installing STEP 7

222 Setting the PG/PC Interface

Here you configure the communication between the PG/PC and the PLC. During installation, you
are displayed a dialog for assigning parameters to the PG/PC interface. You can also open this
dialog box after installation, by calling the program "Setting PG/PC Interface" in the STEP 7
program group. This enables you to modify the interface parameters at a later time, independently
of the installation.

Basic Procedure
To operate an interface, you will require the following:
e Configurations in the operating system
¢ A suitable interface configuration

If you are using a PC with an MPI card or communications processors (CP), you should check the
interrupt and address assignments in the Windows "Control Panel" to ensure that there are no
interrupt conflicts and no address areas overlap.

In Windows 2000, Windows XP and Server 2003, the ISA component MPI-ISA card is no longer
supported and therefore no longer offered for installation.

In order to make it easier to assign parameters to the programming device/PC interface, a dialog
box will display a selection list of default basic parameter sets (interface configurations).

Assigning Parameters to the PG/PC Interface
Procedure (Detail are found in the Online Help):
1. Double-click on "Setting PG/PC Interface" in the "Control Panel" of Windows.
2. Set the "Access Point of Application" to "S7ONLINE."

3. Inthe list "Interface parameter set used", select the required interface parameter set. If the
required interface parameter set is not displayed, you must first install a module or protocol via
the "Select" button. The interface parameter set is then generated automatically. On plug-and-
play systems, you can not install plug and play CPs manually (CP 5611 and CP 5511). They
are integrated automatically in "Setting PG/PC Interface" after you have installed the hardware
in your PG/PC.

- If you select an interface which is capable of automatic recognition of bus parameters
(for example, CP 5611 (Auto)), you can connect the programming device or the PC to the
MPI or PROFIBUS without having to set bus parameters. If the transmission rate is < 187.5
Kbps, there may be a delay of up to one minute while the bus parameters are read.
Requirement for automatic recognition: Masters who broadcast bus parameters
cyclically are connected to the bus. All new MPI components do this; for PROFIBUS
subnets the cyclic broadcast of bus parameters must be enabled (default PROFIBUS
network setting).

4. If you select an interface which does not automatically recognize the bus parameters, you
can display the properties and adapt them to match the subnet.

Programming with STEP 7
46 Manual, 04/2017, ASE41552389-AA

Installation

2.2 Installing STEP 7

Changes will also be necessary if conflicts with other settings arise (for example, interrupt or
address assignments). In this case, make the appropriate changes with the hardware recognition
and Control Panel in Windows (see below).

A Caution

Do not remove any "TCP/IP" parameters from your interface configuration.

This could cause malfunctioning of other applications.

Checking the Interrupt and Address Assignments

If you use a PC with an MPI card, you should always check whether the default interrupt and the
default address area are free.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 47

Installation

2.3 Uninstalling STEP 7

2.3 Uninstalling STEP 7

Use the standard Windows method to uninstall STEP 7:

1. Double-click on the "Add/Remove Programs" icon in the "Control Panel." to start the Windows
software installation dialog box.

2. Select the STEP 7 entry in the displayed list of installed software. Click the button to
"Add/Remove" the software.

3. If the "Remove Shared File" dialog box appears, click the "No" button if you are uncertain.

24 User Rights

Specifying Access Rights in the Operating System

When you install STEP 7, the user group "Siemens TIA Engineer" is created automatically. This
allows the users entered there to configure the PG/PC interface and to install selected Hardware
Support Packages. To allow manual IP configuration (for PROFINET without DHCP), the user must
also be included in the "Network Configuration Operators" group that is preinstalled by the
operating system.

These rights can only be assigned to the user by the administrator.

Including users in the user groups "Siemens TIA Engineer" and "Network Configuration
Operators™

Enter the local users who can access STEP 7 with their login in the "Siemens TIA Engineer" group.
Follow the steps below:

1. Open the Control Panel in Windows and select "User Accounts".

2. In the navigation window, select the entry "Manage User Accounts."

3. Inthe "Advanced" tab, select the "Advanced" entry in the "Advanced User Management"
section.

4. In the navigation window, select the entry "Local Users and Groups > Users". All users are
displayed in the data window.

5. Using the context menu, open the "New User" and create an account with the same login for
every user that needs to access STEP 7.

6. Select the "Properties" context menu command for each user you create.
7. In the dialog box that opens, select the "Member of" and the click the "Add..." button.

8. Inthe "Select Groups" dialog, enter the user group "Siemens TIA Engineer" in the "Enter the
object names to select" box and confirm with "OK".

9. Follow the same procedure for the users to be included in the "Network Configuration
Operators" user group.

Programming with STEP 7
48 Manual, 04/2017, ASE41552389-AA

Installation
2.4 User Rights

Creating the global domain user group "Siemens TIA Engineer"

When working in a domain, you have the alternative of creating a global domain user group that is
then mapped to the local user groups "Siemens TIA Engineer" and "Network Configuration
Operators".

The following requirements must be met first:
e The domain administrator has created a global domain user group.

e The domain administrator has included the users with whose login STEP 7 can be accessed in
the global domain user group.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 49

Installation

2.4 User Rights

Programming with STEP 7
50 Manual, 04/2017, ASE41552389-AA

3 Working Out the Automation Concept

3.1 Basic Procedure for Planning an Automation Project

This chapter outlines the basic tasks involved in planning an automation project for a
programmable controller (PLC). Based on an example of automating an industrial blending
process, you are guided step by step through the procedure.

There are many ways of planning an automation project. The basic procedure that you can use for
any project is illustrated in the following figure.

Divide the process into tasks.

¥

Dezcribe the individual areas.

¥

Define the safety requirements.

t

Dezcribe the required operator dizplays and controlz.

Y

Create configuration diagrarms of wour prograrmmable cartraller.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 51

Working Out the Automation Concept
3.2 Dividing the Process into Tasks and Areas

3.2 Dividing the Process into Tasks and Areas

An automation process consists of a number of individual tasks. By identifying groups of related
tasks within a process and then breaking these groups down into smaller tasks, even the most
complex process can be defined.

The following example of an industrial blending process can be used to illustrate how to organize a
process into functional areas and individual tasks:

Example: Industrial BElending Process
Agitator motor
()

Switch far tank lewvel
meazurerment

Ingredient A 4@_‘

>0 oo

=0

Inlet Feed Feed Flow
vake pump vale Fensor

Inlet Feed Feed *.I
valie pump valve
Drain zolenoid
valve
Ingredient B

Programming with STEP 7
52 Manual, 04/2017, ASE41552389-AA

Working Out the Automation Concept

Determining the Areas of a Process

After defining the process to be controlled,

3.2 Dividing the Process into Tasks and Areas

divide the project into related groups or areas:

F o

£
Feesd Feed
pump wale

b

Switch for tank |
lewel measuring:

oo

As each group is divided into smaller tasks, the tasks required for controlling that part of the

process become less complicated.

In our example of an industrial blending process you can identify four distinct areas (see table
below). In this example, the area for ingredient A contains the same equipment as the area for

ingredient B.

Functional Area Equipment Used

Ingredient A Feed pump for ingredient A
Inlet valve for ingredient A
Feed valve for ingredient A
Flow sensor for ingredient A

Ingredient B Feed pump for ingredient B
Inlet valve for ingredient B
Feed valve for ingredient B
Flow sensor for ingredient B

Mixing tank Agitator motor
Switch for tank level measurement

Drain Drain valve

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

53

Working Out the Automation Concept

3.3 Describing the Individual Functional Areas

3.3

54

Describing the Individual Functional Areas

As you describe each area and task within your process, you define not only the operation of each
area, but also the various elements that control the area. These include:

e Electrical, mechanical, and logical inputs and outputs for each task
¢ Interlocks and dependencies between the individual tasks

The sample industrial blending process uses pumps, motors, and valves. These must be described
precisely to identify the operating characteristics and type of interlocks required during operation.
The following tables provide examples of the description of the equipment used in an industrial
blending process. When you have completed description, you could also use it to order the
required equipment.

| Ingredients A/B: Feed Pump Motors

The feed pump motors convey ingredients A and B to the mixing tank.
e Flow rate: 400 | (100 gallons) per minute
e Rating: 100 kW (134 hp) at 1200 rpm

The pumps are controlled (start/stop) from an operator station located near the mixing tank. The number of
starts is counted for maintenance purposes. Both the counters and the display can be reset with one button.

The following conditions must be satisfied for the pumps to operate:
e The mixing tank is not full.

e The drain valve of the mixing tank is closed.

e The emergency off is not activated.

The pumps are switched off if the following condition is satisfied:
e The flow sensor signals no flow 7 seconds after the pump motor is started.
e The flow sensor signals that the flow has ceased.

ﬂredients A/B: Inlet and Feed Valves

The inlet and feed valves for ingredients A and B allow or prevent the flow of the ingredients into the mixing
tank. The valves have a solenoid with a spring return.

e When the solenoid is activated, the valve is opened.
e \When the solenoid is deactivated, the valve is closed.

The inlet and feed valves are controlled by the user program.

For the valves to be activated, the following condition must be satisfied:
e The feed pump motor has been running for at least 1 second.

The pumps are switched off if the following condition is satisfied:

e The flow sensor signals no flow.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Working Out the Automation Concept

3.3 Describing the Individual Functional Areas

ﬂitator Motor

The agitator motor mixes ingredient A with ingredient B in the mixing tank.
e Rating: 100 kW (134 hp) at 1200 rpm

The agitator motor is controlled (start/stop) from an operator station located near the mixing tank. The
number of starts is counted for maintenance purposes. Both the counters and the display can be reset with
one button.

The following conditions must be satisfied for the pumps to operate:
e The tank level sensor is not signaling "Tank below minimum."

e The drain valve of the mixing tank is closed.

e The emergency off is not activated.

The pumps are switched off if the following condition is satisfied:

e The tachometer does not indicate that the rated speed has been reached within 10 seconds of starting
the motor.

Drain Valve

The drain valve allows the mixture to drain (using gravity feed) to the next stage in the process. The valve
has a solenoid with a spring return.

e Ifthe solenoid is activated, the outlet valve is opened.
e If the solenoid is deactivated, the outlet valve is closed.

The outlet valve is controlled (open/close) from an operator station.

The drain valve can be opened under the following conditions:
e The agitator motor is off.

e The tank level sensor is not signaling "Tank empty."

e The emergency off is not activated.

The pumps are switched off if the following condition is satisfied:
e The tank level sensor is indicating "Tank empty."

Switches for Tank Level Measurement

The switches in the mixing tank indicate the level in the tank and are used to interlock the feed pumps and
the agitator motor.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 55

Working Out the Automation Concept
3.4 Listing Inputs, Oufputs, and In/Outs

3.4 Listing Inputs, Outputs, and In/Outs

After writing a physical description of each device to be controlled, draw diagrams of the inputs and
outputs for each device or task area.

[nputf Qutput Diagrarm

Input 1

| Clutput 1

| '

! |
Input 1 Devi I
Infout 1 Fvice Output n

I
[rfout n

These diagrams correspond to the logic blocks to be programmed.

3.5 Creating an I/O Diagram for the Motors

Two feed pumps and one agitator are used in our example of an industrial blending process. Each
motor is controlled by its own "motor block" that is the same for all three devices. This block
requires six inputs: two to start or stop the motor, one to reset the maintenance display, one for the
motor response signal (motor running / not running), one for the time during which the response
signal must be received, and one for the number of the timer used to measure the time.

The logic block also requires four outputs: two to indicate the operating state of the motor, one to
indicate faults, and one to indicate that the motor is due for maintenance.

An in/out is also necessary to activate the motor. It is used to control the motor but at the same
time is also edited and modified in the program for the "motor block."

[fr Diagram of the "Wotor Block”

Start Fault
Stop Start_Dsp
Fesponse Stop_Disp
Reset Waint hAotor M airt
Tirmer Mo

Response Time

hotar

Programming with STEP 7
56 Manual, 04/2017, ASE41552389-AA

Working Out the Automation Concept
3.6 Creating an I/O Diagram for the Valves

3.6 Creating an I/O Diagram for the Valves

Each valve is controlled by its own "valve block" that is the same for all valves used. The logic
block has two inputs: one to open the valve and one to close the valve. It also has two outputs: one
to indicate that the valve is open and the other to indicate that it is closed.

The block has an in/out to activate the valve. It is used to control the valve but at the same time is
also edited and modified in the program for the "valve block."

1I/0 Diiagram of the Walve Block
Cipen Dsp_Open
Close Dsp_Closed
Walve
Walve
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 57

Working Out the Automation Concept
3.7 Establishing the Safety Requirements

3.7 Establishing the Safety Requirements

Decide which additional elements are needed to ensure the safety of the process - based on legal
requirements and corporate health and safety policy. In your description, you should also include
any influences that the safety elements have on your process areas.

Defining Safety Requirements

Find out which devices require hardwired circuits to meet safety requirements. By definition, these
safety circuits operate independently of the programmable controller (although the safety circuit
generally provides an I/O interface to allow coordination with the user program). Normally, you
configure a matrix to connect every actuator with its own emergency off range. This matrix is the
basis for the circuit diagrams of the safety circuits.

To design safety mechanisms, proceed as follows:

o Determine the logical and mechanical/electrical interlocks between the individual automation
tasks.

o Design circuits to allow the devices belonging to the process to be operated manually in an
emergency.

o Establish any further safety requirements for safe operation of the process.

Creating a Safety Circuit
The sample industrial blending process uses the following logic for its safety circuit:

e One emergency off switch shuts down the following devices independent of the programmable
controller (PLC):

- Feed pump for ingredient A
- Feed pump for ingredient B
- Agitator motor
- Valves
e The emergency off switch is located on the operator station.

e Aninput to the controller indicates the state of the emergency off switch.

Programming with STEP 7
58 Manual, 04/2017, ASE41552389-AA

Working Out the Automation Concept
3.8 Describing the Required Operator Displays and Controls

3.8 Describing the Required Operator Displays and Controls

Every process requires an operator interface that allows human intervention in the process. Part of
the design specification includes the design of the operator console.

Defining an Operator Console

In the industrial blending process described in our example, each device can be started or stopped
by a pushbutton located on the operator console. This operator console includes indicators to show
the status of the operation (see figure below).

Ingr. & Inar. B Start 0 pen
start ‘ start ‘ agitator ‘ Tank drain
full
Inar. A Ingr. B Stop Cloze
stop stop agitator Tank drain
bel oo min.
Rezet
rmaintenance dizplay
hdaint. hdaint. hdaint. Tank
purrp A purmp B agitator ermpty
@ EMERGERCY STOP

The console also includes display lamps for the devices that require maintenance after a certain
number of starts and the emergency off switch with which the process can be stopped immediately.
The console also has a reset button for the maintenance display of the three motors. Using this,

you can turn off the maintenance display lamps for the motors due for maintenance and reset the
corresponding counters to 0.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 59

Working Out the Automation Concept

3.9 Creating a Configuration Diagram

3.9

60

Creating a Configuration Diagram

After you have documented the design requirements, you must then decide on the type of control
equipment required for the project.

By deciding which modules you want to use, you also specify the structure of the programmable
controller. Create a configuration diagram specifying the following aspects:

e Type of CPU

e Number and type of I/O modules

e Configuration of the physical inputs and outputs

The following figure illustrates an example of an S7 configuration for the industrial blending

process.

— 1

g

S7-200-CPU

Digital
inpLt
rradule

Digital
output
module

Dhigital
output
rradule

[ndusztrial blending process

EMER.
STOP

circum

Clperator
ztation

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

4 Basics of Designing a Program Structure

4.1 Programs in a CPU

A CPU will principally run two different programs:
e The operating system and

e The user program.

Operating System

Every CPU comes with an integrated operating system that organizes all CPU functions and
sequences not associated with a specific control task. The tasks of the operating system include
the following:

e Handling restart (warm start) and hot restart

e Update of the process image table of the inputs and output of the process image table of the
outputs

e Calling the user program

e Acquisition of interrupt information and calling interrupt OBs

e Recognition of errors and error handling

e Management of the memory areas

¢ Communication with programming devices and other communication partners

You can influence CPU reactions in certain areas by modifying the operating system parameters
(operating system default settings).

User Program

You create the user program and download it to the CPU. It contains all the functions required to
process your specific automation task. The tasks of the user program include:

e Specifying the conditions for a restart (warm start) and hot restart on the CPU (for example,
initializing signals with a particular value)

e Processing process data (for example, generating logical links of binary signals, fetching and
evaluating analog signals, specifying binary signals for output, output of analog values)

e Reaction to interrupts

e Handling disturbances in the normal program cycle.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4.2 Blocks in the User Program

The STEP 7 programming software allows you to structure your user program, in other words to
break down the program into individual, self-contained program sections. This has the following
advantages:

o Extensive programs are easier to understand.

¢ Individual program sections can be standardized.

e Program organization is simplified.

e Itis easier to make modifications to the program.

e Debugging is simplified since you can test separate sections.
e Commissioning your system is made much easier.

The example of an industrial blending process illustrated the advantages of breaking down an
automation process into individual tasks. The program sections of a structured user program
correspond to these individual tasks and are known as the blocks of a program.

Block Types

There are several different types of blocks you can use within an S7 user program:

Block Brief Description of Function See Also
Organization blocks (OB) OBs determine the structure of the user Organization Blocks and
program. Program Structure
System function blocks (SFB) | SFBs and SFCs are integrated in the S7 CPU | System Function Blocks
and system functions (SFC) | and allow you access to some important (SFB) and System
system functions. Functions (SFC)
Function blocks (FB) FBs are blocks with a "memory" which you can | Function Blocks (FB)
program yourself.
Functions (FC) FCs contain program routines for frequently Functions (FC)
used functions.
Instance data blocks Instance DBs are associated with the block Instance Data Blocks
(instance DB) when an FB/SFB is called. They are created

automatically during compilation.

Data blocks (DB) DBs are data areas for storing user data. In Shared Data Blocks (DB)
addition to the data that are assigned to a
function block, shared data can also be defined
and used by any blocks.

OBs, FBs, SFBs, FCs, and SFCs contain sections of the program and are therefore also known as
logic blocks. The permitted number of blocks per block type and the permitted length of the blocks
is CPU-specific.

Programming with STEP 7
62 Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4.2.1 Organization Blocks and Program Structure

Organization blocks (OBs) represent the interface between the operating system and the user
program. Called by the operating system, they control cyclic and interrupt-driven program
execution, startup behavior of the PLC and error handling. You can program the organization
blocks to determine CPU behavior.

Organization Block Priority

Organization blocks determine the sequence (start events) by which individual program sections
are executed. An OB call can interrupt the execution of another OB. Which OB is allowed to
interrupt another OB depends on its priority. Higher priority OBs can interrupt lower priority OBs.
The background OB has the lowest priority.

Types of Interrupt and Priority Classes

Start events triggering an OB call are known as interrupts. The following table shows the types of
interrupt in STEP 7 and the priority of the organization blocks assigned to them. Not all
organization blocks listed and their priority classes are available in all S7 CPUs (see "S7-300
Programmable Controller, Hardware and Installation Manual" and "S7-400 Programmable
Controller Module Specifications Reference Manual").

Type of Interrupt | Organization Block Priority Class See also
(Default)
Main program OB1 1 Organization Block for Cyclic
scan Program Processing (OB1)
Time-of-day OB10 to OB17 2 Time-of-Day Interrupt
interrupts Organization Blocks (OB10 to
0OB17)
Time-delay 0B20 3 Time-Delay Interrupt Organization
interrupts 0OB21 4 Blocks (OB20 to OB23)
0B22 5
0B23 6
Cyclic interrupts OB30 7 Cyclic Interrupt Organization
OB31 8 Blocks (OB30 to OB38)
OB32 9
OB33 10
OB34 11
OB35 12
OB36 13
OB37 14
OB38 15
Hardware 0OB40 16 Hardware Interrupt Organization
interrupts OB41 17 Blocks (OB40 to OB47)
OB42 18
0B43 19
OB44 20
OB45 21
OB46 22
0OB47 23
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 63

Basics of Designing a Program Structure

4.2 Blocks in the User Program

64

Type of Interrupt | Organization Block Priority Class See also
(Default)
DPV1 interrupts OB 55 2 Programming DPV1 Devices
OB 56 2
OB 57 2
Multicomputing OB60 Multicomputing 25 Multicomputing - Synchronous
interrupt Operation of Several CPUs
Synchronous cycle | OB 61 25 Configuring Short and Equal-
interrupt OB 62 Length Process Reaction Times
OB 63 on PROFIBUS-DP
OB 64
Redundancy OB70 I/0 Redundancy Error | 25 "Error Handling Organization
errors (only in H systems) Blocks (OB70 to OB87 / OB121
OB72 CPU Redundancy 28 to OB122)"
Error (only in H systems)
Asynchronous OB80 Time Error 26,282 "Error Handling Organization
errors Blocks (OB70 to OB87 / OB

121 to OB122)"

OB81 Power Supply Error
0OB82 Diagnostic Interrupt

OB83 Insert/Remove Module
Interrupt

0B84 CPU Hardware Fault
0B85 Program Cycle Error
OB86 Rack Failure

0OB87 Communication Error

26, 28 2 with S7-
300,

25, 28 2 with S7-
400 and CPU 318

Background cycle | OB90 29" Background Organization Block
(OB90)
Startup OB100 Restart (Warm start) |27 2 "Start-up Organization Blocks
OB102 Cold Restart 272
Synchronous OB121 Programming Error Priority of the OB Error Handling Organization
errors that caused the Blocks (OB70 to OB87 / OB121

OB122 Access Error

error

to OB122)

1) The priority class 29 corresponds to priority 0.29. The background cycle has a lower priority than the free cycle.

2) The priority classes 27 and 28 are valid in the priority class model of the startup.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Changing the Priority

Interrupts can be assigned parameters with STEP 7. With the parameter assignment you can for
example, deselect interrupt OBs or priority classes in the parameter blocks: time-of-day interrupts,
time-delay interrupts, cyclic interrupts, and hardware interrupts.

The priority of organization blocks on S7-300 CPUs is fixed.

With S7-400 CPUs (and the CPU 318) you can change the priority of the following organization
blocks with STEP 7:

e OB10to OB47

e OB70to OB72 (only H CPUs) and OB81 to OB87 in RUN mode.
The following priority classes are permitted:

e Priority classes 2 to 23 for OB10 to OB47

e Priority classes 2 to 28 for OB70 to OB72

e Priority classes 24 to 26 for OB81 to OB87; for CPUs as of approx. The middle of 2001
(Firmware Version 3.0) the ranges where extended: Priority classes 2 to 26 can be set for OB
81 to OB 84 as well as for OB 86 and OB 87.

You can assign the same priority to several OBs. OBs with the same priority are processed in the
order in which their start events occur.

Error OBs started by synchronous errors are executed in the same priority class as the block being
executed when the error occurred.

Local Data

When creating logic blocks (OBs, FCs, FBs), you can declare temporary local data. The local data
area on the CPU is divided among the priority classes.

On S7-400, you can change the amount of local data per priority class in the "priority classes"
parameter block using STEP 7.

Start Information of an OB

Every organization block has start information of 20 bytes of local data that the operating system
supplies when an OB is started. The start information specifies the start event of the OB, the date
and time of the OB start, errors that have occurred, and diagnostic events.

For example, OB40, a hardware interrupt OB, contains the address of the module that generated
the interrupt in its start information.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 65

Basics of Designing a Program Structure
4.2 Blocks in the User Program

Deselected Interrupt OBs

If you assign priority class 0 or assign less than 20 bytes of local data to a priority class, the
corresponding interrupt OB is deselected. The handling of deselected interrupt OBs is restricted as
follows:

¢ In RUN mode, they cannot be copied or linked into your user program.

e In STOP mode, they can be copied or linked into your user program, but when the CPU goes
through a restart (warm start) they stop the startup and an entry is made in the diagnostic
buffer.

By deselecting interrupt OBs that you do not require, you increase the amount of local data area
available, and this can be used to save temporary data in other priority classes.

Cyclic Program Processing

Cyclic program processing is the "normal” type of program execution on programmable logic
controllers, meaning the operating system runs in a program loop (the cycle) and calls the
organization block OB1 once in every loop in the main program. The user program in OB1 is
therefore executed cyclically.

Cperating systern User program
— [.
Ctle Main
program
—~l— ——

Programming with STEP 7
66 Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Event-Driven Program Processing

Cyclic program processing can be interrupted by certain events (interrupts). If such an event
occurs, the block currently being executed is interrupted at a command boundary and a different
organization block that is assigned to the particular event is called. Once the organization block has
been executed, the cyclic program is resumed at the point at which it was interrupted.

Cperating system Llzer program
+ / Startup
— \ prograrn

l M ain

— e —— |
prograrmm
i / [rterrupt
Interrupte| —s—foe B ragrarm
ruption - | Pro
e /| e
rra - ruption \ handlung
—eee -l -ﬂ—l

This means it is possible to process parts of the user program that do not have to be processed
cyclically only when needed. The user program can be divided up into "subroutines" and distributed
among different organization blocks. If the user program is to react to an important signal that
occurs relatively seldom (for example, a limit value sensor for measuring the level in a tank reports
that the maximum level has been reached), the subroutine that is to be processed when the signal
is output can be located in an OB whose processing is event-driven.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 67

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Linear Versus Structured Programming

68

You can write your entire user program in OB1 (linear programming). This is only advisable with
simple programs written for the S7-300 CPU and requiring litle memory.

Complex automation tasks can be controlled more easily by dividing them into smaller tasks
reflecting the technological functions of the process or that can be used more than once. These

tasks are represented by corresponding program sections, known as the blocks (structured
programming).

Linear programming Structured programming
hain program hain program
=0E1
QB

FE 1

FCA

A A

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2.2 Call Hierarchy in the User Program

4.2 Blocks in the User Program

For the user program to function, the blocks that make up the user program must be called. This is
done using special STEP 7 instructions, the block calls, that can only be programmed and started

in logic blocks.

Order and Nesting Depth

The order and nesting of the block calls is known as the call hierarchy. The number of blocks that
can be nested (the nesting depth) depends on the particular CPU.

The following figure illustrates the order and nesting depth of the block calls within a scan cycle.

Start of |— Mesting depth —|
Cydle Do . = |
OF 1 FE 1 FC1
% Insance DE 1
2 -
B FEZ FE 1 SFG
Fi] |
& [retance DB 2| [Instance DB 1
- DB
FC
—ai

There is a set order for creating blocks:

¢ You create the blocks from top to bottom, so you start with the top row of blocks.

e Every block that is called must already exist, meaning that within a row of blocks the order for
creating them is from right to left.

e The last block to be created is OB1.

Putting these rules into practice for the example in the figure produces the following sequence for

creating the blocks:

FC1 > FB1 + instance DB1 > DB1 > SFC1 > FB2 + instance DB2 > OB1

Note

If the nesting is too deep (too many levels), the local data stack may overflow (Also refer to Local

Data Stack).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

69

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Block Calls

The following figure shows the sequence of a block call within a user program. The program calls
the second block whose instructions are then executed completely. Once the second or called
block has been executed, execution of the interrupted block that made the call is resumed at the
instruction following the block call.

Calling block Called block
(OB, FB FC . FEB, FC, SFB or SFC)
FProgram
execution
Frogram
Instruction thatcalls exacution
another block

/Vl/-i ' Block end

Before you program a block, you must specify which data will be used by your program, in other
words, you must declare the variables of the block.

Note
OUT parameters must be described for each block call.

Note

The operating system resets the instances of SFB3 "TP" when a cold restart is performed. If you
want to initialize instances of this SFB after a cold restart, you must call up the relevant instances
of the SFB with PT = 0 ms via OB100. You can do this, for example, by performing an initialization
routine in the blocks which contain instances of the SFB.

Programming with STEP 7
70 Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4.2.3 Block Types

4.2.3.1 Organization Block for Cyclic Program Processing (OB1)

Cyclic program processing is the "normal" type of program execution on programmable logic
controllers. The operating system calls OB1 cyclically and with this call it starts cyclic execution of
the user program.

Sequence of Cyclic Program Processing

The following table shows the phases of cyclic program processing:

Step Sequence in CPUs to 10/98 Sequence in CPUs from 10/98

1 The operating system starts the cycle The operating system starts the cycle
monitoring time. monitoring time.

2 The CPU reads the state of the inputs of the The CPU writes the values from the process
input modules and updates the process image |image table of the outputs to the output
table of the inputs. modules.

3 The CPU processes the user program and The CPU reads the state of the inputs of the
executes the instructions contained in the input modules and updates the process image
program. table of the inputs.

4 The CPU writes the values from the process The CPU processes the user program and
image table of the outputs to the output executes the instructions contained in the
modules. program.

5 At the end of a cycle, the operating system At the end of a cycle, the operating system
executes any tasks that are pending, for executes any tasks that are pending, for
example downloading and deleting blocks, example downloading and deleting blocks,
receiving and sending global data. receiving and sending global data.

6 Finally, the CPU returns to the start of the cycle | Finally, the CPU returns to the start of the cycle
and restarts the cycle monitoring time. and restarts the cycle monitoring time.

Process Images

So that the CPU has a consistent image of the process signals during cyclic program processing,
the CPU does not address the input (I) and output (Q) address areas directly on the /O modules

but rather accesses an internal memory area of the CPU that contains an image of the inputs and
outputs.

Programming Cyclic Program Processing

You program cyclic program processing by writing your user program in OB1 and in the blocks
called within OB1 using STEP 7.

Cyclic program processing begins as soon as the startup program is completed without errors.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 71

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Interrupts

Cyclic program processing can be interrupted by the following:

e Aninterrupt

e A STOP command (mode selector, menu option on the programming device, SFC46 STP,

SFB20 STOP)

e A power outage

e The occurrence of a fault or program error

Scan Cycle Time

72

The scan cycle time is the time required by the operating system to run the cyclic program and all
the program sections that interrupt the cycle (for example, executing other organization blocks) and
system activities (for example, updating the process image). This time is monitored.

The scan cycle time (TC) is not the same in every cycle. The following figures show different scan

cycle times (TC1 = TC2) for CPUs up to 10/98 and CPUs from 10/98:

Different Scan Cyele Times for CPLU: to 10553

Current Cycle Mlext Cyele Mext Cyele
T T2
OBE10
pdates Updates Updates Updates: Updates
process OB } ¢OB1 process pIoCESS Q81 | process pIOCESS OB]
image input image output | image input image output | image input '
Different Scan Cyele Times for CPUs from 10023
Current Cyele Mext Cyele Mext Cyele
T Tz
1B O
pdates Updates Updates pdates pdates Upds
procEss process CE OE| process process CE1| process proc
irage output image irput image output image input image autpt Joutp |
In the current cycle, OB1 is interrupted by a time-of-day interrupt.
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

Cycle Monitoring Time

With STEP 7, you can modify the default maximum cycle monitoring time. If this time expires, the

4.2 Blocks in the User Program

CPU either changes to STOP mode or OB80 is called in which you can specify how the CPU

should react to this error.

Minimum Cycle Time

With STEP 7, you can set a minimum cycle time for S7-400 CPUs and the CPU 318. This is useful

in the following situations:

e When the interval at which program execution starts in OB1 (main program scan) should

always be the same or

o When the process image tables would be updated unnecessarily often if the cycle time is too

short.

The following figures show the function of the cycle monitoring time in program processing in CPUs

up to 10/98 and in CPUs from 10/98.

Cwele Monitoring Time for CPUs to 1002
Current cycle Mext cycle
_ Trriax . }
- Heser‘u;}
Trriin o i
» T e Feeait .
PG
B0
poO7 N] (0B 10
Opdating of the Updating of the Updating of the
process image (261 Q61| processimage process image | OB
i output table i
P input table P input table
B9 DESO CES
P29 4% - J
Trax = Maxirurn cycle time that can be set
Jin =Mdinirumm cycle tirme that can be set
T = Actual zean evele time] o]
Twait = Difference between Tmin and actual scan cyele time. |n thiz time, occurred interrupts and
the background OB can be procreszed
FZ =FPriorty class

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

73

Basics of Designing a Program Structure
4.2 Blocks in the User Program

Cwile Monitoring Time for CPUs from 10/G2

Current cycle Mext cycle
|
" Trriax]
- Feserve |
Trrin . :
T Tovait
-] e SR
PC1E
BN
PCOY B0 B0
Updaing ofthe | Updating of the Updating ofthe|Jpd
process image |pmooessimage [OB1 OB1 proceszimage |p
output table input table output table ot
P
JBEI§ 389? DBEIT
PC29

Trax = Maximum cyele time that can be set
%nm =Mdinirumm cycle tirme that can be set
[= Actual zean oycle time
Twait = Difference between Tmin and actual scan cycle time. |n thiz tirme, occurred interrupts and
the background OB can be procresszed

P =Friority clazz

Updating the Process Image
During cyclic program processing by the CPU, the process image is updated automatically. With
the S7-400 CPUs and the CPU 318 you can deselect the update of the process image if you want
to:
o Access the I/O directly instead or

e Update one or more process image input or output sections at a different point in the program
using system functions SFC26 UPDAT_PI and SFC27 UPDAT_PO.

Communication Load

You can use the CPU parameter "Scan Cycle Load from Communication" to control within a given
framework the duration of communication processes that always increase the scan cycle time.
Examples of communication processes include transmitting data to another CPU by means of MPI

or loading blocks by means of a programming device.

Test functions with a programming device are barely influenced by this parameter. However, you
can increase the scan cycle time considerably. In the process mode, you can limit the time set for
test functions (S7-300 only).

Programming with STEP 7

74 Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure
4.2 Blocks in the User Program

How the Parameter works

The operating system of the CPU constantly provides the communication with the configured
percent of the entire CPU processing capacity (time slice technique). If this processing capacity is
not needed for the communication, it is available to the rest of the processing.

Effect on the Actual Scan Cycle Time

Without additional asynchronous events, the OB1 scan cycle time is extended by a factor that can
be calculated according to the following formula:

100

100 - "Scan cycle load from communication (%)"

Example 1 (no additional asynchronous events):

When you set the load added to the cycle by communication to 50%, the OB1 scan cycle time can
be doubled.

At the same time, the OB1 scan cycle time is also influenced by asynchronous events (such as
hardware interrupts or cyclic interrupts). From a statistical point of view, even more asynchronous
events occur within an OB1 scan cycle because of the extension of the scan cycle time by the
communication portion. This causes an additional increase in the OB1 scan cycle. This increase
depends on how many events occur per OB1 scan cycle and on the duration of event processing.

Example 2 (additional asynchronous events considered):

For a pure OB1 execution time of 500 ms, a communication load of 50% can result in an actual
scan cycle time of up to 1000 ms (provided that the CPU always has enough communication jobs
to process). If, parallel to this, a cyclic interrupt with 20 ms processing time is executed every 100
ms, this cyclic interrupt would extend the scan cycle by a total of 5*20 ms = 100 ms without
communication load. That is, the actual scan cycle time would be 600 ms. Because a cyclic
interrupt also interrupts communication, it affects the scan cycle time by 10 * 20 ms with 50%
communication load. That is, in this case, the actual scan cycle time amounts to 1200 ms instead
of 1000 ms.

Note

Check the effects of changing the value of the "Scan Cycle Load from Communication" parameter while the
system is running.

The communication load must be taken into account when setting the minimum scan cycle time; otherwise
time errors will occur.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 75

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Recommendations
o Where possible, apply the default value.

e Increase this value only if you are using the CPU primarily for communication purposes and
your user program is not time critical.

¢ In all other cases, only reduce the value.

e Set the process mode (S7-300 only), and limit the time needed there for test functions.

Programming with STEP 7
76 Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4.2.3.2 Functions (FC)
Functions (FCs) belong to the blocks that you program yourself. A function is a logic block "without
memory." Temporary variables belonging to the FC are saved in the local data stack. This data is
then lost when the FC has been executed. To save data permanently, functions can also use
shared data blocks.
Since an FC does not have any memory of its own, you must always specify actual parameters for
it. You cannot assign initial values for the local data of an FC.

Application

An FC contains a program section that is always executed when the FC is called by a different
logic block. You can use functions for the following purposes:

e Toreturn a function value to the calling block (example: math functions)

e To execute a technological function (example: single control function with a bit logic operation).

Assigning Actual Parameters to the Formal Parameters

A formal parameter is a dummy for the "actual" parameter. Actual parameters replace the formal
parameters when the function is called. You must always assign actual parameters to the formal
parameters of an FC (for example, an actual parameter "l 3.6" to the formal parameter "Start"). The
input, output and infout parameters used by the FC are saved as pointers to the actual parameters
of the logic block that called the FC.

Important Differences Between the Output Parameters of FCs and FBs

In function blocks (FB), a copy of the actual parameters in the instance DB is used when accessing
the parameters. If an input parameter is not transferred or an output parameter is not write
accessed when a FB is called, the older values still stored in the instance DB /Instance DB =
memory of the FBs) will be used.

Functions (FC) have no memory. Contrary to FBs, the assignment of formal parameters to these
FCs is therefore not optional, but rather essentially. FC parameters are accessed via addresses
(pointers to targets across area boundaries). When an address of the data area (data block) or a
local variable of the calling block is used as actual parameter, a copy of the actual parameter is
saved temporarily to local data area of the calling block for the transfer of the parameter.

Caution

In this case, if no data are written to an OUTPUT parameter in an FC, the block may output random
values!

As the calling block's local data area which is reserved for the copy is not assigned to the OUTPUT
parameter, no data will be written to this area. It will therefore remain unchanged and the random
value stored at this location will be output, because local data are not automatically set to "0" by
default, for example.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 77

Basics of Designing a Program Structure
4.2 Blocks in the User Program

Thus, observe the following points:
e If possible, initialize the OUTPUT parameters.

e Set and reset instructions depend on RLO. When these instructions are used to determine the
value at an OUTPUT parameter, no value is generated if the result of a previous logic
operation (RLO) = 0.

e Always ensure that data are written to the OUTPUT parameters - irrespective of any program
paths in the block. Pay special attention to jump instructions, to the ENO output in LAD and
FBD as well as to BEC (Block End Conditional) and the influence of MCR (Master Control
Relay) instructions.

Note

Although the OUTPUT parameters of an FB or the INOUT parameters of an FC and FB will not
output random values (the old output value - or input value as output value - is going to be
maintained even if no data are written to the parameter) you should still observe the points above
in order to avoid unintentional processing of "old" values.

Programming with STEP 7
78 Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure
4.2 Blocks in the User Program

4.2.3.3 Function Blocks (FB)

Function blocks (FBs) belong to the blocks that you program yourself. A function block is a block
"with memory." It is assigned a data block as its memory (instance data block). The parameters
that are transferred to the FB and the static variables are saved in the instance DB. Temporary
variables are saved in the local data stack.

Data saved in the instance DB are not lost when execution of the FB is complete. Data saved in the
local data stack are, however, lost when execution of the FB is completed.

Note

To avoid errors when working with FBs, read Permitted Data Types when Transferring Parameters
in the Appendix.

Application

An FB contains a program that is always executed when the FB is called by a different logic block.
Function blocks make it much easier to program frequently occurring, complex functions.

Function Blocks and Instance Data Blocks
An instance data block is assigned to every function block call that transfers parameters.

By calling more than one instance of an FB, you can control more than one device with one FB. An
FB for a motor type, can, for example, control various motors by using a different set of instance
data for each different motor. The data for each motor (for example, speed, ramping, accumulated
operating time etc.) can be saved in one or more instance DBs.

The following figure shows the formal parameters of an FB that uses the actual parameters saved
in the instance DB.

Formal parameter Actual parameter
Integer (16 Bits): start
Start INT 1M -~ ger { :
Speed IMT IM — Integer {16 Bits): speed
Histary DT IM_OUT
Run_Time TIME IN_OUT "1--'-""""'--—-._.__ Date and tirme (48 Bits):
- pointerto the address of the history
////I/—/_F\ Tirme {32 Bits): run time

FEZ0:hiotar DE202Motor_2

Variables of the Data Type FB

If your user program is structured so that an FB contains calls for further already existing function
blocks, you can include the FBs to be called as static variables of the data type FB in the variable
declaration table of the calling FB. This technique allows you to nest variables and concentrate the
instance data in one instance data block (multiple instance).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 79

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Assigning Actual Parameters to the Formal Parameters

80

It is not generally necessary in STEP 7 to assign actual parameters to the formal parameters of an
FB. There are, however, exceptions to this. Actual parameters must be assigned in the following
situations:

e For an infout parameter of a complex data type (for example, STRING, ARRAY or
DATE_AND_TIME)

e For all parameter types (for example TIMER, COUNTER, or POINTER)
STEP 7 assigns the actual parameters to the formal parameters of an FB as follows:

o When you specify actual parameters in the call statement: the instructions of the FB use the
actual parameters provided.

o When you do not specify actual parameters in the call statement: the instructions of the FB use
the value saved in the instance DB.

