
s

SIMATIC

Programming with STEP 7

Function Manual

04/2017
A5E41552389-AA

Preface

Introducing the Product and
Installing the Software

 1

Installation
 2

Working Out the Automation
Concept

 3

Basics of Designing a
Program Structure

 4

Startup and Operation
 5

Setting Up and Editing the
Project

 6

Editing Projects with
Different Versions of STEP 7

 7

Defining Symbols
 8

Creating Blocks and
Libraries

 9

Basics of Creating Logic
Blocks

 10

Creating Data Blocks
 11

Parameter Assignment for
Data Blocks

 12

Creating STL Source Files
 13

Displaying Reference Data
 14

Checking Block Consistency
and Time Stamps as a Block
Property

15

Continued on next page

 Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E41552389-AA
Ⓟ 04/2017 Subject to change

Copyright © Siemens AG 2017.
All rights reserved

s

Continued

Configuring Messages
 16

Controlling and Monitoring
Variables

 17

Establishing an Online
Connection and Making CPU
Settings

18

Downloading and Uploading
 19

Testing with the Variable
Table

 20

Testing Using Program
Status

 21

Testing using the Simulation
Program (Optional Package)

 22

Diagnostics
 23

Printing and Archiving
 24

Tips and Tricks
 25

Appendix
 26

SIMATIC

Programming with STEP 7

Function Manual

04/2017
A5E41552389-AA

 Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E41552389-AA
Ⓟ 04/2017 Subject to change

Copyright © Siemens AG 2017.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

 NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

 WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 5

Preface

Purpose
This manual provides a complete overview of programming with STEP 7. It is designed to support
you when installing and commissioning the software. It explains how to proceed when creating
programs and describes the components of user programs.

The manual is intended for people who are involved in carrying out control tasks using STEP 7 and
SIMATIC S7 automation systems.

We recommend that you familiarize yourself with the examples in the manual "Working with
STEP 7 V5.5, Getting Started." These examples provide an easy introduction to the topic
"Programming with STEP 7".

Basic Knowledge Required
In order to understand this manual, general knowledge of automation technology is required. In
addition, you must be familiar with using computers or PC-similar tools (for example, programming
devices) with the MS Windows XP, MS Windows Server 2003 or MS Windows 7 operating system.

Scope of the Manual
This manual is valid for release 5.6 of the STEP 7 programming software package.

You can find the latest information on the service packs:

• in the "readme.rtf" file

• in the updated STEP 7 online help.

The topic "What's new?" in the online help offers an excellent introduction and overview of the
newest STEP 7 innovations.

Preface

 Programming with STEP 7
6 Manual, 04/2017, A5E41552389-AA

Online Help
The manual is complemented by an online help which is integrated in the software.

This online help is intended to provide you with detailed support when using the software.

The help system is integrated in the software via a number of interfaces:

• There are several menu commands which you can select in the Help menu:

The Contents command opens the index for the Help on STEP 7.

• Using Help provides detailed instructions on using the online help.

The context-sensitive help offers information on the current context, for example, an open dialog
box or an active window. You can open the contextsensitive help by clicking the "Help" button or by
pressing F1.

• The status bar offers another form of context-sensitive help. It displays a short explanation for
each menu command when the mouse pointer is positioned on the menu command.

• A brief explanation is also displayed for each icon in the toolbar when the mouse pointer is
positioned on the icon for a short time.

If you prefer to read the information from the online help in printed format, you can print out
individual help topics, books, or the entire online help.

This manual, as well as the manuals "Configuring Hardware and Communication Connections
STEP 7", "Modifiying the System During Operation via CiR" and "Automation System S7-400H -
Fault-Tolerant Systems" is an extract from the HTML-based Help on STEP 7. For detailed
procedures please refer to the STEP 7 help. As the manuals and the online help share an almost
identical structure, it is easy to switch between the manuals and the online help.

You can find the electronic manuals after installing STEP 7 via the Windows Start menu: Start >
SIMATIC > Documentation.

Further Support
If you have any technical questions, please get in touch with your Siemens representative or
responsible agent.

You will find your contact person at:

http://www.siemens.com/automation/partner

You will find a guide to the technical documentation offered for the individual SIMATIC Products
and Systems at:

http://www.siemens.com/simatic-tech-doku-portal

The online catalog and order system is found under:

http://mall.automation.siemens.com/

Training Centers
Siemens offers a number of training courses to familiarize you with the SIMATIC S7 automation
system. Please contact your regional training center or our central training center in
D 90026 Nuremberg, Germany for details:

Internet: http://www.sitrain.com

http://www.siemens.com/automation/partner
http://www.siemens.com/simatic-tech-doku-portal
http://mall.automation.siemens.com/
internet:%20http://www.sitrain.com

 Preface

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 7

Technical Support
You can reach the Technical Support for all Industry Automation and Drive Technology products

• Via the Web formula for the Support Request

http://www.siemens.com/automation/support-request Additional information about our Technical
Support can be found on the Internet pages http://www.siemens.com/automation/service

Service & Support on the Internet
In addition to our documentation, we offer our Know-how online on the internet at:

http://www.siemens.com/automation/service&support

where you will find the following:

• The newsletter, which constantly provides you with up-to-date information on your products.

• The right documents via our Search function in Service & Support.

• A forum, where users and experts from all over the world exchange their experiences.

• Your local representative for Industry Automation and Drive Technology.

• Information on field service, repairs, spare parts and consulting.

Security Information:
Siemens provides products and solutions with industrial security functions that support the secure
operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to
implement - and continuously maintain - a holistic, state-of-the-art industrial security concept.
Siemens' products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and
networks. Systems, machines and components should only be connected to the enterprise network
or the internet if and to the extent necessary and with appropriate security measures (e.g. use of
firewalls and network segmentation) in place.

Additionally, Siemens' guidance on appropriate security measures should be taken into account.
For more information about industrial security, please visit

http://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends to apply product updates as soon as available and to always use
the latest product versions. Use of product versions that are no longer supported, and failure to
apply latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed
under

http://www.siemens.com/industrialsecurity.

http://www.siemens.com/automation/support-request
http://www.siemens.com/automation/service&support
http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity

Preface

 Programming with STEP 7
8 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 9

Table of Contents
Preface ... 5

Table of Content ... 9

1 Introducing the Product and Installing the Software ... 21
1.1 Overview of STEP 7 ... 21
1.2 The STEP 7 Standard Package ... 25
1.3 What's New in STEP 7, Version 5.6? .. 30
1.4 Extended Uses of the STEP 7 Standard Package .. 31
1.4.1 Engineering Tools .. 32
1.4.2 Run-Time Software .. 34
1.4.3 Human Machine Interface .. 35

2 Installation .. 37
2.1 Automation License Manager .. 37
2.1.1 User Rights Through The Automation License Manager .. 37
2.1.2 Installing the Automation License Manager ... 40
2.1.3 Guidelines for Handling License Keys ... 41
2.2 Installing STEP 7.. 42
2.2.1 Installation Procedure .. 44
2.2.2 Setting the PG/PC Interface ... 46
2.3 Uninstalling STEP 7 ... 48
2.4 User Rights .. 48

3 Working Out the Automation Concept ... 51
3.1 Basic Procedure for Planning an Automation Project .. 51
3.2 Dividing the Process into Tasks and Areas ... 52
3.3 Describing the Individual Functional Areas .. 54
3.4 Listing Inputs, Outputs, and In/Outs .. 56
3.5 Creating an I/O Diagram for the Motors ... 56
3.6 Creating an I/O Diagram for the Valves ... 57
3.7 Establishing the Safety Requirements ... 58
3.8 Describing the Required Operator Displays and Controls ... 59
3.9 Creating a Configuration Diagram ... 60

4 Basics of Designing a Program Structure .. 61
4.1 Programs in a CPU .. 61
4.2 Blocks in the User Program ... 62
4.2.1 Organization Blocks and Program Structure ... 63
4.2.2 Call Hierarchy in the User Program ... 69
4.2.3 Block Types .. 71
4.2.3.1 Organization Block for Cyclic Program Processing (OB1) .. 71
4.2.3.2 Functions (FC) ... 77
4.2.3.3 Function Blocks (FB) .. 79
4.2.3.4 Instance Data Blocks ... 82
4.2.3.5 Shared Data Blocks (DB) ... 85
4.2.3.6 System Function Blocks (SFB) and System Functions (SFC) ... 86
4.2.4 Organization Blocks for Interrupt-Driven Program Processing .. 88
4.2.4.1 Time-of-Day Interrupt Organization Blocks (OB10 to OB17) ... 88
4.2.4.2 Time-Delay Interrupt Organization Blocks (OB20 to OB23) .. 91
4.2.4.3 Cyclic Interrupt Organization Blocks (OB30 to OB38) ... 92
4.2.4.4 Hardware Interrupt Organization Blocks (OB40 to OB47) ... 94
4.2.4.5 Startup Organization Blocks (OB100 / OB101 / OB102) ... 95
4.2.4.6 Background Organization Block (OB90) .. 97
4.2.4.7 Error Handling Organization Blocks (OB70 to OB87 / OB121 to OB122) 99

Table of Contents

 Programming with STEP 7
10 Manual, 04/2017, A5E41552389-AA

5 Startup and Operation ... 101
5.1 Starting STEP 7 ... 101
5.2 Starting STEP 7 with Default Start Parameters ... 102
5.3 Calling the Help Functions ... 104
5.4 Objects and Object Hierarchy .. 105
5.4.1 Project Object ... 107
5.4.2 Library Object ... 108
5.4.3 Station Object ... 109
5.4.4 Programmable Module Object ... 110
5.4.5 S7 Program Object .. 112
5.4.6 Block Folder Object .. 114
5.4.7 Source File Folder Object .. 117
5.4.8 S7 Program without a Station or CPU ... 118
5.5 User Interface and Operation ... 119
5.5.1 Operating Philosophy ... 119
5.5.2 Window Arrangement .. 120
5.5.3 Elements in Dialog Boxes .. 121
5.5.4 Creating and Managing Objects .. 122
5.5.5 Selecting Objects in a Dialog Box .. 128
5.5.6 Session Memory .. 129
5.5.7 Changing the Window Arrangement .. 129
5.5.8 Saving and Restoring the Window Arrangement ... 130
5.6 Keyboard Operation ... 131
5.6.1 Keyboard Control ... 131
5.6.2 Key Combinations for Menu Commands ... 131
5.6.3 Key Combinations for Moving the Cursor .. 133
5.6.4 Key Combinations for Selecting Text ... 135
5.6.5 Key Combinations for Access to Online Help .. 135
5.6.6 Key Combinations for Toggling between Windows ... 136

6 Setting Up and Editing the Project ... 137
6.1 Project Structure .. 137
6.2 What You Should Know About Access Protection ... 139
6.3 What You Should Know About The Change Log ... 141
6.4 Using Foreign-Language Character Sets .. 142
6.5 Setting the MS Windows Language ... 144
6.6 Setting Up a Project ... 145
6.6.1 Creating a Project .. 145
6.6.2 Inserting Stations ... 147
6.6.3 Inserting an S7 Program .. 148
6.7 Editing a Project ... 150
6.7.1 Checking Projects for Software Packages Used ... 150
6.7.2 Managing Multilingual Texts .. 151
6.7.2.1 Types of Multilingual Texts .. 153
6.7.2.2 Structure of the Export File .. 154
6.7.2.3 Information on the Log File .. 156
6.7.2.4 Managing User Texts Whose Language Font is Not Installed .. 157
6.7.2.5 Optimizing the Source for Translation.. 158
6.7.2.6 Optimizing the Translation Process ... 159
6.7.2.7 Hiding Texts in Selected Languages ... 159
6.7.3 Micro Memory Card (MMC) as a Data Carrier ... 160
6.7.3.1 What You Should Know About Micro Memory Cards (MMC) .. 160
6.7.3.2 Using a Micro Memory Card as a Data Carrier .. 161
6.7.3.3 Memory Card File... 161
6.7.3.4 Storing Project Data on a Micro Memory Card (MMC) .. 162

 Table of Contents

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 11

7 Editing Projects with Different Versions of STEP 7 .. 163
7.1 Editing Version 2 Projects and Libraries .. 163
7.2 Expanding DP Slaves That Were Created with Previous Versions of STEP 7 163
7.3 Editing Current Configurations with Previous Versions of STEP 7 .. 165
7.4 Appending SIMATIC PC Configurations of Previous Versions .. 166
7.5 Displaying Modules Configured with Later STEP 7 Versions or Optional Packages 168

8 Defining Symbols .. 171
8.1 Absolute and Symbolic Addressing ... 171
8.2 Shared and Local Symbols .. 173
8.3 Displaying Shared or Local Symbols ... 174
8.4 Setting the Address Priority (Symbolic/Absolute) .. 175
8.5 Symbol Table for Shared Symbols .. 178
8.5.1 Structure and Components of the Symbol Table ... 178
8.5.2 Addresses and Data Types Permitted in the Symbol Table .. 180
8.5.3 Incomplete and Non-Unique Symbols in the Symbol Table .. 181
8.6 Entering Shared Symbols .. 182
8.6.1 General Tips on Entering Symbols .. 182
8.6.2 Entering Single Shared Symbols in a Dialog Box .. 183
8.6.3 Entering Multiple Shared Symbols in the Symbol Table .. 184
8.6.4 Using Upper and Lower Case for Symbols .. 185
8.6.5 Exporting and Importing Symbol Tables .. 187
8.6.6 File Formats for Importing/Exporting a Symbol Table ... 188
8.6.7 Editing Areas in Symbol Tables ... 191

9 Creating Blocks and Libraries .. 193
9.1 Selecting an Editing Method .. 193
9.2 Selecting the Programming Language .. 194
9.2.1 Ladder Logic Programming Language (LAD) .. 196
9.2.2 Function Block Diagram Programming Language (FBD) .. 197
9.2.3 Statement List Programming Language (STL) .. 198
9.2.4 S7 SCL Programming Language ... 199
9.2.5 S7-GRAPH Programming Language (Sequential Control) .. 200
9.2.6 S7 HiGraph Programming Language (State Graph).. 201
9.2.7 S7 CFC Programming Language... 202
9.3 Creating Blocks .. 203
9.3.1 Blocks Folder ... 203
9.3.2 Using UserDefined Data Types to Access Data ... 204
9.3.3 Block Properties ... 207
9.3.4 Displaying Block Lengths ... 209
9.3.5 Rewiring ... 210
9.3.6 Comparing Blocks .. 211
9.3.7 Attributes for Blocks and Parameters .. 213
9.4 Working with Libraries .. 214
9.4.1 Hierarchical Structure of Libraries.. 216
9.4.2 Overview of the Standard Libraries.. 216

10 Basics of Creating Logic Blocks .. 217
10.1 Basics of Creating Logic Blocks ... 217
10.1.1 Structure of the Program Editor Window ... 217
10.1.2 Basic Procedure for Creating Logic Blocks ... 219
10.1.3 Default Settings for the LAD/STL/FBD Program Editor ... 220
10.1.4 Access Rights to Blocks and Source Files .. 220
10.1.5 Instructions from the Program Elements Table ... 221
10.2 Editing the Variable Declaration... 222
10.2.1 Using the Variable Declaration in Logic Blocks ... 222
10.2.2 Interaction Between The Variable Detail View And The Instruction List.................................... 224
10.2.3 Structure of the Variable Declaration Window ... 225
10.3 Multiple Instances in the Variable Declaration ... 226

Table of Contents

 Programming with STEP 7
12 Manual, 04/2017, A5E41552389-AA

10.3.1 Using Multiple Instances .. 226
10.3.2 Rules for Declaring Multiple Instances .. 227
10.3.3 Entering a Multiple Instance in the Variable Declaration Window ... 227
10.4 General Notes on Entering Statements and Comments ... 228
10.4.1 Structure of the Code Section .. 228
10.4.2 Procedure for Entering Statements.. 229
10.4.3 Entering Shared Symbols in a Program .. 230
10.4.4 Entering Block Comments and Network Comments.. 230
10.4.5 Title and Comments for Blocks and Networks ... 231
10.4.6 Working with Network Templates .. 233
10.4.7 Search Function for Errors in the Code Section .. 234
10.5 Editing LAD Elements in the Code Section ... 235
10.5.1 Settings for Ladder Logic Programming .. 235
10.5.2 Rules for Entering Ladder Logic Elements .. 235
10.5.3 Illegal Logic Operations in Ladder ... 238
10.6 Editing FBD Elements in the Code Section ... 239
10.6.1 Settings for Function Block Diagram Programming ... 239
10.6.2 Rules for Entering FBD Elements .. 240
10.7 Editing STL Statements in the Code Section ... 242
10.7.1 Settings for Statement List Programming .. 242
10.7.2 Rules for Entering STL Statements ... 242
10.8 Updating Block Calls .. 243
10.8.1 Changing Interfaces ... 243
10.9 Saving Logic Blocks ... 244

11 Creating Data Blocks .. 247
11.1 Basic Information on Creating Data Blocks ... 247
11.2 Declaration View of Data Blocks .. 248
11.3 Data View of Data Blocks .. 249
11.4 Editing and Saving Data Blocks ... 250
11.4.1 Entering the Data Structure of Shared Data Blocks .. 250
11.4.2 Entering and Displaying the Data Structure of Data Blocks Referencing an FB

(Instance DBs) ... 251
11.4.3 Entering the Data Structure of User-Defined Data Types (UDT) ... 252
11.4.4 Entering and Displaying the Structure of Data Blocks Referencing a UDT 253
11.4.5 Editing Data Values in the Data View .. 254
11.4.6 Resetting Data Values to their Initial Values .. 254
11.4.7 Saving Data Blocks .. 255

12 Parameter Assignment for Data Blocks ... 257
12.1 Assigning Parameters to Technological Functions .. 257

13 Creating STL Source Files .. 259
13.1 Basic Information on Programming in STL Source Files ... 259
13.2 Rules for Programming in STL Source Files ... 260
13.2.1 Rules for Entering Statements in STL Source Files .. 260
13.2.2 Rules for Declaring Variables in STL Source Files .. 261
13.2.3 Rules for Block Order in STL Source Files .. 262
13.2.4 Rules for Setting System Attributes in STL Source Files .. 262
13.2.5 Rules for Setting Block Properties in STL Source Files... 263
13.2.6 Permitted Block Properties for Each Block Type ... 264
13.3 Structure of Blocks in STL Source Files .. 266
13.3.1 Structure of Logic Blocks in STL Source Files ... 266
13.3.2 Structure of Data Blocks in STL Source Files .. 267
13.3.3 Structure of User-Defined Data Types in STL Source Files .. 267
13.4 Syntax and Formats for Blocks in STL Source Files ... 268
13.4.1 Format Table of Organization Blocks... 268
13.4.2 Format Table of Function Blocks ... 269
13.4.3 Format Table of Functions ... 270
13.4.4 Format Table of Data Blocks ... 271

 Table of Contents

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 13

13.5 Creating STL Source Files ... 272
13.5.1 Creating STL Source Files ... 272
13.5.2 Editing S7 Source Files .. 272
13.5.3 Setting The Layout of Source Code Text ... 272
13.5.4 Inserting Block Templates in STL Source Files ... 273
13.5.5 Inserting the Contents of Other STL Source Files ... 273
13.5.6 Inserting Source Code from Existing Blocks in STL Source Files ... 273
13.5.7 Inserting External Source Files .. 273
13.5.8 Generating STL Source Files from Blocks ... 274
13.5.9 Importing Source Files ... 275
13.5.10 Exporting Source Files ... 275
13.6 Saving and Compiling STL Source Files and Executing a Consistency Check 276
13.6.1 Saving STL Source Files ... 276
13.6.2 Checking Consistency in STL Source Files ... 276
13.6.3 Debugging STL Source Files ... 276
13.6.4 Compiling STL Source Files .. 277
13.7 Examples of STL Source Files ... 277
13.7.1 Examples of Declaring Variables in STL Source Files .. 277
13.7.2 Example of Organization Blocks in STL Source Files ... 278
13.7.3 Example of Functions in STL Source Files .. 279
13.7.4 Example of Function Blocks in STL Source Files .. 282
13.7.5 Example of Data Blocks in STL Source Files .. 284
13.7.6 Example of User-Defined Data Types in STL Source Files ... 285