The following table shows which variables of the FB must be assigned actual parameters.

Data Type
Variable Elementary Data Type Complex Data Type Parameter Type
Input No parameter required No parameter required Actual parameter required
Output No parameter required No parameter required Actual parameter required
In/out No parameter required Actual parameter required —

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Assigning Initial Values to Formal Parameters

You can assign initial values to the formal parameters in the declaration section of the FB. These
values are written into the instance DB associated with the FB.

If you do not assign actual parameters to the formal parameters in the call statement, STEP 7 uses
the values saved in the instance DB. These values can also be the initial values that were entered
in the variable declaration table of an FB.

The following table shows which variables can be assigned an initial value. Since the temporary
data are lost after the block has been executed, you cannot assign any values to them.

Data Type
Variable Elementary Data Type Complex Data Type Parameter Type
Input Initial value permitted Initial value permitted —
Output Initial value permitted Initial value permitted —
In/out Initial value permitted — —
Static Initial value permitted Initial value permitted —
Temporary — — —
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 81

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4.2.34 Instance Data Blocks

An instance data block is assigned to every function block call that transfers parameters. The
actual parameters and the static data of the FB are saved in the instance DB. The variables
declared in the FB determine the structure of the instance data block. Instance means a function
block call. If, for example, a function block is called five times in the S7 user program, there are

five instances of this block.

Creating an Instance DB

Before you create an instance data block, the corresponding FB must already exist. You specify
the number of the FB when you create the instance data block.

One Instance DB for Each Separate Instance

If you assign several instance data blocks to a function block (FB) that controls a motor, you can
use this FB to control different motors.

The data for each specific motor (for example, speed, run-up time, total operating time) are saved
in different data blocks. The DB associated with the FB when it is called determines which motor is
controlled. With this technique, only one function block is necessary for several motors (see the

following figure).

DBEZ0 Motor_1

FBZ2Z Motors

DB20Z Motar_2

DBEX3:Motor_3

Call FBEZ,DBEZ201 uzes
data far matar 1

Call FEZ2,DB20C2 uzes
data for motor 2

Call FBZZ2, DB203 uzes
data far motor 3

82

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

One Instance DB for Several Instances of an FB (Multiple Instances)

4.2 Blocks in the User Program

You can also transfer the instance data for several motors at the same time in one instance DB. To
do this, you must program the calls for the motor controllers in a further FB and declare static
variables with the data type FB for the individual instances in the declaration section of the calling

FB.

If you use one instance DB for several instances of an FB, you save memory and optimize the use

of data blocks.

In the following figure, the calling FB is FB21 "Motor processing," the variables are of data type
FB22, and the instances are identified by Motor_1, Motor_2, and Motor_3.

FEB21 Motor processing

“Wariable declaration:
gtat, Motar_1, FB 22
gtat, Motor 2, FB 22
stat, Wotar 3, FB 22

FBZZ Motors

_-..
N ———

DE100

Data for hotor_1

Diata for hdatar_2

Diata for hdatar_3

Call FB 21 frama logic block
CALL FBZ1,DE10

tranzfers data forhotor_1,
hatar_2, Motar_ 3

Call FB 22 froms FB 21:
CALL Motor_1

CALL hotor_2

CALL Motor_3

In this example, FB22 does not need its own instance data block, since its instance data are saved
in the instance data block of the calling FB.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

83

Basics of Designing a Program Structure

4.2 Blocks in the User Program

One Instance DB for Several Instances of Different FBs (Multiple Instances)

84

In a function block you can call the instances of other existing FBs. You can assign the instance
data required for this to the instance data block of the calling FB, meaning you do not need any

additional data blocks for the called FBs in this case.

For these multiple instances in one instance data block, you must declare static variables with the
data type of the called function block for each individual instance in the declaration section of the
calling function block. The call within the function block does not then require an instance data

block, only the symbolic name of the variable.

In the example in this figure, the assigned instance data are stored in a common instance DB.

“arable dedarstion:
tat, Motor 10, FBE12
at, Pumpe_10, FE13

FB12:hMator - LET2: Motar
—— .
FE13:Fump -— 1 DElS3:Pump
—_—
FEA :&gitator — | DE14
Data for agitatar

Diata for Motar 10

Datafor Pump10

Access only for FE12, call:
CAalLL FB12, DB12

Acoesz only for FB13,call:
CALL FE13, DE13

Aocess for FE14, FB 13 and
FE 12, call:

CALL FE14, DE14

transfers datafior agitator,
Mator_10 und Pump_10

Call FE 12 from FE 14
CALL hotar 10

Call FB 13 from FE 14
CALL Purmnpe_1

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2.3.5

4.2 Blocks in the User Program

Shared Data Blocks (DB)

In contrast to logic blocks, data blocks do not contain STEP 7 instructions. They are used to store
user data, in other words, data blocks contain variable data with which the user program works.
Shared data blocks are used to store user data that can be accessed by all other blocks.

The size of DBs can vary. Refer to the description of your CPU for the maximum possible size.

You can structure shared data blocks in any way to suit your particular requirements.

Shared Data Blocks in the User Program

If a logic block (FC, FB, or OB) is called, it can occupy space in the local data area (L stack)
temporarily. In addition to this local data area, a logic block can open a memory area in the form of
a DB. In contrast to the data in the local data area, the data in a DB are not deleted when the DB is
closed, in other words, after the corresponding logic block has been executed.

Each FB, FC, or OB can read the data from a shared DB or write data to a shared DB. This data
remains in the DB after the DB is exited.

A shared DB and an instance DB can be opened at the same time. The following figure shows the
different methods of access to data blocks.

Fiz10 et
Shared Access by all
(B] = hlocks
q—l (DB 20
Fiz11 /
/ Instance DB
Accessonly by FBE12
FB12 —™ DE112) yRy
=aplf———
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 85

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4.2.3.6

System Function Blocks (SFB) and System Functions (SFC)

Preprogrammed Blocks

You do not need to program every function yourself. S7 CPUs provide you with preprogrammed
blocks that you can call in your user program.

Further information can be found in the reference help on system blocks and system functions
(Jumps to Language Descriptions and Help on Blocks and System Attributes).

System Function Blocks

A system function block (SFB) is a function block integrated on the S7 CPU. SFBs are part of the
operating system and are not loaded as part of the program. Like FBs, SFBs are blocks "with
memory." You must also create instance data blocks for SFBs and download them to the CPU as
part of the program.

S7 CPUs provide the following SFBs:
e For communication via configured connections

e For integrated special functions (for example, SFB29 "HS_COUNT" on the CPU 312 IFM and
the CPU 314 IFM).

System Functions

86

A system function is a preprogrammed function that is integrated on the S7 CPU. You can call the
SFC in your program. SFCs are part of the operating system and are not loaded as part of the
program. Like FCs, SFCs are blocks "without memory."

S7 CPUs provide SFCs for the following functions:

e Copying and block functions

e Checking the program

e Handling the clock and run-time meters

e Transferring data sets

e Transferring events from a CPU to all other CPUs in multicomputing mode
e Handling time-of-day and time-delay interrupts

e Handling synchronous errors, interrupts, and asynchronous errors

e Information on static and dynamic system data, for example, diagnostics
e Process image updating and bit field processing

e Addressing modules

e Distributed I/O

e Global data communication

e Communication via non-configured connections

e Generating block-related messages

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure
4.2 Blocks in the User Program

Additional Information

For more detailed information about SFBs and SFCs, refer to the "System Software for S7-300 and
S7-400, System and Standard Functions" Reference Manual. The "S7-300 Programmable
Controller, Hardware and Installation Manual" and "S7-400 Programmable Controller Module
Specifications Reference Manual" explain which SFBs and SFCs are available.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 87

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4.2.4

Organization Blocks for Interrupt-Driven Program Processing

By providing interrupt OBs, the S7 CPUs allow the following:
e Program sections can be executed at certain times or intervals (time-driven)
e Your program can react to external signals from the process.

The cyclic user program does not need to query whether or not interrupt events have occurred. If
an interrupt does occur, the operating system makes sure that the user program in the interrupt OB
is executed so that there is a programmed reaction to the interrupt by the programmable logic
controller.

Interrupt Types and Applications

4.2.4.1

88

The following table shows how the different types of interrupt can be used.

Type of Interrupt Interrupt OBs Application Examples

Time-of-day interrupt | OB10 to OB17 Calculation of the total flow into a blending process at the end
of a shift

Time-delay interrupt | OB20 to OB23 Controlling a fan that must continue to run for 20 seconds after
a motor is switched off

Cyclic interrupt OB30 to OB38 Scanning a signal level for a closed loop control system

Hardware interrupt | OB40 to OB47 Signaling that the maximum level of a tank has been reached

Time-of-Day Interrupt Organization Blocks (OB10 to OB17)

The S7 CPUs provide the Time-Of-Day interrupt OBs that can be executed at a specified date or at
certain intervals.

Time-Of-Day interrupts can be triggered as follows:
e Once at a particular time (specified in absolute form with the date)

e Periodically by specifying the start time and the interval at which the interrupt should be
repeated (for example, every minute, every hour, daily).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure
4.2 Blocks in the User Program

Rules for Time-of-Day Interrupts

Time-Of-Day interrupts can only be executed when the interrupt has been assigned parameters
and a corresponding organization block exists in the user program. If this is not the case, an error
message is entered in the diagnostic buffer and asynchronous error handling is executed (OB80,
see Error Handling Organization Blocks (OB70 to OB87 / OB121 to OB122)).

Periodic Time-Of-Day interrupts must correspond to a real date. Repeating an OB10 monthly
starting on January 31st is not possible. In this case, the OB would only be started in the months
that actually have 31 days (that is, not in February, April, June, etc.).

A Time-Of-Day interrupt activated during startup (restart (warm restart) or hot restart) is only
executed after the startup is completed.

Time-Of-Day interrupt OBs that are deselected by the parameter assignment cannot be started.
The CPU recognizes a programming error and changes to STOP mode.

Following a restart (warm restart), Time-Of-Day interrupts must be set again (for example, using
SFC30 ACT_TINT in the startup program).

Starting the Time-of-Day Interrupt

To allow the CPU to start a Time-Of-Day interrupt, you must first set and then activate the
Time-Of-Day interrupt. There are three ways of starting the interrupt:

e Automatic start of the Time-Of-Day interrupt by assigning appropriate parameters with STEP 7
(parameter block "Time-Of-Day interrupts")

e Setting and activating the Time-Of-Day interrupt with SFC28 SET_TINT and SFC30 ACT_TINT
from within the user program

e Setting the Time-Of-Day interrupt by assigning parameters with STEP 7 and activating the
Time-Of-Day interrupt with SFC30 ACT_TINT in the user program.

Querying the Time-of-Day Interrupt

To query which Time-Of-Day interrupts are set and when they are set to occur, you can do one of
the following:

e Call SFC31 QRY_TINT

¢ Request the list "interrupt status" of the system status list.

Deactivating the Time-of-Day Interrupt

You can deactivate Time-Of-Day interrupts that have not yet been executed with SFC29
CAN_TINT. Deactivated Time-Of-Day interrupts can be set again using SFC28 SET_TINT and
activated with SFC30 ACT_TINT.

Priority of the Time-of-Day Interrupt OBs

All eight Time-Of-Day interrupt OBs have the same priority class (2) as default and are therefore
processed in the order in which their start event occurs. You can, however, change the priority
class by selecting suitable parameters.

Changing the Set Time

You can change the Time-Of-Day set for the interrupt as follows:

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 89

Basics of Designing a Program Structure

4.2 Blocks in the User Program

e A clock master synchronizes the time for masters and slaves.

e SFCO SET_CLK can be called in the user program to set a new time.

Reaction to Changing the Time

90

The following table shows how Time-Of-Day interrupts react after the time has been changed.

If...

Then...

you move the time ahead and one or more
Time-Of-Day interrupts were skipped,

OB80 is started and the Time-Of-Day interrupts that
were skipped are entered in the start information of
0OB80.

you have not deactivated the skipped Time-Of-Day
interrupts in OB80,

the skipped Time-Of-Day interrupts are no longer
executed.

you have not deactivated the skipped Time-Of-Day
interrupts in OB80,

the first skipped Time-Of-Day interrupt is executed,
the other skipped Time-Of-Day interrupts are
ignored.

you move the time back, the start events for the
Time-Of-Day interrupts occur again,

the execution of the Time-Of-Day interrupt is
repeated with $7-300-CPUs

and not

repeated for S7-400-CPUs and CPU 318.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4.2.4.2 Time-Delay Interrupt Organization Blocks (OB20 to OB23)

The S7 CPUs provide time delay OBs with which you can program the delayed execution of parts
of your user program.

Rules for Time-Delay Interrupts

Time delay interrupts can only be executed when the corresponding organization block exists in the
CPU program. If this is not the case, an error message is entered in the diagnostic buffer and
asynchronous error handling is executed (OB80, see Error Handling Organization Blocks (OB70 to
OB87 / OB121 to OB122)).

Time delay interrupt OBs that were deselected by the parameter assignment cannot be started.
The CPU recognizes a programming error and changes to STOP mode.

Time delay interrupts are triggered when the delay time specified in SFC32 SRT_DINT has
expired.

Starting the Time-Delay Interrupt

To start a time delay interrupt, you must specify the delay time in SFC32 after which the
corresponding time delay interrupt OB is called. Refer to the "S7-300 Programmable Controller,
Hardware and Installation Manual" and "S7-400 Programmable Controller Module Specifications
Reference Manual" for the maximum permitted length of the delay time.

Priority of the Time-Delay Interrupt OBs

The default priority for the time-delay interrupt OBs is priority class 3 to 6. You can assign
parameters to change the priority classes.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 91

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4243

Cyclic Interrupt Organization Blocks (OB30 to OB38)
The S7 CPUs provide cyclic interrupt OBs that interrupt cyclic program processing at certain
intervals.

Cyclic interrupts are triggered at intervals. The time at which the interval starts is the mode
transition from STOP to RUN.

Rules for Cyclic Interrupts

When you specify the intervals, make sure that there is enough time between the start events of
the individual cyclic interrupts for processing the cyclic interrupts themselves.

If you assign parameters to deselect cyclic interrupt OBs, they can no longer be started. The CPU
recognizes a programming error and changes to STOP mode.

Starting the Cyclic Interrupt

To start a cyclic interrupt, you must specify the interval in the cyclic interrupts parameter block
using STEP 7. The interval is always a whole multiple of the basic clock rate of 1 ms.

Interval = n X basic clock rate 1 ms

Each of the nine available cyclic interrupt OBs has a default interval (see the following table). The
default interval becomes effective when the cyclic interrupt OB assigned to it is loaded. You can,
however, assign parameters to change the default values. Refer to your "S7-300 Programmable
Controller, Hardware and Installation Manual" and your "S7-400 Programmable Controller, Module
Specifications Reference Manual" for the upper limit.

Phase Offset in Cyclic Interrupts

92

To avoid cyclic interrupts of different cyclic interrupt OBs being started at the same point and
possibly causing a time error (cycle time exceeded) you can specify a phase offset. The phase
offset ensures that the execution of a cyclic interrupt is delayed by a certain time after the interval
has expired.

Phase offset = m X basic clock rate (where 0 <m < n)

The following figure shows how a cyclic interrupt OB with phase offset (OB37) is executed in
contrast to a cyclic interrupt without phase offset (OB38).

Clogk pulge: [IULTTTEPIEETTETPERTEEEEEEEE ey CEE e e et erref il
e | | | |
(=8, r=0) | | .
OB 37
n=16, rea) —I —I —| .
0 8 16 16+ 24 32 32 +540 483 45+5 t [rmz]

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

Priority of the Cyclic Interrupt OBs

4.2 Blocks in the User Program

The following table shows the default intervals and priority classes of the cyclic interrupt OBs. You
can assign parameters to change the interval and the priority class.

Cyclic Interrupt OB Interval in ms | Priority Class
0OB30 5000 7
OB31 2000 8
0OB32 1000 9
OB33 500 10
OB34 200 11
OB35 100 12
OB36 50 13
OB37 20 14
OB38 10 15

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

93

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4244

Hardware Interrupt Organization Blocks (OB40 to OB47)

The S7 CPUs provide hardware interrupt OBs that react to signals from the modules (for example,
signal modules (SMs), communications processors (CPs), function modules (FMs)). With STEP 7,
you can decide which signal from a configurable digital or analog module starts the OB. With CPs
and FMs, use the appropriate parameter assignment dialogs.

Hardware interrupts are triggered when a signal module with hardware interrupt capability and with
an enabled hardware interrupt passes on a received process signal to the CPU or when a function
module of the CPU signals an interrupt.

Rules for Hardware Interrupts

Hardware interrupts can only be executed when the corresponding organization block exists in the
CPU program. If this is not the case, an error message is entered in the diagnostic buffer and
asynchronous error handling is executed (OB80, see Error Handling Organization Blocks (OB70 to
OB87 / OB121 to OB122)).

If you have deselected hardware interrupt OBs in the parameter assignment, these cannot be
started. The CPU recognizes a programming error and changes to STOP mode.

Assigning Parameters to Signal Modules with Hardware Interrupt Capability

Each channel of a signal module with hardware interrupt capability can trigger a hardware interrupt.
For this reason, you must specify the following in the parameter sets of signal modules with
hardware interrupt capability using STEP 7:

o What will trigger a hardware interrupt.

o Which hardware interrupt OB will be executed (the default for executing all hardware interrupts
is OB40).

Using STEP 7, you activate the generation of hardware interrupts on the function blocks. You
assign the remaining parameters in the parameter assignment dialogs of these function modules.

Priority of the Hardware Interrupt OBs

94

The default priority for the hardware interrupt OBs is priority class 16 to 23. You can assign
parameters to change the priority classes.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure
4.2 Blocks in the User Program

4.2.4.5 Startup Organization Blocks (OB100/ OB101 / OB102)

Startup Types
There are three distinct types of startup:
e Hot restart (not in S7-300 and S7-400H)
e Restart (warm restart)
e Cold restart

The following table shows which OB the operating system calls in each startup type.

Startup Type Related OB

Hot restart OB101
Restart (warm restart) 0B100
Cold restart 0B102

Start Events for Startup OBs
The CPU executes a startup after the following events:
e After power up
o After you switch the mode selector from STOP to RUN/RUN-P
o After a request from a communication function
e After synchronizing in multicomputing mode
¢ In an H system after link-up (only on the standby CPU)

Depending on the start event, the CPU used, and its set parameters the relevant startup OB
(OB100, OB101, or OB102) is called.

Startup Program

You can specify the conditions for starting up your CPU (initialization values for RUN, startup
values for I/O modules) by writing your program for the startup in the organization blocks OB100 for
restart (warm restart), OB101 for hot restart, or OB102 for cold restart.

There are no restrictions to the length of the startup program and no time limit since the cycle
monitoring is not active. Time-driven or interrupt-driven execution is not possible in the startup
program. During the startup, all digital outputs have the signal state 0.

Startup Type After Manual Restart
On S7-300 CPUs only a manual restart (warm restart) or cold restart (CPU 318-2 only) is possible.

On some S7-400 CPUs, you can restart manually using the mode selector and the startup type
switch (CRST/WRST) if this is permitted by the parameter assignment you made with STEP 7. A
manual restart (warm restart) is possible without specifically assigning parameters.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 95

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Startup Type After Automatic Restart
On S7-300 CPUs, only a restart (warm restart) is possible following power up.

On S7-400 CPUs, you can specify whether an automatic startup following power up leads to a
restart (warm restart) or a hot restart.

Clearing the Process Image

When an S7-400 CPU is restarted, the remaining cycle is executed, and as default, the process
image output table is cleared. You can prevent the process image being cleared if you want the
user program to continue with the old values following a restart.

Module Exists/Type Monitoring

In the parameters, you can decide whether the modules in the configuration table are checked to
make sure they exist and that the module type matches before the startup.

If the module check is activated, the CPU will not start up if a discrepancy is found between the
configuration table and the actual configuration.

Monitoring Times

To make sure that the programmable controller starts up without errors, you can select the
following monitoring times:

e The maximum permitted time for transferring parameters to the modules

e The maximum permitted time for the modules to signal that they are ready for operation after
power up

e On S7-400 CPUs, the maximum time of an interruption during which a hot restart is permitted.

Once the monitoring times expire, the CPU either changes to STOP, or only a restart (warm
restart) is possible.

Programming with STEP 7
96 Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2.4.6

4.2 Blocks in the User Program

Background Organization Block (OB90)

If you have specified a minimum scan cycle time with STEP 7 and this is longer than the actual
scan cycle time, the CPU still has processing time available at the end of the cyclic program. This
time is used to execute the background OB. If OB90 does not exist on your CPU, the CPU waits
until the specified minimum scan cycle time has elapsed. You can therefore use OB90 to allow
processes where time is not critical to run and thus avoid wait times.

Priority of the Background OB

The background OB has priority class 29, which corresponds to priority 0.29. It is therefore the OB
with the lowest priority. Its priority class cannot be changed by reassigning parameters.

The following figure shows an example of processing the background cycle, the main program
cycle, and OB10 (in CPUs as of 10/98).

Currernt cycle Mesd cwcle
Trin s .
Reserwe
Triir .
T Tyuai
" [it
PCIE DE40
PCO7 oB10 DE10
pdates Updates pdates Upda
pcgy Process image |processimage OB o1 process imange Jproce
oLt prt oLt oLtput oLt
PCog CEQ0 QB30 CEA0
Triax = Mazximum cycle time that can be sat
Triif = Minimum cwde time that can be et
T = Actual scan cycle time
Timait = Difference betwin Tmin and actual scan cyde time. Inthiztime,
occured interrupts and the background OB can be proccessad
P = Priority dass
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 97

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Programming OB90

The run time of OB90 is not monitored by the CPU operating system so that you can program
loops of any length in OB90. Ensure that the data you use in the background program are
consistent by observing the following when programming:

e The reset events of OB90 (see the "System Software for S7-300 and S7-400, System and
Standard Functions" Reference Manual)

e The process image update asynchronous to OB90.

Programming with STEP 7
98 Manual, 04/2017, ASE41552389-AA

Basics of Designing a Program Structure

4.2 Blocks in the User Program

4.2.4.7 Error Handling Organization Blocks (OB70 to OB87 / OB121 to OB122)

Types of Errors

The errors that can be detected by the S7 CPUs and to which you can react with the help of
organization blocks can be divided into two basic categories:

e Synchronous errors: these errors can be assigned to a specific part of the user program. The
error occurs during the execution of a particular instruction. If the corresponding synchronous
error OB is not loaded, the CPU changes to STOP mode when the error occurs.

e Asynchronous errors: these errors cannot be directly assigned to the user program being
executed. These are priority class errors, faults on the programmable logic controller (for
example, a defective module), or redundancy errors. If the corresponding asynchronous error
OB is not loaded, the CPU changes to STOP mode when the error occurs (exceptions: OB70,
OB72, OB81, OB 87).

The following table shows the types of errors that can occur, divided up into the categories of the

error OBs.
Asynchronous Errors/Redundancy Errors Synchronous Errors
OB70 1/0 Redundancy Error (only H CPUs) OB121 Programming Error (for example, DB is not
loaded)
OB72 CPU Redundancy Error (only in H CPUs, for | OB122 I/O Access Error (for example, access to a
example, failure of a CPU) signal module that does not exist)

OBB80 Time Error (for example, scan cycle time
exceeded)

OB81 Power Supply Error (for example, battery
failure)

OB82 Diagnostic Interrupt (for example, short circuit
in the input module)

0OB83 Remove/lnsert Interrupt (for example,
removing an input module)

OB84 CPU Hardware Fault (fault at the interface to
the MPI network)

OB85 Priority Class Error (for example, OB is not
loaded)

OB86 Rack Failure

OB87 Communication Error (for example, incorrect
message frame ID for global data communication)

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 99

Basics of Designing a Program Structure

4.2 Blocks in the User Program

Using OBs for Synchronous Errors

Synchronous errors occur during the execution of a particular instruction. When these errors occur,
the operating system makes an entry in the | stack and starts the OB for synchronous errors.

The error OBs called as a result of synchronous errors are executed as part of the program in the
same priority class as the block that was being executed when the error was detected. The details
about the error that triggered the OB call are in the start information for the OB. You can use this
information to react to the error condition and then to return to processing your program (for
example, if an access error occurs on an analog input module, you can specify a substitute value in
OB122 using SFC44 RPL_VAL). The local data of the error OBs, do, however, take up additional
space in the L stack of this priority class.

With S7-400 CPUs, one synchronous error OB can start a further synchronous error OB. This is
not possible with S7-300 CPUs.

Using OBs for Asynchronous Errors

If the operating system of the CPU detects an asynchronous error, it starts the corresponding error
OB (OB70 to OB73 and OB80 to OB87). The OBs for asynchronous errors have the highest priority
as default and they cannot be interrupted by other OBs if all asynchronous error OBs have the
same priority. If more than one asynchronous error OB with the same priority occurs
simultaneously, they are processed in the order they occurred.

Masking Start Events

Using system functions (SFCs), you can mask, delay, or disable the start events for several OBs.
For more detailed information about these SFCs and the organization blocks, refer to the "System
Software for S7-300 and S7-400, System and Standard Functions" Reference Manual.

Type of Error OB SFC Function of the SFC

Synchronous error OBs SFC36 MSK_FLT Masks individual synchronous errors. Masked errors
do not start an error OB and do not trigger
programmed reactions

SFC37 DMSK_FLT Unmasks synchronous errors

Asynchronous error OBs SFC39 DIS_IRT Disables all interrupts and asynchronous errors.
Disabled errors do not start an error OB in any of the
subsequent CPU cycles and do not trigger
programmed reactions

SFC40 EN_IRT Enables interrupts and asynchronous errors

SFC41 DIS_AIRT Delays higher priority interrupts and asynchronous
errors until the end of the OB

SFC42 EN_AIRT Enables higher priority interrupts and asynchronous
errors

Note

If you want interrupts to be ignored, it is more effective to disable them using an SFC, rather than
to download an empty OB (with the contents BE).

Programming with STEP 7
100 Manual, 04/2017, ASE41552389-AA

5 Startup and Operation

5.1 Starting STEP 7

@ When you start Windows, you will find an icon for the SIMATIC Manager, the starting point for
the STEP 7 software on the Windows interface.

The quickest method to start STEP 7 is to position the cursor on the icon and double-click. The
window containing the SIMATIC Manager is then opened. From here you can access all the
functions you have installed for the standard package and any optional packages.

Alternatively you can also start the SIMATIC Manager via the "Start" button in the taskbar of the
operating system. You will find the entry under "Simatic".

Note

You will find more information about standard Windows operation and options in your Windows
user's guide or in the online help of your Windows operating system.

SIMATIC Manager

The SIMATIC Manager is the basic application for configuring and programming. You can perform
the following functions in the SIMATIC Manager:

e Set up projects

e Configure and assign parameters to hardware

e Configure hardware networks

e Program blocks

e Debug and commission your programs

Access to the various functions is designed to be object oriented, and intuitive and easy to learn.
You can work with the SIMATIC Manager in one of two ways:

o Offline, without a programmable controller connected

e Online, with a programmable controller connected

Note the relevant safety notices in each case.

How to Proceed from Here

You create automation tasks in the form of "Projects." You will make it easier for yourself if you
read up on the following basic topics before you start work:

e Userinterface
e Some basic operating steps

e Online help

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 101

Startup and Operation

5.2 Starting STEP 7 with Default Start Parameters

5.2

102

Starting STEP 7 with Default Start Parameters

From STEP 7 V5.0 onwards, you can create several symbols in the SIMATIC Manager and specify
start parameters in the call line. By doing this, you can cause the SIMATIC Manager to position on
the object described by these parameters. This allows you to jump to the corresponding locations
in a project immediately just by double-clicking.

On calling s7tgtopx.exe, you can specify the following start parameters:
le <complete physical project path>

lo <logical path of the object on which you want to position>

/h <ObjectID>

/onl

The start parameter /onl causes the project to be opened online and the specified path to be
called.

|off

The start parameter /off causes the project to be opened offline and the specified path to be called.
/keep

The start parameter /keep causes the following to occur:

If the SIMATIC Manager is open, the already displayed projects are opened in addition to the new
project to be explicitly opened by means of the command line. If the SIMATIC Manager is not yet
open, then the new project is opened along with the projects stored in the session memory of the
SIMATIC Manager. If this start parameter is not specified, the opened projects are closed first, the
session memory is ignored and only the one specified project is opened.

/Inoopen
The start parameter /noopen causes no project to be opened when SIMATIC Manager is started.

The easiest way to establish suitable parameters is described below.

Establishing Parameters by Copying and Pasting
Proceed as follows:

1. On your desktop, create a new link to the file s7tgtopx.exe. This file is located in the installation
directory under S7bin.

Display the properties dialog box.

Select the "Link" tab. The entry under "Target" should now be expanded as follows.
Select the required object in the SIMATIC Manager.

Copy the object to the clipboard using the key combination CTRL+ALT+C.

Position the cursor at the end of the "Target" entry in the "Link" tab.

Paste the contents of the clipboard using the key combination CTRL+V.

©® N o o s w N

Close the dialog box by confirming with "OK."

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Startup and Operation
5.2 Starting STEP 7 with Default Start Parameters

Example of Parameters:

/e FASIEMENS\STEP7\S7proj\MyConfig\MyConfig.s7p /keep

/0 "1,8:MyConfig\SIMATIC 400(1)\CPU416-1\S7-Program(1)\Blocks\FB1"
/h T00112001;129;T00116001;1;T00116101;16e /keep

Note on the Structure of the Project Path

The project path is the physical path in the file system.

The complete logical path has the following structure:

[View ID,online ID]:project name\{object name\}*\ object name

Example: /o 1.8:MyConfig\SIMATIC 400(1)\CPU416-1\S7-Program(1)\Blocks\FB1

The path of network drives must be specified in UNC notation (= Universal Naming Convention, in
other words \\<servername>\<share>\...).

Example: \\<servername>\<share>\SIEMENS\STEP7\S7proj\MyConfig\MyConfig.s7p /keep

Note on the Structure of the Logical Path

The complete logical path and the Object ID can only be created using the copy and paste
functions.

However, it is also possible to specify the path which can be read by the user. In the example
above, that would be:

/o "MyConfig\SIMATIC 400(1)\CPU416-1\S7-Program(1)\Blocks\FB1". By adding /onl or /off the
user can specify whether the path is valid in the online or offline window. You do not need to
specify this if you use the copy and paste functions.

Important: If the path contains blanks, it must be placed within quotation marks.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 103

Startup and Operation

5.3 Calling the Help Functions

5.3 Calling the Help Functions

Online Help

The online help system provides you with information at the point where you can use it most
efficiently. You can use the online help to access information quickly and directly without having to
search through manuals. You will find the following types of information in the online help:

Contents: offers a number of different ways of displaying help information

Context-sensitive Help (F1 key): with the F1 key you access information on the object you
just selected with the mouse or on the active dialog box or window

Introduction: gives a brief introduction to the use, the main features, and the functional scope
of an application

Getting Started: summarizes the basic steps you need to execute to get started with the
application

Using Help: provides a description of ways of finding specific information in the online help

About: provides information on the current version of the application

Via the Help menu you can also access topics which relate to the current dialog situation from
every window.

Calling the Online Help

You can call the online help in one of the following ways:

Select a menu command in the Help menu in the menu bar.
Click the "Help" button in a dialog box. You are then shown help on this dialog box.

Position the cursor in a window or dialog box on the topic you need help with and press the F1
key or select the menu command Help > Context-sensitive Help.

Use the question mark cursor in Windows.

The last three of these ways of accessing the online help are known as context-sensitive help.

Calling the Quick Help

A quick help on buttons in the toolbar is displayed when you position the cursor on a button and
leave it there for a moment.

104

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.4

5.4 Objects and Object Hierarchy

Objects and Object Hierarchy

In the same way that the Windows Explorer shows the directory structure of folders and files, the
object hierarchy for projects and libraries in STEP 7 is shown in the SIMATIC Manager.

The following figure shows an example of an object hierarchy.

% Proiedt e Project Object
oI e Station Object
Bl Station

e Programmable Module Object
=18 Progr. Module

E+ER 57 Program e S7 Program Object
~{B] SourceFiles e Source File Folder Object
{0 Blocks e Block Folder Object

Objects have the following functions:
e Carriers of object properties,
e Folders,

e Carriers of functions (for example, to start a particular application).

Objects as Carriers of Properties

Objects can carry both functions and properties (such as settings). When you select an object, you
can perform one of the following functions with it:

e Edit the object using the menu command Edit > Open Object.

e Open a dialog box using the menu command Edit > Object Properties and set object-specific
options.

A folder can also be a carrier of properties.

Objects as Folders

A folder (directory) can contain other folders or objects. These are displayed when you open the
folder.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 105

Startup and Operation
5.4 Objects and Object Hierarchy

Objects as Carriers of Functions
When you open an object, a window is displayed in which you can edit the object.

An object is either a folder or a carrier of functions. An exception to this is stations: they are both
folders (for programmable modules) and carriers of functions (used to configure the hardware).

e If you double-click a station, the objects contained in it are displayed: the programmable
modules and the station configuration (station as a folder).

e If you open a station with the menu command Edit > Open Object, you can configure this
station and assign parameters to it (station as the carrier of a function). The menu command
has the same effect as a double-click on the "Hardware" object.

Programming with STEP 7
106 Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.4.1

Project Object

The project represents the entirety of all the data and programs in an automation solution, and is

located at the top of an object hierarchy.

Position in the Project View

5.4 Objects and Object Hierarchy

B Projed

=-El Station
E| Progr. Module

E| =7 Program

EI SourceFiles

Project Object

Station Object

Programmable Module Object
S7 Program Object

Source File Folder Object
Block Folder Object

Symbol Object Folder

Selection of Important Functions

% Project

Creating a Project

Archiving Projects and Libraries

Printing Project Documentation

Managing Multilingual Texts

Checking Projects for Optional Packages Used
Rearranging

Translating and Editing Operator Related Texts
Inserting Operator Station Objects

More than One User Editing Projects
Converting Version 2 Projects

Setting the PG/PC Interface

” Station:

SIMATIC 300 station
SIMATIC 400 station

Symbol Objects in the Project Selection of Important Objects
Level
\ e Inserting Stations

Stations are both objects (project level) and object folder
(station level). Other functions can be found under Station

Object

S7 program
Fros

S7 Program without a Station or CPU

S7 programs are both objects (project level) and object
folders (program level). Other functions can be found under

S7 Program Object

Network for starting the
tool for network
configuration and setting
the network properties.

Properties of Subnets and Communication Nodes

Overview: Global Data Communication

Procedure for Configuring Global Data Communication

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

107

Startup and Operation

5.4 Objects and Object Hierarchy

5.4.2

108

Library Object

A library can contain S7 programs and is used to store blocks. A library is located at the top of an
object hierarchy.

e Library Object

e S7 Program Object

e Source File Folder Object
e Block Folder Object

Symbol

Object Folder

Selection of Important Functions

o

Library

e Overview of the Standard Libraries

o Working with Libraries

e Archiving Projects and Libraries

Symbol

Objects in the Library
Level

Selection of Important Functions

S7 program

e Inserting an S7 Program

e S7 programs are both objects (project level) and object
folders (program level). Other functions can be found under

S7 Program Object

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.4.3

Station Object

5.4 Objects and Object Hierarchy

A SIMATIC 300/400 station represents a S7 hardware configuration with one or more
programmable modules.

Position in the Project View

&

= 6

Project

Station

E| Progr. Module

E| =7 Program

EI Source Files

e Project Object
e Station Object
e Programmable Module Object

e S7 Program Object

e Source File Folder Object
e Block Folder Object

Symbol

Object Folder

Selection of Important Functions

Station

e Inserting a Station

e Uploading a Station

e Downloading a Configuration to a Programmable Controller
e Uploading a Configuration from a Station

e Displaying CPU Messages and User-Defined Diagnostic
Messages

e Configuring the 'Reporting of System Errors'

e Diagnosing Hardware and Displaying Module Information
e Displaying and Changing the Operating Mode

o Displaying and Setting the Time and Date

e FErasing the Load/Work Memory and Resetting the CPU

SIMATIC PC Station
(Not assigned)

e Creating and Assigning Parameters to SIMATIC PC Stations
e Configuring Connections for a SIMATIC PC Station
e Uploading a SIMATIC PC Station

SIMATIC PC Station
(Assigned)

e Highlighting the SIMATIC PC Station to be Configured in the
Network View

Symbol

Objects in the Station
Level

Selection of Important Functions

Hardware

e Basic Procedure for Configuring Hardware
e Basic Steps for Configuring a Station

e Overview: Procedure for Configuring and Assigning
Parameters to a Local Configuration

e Basic Procedure for Configuring a DP Master System
e Configuring Multicomputing Operation

Programmable module

e Programmable modules are both objects (station level) and
object folders ("Programmable Modules" level). Other functions
can be found under Programmable Module Object

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

109

Startup and Operation

5.4 Objects and Object Hierarchy

544 Programmable Module Object

A programmable module represents the parameter assignment data of a programmable module
(CPUxxx, FMxxx, CPxxx). The system data of modules with no retentive memory (for example,
CP441) are loaded via the CPU of the station. For this reason, no "system data" object is assigned
to such modules and they are not displayed in the project hierarchy.

Position in the Project View

: e Project Object
'% Projed e Station Object
E‘" SiEEn e Programmable Module Object
E e S7 Program Object
e Source File Folder Object
e Block Folder Object

E| Progr. Module

E| =7 Program

EI Source Files

“ITH Blocks
Symbol Object Folder Selection of Important Functions
Programmable module e Overview: Procedure for Configuring and Assigning

’TI Parameters to a Local Configuration

e Displaying CPU Messages and User-Defined Diagnostic
Messages
e Configuring 'Reporting of System Errors'
e Diagnosing Hardware and Displaying Module Information
e Downloading via EPROM Memory Cards
e Password Protection for Access to Programmable Controllers
e Displaying the Force Values Window
e Displaying and Changing the Operating Mode
e Displaying and Setting the Time and Date
e Setting the Operating Behavior
e Erasing the Load/Work Memory and Resetting the CPU
e Diagnostics Symbols in the Online View
e Division of the Memory Areas
e Saving Downloaded Blocks on Integrated EPROM
e Updating the Operating System on the Programmable Logic
Controller
Fl Object representing a e Displaying Modules Configured with Later STEP 7 Versions
d programmable module

Programming with STEP 7
110 Manual, 04/2017, ASE41552389-AA

Startup and Operation
5.4 Objects and Object Hierarchy

Symbol Objects in the Selection of Important Functions
"Programmable
Modules" level

Programs: e Inserting an S7 Program
e S7 programs are both objects (project level) and object folders
S7 program (program level). Other functions can be found under S7

Program Object

Program

Connections for defining |e Networking Stations within a Project
connections within the
network

= Ule

e Connection Types and Connection Partners

e What You Should Know About the Different Connection Types
e Entering a New Connection

e Configuring Connections for Modules in a SIMATIC Station

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 111

Startup and Operation

5.4 Objects and Object Hierarchy

5.4.5 S7 Pro

gram Object

A S7 program folder contains software for S7 CPU modules or software for non-CPU modules (for
example, programmable CP or FM modules).

Position in the Project View

= 6

Z) Projec

Station

E| Progr. Module

E| =7 Program

EI Source Files

e Project Object

e Station Object

e Programmable Module Object
e S7 Program Object

e Source File Folder Object

e Block Folder Object

“ITH Blocks
Symbol Object Folder Selection of Important Functions
. S7 Program e Inserting an S7-Program
= e Setting the Address Priority
e Basic Procedure for Creating Logic Blocks
e Assigning Message Numbers
e How to Assign and Edit User-Specific Diagnostics Messages
(Project-Oriented)
e How to Assign and Edit User-Specific Diagnostics Messages
(CPU-Criented)
e Translating and Editing Operator Related Texts
e Managing Multilingual Texts
e Displaying CPU Messages and User-Defined Diagnostic
Messages
e Program Measures for Handling Errors
E, Program e Creating the Software in the Project (General)

112

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.4 Objects and Object Hierarchy

Symbol

Objects in the Program
Level

Selection of Important Functions

Source file folder

e Other functions can be found under Source File Folder Object

=

Block folder

e Other functions can be found under Block Folder Object

Text libraries folder

e User Text Libraries

Symbol table for
assigning symbols to
signals and other
variables

e Absolute and Symbolic Addressing

e Structure and Components of the Symbol Table
e Entering Shared Symbols

e General Tips on Entering Symbols

e How to Assign and Edit Symbol-Related Messages (Project-
Oriented)

e How to Assign and Edit Symbol-Related Messages (CPU-
Oriented)

e Translating and Editing Operator Related Texts

e Configuring Operator Control and Monitoring Attributes via the
Symbol Table

e Editing the Communication Attribute

e Exporting and Importing Symbol Tables

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

113

Startup and Operation

5.4 Objects and Object Hierarchy

5.4.6 Block Folder Object

A block folder of an offline view can contain: logic blocks (OB, FB, FC, SFB, SFC), data blocks
(DB), user-defined data types (UDT) and variable tables. The system data object represents
system data blocks.