14 Displaying Reference Data .. 287
14.1 Overview of the Available Reference Data .. 287
14.1.1 CrossReference List ... 289
14.1.2 Program Structure .. 290
14.1.3 Assignment List .. 292
14.1.4 Unused Symbols .. 294
14.1.5 Addresses Without Symbols .. 295
14.1.6 Displaying Block Information for LAD, FBD, and STL ... 295
14.2 Working with Reference Data .. 296
14.2.1 Ways of Displaying Reference Data .. 296
14.2.2 Displaying Lists in Additional Working Windows ... 297
14.2.3 Generating and Displaying Reference Data .. 298
14.2.4 Finding Address Locations in the Program Quickly ... 299
14.2.5 Example of Working with Address Locations ... 300

15 Checking Block Consistency and Time Stamps as a Block Property .. 303
15.1 Checking Block Consistency .. 303
15.2 Time Stamps as a Block Property and Time Stamp Conflicts ... 305
15.3 Time Stamps in Logic Blocks ... 306
15.4 Time Stamps in Shared Data Blocks ... 307
15.5 Time Stamps in Instance Data Blocks ... 307
15.6 Time Stamps in UDTs and Data Blocks Derived from UDTs .. 308
15.7 Correcting the Interfaces in a Function, Function Block, or UDT .. 308
15.8 Avoiding Errors when Calling Blocks ... 309

16 Configuring Messages .. 311
16.1 The Message Concept ... 311
16.1.1 What Are the Different Messaging Methods? .. 311
16.1.2 Choosing a Messaging Method ... 313
16.1.3 SIMATIC Components ... 315
16.1.4 Parts of a Message .. 316
16.1.5 Which Message Blocks Are Available? ... 317
16.1.6 Formal Parameters, System Attributes, and Message Blocks .. 319
16.1.7 Message Type and Messages ... 320
16.1.8 How to Generate an STL Source File from Message-Type Blocks ... 322
16.1.9 Assigning Message Numbers .. 322

Table of Contents

 Programming with STEP 7
14 Manual, 04/2017, A5E41552389-AA

16.1.10 Differences Between Project-Oriented and CPU-Oriented Assignment
of Message Numbers ... 323

16.1.11 Options for Modifying the Message Number Assignment of a Project 324
16.2 Project-Oriented Message Configuration ... 325
16.2.1 How to Assign Project-Oriented Message Numbers ... 325
16.2.2 Assigning and Editing BlockRelated Messages ... 325
16.2.2.1 How to Create Block-Related Messages (Project-Oriented) ... 325
16.2.2.2 How to Edit Block-Related Messages (Project-Oriented) .. 328
16.2.2.3 How to Configure PCS 7 Messages (Project-Oriented)... 329
16.2.3 Assigning and Editing Symbol-Related Messages .. 330
16.2.3.1 How to Assign and Edit Symbol-Related Messages (Project-Oriented) 330
16.2.4 Creating and Editing UserDefined Diagnostic Messages ... 331
16.3 CPU-Oriented Message Configuration .. 332
16.3.1 How to Assign CPU-Oriented Message Numbers ... 332
16.3.2 Assigning and Editing BlockRelated Messages ... 332
16.3.2.1 How to Create Block-Related Messages (CPU-Oriented) ... 332
16.3.2.2 How to Edit Block-Related Messages (CPU-Oriented).. 335
16.3.2.3 How to Configure PCS 7 Messages (CPU-Oriented) .. 335
16.3.3 Assigning and Editing Symbol-Related Messages .. 337
16.3.3.1 How to Assign and Edit Symbol-Related Messages (CPU-Oriented) 337
16.3.4 Creating and Editing User-Defined Diagnostic Messages ... 338
16.4 Tips for Editing Messages .. 339
16.4.1 Adding Associated Values to Messages .. 339
16.4.2 Integrating Texts from Text Libraries into Messages ... 342
16.4.3 Deleting Associated Values ... 343
16.5 Translating and Editing Operator Related Texts .. 344
16.5.1 Translating and Editing User Texts .. 344
16.6 Translating and Editing Text Libraries ... 346
16.6.1 User Text Libraries ... 346
16.6.2 Creating User Text Libraries .. 346
16.6.3 How to Edit User Text Libraries ... 347
16.6.4 System Text Libraries .. 347
16.6.5 Translating Text Libraries .. 348
16.7 Transferring Message Configuration Data to the Programmable Controller 350
16.7.1 Transferring Configuration Data to the Programmable Controller ... 350
16.8 Displaying CPU Messages and UserDefined Diagnostic Messages .. 351
16.8.1 Configuring CPU Messages ... 354
16.8.2 Displaying Stored CPU Messages ... 354
16.9 Configuring the 'Report System Errors' ... 355
16.9.1 Overview of 'Report System Error' ... 355
16.9.2 Configuring the Reporting of System Errors .. 355
16.9.3 Supported Components and Functional Scope ... 357
16.9.4 Settings for "Report System Error" .. 361
16.9.5 Generating Blocks for Reporting System Errors .. 361
16.9.6 Generated Error OBs ... 363
16.9.7 Generated Blocks... 365
16.9.8 Assignment of System Errors to Error Classes ... 367
16.9.9 Generating Foreign-Language Message Texts in 'Report System Error' 369

17 Controlling and Monitoring Variables ... 371
17.1 Configuring Variables for Operator Control and Monitoring .. 371
17.2 Configuring Operator Control and Monitoring Attributes with Statement List, Ladder Logic,

and Function Block Diagram .. 373
17.3 Configuring Operator Control and Monitoring Attributes via the Symbol Table 374
17.4 Changing Operator Control and Monitoring Attributes with CFC ... 375
17.5 Transferring Configuration Data to the Operator Interface Programmable Controller 376

 Table of Contents

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 15

18 Establishing an Online Connection and Making CPU Settings ... 377
18.1 Establishing Online Connections ... 377
18.1.1 Establishing an Online Connection via the "Accessible Nodes" Window 377
18.1.2 Establishing an Online Connection via the Online Window of the Project 379
18.1.3 Online Access to PLCs in a Multiproject .. 380
18.1.4 Password Protection for Access to Programmable Controllers ... 382
18.1.5 Updating the Window Contents ... 383
18.2 Displaying and Changing the Operating Mode .. 384
18.3 Displaying and Setting the Time and Date .. 385
18.3.1 CPU Clocks with Time Zone Setting and Summer/Winter Time ... 386
18.4 Updating the Firmware ... 388
18.4.1 Updating Firmware in Modules and Submodules Online... 388

19 Downloading and Uploading.. 393
19.1 Downloading from the PG/PC to the Programmable Controller .. 393
19.1.1 Requirements for Downloading.. 393
19.1.2 Differences Between Saving and Downloading Blocks ... 394
19.1.3 Load Memory and Work Memory in the CPU .. 395
19.1.4 Download Methods Dependent on the Load Memory ... 397
19.1.5 Updating Firmware in Modules and Submodules Online... 398
19.1.6 Downloading a Program to the S7 CPU .. 401
19.1.6.1 Downloading with Project Management .. 401
19.1.6.2 Downloading without Project Management ... 401
19.1.6.3 Reloading Blocks in the Programmable Controller .. 401
19.1.6.4 Saving Downloaded Blocks on Integrated EPROM ... 402
19.1.6.5 Downloading via EPROM Memory Cards .. 402
19.2 Compiling and Downloading Several Objects from the PG ... 403
19.2.1 Requirements for and Notes on Downloading ... 403
19.2.2 Compiling and Downloading Objects ... 405
19.3 Uploading from the Programmable Controller to the PG/PC ... 407
19.3.1 Uploading a Station .. 408
19.3.2 Uploading Blocks from an S7 CPU .. 409
19.3.3 Editing Uploaded Blocks in the PG/PC .. 409
19.3.3.1 Editing Uploaded Blocks if the User Program is on the PG/PC ... 410
19.3.3.2 Editing Uploaded Blocks if the User Program is Not on the PG/PC .. 410
19.4 Deleting on the Programmable Controller ... 411
19.4.1 Erasing the Load/Work Memory and Resetting the CPU .. 411
19.4.2 Deleting S7 Blocks on the Programmable Controller .. 411
19.5 Compressing the User Memory (RAM) .. 412
19.5.1 Gaps in the User Memory (RAM) ... 412
19.5.2 Compressing the Memory Contents of an S7 CPU ... 413

20 Testing with the Variable Table ... 415
20.1 Introduction to Testing with Variable Tables .. 415
20.2 Basic Procedure when Monitoring and Modifying with the Variable Table 416
20.3 Editing and Saving Variable Tables ... 416
20.3.1 Creating and Opening a Variable Table .. 416
20.3.1.1 How to Create and Open a Variable Table .. 417
20.3.2 Copying/Moving Variable Tables ... 418
20.3.3 Saving a Variable Table ... 418
20.4 Entering Variables in Variable Table ... 419
20.4.1 Inserting Addresses or Symbols in a Variable Table ... 419
20.4.2 Inserting a Contiguous Address Range in a Variable Table .. 421
20.4.3 Inserting Modify Values .. 421
20.4.4 Upper Limits for Entering Timers ... 422
20.4.5 Upper Limits for Entering Counters.. 423
20.4.6 Inserting Comment Lines ... 423

Table of Contents

 Programming with STEP 7
16 Manual, 04/2017, A5E41552389-AA

20.4.7 Examples ... 424
20.4.7.1 Example of Entering Addresses in Variable Tables... 424
20.4.7.2 Example of Entering a Contiguous Address Range .. 425
20.4.7.3 Examples of Entering Modify and Force Values .. 426
20.5 Establishing a Connection to the CPU ... 429
20.6 Monitoring Variables .. 430
20.6.1 Introduction to Monitoring Variables .. 430
20.6.2 Defining the Trigger for Monitoring Variables .. 430
20.7 Modifying Variables .. 432
20.7.1 Introduction to Modifying Variables .. 432
20.7.2 Defining the Trigger for Modifying Variables .. 433
20.8 Forcing Variables ... 435
20.8.1 Safety Measures When Forcing Variables .. 435
20.8.2 Introduction to Forcing Variables ... 436
20.8.3 Differences Between Forcing and Modifying Variables ... 438

21 Testing Using Program Status ... 439
21.1 Testing Using Program Status ... 439
21.2 Program Status Display ... 440
21.3 What You Should Know About Testing in Single-Step Mode/Breakpoints 442
21.4 What You Should Know About the HOLD Mode ... 444
21.5 Program Status of Data Blocks .. 445
21.5.1 Setting the Display for Program Status .. 446

22 Testing using the Simulation Program (Optional Package) .. 447
22.1 Testing using the Simulation Program S7 PLCSIM (Optional Package) 447

23 Diagnostics ... 449
23.1 Hardware Diagnostics and Troubleshooting .. 449
23.2 Diagnostics Symbols in the Online View ... 451
23.3 Diagnosing Hardware: Quick View .. 453
23.3.1 Calling the Quick View ... 453
23.3.2 Information Functions in the Quick View ... 453
23.4 Diagnosing Hardware: Diagnostic View ... 454
23.4.1 Calling the Diagnostic View ... 454
23.4.2 Information Functions in the Diagnostic View .. 456
23.5 Module Information .. 457
23.5.1 Options for Displaying the Module Information .. 457
23.5.2 Module Information Functions .. 458
23.5.3 Scope of the Module Type-Dependent Information ... 461
23.5.4 Displaying the Module Status of PA Field Devices and DP Slaves After a Y-Link 463
23.6 Diagnosing in STOP Mode .. 465
23.6.1 Basic Procedure for Determining the Cause of a STOP ... 465
23.6.2 Stack Contents in STOP Mode .. 466
23.7 Checking Scan Cycle Times to Avoid Time Errors .. 467
23.7.1 Checking Scan Cycle Times to Avoid Time Errors .. 467
23.8 Flow of Diagnostic Information ... 468
23.8.1 System Status List SSL ... 469
23.8.2 Sending Your Own Diagnostic Messages ... 471
23.8.3 Diagnostic Functions .. 472
23.9 Program Measures for Handling Errors ... 473
23.9.1 Evaluating the Output Parameter RET_VAL ... 474
23.9.2 Error OBs as a Reaction to Detected Errors .. 475
23.9.3 Inserting Substitute Values for Error Detection .. 480
23.9.4 I/O Redundancy Error (OB70) ... 482
23.9.5 CPU Redundancy Error (OB72) ... 483
23.9.6 Time Error (OB80).. 484
23.9.7 Power Supply Error (OB81) ... 485
23.9.8 Diagnostic Interrupt (OB82) ... 486
23.9.9 Insert/Remove Module Interrupt (OB83) .. 487

 Table of Contents

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 17

23.9.10 CPU Hardware Fault (OB84) ... 488
23.9.11 Program Sequence Error (OB85) .. 489
23.9.12 Rack Failure (OB86) .. 490
23.9.13 Communication Error (OB87) .. 491
23.9.14 Programming Error (OB121) .. 491
23.9.15 I/O Access Error (OB122) .. 492
23.10 System Diagnostics with 'Report System Error' ... 493
23.10.1 Graphical Output of Diagnostic Events .. 493
23.10.2 Diagnostic Status ... 493
23.10.2.1 Overview of the Diagnostic Status ... 493
23.10.2.2 PROFIBUS Diagnostic Status ... 493
23.10.2.3 Example of a DB 125 with a DP Slave .. 496
23.10.2.4 Example of a Request for the PROFIBUS DP DB .. 497
23.10.2.5 PROFINET Diagnostic Status ... 499
23.10.2.6 Example of a DB126 with an IO System 100 and Devices with Device Numbers 2, 3 and 4 ... 502
23.10.2.7 Example of a Request for the PROFINET IO DB .. 503
23.10.2.8 Diagnostic Status DB ... 504
23.10.2.9 Example of a Diagnostic Status DB Query .. 508
23.10.2.10 Importing Error and Help Texts .. 511

24 Printing and Archiving ... 513
24.1 Printing Project Documentation ... 513
24.1.1 Basic Procedure when Printing .. 514
24.1.2 Print Functions ... 514
24.1.3 Special Note on Printing the Object Tree .. 515
24.2 Archiving Projects and Libraries .. 516
24.2.1 Archiving Projects and Libraries .. 516
24.2.2 Uses for Saving/Archiving .. 517
24.2.3 Requirements for Archiving .. 517
24.2.4 Procedure for Archiving/Retrieving .. 518

25 Tips and Tricks ... 519
25.1 Exchanging Modules in the Configuration Table ... 519
25.2 Projects with a Large Number of Networked Stations ... 519
25.3 Rearranging ... 520
25.4 Editing Symbols Across Multiple Networks .. 520
25.5 Testing with the Variable Table.. 521
25.6 Modifying Variables With the Program Editor .. 522
25.7 Virtual Work Memory ... 523

26 Appendix... 525
26.1 Operating Modes.. 525
26.1.1 Operating Modes and Mode Transitions .. 525
26.1.2 STOP Mode ... 528
26.1.3 STARTUP Mode .. 529
26.1.4 RUN Mode ... 537
26.1.5 HOLD Mode ... 538
26.2 Memory Areas of S7 CPUs .. 539
26.2.1 Distribution of the Memory Areas... 539
26.2.2 Load Memory and Work Memory... 540
26.2.3 System Memory ... 542
26.2.3.1 Using the System Memory Areas .. 542
26.2.3.2 Process-Image Input/Output Tables .. 544
26.2.3.3 Local Data Stack .. 548
26.2.3.4 Interrupt Stack .. 550
26.2.3.5 Block Stack .. 550
26.2.3.6 Diagnostic Buffer .. 551
26.2.3.7 Evaluating the Diagnostic Buffer .. 551
26.2.3.8 Retentive Memory Areas on S7-300 CPUs ... 553
26.2.3.9 Retentive Memory Areas on S7-400 CPUs ... 554

Table of Contents

 Programming with STEP 7
18 Manual, 04/2017, A5E41552389-AA

26.2.3.10 Configurable Memory Objects in the Work Memory .. 554
26.3 Data Types and Parameter Types ... 555
26.3.1 Introduction to Data Types and Parameter Types ... 555
26.3.2 Elementary Data Types ... 556
26.3.2.1 Format of the Data Type INT (16-Bit Integers) .. 557
26.3.2.2 Format of the Data Type DINT (32-Bit Integers) .. 557
26.3.2.3 Format of the Data Type REAL (Floating-Point Numbers) .. 558
26.3.2.4 Format of the Data Types WORD and DWORD in Binary Coded Decimal Numbers 562
26.3.2.5 Format of the Data Type S5TIME (Time Duration) .. 563
26.3.3 Complex Data Types ... 564
26.3.3.1 Format of the Data Type DATE_AND_TIME ... 565
26.3.3.2 Using Complex Data Types ... 567
26.3.3.3 Using Arrays to Access Data ... 568
26.3.3.4 Using Structures to Access Data ... 571
26.3.4 Parameter Types.. 573
26.3.4.1 Format of the Parameter Types BLOCK, COUNTER, TIMER .. 574
26.3.4.2 Format of the Parameter Type POINTER .. 574
26.3.4.3 Using the Parameter Type POINTER .. 576
26.3.4.4 Block for Changing the Pointer .. 578
26.3.4.5 Format of the Parameter Type ANY .. 581
26.3.4.6 Using the Parameter Type ANY ... 584
26.3.4.7 Assigning Data Types to Local Data of Logic Blocks .. 587
26.3.4.8 Permitted Data Types when Transferring Parameters .. 589
26.3.4.9 Transferring to IN_OUT Parameters of a Function Block .. 594
26.4 Working with Older Projects ... 595
26.4.1 Converting Version 2 Projects ... 595
26.5 Expanding DP Slaves That Were Created with Previous Versions of STEP 7 596
26.5.1 DP-Slaves with Missing or Faulty GSD Files ... 597
26.6 Sample Programs .. 598
26.6.1 Sample Projects and Sample Programs .. 598
26.6.2 Sample Program for an Industrial Blending Process ... 600
26.6.2.1 Defining Logic Blocks ... 603
26.6.2.2 Assigning Symbolic Names ... 604
26.6.2.3 Creating the FB for the Motor .. 606
26.6.2.4 Creating the FC for the Valves ... 611
26.6.2.5 Creating OB1 ... 613
26.6.3 Example of Handling Time-of-Day Interrupts ... 619
26.6.3.1 Structure of the User Program "Time-of-Day Interrupts" ... 619
26.6.3.2 FC12 .. 621
26.6.3.3 OB10 .. 623
26.6.3.4 OB1 and OB80 ... 625
26.6.4 Example of Handling Time-Delay Interrupts .. 627
26.6.4.1 Structure of the User Program "Time-Delay Interrupts" ... 627
26.6.4.2 OB20 .. 629
26.6.4.3 OB1 .. 631
26.6.4.4 Example of Masking and Unmasking Synchronous Errors ... 633
26.6.4.5 Example of Disabling and Enabling Interrupts and Asynchronous Errors

(SFC39 and SFC40) .. 637
26.6.4.6 Example of the Delayed Processing of Interrupts and Asynchronous Errors

(SFC41 and SFC42) .. 638

 Table of Contents

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 19

26.7 Accessing Process and I/O Data Areas ... 639
26.7.1 Accessing the Process Data Area ... 639
26.7.2 Accessing the Peripheral Data Area .. 641
26.8 Setting the Operating Behavior .. 643
26.8.1 Setting the Operating Behavior .. 643
26.8.2 Changing the Behavior and Properties of Modules ... 644
26.8.3 Updating the Firmware (of the Operating System) in Modules and Submodules Offline 646
26.8.4 Using the Clock Functions ... 647
26.8.5 Using Clock Memory and Timers ... 648

Index ... 649

Table of Contents

 Programming with STEP 7
20 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 21

1 Introducing the Product and Installing the Software

1.1 Overview of STEP 7

What is STEP 7?
STEP 7 is the standard software package used for configuring and programming SIMATIC
programmable logic controllers. It is part of the SIMATIC industry software. There are the following
versions of the STEP 7 Standard package:

• STEP 7 Micro/DOS and STEP 7 Micro/Win for simpler stand-alone applications on the
SIMATIC S7-200.