The block folder of an online view contains the executable program parts that have been
downloaded to the programmable controller.

Position in the Project View

% Projekt e Project Object
El S e Station Object
& atiar

El Programmisrb. Baugnppe e Programmable Module Object

El 57-Pragrarmm{1) _
(B Quellen e S7 Program Object

R Bausteine e Source File Folder Object
o Block Folder Object

Symbol |Object Selection of Important Functions
Folder

Blocks o Downloading with Project Management

o Downloading without Project Management

e Overview of the Available Reference Data

e Rewiring

e Comparing Blocks

e Translating and Editing Operator Related Texts

e Jumps to Language Descriptions and Help on Blocks, System Attributes

Symbol | Objects in Selection of Important Functions

the Block

Folder

Blocks in e Basic Procedure for Creating Logic Blocks
general e Creating Blocks

e Basic Information on Programming in STL Source Files
e Comparing Blocks

D Organization | Additional Functions:

Block (OB) e Introduction to Data Types and Parameter Types

e Requirements for Downloading

e Testing using Program Status

e What You Should Know About Testing in Single-Step Mode/Breakpoints
e Rewiring

e Help on Blocks

Programming with STEP 7
114 Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.4 Objects and Object Hierarchy

Symbol

Objects in
the Block
Folder

Selection of Important Functions

Function (FC)

Additional Functions:

Introduction to Data Types and Parameter Types

Requirements for Downloading

Testing using Program Status

What You Should Know About Testing in Single-Step Mode/Breakpoints
Rewiring

Attributes for Blocks and Parameters

Function
Block (FB)

Additional Functions:

Introduction to Data Types and Parameter Types

Using Multiple Instances

Requirements for Downloading

Testing Using Program Status

What You Should Know about Testing in Single-Step Mode/Breakpoints
Rewiring

Attributes for Blocks and Parameters

How to Assign and Edit Block-Related Messages (Project-Oriented)
How to Create Block-Related Messages (CPU-Oriented)

How to Configure PCS 7 Messages (Project-Oriented)

How to Configure PCS 7 Messages (CPU-Oriented)

Translating and Editing Operator Related Texts

Assigning Monitor/Control Attributes to Function Block Parameters

User-Defined

Creating Blocks

Data Blocks)

Data Type e Basic Information on Programming in STL Source Files
(UbT) e Introduction to Data Types and Parameter Types
e Using User-Defined Data Types to Access Data
e Attributes for Blocks and Parameters
D DB (Global e Data View of Data Blocks

Declaration View of Data Blocks

Requirements for Downloading

Program Status of Data Blocks

Introduction to Data Types and Parameter Types
Using Multiple Instances

Attributes for Blocks and Parameters

How to Assign and Edit Block-Related Messages (Project-Oriented)
(Instance DBs Only)

How to Assign and Edit Block-Related Messages (CPU-Oriented) (Instance
DBs Only)

How to Configure PCS7 Messages (Project-Oriented) (Instance DBs Only)
How to Configure PCS7 Messages (CPU-Oriented) (Instance DBs Only)
Translating and Editing Operator Related Texts (Instance Data Blocks Only)

System
Function
(SFC)

Requirements for Downloading
Attributes for Blocks and Parameters
Help on Blocks

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

115

Startup and Operation

5.4 Objects and Object Hierarchy

116

Symbol |Objects in Selection of Important Functions
the Block
Folder
D SFB (System |e Requirements for Downloading
Function e Attributes for Blocks and Parameters
Blocks) e How to Assign and Edit Block-Related Messages (Project-Oriented)
e How to Create Block-Related Messages (CPU-Oriented)
e How to Configure PCS7 Messages (Project-Oriented)
e How to Configure PCS7 Messages (CPU-Oriented)
e Translating and Editing Operator Related Texts
e Help on Blocks
E’ Block with e Rules for Defining Block Properties in STL Sources
KNOW_ HOW |4 Block Properties
protection
Diagnostic- | Additional information is available in the documentation for the S7-PDIAG

capable block

optional package.

Block was
created with
the F-FBD/-
LAD/-STL/-
DB
programming
language

Additional information is available in the documentation for the S7 Distributed
Safety optional package.

Variable
Table (VAT)

Basic Procedure when Monitoring and Modifying with the Variable Table
Introduction to Testing with the Variable Table

Introduction to Monitoring Variables

Introduction to Modifying Variables

Introduction to Forcing Variables

System Data
Block

(SDB)

System data blocks (SDBs) are only edited indirectly via functions:

Introduction to Configuring Hardware

Properties of Subnets and Communication Nodes
Overview: Global Data Communication

Assigning and Editing Symbol-Related Messages
Requirements for Downloading

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.4 Objects and Object Hierarchy

5.4.7 Source File Folder Object

A source file folder contains source programs in text format.

Position in the Project View

) e Project Object
'% Projed e Station Object
B Station
e Programmable Module Object
E|--- Progr. Module
E‘" =7 Program e S7 Program Object
*E' SEMIEE LSS « Source File Folder Object
""" o Boks « Block Folder Object
Symbol Object Folder Selection of Important Functions
Source File Folder e Basic Information on Programming in STL Source Files
e Exporting Source Files
e Importing Source Files
Symbol Objects in Source File | Selection of Important Functions
Folder
i Source file e Basic Information on Programming in STL Source Files
(for example, STL source |, Creating STL Source Files
file) e Inserting Block Templates in STL Source Files
e Inserting Source Code from Existing Blocks in STL Source
Files
e Checking Consistency in STL Source Files
e Compiling STL Source Files
e Generating STL Source Files from Blocks
e Exporting Source Files
e Importing Source Files
Network template o Working with Network Templates

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 117

Startup and Operation
5.5 User Interface and Operation

5438 S7 Program without a Station or CPU

You can create programs without having configured a SIMATIC station beforehand. This means
that you can initially work independently of the module and module settings you intend to program.

Creating an S7 Program
1. Open the relevant project using the menu command File > Open or activate the project
window.
2. Select the project in the project window of the offline view.

Select the menu commands Insert > Program > S7 Program.

The S7 program is added and arranged directly below the project in the project window. It
contains a folder for the blocks and an empty symbol table. You can now create and program
blocks.

Assigning a Program to a Programmable Module

When you insert programs that are not dependent on a particular module, you can easily assign
them to a module later on by copying or moving these programs to the module symbol using the
drag and drop function.

Adding a Program to a Library

If the program is to be used for a SIMATIC S7 programmable controller and you want to use it
many times as a "software pool," you can also insert it in a library. However, when testing, the
programs must lie directly under a project, because this is the only way in which to establish a
connection to the programmable controller.

Accessing a Programmable Controller

Select the online view of the project. You can make the address settings in the dialog box
containing the program properties.

Note

When deleting stations or programmable modules, you will be asked if you also want to delete the
program contained within. If you choose not to delete the program, it will be attached directly below

the project as a program without a station.

Programming with STEP 7
118 Manual, 04/2017, ASE41552389-AA

Startup and Operation
5.5 User Interface and Operation

5.5 User Interface and Operation

5.5.1 Operating Philosophy

The aim: Easy Operation

It is the aim of the graphic user interface to provide maximum and intuitive operating comfort. You
will therefore find objects you already know from your daily work, e.g. stations, modules, programs,
blocks.

Actions you perform under STEP 7 include the creation, selection and manipulation of such
objects.

Differences to Tool-Based Operation

When starting work with conventional tools, the first thing you have to do is to choose the
appropriate tool for a specific solution and then call this tool.

The basic procedure of object-oriented operation is to select an object and then open it for editing.

Object oriented operation does not require knowledge of special instruction syntax. On the GUI,
icons you can open via menu command or mouse click represent objects.

When you open an object, the application automatically calls the appropriate software component
for displaying or editing the content of the object.

Continue ...

Below we describe the basic actions for editing objects. Please pay proper attention to this topic, as
all subsequent topics will be based on these basic operations.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 119

Startup and Operation

5.5 User Interface and Operation

5.5.2 Window Arrangement

The standard components of a window are shown in the following figure:

Sy sterm menu Title of active Buttans for
(Wl aximizel Close etc.}/W'ndn:w Minimize Maximize Close
| — 1 1|
AN Al 7 S IMATIC M anager M= E3

Menu haqt —= File PLC Wiew 0Options Window Help

Toolhar - Dllﬂ'lg?lﬁl El @l El

Status har — = Press F1 to get Help. [z

Title Bar and Menu Bar

The title bar and menu bar are always found at the top of a window. The title bar contains the title
of the window and icons for controlling the window. The menu bar contains all menus available in
the window.

Toolbar
The toolbar contains icons (or tool buttons) which provide shortcuts to frequently used and
currently available menu bar commands available with a single mouse click. A brief description of
the function of the respective button is displayed together with additional information in the status
bar when you position the cursor briefly on the button.
If access to a button is not possible in the current configuration, the button is grayed out.

Status Bar

The status bar displays context-specific information.

Programming with STEP 7
120 Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.5 User Interface and Operation

5.5.3 Elements in Dialog Boxes

Making Entries in Dialog Boxes

In dialog boxes you can enter information which is required for executing a particular task. The
components which appear most frequently in dialog boxes are explained using the example in the
following figure.

ot boctn erchmepioce M|
enter text uzing the Search For: Replace With:
keyboand = [0 [ozo

™ Wb ole WiardACall anly

Ix hilatchcasze
Option hoxesto seled r Search — Only Search I
one of & numberof — e | g From Cursor Dovn s [A
choices O Fram Cursor Lp I 1 Component

zr Wwhole Table ™ 2 Component
Check boxesto O s detion [T 3.Component
zeledt one or more = [4Componert
choices — Searchin Column ———— | | S.Component

leg L=
Buttars —_— | Search | | Beplace | |Replace All | Cancel Help

List Boxes and Combination Boxes

Text boxes sometimes have an arrow pointing downwards beside them. This arrow shows that
there are more options available to choose from for this box. Click on the arrow to open a list box or
combination box. If you click on an entry in the list, it is automatically displayed in the text box.

Tabs in Dialog Boxes

The content of some dialog boxes is organized using tabs to improve the clarity of the information
by dividing the dialog box into tab cards (see figure below).

hlodule Information

Path: test01'Program (online) CPU Opersting Mode: STOP
Status hadule Cperding Mode:
Tah= ——— & Gewedl bngmsﬂcﬂlfkrillemﬂn.f |l::|,i:Ie Time |TI'I'|ESI.I‘$EH’4FEI‘DI‘I‘|EID& |l:u:111mul::a11c-|| Shcks |
Bt
Mo Time | Dae | Event
1 091322842 1112935 Paower-on retertive
2 1E002237s 03129 STOP dueto powver failue

The names of the tab cards are shown on tabs along the top edge of the dialog box. To bring a
particular tab card to the foreground, you simply click on its tab.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 121

Startup and Operation

5.5 User Interface and Operation

5.54

Creating and Managing Objects

Some basic processing steps are the same for all objects and do not depend on the object type.
These standard handling sequences are summarized here. This knowledge of standard procedures
is required to move on to other sections in the manual.

The usual sequence of steps when handling objects is:
e Create an object
e Select an object

e Perform actions with the object (for example, copy, delete).

Setting the Path to Create New Projects/Libraries

New user projects, libraries and multiprojects are stored in the default folder
"\Siemens\Step7\S7proj". If you want to store them in another folder, you should set your custom
path for these objects before you save projects, libraries and multiprojects for the first time. To do
this, select the menu command Options > Customize. In the "General" tab of the dialog box
displayed you can specify the path name under which you want to store new projects or libraries.

Creating Objects

122

The STEP 7 wizard "New Project" offers support with creating a new project and inserting objects.
Use the menu command File > "New Project" Wizard to open the wizard. In the dialog boxes
displayed you can set the structure of your project and then have the wizard create the project for
you.

If you do not wish to use the wizard, you can create projects and libraries using the menu
command File > New. These objects form the starting point of an object hierarchy. You can create
all other objects in the hierarchy using the commands in the Insert menu, provided they are not
created automatically. The exception to this are the modules in a SIMATIC station which are
created when you configure the hardware or by using the "New Project" wizard.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Startup and Operation
5.5 User Interface and Operation

Opening Objects
There are a number of ways to open an object in the detailed view:
¢ Double-click on the object icon

e Select the object and then the menu command Edit > Open Object. This only works for
objects that are not folders.

Once you have opened an object, you can create or change its contents.

When you open an object that does not contain other objects, its contents are represented by a
suitable software component in a new window for editing purposes. You cannot change objects
whose contents are already being used elsewhere.

Note

Exception: Stations appear as folders for programmable modules (when you double-click them)
and for the station configuration. If you double-click the "Hardware" object, the application for
configuring hardware is started. Selecting the station and selecting the menu command Edit >
Open Object has the same effect.

Building an Object Hierarchy

Use the "New Project" wizard to create the object hierarchy. When you open a folder, the objects it
contains are displayed on the screen. You can now create more objects in the folder using the
Insert menu, for example, additional stations in a project. Only the commands for those objects
which can be inserted in the current folder are active in the Insert menu.

Setting Object Properties

Object properties are data belonging to the object which determine its behavior. The dialog box for
setting object properties appears automatically when you create a new object and properties have
to be set. The properties can also be changed at a later date.

Using the menu command Edit > Object Properties, a dialog box is opened in which you can
display or set the properties for the selected object.

Using the menu command Edit > Special Object Properties, you can open dialog boxes and
enter data required for operator control and monitoring functions and for configuring messages.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 123

Startup and Operation

5.5 User Interface and Operation

For example, in order to display the special object properties of a block for operator control and
monitoring, the block must be marked as being relevant for operator control and monitoring,
meaning that the system attribute "s7_m_c" must be set to the value "true" in the "Attributes" tab of
the block properties.

Note

Properties of the "System Data" folder and the "Hardware" object cannot be displayed or changed.

You cannot write in the dialog boxes for object properties of a read-only project. In this case, the input boxes
are grayed out.

If you display the properties of programmable modules, you cannot edit the displayed parameters for reasons
of consistency. To edit the parameters you must open the "Configuring Hardware" application.

If you change the settings for objects on the programming device (for example, the configuration data of a
module), they are not yet effective in the target system, because the system data blocks in which the settings
are saved have to be in the target system.

If you load an entire user program, the system data blocks are also automatically transferred. If you change
the settings after having loaded the program, you can reload the "System data" object in order to transfer the
settings to the target system.

It is strongly recommended to edit the folders exclusively with STEP 7, since they can be physically structured
in a different way than you see in the SIMATIC Manager.

Cutting, Pasting, Copying

124

Most objects can be cut, pasted, or copied as usual under Windows. The menu commands for
these functions are found in the Edit menu.

You can also copy objects by dragging and dropping. If you attempt to move or copy to an illegal
destination, the cursor displays a prohibited sign as a warning.

When you copy an object, the whole hierarchy beneath it is also copied. This enables components
you create in an automation task to be used again and again.

Note

The connection table in the "Connections" folder cannot be copied. Note that when you copy lists of
operator-relevant texts, only those languages installed in the destination object are accepted.

You will find a step-by-step guide to copying under Copying Objects.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Startup and Operation
5.5 User Interface and Operation

Renaming Objects

The SIMATIC Manager assigns standard names to some new objects. These names are generally
formed from the type of object (if a number of objects of this type can be created in the same
folder) and a number.

For example, the first S7 program will be named "S7 Program(1)", the second "S7 Program(2)" etc.
The symbol table is simply called "Symbols" as it can only exist once in each folder.

You can change the names of most objects and assign them names which are more relevant to
their content.

With projects, the directory names in the path must not have more than 8 characters. Otherwise,
there may be problems when archiving.

You can change the name of an object directly or using the object properties.
Directly:

When you slowly click twice on the name of a selected object, a frame appears around the text.
You can then edit the name using the keyboard.

Using the menu:

Select the required object in the project window and select the menu command Edit > Rename. A
frame appears around the text. You can then edit the name using the keyboard.

If you are not allowed to change the name:

If you are not allowed to change the name of an object, the input field is shown in gray in the dialog
box, the current name is displayed, and text entries are not possible.

Note

If you move the mouse pointer out of the name box while editing the name and execute another
action (for example, select a menu command), the edit procedure is terminated. The changed
name is accepted and entered if it is allowed.

You will find a step-by-step guide to renaming under Renaming Objects.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 125

Startup and Operation

5.5 User Interface and Operation

Moving Objects

With the SIMATIC Manager you can move objects from one folder to another even if the
destination is in another project. When you move a folder its contents are all moved as well.

Note
You cannot move the following objects:

« Connections
« System data blocks (SIB) in the online view

« System functions (SFC) and system function blocks (SFB) in the online view

You will find a step-by-step guide to moving under Moving Objects.

Sorting Objects

You can sort objects in the detailed view (menu command View > Details) according to their
attributes. To do this, click on the corresponding header of the required attribute. When you click
again, the sort order is reversed. Blocks of one type are sorted according to their numerical order,
for example, FB1, FB2, FB11, FB12, FB21, FC1.

Default Sort Order

When you re-open a project, the objects in the detailed view are displayed according to a default
sort order. Examples:

e Blocks are shown in the order "System data, OB, FB, FC, DB, DUTY, VAT, SFB, SFC."
e In a project, all stations are shown first and then the S7 programs.

The default is not therefore an alphanumeric ascending or descending sort order in the detailed
view.

Restoring the Default Sort Order

After resorting, for example, by clicking on the column header "Object Name," you can restore the
default order if you proceed as follows:

e Click the column header "Type" in the detailed view.

e Close the project and open it again.

Programming with STEP 7
126 Manual, 04/2017, ASE41552389-AA

Startup and Operation
5.5 User Interface and Operation

Deleting Objects

You can delete folders and objects. If you delete a folder, all the objects contained in it are also
deleted.

You cannot undo the delete procedure. If you are not sure whether you really no longer need an
object, it is better to archive the whole project first.

Note
You cannot delete the following objects:

e Connections
e System data blocks (SIB) in the online view

e System functions (SFC) and system function blocks (SFB) in the online view

You will find a step-by-step guide to deleting under Deleting Objects.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 127

Startup and Operation

5.5 User Interface and Operation

5.5.5 Selecting Objects in a Dialog Box

Selecting objects in a dialog box (browser) is an action which you will need regularly for a large
number of different edit steps.

Calling the Browser

You call the browser dialog in the hardware configuration application, for example, using menu
commands such as Station > New/Open (one exception is the basic application window "SIMATIC
Manager").

Structure of a Browser Dialog

In the browser you have the following selection options as shown in the following figure.

Entry point: Here yvou select the Wiewne You can switch Cnlineffline: Here you can switch between
tvpe of objed in swhich you weant to hetween the gandard the offline ey [zelection of project daaon
gartthe search (such as "Projed", vignwand the plant vigv. the PGPC) and the online view(zeection of
‘Library", or entries which permnit project data on the conneded

aocessto dives or conneded En:ngram makle cantroller) — but only for the
programmable controllers)), ntry P oint "Project".

Browess: Click thiz button to
zearch for ohjeds not
induded inthizlis.

Eritry Poirt: e

e Froject Stancard Hiermrchy X Orline = Offlire
Marne: Frojpct Storage Path:

—= |example b CASIEMENSSTEFTE 2) Browse. | &| fif 2]
5 cxamnple LT MPI Metwork 4 (T smatic 200 stetion

LT SIMECLZ Subnet! [57 Frogram

LT SIMEC H1 Subrett
Projec viewe The hierarchical

ree strudture of the chjeds Plant wiew the content of the
kdiich cancontan other cbject selected inthe left half of
Dhiects i= dsplayed here. the windowy iz displayed here.
Obiject Mame: |
]
Object Tuhe: |41l editable =]
coresl | Hep |
Mame: The reconized obiects Chjedt Type: You can enter & filter oriterion
ot s spcided under E riry here to fitter the list, restricting the number
Point ste displayed here in alid of ohjects displayed to give you & clearer
bos. You can seledt & name CrEMIE.
fom the ligt or enter & name) .
using the keyboard. Ohject Mame: If you seled an objed,

the chied name iz entered bere. You

can alzo enter the required name
directly.

Programming with STEP 7
128 Manual, 04/2017, ASE41552389-AA

Startup and Operation
5.5 User Interface and Operation

5.5.6 Session Memory

The SIMATIC Manager can save the contents of windows (that is, the projects and libraries open),
and the layout of the windows.

e Using the menu command Options > Customize, you define whether the window contents
and layout are to be saved at the end of a session. At the start of the next session, these
window contents and layout are restored. In the open projects, the cursor is positioned on the
last folder selected.

e Using the menu command Window > Save Settings you save the current window contents
and the window arrangement.

e Using the menu command Window > Restore Settings you restore the window contents and
layout that you saved with the menu command Window > Save Settings. In the open projects,
the cursor is positioned on the last folder selected.

Note
The window contents of online projects, the contents of the "Accessible Nodes" window, and the
contents of the "S7 Memory Card" window are not saved.

Any passwords you may have entered for access to programmable controllers (S7-300/S7-400) are
not saved at the end of a session.

5.5.7 Changing the Window Arrangement

To cascade all the displayed windows one behind the other, select one of the following options:
e Select the menu command Window > Arrange > Cascade.
e Press the key combination SHIFT + F5.

To arrange all the displayed windows from top to bottom on the screen, select the menu command
Window > Arrange > Horizontally.

To arrange all the displayed windows from left to right on the screen, select the menu command
Window > Arrange > Vertically.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 129

Startup and Operation
5.5 User Interface and Operation

5.5.8 Saving and Restoring the Window Arrangement

The STEP 7 applications have a feature which enables you to save the current window
arrangement and restore it at a later stage. You can make the setting using the menu command
Options > Customize in the "General" tab.

What Is Saved?
When you save the window layout the following information is recorded:
e Position of the main window
e Opened projects and libraries and their respective window positions

e Order of any cascaded windows

Note

The window content of online projects, the content of the "Accessible Nodes" window, and the
content of the "S7 Memory Card" window are not saved.

Saving the Window Layout

To save the current window arrangement, select the menu command Window > Save Settings.

Restoring the Window Layout

To restore the saved window arrangement, select the menu command Window > Restore
Settings.

Note

When you restore a window, only the part of the hierarchy containing the object that was selected when the
window arrangement was saved is displayed in detail.

Programming with STEP 7
130 Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.6 Keyboard Operation

5.6.1 Keyboard Control

5.6 Keyboard Operation

International Key Names German Key Names

HOME POS1
END ENDE
PAGE UP BILD AUF
PAGE DOWN BILD AB
CTRL STRG
ENTER Eingabetaste
DEL ENTF
INSERT EINFG

5.6.2 Key Combinations for Menu Commands

Every menu command can be selected by typing a key combination with the ALT key.

Press the following keys in the order shown:

o ALT key

e The letter underlined in the menu name you require (for example, ALT, F for the menu "File" - if

the menu "File" is included in the menu bar). The menu is opened.

e The letter underlined in the menu command you require (for example, N for the menu
command "New"). If the menu command has a submenu, the submenu is also opened.
Proceed as above until you have selected the whole menu command by typing the relevant

letters.

Once you have entered the last letter in the key combination, the menu command is executed.

Examples:
Menu Command
File > Archive

Window > Arrange > Cascade

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Key Combination
ALT,F, A
ALT,W, A C

131

Startup and Operation

5.6 Keyboard Operation

Shortcuts for Menu Commands

Command Shortcut

New (File Menu) CTRL+N

Open (File Menu) CTRL+O

Save as ("File" Menu) CTRL+S

Print > Object Table ("File" Menu) CTRL+P

Print > Object Content ("File" Menu) CTRL+ALT+P

Exit ("File" Menu) ALT+F4

Cut ("Edit" Menu) CTRL+X

Copy ("Edit" Menu) CTRL+C

Paste ("Edit" Menu) CTRL+V

Delete ("Edit" Menu) DEL

Select All ("Edit" Menu) CTRL+A

Rename ("Edit" Menu) F2

Object Properties ("Edit" Menu) ALT+RETURN

Open Object ("Edit" Menu) CTRL+ALT+O

Compile ("Edit" Menu) CTRL+B

Download (PLC Menu) CTRL+L

Diagnostics/Setting CTRL+D

> Module Status ("PLC" Menu)

Diagnostics/Setting CTRL+I

> Operating Mode ("PLC" Menu)

Update ("View" Menu) F5

Updates the status display of the visible CPUs in the online view | CTRL+F5

Customize ("Options" Menu) CTRL+ALT+E

Reference Data > Show ("Options" Menu) CTRL+ALT+R

Arrange > Cascade (Window Menu) SHIFT+F5

Arrange > Horizontally (Window Menu) SHIFT+F2

Arrange > Vertically (Window Menu) SHIFT+F3

Context-Sensitive Help (Help Menu) F1
(If there is a current context, for
example, a selected menu command,
the relevant help topic is opened.
Otherwise the help contents page is
displayed.)

132

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.6.3

5.6 Keyboard Operation

Key Combinations for Moving the Cursor

Moving the Cursor in the Menu Bar/Pop-Up Menus

To Press
move to the menu bar F10
move to the pop-up menu SHIFT+F10

move to the menu that contains the letter or number
underlined which you typed in

ALT+underlined character in a menu title

select the menu command whose underlined letter
or number corresponds to the letter you have typed

Underlined character in the menu command

move one menu command to the left LEFT ARROW
move one menu command to the right RIGHT ARROW
move one menu command up UP ARROW
move one menu command down DOWN ARROW
activate the selected menu command ENTER
deselect the menu name or close the open menu ESC
and return to the text

Moving the Cursor When Editing Text
To move Press
one line up or one character to the left in a text UP ARROW
consisting of only one line
one line down or one character to the right in a text | DOWN ARROW
consisting of only one line
one character to the right RIGHT ARROW
one character to the left LEFT ARROW
one word to the right CTRL+RIGHT ARROW
one word to the left CTRL+LEFT ARROW
to the beginning of the line HOME
to the end of the line END
to the previous screen PAGE UP
to the next screen PAGE DOWN
to the beginning of the text CTRL+HOME
to the end of the text CTRL+END

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

133

Startup and Operation

5.6 Keyboard Operation

Moving the Cursor When Editing Tables

To move Press

One row up UP ARROW

One row down DOWN ARROW

One character or cell to the left RIGHT ARROW

One character or cell to the right LEFT ARROW

To the beginning of the row CTRL+RIGHT ARROW

To the end of the row CTRL+LEFT ARROW

To the beginning of the cell HOME

To the end of the cell END

To the previous screen PAGE-UP

To the next screen PAGE-DOWN

To the beginning of the table CTRL+HOME

To the end of the table CTRL+END

In the symbol table only: to the "Symbol" column SHIFT+HOME

In the symbol table only: to the "Comment" column SHIFT+END
Moving the Cursor in Dialog Boxes

To Press

move from one input box to the next (from left to TAB

right and from top to bottom)

move one input box in the reverse direction SHIFT+TAB

134

move to the input box or option that contains the
letter or number underlined which you typed in

ALT+underlined character in a menu title

select in a list of options

an arrow key

open a list of options ALT+DOWN ARROW
select or deselect an item in a list SPACEBAR

confirm the entries and close the dialog box ("OK" ENTER

button)

close the dialog box without saving the changes ESC

("Cancel" button)

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Startup and Operation

5.6.4 Key Combinations for Selecting Text

5.6 Keyboard Operation

To select or deselect text

Press

one character at a time to the right

SHIFT+RIGHT ARROW

one character to the left

SHIFT+LEFT ARROW

to the beginning of a comment line

SHIFT+HOME

to the end of a comment line

SHIFT+END

one row in a table

SHIFT+SPACE

one line of text up

SHIFT+UP ARROW

one line of text down

SHIFT+DOWN ARROW

to the previous screen

SHIFT+PAGE UP

to the next screen

SHIFT+PAGE DOWN

the text to the beginning of the file

CTRL+SHIFT+HOME

the text to the end of the file

CTRL+SHIFT+END

5.6.5 Key Combinations for Access to Online Help

To

Press

open the Help

F1

(If there is a current context, for example, a
selected menu command, the relevant help topic
is opened. Otherwise the help contents page is
displayed.)

activate the question mark symbol for context-sensitive SHIFT+F1
help
close the Help window and return to the application ALT+F4

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

135

Startup and Operation

5.6 Keyboard Operation

5.6.6

136

Key Combinations for Toggling between Windows

To Press
toggle between the panes in a window F6

return to the previous pane, if there is no dockable Shift+F6
window

toggle between the document window and a dockable Shift+F6
window in the document (for example, variable

declaration window).

If there are no dockable windows, you can use this key

combination to return to the previous pane.

toggle between document windows Ctrl+F6
return to the previous document window Shift+Ctrl+F6
toggle between non-document windows (application Alt+F6
framework and dockable windows in the application

framework;

when you return to the framework, this key combination

activates the document window that was last active)

return to the previous non-document window Shift+Alt+F6
close the active window Ctrl+F4

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

6.1

Setting Up and Editing the Project

Project Structure

Projects are used to store the data and programs which are created when you put together an
automation solution. The data collected together in a project include:

e Configuration data on the hardware structure and parameters for modules,

e Configuration data for communication in networks, and

e Programs for programmable modules.

The main task when you create a project is preparing these data for programming.

Data are stored in a project in object form. The objects in a project are arranged in a tree structure
(project hierarchy). The display of the hierarchy in the project window is similar to that of the
Windows Explorer. Only the object icons have a different appearance.

The top end of the project hierarchy is structured as follows:

1. 1stLevel: Project
2. 2nd Level: Subnets, stations, or S7 programs
3. 3rd Level: depends on the object in level 2.

Project Window

The project window is split into two halves. The left half shows the tree structure of the project. The
right half shows the objects that are contained in the object open in the left half in the selected view
(large symbols, small symbols, list, or details).

Click in the left half of the window on the box containing a plus sign to display the full tree structure
of the project. The resulting structure will look something like the following figure.

235 57 _Pro? -- C:\Siemens\Step7\S7projp57_Pro2 [Hi[m] E3

=~ 57 _Pro2 | o] Sources
=B SIMATIC 300 Station o7 Blocks
- [@ cruzig) @
B - 7 Frooamil]

Symbuals

At the top of the object hierarchy is the object "S7_Pro1" as the icon for the whole project. It can be
used to display the project properties and serves as a folder for networks (for configuring
networks), stations (for configuring the hardware), and for S7 programs (for creating software). The
objects in the project are displayed in the right half of the project window when you select the
project icon. The objects at the top of this type of object hierarchy (libraries as well as projects)
form the starting point in dialog boxes used to select objects.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 137

Setting Up and Editing the Project

6.1 Project Structure

Project View

138

127 57_Prol -- C:ASIEMENS\STEP7\S7proj\S7_Prol [MI[=] 3

-£28 57_Prol B Source Files
[l SIMATIC 300 Station h] Symbals
=- @ CcPUT4) 23 Blocks
=425 57 Program(1]
(B Source Files
g7 Blocks

You can display the project structure for the data available on the programming device in the
component view "offline" and for the data available on the programmable control system in the
component view "online" in project windows.

An additional view you can set is available if the respective optional package is installed: the plant
view.

Note
Configuring hardware and networks can only be done in the "offline" view.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project

6.2

6.2 What You Should Know About Access Protection

What You Should Know About Access Protection

As of STEP 7 V5.4, you have the option of restricting access to projects and libraries by assigning
a project password. This functionality is available only if SIMATIC Logon is installed.

You can also enable, disable and display a change log.

If SIMATIC Logon is installed on your computer, the following dynamic menu commands are
available in the SIMATIC Manager. You can use these commands to manage access protection for
a project or library:

Access Protection, Enable
Access Protection, Disable

Access Protection, Manage

Access Protection, Adjust in Multiproject

Remove Access Protection and Change Log

You activate access protection in SIMATIC Manager with the menu command Options > Access
Protection > Enable. If you enable access protection for the first time with this menu command, a
dialog opens in which you will need to log on with SIMATIC Logon. You will then be prompted to
assign a project password. The relevant project or library can then only be edited by an
authenticated user or after entering the project password.

The Remove Access Protection and Change Log menu command removes access protection
as well as the change log for a password-protected project or library. After removing the access
protection, you can once again edit projects with a STEP 7 version prior to V5.4.

Opening and Closing Access-protected Projects

The following situations can be distinguished:

PC with STEP 7 and
SIMATIC Log_;on

PC with STEP 7 and
SIMATIC Log_;on

PC with STEP 7 (no SIMATIC
Logon present)

The user logs on using
SIMATIC Logon with a user
name and password.

The project with access
protection is opened by
another user.

The user opens the access-
protected project by entering the
project password.

The project with access
protection is opened.

Editing of the project is possible,
however without the functions of
SIMATIC Logon.

The project is edited.

The project is edited.

After closing and reopening the
project, users must authenticate
themselves again with the project
password.

Closing the project does not
mean logging off in SIMATIC
Logon.

Closing the project does not
mean logging off in SIMATIC
Logon.

The user must log off with
Options > SIMATIC Logon

Services > "Log Off" button.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

139

Setting Up and Editing the Project

6.2 What You Should Know About Access Protection

140

Note
To disable access protection, you must be authorized in SIMATIC Logon as project administrator.

The first time you enable access protection, the project format is changed. You will receive a message
indicating that the modified project can no longer be edited with older STEP 7 versions.

The Options > Access Protection >Remove Access Protection and Change Log function allows the
project or the library to be used with a STEP 7 version lower than V5.4. You do, however, lose the information
on the users that are allowed access to this project or library and all change logs.

The user currently logged on is displayed in the status bar of the SIMATIC Manager.

The currently logged on Logon user who enables access protection is entered as the project administrator and
is requested to assign the project password the first time access protection is enabled.

To open an access protected project, you must be authenticated in SIMATIC Logon as project administrator or
project user or you must know the password.

Remember that a logged-on user is entered in the project as project administrator when a project is opened
with the project password.

If the project/library access protection is active, the icon has a red key. If the multiproject only contains
projects/libraries with active access protection, the icon also has a red key.

If the project/library access protection is disabled, the icon has a white key. If the multiproject contains
projects/libraries both with active and deactivated access protection or projects/libraries with deactivated
access protection, the icon is also displayed with a white key.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project
6.3 What You Should Know About The Change Log

6.3 What You Should Know About The Change Log

As of STEP 7 V5.4, after setting up access protection for projects and libraries, you have the option
of keeping a change log that records online actions.

Examples include:

o Activate / deactivate / configure the access protection and change log
e Open / close projects and libraries

e Download to PLC (system data)

e Selected operations for loading and copying blocks

o Activities for changing the operating mode

e Clear/reset

You can display the change log and enter comments such as those explaining changes that you
have made. This functionality is available only if SIMATIC Logon is installed.

To enable the change log, go to the SIMATIC Manager and select the menu command Options >
Change Log > Enable. After you have enabled the change log, your can view it with the
appropriate menu command or disable it again.

Depending on the object you have selected in the project structure (for example project folder or
lower-level station), the corresponding change log is displayed.

Note

The Options > Access Protection >Remove Access Protection and Change Log function allows the
project or the library to be used with a STEP 7 version lower than V5.4. You do, however, lose the information
on the users that are allowed access to this project or library and all change logs.

To use this function, you must be authenticated in SIMATIC Logon as project administrator and access
protection must be enabled for this project.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 141

Setting Up and Editing the Project

6.4 Using Foreign-Language Character Sets

6.4

Using Foreign-Language Character Sets

As of STEP 7 V5.3 SP2, you can enter texts in foreign languages in projects and libraries even if
these languages do not match the language that has been set for STEP 7. To do this, the
corresponding Windows language must be set in the Control Panel of the operating system. This
makes it possible, for example, to operate STEP 7 in the STEP 7 language English on a Chinese-
language version of Windows but still allows Chinese text be entered.

In this case, the following types and options for language settings must be distinguished:

Windows Language Setting

This setting is made in the Windows Control Panel. Texts pertaining to the operating system are
displayed in the language selected, and you can enter texts in foreign-language character strings.

Project Language

The project language is the language that is set in the Window Control Panel when a project is first
created. Once chosen, this project language cannot be changed. However, with the "language-
neutral" setting it is still possible to open a project on computers with other language settings in
Windows. Before changing the project language to "language-neutral", make sure that only
characters from the English-language character set (ASCII characters 0x2a - 0x7f) were previously
used in the project when entering text.

To find out the project language for a project or a library, select the Edit > Object Properties menu
command. In the dialog box that is then displayed you can also select the "Can be opened under
any Windows language setting (language-neutral)" option.

STEP 7 Language

Rules

142

The STEP 7 language is the one that you set in the SIMATIC Manager by using the Options >
Customize menu command. This language is the one use for interface elements, menu command,
dialog boxes and error messages in STEP 7.

If you are using another Windows language such as German, English, French, Italian or Spanish,
you can ensure that the STEP 7 interface is correctly displayed by selecting English as the STEP
7 language.

If you will be editing your projects or libraries on computers that have different language settings,
be sure to observe the following "rules and regulations" to prevent incompatibilities or data
corruption from occurring when using a foreign-language character set:

o Install STEP 7 only in folders with names that contain the characters of the English character
set (ASCII characters 0x2a - 0x7f).

e Only use project names and project paths with names that contain the characters of the
English character set (ASCII characters 0x2a - 0x7f). For example, if you use German umlauts,
Cyrillic or Chinese characters, then the project can only be opened on computers that have a
compatible language setting in Windows.

e In multiprojects, only use projects and libraries with the same project language or those that
are identified as being language-neutral ones. The multiproject itself is language-neutral.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project
6.4 Using Foreign-Language Character Sets

o When creating libraries, always make them language-neutral to ensure than they can be used
on computers with different Windows language settings. When assigning names to library
projects, entering comments, or creating symbol names, etc. be sure to only use ASCII
characters (0x2a - 0x7f) so that the libraries can be used without any problems.

o When importing/exporting hardware configurations or symbol tables, make sure that you only
import/export language-compatible files.

¢ In the names of user-defined attributes, use only characters from the English-language
character set (ASCII characters 0x2a - 0x7f).

e If, in an STL source, you are using characters that are not in the English character set (ASCII
characters 0x2a - 0x7f) for the TITLE, AUTHOR, FAMILY block properties, then place these
entries in single quote marks.

Notes

If you change or copy projects or libraries that were created on a computer that is identified as being
language-neutral with respect to the Windows language setting but is not compatible with the setting on the
computer currently being used, data corruption may occur if characters that are not contained in the English
character set (ASCII characters 0x2a - 0x7f) were used in the project or library.

For this reason, before editing "foreign" projects or libraries, make sure to check whether the Windows
language setting on your computer matches the project language.

If you export hardware configurations or symbol tables that are to be imported in another Windows language
setting, make sure that only characters from the English-language character set (ASCII characters 0x2a -
0x7f) were previously used and that no other language-specific characters such as German umlauts,
Japanese characters or Cyrillic characters are present.

Exported hardware configurations or symbol tables that contain language-specific characters such as German
umlauts, Japanese characters or Cyrillic characters may only be imported in the same Windows language
setting from which they were exported. This means that if you import older symbol tables that might contain
such language-specific characters, be sure to check the results carefully: the symbols must be unique, must
not contain any question marks or other incorrect characters, and must be plausible.

If symbol tables contain special characters that are not defined in ("known to") the current Windows language
setting, then the question marks or other incorrect characters now part of the symbol names may cause
problems and errors when sorting by names and comments.

Please note that with symbolic addressing the symbolic names must be written in quotation marks
("<Symbolic Name>").

Basic Procedure

To be able to enter text in foreign-language character sets in projects and libraries, proceed as
follows:

1. In the Windows Control Panel, set the language setting to the language desired.
2. Create a project.

3. Enter the text in foreign-language characters.

For project and libraries that were created before STEP 7 V5.3 SP2, the project language is "not
yet specified". In this case, you can select the Edit > Object Properties menu command to set the
project language to the language currently set in Windows. Before doing so, make sure that the
project does not contain any characters that are not defined in ("known to") the current Windows
language setting.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 143

Setting Up and Editing the Project

6.5 Setting the MS Windows Language

6.5

Setting the MS Windows Language

To set the Windows language, proceed as follows:

Setting the Language in Windows XP and Windows Server 2003:

1.