• STEP 7 for applications on SIMATIC S7-300/S7-400 with a wider range of functions:

- Can be extended as an option by the software products in the SIMATIC Industry Software
(see also Extended Uses of the STEP 7 Standard Package)

- Opportunity of assigning parameters to function modules and communications processors

- Forcing and multicomputing mode

- Global data communication

- Event-driven data transfer using communication function blocks

- Configuring connections

STEP 7 is the subject of this documentation, STEP 7 Micro is described in the "STEP 7
Micro/DOS" documentation.

Introducing the Product and Installing the Software
1.1 Overview of STEP 7

 Programming with STEP 7
22 Manual, 04/2017, A5E41552389-AA

Basic Tasks
When you create an automation solution with STEP 7, there are a series of basic tasks. The
following figure shows the tasks that need to be performed for most projects and assigns them to a
basic procedure. It refers you to the relevant chapter thus giving you the opportunity of moving
through the manual to find task-related information.

 Introducing the Product and Installing the Software
 1.1 Overview of STEP 7

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 23

Alternative Procedures
As shown in the figure above, you have two alternative procedures:

• You can configure the hardware first and then program the blocks.

• You can, however, program the blocks first without configuring the hardware. This is
recommended for service and maintenance work, for example, to integrate programmed blocks
into in an existing project.

Brief Description of the Individual Steps
• Install STEP 7 and license keys

The first time you use STEP 7, install it and transfer the license keys from diskette to the hard
disk (see also Installing STEP 7 and Authorization).

• Plan your controller
Before you work with STEP 7, plan your automation solution from dividing the process into
individual tasks to creating a configuration diagram (see also Basic Procedure for Planning an
Automation Project).

• Design the program structure
Turn the tasks described in the draft of your controller design into a program structure using the
blocks available in STEP 7 (see also Blocks in the User Program).

• Start STEP 7
You start STEP 7 from the Windows user interface (see also Starting STEP 7).

• Create a project structure
A project is like a folder in which all data are stored in a hierarchical structure and are available
to you at any time. After you have created a project, all other tasks are executed in this project
(see also Project Structure).

• Configure a station
When you configure the station you specify the programmable controller you want to use; for
example, SIMATIC 300, SIMATIC 400, SIMATIC S5 (see also Inserting Stations).

• Configure hardware
When you configure the hardware you specify in a configuration table which modules you want
to use for your automation solution and which addresses are to be used to access the modules
from the user program. The properties of the modules can also be assigned using parameters
(see also Basic Procedure for Configuring Hardware) .

• Configure networks and communication connections
The basis for communication is a pre-configured network. For this, you will need to create the
subnets required for your automation networks, set the subnet properties, and set the network
connection properties and any communication connections required for the networked stations
(see also Procedure for Configuring a Subnet).

• Define symbols
You can define local or shared symbols, which have more descriptive names, in a symbol table
to use instead of absolute addresses in your user program (see also Creating a Symbol Table).

• Create the program
Using one of the available programming languages create a program linked to a module or
independent of a module and store it as blocks, source files, or charts (see also Basic
Procedure for Creating Logic Blocks and Basic Information on Programming in STL Source
Files).

• S7 only: generate and evaluate reference data
You can make use of these reference data to make debugging and modifying your user
program easier (see also Overview of the Available Reference Data).

Introducing the Product and Installing the Software
1.1 Overview of STEP 7

 Programming with STEP 7
24 Manual, 04/2017, A5E41552389-AA

• Configure messages
You create block-related messages, for example, with their texts and attributes. Using the
transfer program you transfer the message configuration data created to the operator interface
system database (for example, SIMATIC WinCC, SIMATIC ProTool), see also Configuring
Messages.

• Configure operator control and monitoring variables
You create operator control and monitoring variables once in STEP 7 and assign them the
required attributes. Using the transfer program you transfer the operator control and monitoring
variables created to the database of the operator interface system WinCC (see also
Configuring Variables for Operator Control and Monitoring).

• Download programs to the programmable controller
After all configuration, parameter assignment, and programming tasks are completed, you can
download your entire user program or individual blocks from it to the programmable controller
(programmable module for your hardware solution). (See also Requirements for Downloading.)
The CPU already contains the operating system.

• Test programs
For testing you can either display the values of variables from your user program or a CPU,
assign values to the variables, or create a variable table for the variables that you want to
display or modify (see also Introduction to Testing with the Variable Table).

• Monitor operation, diagnose hardware
You determine the cause of a module fault by displaying online information about a module.
You determine the causes for errors in user program processing with the help of the diagnostic
buffer and the stack contents. You can also check whether a user program can run on a
particular CPU (see also Hardware Diagnostics and Displaying Module Information).

• Document the plant
After you have created a project/plant, it makes sense to produce clear documentation of the
project data to make further editing of the project and any service activities easier (see also
Printing Project Documentation). DOCPRO, the optional tool for creating and managing plant
documentation, allows you to structure the project data, put it into wiring manual form, and print
it out in a common format.

Specialized Topics
When you create an automation solution there are a number of special topics that may be of
interest to you:

• Multicomputing - Synchronous Operation of Several CPUs (see also Multicomputing -
Synchronous Operation of Several CPUs)

• More than One User Working in a Project (see also More than One User Editing Projects)

 Introducing the Product and Installing the Software
 1.2 The STEP 7 Standard Package

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 25

1.2 The STEP 7 Standard Package

Standards Used
The SIMATIC programming languages integrated in STEP 7 are compliant with EN 61131-3. The
standard package matches the graphic and object oriented operating philosophy of Windows and
runs under the operating systems MS Windows 7 Ultimate, Professional und Enterprise (64-bit),
MS Windows 10 Pro and Enterprise (64-bit) as well as MS Windows Server 2008 R2 SP1, 2012 R2
und 2016 (each 64-bit).

Functions of the standard package
The standard software supports you in all phases of the creation process of an automation task,
such as:

• Setting up and managing projects

• Configuring and assigning parameters to hardware and communications

• Managing symbols

• Creating programs, for example, for S7 programmable controllers

• Downloading programs to programmable controllers

• Testing the automation system

• Diagnosing plant failures

The STEP 7 software user interface has been designed to meet the latest state-of-the-art
ergonomics and makes it easy for you to get started.

The documentation for the STEP 7 software product provides all the information online in the online
Help and in electronic manuals in PDF format.

Introducing the Product and Installing the Software
1.2 The STEP 7 Standard Package

 Programming with STEP 7
26 Manual, 04/2017, A5E41552389-AA

Applications in STEP 7
The STEP 7 Standard package provides a series of applications (tools) within the software:

You do not need to open the tools separately; they are started automatically when you select the
corresponding function or open an object.

 Introducing the Product and Installing the Software
 1.2 The STEP 7 Standard Package

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 27

SIMATIC Manager
The SIMATIC Manager manages all the data that belong to an automation project. The tools
needed to edit the selected data are started automatically by the SIMATIC Manager.

Symbol Editor
With the Symbol Editor you manage all the shared symbols. The following functions are available:

• Setting symbolic names and comments for the process signals (inputs/outputs), bit memory,
and blocks

• Sort functions

• Import/export to/from other Windows programs

The symbol table created with this tool is available to all the other tools. Any changes to the
properties of a symbol are therefore recognized automatically by all tools.

Introducing the Product and Installing the Software
1.2 The STEP 7 Standard Package

 Programming with STEP 7
28 Manual, 04/2017, A5E41552389-AA

Diagnosing Hardware
These functions provide you with an overview of the status of the programmable controller. An
overview can display symbols to show whether every module has a fault or not. A double-click on
the faulty module displays detailed information about the fault. The scope of this information
depends on the individual module:

• Display general information about the module (for example, order number, version, name) and
the status of the module (for example, faulty)

• Display the module faults (for example, channel fault) for the central I/O and DP slaves

• Display messages from the diagnostic buffer

For CPUs the following additional information is displayed:

• Causes of faults in the processing of a user program

• Display the cycle duration (of the longest, shortest, and last cycle)

• MPI communication possibilities and load

• Display performance data (number of possible inputs/outputs, bit memory, counters, timers,
and blocks)

Programming Languages
The programming languages Ladder Logic, Statement List, and Function Block Diagram for S7-300
and S7-400 are an integral part of the standard package.

• Ladder Logic (or LAD) is a graphic representation of the STEP 7 programming language. Its
syntax for the instructions is similar to a relay ladder logic diagram: Ladder allows you to track
the power flow between power rails as it passes through various contacts, complex elements,
and output coils.

• Statement List (or STL) is a textual representation of the STEP 7 programming language,
similar to machine code. If a program is written in Statement List, the individual instructions
correspond to the steps with which the CPU executes the program. To make programming
easier, Statement List has been extended to include some highlevel language constructions
(such as structured data access and block parameters).

• Function Block Diagram (FBD) is a graphic representation of the STEP 7 programming
language and uses the logic boxes familiar from Boolean algebra to represent the logic.
Complex functions (for example, math functions) can be represented directly in conjunction
with the logic boxes.

Other programming languages are available as optional packages.

 Introducing the Product and Installing the Software
 1.2 The STEP 7 Standard Package

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 29

Hardware Configuration
You use this tool to configure and assign parameters to the hardware of an automation project. The
following functions are available:

• To configure the programmable controller you select racks from an electronic catalog and
arrange the selected modules in the required slots in the racks.

• Configuring the distributed I/O is identical to the configuration of the central I/O.

• In the course of assigning parameters to the CPU you can set properties such as startup
behavior and scan cycle time monitoring guided by menus. Multicomputing is supported. The
data entered are stored in system data blocks.

• In the course of assigning parameters to the modules, all the parameters you can set are set
using dialog boxes. There are no settings to be made using DIP switches. The assignment of
parameters to the modules is done automatically during startup of the CPU. This means, for
example, that a module can be exchanged without assigning new parameters.

• Assigning parameters to function modules (FMs) and communications processors (CPs) is also
done within the Hardware Configuration tool in exactly the same way as for the other modules.
Module-specific dialog boxes and rules exist for every FM and CP (included in the scope of the
FM/CP function package). The system prevents incorrect entries by only offering valid options
in the dialog boxes.

NetPro (Network Configuration)
Using NetPro time-driven cyclic data transfer via the MPI is possible where you:

• Select the communication nodes

• Enter the data source and data target in a table; all blocks (SDBs) to be downloaded are
generated automatically and completely downloaded to all CPUs automatically

Event-driven data transfer is also possible where you:

• Set the communication connections

• Select the communication or function blocks from the integrated block library

• Assign parameters to the selected communication or function blocks in your chosen
programming language

Introducing the Product and Installing the Software
1.3 What's New in STEP 7, Version 5.6?

 Programming with STEP 7
30 Manual, 04/2017, A5E41552389-AA

1.3 What's New in STEP 7, Version 5.6?

The following subject areas have been updated:

• Operating Systems

• Configuring and Diagnosing Hardware

• System Diagnostics

• SIMATIC_Manager

• Checking Block Consistency

Operating systems
• The operating systems MS Windows 10 Pro and Enterprise MS Windows Server 2012 and MS

Windows Server 2016 are supported as of STEP 7 V5.6. You can find more detailed
information on this in the accompanying file "Readme.rtf".

Configuring and Diagnosing Hardware
• As of STEP 7 V5.6, you can update the firmware for CPUs 410 as of V8.2 in two separate

steps. You can find more detailed information on this under Online Update of the Firmware for
Modules.

System Diagnostics
• As of STEP 7 V5.6, you can read out security events for CPU 410-5H as of firmware version

V8.2 and save them on your PG/PC via the "Save Security Events" dialog box.

• In STEP 7 V5.6, the "Process Objects" tab of the module status is renamed to "SEC" (SEC
means System Expansion Card.), and further properties are dsplayed for the license status.

SIMATIC Manager
• As of STEP 7 V5.6, the number of selected objects is shown in the status bar.

Checking Block Consistency
• As of STEP 7 V5.6, you can perform an extended consistency check with symbolic addressing.

You can find more detailed information on this in the help for block consistency under the entry
"Extended consistency check".

 Introducing the Product and Installing the Software
 1.4 Extended Uses of the STEP 7 Standard Package

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 31

1.4 Extended Uses of the STEP 7 Standard Package

The standard package can be extended by optional software packages that are grouped into the
following three software classes:

• Engineering Tools;
these are higher-level programming languages and technology-oriented software.

• Run-Time Software;
these contain off-the-shelf run-time software for the production process.

• Human Machine Interfaces (HMI);
this is software especially for operator control and monitoring.

The following table shows the optional software you can use depending on your programmable
control system:

 S7-300

S7-400

Engineering Tools
• Borland C/C++
• CFC +1)
• DOCPRO +
• HARDPRO +
• S7-GRAPH +1)
• S7-HiGraph +
• S7-PDIAG +
• S7-PLCSIM +
• S7-SCL +
• TeleService +
Runtime Software
• Fuzzy Control +
• Modular PID Control +
• • PRODAVE MPI +
• PC-DDE-Server +
• Standard PID Control +
Human Machine Interface
• ProAgent
• SIMATIC ProTool
• SIMATIC ProTool/Lite
• SIMATIC WinCC
o = absolutely required
+ = optional
1) = recommended as of S7-400

Introducing the Product and Installing the Software
1.4 Extended Uses of the STEP 7 Standard Package

 Programming with STEP 7
32 Manual, 04/2017, A5E41552389-AA

1.4.1 Engineering Tools

Engineering Tools are task-oriented tools that can be used to extend the standard package.
Engineering Tools include:

• High-level languages for programmers

• Graphic languages for technical staff

• Supplementary software for diagnostics, simulation, remote maintenance, plant documentation
etc.

High-Level Languages
The following languages are available as optional packages for use in programming the SIMATIC
S7-300/S7400 programmable logic controllers:

• S7 GRAPH is a programming language used to program sequential controls (steps and
transitions). In this language, the process sequence is divided into steps. The steps contain
actions to control the outputs. The transition from one step to another is controlled by switching
conditions.

• S7 HiGraph is a programming language used to describe asynchronous, nonsequential
processes in the form of state graphs. To do this, the plant is broken down into individual
functional units which can each take on different states. The functional units can be
synchronized by exchanging messages between the graphs.

• S7 SCL is a high-level text-based language to EN 61131-3 (IEC 1131-3). It contains language
constructs similar to those found in the programming languages C and Pascal. S7 SCL is
therefore particularly suitable for users familiar with highlevel language programming. S7 SCL
can be used, for example, to program complex or frequently recurring functions.

 Introducing the Product and Installing the Software
 1.4 Extended Uses of the STEP 7 Standard Package

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 33

Graphic Language
CFC for S7 is a programming language for interconnecting functions graphically. These functions
cover a wide range of simple logic operations through to complex controls and control circuits. A
large number of such function blocks are available in the form of blocks in a library. You program
by copying the blocks into a chart and interconnecting the blocks with connecting lines.

Supplementary Software
• With DOCPRO you can organize all configuration data created under STEP 7 into wiring

manuals. These wiring manuals make it easy to manage the configuration data and allow the
information to be prepared for printing according to specific standards.

• HARDPRO is the hardware configuration system for S7-300 with user support for large-scale
configuration of complex automation tasks.

• You can use S7 PLCSIM (S7 only) to simulate S7 programmable controllers connected to the
programming device or PC for purposes of testing.

• S7 PDIAG (S7 only) allows standardized configuration of process diagnostics for SIMATIC S7-
300/S7-400. Process diagnostics let you detect faults and faulty states of PLC I/O (for example,
limit switch not reached).

• TeleService is a solution providing functions for online programming and servicing of remote
S7 PLCs via the telecommunications network with your PG/PC.

Introducing the Product and Installing the Software
1.4 Extended Uses of the STEP 7 Standard Package

 Programming with STEP 7
34 Manual, 04/2017, A5E41552389-AA

1.4.2 Run-Time Software

Runtime software provides ready-to-use solutions you can call in user program and is directly
implemented in the automation solution. It includes:

• Controllers for SIMATIC S7, for example, standard, modular and fuzzy logic control

• Tools for linking the programmable controllers with Windows applications

Controllers for SIMATIC S7
• Standard PID Control allows you to integrate closed-loop controllers, pulse controllers, and

step controllers into the user program. The parameter assignment tool with integrated controller
setting allows you to set the controller up for optimum use in a very short time.

• Modular PID Control comes into play if a simple PID controller is not sufficient to solve your
automation task. You can interconnect the included standard function blocks to create almost
any controller structure.

• With Fuzzy Control you can create fuzzy logic systems. These systems are used if the
mathematical definition of processes is impossible or highly complex, if processes and
sequencers do not react as expected, if linearity errors occur and if, on the other hand,
information on the process is available.

Tools for Linking with Windows
• PRODAVE MPI is a toolbox for process data traffic between a PC and S7/M7/C7. It

automatically controls the data flow across the MPI interface.

 Introducing the Product and Installing the Software
 1.4 Extended Uses of the STEP 7 Standard Package

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 35

1.4.3 Human Machine Interface

Human Machine Interface (HMI) is a software especially designed for operator control and
monitoring in SIMATIC.

• The open process visualization systems SIMATIC WinCC and SIMATIC WinCC flexible are
basic systems that are not restricted to specific industrial sectors or technology and provide all
the important operator control and monitoring functions.

• SIMATIC ProTool and SIMATIC ProTool/Lite are modern tools for configuring SIMATIC
operator panels (OPs).

• ProAgent is a diagnostics software that acquires information on the location and cause of
errors in plants and machinery and thus offers fast and aimed process diagnostics.

Introducing the Product and Installing the Software
1.4 Extended Uses of the STEP 7 Standard Package

 Programming with STEP 7
36 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 37

2 Installation

2.1 Automation License Manager

2.1.1 User Rights Through The Automation License Manager

Automation License Manager
To use STEP 7 programming software, you require a product-specific license key (user rights).
Starting with STEP 7 V5.3, this key is installed with the Automation License Manager.

The Automation License Manager is a software product from Siemens AG. It is used to manage the
license keys (license modules) for all systems.

The Automation License Manager is located in the following places:

• On the installation device for a software product requiring a license key

• On a separate installation device

• As a download from the Internet page of A&D Customer Support at Siemens AG

The Automation License Manager has its own integrated online help. To obtain help after the
license manager is installed, press F1 or select the Help > Help on License Manager. This online
help contains detailed information on the functionality and operation of the Automation License
Manager.

Licenses
Licenses are required to use STEP 7 program packages whose legal use is protected by licenses.
A license gives the user a legal right to use the product. Evidence of this right is provided by the
following:

• The CoL (Certificate of License), and

• The license key

Certificate of License (CoL)
The "Certificate of License" that is included with a product is the legal evidence that a right to use
this product exists. This product may only be used by the owner of the Certificate of License (CoL)
or by those persons authorized to do so by the owner.

Installation
2.1 Automation License Manager

 Programming with STEP 7
38 Manual, 04/2017, A5E41552389-AA

License Keys
The license key is the technical representation (an electronic "license stamp") of a license to use
software.

SIEMENS AG issues a license key for all of its software that is protected by a license. When the
computer has been started, such software can only be used in accordance with the applicable
license and terms of use after the presence of a valid license key has been verified.

 Notes

• You can use the standard software without a license key to familiarize yourself with the user
interface and functions.

• However, a license is required and necessary for full, unrestricted use of the STEP 7 software
in accordance with the license agreement

• If you have not installed the license key, you will be prompted to do so at regular intervals.

License Keys can be stored and transferred among various types of storage devices as follows:

• On license key diskettes or USB memory stick

• On the local hard disk

• On network hard disk

If software products for which no license is available are installed, you can then determine which
license key is needed and order it as required.

For further information on obtaining and using license keys, please refer to the online help for the
Automation License Manager.

 Installation
 2.1 Automation License Manager

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 39

Types of Licenses
The following different types of application-oriented user licenses are available for software
products from Siemens AG. The actual behavior of the software is determined by which type
license key is installed for it. The type of use can be found on the accompanying Certificate of
License.

License Type Description

Single License The software can be used on any single computer desired for an unlimited
amount of time.

Floating License The software can be used on a computer network ("remote use") for an
unlimited amount of time.