To set the desired display language for programs that do not support Unicode, select the
following menu command sequence:

Control Panel > Regional and Language Options > Advanced > Language for non-
Unicode programs.

To set the input language (standard regional settings properties), select the following menu
command sequence:
Control Panel > Regional and Language Options > Languages > Details.

To set the input language (standard regional settings properties), select the following menu
command sequence:

Control Panel > Regional and Language Options > Regional Settings (Standards and
Formats).

Setting the Language in Windows 7 and Windows Server 2008:

144

Using Control Panel > Clock, Language and Region > Region and Language > Formats >
Format, set the required display language.

Using Control Panel > Clock, Language and Region > Region and Language >Keyboards
and Languages > Change Keyboards, add the required input language.

Using Control Panel > Clock, Language and Region > Region and Language >
Administrative Tools > Change System Locale..., set the display language for programs that
do not support unicode.

You can enter texts in the desired language and display them correctly only after you have made
all of these settings.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project
6.6 Setting Up a Project

6.6 Setting Up a Project

6.6.1 Creating a Project

To construct a solution to your automation task using the framework of a project management, you
will need to create a new project. The new project is created in the directory you set for projects in
the "General" tab when you selected the menu command Options > Customize.

Note

The SIMATIC Manager allows names that are longer than eight characters. The name of the

project directory is, however, cut off to eight characters. Project names must therefore differ in their
first eight characters. The names are not case-sensitive.

You will find a step-by-step guide to creating a project under Creating a Project Manually or under
Creating a Project Using the Wizard.

Creating a Project Using the Wizard

The easiest way to create a new project is using the "New Project" wizard. Use the menu
command File > "New Project"” Wizard to open the wizard. The wizard prompts you to enter the
required details in dialog boxes and then creates the project for you. In addition to the station, CPU,

program folder, source file folder, block folder, and OB1 you can even select existing OBs for error
and alarm processing.

The following figure shows an example of a project created with the wizard.

IE257_Prol -- CASIEMENSASTEP7%S 7profsG.. [l

7 Pral
=-[Fl SIMATIC 300 Station
-8 CPU3T4[1)
I=-{z7] 57 Program(1)
-{f] Source Files

Creating a Project Manually

You can also create a new project using the menu command File > New in the SIMATIC Manager.
It already contains the "MPI Subnet" object.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 145

Setting Up and Editing the Project

6.6 Setting Up a Project

Alternative Procedures

When editing a project, you are flexible as to the order in which you perform most of the tasks.
Once you have created a project, you can choose one of the following methods:

First configure the hardware and then create the software for it, or

Start by creating the software independent of any configured hardware.

Alternative 1: Configure the Hardware First

If you want to configure the hardware first, proceed as described in Volume 2 of the Configuring
Hardware with STEP 7 Manual. When you have done this, the "S7 Program" folder required to
create software is already inserted. Then continue by inserting the objects required to create
programs. Then create the software for the programmable modules.

Alternative 2: Create Software First

You can also create software without first having to configure the hardware; this can be done later.
The hardware structure of a station does not have to be set for you to enter your programs.

The basic procedure is as follows:

1.

2
3.
4

146

Insert the required software folders (S7 Program without a Station or CPU) in your project.
Then create the software for the programmable modules.
Configure your hardware.

Once you have configured the hardware, you can link the S7 program to a CPU.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project

6.6.2

6.6 Setting Up a Project

Inserting Stations
In a project, the station represents the hardware structure of a programmable controller and
contains the data for configuring and assigning parameters to individual modules.

New projects created with the "New Project" wizard already contain a station. Otherwise you can
create the station using the menu command Insert > Station.

You can choose between the following stations:

e SIMATIC 300 station

e SIMATIC 400 station

e SIMATIC H station

e SIMATIC PC station

e PC/programming device

e SIMATIC S5

e Other stations, meaning non- SIMATIC S7 and SIMATIC S5

The station is inserted with a preset name (for example, SIMATIC 300 Station(1), SIMATIC 300
Station(2), etc.). You can replace the name of the stations with a relevant name, if you wish.

You will find a step-by-step guide to inserting a station under Inserting a Station.

Configure the Hardware

When you configure the hardware you specify the CPU and all the modules in your programmable
controller with the aid of a module catalog. You start the hardware configuration application by
double-clicking the station.

For each programmable module you create in your configuration, an S7 program and a connection
table ("Connections" object) are created automatically once you have saved and exited the
hardware configuration. Projects created with the "New Project" wizard already contain these
objects.

You will find a step-by-step guide to configuring under Configuring the Hardware, and detailed
information under Basic Steps for Configuring a Station.

Creating a Connection Table

An (empty) connection table ("Connections" object) is created automatically for each
programmable module. The connection table is used to define communication connections
between programmable modules in a network. When it is opened, a window is displayed containing
a table in which you define connections between programmable modules.

You will find detailed information under Networking Stations within a Project.

Next Steps

Once you have created the hardware configuration, you can create the software for your
programmable modules (Also refer to Inserting a S7 Program).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 147

Setting Up and Editing the Project

6.6 Setting Up a Project

6.6.3

Inserting an S7 Program

The software for programmable modules is stored in object folders. For SIMATIC S7 modules this
object folder is called "S7 Program."

The following figure shows an example of an S7 program in a programmable module in a
SIMATIC 300 station.

= Project
E| SIMATIC 300 Station
El Programmable Maodule
{54 57 Program

Existing Components

An S7 program is created automatically for each programmable module as a container for the
software:

The following objects already exist in a newly created S7 program:
e Symbol table ("Symbols" object)
o "Blocks" folder for containing the first block

e "Source Files" folder for source files

Creating S7 Blocks

148

You want to create Statement List, Ladder Logic, or Function Block Diagram programs. To do this,
select the existing "Blocks" object and then select the menu command Insert > S7 Block. In the
submenu, you can select the type of block you want to create (such as a data block, User-defined
Data Type (UDT), function, function block, organization block, or variable table).

You can now open the (empty) block and start entering the Statement List, Ladder Logic, or
Function Block Diagram program. You will find more information on this in Basic Procedure for
Creating Logic Blocks and in the Statement List, Ladder Logic, and Function Block Diagram
manuals.

Note

The object "System Data" (SDB) which may exist in a user program was created by the system.
You can open it, but you cannot make changes to it for reasons of consistency. It is used to make
changes to the configuration once you have loaded a program and to download the changes to the
programmable controller.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project
6.6 Setting Up a Project

Using Blocks from Standard Libraries

You can also use blocks from the standard libraries supplied with the software to create user
programs. You access the libraries using the menu command File > Open. You will find further

information on using standard libraries and on creating your own libraries in Working with Libraries
and in the online help.

Creating Source Files/CFC Charts

You want to create a source file in a particular programming language or a CFC chart. To do this,
select the "Source Files" or "Charts" object in the S7 program and then select the menu command
Insert > S7 Software. In the submenu, you can select the source file that matches your
programming language. You can now open the empty source file and start entering your program.
You will find more information under Basic Information on Programming in STL Source Files.

Creating a Symbol Table

An (empty) symbol table ("Symbols" object) is created automatically when the S7 program is
created. When you open the symbol table, the "Symbol Editor" window opens displaying a symbol
table where you can define symbols. You will find more information under Entering Multiple Shared
Symbols in the Symbol Table.

Inserting External Source Files

You can create and edit source files with any ASCII editor. You can then import these files into your
project and compile them to create individual blocks.

The blocks created when the imported source file is compiled are stored in the "Blocks" folder.

You will find more information under Inserting External Source Files.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 149

Setting Up and Editing the Project

6.7 Editing a Project

6.7

Editing a Project

Opening a Project

Copying a

Deleting a

6.7.1

150

To open an existing project, enter the menu command File > Open. Then select a project in the
dialog boxes that follow. The project window is then opened.

Note

If the project you require is not displayed in the project list, click on the "Browse" button. In the
browser you can then search for other projects and include any projects you find in the project list.
You can change the entries in the project list using the menu command File > Manage.

Project
You copy a project by saving it under another name using the menu command File > Save As.

You copy parts of a project such as stations, programs, blocks etc. using the menu command Edit
> Copy.

You will find a step-by-step guide to copying a project under Copying a Project and Copying Part of
a Project.

Project
You delete a project using the menu command File > Delete.

You delete parts of a project such as stations, programs, blocks etc. using the menu command
Edit > Delete.

You will find a step-by-step guide to deleting a project under Deleting a Project and Deleting Part of
a Project.

Checking Projects for Software Packages Used

If a project that you are editing contains objects that were created with another software package,
this software package is required to edit this project.

No matter what programming device you are using to work with multiprojects, projects or libraries,
STEP 7 assists you by showing you what software packages and versions are required to do so.

This information on the software packages required is complete under the following conditions:
o If the project (or all projects in a multiproject) or library was created in STEP 7 as of V5.2.

e If you yourself have checked the project for any software packages used in creating it. To do
this, first go to the SIMATIC Manager and select the project concerned. Then select the menu
command Edit > Object Properties. In the dialog box that is displayed, select the "Required
software packages" tab. The information in this tab will tell you whether you should check the
project for software packages.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project

6.7.2

Export

Import

6.7 Editing a Project

Managing Multilingual Texts
STEP 7 offers the possibility of exporting text that has been created in a project in one language,
having it translated, re-importing it, and displaying it in the translated language.
The following text types can be managed in more than one language:
e Titles and comments
- Block titles and block comments (latter does not apply to PCS 7 projects)
- Network titles and network comments
- Line comments from STL programs

- Comments from symbol tables, variable declaration tables, user-defined data types, and
data blocks

- Comments, state names, and transition names in HiGraph programs
- Extensions of step names and step comments in S7-Graph programs
o Display texts
- Message texts generated by STEP 7, S7-Graph, S7-HiGraph, S7-PDIAG or ProTool
- System text libraries
- User-specific text libraries
- Operator-relevant texts

- User texts

Exporting is done for all blocks and symbol tables located under the selected object. An export file
is created for each text type. This file contains a column for the source language and a column for
the target language. Text in the source language must not be changed.

During import, the contents of the target-language columns (right-hand column) are integrated into
the project to which the selected object belongs. Only those translations whose source text
(exported text) matches an existing text in the "Source Language column are accepted.

Note

When you import the translated texts, these texts are replaced in the entire project. If, for example,
you have translated texts belonging to a certain CPU and these texts occur at other places in the
project, all the occurrences in the project will be replaced.

Changing Languages

When changing languages, you can choose from all the languages that were specified during
import into the selected project. The language change for "Title and Comments" is only applied to
the selected object. A language change for "Display Texts" is always applied to the complete
project.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 151

Setting Up and Editing the Project

6.7 Editing a Project

Deleting a Language

When a language is deleted all the texts in this language are deleted from the internal database.

One language should always be available as a reference language in your project. This can, for
example, be your local language. This language should not be deleted. During exporting and
importing always specify this reference language as the source language. The target language can
be set as desired.

Reorganize

During reorganization, the language is changed to the language currently set. The currently set
language is the language that you selected as the "Language for future blocks". Reorganization
only affects titles and comments.

Comment Management

You can specify how comments for blocks should be managed in projects with texts being
managed in many languages.

Basic Procedure

152

Create the export files for the franzlation {menu
cormrmand O ptiong = Manage Multiingual
Textz = Exparf).

+

Tranzlate the text.

!

Import the tranzlated filez {menu command
Optionz = Manage Multilingual Texts = [npart).

v

Select the language in which the text iz to be
dizplaved (menu comimand Optionz = Manage
hultiingual Texts = Change Languages).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project

6.7 Editing a Project

6.7.2.1 Types of Multilingual Texts
For export, a separate file will be created for each type of text. This file will have the text type as its
name and the export format as its extension (texttype.format: for example, SymbolComment.CSV
or SymbolComment.XLS). Files that do not satisfy the naming convention cannot be used as
source or target.
The translatable text within a project is divided into the following text types:
Text Type Description
BlockTitle Block title
BlockComment Block comments
NetworkTitle Network title
NetworkComment Network comments
LineComment Line comments in STL
InterfaceComment Var_Section comments (declaration tables in code
blocks) and
UDT comments (user-defined data types) and
Data block comments
SymbolComment Symbol comments
S7UserTexts Texts entered by the user which can be output on
display devices
S7SystemTextLibrary Texts of system libraries which are integrated into
messages can be updated dynamically during
runtime, and displayed on the PG or other display
devices
S7UserTextLibrary Texts of user libraries which are integrated into
messages can be updated dynamically during
runtime, and displayed on the PG or other display
devices
S7-HiGraph
HiGraphStateName State name
HiGraphStateComment State comment
HiGraphTansitionName Transition name
HiGraphTransitionComment Transition comment
S7-Graph
S7GraphStateName Step name extension
S7GraphStateComment Step comment
Editors in other optional packages (such as ProTool, WinCC, etc.) may have other application-
specific text types that are not described here.
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

153

Setting Up and Editing the Project

6.7 Editing a Project

6.7.2.2

154

Structure of the Export File

The export file is structured as follows:

Example:

% Languages

Fi1) English (LISA)

2(1) Englizh (LISA)

b _Twpe(MNetworkTitle)

Iihlaximurn text [ength:
G4 characters

ir$_Export on 16.11.2005 13:14:34

to be tranzlated

First character sequence ta be Tranzlation teztS7_Programi1Blocks\ OB
tranzlated
Second character sequence Transzlation testS7_Programi1nBlocks\OE

Character sequence that is not
to be dizplayed in the tranzlation

te=t37_Program{1Blocls\0B1

Source Language

Target Language

Fundamentally, the following applies:

1. The following may not be changed, overwritten, or deleted:

- Fields beginning with "$_" (these are keywords)

- The numbers for the language (in the example above: 9(1) for the source language English

(USA) and 7(1) for the target language German).

2. Each file holds the text for just a single test type. In the example, the text type is NetworkTitle
($_Type(NetworkTitle). The rules for the translator who will edit this file are contained in the

introductory text of the export file itself.

3. Additional information regarding the text or comments must always appear before the type

definition ($_Type...) or after the last column.

Note

If the column for the target language has been overwritten with "512(32) $_Undefined," no target language
was specified when the file was exported. To obtain a better overview, you can replace this text with the target
language, for example, "9(1) English (US)" When importing the translated files, you must verify the proposed

target language and, if necessary, select the correct language.

You can hide text not to be displayed in the target language by entering the keyword $_hide. This does not

apply to comments on variables (InterfaceComment) and to symbols (SymbolComment).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project
6.7 Editing a Project

Export File Format
You specify the format in which export files are to be saved.

If you have decided to use CSV format, you must keep in mind when editing in Excel that a CSV
file can be only opened properly in Excel if the Open dialog is used. Opening a CSV file by
double-clicking in Explorer often results in an unusable file. You will find it easier to work with
CSV files in Excel if you use the following procedure:

1. Open the export file in Excel

2. Save the files as XLS files

3. Translate the text in the XLS files

4. Save the XLS files in Excel in CSV format.

Note
Export files may not be renamed.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 155

Setting Up and Editing the Project

6.7 Editing a Project

6.7.2.3 Information on the Log File

Error messages and warnings that appear when working with text managed in many languages are
output in a log file (TXT format). This file is stored in the same folder as the export files.

In general, the messages are self-explanatory. Any further explanations are listed below:

Warning: The Text 'xyz' in the 'xyz' file already exists. Further occurrences of the text were ignored.

Explanation

Regardless of its language, a text is used as the basis for the translation. If an identical text is used
for different terms in more than one language or more than once in one language, it can no longer
be uniquely identified and will thus not be translated.

Example:
§ Languages
71 Deutsch (Deutschland 211y English (U3 A)
kein none
keine none
keiner hore
Sowce language Target language

This only applies to titles and comments.

Remedy

Rename the texts concerned in the exported file (in the example, a single German word must be

used instead of three different ones), and then re-import the texts.

156

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project
6.7 Editing a Project

6.7.2.4 Managing User Texts Whose Language Font is Not Installed

You can export user texts whose language font is not installed in your operating system, have them
translated and then import them back in and save them for use in your project.

However, such texts can only be displayed on a computer that has the appropriate language font
installed on it.

For example, if you have user texts that have to be translated into Russian and do not have a
Cyrillic font installed on you operating system, proceed as follows:

1. Export the user text to be translated with the source language "English" and target language
"Russian”.

2. Send the export files to the translator, who will definitely have a Cyrillic font available.

3. Import the translated export files.
Result: The project is now available in English and Russian on you computer.

4. Save the whole project and send it to the customer who will use the Russian texts and will thus
have a Cyrillic font available to display them.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 157

Setting Up and Editing the Project
6.7 Editing a Project

6.7.2.5 Optimizing the Source for Translation

You can prepare the source material for translation by combining different terms and expressions.

Example

Before preparation (export file):

$_Language
51 Enalish {LJSA) S (1 Englizh (LISA)
$ TypelSyrmbolCormment)
Auto-enah.

Automatic enable

Auto-enahle

/ N

Source Language Target Language

Combining to a single expression:

f Languages
51 English (LUSA) S (1) English (LISA)
b _TwpelSyrmbalCormment)
Auto-enah. Auto-enahble
Automatic enable Auto-enable
Auto-enable Auto-enable
Source Language Target Language

After preparation (that is, after import and subsequent export):

§_Lanouages
9 (11 English (LISA) 9 (1) English {LISA)
§_TypelSymbolComment)
Auto-enable Auto-enable
Source Language Target Language

Programming with STEP 7

158 Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project

6.7.2.6

Optimizing the Translation Process

6.7 Editing a Project

If you have projects where the structure and text are similar to a previous project, you can optimize

the translation process.

In particular, the following procedure is recommended for projects that were created by copying

and then modifying.

Prerequisite

Procedure

6.7.2.7 Hiding Texts in Selected Languages
Texts you do not want displayed in the target language can be hidden with the "$_hide" keyword.
This does not apply to comments on variables (InterfaceComment) and symbols
(SymbolComment).
Example:
T Languages
Fi11 Englizh (LISA) S{1) Englizh {LSA)
b TwpelMetnworkTitle)
IMdaximum text length:
G4 characters
I Export on 16,11 2005 13:14:24
Firzt character sequence to be Tranzlation tesf37_Programi1 BlockslOB1
tranzlated
Second character zeguence Tranzlation tesfiST_Program(l iElocks\OE1
to be translated
Character sequence that iz not testS7_Program(1Blockz\OB1
to be dizplayed in the translation
Source Language Target Language
Programming with STEP 7

There must be an existing translated export target.

1. Copy the export files into the project folder for the new project to be translated.

2. Open the new project and export the text (menu command Options > Manage Multilingual
Texts > Export). Since the export target already exists, you will be asked whether the export

target should be extended or overwritten.

Click on the Add button.

4. Have the export files translated (only new text needs to be translated).

Then import the translated files.

Manual, 04/2017, ASE41552389-AA

159

Setting Up and Editing the Project

6.7 Editing a Project

6.7.3

6.7.3.1

Micro Memory Card (MMC) as a Data Carrier

What You Should Know About Micro Memory Cards (MMC)

Micro Memory Cards (MMC) are plug-in memory cards, for example, for a CPU 31xC or an IM
151/CPU (ET 200S). Their most distinguishing feature is the highly compact design.

A new memory concept has been introduced for MMCs. It is briefly described below.

Content of the MMCs

The MMC serves as both the load memory and a data storage device (data carrier).

MMC as Load Memory

The MMCs contain the complete load memory for an MMC-compatible CPU. The load memory
contains the program with the blocks (OBs, DBs, FCs, ...) as well as the hardware configuration.
The contents of the load memory influence the functioning of the CPU. In the MMC's function as
load memory, blocks and the hardware configuration with loading functions can be transferred from
it (i.e. Download to CPU). Blocks downloaded to the CPU take effect immediately; however, the
hardware configuration does so only after the CPU is restarted.

Response to Memory Reset

The blocks stored on the MMC are retained after a memory reset.

Loading and Deleting

You can overwrite the blocks on the MMC.
You can erase the blocks on the MMC.

You cannot restore overwritten or erased blocks.

Accessing Data Blocks on the MMC

On the MMC, you can use data blocks and data block contents to handle larger quantities of data
or data rather scarcely required in the user program. New system operations are available for that
purpose:

e SFC 82: creating data blocks in the load memory
e SFC 83: reading from the data block in the load memory
e SFC 84: writing to a data block in the load memory

MMC and Password Protection

If a CPU (i.e. a CPU in the 300-C family) that is fitted with a Micro Memory Card (MMC) is
password-protected, then the user will also be prompted to enter this password when opening this
MMC in the SIMATIC Manager (on a programming device/PC).

Displaying Memory Assignment in STEP 7

160

The display of the load memory assignment in the module status dialog ("Memory" tab) shows both
the EPROM and the RAM area.

Blocks on MMCs show a 100% EPROM behavior.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Setting Up and Editing the Project

6.7 Editing a Project

6.7.3.2 Using a Micro Memory Card as a Data Carrier
A SIMATIC Micro Memory Card (MMC) can be used with STEP 7 in the same manner as any
other type of external data storage medium.
After you have determined that the MMC has enough capacity to accommodate all the data to be
stored, you can transfer any data visible in the operating system's file explorer to the MMC.
In this way, you can make additional drawings, service instructions and functional descriptions
pertaining to your plant available to other personnel.
6.7.3.3 Memory Card File
Memory Card files (*.wld) are generated for the
e Software PLC WinLC (WinAC Basis and WinAC RTX) and
e SlotPLCs CPU 41x-2 PCI (WinAC Slot 412 and WinAC Slot 416).
The blocks and system data for a WinLC or CPU 41x-2 PCI can be saved in a Memory Card file as
in an S7-Memory Card. The contents of these files then correspond to the contents of a
corresponding Memory Card for a S7-CPU.
This file can then be downloaded by a menu command of the operating panel of the WinLC or CPU
41x-2 PCl into their download memories, corresponding to the downloading of the user program
with STEP 7.
In the case of the CPUs 41x-2 PCI this file can be downloaded automatically when the PC
operating system is started up, if the CPU 41x-2 PCl is not buffered and is only operated with a
RAM Card ("Autoload" function).
Memory Card files are "normal" files in the sense of Windows, which can be moved, deleted or
transported with a data medium with the Explorer.
For further information please refer to the corresponding documentation of the WinAC products.
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 161

Setting Up and Editing the Project

6.7 Editing a Project

6.7.3.4 Storing Project Data on a Micro Memory Card (MMC)

With STEP 7 you can store the data for your STEP 7 project as well as any other kind of data

(such as WORD or Excel files) on a SIMATIC Micro Memory Card (MMC) in a suitable CPU or a
programming device (PG)/PC. This allows you to access project data with programming devices
that do not have the project saved on them.

Requirements

You can only store project data on an MMC if it is inserted in the slot of a suitable CPU or a
programming device (PG)/PC and there is an online connection established.

Be sure that the MMC has enough capacity to accommodate all the data to be stored on it.

Data that can be stored on an MMC

After you have determined that the MMC has enough capacity to accommodate all the data to be
stored, you can transfer all data visible in the operating system's file explorer to the MMC. These
data can include the following:

162

Complete project data for STEP 7

Station configurations

Symbol tables

Blocks and sources

Texts managed in many languages

Any other kinds of data, such as WORD or Excel files

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

7 Editing Projects with Different Versions of STEP 7

71 Editing Version 2 Projects and Libraries

Version V5.2 of STEP 7 no longer supports Changes in V2 Projects. When you edit V2 projects
or libraries, inconsistencies can occur such that V2 projects or libraries can no longer be edited
with older versions of STEP 7.

In order to continue to edit V2 projects or libraries, a STEP 7 version older that V5.1 must be used.

7.2 Expanding DP Slaves That Were Created with Previous Versions
of STEP 7

Constellations That Can Be Formed by Importing New *.GSD Files

New DP slaves can be accepted by the HW Config if you install new device database files
(*.GSD files) into the Hardware Catalog. After installation, they are available in the Other Field
Devices folder.

You cannot reconfigure or expand a modular DP slave in the usual manner if all of the following
conditions exist:

e The slave was configured with a previous version of STEP 7.
e The slave was represented in the Hardware Catalog by a type file rather than a *.GSD file.

¢ Anew *.GSD file was installed over the slave.

Remedy
If you want to use the DP slave with new modules that are described in the *.GSD file:

o Delete the DP slave and configure it again. Then the DP slave is described completely by the
*.GSD file, not by the type file.

If you do not want to use any new modules that are described only in the *.GSD file:

e Under PROFIBUS-DP in the Hardware Catalog window, select the "Other FIELD
DEVICES/Compatible PROFIBUS-DP Slaves" folder. STEP 7 moves the "old" type files into
this folder when they are replaced by new *.GSD files. In this folder you will find the modules
with which you can expand the already configured DP slave.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 163

Editing Projects with Different Versions of STEP 7

7.2 Expanding DP Slaves That Were Created with Previous Versions of STEP 7

Constellation after Replacement of Type Files by GSD Files in STEP 7 V5.1 Service Pack 4

As of STEP 7 V5.1, Service Pack 4, the type files have been either updated or largely replaced by
GSD files. This replacement only affects the catalog profiles supplied with STEP 7, not any catalog
profiles that you may have created yourself.

DP slaves whose properties were previously determined by type files and are now determined by
GSD files are still located in the same place in the hardware catalog.

The "old" type files were not deleted but moved to another place in the hardware catalog. They are
now located in the catalog folder "Other field devices\Compatible PROFIBUS DP slaves\...".

Expanding an Existing DP Configuration with STEP 7, as of V5.1 Service Pack 4

If you edit a project that was created with a previous version of STEP 7 (earlier than V5.1, SP4)
and you want to expand a modular DP slave, then you cannot use the modules or submodules
taken from the usual place in the hardware catalog. In this case, use the DP slave found at "Other
FIELD DEVICES\Compatible PROFIBUS DP slaves\...".

Editing a DP Configuration with an Earlier Version of STEP 7 V5.1, SP4)

164

If you configure an "updated" DP slave with STEP 7 as of V5.1, Service Pack 4 and then edit the
project with a previous version of STEP 7 (earlier than STEP 7 V5.1, SP4), you will not be able to
edit this DP slave since the GSD file used is unknown to the previous version.

Remedy: You can install the required GSD file in the previous version of STEP 7. In this case, the
GSD file is stored in the project. If the project is subsequently edited with the current STEP 7
version will use the newly installed GSD file for the configuration.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Editing Projects with Different Versions of STEP 7

7.3 Editing Current Configurations with Previous Versions of STEP 7

7.3 Editing Current Configurations with Previous Versions of STEP 7

Configuring Direct Data Exchange (Lateral Communication)
Configuring direct data exchange with a DP master without a DP master system:
e Not possible with STEP 7 V5.0, Service Pack 2 (or older version)
e Possible with STEP 7 V5.0, as of Service Pack 3 and as of STEP 7 V5.1

If you save a DP master without its own DP master system with configured assignments for direct
data exchange and you continue to edit this project with an older version of STEP 7 V5
(STEP 7 V5.0, Service Pack 2 (or older)), the following effects can occur:

o A DP master system is displayed with slaves that are used for a STEP 7-internal data storage
area of the assignments for direct data exchange. These DP slaves do not belong to the
displayed DP master system.

¢ You cannot connect a new or an orphaned DP master system to this DP master.

Online Connection to the CPU by Means of a PROFIBUS-DP Interface
Configuring the PROFIBUS-DP interface without a DP master system:

e STEP 7 V5.0, Service Pack 2 (or older): a connection to the CPU by means of this interface is
not possible.

e Asof STEP 7 V5.0, Service Pack 3: During compilation, system data for the PROFIBUS-DP
interface are generated; a connection to the CPU by means of this interface is possible after
downloading.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 165

Editing Projects with Different Versions of STEP 7

7.4 Appending SIMATIC PC Configurations of Previous Versions

74 Appending SIMATIC PC Configurations of Previous Versions

PC Configurations of STEP 7 V5.1 Projects (up to SP 1)

As of STEP 7 V5.1, Service Pack 2 you can download communications to the PC station in the
same way as to an S7-300 or S7-400 station (without having to take the roundabout via
configuration file). Nevertheless, a configuration file is always generated during a storing or
compiling operation in order to enable the transmission of the configuration to the target PC station
using this method.

This bears the consequence that "older" PC stations cannot interpret some of the information
included in the newly generated configuration files. STEP 7 automatically adapts itself to this
circumstance:

e If you create a new SIMATIC PC station configuration with STEP 7 as of V5.1, Service Pack 2,
STEP 7 assumes that the target PC station was configured with the help of SIMATIC NET DVD
as of 7/2001, that is, under the presumption that STRTM (Runtime Manager) is installed. The
configuration files are generated in such a way that they can be interpreted by a "new" PC
station.

e If you append a SIMATIC PC station configuration of a previous version (for example, the PC
station was configured with STEP 7 V5.1, Service Pack 1),. STEP 7 does not presume that the
target PC station was configured with the help of SIMATIC NET DVD as of 7/2001. Those
configuration files are then generated in such a way that they can be interpreted by an "old" PC
station.

If this default behavior does not match your requirements, you can modify it as described below:

Setting in the Context Menu "Configuring Hardware ":
1. Open the PC station hardware configuration
2. Right-click on the station window (white area)
3. Select the context-sensitive menu "Station Properties”
4

Check or clear the "Compatibility" checkbox.

Setting in the Context Menu "Configuring Networks"
1. Open the network configuration
2. Highlight the PC station
3. Select the menu command Edit > Object properties
4. Inthe dialog, select the "Configuration" tab
5

Check or clear the "Compatibility" checkbox.

Programming with STEP 7
166 Manual, 04/2017, ASE41552389-AA

Editing Projects with Different Versions of STEP 7
7.4 Appending SIMATIC PC Configurations of Previous Versions

PC Configurations of STEP 7 V5.0 Projects

You must convert the station if you want to edit a SIMATIC PC station configuration with STEP 7 as
of V5.0, Service Pack 3 to configure new components that are only supported by Service Pack 3 or
higher:

1. Inthe SIMATIC Manager, highlight the SIMATIC PC station and select the menu command
Edit > Object properties.

2. Inthe "Functions" tab of the properties dialog, click on the "Expand" button.
The SIMATIC PC station is then converted. Now, it can only be edited with STEP 7 V5.0,
Service Pack 3 or later versions.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 167

Editing Projects with Different Versions of STEP 7

7.5 Displaying Modules Configured with Later STEP 7 Versions or Optional Packages

7.5

168

Displaying Modules Configured with Later STEP 7 Versions or
Optional Packages

As of STEP 7 V5.1 Service Pack 3, all modules are displayed, even those that were configured
with a later STEP 7 version and are thus unknown to the "older" STEP 7. Modules configured with
an optional package are also displayed, even if the required corresponding optional package is not
installed on the programming device (PG) used to open the given project.

In previous STEP 7 versions, such modules and their subordinate objects were not displayed. In
the current version, these objects are visible and can be edited to certain extent. For example, you
can use this function to also change user programs, even if the project was created on another
computer running a newer version of STEP 7 and the module (such as a CPU) cannot be
configured with the existing earlier STEP 7 version because this module has new properties and
new parameters.

The module "unknown" to STEP 7 is displayed as a generic, dummy module with the following
icon:

If you open the project with the appropriate STEP 7 version or with a compatible optional package,
all modules are displayed their standard way and there are no restrictions on editing.

PG with latest STEP 7 / with PG with older STEP 7 / without
optional package optional package

| = b

. =]

>>>---Project data--->>>

Represented by "known", latest Represents the latest module as an
module "unknown" module
= El@
..... @ @
..... ﬁ ﬁ

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Editing Projects with Different Versions of STEP 7
7.5 Displaying Modules Configured with Later STEP 7 Versions or Optional Packages

Working with a Dummy Module in the SIMATIC Manager

The dummy module is visible below the station level. All subordinate objects at this level such as
user programs, system data and connection tables are visible and can be downloaded from the
SIMATIC Manager.

You also open, edit, compile and load the user program (such as its blocks).
However, the following restrictions apply to projects with dummy blocks:
e You cannot copy a station containing a dummy block.

¢ In the menu command "Save project as..." the option "with reorganization" cannot be applied
completely.
The dummy module and all references and subordinate objects of these modules will be
missing in the copied and reorganized project (for example, the user program).

Working with a Dummy Module in the Hardware Configuration
The dummy module is displayed at the slot where it was configured.

You can open this module, but you cannot change its parameters or download to it. The module
properties are limited to those given in the "Dummy" tab property sheet. The station configuration
cannot be changed (such as by adding new modules).

Hardware diagnostics (such as opening a station online) are also possible (to a limited extent: new
diagnostic options and texts are not recognized.).

Working with a Dummy Module in the Network Configuration

The dummy module is also displayed in NetPro. In this case, the name of the module on the station
is preceded by question mark.

A project with a dummy module can only be opened write-protected in NetPro.

If you open the project in write-protected mode, you can display and print the network
configuration. You can also obtain the connection status, which will at least contain the information
supported by the STEP 7 version being used.

In general, however, you cannot make any changes or save, compile or download them.

Subsequent Installation of Modules

If the module is from a later version of STEP 7 and there is a HW update available for it, you can
replace the dummy module with the "real" one. Upon opening the station, you receive information
on the necessary HW updates or optional packages, and you can install them using the dialog. As
an alternative, you can install the modules from the start menu or in HW Config by selecting the
menu command Options > Install HW Updates.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 169

Editing Projects with Different Versions of STEP 7

7.5 Displaying Modules Configured with Later STEP 7 Versions or Optional Packages

Programming with STEP 7
170 Manual, 04/2017, ASE41552389-AA

8.1

Defining Symbols

Absolute and Symbolic Addressing

In a STEP 7 program you work with addresses such as I/O signals, bit memory, counters, timers,
data blocks, and function blocks. You can access these addresses in your program absolutely, but
your programs will be much easier to read if you use symbols for the addresses (for example,
Motor_A_On, or other identifiers according to the code system used within your company or
industry). An address in your user program can then be accessed via this symbol.

Absolute Addresses

An absolute address comprises an address identifier and a memory location (for example, Q 4.0,
1.1, M 2.0, FB21).

Symbolic Addresses

You can make your program easier to read and simplify troubleshooting if you assign symbolic
names to the absolute addresses.

STEP 7 can translate the symbolic names into the required absolute addresses automatically. If
you would prefer to access ARRAYs, STRUCTS, data blocks, local data, logic blocks, and user-
defined data types using symbolic names, you must first assign symbolic names to the absolute
addresses before you can address the data symbolically.

You can, for example, assign the symbolic name MOTOR_ON to the address Q 4.0 and then use
MOTOR_ON as an address in a program statement. Using symbolic addresses it is easier to
recognize to what extent the elements in the program match the components of your process
control project.

Note

Two consecutive underline characters (for example, MOTOR__ON) are not permitted in a symbolic
name (variable ID).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 171

Defining Symbols
8.1 Absolute and Symbolic Addressing

Support with Programming

In the programming languages Ladder Logic, Function Block Diagram, and Statement List you can
enter addresses, parameters, and block names as absolute addresses or as symbols.

Using the menu command View > Display > Symbolic Representation you can toggle between
the absolute and symbolic representation of addresses.

To make it easier to program using symbolic addresses you can display the absolute address and
the symbol comment that belongs with the symbol. You can activate this information using the
menu command View > Display > Symbol Information. This means that the line comment
following every STL statement contains more information. You cannot edit the display; you must
make any changes in the symbol table or the variable declaration table.

The following figure shows you the symbol information in STL.

FBI003 : hterupt Trigger
Metwork 1 ;777

U "Sensorl™ "M.0 Temperatre owemangs”
UM "Switchz” "N.2 Fault adinowled gment”
= "Lighton" "04.0 Intemupt signal”

When you print out a block, the current screen representation with statement comments or symbol
comments is printed.

Programming with STEP 7
172 Manual, 04/2017, ASE41552389-AA

Defining Symbols

8.2 Shared and Local Symbols

8.2 Shared and Local Symbols
A symbol allows you to work with meaningful symbolic names instead of absolute addresses. The
combination of short symbols and longer comments can be used effectively to make programming
easier and program documentation better.
You should distinguish between local (block-specific) and shared symbols.
Shared Symbols Local Symbols
Validity e [svalid in the whole user program,

e Can be used by all blocks, e Only known to the block in

e Has the same meaning in all blocks, which it was defined,

e Must be unique in the whole user program. * The same symbol can be used
in different blocks for different
purposes.

Permitted o Letters, numbers, special characters,
characters e Accents other than 0x00, OxFF, and quotation | ¢ Letters,
marks, e Numbers,

* The symbol must be placed within quotation |, yUnderscore ().

marks if you use special characters.
Use e You can define shared symbols for:

e 1/Osignals (I, IB, IW, ID, Q, QB, QW, QD) e You can define local symbols

e |/Oinputs and outputs (PI, PQ) for:

« Bit memory (M, MB, MW, MD) e Block parameters (input,

) output, and in/out parameters),

* Tlm.ers (T)/ counters (C) e Static data of a block,

e Logic blocks (OB, FB, FC, SFB, SFC) « Temporary data of a block.

e Data blocks (DB)

e User-defined data types (UDT)

o Variable table (VAT)

Defined where? | Symbol table Variable declaration table for the
block
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

173

Defining Symbols
8.3 Displaying Shared or Local Symbols

8.3 Displaying Shared or Local Symbols

You can distinguish between shared and local symbols in the code section of a program as follows:

e Symbols from the symbol table (shared) are shown in quotation marks "..".

e Symbols from the variable declaration table of the block (local) are preceded by the character
ll#ll'

You do not have to enter the quotation marks or the "#". When you enter your program in Ladder,

FBD, or STL the syntax check adds these characters automatically.

If you are concerned that there may be some confusion because, for example, the same symbols
are used in both the symbol table and the variable declaration, you must code the shared symbol
explicitly when you want to use it. Any symbols without the respective coding are interpreted as
block-specific (local) variables in this case.

Coding shared symbols is also necessary if the symbol contains blanks.

When programming in an STL source file the same special characters and guidelines for their use
apply. Code characters are not added automatically in free-edit mode, but they are still necessary if
you wish to avoid confusion.

Note

Using the menu command View > Display > Symbolic Representation you can toggle the display
between the declared shared symbolic and the absolute addresses.

Programming with STEP 7
174 Manual, 04/2017, ASE41552389-AA

Defining Symbols

8.4 Setting the Address Priority (Symbolic/Absolute)

8.4 Setting the Address Periority (Symbolic/Absolute)

The address priority helps you to adapt the program code as you see fit when making changes in
the symbol table, changing parameter names of data blocks or function blocks or when changing

UDTs referring to component names or changing multiple instances

When making changes in the following situations, be sure to set the address priority carefully and
with a definite purpose in mind. In order for you to benefit from address priority, each change
procedure must be completed in itself before you start with another type of change.

To set the address priority, go to the SIMATIC Manager and select the block folder and then select
the menu command Edit > Object Properties. In the "Address Priority" tab, you can make the
settings that you deem appropriate.

Making optimal settings in address priority requires that the following situations for making a
change be distinguished:

e Correction of Individual Names

e Switching Names or Assignments

e New Symbols, Variables, Parameters or Components

Note

Please be aware that the absolute block number is the determining factor when making block calls
("Call FC" or "Call FB, DB") for the logic block — even when symbolic address priority has been set!

Correction of Individual Names

Examples:

In the symbol table or in the program editor/block editor a spelling error in a name has to be
corrected. This applies to all names in the symbol table as well as to all the names of parameters,
variables or components that can be changed with the program editor/block editor.

Setting the Address Priority:

Propeities - Block Folder Difline

Gereral | Blocks | Checkaums Addiess priory

Abzolbes
winluan

piiaiity

Syerbel

hat

Programming with STEP 7

Behaior a5 in
ETEPT < V5.2

a;ﬁag;ﬁpﬁmm
symbal tablc and the |
DB o &l accestet

" Excephon: symbol acceses
temain an the DB 22 they
were piogrammed in the
coda binck

" Egceplion for accetses in
stracturally unchanged data
types, the current sumboly
wal be appled

" Fonal accazess [LOMILC
and DE)

Manual, 04/2017, ASE41552389-AA

175

Defining Symbols

8.4 Setting the Address Priority (Symbolic/Absolute)

Tracking Changes:

In the SIMATIC Manager, select the block folder and then select the menu command Edit > Check
Block Consistency. The "Check block consistency' function make the changes necessary in the
individual blocks.

Switching Names or Assignments

Examples:
e The names of existing assignments in the symbol table are switched.
o Existing assignments in the symbol table are assigned new addresses.

o Variable names, parameter names or component names are switched in the program
editor/block editor.