Trial License The software can be used subject to the following restrictions:
• A period of validity of up to a maximum of 14 days,
• A total number of operating days after the day of first use,
• A use for tests and validation (exemption from liability).

Rental License The software can be used subject to the following restrictions:
• A period of validity of up to a maximum of 50 hours.

Upgrade License Certain requirements in the existing system may apply with regard to software
upgrades:
• An upgrade license may be used to convert an "old version X" of the

software to a newer version X+.
• An upgrade may be necessary due to an increase in the volume of data

being handled in the given system.

Installation
2.1 Automation License Manager

 Programming with STEP 7
40 Manual, 04/2017, A5E41552389-AA

2.1.2 Installing the Automation License Manager

The Automation License Manager is installed by means of an MSI setup process. The installation
software for the Automation License Manager is included on the STEP 7 product DVD.

You can install the Automation License Manager at the same time you install STEP 7 or at a later
time.

.
 Notes

For detailed information on how to install the Automation License Manager, please refer to the current
Readme file
The online help for the Automation License Manager contains all the information you need on the function and
handling of License Keys.

Subsequent installation of license keys
If you start the STEP 7 software and no license keys are available, a warning message indicating
this condition will be displayed.

 Notes

• You can use the standard software without a license key to familiarize yourself with the user
interface and functions.

• However, a license is required and necessary for full, unrestricted use of the STEP 7 software
in accordance with the license agreement

If you have not installed the license key, you will be prompted to do so at regular intervals.

You can subsequently install license keys in the following ways:

• Install license keys from diskettes or USB memory stick

• Install license keys downloaded from the Internet. In this case, the license keys must be
ordered first.

• Use floating license keys available in a network

For detailed information on installing license keys, refer to the online help for the Automation
License Manager. To access this help, press F1 or select the Help > Help on License Manager
menu command.

 Notes

In Windows XP/Server 2003, license keys will only be operational if they are installed on a local hard disk and
have write-access status.
Floating licenses can also be used within a network ("remote" use).

 Installation
 2.1 Automation License Manager

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 41

2.1.3 Guidelines for Handling License Keys

!
Caution
Please note the information on handling license keys that is available in the online help on the
Automation License Manager and also in the STEP 7 Readme file on the installation DVD. If you
do not follow these guidelines, the license keys may be irretrievably lost.

To access online help for the Automation License Manager, press F1 for context-sensitive help or
select the Help > Help on License Manager menu command.

This help section contains all the information you need on the function and handling of license
keys.

Installation
2.2 Installing STEP 7

 Programming with STEP 7
42 Manual, 04/2017, A5E41552389-AA

2.2 Installing STEP 7

The STEP 7 Setup program performs an automatic installation. The complete installation
procedure is menu controlled. Execute Setup using the standard Windows XP/7/Server 2003
software installation procedure.

The major stages in the installation are:

• Copying the data to your programming device

• Configuration of EPROM and communication drivers

• Installing the license keys (if desired)

 Note

Siemens programming devices are shipped with the STEP 7 software on the hard disk ready for
installation.

Installation requirements
• Operating system:

MS Windows 7 Professional and Enterprise (standard installation).

• Basic hardware:
Programming device or PC with:

• Pentium processor (600 MHz)

• At least 512 MB RAM.

• Color monitor, keyboard and mouse, all of which are supported by Microsoft Windows

A programming device (PG) is a PC with a special compact design for industrial use. It is fully
equipped for programming SIMATIC PLCs.

• Hard disk space:
Refer to the Readme file for information on required hard disk space.

• MPI interface (optional):
An MPI interface is only required to interconnect the PG/PC and the PLC if you want to use it
for communication with the PLC under STEP 7.
In this case you require:

• A PC USB adapter that is connected to the communications port of your device, or

• An MPI module (for example, CP 5611) that is installed in your device.

 Installation
 2.2 Installing STEP 7

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 43

PGs are supplied with an MPI interface.

• External prommer (optional)
An external prommer is only required if you want to program EPROMs with a PC.

 Note

Refer to the information on STEP 7 installation in the Readme file and the "List of SIMATIC
Software Packages compatible to the versions of the standard STEP 7 software package."

The readme file and the compatibility list is found, for example under MS Windows 7 via the Start
menu, under Start > All Programs > Siemens Automation > Documentation.

Installation
2.2 Installing STEP 7

 Programming with STEP 7
44 Manual, 04/2017, A5E41552389-AA

2.2.1 Installation Procedure

Starting the Installation Program
To install the software, proceed as follows:

1. Insert the DVD and double click on the file "SETUP.EXE".

2. Follow the on-screen step-by-step instructions of the installation program.

The program guides you through all steps of the installation. You can go to the next step or return
to the previous step.

During installation, the dialog boxes prompt you to make your choice from the displayed options.
The following notes will help you to quickly and easily find the right answers.

If a Version of STEP 7 Is Already Installed...
If Setup detects another version of STEP 7 on the programming device, a corresponding message
is displayed. You can then choose to:

• Abort the installation (so that you can uninstall the old STEP 7 version under Windows and
then restart Setup, or

• Continue Setup and overwrite the previous version.

For well organized software management you should always uninstall any older versions before
installing the new version. the disadvantage of overwriting previous versions with a new version is
that when you subsequently uninstall the old software version some components of the old version
may not be removed.

Selecting the Installation Options
You have three was to select the scope of the installation:

• Standard setup: all dialog languages for the user interface, all applications, and all examples.
Refer to the current Product Information for information on memory space required for this type
of configuration.

• Basic setup: only one dialog language, no examples. Refer to the current Product Information
for information on memory space required for this type of configuration.

• Userdefined ("custom") setup: you can determine the scope of the installation, e.g. the
programs, databases, examples, and communication functions.

ID Number
You will be prompted during setup to enter an ID number (found on the Software Product
Certificate or on your license key storage medium).

Installing License Keys
During setup, the program checks to see whether a corresponding license key is installed on the
hard disk. If no valid license key is found, a message stating that the software can be used only
with a license key is displayed. If you want, you can install the license key immediately or continue
setup and then install the key later. If you want to install the license key now, insert the
authorization diskette or use the A&D license stick when prompted to do so.

 Installation
 2.2 Installing STEP 7

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 45

PG/PC Interface Settings
During installation, a dialog box is displayed where you can assign parameters to the programming
device/PC interface. You will find more information on it in "Setting the PG/PC Interface."

Assigning Parameters to Memory Cards
During installation, a dialog box is displayed where you can assign parameters to Memory Cards.

• You do not need an EPROM driver if you are not using any Memory Cards . Select the option
"No EPROM Driver".

• Otherwise, select the entry which applies to your PG.

• If you are using a PC, you can select a driver for an external prommer. Here you must specify
the port to which the prommer is connected (for example, LPT1).

You can change the set parameters after installation by calling the program "Memory Card
Parameter Assignment" in the STEP 7 program group or in the Control Panel.

Flash-File Systems
In the dialog box for assigning memory card parameters, you can select to install a flashfile
system.

The flashfile system is required, for example under SIMATIC M7 when you write individual files to
an EPROM memory card without changing other contents of the Memory Card.

If you are using a suitable programming device (PG 720/PG 740/PG 760, Field PG and Power PG)
or external prommer and you want to use this function, install the flashfile system.

If Errors Occur during the Installation
Setup may be cancelled due to the following errors:

• If an initialization error occurs immediately after the start of Setup, more than likely setup was
not started under Windows.

• Insufficient hard disk space: For the basic software, you require approximately 650 MB to 900
MB of free space on your hard disk depending on the scope of your installation.

• Bad DVD: If the DVD is faulty, please contact your local Siemens representative.

• Operator error: Restart setup follow the instructions carefully.

After the installation has been completed…
An on-screen message reports the successful installation.

If any changes were made to system files during the installation, you are prompted to restart
Windows. After this restart (warm restart) you can start the STEP 7 application, the SIMATIC
Manager.

After successful installation, a program group for STEP 7 has been set up.

Installation
2.2 Installing STEP 7

 Programming with STEP 7
46 Manual, 04/2017, A5E41552389-AA

2.2.2 Setting the PG/PC Interface

Here you configure the communication between the PG/PC and the PLC. During installation, you
are displayed a dialog for assigning parameters to the PG/PC interface. You can also open this
dialog box after installation, by calling the program "Setting PG/PC Interface" in the STEP 7
program group. This enables you to modify the interface parameters at a later time, independently
of the installation.

Basic Procedure
To operate an interface, you will require the following:

• Configurations in the operating system

• A suitable interface configuration

If you are using a PC with an MPI card or communications processors (CP), you should check the
interrupt and address assignments in the Windows "Control Panel" to ensure that there are no
interrupt conflicts and no address areas overlap.

In Windows 2000, Windows XP and Server 2003, the ISA component MPI-ISA card is no longer
supported and therefore no longer offered for installation.

In order to make it easier to assign parameters to the programming device/PC interface, a dialog
box will display a selection list of default basic parameter sets (interface configurations).

Assigning Parameters to the PG/PC Interface
Procedure (Detail are found in the Online Help):

1. Doubleclick on "Setting PG/PC Interface" in the "Control Panel" of Windows.

2. Set the "Access Point of Application" to "S7ONLINE."

3. In the list "Interface parameter set used", select the required interface parameter set. If the
required interface parameter set is not displayed, you must first install a module or protocol via
the "Select" button. The interface parameter set is then generated automatically. On plug-and-
play systems, you can not install plug and play CPs manually (CP 5611 and CP 5511). They
are integrated automatically in "Setting PG/PC Interface" after you have installed the hardware
in your PG/PC.

- If you select an interface which is capable of automatic recognition of bus parameters
(for example, CP 5611 (Auto)), you can connect the programming device or the PC to the
MPI or PROFIBUS without having to set bus parameters. If the transmission rate is < 187.5
Kbps, there may be a delay of up to one minute while the bus parameters are read.
Requirement for automatic recognition: Masters who broadcast bus parameters
cyclically are connected to the bus. All new MPI components do this; for PROFIBUS
subnets the cyclic broadcast of bus parameters must be enabled (default PROFIBUS
network setting).

4. If you select an interface which does not automatically recognize the bus parameters, you
can display the properties and adapt them to match the subnet.

 Installation
 2.2 Installing STEP 7

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 47

Changes will also be necessary if conflicts with other settings arise (for example, interrupt or
address assignments). In this case, make the appropriate changes with the hardware recognition
and Control Panel in Windows (see below).

!
Caution
Do not remove any "TCP/IP" parameters from your interface configuration.

This could cause malfunctioning of other applications.

Checking the Interrupt and Address Assignments
If you use a PC with an MPI card, you should always check whether the default interrupt and the
default address area are free.

Installation
2.3 Uninstalling STEP 7

 Programming with STEP 7
48 Manual, 04/2017, A5E41552389-AA

2.3 Uninstalling STEP 7

Use the standard Windows method to uninstall STEP 7:

1. Double-click on the "Add/Remove Programs" icon in the "Control Panel." to start the Windows
software installation dialog box.

2. Select the STEP 7 entry in the displayed list of installed software. Click the button to
"Add/Remove" the software.

3. If the "Remove Shared File" dialog box appears, click the "No" button if you are uncertain.

2.4 User Rights

Specifying Access Rights in the Operating System
When you install STEP 7, the user group "Siemens TIA Engineer" is created automatically. This
allows the users entered there to configure the PG/PC interface and to install selected Hardware
Support Packages. To allow manual IP configuration (for PROFINET without DHCP), the user must
also be included in the "Network Configuration Operators" group that is preinstalled by the
operating system.

These rights can only be assigned to the user by the administrator.

Including users in the user groups "Siemens TIA Engineer" and "Network Configuration
Operators"

Enter the local users who can access STEP 7 with their login in the "Siemens TIA Engineer" group.

Follow the steps below:

1. Open the Control Panel in Windows and select "User Accounts".

2. In the navigation window, select the entry "Manage User Accounts."

3. In the "Advanced" tab, select the "Advanced" entry in the "Advanced User Management"
section.

4. In the navigation window, select the entry "Local Users and Groups > Users". All users are
displayed in the data window.

5. Using the context menu, open the "New User" and create an account with the same login for
every user that needs to access STEP 7.

6. Select the "Properties" context menu command for each user you create.

7. In the dialog box that opens, select the "Member of" and the click the "Add..." button.

8. In the "Select Groups" dialog, enter the user group "Siemens TIA Engineer" in the "Enter the
object names to select" box and confirm with "OK".

9. Follow the same procedure for the users to be included in the "Network Configuration
Operators" user group.

 Installation
 2.4 User Rights

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 49

Creating the global domain user group "Siemens TIA Engineer"
When working in a domain, you have the alternative of creating a global domain user group that is
then mapped to the local user groups "Siemens TIA Engineer" and "Network Configuration
Operators".

The following requirements must be met first:

• The domain administrator has created a global domain user group.

• The domain administrator has included the users with whose login STEP 7 can be accessed in
the global domain user group.

Installation
2.4 User Rights

 Programming with STEP 7
50 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 51

3 Working Out the Automation Concept

3.1 Basic Procedure for Planning an Automation Project

This chapter outlines the basic tasks involved in planning an automation project for a
programmable controller (PLC). Based on an example of automating an industrial blending
process, you are guided step by step through the procedure.

There are many ways of planning an automation project. The basic procedure that you can use for
any project is illustrated in the following figure.

Working Out the Automation Concept
3.2 Dividing the Process into Tasks and Areas

 Programming with STEP 7
52 Manual, 04/2017, A5E41552389-AA

3.2 Dividing the Process into Tasks and Areas

An automation process consists of a number of individual tasks. By identifying groups of related
tasks within a process and then breaking these groups down into smaller tasks, even the most
complex process can be defined.

The following example of an industrial blending process can be used to illustrate how to organize a
process into functional areas and individual tasks:

 Working Out the Automation Concept
 3.2 Dividing the Process into Tasks and Areas

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 53

Determining the Areas of a Process
After defining the process to be controlled, divide the project into related groups or areas:

As each group is divided into smaller tasks, the tasks required for controlling that part of the
process become less complicated.

In our example of an industrial blending process you can identify four distinct areas (see table
below). In this example, the area for ingredient A contains the same equipment as the area for
ingredient B.

Functional Area Equipment Used

Ingredient A Feed pump for ingredient A
Inlet valve for ingredient A
Feed valve for ingredient A
Flow sensor for ingredient A

Ingredient B Feed pump for ingredient B
Inlet valve for ingredient B
Feed valve for ingredient B
Flow sensor for ingredient B

Mixing tank Agitator motor
Switch for tank level measurement

Drain Drain valve

Working Out the Automation Concept
3.3 Describing the Individual Functional Areas

 Programming with STEP 7
54 Manual, 04/2017, A5E41552389-AA

3.3 Describing the Individual Functional Areas

As you describe each area and task within your process, you define not only the operation of each
area, but also the various elements that control the area. These include:

• Electrical, mechanical, and logical inputs and outputs for each task

• Interlocks and dependencies between the individual tasks

The sample industrial blending process uses pumps, motors, and valves. These must be described
precisely to identify the operating characteristics and type of interlocks required during operation.
The following tables provide examples of the description of the equipment used in an industrial
blending process. When you have completed description, you could also use it to order the
required equipment.

Ingredients A/B: Feed Pump Motors

The feed pump motors convey ingredients A and B to the mixing tank.
• Flow rate: 400 l (100 gallons) per minute
• Rating: 100 kW (134 hp) at 1200 rpm
The pumps are controlled (start/stop) from an operator station located near the mixing tank. The number of
starts is counted for maintenance purposes. Both the counters and the display can be reset with one button.
The following conditions must be satisfied for the pumps to operate:
• The mixing tank is not full.
• The drain valve of the mixing tank is closed.
• The emergency off is not activated.
The pumps are switched off if the following condition is satisfied:
• The flow sensor signals no flow 7 seconds after the pump motor is started.
• The flow sensor signals that the flow has ceased.

Ingredients A/B: Inlet and Feed Valves

The inlet and feed valves for ingredients A and B allow or prevent the flow of the ingredients into the mixing
tank. The valves have a solenoid with a spring return.
• When the solenoid is activated, the valve is opened.
• When the solenoid is deactivated, the valve is closed.
The inlet and feed valves are controlled by the user program.
For the valves to be activated, the following condition must be satisfied:
• The feed pump motor has been running for at least 1 second.
The pumps are switched off if the following condition is satisfied:
• The flow sensor signals no flow.

 Working Out the Automation Concept
 3.3 Describing the Individual Functional Areas

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 55

Agitator Motor

The agitator motor mixes ingredient A with ingredient B in the mixing tank.
• Rating: 100 kW (134 hp) at 1200 rpm
The agitator motor is controlled (start/stop) from an operator station located near the mixing tank. The
number of starts is counted for maintenance purposes. Both the counters and the display can be reset with
one button.
The following conditions must be satisfied for the pumps to operate:
• The tank level sensor is not signaling "Tank below minimum."
• The drain valve of the mixing tank is closed.
• The emergency off is not activated.
The pumps are switched off if the following condition is satisfied:
• The tachometer does not indicate that the rated speed has been reached within 10 seconds of starting

the motor.

Drain Valve

The drain valve allows the mixture to drain (using gravity feed) to the next stage in the process. The valve
has a solenoid with a spring return.
• If the solenoid is activated, the outlet valve is opened.
• If the solenoid is deactivated, the outlet valve is closed.
The outlet valve is controlled (open/close) from an operator station.
The drain valve can be opened under the following conditions:
• The agitator motor is off.
• The tank level sensor is not signaling "Tank empty."
• The emergency off is not activated.
The pumps are switched off if the following condition is satisfied:
• The tank level sensor is indicating "Tank empty."

Switches for Tank Level Measurement

The switches in the mixing tank indicate the level in the tank and are used to interlock the feed pumps and
the agitator motor.

Working Out the Automation Concept
3.4 Listing Inputs, Outputs, and In/Outs

 Programming with STEP 7
56 Manual, 04/2017, A5E41552389-AA

3.4 Listing Inputs, Outputs, and In/Outs

After writing a physical description of each device to be controlled, draw diagrams of the inputs and
outputs for each device or task area.

These diagrams correspond to the logic blocks to be programmed.

3.5 Creating an I/O Diagram for the Motors

Two feed pumps and one agitator are used in our example of an industrial blending process. Each
motor is controlled by its own "motor block" that is the same for all three devices. This block
requires six inputs: two to start or stop the motor, one to reset the maintenance display, one for the
motor response signal (motor running / not running), one for the time during which the response
signal must be received, and one for the number of the timer used to measure the time.

The logic block also requires four outputs: two to indicate the operating state of the motor, one to
indicate faults, and one to indicate that the motor is due for maintenance.

An in/out is also necessary to activate the motor. It is used to control the motor but at the same
time is also edited and modified in the program for the "motor block."

 Working Out the Automation Concept
 3.6 Creating an I/O Diagram for the Valves

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 57

3.6 Creating an I/O Diagram for the Valves

Each valve is controlled by its own "valve block" that is the same for all valves used. The logic
block has two inputs: one to open the valve and one to close the valve. It also has two outputs: one
to indicate that the valve is open and the other to indicate that it is closed.

The block has an in/out to activate the valve. It is used to control the valve but at the same time is
also edited and modified in the program for the "valve block."

Working Out the Automation Concept
3.7 Establishing the Safety Requirements

 Programming with STEP 7
58 Manual, 04/2017, A5E41552389-AA

3.7 Establishing the Safety Requirements

Decide which additional elements are needed to ensure the safety of the process - based on legal
requirements and corporate health and safety policy. In your description, you should also include
any influences that the safety elements have on your process areas.

Defining Safety Requirements
Find out which devices require hardwired circuits to meet safety requirements. By definition, these
safety circuits operate independently of the programmable controller (although the safety circuit
generally provides an I/O interface to allow coordination with the user program). Normally, you
configure a matrix to connect every actuator with its own emergency off range. This matrix is the
basis for the circuit diagrams of the safety circuits.

To design safety mechanisms, proceed as follows:

• Determine the logical and mechanical/electrical interlocks between the individual automation
tasks.

• Design circuits to allow the devices belonging to the process to be operated manually in an
emergency.