Setting the Address Priority:

Propeities - Block Folder Dilline

Gereral | Blocks | Checksums Addiess priotity

Behndor a3 in Fecommended o symbaic

STEPT ¢ V5.2 OO ATiTing
Abziue ™ Symbols are applied from ™ Excaphon symbol accesies
vl the symbol table and the remam on fhe DB a2 they
has DB lod ol secassat wiere plogiammed in the
puiaity {L.O.M.T.C and D) cads biack
St " Egceplion: for accessesin @Jﬂ accazees |0 M T T
hat structurally unchanged data 08| |
ity fypes, the cument spmbols

vl be apphed

Tracking Changes:

¢ Inthe SIMATIC Manager, select the block folder and then select the menu command Edit >
Check Block Consistency. The "Check block consistency" function makes the changes

necessary in the individual blocks.

176

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Defining Symbols
8.5 Symbol Table for Shared Symbols

New Symbols, Variables, Parameters or Components

Examples:
e You are creating new symbols for addresses used in the program.

e You are adding new variable or parameters to data blocks, UDTs or function blocks.

Setting the Address Priority:

e For changes in the symbol table.

Propemties - Block Folder Difline

General | Blocks | Checksums Addiess piaiiy. |

Hehavior a2 in Recommended foi symbalic

ETEPT < W52 progaTITIng
Abzohie ™ Excephion: symbol acceszses
vtk resmain an the [22 they
hes 1 were programined in e
ptiatily f0MTLCandDB] | cada biock.
Symbol " Egceplion for accessesin | O Foral accasess [OMTC
bz structurally unchanged data and DB
priority types. the cument symboly

will b appled

e For changes in the program/block editor.

Piopeities - Block Folder Difline

General | Blocks | Checksums Addiess prary. |

Behavior a5 in
STEFT ¢ Va2
Abzoluta " Symbolz are apphed from
vl the symbicl Lable and the
has DB loe &l accmsmes
iy MOM.T.Cand DB]
Syenticl " Egcephiorn: for acceszesin | Foial acossses [MTLC
has stoucturally unchanged data and DE)
prionity “Ehmbeih curent spmbots

Tracking Changes:

In the SIMATIC Manager, select the block folder and then select the menu command Edit > Check
Block Consistency. The "Check block consistency' function make the changes necessary in the
individual blocks.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 177

Defining Symbols

8.5 Symbol Table for Shared Symbols

8.5 Symbol Table for Shared Symbols

Shared symbols are defined in the symbol table.

An (empty) symbol table ("Symbols" object) is created automatically when you create an S7
program.

Validity

The symbol table is only valid for the module to which you link the program. If you want to use the
same symbols in a number of different CPUs, you yourself must ensure that the entries in the
various symbol tables all match up (for example, by copying the table).

8.5.1 Structure and Components of the Symbol Table

Structure of the Symbol Table

ﬁﬁyn‘lhnl Editor - S7-Programi{1} (Symbaols)
Symbol Table Edit Insert View Options ‘Window Help

FE| & & BE| o o | asmos | | N2

&) 57-Program{1) (Symbols) - ZEn01_01 STEPT? STL -0 x|
Statu| R | © | M | C | CC| Symbol £ | &ddress | Dats by | Commert -

1 elinlinlinllE m 4 42 |BOOL |Retertive output

2 I \C|CIC|C |Advomstic... ([E 05 |BOOL | For the memory fun... |

3 I \C|\C|ICC |DE_Actual.. (M 4 | INT Sctual speed for di..

4 I \C |CIC | |DE_Failue [E 16 |BOOL | Diesel engine faiure

5 I \C |CIC|C |DEFan_Cn (A 56 (BOOL | Command for switc...

E I \C |\[CIC | |DEFolow..|T 2 |TIMER |Foliow-on time for ...

7 I \C|\CICIC |CEon A& 54 |BOOL | Command for switc...

g [T IC [T |[C |[C |DE_Preset..|& 55 |BOOL |Display "Diesel engi.. |« |

Row
4 If the columns for "Special Object Properties" were hidden (the menu command View >

Columns O, M, C, R, CC was deselected), this symbol appears in the row if the row
concerned has at least one "Special Object Property" set for it.

"Status" Column

The symbol name or address is identical to another entry in the symbol table.

il The symbol is still incomplete (the symbol name or the address is missing).

R/O/M/C/CC Columns

The columns R/O/M/CC show whether a symbol was assigned special object properties
(attributes):

Programming with STEP 7
178 Manual, 04/2017, ASE41552389-AA

Defining Symbols

8.5 Symbol Table for Shared Symbols

¢ R (monitoring) means that error definitions for process diagnostics were created for the symbol
with the optional package S7-PDIAG (V5).

e O means that the symbol can be operated and monitored with WinCC.
e M means that a symbol-related message (SCAN) was assigned to the symbol.
¢ C means that the symbol is assigned communication properties.

e CC means that the symbol can be quickly and directly monitored and controlled in the program
editor ('Control at Contact').

Click on the check box to enable or disable these "special object properties". You can also edit the
"special object properties" via Edit > Special Object Properties menu command

"Symbol" Column
The symbolic name must not be longer than 24 characters.

You cannot assign symbols in the symbol table for addresses in data blocks (DBD, DBW, DBB,
DBX). Their names are assigned in the data block declaration.

For organization blocks (OB) and some system function blocks (SFB) and system functions (SFC),
predefined symbol table entries already exist which you can import into the table when you edit the
symbol table of your S7 program. The import file is stored in the STEP 7 directory under
..\S7data\Symbol\Symbol.sdf.

"Address" Column

An address is the identifier for a particular memory area and memory location.
Example: Input | 12.1

The syntax of the address is checked as it is entered.

"Data Type" Column

You can choose between a number of data types available in STEP 7. The data type field already
contains a default data type that you may change, if necessary. If the change you make is not
suitable for the address or its syntax is incorrect, an error message appears as you exit the field.

"Comment” Column

You can assign comments to all symbols. The combination of brief symbolic names and more
detailed comments makes creating programs more effective and makes your program
documentation more complete. A comment can be up to 80 characters in length.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 179

Defining Symbols

8.5 Symbol Table for Shared Symbols

8.5.2

Addresses and Data Types Permitted in the Symbol Table

Only one set of mnemonics can be used throughout a symbol table. Switching between SIMATIC
(German) and IEC (English) mnemonics must be done in the SIMATIC Manager using the menu
command Options > Customize in the "Language" tab.

IEC | SIMATIC | Description Data Type Address
Range

| E Input bit BOOL 0.0 to 65535.7
B EB Input byte BYTE, CHAR 0 to 65535

W EW Input word WORD, INT, S5TIME, DATE 0 to 65534

ID ED Input double word DWORD, DINT, REAL, TOD, TIME | 0 to 65532

Q A Output bit BOOL 0.0 to 65535.7
QB |AB Output byte BYTE, CHAR 0 to 65535
Qw |AW Output word WORD, INT, S5TIME, DATE 0 to 65534
QD |AD Output double word DWORD, DINT, REAL, TOD, TIME | 0 to 65532

M M Memory bit BOOL 0.0 to 65535.7
MB MB Memory byte BYTE, CHAR 0 to 65535
MW | MW Memory word WORD, INT, S5TIME, DATE 0 to 65534
MD |MD Memory double word DWORD, DINT, REAL, TOD, TIME | 0 to 65532
PIB | PEB Peripheral input byte BYTE, CHAR 0 to 65535
PQB | PAB Peripheral output byte BYTE, CHAR 0 to 65535
PIW | PEW Peripheral input word WORD, INT, S5TIME, DATE 0 to 65534
PQW | PAW Peripheral output word WORD, INT, S5TIME, DATE 0 to 65534
PID |PED Peripheral input double word DWORD, DINT, REAL, TOD, TIME |0 to 65532
PQD | PAD Peripheral output double word | DWORD, DINT, REAL, TOD, TIME 0 to 65532

T T Timer TIMER 0 to 65535

C z Counter COUNTER 0 to 65535

FB FB Function block FB 0 to 65535
OB OB Organization block OB 1 to 65535
DB DB Data block DB, FB, SFB, UDT 1 to 65535

FC FC Function FC 0 to 65535
SFB | SFB System function block SFB 0 to 65535
SFC |SFC System function SFC 0 to 65535
VAT | VAT Variable table 0 to 65535
UDT |UDT User-defined data type UDT 0 to 65535

180

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Defining Symbols
8.5 Symbol Table for Shared Symbols

8.5.3 Incomplete and Non-Unique Symbols in the Symbol Table

Incomplete Symbols

It is also possible to store incomplete symbols. You can, for example, enter only the symbol name
first and then add the corresponding address at a later date. This means you can interrupt your
work on the symbol table at any time, save the interim result, and complete your work another time.
Incomplete symbols are identified in the "Status" column by the < symbol. When you come to use
the symbol for creating software (without an error message appearing), you must have entered the
symbolic name, the address, and the data type.

How Ambiguous Symbols Occur

Ambiguous symbols occur when you insert a symbol in the symbol table whose symbolic name
and/or address was already used in another symbol row. This means both the new symbol and the

existing symbol are ambiguous. This status is indicated by the symbol = in the "Status" column.

This happens, for example, when you copy and paste a symbol in order to change the details in the
copy slightly.

Identification of Ambiguous Symbols

In the symbol table, ambiguous symbols are identified by highlighting them graphically (color, font).
This change in their representation means they still require editing. You can either display all
symbols or filter the view so that only unique or ambiguous symbols are displayed.

Making Symbols Unique

An ambiguous symbol becomes unique when you change the component (symbol and/or address)
which caused this status. If two symbols are ambiguous and you change one of them to make it
unique, the other one also becomes unique.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 181

Defining Symbols

8.6 Entering Shared Symbols

8.6

8.6.1

182

Entering Shared Symbols

Using the menu command Insert > Symbol you can insert symbols in the code section of your
program. If the cursor is positioned at the beginning, the end, or within a string, the symbol is
already selected that starts with this string - if such a symbol exists. If you change the string, the
selection is updated in the list.

Separators for the beginning and end of a string are, for example, blank, period, colon. No
separators are interpreted within shared symbols.

To enter symbols, proceed as follows:
1. Enter the first letter of the required symbol in the program.

2. Press CTRL and J simultaneously to display a list of symbols. The first symbol starting with the
letter you entered is already selected.

3. Enter the symbol by pressing RETURN or select another symbol.
The symbol enclosed in quotation marks is then entered instead of the first letter.

In general the following applies: if the cursor is located at the beginning, the end, or within a string,
this string is replaced by the symbol enclosed in quotation marks when inserting a symbol.

General Tips on Entering Symbols

To enter new symbols in the symbol table, position the cursor in the first empty row of the table and
fill out the cells. You can insert new rows before the current row in the symbol table using the menu
command Insert > Symbol. If the row before the cursor position already contains an address, you
will be supported when inserting new symbols by a presetting of the "Address" and "Data Type"
columns. The address is derived from the previous row; the default data type is entered as data

type.

You can copy and modify existing entries using the commands in the Edit menu. Save and then
close the symbol table. You can also save symbols which have not been completely defined.

When you enter the symbols, you should note the following points:

Column Note

Symbol The name must be unique within the whole symbol table. When you confirm the entry in
this field or exit the field, a non-unique symbol is marked. The symbol can contain up to 24
characters. Quotation marks (") are not permitted.

Address When you confirm the entry in this field or exit the field, a check is made as to whether the
address entered is allowed.

Data Type When you enter the address, this field is automatically assigned a default data type. If you
change this default, the program checks whether the new data type matches the address.

Comment You can enter comments here to briefly explain the functions of the symbols (max. 80
characters). Entering a comment is optional.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Defining Symbols
8.6 Entering Shared Symbols

8.6.2 Entering Single Shared Symbols in a Dialog Box

The procedure described below shows you how you can change symbols or define new symbols in
a dialog box while programming blocks without having to display the symbol table.

This procedure is useful if you only want to edit a single symbol. If you want to edit a number of
symbols, you should open the symbol table and work in it directly.

Activating Symbol Display in a Block

You activate the display of symbols in the block window of an open block using the menu
command View > Display > Symbolic Representation. A check mark is displayed in front of the
menu command to show that the symbolic representation is active.

Defining Symbols When Entering Programs

1. Make certain that the symbolic representation is switched on in the block window (menu
command View > Display > Symbolic Representation.)

2. Select the absolute address in the code section of your program to which you want to assign a
symbol.

Select the menu command Edit > Symbol.

4. Fill out the dialog box and close it, confirming your entries with "OK" and making sure you enter
a symbol.

The defined symbol is entered in the symbol table. Any entries that would lead to non-unique
symbols are rejected with an error message.

Editing in the Symbol Table
Using the menu command Options > Symbol Table you can open the symbol table to edit it.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 183

Defining Symbols

8.6 Entering Shared Symbols

8.6.3 Entering Multiple Shared Symbols in the Symbol Table

Opening the Symbol Table
There are a number of ways of opening a symbol table:
e Double-click the symbol table in the project window.

e Select the symbol table in the project window and select the menu command Edit > Open
Object.

The symbol table for the active program is displayed in its own window. You can now create
symbols or edit them. When you open a symbol table for the first time after it was created, it is
empty.

Entering Symbols

To enter new symbols in the symbol table, position the cursor in the first empty row of the table and
fill out the cells. You can insert new empty rows before the current row in the symbol table using
the menu command Insert > Symbol. You can copy and modify existing entries using the
commands in the Edit menu. Save and then close the symbol table. You can also save symbols
that have not been completely defined.

Sorting Symbols

The data records in the symbol table can be sorted alphabetically according to symbol, address,
data type, or comment.

You can change the way the table is sorted by using the menu command View > Sort to open a
dialog box and define the sorted view.

Filtering Symbols
You can use a filter to select a subset of the records in a symbol table.
Using the menu command View > Filter you open the "Filter" dialog box.

You can define criteria that the records must fulfill in order to be included in the filtered view. You
can filter according to:

e Symbol names, addresses, data types, comments

e Symbols with operator control and monitoring attribute, symbols with communication
properties, symbols for binary variables for messages (bit memory or process input)

e Symbols with the status "valid," "invalid (non-unique, incomplete)"

The individual criteria are linked by an AND operation. The filtered records start with the specified
strings.

If you want to know more about the options in the "Filter" dialog box, open the context-sensitive
online help by pressing F1.

Programming with STEP 7
184 Manual, 04/2017, ASE41552389-AA

Defining Symbols

8.6.4

8.6 Entering Shared Symbols

Using Upper and Lower Case for Symbols

No Distinction between Upper and Lower Case Characters

Effects on

Previously it was possible to define symbols in STEP 7 which differed from one another only in the
case used for individual characters. This was changed in STEP 7, V4.02. It is now no longer
possible to distinguish between symbols on the basis of the case used.

This change was made in response to the wishes of our customers, and will greatly reduce the risk
of errors occurring in a program. The restrictions which have been made to the symbol definition
also support the aims of the PLCopen forum to define a standard for transferable programs.

Symbol definition based solely on a distinction between upper and lower case characters is now no
longer supported. Previously, for example, the following definition was possible in the symbol table:

Motor1 =10.0

motor1 =11.0

The symbols were distinguished on the basis of the case used for the first letter. This type of
differentiation carries with it a significant risk of confusion. The new definition eliminates this
possible source of errors.

Existing Programs

If you have been using this criterion to distinguish between different symbols you may experience
difficulties with the new definition if:

e Symbols differ from one another only in their use of upper and lower case characters
o Parameters differ from one another only in their use of upper and lower case characters
e Symbols differ from parameters only in their use of upper and lower case characters

All three of these conflicts can, however, be analyzed and resolved as described below.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 185

Defining Symbols

8.6 Entering Shared Symbols

Symbols which Differ from One Another Only in their Use of Upper and Lower Case Characters
Conflict:

If the symbol table has not yet been edited with the current version of the software, the first of the
non-unique symbols in the table is used when source files are compiled.

If the symbol table has already been edited, such symbols are invalid; this means that the symbols
are not displayed when blocks are opened and source files containing these symbols can no longer
be compiled without errors.

Remedy:

Check your symbol table for conflicts by opening the table and saving it again. This action enables
the non-unique symbols to be recognized. You can then display the non-unique symbols using the
filter "Non-Unique Symbols" and correct them. You should also correct any source files which
contain conflicts. You do not need to make any further changes to the blocks, as the current (now
conflict-free) version of the symbol table is automatically used or displayed when a block is opened.

Parameters which Differ from One Another Only in their Use of Upper and Lower Case
Characters

Conflict:

Source files containing such interfaces can no longer be compiled without errors. Blocks with such
interfaces can be opened, but access to the second of these parameters is no longer possible.
When you try to access the second parameter, the program automatically returns to the first
parameter when the block is saved.

Remedy:

To check which blocks contain such conflicts, it is advisable to generate a source file for all the
blocks of a program using the function "Generate Source File." If errors occur when you attempt to
compile the source file you have created, there must be a conflict.

Correct your source files by ensuring that the parameters are unique; for example, by means of the
"Find and Replace" function. Then compile the files again.

Symbols which Differ from Parameters Only in their Use of Upper and Lower Case Characters
Conflict:

If shared and local symbols in a source file only differ from one another in their use of upper and
lower case characters, and is no initial characters have been used to identify shared ("symbol
name") or local (#symbol name) symbols, the local symbol will always be used during compilation.
This results in a modified machine code.

Remedy:

In this case it is advisable to generate a new source file from all of the blocks. This will
automatically assign local and shared access with the corresponding initial characters and will
ensure that they are handled correctly during future compilation procedures.

Programming with STEP 7
186 Manual, 04/2017, ASE41552389-AA

Defining Symbols

8.6.5

8.6 Entering Shared Symbols

Exporting and Importing Symbol Tables

You can export the current symbol table to a text file in order to be able to edit it with any text
editor.

You can also import tables created using another application into your symbol table and continue to
edit them there. The import function can be used, for example, to include in the symbol table
assignment lists created with STEPS/ST following conversion.

The file formats *.SDF, *.ASC, *.DIF, and *.SEQ are available to choose from.

Rules for Exporting

You can export the whole symbol table, a filtered subset of the symbol table, or rows selected in
the table view.

The properties of symbols that you can set using the menu command Edit > Special Object
Properties are not exported.

Rules for Importing

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

e For frequently used system function blocks (SFBs), system functions (SFCs)and organization
blocks (OBs)predefined symbol table entries already exist in the file
..\S7DATA\SYMBOL\SYMBOL.SDF which you can import as required.

e The properties of symbols that you can set using the menu command Edit > Special Object
Properties are not taken into consideration when exporting and importing.

187

Defining Symbols

8.6 Entering Shared Symbols

8.6.6

File Formats for Importing/Exporting a Symbol Table

The following file formats can be imported into or exported out from the symbol table:

ASCII file format (ASC)

Data Interchange Format (DIF)
You can open, edit, and save DIF files in Microsoft Excel.

System Data Format (SDF)

You can open, edit, and save SDF files in Microsoft Access.

- Toimport and export data to and from the Microsoft Access application, use the SDF file

format.

- In Access, select the file format "Text (with delimiters)".

- Use the double inverted comma (") as the text delimiter.

- Use the comma (,) as the cell delimiter.

Assignment list (SEQ)

Caution: When exporting the symbol table to a file of the type .SEQ comments that are longer

than 40 characters are truncated after the 40th character.

ASCII File Format (ASC)

188

File Type *ASC

Structure: Record length, delimiter comma, record

Example: 126,green_phase ped. T 2 TIMER Duration of green phase for
pedestrians
126,red_ped. Q 0.0 BOOL Red for pedestrians

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Defining Symbols

Data Interchange Format (DIF)

8.6 Entering Shared Symbols

File Type *.DIF
Structure: A DIF file consists of the file header and the data:
Header TABLE Start of a DIF File
0,1
"<Title>" Comment string
VECTORS Number of records in the file

0,<No. of records>

TUPLES

Number of data fields in a record

0,<No. of columns>

DATA

ID for the end of the header and start of the data

0,0

Data (per record)

<type>,<numeric value>

ID for the data type, numeric value

<String>

Alphanumeric part or

Vv

if the alphanumeric part is not used

Header: the file header must contain the record types TABLE, VECTORS, TUPLES, and DATA in
the order specified. Before DATA, DIF files can contain further, optional record types. These are,
however, ignored by the Symbol Editor.

Data: in the data part, each entry consists of three parts: the ID for the Type (data type), a numeric
value, and an alphanumeric part.

You can open, edit, and save DIF files in Microsoft Excel. You should not use accents, umlauts, or
other special language characters.

System Data Format (SDF)

File Type * SDF

Structure: Strings in quotation marks, parts separated by commas

Example: "green_phase_ped.","T 2" "TIMER","Duration of green phase for pedestrians"
"red_ped."."Q 0.0","BOOL","Red for pedestrians"

To open an SDF file in Microsoft Access you should select the file format "Text (with delimiter)'. Use
the double quotation mark (") as the text delimiter and the comma (,) as the field delimiter.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

189

Defining Symbols

8.6 Entering Shared Symbols

Assignment List (SEQ)

File Type *SEQ

Structure: TAB Address TAB Symbol TAB Comment CR

Example: T2 green_phase_ped. Duration of green phase for pedestrians
Q0.0 red_ped. Red for pedestrians

TAB stands for the tabulator key (09H),
CR stands for carriage return with the RETURN key (ODH).

190

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Defining Symbols

8.6.7

8.6 Entering Shared Symbols

Editing Areas in Symbol Tables

As of STEP 7 V5.3, you can now select and edit contiguous areas within a symbol table. This
means that you can copy and/or cut parts of one symbol table and insert them into another symbol
table or delete them as required.

This makes it easier to update symbol tables by quickly transferring data from one symbol table to
another.

Areas that can be selected:

You can select entire rows as soon as you click in the first column in the row. If you want to
select all the fields, ranging from the "Status" column to the "Comments" column, then these
are also part of the selected row.

You can select one or more contiguous fields as an overall area. To be able to select this area,
all fields must belong to the "Symbol", "Address", "Data Type" and "Comments" columns. If you
make an invalid selection, the menu commands for editing will not be available.

The R, O, M, C, CC columns contain the special object properties for the respective symbols
and are only copied if the "Also copy special object properties" check box is selected in the
"Customize" dialog box (menu command Options > Customize).

The contents of the R, O, M, C, CC columns are copied if these columns are displayed. To
show or hide these columns, select the View > R, O, M, C, CC Columns menu command.

To edit a symbol table, proceed as follows:

1.

Select the area that you want to edit in the symbol table by using either of the following
methods:

- Using the mouse, click in the starting cell, and while keeping the left mouse button
depressed, move the mouse over the area that you want to select.

- Using the keyboard, select the area by pressing the shift key and then the cursor (arrow)
keys.

The selected area is shown in reverse video. The cell selected first is shown in normal display
and is surrounded by a frame.

Edit the area selected as required.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 191

Defining Symbols

8.6 Entering Shared Symbols

Programming with STEP 7
192 Manual, 04/2017, ASE41552389-AA

9.1

Creating Blocks and Libraries

Selecting an Editing Method

Depending on the programming language you use to create a program, you can enter your
program either in incremental input mode and/or free-edit (text) mode.

Incremental Editors for the Programming Languages Ladder Logic (LAD), Function Block
Diagram (FBD), Statement List (STL), or S7-GRAPH

In the incremental input mode editors for Ladder, FBD, STL, and S7-GRAPH, you create blocks
that are stored in the user program. You should choose to use incremental input mode if you want
to check what you have entered immediately. This edit mode is particularly suitable for beginners.
In incremental input mode, the syntax of each line or element is checked immediately after it has
been entered. Any errors are indicated and must be corrected before completing the entry. Entries
with correct syntax are automatically compiled and stored in the user program.

Any symbols used must be defined before editing the statements. If certain symbols are not
available, the block can not be fully compiled; this inconsistent interim version can, however, be
saved.

Source Code (Text) Editors for the Programming Languages STL, S7 SCL, or S7 HiGraph

In source code editors, you create source code files for subsequent compilation to generate
blocks.

We recommend you use source code editing, as this is a highly efficient program editing and
monitoring method.

The source code of the program or block is edited in a text file and then compiled.

The text files (source files) are stored in the sources folder of your S7 program, for example, as an
STL source file or SCL source file. A source file can contain code for one or multiple blocks. The
STL and SCL text editors allow you to generate source code for OBs, FBs, FCs, DBs, and UDTs
(user-defined data types), though you can use them to create a complete user program. One such
text file may contain the complete program (that is, all blocks) for a CPU.

When you compile the source file, the corresponding blocks will be generated and written to the
user program. All symbols used must be defined before you can compile them. Data errors are not
reported until the respective compiler interprets the source file.

It is imperative for compilation to stay conform with the prescribed syntax of the programming
language. A syntax check is only performed on account of a user instruction or when the source file
is compiled into blocks.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 193

Creating Blocks and Libraries

9.2 Selecting the Programming Language

9.2

Selecting the Programming Language

Setting the Programming Language for the Editor

Before you you generate a particular block or a source file, select the programming language and
editor via the object properties. This selection determines which editor is started when the block or
source file is opened.

Starting the Editor

Start the appropriate language editor either in SIMATIC Manager with a double-click on the
corresponding object (block, source file, etc.), by selecting the menu command Edit > Open
Object or click on the corresponding toolbar button.

194

To create an S7 program, the programming languages listed in the table are available to you. The
STEP 7 programming languages LAD, FBD, and STL are supplied with the standard STEP 7
software package. You can purchase other programming languages as optional software

packages.

You then have the choice of a number of different programming philosophies (Ladder Logic,
Function Block Diagram, Statement List, standard language, sequential control, or status graph)
and whether to use a text-based or a graphic programming language.

Select a programming language to determine the input mode (X).

extensive knowledge
of programming/PLCs

Programming User Group Application Incremental | Free- Block can be
Language Input Edit Documented
Mode Back from the
CPU
Statement List STL | Users who prefer Programs X X X
programming in a optimized in
language similar to terms of run time
machine code and memory
requirements
Ladder Logic LAD | Users who are Programming of | X - X
accustomed to working | logic controls
with circuit diagrams
Function Block Users who are familiar | Programming of | X - X
Diagram FBD with the logic boxes of | logic controls
Boolean algebra
F-LAD, F-FBD Users who are familiar | Programming of | X - X
with the programming | safety programs
Optional package | languages LAD and for F-systems
FDB.
SCL (Structured Users who have Programming - X -
Control Language) | programmed in high- data processing
level languages such | tasks
Optional package | @S PASCAL or C
S7-GRAPH Users who want to Convenient X - X
work oriented on the description of
technological functions | sequential
Optional package and do not have processes

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries

9.2 Selecting the Programming Language

of programming/PLCs

Programming User Group Application Incremental | Free- Block can be
Language Input Edit Documented
Mode Back from the
CPU
HiGraph Users who want to Convenient - X -
work oriented on the description of
technological functions | asynchronous,
Optional package and do not have non-sequential
extensive knowledge processes

CFC

Optional package

Users who want to
work oriented on the
technological functions
without extensive
programming or PLC
experience

Description of
continuous
processes

If blocks contain no errors, you can switch between Ladder Logic, Function Block Diagram, or

Statement List format. Program parts that cannot be displayed in the target language are shown in
Statement List format.

Under STL, you can generate blocks from source files and vice versa.

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

195

Creating Blocks and Libraries

9.2 Selecting the Programming Language

9.21 Ladder Logic Programming Language (LAD)

The graphic programming language Ladder Logic (LAD) is based on the representation of circuit
diagrams. The elements of a circuit diagram, e.g. normally open contacts and normally closed
contacts, are combined to form networks. The code section of a logic block represents one or more

networks.

Example of Networks in LAD

Metwark 1: Enable conditions

#Star #Sltnp F#Coil
— 1 i
#Clnlil
1
Metwork 2: Motor contral TH
FCoil # Feset T oDT #Error
— | A s g ——5)
#Cnil #Reset TimeE v &l [#Current_.ﬂme_t:nn
I R BCD— #Feset_Time_BCD
Mletwark 3 Start lamp
#Rleset #Starrt_Lamp
{1]
a?Errlilr
Metwiork 4. Stop lamp #Stop_Larmp

£]

#Rﬁset

The programming language LAD is supplied with the standard STEP 7 software package.
Programs are created under LAD with an incremental editor.

196

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries
9.2 Selecting the Programming Language

9.2.2 Function Block Diagram Programming Language (FBD)

The programming language Function Block Diagram (FBD) is based on graphic logic symbols also
known in Boolean algebra. Complex functions such as math functions can also be displayed
directly in combination with the logic boxes.

The programming language FBD is supplied with the standard STEP 7 software package.

Example of a Network in FBD

Metwork 1: Green phase for pedestrians

==
0.0 — &

0.1 —
&
TE— hA0.0

hA0.0— =
T4 —4

Programs are created in FBD with an incremental editor.

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 197

Creating Blocks and Libraries

9.2 Selecting the Programming Language

9.2.3 Statement List Programming Language (STL)

The programming language STL is a text-based programming language with a structure similar to
machine code. Each statement represents a program processing operation of the CPU. Multiple
statements can be linked to form networks.

Example of Networks in Statement List

A Metvork: 1: Control drain valee
]
o #Cail
)
AR #Cloze
= #Cail
Metwaork 2: Dizplay "Walve open”
A #Coil
= #Dizp_open
Mletwork 3: Dizplay "“Walve clozed’
AR #Cail
= #Dizp_clozed

The programming language STL is supplied with the standard STEP 7 software package. With this
programming language, you can use incremental editors to edit S7 blocks and you can create and
compile STL program source files in a source code editor to generate blocks.

Programming with STEP 7

198 Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries
9.2 Selecting the Programming Language

9.24 S§7 SCL Programming Language

The programming language SCL (Structured Control Language) is available as an optional
package. This is a high-level text-based language whose global language definition conforms to
IEC 1131-3. The language closely resembles PASCAL and, other than in STL, simplifies the
programming of loops and conditional branches due to its high-level language commands, for
example. SCL is therefore suitable for calculating equations, complex optimization algorithms, or
the management of large data volume.

S7 SCL programs are written in the source code editor.

Example:

FUNCTION_BLOCK FB20

VAR_INPUT

ENDVAL: INT;

END_VAR

VAR_IN_OUT

1Q1: REAL;

END_VAR

VAR

INDEX: INT;

END_VAR

BEGIN

CONTROL:=FALSE;

FOR INDEX:= 1 TO ENDVALUE DO
1Q1:=1Q1 * 2;
IF IQ1 >10000 THEN

CONTROL = TRUE

END_IF

END_FOR;

END_FUNCTION_BLOCK

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 199

Creating Blocks and Libraries

9.2 Selecting the Programming Language

9.2.5 S7-GRAPH Programming Language (Sequential Control)

The graphic programming language S7-GRAPH is available as optional package. It allows you to
program sequential controls. This includes the creation of sequencers and the specification of
corresponding step contents and transitions. You program the contents of the steps in a special
programming language (similar to STL). Transitions are programmed in a Ladder Logic Editor (a
light version of LAD).

S7-GRAPH displays even complex sequences very clearly and makes programming and
troubleshooting more effective.

Example of a Sequential Control in S7-GRAPH

S lD Ei1r‘|1e |

E1.1 A1l |
Iy M Ta TIRAEFID_OH_
E1 1 Chd 205 OMS

L Ta

T Freveazh |

£113 @@ [M [[A TS |

|_| I Ta (T4 [~ T |

M A 1.2 |

oF [Bezet |

E11 W22 L—J M J[AT14 |

H— T7 |

Blocks Created

With the S7-GRAPH editor you program the function block that contains the sequencer. A
corresponding instance DB contains the data for the sequencer, e.g. the FB parameters, step and
transition conditions. You can generate this instance DB automatically in the S7-GRAPH editor.

Source File

A text-based source file (GRAPH source file) can be generated from a function block created in S7-
GRAPH which can be interpreted by OPs or text-based displays for displaying the sequencer.

Programming with STEP 7
200 Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries

9.2.6

9.2 Selecting the Programming Language

S7 HiGraph Programming Language (State Graph)

The graphic programming language S7 HiGraph is available as an optional package. It allows you
to program a number of the blocks in your program as status graphs. Here you split your system
into dedicated functional units which can acquire different states and you define the transition
conditions between states. You describe the actions assigned to the states and the conditions for
the transitions between the states in a zoom-type language similar to Statement List.

You create a graph for each functional unit that describes the response of this functional unit. The
plant graphs are gathered in graph groups. The graphs can communicate to synchronize functional
units.

The well arranged view of the status transitions of a functional unit allows systematic programming
and simplifies debugging. The difference between S7-GRAPH and S7-HiGraph is, that the latter
acquires only one state (in S7-GRAPH: "step") at any one time. The figure below shows how to
create graphs for functional units (example).

Fosition -
camroperated switch
12 4 Counter Coordinatar
Inde withdranm clockwise
L 4 g™
\ / o / WWorkpiece
— il
A 4
Clockwise
— =
Slack'éﬂrfrtensinn
i otor Index inserted ! Graph for coordinating the
CEUIIE PR - functional units
— Counter bearing
P |ndex

Graphs for individbal functional units

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 201

Creating Blocks and Libraries

9.2 Selecting the Programming Language

9.2.7

202

o (1} o States

Tranzition statuz 3> 0 n n

A graph group is stored in a HiGraph source file in the "Source" folder of the S7 program. This
source file is then compiled to generate S7 blocks for the user program.

Syntax and formal parameters are checked after the last entry was made in a graph (when the
working window is closed). Addresses and symbols are not checked until the source file is being
compiled.

S7 CFC Programming Language

The optional software package CFC (Continuous Function Chart) is a programming language used
to link complex functions graphically.

You use the programming language S7 CFC to link existing functions. You do not need to program
many standard functions yourself, instead you can use libraries containing standard blocks (for
example, for logic, math, control, and data processing functions). To use CFC you do not require
any detailed programming knowledge or specific knowledge of programmable control, and you can
concentrate on the technology used in your branch of industry.

The program created is stored in the form of CFC charts. These are stored in the "Charts" folder
beneath the S7 program. These charts are then compiled to form the S7 blocks for the user
program.

You may want to create blocks to be connected yourself, in which case you program them for
SIMATIC S7 with one of the S7 programming languages.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries

9.3 Creating Blocks

9.3 Creating Blocks
9.3.1 Blocks Folder

You can create the program for an S7 CPU in the form of:

e Blocks

e Source files

The folder "Blocks" is available under the S7 program for storing blocks.

This block folder contains the blocks you need to download to the S7 CPU for your automation

task. These loadable blocks include logic blocks (OBs, FBs, FCs) and data blocks (DB). An empty

organization block OB1 is automatically created with the block folder because you will always need
this block to execute your program in the S7 CPU.

The block folder also contains the following objects:

e The user-defined data types (UDT) you created. These make programming easier but are not
downloaded to the CPU.

o The variable tables (VAT) that you can create to monitor and modify variables for debugging
your program. Variable tables are not downloaded to the CPU.

e The object "System Data" (system data blocks) that contains the system information (system
configuration, system parameters). These system data blocks are created and supplied with
data when you configure the hardware.

e The system functions (SFC) and system function blocks (SFB) that you need to call in your
user program. You cannot edit the SFCs and SFBs yourself.

With the exception of the system data blocks (which can only be created and edited via the

configuration of the programmable logic controller), the blocks in the user program are all edited

using the respective editor. This editor is started automatically by double-clicking the respective
block.
Note
The blocks you programmed as source files and then compiled are also stored in the block folder.
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 203

Creating Blocks and Libraries

9.3 Creating Blocks

9.3.2

User-Defined Data Types

Using User-Defined Data Types to Access Data

User-defined data types (UDTs) can combine elementary and complex data types. You can assign
a name to UDTs and use them more than once. The following figure illustrates the structure of a

user-defined data type consisting of an integer, a byte, a character, a floating-point number, and a
Boolean value.

LIDT20

INT —
BYTE [———»
CHAR =
FEAL [——
BOOL —\\

¥

Integer

Byte
Character

Feal nurmber

Boolean walue

Instead of entering all the data types singly or as a structure, you only need to specify "UDT20" as
the data type and STEP 7 automatically assigns the corresponding memory space.

Creating a User-Defined Data Type

You define UDTs with STEP 7. The following figure shows a UDT consisting of the following
elements: an integer (for saving the amount), a byte (for saving the original data), a character (for
saving the control code), a floating-point number (for saving the temperature), and a Boolean

memory bit (for terminating the signal). You can assign a symbolic name to the UDT in the symbol
table (for example, process data).

00 |Stack 1 STRLICT
+0.0 [Amount IMT 100
+2.0 | Griginal_data BYTE
+4.0 || Control_code CHAR
+5.0 || Temperature REAL 120
+20 [End BOOL FALSE
=100 EMD_STRUCT

Once you have created a UDT, you can use the UDT like a data type if, for example, you declare
the data type UDT200 for a variable in a DB (or in the variable declaration of an FB).

204

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries
9.3 Creating Blocks

The following figure shows a DB with the variables process _data_1 with the data type UDT200.
You only specify UDT200 and process_data_1. The arrays shown in italics are created when you
compile the DB.

0.0 STRUCT
+10.0 | Process_data_1| UDT200
=100 EMD STRUCT

Assigning Initial Values for a User-Defined Data Type

If you want to assign an initial value to every element of a user-defined data type, you specify a
value that is valid for the data type and the name of the element. You can, for example, assign the
following initial values (to the user-defined data type declared in the above figure):

Amount = 100
Original_data = B#16#0)
Control_code = 'C'
Temperature = 1.200000e+002
End = False

If you declare a variable as a UDT, the initial values of the variables are the values you specified
when you created the UDT.

Saving and Accessing Data in a User-Defined Data Type

You access the individual elements of a UDT. You can use symbolic addresses (for example
Stack_1.Temperature). You can, however specify the absolute address at which the element is
located (example: if Stack 1 is located in DB20 starting at byte 0, the absolute address for amount
is DB20.DBWO and the address for temperature is DB20.DBD6).

Using User-Defined Data Types as Parameters

You can transfer variables of the data type UDT as parameters. If a parameter is declared as UDT
in the variable declaration, you must transfer a UDT with the same structure. An element of a UDT
can, however, also be assigned to a parameter when you call a block providing the element of the
UDT corresponds to the data type of the parameter.

Note

If you call a block created in the S7-SCL programming language that contains a UDT parameter in
the program editor, this can result in a type conflict. You should therefore avoid using blocks
created in SCL if you use UDTs.

Advantages of DBs with an Assigned UDT

By using UDTs you have created once, you can generate a large number of data blocks with the
same data structure. You can then use these data blocks to enter different actual values for
specific tasks.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 205

Creating Blocks and Libraries

9.3 Creating Blocks

206

If, for example, you structure a UDT for a formula (for example, for blending colors), you can assign
this UDT to several DBs each containing different amounts.

User defined data type

DE17 "DARK_BLUE"
I I I

DB22 "LIGHT_BLUE"

LUDTH " Formula®

| —
\ DBE23 "TURGLUCI SE™

The structure of the data block is determined by the UDT assigned to it.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries

9.3.3

9.3 Creating Blocks

Block Properties

You can more easily identify the blocks you created if you use block properties and you can also
protect these blocks from unauthorized changes.

You should edit the block properties when the block is open. In addition to the properties you can
edit, the properties dialog box also displays data for your information only: you cannot edit this
information.

The block properties and system attributes are also displayed in the SIMATIC Manager in the
object properties for a block. Here you can only edit the properties NAME, FAMILY, AUTHOR, and
VERSION.

You edit the object properties after you insert the block via the SIMATIC Manager. If a block was
created using one of the editors and not in the SIMATIC Manager, these entries (programming
language) are saved automatically in the object properties.

Note

The mnemonics you want to use to program your S7 blocks can be set in the SIMATIC Manager
using the menu command Options > Customize and the "Language" tab.

Table of Block Properties

When entering block properties, you should observe the input sequence shown in the following
table:

Keyword / Property Meaning Example
[KNOW_HOW_PROTECT] Block protection; a block compiled with | KNOW_HOW_PROTECT

this option does not allow its code
section to be viewed. The interface for
the block can be viewed, but it cannot

be changed.
[AUTHOR:] Name of author: company name, AUTHOR : Siemens, but no
department name, or other name keyword
(max. 8 characters without blanks)
[FAMILY:] Name of block family: for example, FAMILY : controllers, but no
controllers keyword
(max. 8 characters without blanks)
[NAME:] Block name (max. 8 characters) NAME : PID, but no keyword
[VERSION: int1 . int2] Version number of block VERSION : 3.10

(both numbers between 0 and 15,
meaning 0.0 to 15.15)

[CODE_VERSION1] ID whether a function block can have CODE_VERSION1
multiple instances declared or not. If
you want to declare multiple instances,
the function block should not have this
property

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 207

Creating Blocks and Libraries

9.3 Creating Blocks

Keyword / Property
[UNLINKED] for DBs only!