• Establish any further safety requirements for safe operation of the process.

Creating a Safety Circuit
The sample industrial blending process uses the following logic for its safety circuit:

• One emergency off switch shuts down the following devices independent of the programmable
controller (PLC):

- Feed pump for ingredient A

- Feed pump for ingredient B

- Agitator motor

- Valves

• The emergency off switch is located on the operator station.

• An input to the controller indicates the state of the emergency off switch.

 Working Out the Automation Concept
 3.8 Describing the Required Operator Displays and Controls

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 59

3.8 Describing the Required Operator Displays and Controls

Every process requires an operator interface that allows human intervention in the process. Part of
the design specification includes the design of the operator console.

Defining an Operator Console
In the industrial blending process described in our example, each device can be started or stopped
by a pushbutton located on the operator console. This operator console includes indicators to show
the status of the operation (see figure below).

The console also includes display lamps for the devices that require maintenance after a certain
number of starts and the emergency off switch with which the process can be stopped immediately.
The console also has a reset button for the maintenance display of the three motors. Using this,
you can turn off the maintenance display lamps for the motors due for maintenance and reset the
corresponding counters to 0.

Working Out the Automation Concept
3.9 Creating a Configuration Diagram

 Programming with STEP 7
60 Manual, 04/2017, A5E41552389-AA

3.9 Creating a Configuration Diagram

After you have documented the design requirements, you must then decide on the type of control
equipment required for the project.

By deciding which modules you want to use, you also specify the structure of the programmable
controller. Create a configuration diagram specifying the following aspects:

• Type of CPU

• Number and type of I/O modules

• Configuration of the physical inputs and outputs

The following figure illustrates an example of an S7 configuration for the industrial blending
process.

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 61

4 Basics of Designing a Program Structure

4.1 Programs in a CPU

A CPU will principally run two different programs:

• The operating system and

• The user program.

Operating System
Every CPU comes with an integrated operating system that organizes all CPU functions and
sequences not associated with a specific control task. The tasks of the operating system include
the following:

• Handling restart (warm start) and hot restart

• Update of the process image table of the inputs and output of the process image table of the
outputs

• Calling the user program

• Acquisition of interrupt information and calling interrupt OBs

• Recognition of errors and error handling

• Management of the memory areas

• Communication with programming devices and other communication partners

You can influence CPU reactions in certain areas by modifying the operating system parameters
(operating system default settings).

User Program
You create the user program and download it to the CPU. It contains all the functions required to
process your specific automation task. The tasks of the user program include:

• Specifying the conditions for a restart (warm start) and hot restart on the CPU (for example,
initializing signals with a particular value)

• Processing process data (for example, generating logical links of binary signals, fetching and
evaluating analog signals, specifying binary signals for output, output of analog values)

• Reaction to interrupts

• Handling disturbances in the normal program cycle.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
62 Manual, 04/2017, A5E41552389-AA

4.2 Blocks in the User Program

The STEP 7 programming software allows you to structure your user program, in other words to
break down the program into individual, self-contained program sections. This has the following
advantages:

• Extensive programs are easier to understand.

• Individual program sections can be standardized.

• Program organization is simplified.

• It is easier to make modifications to the program.

• Debugging is simplified since you can test separate sections.

• Commissioning your system is made much easier.

The example of an industrial blending process illustrated the advantages of breaking down an
automation process into individual tasks. The program sections of a structured user program
correspond to these individual tasks and are known as the blocks of a program.

Block Types
There are several different types of blocks you can use within an S7 user program:

Block Brief Description of Function See Also

Organization blocks (OB) OBs determine the structure of the user
program.

Organization Blocks and
Program Structure

System function blocks (SFB)
and system functions (SFC)

SFBs and SFCs are integrated in the S7 CPU
and allow you access to some important
system functions.

System Function Blocks
(SFB) and System
Functions (SFC)

Function blocks (FB) FBs are blocks with a "memory" which you can
program yourself.

Function Blocks (FB)

Functions (FC) FCs contain program routines for frequently
used functions.

Functions (FC)

Instance data blocks
(instance DB)

Instance DBs are associated with the block
when an FB/SFB is called. They are created
automatically during compilation.

Instance Data Blocks

Data blocks (DB) DBs are data areas for storing user data. In
addition to the data that are assigned to a
function block, shared data can also be defined
and used by any blocks.

Shared Data Blocks (DB)

OBs, FBs, SFBs, FCs, and SFCs contain sections of the program and are therefore also known as
logic blocks. The permitted number of blocks per block type and the permitted length of the blocks
is CPU-specific.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 63

4.2.1 Organization Blocks and Program Structure

Organization blocks (OBs) represent the interface between the operating system and the user
program. Called by the operating system, they control cyclic and interruptdriven program
execution, startup behavior of the PLC and error handling. You can program the organization
blocks to determine CPU behavior.

Organization Block Priority
Organization blocks determine the sequence (start events) by which individual program sections
are executed. An OB call can interrupt the execution of another OB. Which OB is allowed to
interrupt another OB depends on its priority. Higher priority OBs can interrupt lower priority OBs.
The background OB has the lowest priority.

Types of Interrupt and Priority Classes
Start events triggering an OB call are known as interrupts. The following table shows the types of
interrupt in STEP 7 and the priority of the organization blocks assigned to them. Not all
organization blocks listed and their priority classes are available in all S7 CPUs (see "S7-300
Programmable Controller, Hardware and Installation Manual" and "S7-400 Programmable
Controller Module Specifications Reference Manual").

Type of Interrupt Organization Block Priority Class

(Default)
See also

Main program
scan

OB1 1 Organization Block for Cyclic
Program Processing (OB1)

Time-of-day
interrupts

OB10 to OB17 2 Time-of-Day Interrupt
Organization Blocks (OB10 to
OB17)

Time-delay
interrupts

OB20
OB21
OB22
OB23

 3
 4
 5
 6

Time-Delay Interrupt Organization
Blocks (OB20 to OB23)

Cyclic interrupts OB30
OB31
OB32
OB33
OB34
OB35
OB36
OB37
OB38

 7
 8
 9
 10
 11
 12
 13
 14
 15

Cyclic Interrupt Organization
Blocks (OB30 to OB38)

Hardware
interrupts

OB40
OB41
OB42
OB43
OB44
OB45
OB46
OB47

 16
 17
 18
 19
 20
 21
 22
 23

Hardware Interrupt Organization
Blocks (OB40 to OB47)

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
64 Manual, 04/2017, A5E41552389-AA

Type of Interrupt Organization Block Priority Class
(Default)

See also

DPV1 interrupts OB 55
OB 56
OB 57

 2
 2
2

Programming DPV1 Devices

Multicomputing
interrupt

OB60 Multicomputing 25 Multicomputing - Synchronous
Operation of Several CPUs

Synchronous cycle
interrupt

OB 61
OB 62
OB 63
OB 64

25 Configuring Short and Equal-
Length Process Reaction Times
on PROFIBUS-DP

Redundancy
errors

OB70 I/O Redundancy Error
(only in H systems)
OB72 CPU Redundancy
Error (only in H systems)

 25

 28

"Error Handling Organization
Blocks (OB70 to OB87 / OB121
to OB122)"

Asynchronous
errors

OB80 Time Error 26, 28 2) "Error Handling Organization
Blocks (OB70 to OB87 / OB
121 to OB122)"

 OB81 Power Supply Error
OB82 Diagnostic Interrupt
OB83 Insert/Remove Module
Interrupt
OB84 CPU Hardware Fault
OB85 Program Cycle Error
OB86 Rack Failure
OB87 Communication Error

26, 28 2) with S7-
300,
25, 28 2) with S7-
400 and CPU 318

Background cycle OB90 29 1) Background Organization Block
(OB90)

Startup OB100 Restart (Warm start)
OB101 Hot Restart
OB102 Cold Restart

27 2)
27 2)
27 2)

"Start-up Organization Blocks
(OB100/OB101/OB102)"

Synchronous
errors

OB121 Programming Error
OB122 Access Error

Priority of the OB
that caused the
error

Error Handling Organization
Blocks (OB70 to OB87 / OB121
to OB122)

1) The priority class 29 corresponds to priority 0.29. The background cycle has a lower priority than the free cycle.
2) The priority classes 27 and 28 are valid in the priority class model of the startup.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 65

Changing the Priority
Interrupts can be assigned parameters with STEP 7. With the parameter assignment you can for
example, deselect interrupt OBs or priority classes in the parameter blocks: timeofday interrupts,
timedelay interrupts, cyclic interrupts, and hardware interrupts.

The priority of organization blocks on S7-300 CPUs is fixed.

With S7-400 CPUs (and the CPU 318) you can change the priority of the following organization
blocks with STEP 7:

• OB10 to OB47

• OB70 to OB72 (only H CPUs) and OB81 to OB87 in RUN mode.

The following priority classes are permitted:

• Priority classes 2 to 23 for OB10 to OB47

• Priority classes 2 to 28 for OB70 to OB72

• Priority classes 24 to 26 for OB81 to OB87; for CPUs as of approx. The middle of 2001
(Firmware Version 3.0) the ranges where extended: Priority classes 2 to 26 can be set for OB
81 to OB 84 as well as for OB 86 and OB 87.

You can assign the same priority to several OBs. OBs with the same priority are processed in the
order in which their start events occur.

Error OBs started by synchronous errors are executed in the same priority class as the block being
executed when the error occurred.

Local Data
When creating logic blocks (OBs, FCs, FBs), you can declare temporary local data. The local data
area on the CPU is divided among the priority classes.

On S7-400, you can change the amount of local data per priority class in the "priority classes"
parameter block using STEP 7.

Start Information of an OB
Every organization block has start information of 20 bytes of local data that the operating system
supplies when an OB is started. The start information specifies the start event of the OB, the date
and time of the OB start, errors that have occurred, and diagnostic events.

For example, OB40, a hardware interrupt OB, contains the address of the module that generated
the interrupt in its start information.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
66 Manual, 04/2017, A5E41552389-AA

Deselected Interrupt OBs
If you assign priority class 0 or assign less than 20 bytes of local data to a priority class, the
corresponding interrupt OB is deselected. The handling of deselected interrupt OBs is restricted as
follows:

• In RUN mode, they cannot be copied or linked into your user program.

• In STOP mode, they can be copied or linked into your user program, but when the CPU goes
through a restart (warm start) they stop the startup and an entry is made in the diagnostic
buffer.

By deselecting interrupt OBs that you do not require, you increase the amount of local data area
available, and this can be used to save temporary data in other priority classes.

Cyclic Program Processing
Cyclic program processing is the "normal" type of program execution on programmable logic
controllers, meaning the operating system runs in a program loop (the cycle) and calls the
organization block OB1 once in every loop in the main program. The user program in OB1 is
therefore executed cyclically.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 67

Event-Driven Program Processing
Cyclic program processing can be interrupted by certain events (interrupts). If such an event
occurs, the block currently being executed is interrupted at a command boundary and a different
organization block that is assigned to the particular event is called. Once the organization block has
been executed, the cyclic program is resumed at the point at which it was interrupted.

This means it is possible to process parts of the user program that do not have to be processed
cyclically only when needed. The user program can be divided up into "subroutines" and distributed
among different organization blocks. If the user program is to react to an important signal that
occurs relatively seldom (for example, a limit value sensor for measuring the level in a tank reports
that the maximum level has been reached), the subroutine that is to be processed when the signal
is output can be located in an OB whose processing is event-driven.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
68 Manual, 04/2017, A5E41552389-AA

Linear Versus Structured Programming
You can write your entire user program in OB1 (linear programming). This is only advisable with
simple programs written for the S7-300 CPU and requiring little memory.

Complex automation tasks can be controlled more easily by dividing them into smaller tasks
reflecting the technological functions of the process or that can be used more than once. These
tasks are represented by corresponding program sections, known as the blocks (structured
programming).

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 69

4.2.2 Call Hierarchy in the User Program

For the user program to function, the blocks that make up the user program must be called. This is
done using special STEP 7 instructions, the block calls, that can only be programmed and started
in logic blocks.

Order and Nesting Depth
The order and nesting of the block calls is known as the call hierarchy. The number of blocks that
can be nested (the nesting depth) depends on the particular CPU.

The following figure illustrates the order and nesting depth of the block calls within a scan cycle.

There is a set order for creating blocks:

• You create the blocks from top to bottom, so you start with the top row of blocks.

• Every block that is called must already exist, meaning that within a row of blocks the order for
creating them is from right to left.

• The last block to be created is OB1.

Putting these rules into practice for the example in the figure produces the following sequence for
creating the blocks:

FC1 > FB1 + instance DB1 > DB1 > SFC1 > FB2 + instance DB2 > OB1

 Note

If the nesting is too deep (too many levels), the local data stack may overflow (Also refer to Local
Data Stack).

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
70 Manual, 04/2017, A5E41552389-AA

Block Calls
The following figure shows the sequence of a block call within a user program. The program calls
the second block whose instructions are then executed completely. Once the second or called
block has been executed, execution of the interrupted block that made the call is resumed at the
instruction following the block call.

Before you program a block, you must specify which data will be used by your program, in other
words, you must declare the variables of the block.

 Note

OUT parameters must be described for each block call.

 Note

The operating system resets the instances of SFB3 "TP" when a cold restart is performed. If you
want to initialize instances of this SFB after a cold restart, you must call up the relevant instances
of the SFB with PT = 0 ms via OB100. You can do this, for example, by performing an initialization
routine in the blocks which contain instances of the SFB.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 71

4.2.3 Block Types

4.2.3.1 Organization Block for Cyclic Program Processing (OB1)

Cyclic program processing is the "normal" type of program execution on programmable logic
controllers. The operating system calls OB1 cyclically and with this call it starts cyclic execution of
the user program.

Sequence of Cyclic Program Processing
The following table shows the phases of cyclic program processing:

Step Sequence in CPUs to 10/98 Sequence in CPUs from 10/98

1 The operating system starts the cycle
monitoring time.

The operating system starts the cycle
monitoring time.

2 The CPU reads the state of the inputs of the
input modules and updates the process image
table of the inputs.

The CPU writes the values from the process
image table of the outputs to the output
modules.

3 The CPU processes the user program and
executes the instructions contained in the
program.

The CPU reads the state of the inputs of the
input modules and updates the process image
table of the inputs.

4 The CPU writes the values from the process
image table of the outputs to the output
modules.

The CPU processes the user program and
executes the instructions contained in the
program.

5 At the end of a cycle, the operating system
executes any tasks that are pending, for
example downloading and deleting blocks,
receiving and sending global data.

At the end of a cycle, the operating system
executes any tasks that are pending, for
example downloading and deleting blocks,
receiving and sending global data.

6 Finally, the CPU returns to the start of the cycle
and restarts the cycle monitoring time.

Finally, the CPU returns to the start of the cycle
and restarts the cycle monitoring time.

Process Images
So that the CPU has a consistent image of the process signals during cyclic program processing,
the CPU does not address the input (I) and output (Q) address areas directly on the I/O modules
but rather accesses an internal memory area of the CPU that contains an image of the inputs and
outputs.

Programming Cyclic Program Processing
You program cyclic program processing by writing your user program in OB1 and in the blocks
called within OB1 using STEP 7.

Cyclic program processing begins as soon as the startup program is completed without errors.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
72 Manual, 04/2017, A5E41552389-AA

Interrupts
Cyclic program processing can be interrupted by the following:

• An interrupt

• A STOP command (mode selector, menu option on the programming device, SFC46 STP,
SFB20 STOP)

• A power outage

• The occurrence of a fault or program error

Scan Cycle Time
The scan cycle time is the time required by the operating system to run the cyclic program and all
the program sections that interrupt the cycle (for example, executing other organization blocks) and
system activities (for example, updating the process image). This time is monitored.

The scan cycle time (TC) is not the same in every cycle. The following figures show different scan
cycle times (TC1 ≠ TC2) for CPUs up to 10/98 and CPUs from 10/98:

In the current cycle, OB1 is interrupted by a timeofday interrupt.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 73

Cycle Monitoring Time
With STEP 7, you can modify the default maximum cycle monitoring time. If this time expires, the
CPU either changes to STOP mode or OB80 is called in which you can specify how the CPU
should react to this error.

Minimum Cycle Time
With STEP 7, you can set a minimum cycle time for S7-400 CPUs and the CPU 318. This is useful
in the following situations:

• When the interval at which program execution starts in OB1 (main program scan) should
always be the same or

• When the process image tables would be updated unnecessarily often if the cycle time is too
short.

The following figures show the function of the cycle monitoring time in program processing in CPUs
up to 10/98 and in CPUs from 10/98.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
74 Manual, 04/2017, A5E41552389-AA

Updating the Process Image
During cyclic program processing by the CPU, the process image is updated automatically. With
the S7-400 CPUs and the CPU 318 you can deselect the update of the process image if you want
to:

• Access the I/O directly instead or

• Update one or more process image input or output sections at a different point in the program
using system functions SFC26 UPDAT_PI and SFC27 UPDAT_PO.

Communication Load
You can use the CPU parameter "Scan Cycle Load from Communication" to control within a given
framework the duration of communication processes that always increase the scan cycle time.
Examples of communication processes include transmitting data to another CPU by means of MPI
or loading blocks by means of a programming device.

Test functions with a programming device are barely influenced by this parameter. However, you
can increase the scan cycle time considerably. In the process mode, you can limit the time set for
test functions (S7-300 only).

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 75

How the Parameter works
The operating system of the CPU constantly provides the communication with the configured
percent of the entire CPU processing capacity (time slice technique). If this processing capacity is
not needed for the communication, it is available to the rest of the processing.

Effect on the Actual Scan Cycle Time
Without additional asynchronous events, the OB1 scan cycle time is extended by a factor that can
be calculated according to the following formula:

100

100 - "Scan cycle load from communication (%)"

Example 1 (no additional asynchronous events):

When you set the load added to the cycle by communication to 50%, the OB1 scan cycle time can
be doubled.

At the same time, the OB1 scan cycle time is also influenced by asynchronous events (such as
hardware interrupts or cyclic interrupts). From a statistical point of view, even more asynchronous
events occur within an OB1 scan cycle because of the extension of the scan cycle time by the
communication portion. This causes an additional increase in the OB1 scan cycle. This increase
depends on how many events occur per OB1 scan cycle and on the duration of event processing.

Example 2 (additional asynchronous events considered):

For a pure OB1 execution time of 500 ms, a communication load of 50% can result in an actual
scan cycle time of up to 1000 ms (provided that the CPU always has enough communication jobs
to process). If, parallel to this, a cyclic interrupt with 20 ms processing time is executed every 100
ms, this cyclic interrupt would extend the scan cycle by a total of 5*20 ms = 100 ms without
communication load. That is, the actual scan cycle time would be 600 ms. Because a cyclic
interrupt also interrupts communication, it affects the scan cycle time by 10 * 20 ms with 50%
communication load. That is, in this case, the actual scan cycle time amounts to 1200 ms instead
of 1000 ms.

 Note

Check the effects of changing the value of the "Scan Cycle Load from Communication" parameter while the
system is running.
The communication load must be taken into account when setting the minimum scan cycle time; otherwise
time errors will occur.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
76 Manual, 04/2017, A5E41552389-AA

Recommendations
• Where possible, apply the default value.

• Increase this value only if you are using the CPU primarily for communication purposes and
your user program is not time critical.

• In all other cases, only reduce the value.

• Set the process mode (S7-300 only), and limit the time needed there for test functions.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 77

4.2.3.2 Functions (FC)

Functions (FCs) belong to the blocks that you program yourself. A function is a logic block "without
memory." Temporary variables belonging to the FC are saved in the local data stack. This data is
then lost when the FC has been executed. To save data permanently, functions can also use
shared data blocks.

Since an FC does not have any memory of its own, you must always specify actual parameters for
it. You cannot assign initial values for the local data of an FC.

Application
An FC contains a program section that is always executed when the FC is called by a different
logic block. You can use functions for the following purposes:

• To return a function value to the calling block (example: math functions)

• To execute a technological function (example: single control function with a bit logic operation).