Meaning

Example

Data blocks with the UNLINKED
property are only stored in the load
memory. They take up no space in the
working memory and are not linked to
the program. They cannot be accessed
with MC7 commands. Depending on
the specific CPU, the contents of such
a DB can be transferred to the working
memory only with SFC 20 BLKMOV or
SFC 83 READ_DBL.

[Non-Retain]

Data blocks with this attribute are reset
to the load values after every power
OFF and power ON and after every
STOP-RUN transition of the CPU.

[READ_ONLY] for DBs only

Write protection for data blocks; its data
can only be read and cannot be
changed

READ_ONLY

Read-only block

A copy of a block that is stored in read-
only status for reference purposes. This
property can only be assigned in the
program editor by selecting File >
Store Read-Only menu command.

The block protection KNOW_HOW_PROTECT has the following consequences:

e If you want to view a compiled block at a later stage in the incremental STL, FBD, or Ladder
editors, the code section of the block cannot be displayed.

e The variable declaration table for the block displays only the variables of the declaration types
var_in, var_out, and var_in_out. The variables of the declaration types var_stat and var_temp

remain hidden.

Assignment: Block Property to Block Type

208

The following table shows which block properties can be declared for which block types:

Property 0B F8 FC DB upt
KNOW_HOW_PROTECT o o . . -
AUTHOR o o . . -
FAMILY o o . . -
NAME o o . . -
VERSION o o . . -
UNLINKED - - - . -
READ_ONLY - - - . -
Non-Retain - - - . -
Read-only block ° ° ° ° °

The KNOW_HOW_PROTECT property can be set in a source file when you program the block. It
is displayed in the "Block Properties" dialog box but cannot be changed.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries

9.3.4

9.3 Creating Blocks

Displaying Block Lengths

Block lengths are displayed in "bytes."

Display in the Block Folder Properties

The following lengths are displayed in the block folder properties in the offline view:
e Size (sum of all blocks without system data) in the load memory of the programmable controller

e Size (sum of all blocks without system data) in the work memory of the programmable
controller

e Block lengths on the programming device (PG/PC) are not displayed in the block folder
properties.

Display in the Block Properties

The following are displayed in the block properties:

e Required number of local data: size of the local data in bytes

e MC7: size of the MC7 code in bytes, or size of the DB user data
e Size of the load memory in the programmable controller

e Size of the work memory in the programmable controller: only displayed if hardware
assignment is recognized.

For display purposes, it does not matter whether the block is located in the window of an online
view or an offline view.

Display in the SIMATIC Manager (Details View)

If a block folder is opened and the "Details View" selected, the work memory requirement is
displayed in the project window, irrespective of whether the block folder is located in the window of
an online view or an offline view.

You can calculate the sum of the block lengths by selecting all the relevant blocks. In this case, the
sum of the selected blocks is displayed in the status bar of the SIMATIC Manager.

No lengths are displayed for blocks which cannot be downloaded to the programmable controller
(for example, variable tables).

Block lengths on the programming device (PG/PC) are not displayed in the Details view.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 209

Creating Blocks and Libraries

9.3 Creating Blocks

9.3.5

210

Rewiring

The following blocks and addresses can be rewired:

Inputs, outputs
Memory bits, timers, counters

Functions, function blocks

To rewire:

1.

5.

Select the "Blocks" folder that contains the individual blocks you want to rewire in the SIMATIC
Manager.

Select the menu command Options > Rewire.

Enter the required replacements (old address/new address) in the table in the "Rewire" dialog
box.

Select the option "All addresses within the specified address area" if you want to rewire
address areas (BYTE, WORD, DWORD).

Example: You enter IW0 and IW4 as the address areas. The addresses 10.0 — 11.7 are then
rewired to the addresses 14.0 — 15.7. Addresses from the rewired area (for example, 10.1) can
then no longer be entered in the table individually.

Click the "OK" button.

This starts the rewire process. After rewiring is completed, you can specify in a dialog box whether
you want to see the info file on rewiring. This info file contains the address lists "Old address" and
"New address." The individual blocks are listed with the number of wiring processes that have been
carried out in each one.

When rewiring, the following should be noted:

When you rewire (that is, rename) a block, the new block cannot currently exist. If the block
exists, the process is interrupted.

When you rewire a function block (FB), the instance data block is automatically assigned to the
rewired FB. The instance DB does not change, that is, the DB number is retained.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries

9.3 Creating Blocks

9.3.6 Comparing Blocks

Introduction

To compare blocks that are in different locations, you can start the block comparison process in
either of the following ways:

e Go to the SIMATIC Manager and select the Options > Compare Blocks menu command. In the
"Compare Blocks - Results" dialog box that is displayed, click the "Go to" button. The results of
the comparison will appear in the program editor (LAD/FBD/STL) in the "Comparison" tab

e (o to the program editor. Select the Options > Compare On-/Offline Parthers menu command.

The following sections explain how the block-comparison process functions. In the following
discussion, a distinction is maintained between logic blocks (OBs, FBs, FCs) and data blocks
(DBs).

The effect of the "Including SDBs" option during an ONLINE/offline comparison of blocks in the
SIMATIC Manager is described in the section: Comparing System Data Blocks (SDBs)

How Block Comparison Works: Logic Blocks

In the first step of the process, STEP 7 compares the time stamps for the interfaces of the logic
blocks to be compared. If these time stamps are identical, STEP 7 assumes that the interfaces are
identical.

If the time stamps are different, STEP 7 then compares the data types in the interfaces step-by-
step by section. When a difference is found, STEP 7 determines the first difference in a section;
that is, in each case the first difference in the respective declaration ranges. Multi-instances and
UDTs are also included in the comparison. If the data types in the sections are the same, STEP 7
then compares the initial values of the variables. All differences are displayed.

In the second step, STEP 7 checks the code by network by network (in case the "Execute code
comparison" option was not selected, the code will still be compared if the "Go to" button in the
Program Editor is clicked.).

First, the inserted or deleted networks are detected. The results of the comparison will show
networks that are only present in one block. These will have the comment "only in".

Then, the remaining networks are compared until the first difference in statements is found.
Statements are compared in the following manner:

o For the setting "Absolute address has priority", based on the absolute address
e For the setting "Symbol has priority", based on the symbol

Note: If the blocks have symbolic priority and therefore also need to be compared in terms of
symbols, the "Perform detailed comparison" option should be enabled.

Statements are considered to identical if their operators and addresses are the same.

If the blocks to be compared were programmed in different programming languages, STEP 7
performs the comparison based on the STL language.

Special feature of offline-offline comparisons:

In contrast to an offline-online comparison, in an offline-offline comparison, STEP 7also detects the
presence of different variable names. This additional step is not possible for an offline-offline
comparison since only replacement symbols are available online.

Comments for block networks and lines as well as other block attributes (such as S7-PDIAG
information and messages) are excluded from comparisons.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 211

Creating Blocks and Libraries

9.3 Creating Blocks

How Block Comparison Works: Data Blocks

In the first step of the process, STEP 7 compares the time stamps for the interfaces of the data
blocks to be compared (as for logic blocks). If these time stamps are identical, STEP 7 assumes
that the data structures are identical.

If the interface time stamps are different, STEP 7 then compares the data structures until the first
difference is found. If the data structures are in the sections are identical, STEP 7 then compares
the initial values and current values. All differences are displayed.

Special feature of offline-offline comparisons:

In contrast to an offline-online comparison, in an offline-offline comparison, STEP 7 also detects
the presence of different variable names. This additional step is not possible for an offline-offline
comparison since only replacement symbols are available online.

Comments and structures for UDTs that are used in a data block are excluded from comparisons.

How Block Comparison Works: Data Types (UDT)

In the first step of the process, STEP 7 compares the time stamps for the interfaces of the data
types to be compared (as for data blocks). If these time stamps are identical, STEP 7 assumes that
the data structures are identical.

If the interface time stamps are different, STEP 7 then compares the data structures until the first
difference is found. If the data structures are in the sections are identical, STEP 7 then compares
the initial values. All differences are displayed.

How Block Comparison Works: Comparison in the Program Editor

1. Open the block to be compared to the loaded version.
2. Select the Options > Compare On-/Offline Partners menu command.

- If the online Is are determined to be "different", then you can open the relevant network
simply by double-clicking in its row.

How Block Comparison Works: Comparison in the SIMATIC Manager

212

1. Inthe SIMATIC Manager, select the block folder or the blocks to be compared.
2. Select the Options > Compare Blocks menu command.

In the "Compare Blocks" dialog box that is displayed, select the type of comparison
(ONLINE/offline or Path1/Path2).

4. For a Path1/Path2 comparison: In the SIMATIC Manager, select the block folder or the blocks
to be compared. These blocks are then automatically entered in the dialog box.

If also want to compare SDBs, select the "Including SDBs" check box.

6. If you also want to compare code, select the "Execute code comparison” check box. In a
detailed comparison, in addition to the execution-related parts of the block (interface and code),
any changes in the names for local variables and parameters are displayed. In addition, you
can select the "Including blocks created in different programming languages" check box to
compare blocks created in different programming languages (e.g. AWL, FUP....). In this case,
the blocks are compared based on STL.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries
9.3 Creating Blocks

7. Confirm your settings in the dialog box by clicking "OK".
The results of the comparison are displayed in the "Compare Blocks - Results" dialog box.

8. To display the properties (i.e. time of last modification, checksum, etc.) of the compared blocks,
click on the "Details" button in this dialog box

To open the program editor, in which the results of the comparison are displayed in the lower
portion of the window, click the "Go to" button.

Note

When comparing an offline block folder with an online one, only loadable block types (OB, FB, ...)
are compared. When comparing offline/online or Path1/Path2, all blocks included in a multiple
selection are compared, even if some of then are not loadable ones (i.e. variable tables or UDTSs).

9.3.7 Attributes for Blocks and Parameters

A description of the attributes can be found in the reference help on system attributes:

Jumps to Language Descriptions and Help on Blocks and System Attributes

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 213

Creating Blocks and Libraries

9.4 Working with Libraries

9.4

Working with Libraries

Libraries serve to store reusable program components for SIMATIC S7. The program components
can be copied to the library from existing projects or created directly in the library independently of
other projects.

You can save yourself a lot of programming time and effort if you store blocks which you want to
use many times in a library in an S7 program. You can copy them from there to the user program
where they are required.

To create S7 programs in a library, the same functions apply as for projects — with the exception of
debugging.

Creating Libraries

You can create libraries just like projects using the menu command File > New. The new library is
created in the directory you set for libraries in the "General" tab when you selected the menu
command Options > Customize.

Note

The SIMATIC Manager allows names that are longer than eight characters. The name of the library
directory is, however, cut off to eight characters. Library names must therefore differ in their first
eight characters. The names are not case-sensitive. When this directory is opened in the Browser,
the full name is displayed again, but when browsing for the directory, only the shortened name
appears.

Note that you cannot use blocks from libraries of a new STEP 7 version in projects of an older
STEP 7 version.

Opening Libraries

To open an existing library, enter the menu command File > Open. Then select a library in the
dialog boxes that follow. The library window is then opened.

Note

If you cannot find the library you require in the library list, click the "Browse" button in the "Open"
dialog box. The standard Windows browser then displays the directory structure in which you can
search for the library.

Note that the name of the file always corresponds to the original name of the library when it was
created, meaning any name changes made in the SIMATIC Manager are not made at file level.

When you select a library it is added to the library list. You can change the entries in the library list
using the menu command File > Manage.

Copying Libraries

214

You copy a library by saving it under another name using the menu command File > Save As.

You copy parts of a library such as programs, blocks, source files etc. using the menu command
Edit > Copy.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Blocks and Libraries

9.4 Working with Libraries

Deleting a Library
You delete a library using the menu command File > Delete.

You delete parts of a library such as programs, blocks, source files etc. using the menu command
Edit > Delete.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 215

Creating Blocks and Libraries

9.4 Working with Libraries

9.4.1

9.4.2

Hierarchical Structure of Libraries

Libraries are structured in a hierarchical manner, just like projects:
e Libraries can contain S7 programs.

e An S7 program can contain one "Blocks" folder (user program), one "Source Files" folder, one
"Charts" folder, and one "Symbols" object (symbol table).

e The "Blocks" folder contains the blocks that can be downloaded to the S7 CPU. The variable
tables (VAT) and user-defined data types in the folder are not downloaded to the CPU.

e The "Source Files" folder contains the source files for the programs created in the various
programming languages.

e The "Charts" folder contains the CFC charts (only if the S7 CFC optional software is installed).

When you insert a new S7 program, a "Blocks" folder, "Source Files" folder (S7 only), and a
"Symbols" object are inserted automatically in it.

Overview of the Standard Libraries

The STEP 7 standard software package contains the following standard libraries
o System Function Blocks: System Function Blocks (SFBs) and System Functions (SFCs)
e S$5-S7 Converting Blocks: Blocks for converting STEP 5 programs

e |EC Function Blocks: Blocks for IEC functions, e.g. for processing time and date information,
comparison operations, string processing and selecting the min./max. values

e Organization Blocks: Default organization blocks (OB)s

e PID Control Blocks: Function Blocks (FBs) for PID control

e Communication Blocks: Functions (FCs) and function blocks for SIMATICNET CPs.
e TI-S7 Converting Blocks: Standard functions for general use

e Miscellaneous Blocks: Blocks for time stamping and for TOD synchronization

When you install optional software packages, other libraries may be added.

Deleting and Installing the Supplied Libraries

216

You can delete the supplied libraries in SIMATIC Manager and then reinstall them. Run STPE 7
Setup to install the libraries..

Note

When you install STEP 7, the supplied libraries are always copied. If you edit these libraries, the
modified libraries will be overwritten with the originals when STEP 7 is installed again.

For this reason, you should copy the supplied libraries before making any changes and then only
edit the copies.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

10 Basics of Creating Logic Blocks

10.1 Basics of Creating Logic Blocks

10.1.1 Structure of the Program Editor Window

The window of the program editor is split into the following areas:

Tables

The "Program Elements" tab displays a table of the program elements you can insert into your
LAD, FBD or STL program. The "Call Structure" tab shows the call hierarchy of the blocks in the
current S7 program.

Variable Declaration

The variable declaration is split in to the sections "Variable Table" and "Variable Detail View".

Instructions

The instruction list shows the block code that is to be processed by the PLC. It consists of one or
several networks.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 217

Basics of Creating Logic Blocks

10.1 Basics of Creating Logic Blocks

Details

218

ELADISTL!FBD -[0B1 -- ZEnD1_05_STEP7__LAD_1-0SIMATIC 300(... [W[=] E3

The various tabs in the "Details" window provide functions, for example, for displaying error
messages, editing symbols, providing address information, controlling addresses, comparing
blocks and for editing error definitions for hardware diagnostics.

i3 File Edit Inzet PLC Debug Wiew Option: Window Help == x|
SEN |Contents OF: 'Ervironmen
=& TEMP || [Mame D[«
B New network = OB1_EY _CLASS = (OB1_EY C.. |B
Bit lagic L2 DB1_SCAMN_1 J @ 0B1_SCAN. |B
(] Comparator 3= OB_PRIORITY —lm op1_pRio.. |B
@ Coarreerter ----- = OB1_0B_MWUMBR = OEH_OEI M B
Counter """ & 0B1_RESERVED A 1_RF;F T
DE call 4| T _____]_; ﬂ F ' 9
-5 Jumps
E_T] Integer fct. ! -]
:Il:uuit;ng-pnlnt fot. m: 3B [(3et, Reset) Memory Functi
¥-{3f Program control
Shift/Ratate TAutomatic [
_ Statuz bits "hutomatic Mode™
(@) Timers _in” SR
-2 Word logic | | 3 Q
+-{£3 FE blocks
g3 FC blocks "Manual_On
g8 SFB blacks " 12
{£H SFC blocks

Jill tultiple instance
- jill] Libraries

&

=

Frogram...

E_E Call zhr.

Hetwork 4 : Switching on the Petrol Engin

"Petrol™

EN

"Engine™

ENO|——
4

:’fll é Address Symbaol Dizplay format Status value
1 [05 “Automatic_On" i BOOL
2 [42 “Automatic_Mod: BOOL
3 | 06 :"Manual_0On" BOOL

[o] [[2: I

A

3 Crogz-References

h 4: Address info. A

i

Prezz F1 to get Help.

| = |affline

b

i

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks
10.1 Basics of Creating Logic Blocks

10.1.2 Basic Procedure for Creating Logic Blocks

Logic blocks (OBs, FBs, FCs) consist of a variable declaration section, a code section as well as
their properties. When programming, you must edit the following three parts:

e Variable declaration: In the variable declaration you specify the parameters, system attributes
for parameters, and local block-specific variables.

e Code section: In the code section you program the block code to be processed by the
programmable controller. This consists of one or more networks. To create networks you can
use, for example, the programming languages Ladder Logic (LAD), Function Block Diagram
(FBD), or Statement List (STL).

o Block properties: The block properties contain additional information such as a time stamp or
path that is entered by the system. In addition, you can enter your own details such as name,
family, version, and author and you can assign system attributes for blocks.

In principle it does not matter in which order you edit the parts of a logic block. You can, of course,
also correct them and add to them.

Frocedure for Programming Logic Blocks in STL

Create a logic block (FB, FC or OB} in
the SIMATIC Manager

Incremental STL Editar

Edit the variable declaration table
for the blocl.

)

Edit the code zection.

l

Editthe block properties.

Save the block
(rmenu comimand File = Save)

|

Note

If you want to make use of symbols in the symbol table, you should first check that they are
complete and make any necessary corrections.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 219

Basics of Creating Logic Blocks

10.1 Basics of Creating Logic Blocks

10.1.3

10.1.4

220

Default Settings for the LAD/STL/FBD Program Editor

Before you start programming, you should make yourself familiar with the settings in the editor in
order to make it easier and more comfortable for you when programming.

Using the menu command Options > Customize you open a tabbed dialog box. In the various
tabs you can make the following default settings for programming blocks, e.g. in the "General" tab:

e The fonts (type and size) for text and tables.
o Whether you want symbols and comments to be displayed with a new block.

You can change the settings for language, comments, and symbols during editing using the
commands in the View >... menu.

You can change the colors used for highlighting, for example, networks or statement lines in the
"LAD/FBD" tab.

Access Rights to Blocks and Source Files

When editing a project, a common database is often used, meaning that a number of personnel
may want to access the same block or data source at the same time.

The read/write access rights are assigned as follows:

o Offline editing:
When you attempt to open a block/source file, a check is made to see whether you have 'write
access to the object. If the block/source file is already open, you can only work with a copy. If
you then attempt to save the copy, the system queries whether you want to overwrite the
original or save the copy under a new name.

¢ Online editing:
When you open an online block via a configured connection, the corresponding offline block is
disabled, preventing it from being edited simultaneously.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks

10.2 Editing the Variable Declaration

10.1.5 Instructions from the Program Elements Table

The "Program elements" tab in the overview window provides LAD and FBD elements as well as
already declared multiple instances, pre-configured blocks and blocks from libraries. You can
access the tab via menu command View > Tables. You can also insert program elements in the
code section using the menu command Insert > Program Elements.

Example of the "Program Elements"” Tab in LAD

ELADJSTLIFBD - [FB2 -- ZEn01_05_STEP7__LAD_1-95SIMATIC 300([._.. [M=] E3
1+ File Edit Inset PLC Debug Yiew Option: Window Help _|E|i|
O|(2-[=] S| &2 e] v ¢l [
I Nl 2 T 5 i . 4
=l | Contents OF 'Environmenthl nterfaceh M'
Interface [Mame Data Type A
o] New network & i M Ell
B30 Bit logic e-dd OUT
..... =l | |- : = |N_|:||_|T
..... 1= I STAT
----- - -NOTI- 4 TEMP
..... <3 -] 4| I _PI
..... + [ﬂ]. "
""" < A FEZ : Title: —
..... + [S] -
..... EI' =1 Commemnt:
..... ;EI' ==
..... M- | e
..... :: Ep]] Hetwork 1: Title:
----- <r ~[SAVE] Comment:
..... ;EI' MEG
..... ;EI' POS
[#-{&] Comparatar
[F-{ag Converter 227
[-{#4] Counter — #
[+-{og] DB cal
H-{g] Jumps x|
“Nuzurmall_u Clozed Contact BI
Pragram... E_E Call =tr... ‘ I I _}Iﬂ
Presz F1 to get Help. | 2 | offine Ak M1
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 221

Basics of Creating Logic Blocks

10.2 Editing the Variable Declaration

10.2 Editing the Variable Declaration

10.2.1 Using the Variable Declaration in Logic Blocks

After you open a logic block, a window opens that contains in the upper section the variable table
and the variable detail view for the block as well as the instruction list in the lower section in which

you edit the actual block code.

Example: Variable Views and Instruction List in STL

ELADJSTL!FBD - [FB1 -- ZEn01_02_STEP7__STL_1-10\SIMATIC 3... [W[=] E3

1F File Edit Inset PLC Debug Yiew Option: ‘Window Help

=18

Contents OF: 'EnvironmentsnterfacelN'

Irterface [Mame Data Type |Address |Initial Value
=G N = |Switch_On |Boal 0.0

ol ich @ Swith_Of _ |Bool 0.1

- g E*‘j'l“':h-'z'” @ Failure Bool 0.2

e ailure

n B Actual_Spesd = Actual_Speed|int 2.0
w43 OUT o
a4 IN_OUT
- STAT
4@ TEMP <I |]

FBE1l : Function Elock for Controlling the Engine
Hetwork 1: 3witching on Engine, Negating Signals
a #3witch_On
AN "intomatic Mode™
3 #Engine On
0 #Switch OLL
oM #Failure
E

#Engine On

sl

Press F1 to get Help. | 2 | affine

it

N

In the variable detail view, you specify the local variables and the formal parameters for the block
as well as the system attributes for parameters. This has the following effects:

o During declaration, sufficient memory space is reserved for temporary variables in the local
data stack, and in the case of function blocks, for static variables in the instance DB to be

associated later.

e When setting input, output, and in/out parameters you also specify the "interface" for the call of

a block in the program.

e When you declare the variables in a function block, these variables (with the exception of the
temporary variables) also determine the data structure for every instance DB that is associated

with the function block.

222

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks

10.2 Editing the Variable Declaration

o By setting system attributes you assign special properties, for example, for the configuration of
message and connection functions, for operator control and monitoring functions and the
process control configuration.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 223

Basics of Creating Logic Blocks

10.2 Editing the Variable Declaration

10.2.2

224

Interaction Between The Variable Detail View And The Instruction List

The variable declaration and instruction list of logic blocks are closely related, because for
programming the names specified in the variable declaration are used in the instruction list. All
changes in the variable declaration will therefore influence the entire instruction list.

Action in the Variable Declaration

Reaction in the Code Section

Correct new entry

If invalid code present, previously undeclared
variable now becomes valid

Correct name change without type change

Symbol is immediately shown everywhere with its
new name

Correct name is changed to an invalid name

Code remains unchanged

Invalid name is changed to a correct name

If invalid code is present, it becomes valid

Type change

If invalid code is present, it becomes valid and if valid
code is present, this may become invalid

Deleting a variable (symbolic name) used in the
code

Valid code becomes invalid

Change to comments, faulty input of a new variable, change to an initial value, or deleting an
unused variable has no effect on the instruction list.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks
10.2 Editing the Variable Declaration

10.2.3 Structure of the Variable Declaration Window

The variable declaration window consists of the overview of variables and of the variable detail
view.

ELAD!STL!FBD - [FB1 - ZEn01_02_STEP7__STL_1-10ASIMATIC 300(... |9[=] E3

i# File Edit |nset PLC Debug “iew Options 'Window Help _|5’|£|
| Contents OF 'Environment nterfacet N
Irterface [Mame Data Type |Address [Initial value |
=3 IN E||5wit|:h_0n Bool 0.0
= S = Swith_of _|Boal 01
e ?’*_’l“'ih—'jff & Failure Bool 0.2
== Fallure
2= Actual_Speed|int 20
LB Actual_Speed a —=H
+-d0= OUT
-0 IM_OUT
- STAT
TEMP
= «| | N

After you have generated and opened a new code block, a default variable table is displayed. It
lists only the declaration types (in, out, in_out, stat, temp) permitted for the selected block, namely

in the prescribed order. You can edit the default variable declaration that is displayed after you
have generated a new OB.

Permitted data types of local data for the various block types are found under Assigning the Data
Typs To Local Data Of Code Blocks.

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 225

Basics of Creating Logic Blocks

10.3 Multiple Instances in the Variable Declaration

10.3

10.3.1

226

Multiple Instances in the Variable Declaration

Using Multiple Instances

It is possible that you may want to or have to use a restricted number of data blocks for instance
data owing to the performance (for example, memory capacity) of the S7 CPUs you are using. If
other existing function blocks are called in an FB in your user program (call hierarchy of FBs), you
can call these other function blocks without their own (additional) instance data blocks.

Use the following solution:

¢ Include the function blocks you want to call as static variables in the variable declaration of the
calling function block.

¢ In this function block, call other function blocks without their own (additional) instance data
blocks.

e This concentrates the instance data in one instance data block, meaning you can use the
available number of data blocks more effectively.

The following example illustrates the solution described: FB2 and FB3 use the instance DB of the
function block FB1 from which they were called.

FB1 — Instance DB of FB 1
Declaration section; ___,...---"""'"#
ztatic wariable of the
twpe "FBsz to be called"
(FBZ, FBE=)
FBZ
inztance 1: FE 2 (Lzes inztance DB
inztance_2: FB 3 —{ of FB 1)
FB-call:
CAaLL#nztance_1 -
CALL#nztance 2 FB3
fuzesz instance DB
of FB 13

Only requirement: You must "tell" the calling function block which instances you are calling and
what (FB) type these instances are. These details must be entered in the declaration window of the
calling function block. The function block used must have at least one variable or parameter from
the data area (VAR_TEMP cannot be used).

Do not use multiple instance data blocks if online changes are expected while the CPU is running.
Surge-free reloading is only guaranteed when using instance data blocks.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks
10.3 Multiple Instances in the Variable Declaration

10.3.2 Rules for Declaring Multiple Instances

The following rules apply to the declaration of multiple instances:

e Declaring multiple instances is only possible in function blocks that were created with STEP 7
from Version 2 onwards (see Block Attribute in the properties of the function block).

e In order to declare multiple instances, the function block must be created as a function block
with multiple instance capability (default setting from STEP 7 Version x.x; can be deactivated
in the editor using Options > Customize).

¢ Aninstance data block must be assigned to the function block in which a multiple instance is
declared.

e A multiple instance can only be declared as a static variable (declaration type "stat").

Note
e You can also create multiple instances for system function blocks.
e If the function block was not created as being able to have multiple instances and you want it to

have this property, you can generate a source file from the function block in which you then
delete the block property CODE_VERSION1 and then compile the function block again.

10.3.3 Entering a Multiple Instance in the Variable Declaration Window

1. Open the function block from which the subordinate function blocks are to be called.

2. Define a static variable in the variable declaration of the calling function block for each call of a
function block for whose instance you do not want to use an instance data block.

- Inthe variable table, select hierarchy level "STAT".
- Enter a name for the FB call in the "Name" column of the variable detail view

- Enter the function block you want to call in the "Data type" column as an absolute address
or with its symbolic name.

- You can enter any explanations required in the comment column.

Calls in the Code Section

When you have declared multiple instances, you can use FB calls without specifying an instance
DB.

Example: If the static variable "Name: Motor_1 , Data type: FB20" is defined, the instance can be
called as follows:

Call Motor_1 /I Call of FB20 without instance DB

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 227

Basics of Creating Logic Blocks
10.4 General Nofes on Entering Statements and Comments

10.4 General Notes on Entering Statements and Comments

10.4.1 Structure of the Code Section

In the code section you program the sequence for your logic block by entering the appropriate
statements in networks, depending on the programming language chosen. After a statement is
entered, the editor runs an immediate syntax check and displays any errors in red and italics.

The code section for a logic block generally comprises a number of networks that are made up of a
list of statements.

In a code section you can edit the block title, block comments, network title, network comments,
and statement lines within the networks.

Structure of the Code Section Using the STL Programming Language as an Example

& FBTD- <Offlingt

Block title FBTFO : Engine Contral Pregram -

Blzk

commeant _

Metwark
comment

A1 14 FBEZommeni
Staternents — 4 | & 21

Metwork Z:
Metwork title ———

Programming with STEP 7
228 Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks

10.4 General Notes on Entering Statements and Comments

10.4.2 Procedure for Entering Statements

You can edit the parts of the code section in any order. We recommend you proceed as follows
when you program a block for the first time:

Enter hlock title (optional

Y

Enter block comment (optionah

2

Edit networks

Enter netwark: title {optional)

Y

Enter netwark comment {optional)

Y

Enter statements

Enter statement comiments (optional)

Y

You can make changes in either overwrite mode or insert mode. You switch between modes using
the INSERT key.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 229

Basics of Creating Logic Blocks

10.4 General Nofes on Entering Statements and Comments

10.4.3

10.4.4

230

Entering Shared Symbols in a Program

Using the menu command Insert > Symbol you can insert symbols in the code section of your
program. If the cursor is positioned at the beginning, the end, or within a string, the symbol is
already selected that starts with this string - if such a symbol exists. If you change the string, the
selection is updated in the list.

Separators for the beginning and end of a string are, for example, blank, period, colon. No
separators are interpreted within shared symbols.

To enter symbols, proceed as follows:

1.
2.

3.

Enter the first letter of the required symbol in the program.

Press CTRL and J simultaneously to display a list of symbols. The first symbol starting with the
letter you entered is already selected.

Enter the symbol by pressing RETURN or select another symbol.

The symbol enclosed in quotation marks is then entered instead of the first letter.

In general the following applies: if the cursor is located at the beginning, the end, or within a string,
this string is replaced by the symbol enclosed in quotation marks when inserting a symbol.

Entering Block Comments and Network Comments

1.

Activate the comments with the menu command View > Display with > Comments (a check
mark is visible in front of the menu command).

Position the cursor in the gray field below the block name or below the network name by
clicking with the mouse. The gray comment field appears white and has a border.

Enter your comment in the open text box. You are allowed 64 Kbytes per block for block
comments and network comments.

Exit the text box by clicking with the mouse outside the text box, by pressing the TAB key, or
using the key combination SHIFT+TAB.

If you select the menu command View > Display with > Comments again, you can switch off
the comments again (the check mark disappears).

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks
10.4 General Notes on Entering Statements and Comments

10.4.5 Title and Comments for Blocks and Networks

Comments make your user program easier to read and therefore make commissioning and
troubleshooting easier and more effective. They are an important part of the program
documentation and should certainly be made use of.

Comments in LAD, FBD and STL Programs
The following comments are available:
o Block title: title for a block (max. 64 characters)
e Block comment: documents the whole logic block, for example, the purpose of the block
o Network title: title for a network (max. 64 characters)
e Network comment: documents the functions of a single network
e Comment column in the variable detail view: comments the declared local data

e Symbol comment: comments that were entered for an address when its symbolic name was
defined in the symbol table.
You can display these comments using the menu command View > Display with > Symbol
Information.

In the code section of a logic block you can enter the block title and network title, and block
comments or network comments.

Block Title or Network Title

To enter a block or network title, position the cursor on the word "Title" to the right of the block
name or network name (for example, Network 1: Title:). A text box is opened in which you can
enter the title. This can be up to 64 characters long.

Block comments pertain to the whole logic block. There they can comment the function of the
block. Network comments pertain to the individual networks and document details about the

network.
1. Metwark 2: Title:k
Mouse click
2. Metwork 2: |The network title is displayved here

To assign network titles automatically, select menu command Options > Settings and click on the
option "Automatic Assignment of Network Title" in the "General" tab. The symbol comment of the
first address entered will then be applied as network title.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 231

Basics of Creating Logic Blocks
10.4 General Nofes on Entering Statements and Comments

Block Comments and Network Comments

You can toggle the view of the gray comment fields on and off using the menu command View >
Display with > Comments. A double-click on the comment field opens the text box in which you
can now enter your remarks. You are allowed 64 Kbytes per block for block comments and network
comments.

.
T Mouse click

2. Commentfor netwark ar block

Programming with STEP 7
232 Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks

10.4 General Notes on Entering Statements and Comments

10.4.6 Working with Network Templates

When programming blocks, if you would like to use networks multiple times, you can store these
networks in a library as network templates, complete with wildcards, if appropriate (for example, for
addresses). The library must be available before you create the network template.

Creating a Network Template

Create a new library in the SIMATIC Manager if necessary. Select the menu command Insert >
Program > S7 Program to insert a program into the library.

1.
2.

N o o ko

Open the block that contains the network(s) from which you want to create a network template.

In the opened block, replace the title, comment, or addresses with wildcards as required. You
can use the strings %00 to %99 as wildcards. Wildcards for addresses are displayed in red.
This is not a problem here because you will not be saving the block after you create the
network template. You can replace the wildcards later with appropriate addresses when you
insert the network template into a block.

Select "Network <No.>" of the network(s) you want to include in the network template.
Select the menu command Edit > Create Network Template.

Enter a meaningful comment for each wildcard used in the dialog box displayed.
Click the "OK" button.

Select the source file folder of the S7 program in your network template library in the browser
that appears and enter a name for the network template.

Confirm your entry by clicking the "OK" button. The network template is stored in the selected
library.

Close the block without saving it.

Inserting a Network Template in a Program

1.

N o o ko

Open the block in which you want to insert the new network.

In the opened block, click in the network after which you want to insert a new network based on
the network template.

Open the "Program Elements" tab (menu command Insert > Program Elements).

Open the "S7 Program" folder of the relevant library in the catalog.

Double-click the network template.

In the dialog box, enter the required replacements for the wildcards in the network template.

Click the "OK" button. The network template is then inserted after the current network.

Note
You can also drag and drop the template from the tab to the editor window.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 233

Basics of Creating Logic Blocks

10.4 General Nofes on Entering Statements and Comments

10.4.7 Search Function for Errors in the Code Section

Errors in the code section are easy to recognize by their red color. To make it easier to navigate to
errors that lie outside the visible area on the screen, the editor offers two search functions Edit >
Go To > Previous Error/Next Error.

The search for errors goes beyond one network. This means that the whole code section is
searched and not just one network or the area currently visible on the screen.

If you activate the status bar using the menu command View > Status Bar, notes on the errors
found are displayed there.

You can also correct errors and make changes in overwrite mode. You toggle between insert mode
and overwrite mode using the INSERT key.

Programming with STEP 7
234 Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks

10.5

10.5.1

10.5 Editing LAD Elements in the Code Section

Editing LAD Elements in the Code Section

Settings for Ladder Logic Programming

Setting the Ladder Logic Layout

You can set the layout for creating programs in the Ladder Logic representation type. The format
you select (A4 portrait/landscape/maximum size) affects the number of Ladder elements that can
be displayed in one rung.

1. Select the menu command Options > Customize.
2. Select the "LAD/FBD" tab in the following dialog box.

3. Select the required format from the "Layout" list box. Enter the required format size.

Settings for Printing

If you want to print out the Ladder code section, you should set the appropriate page format before
you start to program the code section.

Settings in the "LAD/FBD" Tab

10.5.2

In the "LAD/FBD" tab which is accessed using the menu command Options > Customize you can
make basic settings, e.g. concerning layout and address field width.

Rules for Entering Ladder Logic Elements
You will find a description of the Ladder Logic programming language representation in the "Ladder
Logic for S7-300/400 - Programming Blocks" manual or in the Ladder Logic online help.

A Ladder network can consist of a number of elements in several branches. All elements and
branches must be connected; the left power rail does not count as a connection (IEC 1131-3).

When programming in Ladder you must observe a number of guidelines. Error messages will
inform you of any errors you make.

Closing a Ladder Network

Every Ladder network must be closed using a coil or a box. The following Ladder elements must
not be used to close a network:

e Comparator boxes
e Coils for midline outputs _/(#)_/

e Coils for positive _/(P)_/ or negative _/(N)_/ edge evaluation

Positioning Boxes

The starting point of the branch for a box connection must always be the left power rail. Logic
operations or other boxes can be present in the branch before the box.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 235

Basics of Creating Logic Blocks

10.5 Editing LAD Elements in the Code Section

Positioning Coils

Coils are positioned automatically at the right edge of the network where they form the end of a

branch.

Exceptions: Coils for midline outputs _/(#)_/ and positive _/(P)_/ or negative _/(N)_/ edge
evaluation cannot be placed either to the extreme left or the extreme right in a branch. Neither are
they permitted in parallel branches.

Some coils require a Boolean logic operation and some coils must not have a Boolean logic
operation.

e Coils which require Boolean logic:

Output _/(), set output _/(S), reset output _/(R)

Midline output _/(#)_/, positive edge _/(P)_/, negative edge _/(N)_/
All counter and timer coils

Jump if Not _/(JMPN)

Master Control Relay On _/(MCR<)

Save RLO into BR Memory _/(SAVE)

Return _/(RET)

e Coils which do not permit Boolean logic:

Master Control Relay Activate _/(MCRA)
Master Control Relay Deactivate _/(MCRD)
Open Data Block _/(OPN)

Master Control Relay Off _/(MCR>)

All other coils can either have Boolean logic operations or not.

The following coils must not be used as parallel outputs:
e Jump if Not _/(JMPN)

e Jump _/(JMP)

e Call from Coil _/(CALL)

e Return _/(RET)

Enable Input/Enable Output

The enable input "EN" and enable output "ENO" of boxes can be connected but this is not
obligatory.

236

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks
10.5 Editing LAD Elements in the Code Section

Removing and Overwriting

If a branch consists of only one element, the whole branch is removed when the element is
deleted.

When a box is deleted, all branches which are connected to the Boolean inputs of the box are also
removed with the exception of the main branch.

The overwrite mode can be used to simply overwrite elements of the same type.

Parallel Branches
e Draw OR branches from left to right.
e Parallel branches are opened downwards and closed upwards.
e A parallel branch is always opened after the selected Ladder element.
e A parallel branch is always closed after the selected Ladder element.

e To delete a parallel branch, delete all the elements in the branch. When the last element in the
branch is deleted, the branch is removed automatically.

Constants

Binary links cannot be assigned constants (i.e. TRUE or FALSE). Instead, use addresses of the
data type BOOL.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 237

Basics of Creating Logic Blocks

10.5 Editing LAD Elements in the Code Section

10.5.3 lllegal Logic Operations in Ladder

Power Flow from Right to Left

No branches may be created which may cause power to flow in the reverse direction. The following
figure shows an example: With signal state "0" at | 1.4 a power flow from right to left would result
at| 6.8. This is not permitted.

11.0 112 114 |4|_2 (6.0
I

o~
po—

2.6 58

)6

- llleqgal poweer flawd
| 4.4 I| Zl.El
[

Short Circuit

No branches may be created which cause a short circuit. The following figure shows an example:

[Megal short circuit!

Programming with STEP 7
238 Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks
10.6 Editing FBD Elements in the Code Section

10.6 Editing FBD Elements in the Code Section

10.6.1 Settings for Function Block Diagram Programming

Setting the Function Block Diagram Layout

You can set the layout for creating programs in the Function Block Diagram representation type.
The format you select (A4 portrait/landscape/maximum size) affects the number of FBD elements
that can be displayed in one rung.

1. Select the menu command Options > Customize.
2. Select the "LAD/FBD" tab in the following dialog box.

3. Select the required format from the "Layout" list box. Enter the required format size.

Settings for Printing

If you want to print out the FBD code section, you should set the appropriate page format before
you start to program the code section.

Settings in the "LAD/FBD" Tab

In the "LAD/FBD" tab which is accessed using the menu command Options > Customize you can
make basic settings, e.g. concerning layout and address field width.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 239

Basics of Creating Logic Blocks

10.6 Editing FBD Elements in the Code Section

10.6.2 Rules for Entering FBD Elements
You will find a description of the programming language "FBD" in the "Function Block Diagram for
S7-300/400 - Programming Blocks" manual or in the FBD online help.

An FBD network can consist of a number of elements. All elements must be interconnected (IEC
1131-3).

When programming in FBD, you must observe a number of rules. Error messages will inform you
of any errors you make.

Entering and Editing Addresses and Parameters

When an FBD element is inserted, the characters ??? and ... are used as token characters for
addresses and parameters.

e The red characters ??? stand for addresses and parameters which must be connected.
e The black characters ... stand for addresses and parameters which can be connected.

If you position the mouse pointer on the token characters, the expected data type is displayed.

Positioning Boxes

You can add standard boxes (flip flops, counters, timers, math operations, etc.) to boxes with
binary logic operations (&, >=1, XOR). The exceptions to this rule are comparison boxes.

No separate logic operations with separate outputs can be programmed in a network. You can,
however, assign a number of assignments to a string of logic operations with the help of a branch.
The following figure shows a network with two assignments.

#ztart =
starer g =1 T branch
#Foondtion — —a &
#_next_red_car___| #eondition

#t_dur_r_car __ | =

==

#oond_02

#oar —of _EI

Programming with STEP 7
240 Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks

10.6 Editing FBD Elements in the Code Section

The following boxes can only be placed at the right edge of the logic string where they close the
string:

e Set counter value

e Assign parameters and count up, assign parameters and count down

o Assign pulse timer parameters and start, assign extended pulse timer parameters and start
o Assign on-delay/off-delay timer parameters and start

Some boxes require a Boolean logic operation and some boxes must not have a Boolean logic
operation.

Boxes which require Boolean logic:
o Output, set output, reset output _/[R]
e Midline output _/[#]_/, positive edge _/[P]_/, negative edge /[N]_/
e All counter and timer boxes
e Jump if Not _/[JMPN]
e Master Control Relay On _/[MCR<]
e Save RLO into BR Memory _/[SAVE]
e Return /[RET]

Boxes which do not permit Boolean logic:
e Master Control Relay Activate [MCRA]
e Master Control Relay Deactivate [MCRD]
e Open Data Block [OPN]
e Master Control Relay Off [MCR>]

All other boxes can either have Boolean logic operations or not.

Enable Input/Enable Output

The enable input "EN" and enable output "ENQO" of boxes can be connected but this is not
obligatory.

Removing and Overwriting

When a box is deleted, all branches which are connected to the Boolean inputs of the box are also
removed with the exception of the main branch.

The overwrite mode can be used to simply overwrite elements of the same type.

Constants

Binary links cannot be assigned constants (i.e. TRUE or FALSE). Instead, use addresses of the
data type BOOL.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 241

Basics of Creating Logic Blocks

10.7 Editing STL Statements in the Code Section

10.7

10.7.1

Editing STL Statements in the Code Section

Settings for Statement List Programming

Setting the Mnemonics

10.7.2

242

You can choose between two sets of mnemonics:
e German
e English.

You set the mnemonics in the SIMATIC Manager with the menu command Options > Customize
in the "Language" tab before opening a block. While editing a block you cannot change the
mnemonics.

You edit the block properties in their own dialog box.

In the editor you can have a number of blocks open and edit them alternately as required.

Rules for Entering STL Statements

You will find a description of the Statement List programming language representation in the
"Statement List for S7-300/400 - Programming Blocks" manual or in the STL online help (Language
Descriptions).

When you enter statements in STL in incremental input mode, you must observe the following
basic guidelines:

e The order in which you program your blocks is important. Called blocks must be programmed
before calling blocks.

o A statement is made up of a label (optional), instruction, address, and comment (optional).
Example: M0OO1: A 11.0 //Comment

o Every statement has its own line.
e You can enter up to 999 networks in a block.

e Each network can have up to approximately 2000 lines. If you zoom in or out, you can enter
more or fewer lines accordingly.

o When entering instructions or absolute addresses, there is no distinction made between lower
and upper case.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks

10.8 Updating Block Calls

10.8 Updating Block Calls

10.8.1 Changing Interfaces

You can also use the incremental Editor to modify the interfaces of offline blocks that have been
edited with STEP 7, version 5:

1.

Make sure that all the blocks have been compiled with STEP 7, version 5. To do this, generate
a source file for all the blocks and compile it.

2. Modify the interface of the relevant block.
3. Now open all the calling blocks one after another - the corresponding calls are displayed in red.
4. Select the menu command Edit > Block Call > Update.
5. Generate the relevant instance data blocks again.
Note
e Interface changes to a block opened online may cause the CPU to go into STOP mode.
e Rewiring block calls
First modify the numbers of the called blocks and then execute the Rewire function to match up
the calls.
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 243

Basics of Creating Logic Blocks
10.9 Saving Logic Blocks

10.9 Saving Logic Blocks

To enter newly created blocks or changes in the code section of logic blocks or in declaration
tables in the programming device database, you must save the respective block. The data are then
written to the hard disk of the programming device.

To save blocks on the hard disk of the programming device:
1. Activate the working window of the block you want to save.
2. Select one of the following menu commands:
- File > Save saves the block under the same name.

- File > Save As saves the block under a different S7 user program or under a different
name. Enter the new path or new block name in the dialog box which then appears.

In both cases the block is saved only if its syntax contains no errors. Syntax errors are identified
immediately when the block is created and are then displayed in red. These errors must be
corrected before the block can be saved.

Note

You can also save blocks or source files beneath other projects or libraries in the SIMATIC Manager (by
dragging & dropping, for example).

You can only save blocks or complete user programs to a memory card in the SIMATIC Manager.

If problems occur when saving or compiling large blocks, you should reorganize the project. Use the menu
command File > Reorganize in the SIMATIC Manager to do this. Then try to save or compile again.

Programming with STEP 7
244 Manual, 04/2017, ASE41552389-AA

Basics of Creating Logic Blocks

10.9 Saving Logic Blocks

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 245

11 Creating Data Blocks

11.1 Basic Information on Creating Data Blocks

The data block (DB) is a block in which you can, for example, store values for your machine or
plant to access. In contrast to a logic block that is programmed with one of the programming
languages Ladder Logic, Statement List, or Function Block Diagram, a data block contains only the
variable declaration section. This means the code section is irrelevant here and so is programming
networks.

When you open a data block, you can either view the block in the declaration view or in the data
view. You can toggle between the two views with the menu commands View > Declaration View
and View > Data View.

Declaration View
You use the declaration view if you want to:
e View or determine the data structure of shared data blocks,
o View the data structure of data blocks with an associated user-defined data type (UDT), or
o View the data structure of data blocks with an associated function block (FB).

The structure of data blocks that are associated with a function block or user-defined data type
cannot be modified. To modify them you must first modify the associated FB or UDT and then
create a new data block.

Data View

You use the data view if you want to modify data. You can only display, enter, or change the actual
value of each element in the data view. In the data view of data blocks, the elements of variables
with complex data types are listed individually with their full names.

Differences between Instance Data Blocks and Shared Data Blocks

A shared data block is not assigned to a logic block. It contains values required by the plant or
machine and can be called directly at any point in the program.

An instance data block is a block that is assigned directly to a logic block, such as a function block.
The instance data block contains the data that were stored in a function block in the variable
declaration table.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 247

Creating Data Blocks

11.2 Declaration View of Data Blocks

11.2 Declaration View of Data Blocks

With data blocks that are not globally shared, the declaration view cannot be changed.

Column Explanation

Address Displays the address that STEP 7 automatically assigns for the variable when you finish
entering a declaration.

Declaration This column is only displayed for instance data blocks. It shows you how the variables in
the variable declaration of the function block are declared:

e Input parameter (IN)

e Output parameter (OUT)

e In/out parameter (IN_OUT)
e Static data (STAT)

Name Enter the symbolic name you have to assign to each variable here.

Type Enter the data type you want to assign to the variable (BOOL, INT, WORD, ARRAY, etc.).
The variables can have elementary data types, complex data types, or user-defined data
types.

Initial Value Here you can enter the initial value if you do not want the software to use the default value

for the data type entered. All values must be compatible with the data type.

When you save a block for the first time, the initial value is used as the current value if you
have not explicitly defined actual values for the variables.

Please note: Initial values cannot be downloaded to the CPU.

Comment Enter a comment in this field helps to document the variables. The comment can have up
to 79 characters.

Programming with STEP 7
248 Manual, 04/2017, ASE41552389-AA

Creating Data Blocks

11.3 Data View of Data Blocks

11.3 Data View of Data Blocks

The data view shows you the current values of all variables in the data block. You can only change
these values in the data view. The table representation in this view is the same for all shared data
blocks. For instance data blocks an additional "Declaration" column is displayed.

For variables with complex data types or user-defined data types, all elements are displayed in
their own row with their full symbolic name in the data view. If the elements are in the IN_OUT area
of an instance data block, the pointer points to the complex or user-defined data type in the "Actual

Value" column.

The data view displays the following columns:

Column Explanation

Address Displays the address that STEP 7 automatically assigns for the variable.

Declaration This column is only displayed for instance data blocks. It shows you how the variables in
the variable declaration of the function block are declared:
e Input parameter (IN)
e Output parameter (OUT)
e In/out parameter (IN_OUT)
e Static data (STAT)

Name The symbolic name assigned in the variable declaration for the variable. You cannot edit
this field in the data view.

Type Displays the data type defined for the variable.
For shared data blocks, only the elementary data types are listed here because the
elements are listed individually in the data view for variables with complex or user-
defined data types.
For instance data blocks the parameter types are also displayed, for in/out parameters
(IN_OUT) with complex or user-defined data types, a pointer points to the data type in
the "Actual Value" column.

Initial Value The initial value that you entered for the variable if you do not want the software to use
the default value for the specified data type.
When you save a data block for the first time, the initial value is used as the current value
if you have not explicitly defined actual values for the variables.
Please note: Unlike with actual values, initial values cannot be downloaded to the CPU.

Actual Value Offline: The value that the variable had when the data block was opened or to which you
last changed it and saved it (even if you opened the data block online, this display is not
updated).
Online: The current value on opening the data block is displayed but not updated
automatically. To update the view, press F5.
You can edit this field if it does not belong to an in/out parameter (IN_OUT) with a
complex or user-defined data type. All values must be compatible with the data type.
Please note. Only current values can be downloaded to the CPU/

Comment The comment entered to document the variable. You cannot edit this field in the data
view.

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

249

Creating Data Blocks

11.4 Editing and Saving Data Blocks

11.4

11.4.1

250

Editing and Saving Data Blocks

Entering the Data Structure of Shared Data Blocks

If you open a data block which is not assigned to a user-defined data type or function block, you
can define its structure in the declaration view of the data block. With data blocks which are not
shared, the declaration view cannot be changed.

1. Open a shared data block, meaning a block which is not associated with a UDT or FB.

2. Display the declaration view of the data block if this view is not set already.

3. Define the structure by filling out the table displayed in accordance with the information below.

With data blocks which are not shared, the declaration view cannot be modified.

Column Explanation

Address Displays the address which STEP 7 automatically assigns for the variable when you finish
entering a declaration.

Name Enter the symbolic name you have to assign to each variable here.

Type Enter the data type you want to assign to the variable (BOOL, INT, WORD, ARRAY, etc.).
The variables can have elementary data types, complex data types, or user-defined data
types.

Initial Value Here you can enter the initial value if you do not want the software to use the default value
for the data type entered. All values must be compatible with the data type.

When you save a block for the first time, the initial value is used as the actual value if you
have not explicitly defined actual values for the variables.

Comment Entering an optional comment in this field helps to document the variable. The comment can
have up to 79 characters.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Data Blocks

11.4 Editing and Saving Data Blocks

11.4.2 Entering and Displaying the Data Structure of Data Blocks Referencing an
FB (Instance DBs)
Input
When you associate a data block with a function block (instance DB), the variable declaration of
the function block defines the structure of the data block. Any changes can only be made in the
associated function block.
1. Open the associated function block (FB).
2. Edit the variable declaration of the function block.
3. Create the instance data block again.
Display
In the declaration view of the instance data block you can display how the variables in the function
block were declared.
1. Open the data block.
2. Display the declaration view of the data block if this view is not set already.
3. See below for more information on the table displayed.
With data blocks which are not shared, the declaration view cannot be changed.
Column Explanation
Address Displays the address which STEP 7 automatically assigns for the variable.
Declaration This column shows you how the variables in the variable declaration of the function block
are declared:
e Input parameter (IN)
e Output parameter (OUT)
e In/out parameter (IN_OUT)
e Static data (STAT)
The declared temporary local data of the function block are not in the instance data block.
Name The symbolic name assigned in the variable declaration of the function block.
Type Displays the data type assigned in the variable declaration of the function block. The
variables can have elementary data types, complex data types, or user-defined data types.
If additional function blocks are called within the function block for whose call static
variables have been declared, a function block or a system function block (SFB) can also
be specified here as the data type.
Initial Value The initial value that you entered for the variable in the variable declaration of the function
block if you do not want the software to use the default value.
When you save a data block for the first time, the initial value is used as the actual value if
you have not explicitly defined actual values for the variables.
Comment The comment entered in the variable declaration for the function block to document the
data element. You cannot edit this field.
Note
For data blocks that are assigned to a function block, you can only edit the actual values for the
variables. To enter actual values for the variables, you must be in the data view of data blocks.
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 251

Creating Data Blocks

11.4 Editing and Saving Data Blocks

11.4.3

252

Entering the Data Structure of User-Defined Data Types (UDT)

1. Open the user-defined data type (UDT).
2. Display the declaration view if this view is not set already.

3. Define the structure of the UDT by determining the sequence of variables, their data type, and
an initial value if required using the information in the table below.

4. You complete the entry of a variable by exiting the row with the TAB key or RETURN.

Column Explanation

Address Displays the address which STEP 7 automatically assigns for the variable when you finish
entering a declaration.

Name Enter the symbolic name you have to assign to each variable here.

Type Enter the data type you want to assign to the variable (BOOL, INT, WORD, ARRAY, etc.).

The variables can have elementary data types, complex data types, or their own user-
defined data types.

Initial Value Here you can enter the initial value if you do not want the software to use the default value
for the data type entered. All values must be compatible with the data type.

When you save an instance of the user-defined data type (or a variable, or a data block)
for the first time, the initial value is used as the actual value if you have not explicitly
defined actual values for the variables.

Comment Entering a comment in this field helps to document the variables. The comment can have
up to 79 characters.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating Data Blocks

11.4.4

Input

Display

11.4 Editing and Saving Data Blocks

Entering and Displaying the Structure of Data Blocks Referencing a UDT

When you assign a data block to a user-defined data type, the data structure of the user-defined
data type defines the structure of the data block. Any changes can only be made in the associated
user-defined data type.

1. Open the user-defined data type (UDT).
2. Edit the structure of the user-defined data type.

3. Create the data block again.

You can only display how the variables were declared in the user-defined data type in the
declaration view of the data block.

1. Open the data block.
2. Display the declaration view of the data block if this view is not set already.
3. See below for more information on the table displayed.

The declaration view cannot be modified. Any changes can only be made in the associated user-
defined data type.

Column Explanation

Address Displays the address which STEP 7 automatically assigns for the variable.

Name The symbolic name assigned in the variable declaration of the user data type.

Type Displays the data types assigned in the variable declaration of the user-defined data
type. The variables can have elementary data types, complex data types, or user-defined
data types.

Initial Value The initial value that you entered for the variable in the user-defined data type if you do
not want the software to use the default value.

When you save a data block for the first time, the initial value is used as the actual value
if you have not explicitly defined actual values for the variables.

Comment The comment entered in the variable declaration for the user-defined data type to
document the data element.

Note

For data blocks that are assigned to a user-defined data type, you can only edit the actual values
for the variables. To enter actual values for the variables, you must be in the data view of data
blocks.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 253

Creating Data Blocks

11.4 Editing and Saving Data Blocks

11.4.5 Editing Data Values in the Data View

Editing actual values is only possible in the data view of data blocks.

1. If necessary, toggle to the table display in the data view using the menu command View >
Data View.

2. Enter the required actual values for the data elements in the fields of the column "Actual
Value." The actual values must be compatible with the data type of the data elements.

Any incorrect entries (for example, if an actual value entered is not compatible with the data type)
made during editing are recognized immediately and shown in red. These errors must be corrected
before saving the data block.

Note
Any changes to the data values are only retained once the data block has been saved.

11.4.6 Resetting Data Values to their Initial Values

Resetting data values is only possible in the data view of data blocks.

1. If necessary, toggle to the table display in the data view using the menu command View >
Data View.

2. Select the menu command Edit > Initialize Data Block to do this.

All variables are assigned their intended initial value again, meaning the actual values of all
variables are overwritten by their respective initial value.

Note
Any changes to the data values are only retained once the data block has been saved.

Programming with STEP 7
254 Manual, 04/2017, ASE41552389-AA

Creating Data Blocks
11.4 Editing and Saving Data Blocks

11.4.7 Saving Data Blocks

To enter newly created blocks or changed data values in data blocks in the programming device
database, you must save the respective block. The data are then written to the hard disk of the
programming device.

To save blocks on the hard disk of the programming device:
1. Activate the working window of the block you want to save.
2. Select one of the following menu commands:
- File > Save saves the block under the same name.

- File > Save As saves the block under a different S7 user program or under a different
name. Enter the new path or new block name in the dialog box which then appears. With
data blocks, you may not use the name DBO because this number is reserved for the
system.

In both cases the block is saved only if its syntax contains no errors. Syntax errors are identified
immediately when the block is created and are then displayed in red. These errors must be
corrected before the block can be saved.

Note
¢ You can also save blocks or source files beneath other projects or libraries in the
SIMATIC Manager (by dragging & dropping, for example).

e You can only save blocks or complete user programs to a memory card in the
SIMATIC Manager.

e If problems occur when saving or compiling large blocks, you should reorganize the project.
Use the menu command File > Reorganize in the SIMATIC Manager to do this. Then try to
save or compile again.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 255

Creating Data Blocks

11.4 Editing and Saving Data Blocks

Programming with STEP 7
256 Manual, 04/2017, ASE41552389-AA

12 Parameter Assignment for Data Blocks

12.1 Assigning Parameters to Technological Functions

With the function "Parameter Assignment for Data Blocks" you can easily assign parameters to the
temperature controller blocks FB 58 "TCONT_CP" and FB 59 "TCONT _S" that are supplied in the
standard library and monitor them online.

To do so, proceed as follows:

1.

In the SIMATIC Manager, open the STEP 7 standard library by selecting the menu command
File > Open > Libraries.

2. Select "PID Control Blocks" and then click on "Blocks". Here you will find the following function
blocks with the attribute "S7_techparam™:

- FB 58 "TCONT_CP": Temperature controller for actuators with continuous or pulsing input
signals
- FB 59 "TCONT_S": Temperature controller for integral-type actuators

3. Copy the appropriate function block (FB 58 or FB 59) from the standard library into your
project.

4. Select the menu command Insert > S7 Block > Data Block to create an instance DB for the
FB that you selected.

5. Inthe SIMATIC Manager, double-click the instance DB to open it and start the function
"Parameter Assignment for Data Blocks".

Result: The instance DB is opened in the technological view. You can now easily assign
parameters to the instance DB and monitor it online.

6. Enter suitable controller values in the technological view. Any pertinent information, warnings
or errors will be displayed in the message window. To go to the location of a warning or error,
double-click on the corresponding warning or error.

Note

You can determine if blocks that have the system attribute "S7_techparam" by selecting a block in
the SIMATIC Manager, selecting the menu command Edit > Object Properties and then opening
the "Attributes" tab.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 257

Parameter Assignment for Data Blocks

12.1 Assigning Parameters to Technological Functions

Programming with STEP 7
258 Manual, 04/2017, ASE41552389-AA

13 Creating STL Source Files

13.1 Basic Information on Programming in STL Source Files

You can enter your program or parts of it as an STL source file and then compile it into blocks in
one step. The source file can contain the code for a number of blocks, which are then compiled as
blocks in one compilation run.

Creating programs using a source file has the following advantages:

e You can create and edit the source file with any ASCII editor, then import it and compile it into
blocks using this application. The compilation process creates the individual blocks and stores
them in the S7 user program.

e You can program a number of blocks in one source file.

e You can save a source file even if it contains syntax errors. This is not possible if you create
logic blocks using an incremental syntax check. However, the syntax errors are only reported
once you compile the source file.

The source file is created in the syntax of the programming language representation Statement List
(STL). The source file is given its structure of blocks, variable declaration, and networks using
keywords.

When you create blocks in STL source files you should note the following:
e Guidelines for Programming STL Source Files
e Syntax and Formats for Blocks in STL Source Files

e Structure of Blocks in STL Source Files

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 259

Creating STL Source Files

13.2 Rules for Programming in STL Source Files

13.2 Rules for Programming in STL Source Files

13.2.1 Rules for Entering Statements in STL Source Files

An STL source file consists mainly of continuous text. To enable the file to be compiled into blocks,
you must observe certain structures and syntax rules.

The following general guidelines apply to creating user programs as STL source files:

Topic Rule

Syntax The syntax of the STL statements is the same as in the incremental Statement List
editor. One exception to this is the CALL instruction.

CALL In a source file, you enter parameters in brackets. The individual parameters are
separated by a comma.

Example: FC call (one line)

CALL FC10 (param1 :=10.0,param2 :=10.1);
Example: FB call (one line)

CALL FB10, DB100 (para1 :=10.0,para2 :=10.1);

Example: FB call (more than one line)
CALL FB10, DB100 (

para1 :=10.0,

para2 :=10.1);

Note:

When calling a block, transfer the parameters in the defined order in the ASCII
Editor. Otherwise the comment assignment for these lines may not match in the STL
and source file views.

Upper/lower case The editor in this application is not case-sensitive, the exception to this being
system attributes and jump labels. When entering strings (data type STRING) you
must also observe upper and lower case.

Keywords are shown in upper case. When compiled, upper and lower case are not

observed; therefore you can enter keywords in upper or lower case or a mixture of
the two.

Semicolon Designate the end of every STL statement and every variable declaration with a
semicolon (;). You can enter more than one statement per line.

Double slash (//) Begin every comment with a double slash (//) and end the comment with RETURN
(or line feed).

Programming with STEP 7
260 Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.2.2

13.2 Rules for Programming in STL Source Files

Rules for Declaring Variables in STL Source Files

For every block in the source file you must declare the required variables.
The variable declaration section comes before the code section of the block.

The variables must - if they are being used - be declared in the correct sequence for declaration
types. This means all variables of one declaration type are together.

For Ladder, Function Block Diagram, and Statement List you fill out a variable declaration table, but
here you have to work with the relevant keywords.

Keywords for Variable Declaration

Declaration Type Keywords Valid for...
Input parameters "VAR_INPUT" FBs, FCs
Declaration list
"END_VAR"
Output parameters "VAR_OUTPUT" FBs, FCs
Declaration list
"END_VAR"
In/out parameters "VAR_IN_OuUT" FBs, FCs
Declaration list
"END_VAR"
Static variables "VAR" FBs
Declaration list
"END_VAR"
Temporary variables "VAR_TEMP" OBs, FBs, FCs
Declaration list
END_VAR

The keyword END_VAR denotes the end of a declaration list.

The declaration list is a list of the variables of a declaration type in which default values can be
assigned to the variables (exception: VAR_TEMP). The following example shows the structure of
an entry in the declaration list:

Duration_Motor1 : S5TIME = S5T#1H_30M ;
Variable Data type Default value
Note

e The variable symbol must start with a letter. You may not assign a symbolic name for a
variable that is the same as one of the reserved keywords.

e If variable symbols are identical in the local declarations and in the symbol table, you can code
local variables by placing # in front of the name and putting variables in the symbol table in
quotation marks. Otherwise, the block interprets the variable as a local variable.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 261

Creating STL Source Files

13.2 Rules for Programming in STL Source Files

13.2.3 Rules for Block Order in STL Source Files

Called blocks precede the calling blocks. This means:

The OB1 used in most cases, which calls other blocks, comes last. Blocks that are called from
OB1 must precede it.

User-defined data types (UDT) precede the blocks in which they are used.

Data blocks with an associated user-defined data type (UDT) follow the user-defined data type.
Shared data blocks precede all blocks from which they are called.

Instance data blocks follow the associated function block.

DBO is reserved. You cannot create a data block with this name.

13.2.4 Rules for Setting System Attributes in STL Source Files

System attributes can be assigned to blocks and parameters. They control the message
configuration and connection configuration, operator interface functions, and process control
configuration.

The following applies when entering system attributes in source files:

The keywords for system attributes always start with S7_.
The system attributes are placed in braces (curly brackets).
Syntax: {S7_identifier := 'string'}

a number of identifiers are separated by ";".

System attributes for blocks come before the block properties and after the keywords
ORGANIZATION_ and TITLE.

System attributes for parameters are included with the parameter declaration, meaning before
the colon for the data declaration.

A distinction is made between upper and lower case characters. This means that the correct
use of upper and lower case characters is important when entering system attributes.

The system attributes for blocks can be checked or changed in incremental input mode using the
menu command File > Properties under the "Attributes" tab.

The system attributes for parameters can be checked or changed in incremental input mode using
the menu command Edit > Object Properties. The cursor must be positioned in the name field of
the parameter declaration.

262

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.2 Rules for Programming in STL Source Files

13.2.5 Rules for Setting Block Properties in STL Source Files

You can more easily identify the blocks you created if you use block properties and you can also
protect these blocks from unauthorized changes.

The block properties can be checked or changed in incremental input mode using the menu
command File > Properties under the "General - Part 1" and "General - Part 2" tabs.

The other block properties can only be entered in the source file.

The following applies in source files:

Block properties precede the variable declaration section.
Each block property has a line of its own.

The line ends with a semicolon.

The block properties are specified using keywords.

If you enter block properties, they must appear in the sequence shown in the Table of Block
Properties.

The block properties valid for each block type are listed in the Assignment: Block Property to
Block Type.

Note

The block properties are also displayed in the SIMATIC Manager in the object properties for a
block. The properties AUTHOR, FAMILY, NAME, and VERSION can also be edited there.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 263

Creating STL Source Files

13.2 Rules for Programming in STL Source Files

Block Properties and Block Order

13.2.6

264

When entering block properties, you should observe the input sequence shown in the following

table:

Order

Keyword / Property

Meaning

Example

1.

[KNOW_HOW_PROTECT]

Block protection; a block compiled
with this option does not allow its
code section to be viewed. The
interface for the block can be
viewed, but it cannot be changed.

KNOW_HOW_PROTECT

[AUTHOR]

Name of author: company name,
department name, or other name
(max. 8 characters without blanks)

AUTHOR : Siemens, but
no keyword

[FAMILY]

Name of block family: for example,
controllers
(max. 8 characters without blanks)

FAMILY : controllers, but
no keyword

[NAME:]

Block name (max. 8 characters)

NAME : PID, but no
keyword

[VERSION: int1 . int2]

Version number of block
(both numbers between 0 and 15,
meaning 0.0 to 15.15)

VERSION : 3.10

[CODE_VERSION1]

ID whether a function block can
have multiple instances declared or
not. If you want to declare multiple
instances, the function block
should not have this property

CODE_VERSION1

[UNLINKED] for DBs only

Data blocks with the UNLINKED
property are only stored in the load
memory. They take up no space in
the working memory and are not
linked to the program. They cannot
be accessed with MC7 commands.
The contents of such a DB can be
transferred to the working memory
only with SFC 20 BLKMOV (S7-
300. S7-400) or SFC 83
READ_DBL (S7-300C).

[NON_RETAIN]

This option is only effective if the
CPU supports the Retain property
of DBs. A data block with the "Non-
Retain" property is not stored in
retentive memory in such a CPU
(for example CPU 317 V2.1) and is
therefore reset to the load values at
each power cycle and after every
change from STOP to RUN.

READ_ONLY] only for DBs!

Write protection for data blocks; its
data can only be read and not
changed.

FAMILY= Examples
VERSION= 3.10
READ_ONLY

Permitted Block Properties for Each Block Type

The following table shows which block properties can be declared for which block types:

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.2 Rules for Programming in STL Source Files

Property OB FB FC DB ubDT
KNOW_HOW_PROTECT -
AUTHOR . . o . -
FAMILY . . o . -
NAME o . o . -
VERSION . . o . -
UNLINKED - - - . -
NON_RETAIN - - - . -
READ_ONLY - - - . -

Setting Block Protection with KNOW_HOW_PROTECT

You can protect your blocks from unauthorized users by setting block protection using the keyword
KNOW_HOW_PROTECT when you program the block in the STL source file.

This block protection has the following consequences:

e If you want to view a compiled block at a later stage in the incremental STL, FBD, or Ladder
editors, the code section of the block cannot be displayed.

e The variable declaration list for the block displays only the variables of the declaration types
var_in, var_out, and var_in_out. The variables of the declaration types var_stat and var_temp
remain hidden.

e The keyword KNOW_HOW_PROTECT is entered before any other block properties.

Setting Write Protection for Data Blocks with READ_ONLY

For data blocks, you can set up write protection so that the block is not overwritten during program
processing. The data block must exist in the form of an STL source file to do this.

Use the keyword READ_ONLY in the source file to set write protection. This keyword must appear
immediately before the variable declarations in a line on its own.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 265

Creating STL Source Files

13.3 Structure of Blocks in STL Source Files

13.3 Structure of Blocks in STL Source Files

The blocks in STL source files are structured using keywords. Depending on the type of block,
there are differences in the structure of:

e Logic blocks
e Data blocks
o User-defined data types (UDT)

13.3.1 Structure of Logic Blocks in STL Source Files
A logic block is made up of the following sections, each of which is identified by the corresponding
keyword:
e Block start,
e identified by keyword and block number or block name, for example
- "ORGANIZATION_BLOCK OB1" for an organization block,
- "FUNCTION_BLOCK FB6" for a function block, or

- "FUNCTION FC1 : INT" for a function. With functions the function type is also specified.
This can be an elementary or complex data type (with the exception of ARRAY and
STRUCT) and defines the data type of the return value (RET_VAL). If no value is to be
returned, the keyword VOID is given.

e Optional block title introduced by the keyword "TITLE" (max. length of title: 64 characters)
¢ Additional comments, beginning with a double slash // at the start of the line

e Block properties (optional)

e Variable declaration section

e Code section, beginning with "BEGIN." The code section consists of one or more networks that
are identified by "NETWORK." You cannot enter a network number.

e Optional network for each network used, introduced by the keyword "TITLE =" (max. length of
title: 64 characters)

e Additional comments for each network, beginning with a double slash // at the start of the line

e Block end, identified by END_ORGANIZATION_BLOCK, END_FUNCTION_BLOCK, or
END_FUNCTION

e A blank must be placed between the block type and the block number. The symbolic block
name can be identified by quotation marks to ensure that the symbolic names of local variables
and names in the symbol table remain unique.

Programming with STEP 7
266 Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.3 Structure of Blocks in STL Source Files

13.3.2 Structure of Data Blocks in STL Source Files
A data block consists of the following areas that are introduced by their respective keywords:
e Block start, identified by keyword and block number or block name, for example,
DATA_BLOCK DB26
e Reference to an associated UDT or function block (optional)
e Optional block title introduced by the keyword TITLE = (entries longer than 64 characters are
cut off)
e Optional block comment, beginning with a double slash //
e Block properties (optional)
o Variable declaration section (optional)
e Assignment section with default values, beginning with BEGIN (optional)
e Block end, identified by END DATA BLOCK
There are three types of data block:
e Data blocks, user-defined
e Data blocks with an associated user-defined data type (UDT)
e Data blocks with an associated function block (known as "instance" data blocks)
13.3.3 Structure of User-Defined Data Types in STL Source Files
A user-defined data type consists of the following areas that are introduced by their respective
keywords:
o Block start, identified by keyword TYPE and number or name, for example, TYPE UDT20
e Structured data type
e Block end, identified by END_TYPE
When you enter a user-defined data type, you must ensure that user-defined data types precede
the blocks in which they are used.
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 267

Creating STL Source Files

13.4 Syntax and Formats for Blocks in STL Source Files

13.4 Syntax and Formats for Blocks in STL Source Files

The format tables show the syntax and formats that you should observe when programming STL

source files. The syntax is represented as follows:
o Each element is described in the right column.

¢ Any elements that must be entered are shown in quotation marks.

e The square brackets [...] mean that the contents of these brackets are optional.

e Keywords are given in upper case letters.

13.4.1 Format Table of Organization Blocks

The following table shows a brief list of the format for organization blocks in an STL source file:

Structure Description

"ORGANIZATION_BLOCK" ob_no or ob_no is the block number, for example: OB1;

ob_name ob_name is the symbolic name of the block as defined in the
symbol table

[TITLE=] Block title (entries longer than 64 characters are cut off)

[Block comment] Comments can be entered after "//"

[System attributes for blocks] System attributes for blocks

[Block properties] Block properties

Variable declaration section Declaration of temporary variables

"BEGIN" Keyword to separate the variable declaration section from the
list of STL instructions

NETWORK Start of a network

[TITLE=] Network title (max. 64 characters)

[Network comment] Comments can be entered after "//"

List of STL instructions Block instructions

"END_ORGANIZATION_BLOCK" Keyword to end organization block

268

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.4 Syntax and Formats for Blocks in STL Source Files

13.4.2 Format Table of Function Blocks

The following table shows a brief list of the format for function blocks in an STL source file:

Structure

Description

"FUNCTION_BLOCK" fb_no or fb_name

fb_no is the block number, for example FB6;

fb_name is the symbolic name of the block as defined in the
symbol table

[TITLE=]

Block title (entries longer than 64 characters are cut off)

[Block comment]

Comments can be entered after "//"

[System attributes for blocks]

System attributes for blocks

[Block properties]

Block properties

Variable declaration section

Declaration of input, output, and in/out parameters, and
temporary or static variables

The declaration of the parameters may also contain the
declarations of the system attributes for parameters.

"BEGIN" Keyword to separate the variable declaration section from the
list of STL instructions

NETWORK Start of a network

[TITLE=] Network title (max. 64 characters)

[Network comment]

Comments can be entered after "//"

List of STL instructions

Block instructions

"END_FUNCTION_BLOCK

Keyword to end function block

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

269

Creating STL Source Files

13.4 Syntax and Formats for Blocks in STL Source Files

13.4.3 Format Table of Functions

The following table shows a brief list of the format for functions in an STL source file:

Structure Description
"FUNCTION" fc_no : fc_type or fc_no is the block number, for example FC5;
fc_name : fc_type fc_name is the symbolic name of the block as defined in the
symbol table;

fc_type is the data type of the return value (RET_VAL) of the
function. This can be an elementary or complex data type
(with the exception of ARRAY and STRUCT) or VOID.

If you want to use system attributes

for the return value (RET_VAL), you must enter the system
attributes for parameters in front of the colon for the data

declaration.

[TITLE=] Block title (entries longer than 64 characters are cut off)

[Block comment] Comments can be entered after "//"

[System attributes for blocks] System attributes for blocks

[Block properties] Block properties

Variable declaration section Declaration of input, output, and in/out parameters, and
temporary variables

"BEGIN" Keyword to separate the variable declaration section from the
list of STL instructions

NETWORK Start of a network

[TITLE=] Network title (max. 64 characters)

[Network comment] Comments can be entered after "//"

List of STL instructions Block instructions

"END FUNCTION" Keyword to end function

Programming with STEP 7
270 Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.4.4 Format Table of Data Blocks

13.4 Syntax and Formats for Blocks in STL Source Files

The following table shows a brief list of the format for data blocks in an STL source file:

Structure

Description

"DATA_BLOCK" db_no or db_name

db_no is the block number, for example DB5;

db_name is the symbolic name of the block as defined in the
symbol table

[TITLE=]

Block title (entries longer than 64 characters are cut off)

[Block comment]

Comments can be entered after "//"

[System attributes for blocks]

System attributes for blocks

[Block properties]

Block properties

Declaration section

Instance DB: specifies UDT or FB to which the block relates
as block number or name according to the symbol table.

Global DB: specifies the variables with their data type and
start value (optional)

"BEGIN"

Keyword to separate the declaration section from the list of
value assignments

[Assignment of current values]

Variables can have specific current values assigned.
Individual variables either have constants assigned or a
reference is made to other blocks.

"END_DATA_BLOCK"

Keyword to end data block

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

271

Creating STL Source Files

13.5 Creating STL Source Files

13.5

13.5.1

13.5.2

13.5.3

272

Creating STL Source Files

Creating STL Source Files

The source file must be created in the source file folder beneath the S7 program. You can create
source files in the SIMATIC Manager or the editor window.

Creating Source Files in the SIMATIC Manager

1. Open the appropriate "Source Files" folder by double-clicking on it.

2. Toinsert an STL source file select the menu command Insert > S7 Software > STL Source
File.

Creating Source Files in the Editor Window
1. Select the menu command File > New.

2. Inthe dialog box, select the source file folder of the same S7 program that contains the user
program with the blocks.

3. Enter a name for the new source file.
4. Confirm with "OK".

The source file is created under the name you entered and is displayed in a window for editing.

Editing S7 Source Files

The programming language and editor with which a source file is edited can be set in the object
properties for the source file. This ensures that the correct editor and the correct programming
language are started when the source file is opened for editing. The STEP 7 Standard package
supports programming in STL source files.

Other programming languages are also available as optional packages. You can only select the
menu command to insert the source file if the corresponding software option is loaded on your
computer.

To edit an S7 source file, proceed as follows:
1. Open the appropriate "Source Files" folder by double-clicking on it.
2. Start the editor required for editing as follows:
- Double-click the required source file in the right half of the window.

- Select the required source file in the right half of the window and select the menu
command Edit > Open Object.

Setting The Layout of Source Code Text

To improve readability of text in source files, select menu command Options > Settings and the
"Source Code" tab. Specify the font, font style and color for the various elements of the source
code.

For example, you can specify to display line numbers and to display keywords in upper case
letters.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.5 Creating STL Source Files

13.5.4 Inserting Block Templates in STL Source Files

Block templates for organization blocks (OB), function blocks (FB), functions (FC), data blocks
(DB), instance data blocks, data blocks with associated user-defined data types, and user-defined
data types (UDT) are available for programming in STL source files. The block templates make it
easier to enter blocks in your source file and to observe syntax and structure guidelines.

To insert a block template, proceed as follows:
1. Activate the window of the source file in which you want to insert a block template.
2. Position the cursor at the point in the file after which you want to insert the block template.

3. Select one of the menu commands Insert > Block Template > OB/FB/FC/DB/Instance DB/DB
Referencing UDT/UDT.

The block template is inserted in the file after the cursor position.

13.5.5 Inserting the Contents of Other STL Source Files

You can insert the contents of other source files into your STL source file.
Proceed as follows:

1. Activate the window of the source file in which you want to insert the contents of another
source file.

2. Position the cursor at the location in the file after which you want to insert the source file.
3. Select the menu command Insert > Object > File.
4. Select the required source file in the dialog box which appears.

The contents of the selected source file are inserted after the cursor position. Line feeds (carriage
returns) are retained.

13.5.6 Inserting Source Code from Existing Blocks in STL Source Files

You can insert the source code from other blocks into your STL source file which were created in
Ladder, Function Block Diagram, or Statement List. This is possible for organization blocks (OB),
function blocks (FB), functions (FC), data blocks (DB), and user-defined data types (UDT).

Proceed as follows:
1. Activate the window of the source file in which you want to insert a block.

2. Position the cursor at the location in the file after which you want to insert the source code from
the block.

3. Select the menu command Insert > Object > Block.
4. Select the required block in the dialog box which appears.

An equivalent source file is generated from the block. The contents of the source file are inserted
after the cursor position.
13.5.7 Inserting External Source Files

You can create and edit a source file with any ASCII editor, then import it into a project and compile
it into individual blocks using this application. To do this, you must import the source files into the

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 273

Creating STL Source Files

13.5 Creating STL Source Files

13.5.8

274

"Source Files" folder of the S7 program in whose S7 user program the blocks created during
compilation are to be stored.

To insert an external source file, proceed as follows:

1. Select the source file folder of the S7 program in which the external source files are to be
imported.

2. Select the menu command Insert > External Source File.
3. In the dialog box which appears, enter the source file you want to import.

The file name of the source file you are importing must have a valid file extension. STEP 7 uses
the file extension to determine the source file type. This means, for example, that STEP 7 creates
an STL source file when it imports a file with the extension .AWL. Valid file extensions are listed in
the dialog box under "File Type."

Note

You can also use the menu command Insert > External Source File to import source files you
created with STEP 7 version 1.

Generating STL Source Files from Blocks

You can generate an STL source file which you can edit with any text editor from existing blocks.
The source file is generated in the source file folder of the S7 program.

To generate a source file from a block, proceed as follows:

1. In the program editor, select the menu command File > Generate Source File.

2. In the dialog box, select the source file folder in which you want to create the new source file.
3. Enter a name for the source file in the text box.
4

In the "Select STEP 7 Blocks" dialog box, select the block(s) which you want to generate as the
given source file. The selected blocks are displayed in the right list box.