Assigning Actual Parameters to the Formal Parameters
A formal parameter is a dummy for the "actual" parameter. Actual parameters replace the formal
parameters when the function is called. You must always assign actual parameters to the formal
parameters of an FC (for example, an actual parameter "I 3.6" to the formal parameter "Start"). The
input, output and in/out parameters used by the FC are saved as pointers to the actual parameters
of the logic block that called the FC.

Important Differences Between the Output Parameters of FCs and FBs
In function blocks (FB), a copy of the actual parameters in the instance DB is used when accessing
the parameters. If an input parameter is not transferred or an output parameter is not write
accessed when a FB is called, the older values still stored in the instance DB /Instance DB =
memory of the FBs) will be used.

Functions (FC) have no memory. Contrary to FBs, the assignment of formal parameters to these
FCs is therefore not optional, but rather essentially. FC parameters are accessed via addresses
(pointers to targets across area boundaries). When an address of the data area (data block) or a
local variable of the calling block is used as actual parameter, a copy of the actual parameter is
saved temporarily to local data area of the calling block for the transfer of the parameter.

 Caution

In this case, if no data are written to an OUTPUT parameter in an FC, the block may output random
values!

As the calling block's local data area which is reserved for the copy is not assigned to the OUTPUT
parameter, no data will be written to this area. It will therefore remain unchanged and the random
value stored at this location will be output, because local data are not automatically set to "0" by
default, for example.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
78 Manual, 04/2017, A5E41552389-AA

Thus, observe the following points:

• If possible, initialize the OUTPUT parameters.

• Set and reset instructions depend on RLO. When these instructions are used to determine the
value at an OUTPUT parameter, no value is generated if the result of a previous logic
operation (RLO) = 0.

• Always ensure that data are written to the OUTPUT parameters - irrespective of any program
paths in the block. Pay special attention to jump instructions, to the ENO output in LAD and
FBD as well as to BEC (Block End Conditional) and the influence of MCR (Master Control
Relay) instructions.

 Note

Although the OUTPUT parameters of an FB or the INOUT parameters of an FC and FB will not
output random values (the old output value - or input value as output value - is going to be
maintained even if no data are written to the parameter) you should still observe the points above
in order to avoid unintentional processing of "old" values.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 79

4.2.3.3 Function Blocks (FB)

Function blocks (FBs) belong to the blocks that you program yourself. A function block is a block
"with memory." It is assigned a data block as its memory (instance data block). The parameters
that are transferred to the FB and the static variables are saved in the instance DB. Temporary
variables are saved in the local data stack.

Data saved in the instance DB are not lost when execution of the FB is complete. Data saved in the
local data stack are, however, lost when execution of the FB is completed.

 Note

To avoid errors when working with FBs, read Permitted Data Types when Transferring Parameters
in the Appendix.

Application
An FB contains a program that is always executed when the FB is called by a different logic block.
Function blocks make it much easier to program frequently occurring, complex functions.

Function Blocks and Instance Data Blocks
An instance data block is assigned to every function block call that transfers parameters.

By calling more than one instance of an FB, you can control more than one device with one FB. An
FB for a motor type, can, for example, control various motors by using a different set of instance
data for each different motor. The data for each motor (for example, speed, ramping, accumulated
operating time etc.) can be saved in one or more instance DBs.

The following figure shows the formal parameters of an FB that uses the actual parameters saved
in the instance DB.

Variables of the Data Type FB
If your user program is structured so that an FB contains calls for further already existing function
blocks, you can include the FBs to be called as static variables of the data type FB in the variable
declaration table of the calling FB. This technique allows you to nest variables and concentrate the
instance data in one instance data block (multiple instance).

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
80 Manual, 04/2017, A5E41552389-AA

Assigning Actual Parameters to the Formal Parameters
It is not generally necessary in STEP 7 to assign actual parameters to the formal parameters of an
FB. There are, however, exceptions to this. Actual parameters must be assigned in the following
situations:

• For an in/out parameter of a complex data type (for example, STRING, ARRAY or
DATE_AND_TIME)

• For all parameter types (for example TIMER, COUNTER, or POINTER)

STEP 7 assigns the actual parameters to the formal parameters of an FB as follows:

• When you specify actual parameters in the call statement: the instructions of the FB use the
actual parameters provided.

• When you do not specify actual parameters in the call statement: the instructions of the FB use
the value saved in the instance DB.

The following table shows which variables of the FB must be assigned actual parameters.

 Data Type
Variable Elementary Data Type Complex Data Type Parameter Type
Input No parameter required No parameter required Actual parameter required
Output No parameter required No parameter required Actual parameter required
In/out No parameter required Actual parameter required −

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 81

Assigning Initial Values to Formal Parameters
You can assign initial values to the formal parameters in the declaration section of the FB. These
values are written into the instance DB associated with the FB.

If you do not assign actual parameters to the formal parameters in the call statement, STEP 7 uses
the values saved in the instance DB. These values can also be the initial values that were entered
in the variable declaration table of an FB.

The following table shows which variables can be assigned an initial value. Since the temporary
data are lost after the block has been executed, you cannot assign any values to them.

 Data Type
Variable Elementary Data Type Complex Data Type Parameter Type
Input Initial value permitted Initial value permitted −
Output Initial value permitted Initial value permitted −
In/out Initial value permitted − −
Static Initial value permitted Initial value permitted −
Temporary − − −

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
82 Manual, 04/2017, A5E41552389-AA

4.2.3.4 Instance Data Blocks

An instance data block is assigned to every function block call that transfers parameters. The
actual parameters and the static data of the FB are saved in the instance DB. The variables
declared in the FB determine the structure of the instance data block. Instance means a function
block call. If, for example, a function block is called five times in the S7 user program, there are
five instances of this block.

Creating an Instance DB
Before you create an instance data block, the corresponding FB must already exist. You specify
the number of the FB when you create the instance data block.

One Instance DB for Each Separate Instance
If you assign several instance data blocks to a function block (FB) that controls a motor, you can
use this FB to control different motors.

The data for each specific motor (for example, speed, runup time, total operating time) are saved
in different data blocks. The DB associated with the FB when it is called determines which motor is
controlled. With this technique, only one function block is necessary for several motors (see the
following figure).

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 83

One Instance DB for Several Instances of an FB (Multiple Instances)
You can also transfer the instance data for several motors at the same time in one instance DB. To
do this, you must program the calls for the motor controllers in a further FB and declare static
variables with the data type FB for the individual instances in the declaration section of the calling
FB.

If you use one instance DB for several instances of an FB, you save memory and optimize the use
of data blocks.

In the following figure, the calling FB is FB21 "Motor processing," the variables are of data type
FB22, and the instances are identified by Motor_1, Motor_2, and Motor_3.

In this example, FB22 does not need its own instance data block, since its instance data are saved
in the instance data block of the calling FB.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
84 Manual, 04/2017, A5E41552389-AA

One Instance DB for Several Instances of Different FBs (Multiple Instances)
In a function block you can call the instances of other existing FBs. You can assign the instance
data required for this to the instance data block of the calling FB, meaning you do not need any
additional data blocks for the called FBs in this case.

For these multiple instances in one instance data block, you must declare static variables with the
data type of the called function block for each individual instance in the declaration section of the
calling function block. The call within the function block does not then require an instance data
block, only the symbolic name of the variable.

In the example in this figure, the assigned instance data are stored in a common instance DB.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 85

4.2.3.5 Shared Data Blocks (DB)

In contrast to logic blocks, data blocks do not contain STEP 7 instructions. They are used to store
user data, in other words, data blocks contain variable data with which the user program works.
Shared data blocks are used to store user data that can be accessed by all other blocks.

The size of DBs can vary. Refer to the description of your CPU for the maximum possible size.

You can structure shared data blocks in any way to suit your particular requirements.

Shared Data Blocks in the User Program
If a logic block (FC, FB, or OB) is called, it can occupy space in the local data area (L stack)
temporarily. In addition to this local data area, a logic block can open a memory area in the form of
a DB. In contrast to the data in the local data area, the data in a DB are not deleted when the DB is
closed, in other words, after the corresponding logic block has been executed.

Each FB, FC, or OB can read the data from a shared DB or write data to a shared DB. This data
remains in the DB after the DB is exited.

A shared DB and an instance DB can be opened at the same time. The following figure shows the
different methods of access to data blocks.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
86 Manual, 04/2017, A5E41552389-AA

4.2.3.6 System Function Blocks (SFB) and System Functions (SFC)

Preprogrammed Blocks
You do not need to program every function yourself. S7 CPUs provide you with preprogrammed
blocks that you can call in your user program.

Further information can be found in the reference help on system blocks and system functions
(Jumps to Language Descriptions and Help on Blocks and System Attributes).

System Function Blocks
A system function block (SFB) is a function block integrated on the S7 CPU. SFBs are part of the
operating system and are not loaded as part of the program. Like FBs, SFBs are blocks "with
memory." You must also create instance data blocks for SFBs and download them to the CPU as
part of the program.

S7 CPUs provide the following SFBs:

• For communication via configured connections

• For integrated special functions (for example, SFB29 "HS_COUNT" on the CPU 312 IFM and
the CPU 314 IFM).

System Functions
A system function is a preprogrammed function that is integrated on the S7 CPU. You can call the
SFC in your program. SFCs are part of the operating system and are not loaded as part of the
program. Like FCs, SFCs are blocks "without memory."

S7 CPUs provide SFCs for the following functions:

• Copying and block functions

• Checking the program

• Handling the clock and runtime meters

• Transferring data sets

• Transferring events from a CPU to all other CPUs in multicomputing mode

• Handling timeofday and timedelay interrupts

• Handling synchronous errors, interrupts, and asynchronous errors

• Information on static and dynamic system data, for example, diagnostics

• Process image updating and bit field processing

• Addressing modules

• Distributed I/O

• Global data communication

• Communication via nonconfigured connections

• Generating blockrelated messages

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 87

Additional Information
For more detailed information about SFBs and SFCs, refer to the "System Software for S7-300 and
S7-400, System and Standard Functions" Reference Manual. The "S7-300 Programmable
Controller, Hardware and Installation Manual" and "S7-400 Programmable Controller Module
Specifications Reference Manual" explain which SFBs and SFCs are available.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
88 Manual, 04/2017, A5E41552389-AA

4.2.4 Organization Blocks for Interrupt-Driven Program Processing

By providing interrupt OBs, the S7 CPUs allow the following:

• Program sections can be executed at certain times or intervals (time-driven)

• Your program can react to external signals from the process.

The cyclic user program does not need to query whether or not interrupt events have occurred. If
an interrupt does occur, the operating system makes sure that the user program in the interrupt OB
is executed so that there is a programmed reaction to the interrupt by the programmable logic
controller.

Interrupt Types and Applications
The following table shows how the different types of interrupt can be used.

Type of Interrupt Interrupt OBs Application Examples

Time-of-day interrupt OB10 to OB17 Calculation of the total flow into a blending process at the end
of a shift

Time-delay interrupt OB20 to OB23 Controlling a fan that must continue to run for 20 seconds after
a motor is switched off

Cyclic interrupt OB30 to OB38 Scanning a signal level for a closed loop control system
Hardware interrupt OB40 to OB47 Signaling that the maximum level of a tank has been reached

4.2.4.1 Time-of-Day Interrupt Organization Blocks (OB10 to OB17)

The S7 CPUs provide the TimeOfDay interrupt OBs that can be executed at a specified date or at
certain intervals.

TimeOfDay interrupts can be triggered as follows:

• Once at a particular time (specified in absolute form with the date)

• Periodically by specifying the start time and the interval at which the interrupt should be
repeated (for example, every minute, every hour, daily).

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 89

Rules for Time-of-Day Interrupts
TimeOfDay interrupts can only be executed when the interrupt has been assigned parameters
and a corresponding organization block exists in the user program. If this is not the case, an error
message is entered in the diagnostic buffer and asynchronous error handling is executed (OB80,
see Error Handling Organization Blocks (OB70 to OB87 / OB121 to OB122)).

Periodic TimeOfDay interrupts must correspond to a real date. Repeating an OB10 monthly
starting on January 31st is not possible. In this case, the OB would only be started in the months
that actually have 31 days (that is, not in February, April, June, etc.).

A TimeOfDay interrupt activated during startup (restart (warm restart) or hot restart) is only
executed after the startup is completed.

TimeOfDay interrupt OBs that are deselected by the parameter assignment cannot be started.
The CPU recognizes a programming error and changes to STOP mode.

Following a restart (warm restart), TimeOfDay interrupts must be set again (for example, using
SFC30 ACT_TINT in the startup program).

Starting the Time-of-Day Interrupt
To allow the CPU to start a TimeOfDay interrupt, you must first set and then activate the
TimeOfDay interrupt. There are three ways of starting the interrupt:

• Automatic start of the TimeOfDay interrupt by assigning appropriate parameters with STEP 7
(parameter block "TimeOfDay interrupts")

• Setting and activating the TimeOfDay interrupt with SFC28 SET_TINT and SFC30 ACT_TINT
from within the user program

• Setting the TimeOfDay interrupt by assigning parameters with STEP 7 and activating the
TimeOfDay interrupt with SFC30 ACT_TINT in the user program.

Querying the Time-of-Day Interrupt
To query which TimeOfDay interrupts are set and when they are set to occur, you can do one of
the following:

• Call SFC31 QRY_TINT

• Request the list "interrupt status" of the system status list.

Deactivating the Time-of-Day Interrupt
You can deactivate TimeOfDay interrupts that have not yet been executed with SFC29
CAN_TINT. Deactivated TimeOfDay interrupts can be set again using SFC28 SET_TINT and
activated with SFC30 ACT_TINT.

Priority of the Time-of-Day Interrupt OBs
All eight TimeOfDay interrupt OBs have the same priority class (2) as default and are therefore
processed in the order in which their start event occurs. You can, however, change the priority
class by selecting suitable parameters.

Changing the Set Time
You can change the TimeOfDay set for the interrupt as follows:

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
90 Manual, 04/2017, A5E41552389-AA

• A clock master synchronizes the time for masters and slaves.

• SFC0 SET_CLK can be called in the user program to set a new time.

Reaction to Changing the Time
The following table shows how TimeOfDay interrupts react after the time has been changed.

If... Then...

you move the time ahead and one or more
TimeOfDay interrupts were skipped,

OB80 is started and the TimeOfDay interrupts that
were skipped are entered in the start information of
OB80.

you have not deactivated the skipped TimeOfDay
interrupts in OB80,

the skipped TimeOfDay interrupts are no longer
executed.

you have not deactivated the skipped TimeOfDay
interrupts in OB80,

the first skipped TimeOfDay interrupt is executed,
the other skipped TimeOfDay interrupts are
ignored.

you move the time back, the start events for the
TimeOfDay interrupts occur again,

the execution of the TimeOfDay interrupt is
repeated with S7-300-CPUs
and not
repeated for S7-400-CPUs and CPU 318.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 91

4.2.4.2 Time-Delay Interrupt Organization Blocks (OB20 to OB23)

The S7 CPUs provide time delay OBs with which you can program the delayed execution of parts
of your user program.

Rules for Time-Delay Interrupts
Time delay interrupts can only be executed when the corresponding organization block exists in the
CPU program. If this is not the case, an error message is entered in the diagnostic buffer and
asynchronous error handling is executed (OB80, see Error Handling Organization Blocks (OB70 to
OB87 / OB121 to OB122)).

Time delay interrupt OBs that were deselected by the parameter assignment cannot be started.
The CPU recognizes a programming error and changes to STOP mode.

Time delay interrupts are triggered when the delay time specified in SFC32 SRT_DINT has
expired.

Starting the Time-Delay Interrupt
To start a time delay interrupt, you must specify the delay time in SFC32 after which the
corresponding time delay interrupt OB is called. Refer to the "S7-300 Programmable Controller,
Hardware and Installation Manual" and "S7-400 Programmable Controller Module Specifications
Reference Manual" for the maximum permitted length of the delay time.

Priority of the Time-Delay Interrupt OBs
The default priority for the time-delay interrupt OBs is priority class 3 to 6. You can assign
parameters to change the priority classes.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
92 Manual, 04/2017, A5E41552389-AA

4.2.4.3 Cyclic Interrupt Organization Blocks (OB30 to OB38)
The S7 CPUs provide cyclic interrupt OBs that interrupt cyclic program processing at certain
intervals.
Cyclic interrupts are triggered at intervals. The time at which the interval starts is the mode
transition from STOP to RUN.

Rules for Cyclic Interrupts
When you specify the intervals, make sure that there is enough time between the start events of
the individual cyclic interrupts for processing the cyclic interrupts themselves.
If you assign parameters to deselect cyclic interrupt OBs, they can no longer be started. The CPU
recognizes a programming error and changes to STOP mode.

Starting the Cyclic Interrupt
To start a cyclic interrupt, you must specify the interval in the cyclic interrupts parameter block
using STEP 7. The interval is always a whole multiple of the basic clock rate of 1 ms.
Interval = n X basic clock rate 1 ms
Each of the nine available cyclic interrupt OBs has a default interval (see the following table). The
default interval becomes effective when the cyclic interrupt OB assigned to it is loaded. You can,
however, assign parameters to change the default values. Refer to your "S7-300 Programmable
Controller, Hardware and Installation Manual" and your "S7-400 Programmable Controller, Module
Specifications Reference Manual" for the upper limit.

Phase Offset in Cyclic Interrupts
To avoid cyclic interrupts of different cyclic interrupt OBs being started at the same point and
possibly causing a time error (cycle time exceeded) you can specify a phase offset. The phase
offset ensures that the execution of a cyclic interrupt is delayed by a certain time after the interval
has expired.
Phase offset = m X basic clock rate (where 0 ≤ m < n)
The following figure shows how a cyclic interrupt OB with phase offset (OB37) is executed in
contrast to a cyclic interrupt without phase offset (OB38).

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 93

Priority of the Cyclic Interrupt OBs
The following table shows the default intervals and priority classes of the cyclic interrupt OBs. You
can assign parameters to change the interval and the priority class.

Cyclic Interrupt OB Interval in ms Priority Class

OB30 5000 7
OB31 2000 8
OB32 1000 9
OB33 500 10
OB34 200 11
OB35 100 12
OB36 50 13
OB37 20 14
OB38 10 15

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
94 Manual, 04/2017, A5E41552389-AA

4.2.4.4 Hardware Interrupt Organization Blocks (OB40 to OB47)

The S7 CPUs provide hardware interrupt OBs that react to signals from the modules (for example,
signal modules (SMs), communications processors (CPs), function modules (FMs)). With STEP 7,
you can decide which signal from a configurable digital or analog module starts the OB. With CPs
and FMs, use the appropriate parameter assignment dialogs.

Hardware interrupts are triggered when a signal module with hardware interrupt capability and with
an enabled hardware interrupt passes on a received process signal to the CPU or when a function
module of the CPU signals an interrupt.

Rules for Hardware Interrupts
Hardware interrupts can only be executed when the corresponding organization block exists in the
CPU program. If this is not the case, an error message is entered in the diagnostic buffer and
asynchronous error handling is executed (OB80, see Error Handling Organization Blocks (OB70 to
OB87 / OB121 to OB122)).

If you have deselected hardware interrupt OBs in the parameter assignment, these cannot be
started. The CPU recognizes a programming error and changes to STOP mode.

Assigning Parameters to Signal Modules with Hardware Interrupt Capability
Each channel of a signal module with hardware interrupt capability can trigger a hardware interrupt.
For this reason, you must specify the following in the parameter sets of signal modules with
hardware interrupt capability using STEP 7:

• What will trigger a hardware interrupt.

• Which hardware interrupt OB will be executed (the default for executing all hardware interrupts
is OB40).

Using STEP 7, you activate the generation of hardware interrupts on the function blocks. You
assign the remaining parameters in the parameter assignment dialogs of these function modules.

Priority of the Hardware Interrupt OBs
The default priority for the hardware interrupt OBs is priority class 16 to 23. You can assign
parameters to change the priority classes.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 95

4.2.4.5 Startup Organization Blocks (OB100 / OB101 / OB102)

Startup Types
There are three distinct types of startup:

• Hot restart (not in S7-300 and S7-400H)

• Restart (warm restart)

• Cold restart

The following table shows which OB the operating system calls in each startup type.

Startup Type Related OB

Hot restart OB101
Restart (warm restart) OB100
Cold restart OB102

Start Events for Startup OBs
The CPU executes a startup after the following events:

• After power up

• After you switch the mode selector from STOP to RUN/RUN-P

• After a request from a communication function

• After synchronizing in multicomputing mode

• In an H system after link-up (only on the standby CPU)

Depending on the start event, the CPU used, and its set parameters the relevant startup OB
(OB100, OB101, or OB102) is called.

Startup Program
You can specify the conditions for starting up your CPU (initialization values for RUN, startup
values for I/O modules) by writing your program for the startup in the organization blocks OB100 for
restart (warm restart), OB101 for hot restart, or OB102 for cold restart.

There are no restrictions to the length of the startup program and no time limit since the cycle
monitoring is not active. Timedriven or interruptdriven execution is not possible in the startup
program. During the startup, all digital outputs have the signal state 0.

Startup Type After Manual Restart
On S7-300 CPUs only a manual restart (warm restart) or cold restart (CPU 318-2 only) is possible.

On some S7-400 CPUs, you can restart manually using the mode selector and the startup type
switch (CRST/WRST) if this is permitted by the parameter assignment you made with STEP 7. A
manual restart (warm restart) is possible without specifically assigning parameters.

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
96 Manual, 04/2017, A5E41552389-AA

Startup Type After Automatic Restart
On S7-300 CPUs, only a restart (warm restart) is possible following power up.

On S7-400 CPUs, you can specify whether an automatic startup following power up leads to a
restart (warm restart) or a hot restart.

Clearing the Process Image
When an S7-400 CPU is restarted, the remaining cycle is executed, and as default, the process
image output table is cleared. You can prevent the process image being cleared if you want the
user program to continue with the old values following a restart.

Module Exists/Type Monitoring
In the parameters, you can decide whether the modules in the configuration table are checked to
make sure they exist and that the module type matches before the startup.

If the module check is activated, the CPU will not start up if a discrepancy is found between the
configuration table and the actual configuration.

Monitoring Times
To make sure that the programmable controller starts up without errors, you can select the
following monitoring times:

• The maximum permitted time for transferring parameters to the modules

• The maximum permitted time for the modules to signal that they are ready for operation after
power up

• On S7-400 CPUs, the maximum time of an interruption during which a hot restart is permitted.

Once the monitoring times expire, the CPU either changes to STOP, or only a restart (warm
restart) is possible.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 97

4.2.4.6 Background Organization Block (OB90)

If you have specified a minimum scan cycle time with STEP 7 and this is longer than the actual
scan cycle time, the CPU still has processing time available at the end of the cyclic program. This
time is used to execute the background OB. If OB90 does not exist on your CPU, the CPU waits
until the specified minimum scan cycle time has elapsed. You can therefore use OB90 to allow
processes where time is not critical to run and thus avoid wait times.

Priority of the Background OB
The background OB has priority class 29, which corresponds to priority 0.29. It is therefore the OB
with the lowest priority. Its priority class cannot be changed by reassigning parameters.

The following figure shows an example of processing the background cycle, the main program
cycle, and OB10 (in CPUs as of 10/98).

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
98 Manual, 04/2017, A5E41552389-AA

Programming OB90
The run time of OB90 is not monitored by the CPU operating system so that you can program
loops of any length in OB90. Ensure that the data you use in the background program are
consistent by observing the following when programming:

• The reset events of OB90 (see the "System Software for S7-300 and S7-400, System and
Standard Functions" Reference Manual)

• The process image update asynchronous to OB90.

 Basics of Designing a Program Structure
 4.2 Blocks in the User Program

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 99

4.2.4.7 Error Handling Organization Blocks (OB70 to OB87 / OB121 to OB122)

Types of Errors
The errors that can be detected by the S7 CPUs and to which you can react with the help of
organization blocks can be divided into two basic categories:

• Synchronous errors: these errors can be assigned to a specific part of the user program. The
error occurs during the execution of a particular instruction. If the corresponding synchronous
error OB is not loaded, the CPU changes to STOP mode when the error occurs.

• Asynchronous errors: these errors cannot be directly assigned to the user program being
executed. These are priority class errors, faults on the programmable logic controller (for
example, a defective module), or redundancy errors. If the corresponding asynchronous error
OB is not loaded, the CPU changes to STOP mode when the error occurs (exceptions: OB70,
OB72, OB81, OB 87).

The following table shows the types of errors that can occur, divided up into the categories of the
error OBs.

Asynchronous Errors/Redundancy Errors Synchronous Errors

OB70 I/O Redundancy Error (only H CPUs) OB121 Programming Error (for example, DB is not
loaded)

OB72 CPU Redundancy Error (only in H CPUs, for
example, failure of a CPU)

OB122 I/O Access Error (for example, access to a
signal module that does not exist)

OB80 Time Error (for example, scan cycle time
exceeded)

OB81 Power Supply Error (for example, battery
failure)

OB82 Diagnostic Interrupt (for example, short circuit
in the input module)

OB83 Remove/Insert Interrupt (for example,
removing an input module)

OB84 CPU Hardware Fault (fault at the interface to
the MPI network)

OB85 Priority Class Error (for example, OB is not
loaded)

OB86 Rack Failure
OB87 Communication Error (for example, incorrect
message frame ID for global data communication)

Basics of Designing a Program Structure
4.2 Blocks in the User Program

 Programming with STEP 7
100 Manual, 04/2017, A5E41552389-AA

Using OBs for Synchronous Errors
Synchronous errors occur during the execution of a particular instruction. When these errors occur,
the operating system makes an entry in the I stack and starts the OB for synchronous errors.

The error OBs called as a result of synchronous errors are executed as part of the program in the
same priority class as the block that was being executed when the error was detected. The details
about the error that triggered the OB call are in the start information for the OB. You can use this
information to react to the error condition and then to return to processing your program (for
example, if an access error occurs on an analog input module, you can specify a substitute value in
OB122 using SFC44 RPL_VAL). The local data of the error OBs, do, however, take up additional
space in the L stack of this priority class.

With S7-400 CPUs, one synchronous error OB can start a further synchronous error OB. This is
not possible with S7-300 CPUs.

Using OBs for Asynchronous Errors
If the operating system of the CPU detects an asynchronous error, it starts the corresponding error
OB (OB70 to OB73 and OB80 to OB87). The OBs for asynchronous errors have the highest priority
as default and they cannot be interrupted by other OBs if all asynchronous error OBs have the
same priority. If more than one asynchronous error OB with the same priority occurs
simultaneously, they are processed in the order they occurred.

Masking Start Events
Using system functions (SFCs), you can mask, delay, or disable the start events for several OBs.
For more detailed information about these SFCs and the organization blocks, refer to the "System
Software for S7-300 and S7-400, System and Standard Functions" Reference Manual.

Type of Error OB SFC Function of the SFC

Synchronous error OBs SFC36 MSK_FLT Masks individual synchronous errors. Masked errors
do not start an error OB and do not trigger
programmed reactions

SFC37 DMSK_FLT Unmasks synchronous errors
Asynchronous error OBs SFC39 DIS_IRT Disables all interrupts and asynchronous errors.

Disabled errors do not start an error OB in any of the
subsequent CPU cycles and do not trigger
programmed reactions

SFC40 EN_IRT Enables interrupts and asynchronous errors
SFC41 DIS_AIRT Delays higher priority interrupts and asynchronous

errors until the end of the OB
SFC42 EN_AIRT Enables higher priority interrupts and asynchronous

errors

 Note

If you want interrupts to be ignored, it is more effective to disable them using an SFC, rather than
to download an empty OB (with the contents BE).

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 101

5 Startup and Operation

5.1 Starting STEP 7

 When you start Windows, you will find an icon for the SIMATIC Manager, the starting point for
the STEP 7 software on the Windows interface.

The quickest method to start STEP 7 is to position the cursor on the icon and doubleclick. The
window containing the SIMATIC Manager is then opened. From here you can access all the
functions you have installed for the standard package and any optional packages.

Alternatively you can also start the SIMATIC Manager via the "Start" button in the taskbar of the
operating system. You will find the entry under "Simatic".

 Note

You will find more information about standard Windows operation and options in your Windows
user's guide or in the online help of your Windows operating system.

SIMATIC Manager
The SIMATIC Manager is the basic application for configuring and programming. You can perform
the following functions in the SIMATIC Manager:

• Set up projects

• Configure and assign parameters to hardware

• Configure hardware networks

• Program blocks

• Debug and commission your programs

Access to the various functions is designed to be object oriented, and intuitive and easy to learn.

You can work with the SIMATIC Manager in one of two ways:

• Offline, without a programmable controller connected

• Online, with a programmable controller connected

Note the relevant safety notices in each case.

How to Proceed from Here
You create automation tasks in the form of "Projects." You will make it easier for yourself if you
read up on the following basic topics before you start work:

• User interface

• Some basic operating steps

• Online help

Startup and Operation
5.2 Starting STEP 7 with Default Start Parameters

 Programming with STEP 7
102 Manual, 04/2017, A5E41552389-AA

5.2 Starting STEP 7 with Default Start Parameters

From STEP 7 V5.0 onwards, you can create several symbols in the SIMATIC Manager and specify
start parameters in the call line. By doing this, you can cause the SIMATIC Manager to position on
the object described by these parameters. This allows you to jump to the corresponding locations
in a project immediately just by double-clicking.

On calling s7tgtopx.exe, you can specify the following start parameters:

/e <complete physical project path>

/o <logical path of the object on which you want to position>

/h <ObjectID>

/onl

The start parameter /onl causes the project to be opened online and the specified path to be
called.

/off

The start parameter /off causes the project to be opened offline and the specified path to be called.

/keep

The start parameter /keep causes the following to occur:

If the SIMATIC Manager is open, the already displayed projects are opened in addition to the new
project to be explicitly opened by means of the command line. If the SIMATIC Manager is not yet
open, then the new project is opened along with the projects stored in the session memory of the
SIMATIC Manager. If this start parameter is not specified, the opened projects are closed first, the
session memory is ignored and only the one specified project is opened.

/noopen

The start parameter /noopen causes no project to be opened when SIMATIC Manager is started.

The easiest way to establish suitable parameters is described below.

Establishing Parameters by Copying and Pasting

Proceed as follows:

1. On your desktop, create a new link to the file s7tgtopx.exe. This file is located in the installation
directory under S7bin.

2. Display the properties dialog box.

3. Select the "Link" tab. The entry under "Target" should now be expanded as follows.

4. Select the required object in the SIMATIC Manager.

5. Copy the object to the clipboard using the key combination CTRL+ALT+C.

6. Position the cursor at the end of the "Target" entry in the "Link" tab.

7. Paste the contents of the clipboard using the key combination CTRL+V.

8. Close the dialog box by confirming with "OK."

 Startup and Operation
 5.2 Starting STEP 7 with Default Start Parameters

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 103

Example of Parameters:

/e F:\SIEMENS\STEP7\S7proj\MyConfig\MyConfig.s7p /keep

/o "1,8:MyConfig\SIMATIC 400(1)\CPU416-1\S7-Program(1)\Blocks\FB1"

 /h T00112001;129;T00116001;1;T00116101;16e /keep

Note on the Structure of the Project Path

The project path is the physical path in the file system.

The complete logical path has the following structure:

[View ID,online ID]:project name\{object name\}*\ object name

Example: /o 1.8:MyConfig\SIMATIC 400(1)\CPU416-1\S7-Program(1)\Blocks\FB1

The path of network drives must be specified in UNC notation (= Universal Naming Convention, in
other words \\<servername>\<share>\...).

Example: \\<servername>\<share>\SIEMENS\STEP7\S7proj\MyConfig\MyConfig.s7p /keep

Note on the Structure of the Logical Path
The complete logical path and the Object ID can only be created using the copy and paste
functions.

However, it is also possible to specify the path which can be read by the user. In the example
above, that would be:

/o "MyConfig\SIMATIC 400(1)\CPU416-1\S7-Program(1)\Blocks\FB1". By adding /onl or /off the
user can specify whether the path is valid in the online or offline window. You do not need to
specify this if you use the copy and paste functions.

Important: If the path contains blanks, it must be placed within quotation marks.

Startup and Operation
5.3 Calling the Help Functions

 Programming with STEP 7
104 Manual, 04/2017, A5E41552389-AA

5.3 Calling the Help Functions

Online Help
The online help system provides you with information at the point where you can use it most
efficiently. You can use the online help to access information quickly and directly without having to
search through manuals. You will find the following types of information in the online help:

• Contents: offers a number of different ways of displaying help information

• Contextsensitive Help (F1 key): with the F1 key you access information on the object you
just selected with the mouse or on the active dialog box or window

• Introduction: gives a brief introduction to the use, the main features, and the functional scope
of an application

• Getting Started: summarizes the basic steps you need to execute to get started with the
application

• Using Help: provides a description of ways of finding specific information in the online help

• About: provides information on the current version of the application

Via the Help menu you can also access topics which relate to the current dialog situation from
every window.

Calling the Online Help
You can call the online help in one of the following ways:

• Select a menu command in the Help menu in the menu bar.

• Click the "Help" button in a dialog box. You are then shown help on this dialog box.

• Position the cursor in a window or dialog box on the topic you need help with and press the F1
key or select the menu command Help > Contextsensitive Help.

• Use the question mark cursor in Windows.

The last three of these ways of accessing the online help are known as contextsensitive help.

Calling the Quick Help
A quick help on buttons in the toolbar is displayed when you position the cursor on a button and
leave it there for a moment.

 Startup and Operation
 5.4 Objects and Object Hierarchy

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 105

5.4 Objects and Object Hierarchy

In the same way that the Windows Explorer shows the directory structure of folders and files, the
object hierarchy for projects and libraries in STEP 7 is shown in the SIMATIC Manager.

The following figure shows an example of an object hierarchy.

• Project Object
• Station Object

• Programmable Module Object

• S7 Program Object
• Source File Folder Object
• Block Folder Object

Objects have the following functions:

• Carriers of object properties,

• Folders,

• Carriers of functions (for example, to start a particular application).

Objects as Carriers of Properties
Objects can carry both functions and properties (such as settings). When you select an object, you
can perform one of the following functions with it:

• Edit the object using the menu command Edit > Open Object.

• Open a dialog box using the menu command Edit > Object Properties and set object-specific
options.

A folder can also be a carrier of properties.

Objects as Folders
A folder (directory) can contain other folders or objects. These are displayed when you open the
folder.

Startup and Operation
5.4 Objects and Object Hierarchy

 Programming with STEP 7
106 Manual, 04/2017, A5E41552389-AA

Objects as Carriers of Functions
When you open an object, a window is displayed in which you can edit the object.

An object is either a folder or a carrier of functions. An exception to this is stations: they are both
folders (for programmable modules) and carriers of functions (used to configure the hardware).

• If you double-click a station, the objects contained in it are displayed: the programmable
modules and the station configuration (station as a folder).

• If you open a station with the menu command Edit > Open Object, you can configure this
station and assign parameters to it (station as the carrier of a function). The menu command
has the same effect as a double-click on the "Hardware" object.

 Startup and Operation
 5.4 Objects and Object Hierarchy

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 107

5.4.1 Project Object

The project represents the entirety of all the data and programs in an automation solution, and is
located at the top of an object hierarchy.

Position in the Project View

Project Object
Station Object
Programmable Module Object
S7 Program Object
Source File Folder Object
Block Folder Object

Symbol Object Folder Selection of Important Functions

Project • Creating a Project

• Archiving Projects and Libraries
• Printing Project Documentation
• Managing Multilingual Texts
• Checking Projects for Optional Packages Used
• Rearranging
• Translating and Editing Operator Related Texts
• Inserting Operator Station Objects
• More than One User Editing Projects
• Converting Version 2 Projects
• Setting the PG/PC Interface

Symbol Objects in the Project
Level

Selection of Important Objects

Station:

SIMATIC 300 station
SIMATIC 400 station

• Inserting Stations
• Stations are both objects (project level) and object folder

(station level). Other functions can be found under Station
Object

S7 program

• S7 Program without a Station or CPU
• S7 programs are both objects (project level) and object

folders (program level). Other functions can be found under
S7 Program Object

Network for starting the
tool for network
configuration and setting
the network properties.

• Properties of Subnets and Communication Nodes
• Overview: Global Data Communication
• Procedure for Configuring Global Data Communication

Startup and Operation
5.4 Objects and Object Hierarchy

 Programming with STEP 7
108 Manual, 04/2017, A5E41552389-AA

5.4.2 Library Object

A library can contain S7 programs and is used to store blocks. A library is located at the top of an
object hierarchy.

• Library Object
• S7 Program Object
• Source File Folder Object
• Block Folder Object

Symbol Object Folder Selection of Important Functions

Library • Overview of the Standard Libraries

• Working with Libraries
• Archiving Projects and Libraries

Symbol Objects in the Library

Level
Selection of Important Functions

S7 program

• Inserting an S7 Program
• S7 programs are both objects (project level) and object

folders (program level). Other functions can be found under
S7 Program Object

 Startup and Operation
 5.4 Objects and Object Hierarchy

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 109

5.4.3 Station Object

A SIMATIC 300/400 station represents a S7 hardware configuration with one or more
programmable modules.

Position in the Project View

• Project Object
• Station Object
• Programmable Module Object

• S7 Program Object

• Source File Folder Object
• Block Folder Object

Symbol Object Folder Selection of Important Functions

Station • Inserting a Station

• Uploading a Station
• Downloading a Configuration to a Programmable Controller
• Uploading a Configuration from a Station
• Displaying CPU Messages and User-Defined Diagnostic

Messages
• Configuring the 'Reporting of System Errors'
• Diagnosing Hardware and Displaying Module Information
• Displaying and Changing the Operating Mode
• Displaying and Setting the Time and Date
• Erasing the Load/Work Memory and Resetting the CPU

SIMATIC PC Station
(Not assigned)

• Creating and Assigning Parameters to SIMATIC PC Stations
• Configuring Connections for a SIMATIC PC Station
• Uploading a SIMATIC PC Station

SIMATIC PC Station
(Assigned)

• Highlighting the SIMATIC PC Station to be Configured in the
Network View

Symbol Objects in the Station

Level
Selection of Important Functions

Hardware • Basic Procedure for Configuring Hardware

• Basic Steps for Configuring a Station
• Overview: Procedure for Configuring and Assigning

Parameters to a Local Configuration
• Basic Procedure for Configuring a DP Master System
• Configuring Multicomputing Operation

Programmable module • Programmable modules are both objects (station level) and
object folders ("Programmable Modules" level). Other functions
can be found under Programmable Module Object

Startup and Operation
5.4 Objects and Object Hierarchy

 Programming with STEP 7
110 Manual, 04/2017, A5E41552389-AA

5.4.4 Programmable Module Object

A programmable module represents the parameter assignment data of a programmable module
(CPUxxx, FMxxx, CPxxx). The system data of modules with no retentive memory (for example,
CP441) are loaded via the CPU of the station. For this reason, no "system data" object is assigned
to such modules and they are not displayed in the project hierarchy.

Position in the Project View

• Project Object
• Station Object
• Programmable Module Object
• S7 Program Object
• Source File Folder Object
• Block Folder Object

Symbol Object Folder Selection of Important Functions

Programmable module • Overview: Procedure for Configuring and Assigning
Parameters to a Local Configuration

• Displaying CPU Messages and User-Defined Diagnostic
Messages

• Configuring 'Reporting of System Errors'
• Diagnosing Hardware and Displaying Module Information
• Downloading via EPROM Memory Cards
• Password Protection for Access to Programmable Controllers
• Displaying the Force Values Window
• Displaying and Changing the Operating Mode
• Displaying and Setting the Time and Date
• Setting the Operating Behavior
• Erasing the Load/Work Memory and Resetting the CPU
• Diagnostics Symbols in the Online View
• Division of the Memory Areas
• Saving Downloaded Blocks on Integrated EPROM
• Updating the Operating System on the Programmable Logic

Controller

Object representing a
programmable module

• Displaying Modules Configured with Later STEP 7 Versions

 Startup and Operation
 5.4 Objects and Object Hierarchy

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 111

Symbol Objects in the
"Programmable
Modules" level

Selection of Important Functions

Programs:

S7 program

Program

• Inserting an S7 Program
• S7 programs are both objects (project level) and object folders

(program level). Other functions can be found under S7
Program Object

Connections for defining
connections within the
network

• Networking Stations within a Project
• Connection Types and Connection Partners
• What You Should Know About the Different Connection Types
• Entering a New Connection
• Configuring Connections for Modules in a SIMATIC Station

Startup and Operation
5.4 Objects and Object Hierarchy

 Programming with STEP 7
112 Manual, 04/2017, A5E41552389-AA

5.4.5 S7 Program Object

A S7 program folder contains software for S7 CPU modules or software for non-CPU modules (for
example, programmable CP or FM modules).