5. Confirm with "OK."

One continuous STL source file is created from the selected blocks and is displayed in a window
for editing.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.5 Creating STL Source Files

13.5.9 Importing Source Files
To import a source file from any directory into a project:
1. Inthe SIMATIC Manager, select the source file folder into which you want to import the source
file.
2. Select the menu command Insert > External Source File.
In the dialog box displayed, select the destination directory and the source file to be imported.
4. Click the "Open" button.
13.5.10 Exporting Source Files
To export a source file from a project to any destination directory:
1. Select the source file in the source file folder.
2. Select the menu command Edit > Export Source File in the SIMATIC Manager.
3. Enter the destination directory and file name in the dialog box displayed.
4. Click the "Save" button.
Note
If the object name does not have a file extension, a file extension derived from the file type is
added to the file name. For example, the STL source file "prog" is exported to the file "prog.awl."
If the object name already has a valid file extension, this is retained and not changed. For example,
the STL source file "prog.awl" is exported to the file "prog.awl.”
If an object name has an invalid file extension (meaning a period is contained in the name), no file
extension is added.
You will find a list of valid file extensions in the "Export Source File" dialog box under "File type."
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 275

Creating STL Source Files

13.6 Saving and Compiling STL Source Files and Execufing a Consistency Check

13.6

13.6.1

Saving and Compiling STL Source Files and Executing a
Consistency Check

Saving STL Source Files
You can save an STL source file at any time in its current state. The program is not compiled and
no syntax check is run, meaning any errors are saved as well.

Syntax errors are detected and reported only when the source file is compiled or following a
consistency check.

To save a source file under the same name:

1. Activate the window for the source file you want to save.

2. Select the menu command File > Save.

To save a source file under a new name/in another project:

13.6.2

13.6.3

276

1. Activate the window for the source file you want to save.
2. Select the menu command File > Save As.

3. Inthe dialog box, select the source file folder in which you want to save the source file and
enter its new name.

Checking Consistency in STL Source Files
Using the menu command File > Consistency Check you can display any syntax errors in the
STL source file. In contrast to compiling, no blocks are generated.

When the consistency check is completed, a dialog box is displayed showing you the total number
of errors found.

Any errors that are found are listed individually in the lower part of the window with a line reference.
Correct these errors before compiling the source file so that all the blocks can be created.

Debugging STL Source Files

The active window for source files is split into two. The following errors are listed in the lower half:
e Errors found after compilation was initiated via menu command File > Compile.

e Errors found after a consistency check was initiated via menu command File > Consistency
Check.

To find the location of an error in a source file, position the cursor on the "Error" tab of the message
window. The faulty element is automatically highlighted in the code section and an error message
is output at the status bar.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.7 Examples of STL Source Files

13.6.4 Compiling STL Source Files

Requirements

In order to be able to compile the program you created in a source file into blocks, the following
requirements must be fulfilled:

Only source files which are stored in the "Source Files" folder beneath an S7 program can be
compiled.

As well as the "Source Files" folder, a "Blocks" folder must also lie beneath the S7 program in
which the blocks created during compilation can be stored. The blocks programmed in the
source file are only created if the source file was compiled without error. If there are a number
of blocks programmed in a source file, only those which contain no errors are created. You can
then open these blocks, edit them, download them to the CPU, and debug them individually.

Procedure in the Editor

1.

Open the source file you want to compile. The source file must be in the source file folder of the
S7 program in whose S7 user program the compiled blocks are to be stored.

Select the menu command File > Compile.

The "Compiler Report" dialog box is displayed showing the number of lines compiled and
syntax errors found.

The blocks specified for the file are only created once the source file has been compiled without
errors. If there are a number of blocks programmed in a source file, only those which contain no
errors are created. Warnings of errors do not prevent blocks being created.

Any syntax errors detected during compilation are shown in the lower part of the working window
and must be corrected before the respective blocks can be created.

Procedure in the SIMATIC Manager

1.
2.

Open the appropriate "Source Files" folder by double-clicking on it.

Select one or more source files that you want to compile. You cannot start a compilation run for
a closed source file folder to compile all the source files in it.

Select the menu command File > Compile to start compilation. The correct compiler is called
for the source file you selected. The successfully compiled blocks are then stored in the block
folder beneath the S7 program.

Any syntax errors detected during compilation are displayed in a dialog box and must be
corrected so that the blocks where the errors were found can be created as well.

13.7 Examples of STL Source Files

13.71 Examples of Declaring Variables in STL Source Files

Variables of Elementary Data Type

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 277

Creating STL Source Files

13.7 Examples of STL Source Files

/I Comments are separated from the declaration section by a double slash.
VAR_INPUT /I Keyword for input variable

in1 : INT;// Variable name and type are separated by ":"

in3 : DWORD; /I Every variable declaration is terminated with a semicolon

in2 : INT :=10; // Optional setting for an initial value in the declaration

END_VAR /I End declaration of variables of the same declaration type
VAR_OUTPUT // Keyword for output variable
out1 : WORD;
END_VAR /l Keyword for temporary variable
VAR_TEMP
temp1 : INT;
END_VAR

Variable of Data Type Array

VAR_INPUT /I Input variable
array1 : ARRAY [1..20] of INT; /I array1 is a one-dimensional array
array2 : ARRAY [1..20, 1..40] of DWORD; // array2 is a two-dimensional array

END VAR

Variables of Data Type Structure

13.7.2

278

VAR_OUT // Output variable

OUTPUT1: STRUCT// OUTPUT1 has the data type STRUCT
var1 : BOOL; /I Element 1 of the structure
var2 : DWORD; // Element 2 of the structure
END_STRUCT; // End of the structure

END VAR

Example of Organization Blocks in STL Source Files

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.7 Examples of STL Source Files

ORGANIZATION_BLOCK OB1

TITLE = Example for OB1 with different block calls
/[The 3 networks show block calls

/Iwith and without parameters

{S7_pdiag := 'true'} /ISystem attribute for blocks
AUTHOR Siemens

FAMILY Example

NAME Test_OB

VERSION 1.1

VAR_TEMP

Interim value : INT; /I Buffer

END_VAR

BEGIN

NETWORK

TITLE = Function call transferring parameters
/I Parameter transfer in one line

CALL FC1 (param1 :=10.0,param2 :=10.1);

NETWORK

TITLE = Function block call

/I transferring parameters

/l Parameter transfer in more than one line

CALL Traffic light control , DB6 (/I Name of FB, instance data block
dur_g p = S5T#10S, /I Assign actual values to parameters
del_r p = S5T#30S,

starter := TRUE,

t dur_y car =T2,

t_dur_g_ped =T3,

t delay y car :=T4,

t dur_r _car =T5,

t next_red_car :=T6,

r_car :="re_main", // Quotation marks show symbolic
y_car :="ye_main", / names entered in symbol table
g_car :="gr_main",

r_ped ="re_int",

g_ped ="gr_int");

NETWORK

TITLE = Function block call

/I transferring parameters

/I Parameter transfer in one line

CALL FB10, DB100 (para1 :=10.0,para2 :=10.1);

END_ORGANIZATION_BLOCK

13.7.3 Example of Functions in STL Source Files

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 279

Creating STL Source Files

13.7 Examples of STL Source Files

FUNCTION FC1: VOID
/I Only due to call
VAR_INPUT
param1 : bool;
param2 : bool;
END_VAR
begin

end_function

FUNCTION FC2 : INT

TITLE = Increment number of items

/I As long as the value transferred is < 1000, this function
/I increases the transferred value. If the number of items
/I exceeds 1000, "-1" is returned via the return value

/I for the function (RET_VAL).

AUTHOR
FAMILY
NAME
VERSION

Siemens
Throughput check
INCR_ITEM_NOS
1.0

VAR_IN_OUT
ITEM_NOS : INT;
END_VAR

/I No. of items currently manufactured

BEGIN

NETWORK

TITLE = Increment number of items by 1

/I As long as the current number of items lies below 1000,
/I the counter can be increased by 1

L ITEM_NOS; L 1000;

>1; JCERR;

L 0; T RET_VAL;

L ITEM_NOS; INC 1; T ITEM_NOS; BEU;
ERR: L -1;

T RET_VAL;

END_FUNCTION

/I Example for more than one

/Il statement in a line.

280

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating STL Source Files
13.7 Examples of STL Source Files

FUNCTION FC3 {S7_pdiag := 'true'} : INT

TITLE = Increment number of items

/I As long as the value transferred is < 1000, this function
/lincreases the transferred value. If the number of items
/lexceeds 1000, "-1" is returned via the return value

/ffor the function (RET_VAL).

I

/IRET_VAL has a system attribute for parameters here

AUTHOR : Siemens

FAMILY : Throughput check
NAME : INCR_ITEM_NOS
VERSION : 1.0

VAR_IN_OUT

ITEM_NOS {S7_visible :="true'}: INT; // No. of items currently manufactured
//System attributes for parameters
END_VAR

BEGIN

NETWORK

TITLE = Increment number of items by 1

/I As long as the current number of items lies below 1000,

/I the counter can be increased by 1

L ITEM_NOS; L 1000; /I Example for more than one
> |; JC ERR; /I statement in a line.

L 0; T RET_VAL;

L ITEM_NOS; INC 1; T ITEM_NOS; BEU;

ERR: L -1;

T RET_VAL;

END_FUNCTION

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 281

Creating STL Source Files

13.7 Examples of STL Source Files

13.7.4 Example of Function Blocks in STL Source Files

FUNCTION_BLOCK FB6

TITLE = Simple traffic light switching

/I Traffic light control of pedestrian crosswalk
/I on main street

{S7_m_c :="true"} //System attribute for blocks

AUTHOR : Siemens

FAMILY : Traffic light

NAME : Traffic light01

VERSION : 1.3

VAR_INPUT

starter : BOOL = FALSE; // Cross request from pedestrian
t dur_y car : TIMER,; // Duration green for pedestrian
t_next_r_car : TIMER,; /I Duration between red phases for cars
t_dur_r_car : TIMER;

number {S7_server :='alarm_archiv'; S7_a_type := 'alarm_8'} :DWORD;

// Number of cars
/l number has system attributes for parameters

END_VAR
VAR_OUTPUT

g_car : BOOL FALSE; // GREEN for cars_
END_VAR

VAR

condition : BOOL = FALSE; // Condition red for cars
END_VAR

Programming with STEP 7
282 Manual, 04/2017, ASE41552389-AA

Creating STL Source Files
13.7 Examples of STL Source Files

BEGIN

NETWORK

TITLE = Condition red for main street traffic

/I After a minimum duration has passed, the request for green at the
/I pedestrian crosswalk forms the condition red

[for main street traffic.

AG

A #starter; /I Request for green at pedestrian crosswalk and
A #t_next_r_car; // time between red phases up

(@) #condition; /I Or condition for red

AN #t_dur_y car; /l And currently no red light

= #condition; /I Condition red

NETWORK

TITLE = Green light for main street traffic
AN #condition; /I No condition red for main street traffic
= #g_car; /l GREEN for main street traffic

NETWORK

TITLE = Duration of yellow phase for cars
/I Additional program required for controlling
I/ traffic lights

END_FUNCTION_BLOCK

FUNCTION_BLOCK FB10
VAR_INPUT
para1l : bool;
para2: bool;
end_var
begin
end_function_block

data_block db10
FB10
begin
end_data_block

data_block db6
FB6

begin
end_data_block

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 283

Creating STL Source Files

13.7 Examples of STL Source Files

13.7.5 Example of Data Blocks in STL Source Files

Data Block:

DATA_BLOCK DB 10

TITLE = DB Example 10

STRUCT
aa : BOOL; // Variable aa of type BOOL
bb : INT; [/l Variable bb of type INT
cc : WORD;

END_STRUCT;

BEGIN /I Assignment of actual values
aa ;= TRUE;
bb :=1500;

END DATA BLOCK

Data Block with Associated User-Defined Data Type:

DATA_BLOCK DB 20
TITLE = DB (UDT) Example
uDT 20 /I Specifies associated UDT
BEGIN
start := TRUE; // Assignment of actual values
setp :=10;
END_DATA_BLOCK

Note

The UDT used must come before the data block in the source file.

284

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Creating STL Source Files

13.7 Examples of STL Source Files

Data Block with Associated Function Block:

DATA_BLOCK DB 30
TITLE = DB (FB) Example
FB 30 /I Specifies associated FB
BEGIN
start := TRUE; /I Assignment of actual values
setp :=10;
END_DATA_BLOCK

Note
The associated function block must come before the data block in the source file.

13.7.6 Example of User-Defined Data Types in STL Source Files

TYPE UDT20

STRUCT
start : BOOL; Il Variable of type BOOL
setp. : INT; /I Variable of type INT
value : WORD; /I Variable of type WORD

END_STRUCT;

END TYPE

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 285

Creating STL Source Files

13.7 Examples of STL Source Files

Programming with STEP 7
286 Manual, 04/2017, ASE41552389-AA

14 Displaying Reference Data

14.1 Overview of the Available Reference Data

You can create and evaluate reference data to make it easier to debug and modify your user
program. You use the reference data for the following:

e As an overview of your whole user program

e As the basis for changes and tests

e To complement your program documentation

The following table shows which information you can extract from the individual views:

View

Purpose

Cross-reference list

Overview of the addresses in the memory areas |, Q, M, P, T, C, and DB, FB,
FC, SFB, SFC calls used in the user program.
Using the menu command View > Cross References for Address, you can

display all the cross-references including overlapping access to the selected
address.

Assignment list for inputs,
outputs, and bit memory

Overview of which bits of the addresses in the memory areas |, Q, and M, and
which timers and counters (T and C) are already occupied within the user
program; forms an important basis for troubleshooting or changes in the user
program

Program structure

Call hierarchy of the blocks within a user program and an overview of the
blocks used and their nesting levels

Unused symbols

Overview of all symbols which are defined in the symbol table but not used in
the parts of the user program for which reference data are available

Addresses without symbols

Overview of all absolute addresses which are used in the parts of the user
program for which reference data are available but for which no symbol has
been defined in the symbol table

The reference data for the selected user program include all the lists in the table. It is possible to
create and display one or more of the lists for one user program or for more than one user

program.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

287

Displaying Reference Data
74.1 Overview of the Available Reference Data

Displaying a Number of Views Simultaneously
Displaying other lists in additional windows allows you, for example, to:
e Compare the same lists for different S7 user programs.

e Display various views of a list, for example, a cross-reference list, displayed differently and
placed side by side on the screen. You can, for example, display only the inputs of an S7 user
program in one of the cross-reference lists and only the outputs in another list.

e Open a number of lists for an S7 user program simultaneously, for example, program structure
and cross-reference list.

Programming with STEP 7
288 Manual, 04/2017, ASE41552389-AA

Displaying Reference Data

14.1.1

Structure

Sorting

14.1 Overview of the Available Reference Data

Cross-Reference List

The cross-reference list provides an overview of the use of addresses within the S7 user program.

When you display the cross-reference list you obtain a list of the addresses of memory areas input
(1), output (Q), bit memory (M), timer (T), counter (C), function block (FB), function (FC), system
function block (SFB), system function (SFC), /0O (P) and data block (DB), as used in the S7 user
program along with their addresses (absolute address or symbol) and usage. It is displayed in an
active window. The working window's title bar shows the name of the user program to which the
cross-reference list belongs.

Every line in the window corresponds to a cross-reference list entry. The search function makes it
easier for you to find specific addresses and symbols.

The cross-reference list is the default view when you display reference data. You can change this
default.

A cross-reference list entry consists of the following columns:

Column Content/Meaning

Address (symbol) Address

Block (symbol) Block in which the address is used

Type Whether a read (R) and/or write (W) access to the address is involved

Language Information on the programming language used to create the block

Location Double-click the location field to jump to the location of use for the selected
address.

The Block, Type, Language and Location columns are displayed only if the corresponding
properties were selected for the cross-reference list. This block information varies, depending on
the programming language the block was written in.

You can set the column width in the cross-reference list shown on the screen as required using the
mouse.

The cross-reference list default option is to sort by memory areas. If you click a column header with
the mouse, you can sort the entries of this column by the default sort criteria.

Example of Cross-Reference List Layout

Address (symbol) Block (symbol) Type Language Location

11.0 (Motor on) OB2 R STL Nw 2 Inst 33 /0

M1.2 (MemoryBit) FC2 R LAD Nw 33

C2 (Counter?) FB2 FBD Nw2
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 289

Displaying Reference Data

74.1 Overview of the Available Reference Data

14.1.2

Program Structure

The program structure describes the call hierarchy of the blocks within an S7 user program. You
are also given an overview of the blocks used, their dependencies, and their local data

requirements.

Using the menu command View > Filter in the "Generating Reference Data" window you open a
tabbed dialog box. In the "Program Structure" tab you can set how you want the program structure

displayed.
You can choose between:
e Call structure and

e Dependency structure

Symbols for the Program Structure

290

Symbol Meaning

O Block called normally (CALL FB10)

[Block called unconditionally (UC FB10)
Block called conditionally (CC FB10)
2 Data block

2 Recursion

2 Recursion and called conditionally
K Recursion and called unconditionally
B Block not called

¢ Recursions in the call are recognized and indicated graphically in the call structure.

e Recursions within the call hierarchy are indicated by different symbols.

e Regularly called blocks (CALL), conditionally called blocks (CC) or unconditionally called

blocks (UC) are marked by different symbols.

e Blocks not called are displayed at the bottom of the call structure and marked with a black
cross. There is no further breakdown of the call structure of a block which is not called.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Displaying Reference Data

14.1 Overview of the Available Reference Data

Call Structure

The complete call hierarchy is displayed.

EHEI: - [57 Program{1] [Program structure] - ZEn01_05 STEP7__LAD 1... [H=] E3

Bz Beference Data Edit Wiew ‘window Help - 7| x|
ﬁ:l %l %llh_g I:t:ljlﬂgl |Eall structure - na filker |EI El .;?l
Startobjekt: IEIEH [&in_Prograrm) j
Block(zymball, Instance DB(zymbal) | Local data| Language | Location | Local data
-] =7 Program
O OB (Main_Program) [maximum: 28] [26]
O FB1 (Engine), DB (Petral) [2E] LaD M 4 [0
O FB1 (Engine), DB2 (Diesel) [2E] LAaD M LI 1]
0O FC1iFan) [2E] LoD iy & [0
O Fci iFam) [2E] LoD My 7 [0
® DB3(S_Data) [0 STL [0
« | 2
Press F1 to get Help. | |MUM | o

If the program structure is to be created for all organization blocks (OB) and OB1 is not in the S7
user program, or if a starting block was specified which is not present in the program, you are
automatically prompted to specify another block for the program structure root.

Display of multiple calls of blocks can be deactivated by option settings, both for the call structure
and for the dependency structure.

Displaying the Maximum Local Data Requirement in the Call Structure

To give you a quick overview of the local data requirement of the organization blocks in the user
program displayed, the following can be displayed in the tree structure:

e The maximum local data requirement per OB and
e The local data requirement per path
You can activate and deactivate this display in the "Program Structure" tab.

If synchronous error OBs (OB121, OB122) are present, a plus sign and the additional requirement
for the synchronous error OBs are displayed after the numerical value for the maximum local data
requirement.

Dependency Structure

The dependency structure shows the dependency of each block in the project on other blocks. The
block is displayed at the outer left and listed below in the indented segments are the blocks that call
or use this block.

Displaying Deleted Blocks

Lines relating to deleted blocks are highlighted in red color.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 291

Displaying Reference Data

74.1 Overview of the Available Reference Data

14.1.3 Assignment List

The Assignment lists show you which addresses are already assigned in the user program. This
display is an important basis for troubleshooting or making changes in the user program.

The 1/Q/M assignment list display gives you an overview of which bit in which byte of the memory
areas input (), output (Q), bit memory (M), times (T) and counter (Z) is used. The I/Q/M
assignment list is displayed in a working window.

The working window's title bar shows the name of the S7 user program to which the assignment list

belongs.

I/Q/M Table

Each line contains one byte of the memory area in which the eight bits are coded according to their
access. It also indicates whether the access is of a byte, word, or double word.

Identification in the I/Q/M Table

White background

The address is not accessed and thus not
assigned.

X

The address is accessed directly.

Blue background

The address is accessed indirectly (byte,
word, or double word access).

Columns in the I/Q/M Table

Column Content/Meaning

7

6

5

4 Bit number of the corresponding byte

3

2

1

0

B The byte is occupied by a one-byte access
w The byte is occupied by a one-word access
D The byte is occupied by a double-word access

Example

The following example shows the typical layout of an assignment list for inputs, outputs, and bit

memory (I/Q/M).

292

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Displaying Reference Data
14.1 Overview of the Available Reference Data

The first row shows the assignment of input byte IB 0. Inputs for address IB 0 are accessed directly
(bit access). The columns "0", "1", "2", "3", "5", and "6" are identified with "X" for bit access.

There is also word access to memory bytes 1 and 2, 2 and 3 or 4 and 5. For this reason, a "bar" is
shown in the "W" column, and the cells also have a light blue background. The black tip of the bar
shows the start of word access.

T/C Table

Each row displays 10 timers or counters.

Example
0 1 2 3 4 5 6 7 8 9
T 00-09 . T1 . . . T6 . . .
T10-19 . . T12 T17 . T19
T 20-29 T24 . . .
Z 00-09 . . Z2 zZ7 . .
Z10-19 Z19
Z 20-29
Z 30-39 Z34
In this example, the timers T1, T6, T12, T17, T19, T24 and the counters 22, Z7, Z19, Z34 are
occupied.
The lists are sorted alphabetically. You can arrange the entries by clicking on the column title.
Programming with STEP 7

Manual, 04/2017, ASE41552389-AA 293

Displaying Reference Data

74.1 Overview of the Available Reference Data

14.1.4

Unused Symbols

You are shown an overview of all the symbols with the following characteristics:

e The symbols defined in the symbol table.

e The symbols not used in the parts of the user program for which reference data exist.

They are displayed in an active window. The working window's title bar shows the name of the user
program to which the list belongs.

Every line shown in the window corresponds to a list entry. A line consists of address, symbol, data
type, and comment.

Column Content/Meaning

Address Absolute address

Data Type Data type of the address

Comment Comment on the address from the symbol table

Example of List of Unused Symbols Layout

294

Symbol Address Data Type Comment

MCB1 1103.6 BOOL Motor circuit breaker 1
MCB2 1120.5 BOOL Motor circuit breaker 2
MCB3 1121.3 BOOL Motor circuit breaker 3

You can sort the entries by clicking the column title.

You can also remove symbols that are no longer needed from the list. To do this, select symbols in
the list and then execute the "Delete symbols" function.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Displaying Reference Data

14.1.5

Example:

14.1.6

14.1 Overview of the Available Reference Data

Addresses Without Symbols

When you display the list of addresses without symbols, you obtain a list of the elements which are
used in the S7 user program, but which are not defined in the symbol table. They are displayed in
an active window. The working window's title bar shows the name of the user program to which the
list belongs.

A line consists of the address and the number of times that the address is used in the user
program. The entries are sorted according to address.

Address Number
Q25 4

123.6 3

M 34.1 20

You can also assign names to addresses without symbols. To do this, select addresses in the list
and then execute the "Edit symbols" function.

Displaying Block Information for LAD, FBD, and STL

Language relevant information for Ladder Logic, Function Block Diagram, and Statement List is
displayed in the cross-reference list and the program structure. This information consists of the
block language and details.

The "Program Structure" view only displays language relevant information if the filter is set to "Call
Structure" in the "Program Structure" tab and if respective options were selected.

Language relevant information in the "Cross References" can be shown or hidden via menu
command View > Filter.

e Activate the "Block language" and "Details" check box in the "Cross References" tab of the
"Filter" dialog box to display the block language information.

Language relevant information varies according to the programming language the block was
written in and is shown using abbreviations.

Language Network Statement Instruction
STL Nw Inst /

LAD Nw

FBD Nw

Nw and Inst specify in which network and in which statement the address is used (cross-reference
list) or the block is called (program structure).

Displaying Block Information for the Optional Programming Languages

The online help topics on block information can be accessed if the corresponding optional package

is installed.

Programming with STEP 7

Manual, 04/2017, ASE41552389-AA

295

Displaying Reference Data

14.2 Working with Reference Data

14.2 Working with Reference Data

14.2.1 Ways of Displaying Reference Data

The following possibilities are available for displaying reference data:

Displaying from the SIMATIC Manager
1. In the project window in the component view offline, select the "Blocks" folder.

2. Select the menu command Options > Reference Data > Display.

Displaying from the Editor Window
1. Open a block in the "Blocks" folder.

2. In the window of the programming language editor, select the menu command Options >
Reference Data.

The "Customize" dialog box is displayed. Here you can select the view that is shown first. The
default view is the one in the application for displaying reference data that was closed last. You can
suppress the dialog for future calls.

Displaying Directly from the Compiled Block

You can display the reference data for a compiled block directly from the language editor to get a
current overview of your user program.

Programming with STEP 7
296 Manual, 04/2017, ASE41552389-AA

Displaying Reference Data

14.2 Working with Reference Data

14.2.2 Displaying Lists in Additional Working Windows

Using the menu command Window > New Window you can open additional working windows and
display other views of the reference data (for example, List of Unused Symbols).

You open a working window for previously hidden reference data using the menu command

Reference Data > Open.

You can change to another view of the reference data by selecting one of the commands in the

"View" menu or the corresponding button in the toolbar:

Reference Data View

Menu Command to Display this Reference Data View

Addresses Without Symbols

View > Addresses Without Symbols

Unused Symbols

View > Unused Symbols

Assighment

View > Assignment

Program Structure

View > Program Structure

Cross-Reference List

View > Cross References

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

297

Displaying Reference Data
14.2 Working with Reference Data

14.2.3 Generating and Displaying Reference Data

Generating Reference Data:

1. Inthe SIMATIC Manager, select the block folder for which you want to generate reference
data.

2. Select the menu command Options > Reference Data > Generate in the SIMATIC Manager.

Before generating reference data, the computer checks to see if any reference data are available
and if so, whether the data are current.

o If reference data are available, they are generated.

o If the reference data available are not current, you can choose whether to update the reference
data or whether to generate them again completely.

Displaying Reference Data:

Using the menu command Options > Reference Data > Display you can display the reference
data.

Before displaying reference data, a check is made to ascertain whether any reference data exist
and whether the existing reference data are current.

e If no reference data exist they are generated.

o If incomplete reference data exist, a dialog box is displayed showing a notice that the reference
data are inconsistent. You can then decide whether you want to update the reference data and
to what extent. You then have the following possibilities:

Choice Meaning

For modified blocks only The reference data are updated for any modified or new blocks; information
on any blocks deleted is removed from the reference database.

For all blocks The reference data are generated again from scratch for all blocks.

Do not update The reference data are not updated.

In order to update the reference data, the blocks are recompiled. The appropriate compiler is called
to compile each block. Using the menu command View > Update you can refresh the view of the
reference data already displayed in the active window.

Programming with STEP 7
298 Manual, 04/2017, ASE41552389-AA

Displaying Reference Data

14.2 Working with Reference Data

14.2.4 Finding Address Locations in the Program Quickly

You can use reference data to position the cursor at different locations of an address in the
program when programming. To do this, you must have up-to-date reference data. However, you
do not have to start the application for displaying reference data.

Basic Procedure

1.

5.

Select the menu command Options > Reference Data > Generate in the SIMATIC Manager
to generate the current reference data. This step is only necessary if there are no reference
data, or if you have old reference data.

Select the address in an open block.

Select the menu command Edit > Go To > Instance.
A dialog box is now displayed containing a list with all instances of the address in the program.

Select the option "Overlapping access to memory areas" if you also want to display the
instances of addresses whose physical addresses or address area overlap with that of the
called address. The "Address" column is added to the table.

Select a location in the list and click the "Go To" button.

If the reference data are not up-to-date when you open the dialog box, a message to this effect will
appear. You can then update the reference data.

List of Locations

The list of locations in the dialog box contains the following details:

The block in which the address is used
The symbolic name of the block, if one exists

Details, for example, information on the location and, if appropriate, the instruction, which
depends on the original programming language of the block or source file (SCL)

Language-dependent information

Type of access to the address: read-only (R), write-only (W), read and write (RW), unknown
(?).

Block language

You can filter the display of locations and in this way view, for example, write access only for an
address. The online help for this dialog box provides you with more detailed information on what to
enter in the fields and the other information displayed.

Note

Reference data only exist offline. This function therefore always works with the cross references of
the offline blocks, even if you call the function in an online block.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 299

Displaying Reference Data

14.2 Working with Reference Data

14.2.5 Example of Working with Address Locations

You want to determine at which locations output Q1.0 (direct/indirect) is set. The following STL
code in OB1 is used as an example:

Network 1:
A Q1.0 // irrelevant

= Q1.1 // in this example

Network 2:
A M1.0
A M2.0

=Q 1.0 // assignment

Network 3:
//comment line only
SET

= M1.0 // assignment

Network 4:
ATI 1.0
ATI 2.0

= M2.0 // assignment

This results in the following assignment tree for Q1.0:

1.0 —1
N
hA2.0
2.0

Programming with STEP 7
300 Manual, 04/2017, ASE41552389-AA

Displaying Reference Data

14.2 Working with Reference Data

Then proceed as follows:
1. Position the cursor on Q1.0 (NW 1, Inst 1) in OB1 in the LAD/STL/FBD Editor.

2. Select the menu command Edit > Go To > Location or use the right mouse button to select
"Go to Location."
The dialog box now displays all the assignments for Q1.0:
OB1 Cycle Execution NW 2 Inst3 /= W STL
OB1 Cycle Execution NW 1 Inst1 /A R STL

3. Jump to "NW 2 Inst 3" in the Editor using the "Go To" button in the dialog box:
Network 2:
AM1.0
A M2.0
=Q1.0

4. The assignments to both M1.0 and M2.0 must now be checked. First position the cursor on
M1.0 in the LAD/STL/FBD Editor.

5. Select the menu command Edit > Go To > Location or use the right mouse button to select
"Go to Location." The dialog box now displays all the assignments for M1.0:
OB1 Cycle Execution NW 3 Inst2 /= W STL
OB1 Cycle Execution NW 2 Inst1 /A R STL

6. Jump to "NW 3 Inst 2" in the Editor using the "Go To" button in the dialog box.

7. Inthe LAD/STL/FBD Editor in Network 3, you will see the assignment to M1.0 is not important
(because it is always TRUE) and that the assignment to M2.0 needs to be examined instead.

In STEP 7 versions earlier than V5, you would now have to run through the entire
sequence of assignments all over again. The buttons ">>" and "<<" make this much
simpler:

8. Place the open dialog box "Go to Location" on top, or call the function "Go to Location" in the
LAD/STL/FBD Editor from your current position.

9. Click the "<<" button once or twice until all the locations of Q1.0 are displayed; the last jump
location "NW 2 Inst 3" is selected.

10. Jump from the address locations dialog box to "NW 2 Inst 3" in the Editor using the "Go To"
button (as in point 3):
Network 2:
AM1.0
A M2.0
=Q1.0

11. In point 4, the assignment to M1.0 was checked. Now you have to check all the (direct/indirect)
assignments to M2.0. Position the cursor on M2.0 in the Editor and call the function "Go to
Location:" All the assignments to M2.0 are displayed:

OB1 Cycle Execution NW 4 Inst3 /= W STL
OB1 Cycle Execution NW 2 Inst2 /A R STL

12. Jump to "NW 4 Inst 3" in the LAD/STL/FBD Editor using the "Go To" button:
Network 4:
Al1.0
Al20
=M2.0

13. Now you have to check the assignments to 11.0 and 12.0. This process is not described in this
example, because you proceed in the same way as before (point 4 onwards).

By switching between the LAD/STL/FBD Editor and the address locations dialog box, you can find
and check the relevant locations in your program.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 301

Displaying Reference Data

14.2 Working with Reference Data

Programming with STEP 7
302 Manual, 04/2017, ASE41552389-AA

15 Checking Block Consistency and Time Stamps as
a Block Property

15.1 Checking Block Consistency

Introduction

If the interfaces or the code of individual objects have to be adapted or extended, this can lead to
time stamp conflicts. Time stamp conflicts can in turn cause block inconsistencies between calling
objects and called objects or reference blocks and thus to a high amount correction work.

The "Check block consistency" function eliminates a lot of this correction work. The "Check block
consistency" function removes a large part of all the time stamp conflicts and block inconsistencies.
In the case of objects whose block inconsistencies could not be eliminated automatically, the
function places you at the position to be changed in the corresponding editor, where you can carry
out the required changes. All the block inconsistencies are eliminated and the objects are compiled
step-by-step.

Requirements

It is only possible to check block consistency for projects created from STEP 7 V5.0, Service Pack
3. For older projects, you must first compile everything when starting the block consistency check
(menu command Program > Compile All).

For objects created with an options package, the options package must be installed for the
consistency check.

Starting the Block Consistency Check

At the start of the block consistency check, the time stamps of the block interfaces are checked,
and objects that could cause block inconsistencies are highlighted in the tree view (Dependency
Tree: References / Call Tree).

1. Inthe SIMATIC Manager, go to the project window, select the required block folder and then
initiate the block consistency via menu command Edit > Check Block Consistency.

2. In"Check Block Consistency" select the menu command Program > Compile
STEP 7 automatically recognizes the programming language for the relevant objects and calls
the corresponding editor. As far as possible, the time stamp conflicts and block inconsistencies
are corrected automatically and the objects are compiled. If the time stamp conflict or the
inconsistency in an object cannot be eliminated automatically, an error message appears in the
output window (refer to Step 3 for further procedures). This process is repeated automatically
for all the objects in the tree view.

3. If it was not possible to eliminate all the block inconsistencies automatically during the
compilation run, the corresponding objects are marked in the output windows as error
messages. Position the mouse on the corresponding error entry and use the right-hand mouse
to call the error display in the pop-up menu. The relevant error is opened and the program
jumps to the positions to be changed. Eliminate all the block inconsistencies, and save and
close the object. Repeat this process for all the objects marked as errors.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 303

Checking Block Consistency and Time Stamps as a Block Property

15.1 Checking Block Consistency

4. Start Steps 2 and 3 again. Repeat this process until no more errors are displayed in the
message window.

Programming with STEP 7
304 Manual, 04/2017, ASE41552389-AA

Checking Block Consistency and Time Stamps as a Block Property
15.2 Time Stamps as a Block Property and Time Stamp Conflicts

15.2 Time Stamps as a Block Property and Time Stamp Conflicts

Blocks contain a code time stamp and an interface time stamp. These time stamps are displayed in
the dialog box for the block properties. You can monitor the consistency of STEP 7 programs
using time stamps.

STEP 7 displays a time stamp conflict if it detects a violation of the rules when comparing time
stamps. The following violations may occur:

e A called block is more up-to-date than the calling block (CALL)
o A referenced block is more up-to-date than the block which is using it
e Examples of the second type of violation:

e A UDT is more up-to-date than the block that is using it; that is, a DB or another UDT, or an
FC, an FB, or an OB that is using the UDT in the variable declaration table.

e An FB is more up-to-date than its corresponding instance DB.

e An FB2 is defined as a multiple instance in FB1 and FB2 is more up-to-date than FB1.

Note
Even if the relationship between the interface time stamps is correct, inconsistencies may occur:

e The definition of the interface for the referenced block does not match the definition in the
location at which it is used.

These inconsistencies are known as interface conflicts. They can occur, for example, when blocks
are copied from different programs or when an ASCII source file is compiled and not all of the
blocks in a program are generated.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 305

Checking Block Consistency and Time Stamps as a Block Property

15.3 Time Stamps in Logic Blocks

15.3 Time Stamps in Logic Blocks

Code Time stamp

The time and date the block was created is entered here. The time stamp is updated:

When the program code is changed

When the interface description is changed

When the comment is changed

When an ASCII source file is created for the first time and compiled

When the block properties ("Properties” dialog box) are changed

Interface Time stamp

The time stamp is updated:

When the interface description is changed (changes to data types or initial values, new
parameters)

When an ASCII source file is created for the first time and compiled, if the interface is changed
structurally.

The time stamp is not updated:
When symbols are changed
When comments in the variable declaration are changed

When changes are made in the TEMP area

Rules for Block Calls

The interface time stamp of the called block must be older than the code time stamp of the
calling block.

Only change the interface of a block if no block is open which calls this block. Otherwise, if you
save the calling blocks later than the changed block, you will not recognize this inconsistency
from the time stamp.

Procedure if a Time stamp Conflict Occurs

A time stamp conflict is displayed when the calling block is opened. After making changes to an FC
or FB interface, all calls to this block in calling blocks are shown in expanded form.

If the interface of a block is changed, all blocks which call this block must be adjusted as well.

After making changes to an FB interface, the existing multiple instance definitions and instance
data blocks must be updated.

306

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA

Checking Block Consistency and Time Stamps as a Block Property
15.4 Time Stamps in Shared Data Blocks

15.4 Time Stamps in Shared Data Blocks

Code Time stamp
The time stamp is updated:
e When an ASCII source file is created for the first time
e When an ASCII source file is compiled

e When changes are made in the declaration view or in the data view of the block

Interface Time stamp
The time stamp is updated:

o When the interface description is changed in the declaration view (changes to data types or
initial values, new parameters)

15.5 Time Stamps in Instance Data Blocks

An instance data block saves the formal parameters and static data for function blocks.

Code Time stamp

The time and date the instance data blocks were created is entered here. The time stamp is
updated when you enter actual values in the data view of the instance data block. The user cannot
make changes to the structure of an instance data block because the structure is derived from the
associated function block (FB) or system function block (SFB).

Interface Time stamp

When an instance data block is created, the interface time stamp of the associated FB or SFB is
entered.

Rules for Opening Without Conflicts

The interface time stamps of the FB/SFB and the associated instance data block must match.

Procedure if a Time stamp Conflict Occurs

If you change the interface of an FB, the interface time stamp of the FB is updated. When you open
an associated instance data block, a time stamp conflict is reported because the time stamps of the
instance data block and the FB no longer match. In the declaration section of the data block the
interface is displayed with the symbols generated by the compiler (pseudo-symbols). The instance
data block can now only be viewed.

To remedy time stamp conflicts of this type, you must create the instance data block for a changed
FB again.

Programming with STEP 7
Manual, 04/2017, ASE41552389-AA 307

Checking Block Consistency and Time Stamps as a Block Property
15.6 Time Stamps in UDTs and Data Blocks Derived from UDTs

15.6 Time Stamps in UDTs and Data Blocks Derived from UDTs

User-defined data types (UDTs) can, for example, be used to create a number of data blocks with
the same structure.

Code Time stamp

The code time stamp is updated on every change.

Interface Time stamp

The interface time stamp is updated when the interface description is changed (changes to data
types or initial values, new parameters).

The interface time stamp of a UDT is also updated when the ASCII source file is compiled.

Rules for Opening Without Conflicts

o The interface time stamp of the user-defined data type must be older than the interface time
stamp in logic blocks in which this data type is used.

o The interface time stamp of the user-defined data type must be identical to the time stamp of a
data block derived from a UDT.

e The interface time stamp of the user-defined data type must be younger than the time stamp of
a secondary UDT.

Procedure if a Time stamp Conflict Occurs

If you change a UDT definition that is used in a data block, function, function block, or another UDT
definition, STEP 7 reports a time stamp conflict when the block is opened.

The UDT component is shown as a fanned-out structure. All variable names are overwritten by
values preset by the system.

15.7 Correcting the Interfaces in a Function, Function Block, or UDT

If you need to correct the interface in an FB, FC, or UDT, proceed as follows to avoid time stamp
conflicts:

1. Generate an STL source file from the block you want to change and all directly or indirectly
referenced blocks.

2. Save the changes in the source file you generated.
3. Compile the modified source file back into blocks.

You can now save/download the interface changes.

Programming with STEP 7
308 Manual, 04/2017, ASE41552389-AA

Checking Block Consistency and Time Stamps as a Block Property
15.8 Avoiding Errors when Calling Blocks

15.8 Avoiding Errors when Calling Blocks

STEP 7 Overwrites Data in the DB Register

STEP 7 modifies the registers of the S7-300/S7-400 CPU when various instructions are executed.
The contents of the DB and DI registers are, for example, swapped when you call an FB. This
allows the instance DB of the called FB to be opened without losing the address of the previous
instance DB.

If you work with absolute addressing, errors can occur accessing data saved in the registers. In
some cases, the addresses in the register AR1 (address register 1) and in the DB register are
overwritten. This means that you could read or write to the wrong addresses.

A Danger

Danger of damage to property and persons when:
1. Using CALL FC, CALL FB, CALL multiple instance
2. Accessing a DB using the complete absolute address (for example DB20.DBW10)

3. Accessing variables of a complex data type

It is possible that the contents of DB registers (DB and DI), address registers (AR1, AR2), and
accumulators (ACCU1, ACCUZ2) may be changed.

In addition, you cannot use the RLO bit of the status word as an additional (implicit) parameter
when you call an FB or FC.

When using the programming techniques mentioned above, you must make sure that you save
and restore the contents yourself, otherwise errors may occur.

Saving Correct Data

The contents of the DB register ca