Position in the Project View

• Project Object
• Station Object
• Programmable Module Object
• S7 Program Object
• Source File Folder Object
• Block Folder Object

Symbol Object Folder Selection of Important Functions

S7 Program

• Inserting an S7-Program
• Setting the Address Priority
• Basic Procedure for Creating Logic Blocks
• Assigning Message Numbers
• How to Assign and Edit User-Specific Diagnostics Messages

(Project-Oriented)
• How to Assign and Edit User-Specific Diagnostics Messages

(CPU-Oriented)
• Translating and Editing Operator Related Texts
• Managing Multilingual Texts
• Displaying CPU Messages and User-Defined Diagnostic

Messages
• Program Measures for Handling Errors

Program • Creating the Software in the Project (General)

 Startup and Operation
 5.4 Objects and Object Hierarchy

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 113

Symbol Objects in the Program

Level
Selection of Important Functions

Source file folder • Other functions can be found under Source File Folder Object

Block folder • Other functions can be found under Block Folder Object

Text libraries folder • User Text Libraries

Symbol table for
assigning symbols to
signals and other
variables

• Absolute and Symbolic Addressing
• Structure and Components of the Symbol Table
• Entering Shared Symbols
• General Tips on Entering Symbols
• How to Assign and Edit Symbol-Related Messages (Project-

Oriented)
• How to Assign and Edit Symbol-Related Messages (CPU-

Oriented)
• Translating and Editing Operator Related Texts
• Configuring Operator Control and Monitoring Attributes via the

Symbol Table
• Editing the Communication Attribute
• Exporting and Importing Symbol Tables

Startup and Operation
5.4 Objects and Object Hierarchy

 Programming with STEP 7
114 Manual, 04/2017, A5E41552389-AA

5.4.6 Block Folder Object

A block folder of an offline view can contain: logic blocks (OB, FB, FC, SFB, SFC), data blocks
(DB), user-defined data types (UDT) and variable tables. The system data object represents
system data blocks.

The block folder of an online view contains the executable program parts that have been
downloaded to the programmable controller.

Position in the Project View

• Project Object
• Station Object

• Programmable Module Object

• S7 Program Object
• Source File Folder Object
• Block Folder Object

Symbol Object

Folder
Selection of Important Functions

Blocks • Downloading with Project Management

• Downloading without Project Management
• Overview of the Available Reference Data
• Rewiring
• Comparing Blocks
• Translating and Editing Operator Related Texts
• Jumps to Language Descriptions and Help on Blocks, System Attributes

Symbol Objects in

the Block
Folder

Selection of Important Functions

 Blocks in
general

• Basic Procedure for Creating Logic Blocks
• Creating Blocks
• Basic Information on Programming in STL Source Files
• Comparing Blocks

Organization
Block (OB)

Additional Functions:
• Introduction to Data Types and Parameter Types
• Requirements for Downloading
• Testing using Program Status
• What You Should Know About Testing in Single-Step Mode/Breakpoints
• Rewiring
• Help on Blocks

 Startup and Operation
 5.4 Objects and Object Hierarchy

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 115

Symbol Objects in
the Block
Folder

Selection of Important Functions

Function (FC) Additional Functions:

• Introduction to Data Types and Parameter Types
• Requirements for Downloading
• Testing using Program Status
• What You Should Know About Testing in Single-Step Mode/Breakpoints
• Rewiring
• Attributes for Blocks and Parameters

Function
Block (FB)

Additional Functions:
• Introduction to Data Types and Parameter Types
• Using Multiple Instances
• Requirements for Downloading
• Testing Using Program Status
• What You Should Know about Testing in Single-Step Mode/Breakpoints
• Rewiring
• Attributes for Blocks and Parameters
• How to Assign and Edit Block-Related Messages (Project-Oriented)
• How to Create Block-Related Messages (CPU-Oriented)
• How to Configure PCS 7 Messages (Project-Oriented)
• How to Configure PCS 7 Messages (CPU-Oriented)
• Translating and Editing Operator Related Texts
• Assigning Monitor/Control Attributes to Function Block Parameters

User-Defined
Data Type
(UDT)

• Creating Blocks
• Basic Information on Programming in STL Source Files
• Introduction to Data Types and Parameter Types
• Using User-Defined Data Types to Access Data
• Attributes for Blocks and Parameters

DB (Global
Data Blocks)

• Data View of Data Blocks
• Declaration View of Data Blocks
• Requirements for Downloading
• Program Status of Data Blocks
• Introduction to Data Types and Parameter Types
• Using Multiple Instances
• Attributes for Blocks and Parameters
• How to Assign and Edit Block-Related Messages (Project-Oriented)

(Instance DBs Only)
• How to Assign and Edit Block-Related Messages (CPU-Oriented) (Instance

DBs Only)
• How to Configure PCS7 Messages (Project-Oriented) (Instance DBs Only)
• How to Configure PCS7 Messages (CPU-Oriented) (Instance DBs Only)
• Translating and Editing Operator Related Texts (Instance Data Blocks Only)

System
Function
(SFC)

• Requirements for Downloading
• Attributes for Blocks and Parameters
• Help on Blocks

Startup and Operation
5.4 Objects and Object Hierarchy

 Programming with STEP 7
116 Manual, 04/2017, A5E41552389-AA

Symbol Objects in
the Block
Folder

Selection of Important Functions

SFB (System
Function
Blocks)

• Requirements for Downloading
• Attributes for Blocks and Parameters
• How to Assign and Edit Block-Related Messages (Project-Oriented)
• How to Create Block-Related Messages (CPU-Oriented)
• How to Configure PCS7 Messages (Project-Oriented)
• How to Configure PCS7 Messages (CPU-Oriented)
• Translating and Editing Operator Related Texts
• Help on Blocks

Block with
KNOW HOW
protection

• Rules for Defining Block Properties in STL Sources
• Block Properties

Diagnostic-
capable block

Additional information is available in the documentation for the S7-PDIAG
optional package.

Block was
created with
the F-FBD/-
LAD/-STL/-
DB
programming
language

Additional information is available in the documentation for the S7 Distributed
Safety optional package.

Variable
Table (VAT)

• Basic Procedure when Monitoring and Modifying with the Variable Table
• Introduction to Testing with the Variable Table
• Introduction to Monitoring Variables
• Introduction to Modifying Variables
• Introduction to Forcing Variables

System Data
Block
(SDB)

System data blocks (SDBs) are only edited indirectly via functions:
• Introduction to Configuring Hardware
• Properties of Subnets and Communication Nodes
• Overview: Global Data Communication
• Assigning and Editing Symbol-Related Messages
• Requirements for Downloading

 Startup and Operation
 5.4 Objects and Object Hierarchy

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 117

5.4.7 Source File Folder Object

A source file folder contains source programs in text format.

Position in the Project View

• Project Object
• Station Object

• Programmable Module Object

• S7 Program Object
• Source File Folder Object
• Block Folder Object

Symbol Object Folder Selection of Important Functions

Source File Folder • Basic Information on Programming in STL Source Files

• Exporting Source Files
• Importing Source Files

Symbol Objects in Source File

Folder
Selection of Important Functions

Source file
(for example, STL source
file)

• Basic Information on Programming in STL Source Files
• Creating STL Source Files
• Inserting Block Templates in STL Source Files
• Inserting Source Code from Existing Blocks in STL Source

Files
• Checking Consistency in STL Source Files
• Compiling STL Source Files
• Generating STL Source Files from Blocks
• Exporting Source Files
• Importing Source Files

Network template • Working with Network Templates

Startup and Operation
5.5 User Interface and Operation

 Programming with STEP 7
118 Manual, 04/2017, A5E41552389-AA

5.4.8 S7 Program without a Station or CPU

You can create programs without having configured a SIMATIC station beforehand. This means
that you can initially work independently of the module and module settings you intend to program.

Creating an S7 Program
1. Open the relevant project using the menu command File > Open or activate the project

window.

2. Select the project in the project window of the offline view.

3. Select the menu commands Insert > Program > S7 Program.
The S7 program is added and arranged directly below the project in the project window. It
contains a folder for the blocks and an empty symbol table. You can now create and program
blocks.

Assigning a Program to a Programmable Module
When you insert programs that are not dependent on a particular module, you can easily assign
them to a module later on by copying or moving these programs to the module symbol using the
drag and drop function.

Adding a Program to a Library
If the program is to be used for a SIMATIC S7 programmable controller and you want to use it
many times as a "software pool," you can also insert it in a library. However, when testing, the
programs must lie directly under a project, because this is the only way in which to establish a
connection to the programmable controller.

Accessing a Programmable Controller
Select the online view of the project. You can make the address settings in the dialog box
containing the program properties.

 Note

When deleting stations or programmable modules, you will be asked if you also want to delete the
program contained within. If you choose not to delete the program, it will be attached directly below
the project as a program without a station.

 Startup and Operation
 5.5 User Interface and Operation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 119

5.5 User Interface and Operation

5.5.1 Operating Philosophy

The aim: Easy Operation
It is the aim of the graphic user interface to provide maximum and intuitive operating comfort. You
will therefore find objects you already know from your daily work, e.g. stations, modules, programs,
blocks.

Actions you perform under STEP 7 include the creation, selection and manipulation of such
objects.

Differences to Tool-Based Operation
When starting work with conventional tools, the first thing you have to do is to choose the
appropriate tool for a specific solution and then call this tool.

The basic procedure of object-oriented operation is to select an object and then open it for editing.

Object oriented operation does not require knowledge of special instruction syntax. On the GUI,
icons you can open via menu command or mouse click represent objects.

When you open an object, the application automatically calls the appropriate software component
for displaying or editing the content of the object.

Continue ...
Below we describe the basic actions for editing objects. Please pay proper attention to this topic, as
all subsequent topics will be based on these basic operations.

Startup and Operation
5.5 User Interface and Operation

 Programming with STEP 7
120 Manual, 04/2017, A5E41552389-AA

5.5.2 Window Arrangement

The standard components of a window are shown in the following figure:

Title Bar and Menu Bar
The title bar and menu bar are always found at the top of a window. The title bar contains the title
of the window and icons for controlling the window. The menu bar contains all menus available in
the window.

Toolbar
The toolbar contains icons (or tool buttons) which provide shortcuts to frequently used and
currently available menu bar commands available with a single mouse click. A brief description of
the function of the respective button is displayed together with additional information in the status
bar when you position the cursor briefly on the button.

If access to a button is not possible in the current configuration, the button is grayed out.

Status Bar
The status bar displays contextspecific information.

 Startup and Operation
 5.5 User Interface and Operation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 121

5.5.3 Elements in Dialog Boxes

Making Entries in Dialog Boxes
In dialog boxes you can enter information which is required for executing a particular task. The
components which appear most frequently in dialog boxes are explained using the example in the
following figure.

List Boxes and Combination Boxes
Text boxes sometimes have an arrow pointing downwards beside them. This arrow shows that
there are more options available to choose from for this box. Click on the arrow to open a list box or
combination box. If you click on an entry in the list, it is automatically displayed in the text box.

Tabs in Dialog Boxes
The content of some dialog boxes is organized using tabs to improve the clarity of the information
by dividing the dialog box into tab cards (see figure below).

The names of the tab cards are shown on tabs along the top edge of the dialog box. To bring a
particular tab card to the foreground, you simply click on its tab.

Startup and Operation
5.5 User Interface and Operation

 Programming with STEP 7
122 Manual, 04/2017, A5E41552389-AA

5.5.4 Creating and Managing Objects

Some basic processing steps are the same for all objects and do not depend on the object type.
These standard handling sequences are summarized here. This knowledge of standard procedures
is required to move on to other sections in the manual.

The usual sequence of steps when handling objects is:

• Create an object

• Select an object

• Perform actions with the object (for example, copy, delete).

Setting the Path to Create New Projects/Libraries
New user projects, libraries and multiprojects are stored in the default folder
"\Siemens\Step7\S7proj". If you want to store them in another folder, you should set your custom
path for these objects before you save projects, libraries and multiprojects for the first time. To do
this, select the menu command Options > Customize. In the "General" tab of the dialog box
displayed you can specify the path name under which you want to store new projects or libraries.

Creating Objects
The STEP 7 wizard "New Project" offers support with creating a new project and inserting objects.
Use the menu command File > "New Project" Wizard to open the wizard. In the dialog boxes
displayed you can set the structure of your project and then have the wizard create the project for
you.

If you do not wish to use the wizard, you can create projects and libraries using the menu
command File > New. These objects form the starting point of an object hierarchy. You can create
all other objects in the hierarchy using the commands in the Insert menu, provided they are not
created automatically. The exception to this are the modules in a SIMATIC station which are
created when you configure the hardware or by using the "New Project" wizard.

 Startup and Operation
 5.5 User Interface and Operation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 123

Opening Objects
There are a number of ways to open an object in the detailed view:

• Double-click on the object icon

• Select the object and then the menu command Edit > Open Object. This only works for
objects that are not folders.

Once you have opened an object, you can create or change its contents.

When you open an object that does not contain other objects, its contents are represented by a
suitable software component in a new window for editing purposes. You cannot change objects
whose contents are already being used elsewhere.

 Note

Exception: Stations appear as folders for programmable modules (when you double-click them)
and for the station configuration. If you double-click the "Hardware" object, the application for
configuring hardware is started. Selecting the station and selecting the menu command Edit >
Open Object has the same effect.

Building an Object Hierarchy
Use the "New Project" wizard to create the object hierarchy. When you open a folder, the objects it
contains are displayed on the screen. You can now create more objects in the folder using the
Insert menu, for example, additional stations in a project. Only the commands for those objects
which can be inserted in the current folder are active in the Insert menu.

Setting Object Properties
Object properties are data belonging to the object which determine its behavior. The dialog box for
setting object properties appears automatically when you create a new object and properties have
to be set. The properties can also be changed at a later date.

Using the menu command Edit > Object Properties, a dialog box is opened in which you can
display or set the properties for the selected object.

Using the menu command Edit > Special Object Properties, you can open dialog boxes and
enter data required for operator control and monitoring functions and for configuring messages.

Startup and Operation
5.5 User Interface and Operation

 Programming with STEP 7
124 Manual, 04/2017, A5E41552389-AA

For example, in order to display the special object properties of a block for operator control and
monitoring, the block must be marked as being relevant for operator control and monitoring,
meaning that the system attribute "s7_m_c" must be set to the value "true" in the "Attributes" tab of
the block properties.

 Note

Properties of the "System Data" folder and the "Hardware" object cannot be displayed or changed.
You cannot write in the dialog boxes for object properties of a read-only project. In this case, the input boxes
are grayed out.
If you display the properties of programmable modules, you cannot edit the displayed parameters for reasons
of consistency. To edit the parameters you must open the "Configuring Hardware" application.
If you change the settings for objects on the programming device (for example, the configuration data of a
module), they are not yet effective in the target system, because the system data blocks in which the settings
are saved have to be in the target system.
If you load an entire user program, the system data blocks are also automatically transferred. If you change
the settings after having loaded the program, you can reload the "System data" object in order to transfer the
settings to the target system.
It is strongly recommended to edit the folders exclusively with STEP 7, since they can be physically structured
in a different way than you see in the SIMATIC Manager.

Cutting, Pasting, Copying
Most objects can be cut, pasted, or copied as usual under Windows. The menu commands for
these functions are found in the Edit menu.

You can also copy objects by dragging and dropping. If you attempt to move or copy to an illegal
destination, the cursor displays a prohibited sign as a warning.

When you copy an object, the whole hierarchy beneath it is also copied. This enables components
you create in an automation task to be used again and again.

 Note

The connection table in the "Connections" folder cannot be copied. Note that when you copy lists of
operator-relevant texts, only those languages installed in the destination object are accepted.

You will find a step-by-step guide to copying under Copying Objects.

 Startup and Operation
 5.5 User Interface and Operation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 125

Renaming Objects
The SIMATIC Manager assigns standard names to some new objects. These names are generally
formed from the type of object (if a number of objects of this type can be created in the same
folder) and a number.

For example, the first S7 program will be named "S7 Program(1)", the second "S7 Program(2)" etc.
The symbol table is simply called "Symbols" as it can only exist once in each folder.

You can change the names of most objects and assign them names which are more relevant to
their content.

With projects, the directory names in the path must not have more than 8 characters. Otherwise,
there may be problems when archiving.

You can change the name of an object directly or using the object properties.

Directly:

When you slowly click twice on the name of a selected object, a frame appears around the text.
You can then edit the name using the keyboard.

Using the menu:

Select the required object in the project window and select the menu command Edit > Rename. A
frame appears around the text. You can then edit the name using the keyboard.

If you are not allowed to change the name:

If you are not allowed to change the name of an object, the input field is shown in gray in the dialog
box, the current name is displayed, and text entries are not possible.

 Note

If you move the mouse pointer out of the name box while editing the name and execute another
action (for example, select a menu command), the edit procedure is terminated. The changed
name is accepted and entered if it is allowed.

You will find a step-by-step guide to renaming under Renaming Objects.

Startup and Operation
5.5 User Interface and Operation

 Programming with STEP 7
126 Manual, 04/2017, A5E41552389-AA

Moving Objects
With the SIMATIC Manager you can move objects from one folder to another even if the
destination is in another project. When you move a folder its contents are all moved as well.

 Note

You cannot move the following objects:

• Connections

• System data blocks (SIB) in the online view

• System functions (SFC) and system function blocks (SFB) in the online view

You will find a step-by-step guide to moving under Moving Objects.

Sorting Objects
You can sort objects in the detailed view (menu command View > Details) according to their
attributes. To do this, click on the corresponding header of the required attribute. When you click
again, the sort order is reversed. Blocks of one type are sorted according to their numerical order,
for example, FB1, FB2, FB11, FB12, FB21, FC1.

Default Sort Order
When you re-open a project, the objects in the detailed view are displayed according to a default
sort order. Examples:

• Blocks are shown in the order "System data, OB, FB, FC, DB, DUTY, VAT, SFB, SFC."

• In a project, all stations are shown first and then the S7 programs.

The default is not therefore an alphanumeric ascending or descending sort order in the detailed
view.

Restoring the Default Sort Order
After resorting, for example, by clicking on the column header "Object Name," you can restore the
default order if you proceed as follows:

• Click the column header "Type" in the detailed view.

• Close the project and open it again.

 Startup and Operation
 5.5 User Interface and Operation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 127

Deleting Objects
You can delete folders and objects. If you delete a folder, all the objects contained in it are also
deleted.

You cannot undo the delete procedure. If you are not sure whether you really no longer need an
object, it is better to archive the whole project first.

 Note

You cannot delete the following objects:

• Connections

• System data blocks (SIB) in the online view

• System functions (SFC) and system function blocks (SFB) in the online view

You will find a step-by-step guide to deleting under Deleting Objects.

Startup and Operation
5.5 User Interface and Operation

 Programming with STEP 7
128 Manual, 04/2017, A5E41552389-AA

5.5.5 Selecting Objects in a Dialog Box

Selecting objects in a dialog box (browser) is an action which you will need regularly for a large
number of different edit steps.

Calling the Browser
You call the browser dialog in the hardware configuration application, for example, using menu
commands such as Station > New/Open (one exception is the basic application window "SIMATIC
Manager").

Structure of a Browser Dialog
In the browser you have the following selection options as shown in the following figure.

 Startup and Operation
 5.5 User Interface and Operation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 129

5.5.6 Session Memory

The SIMATIC Manager can save the contents of windows (that is, the projects and libraries open),
and the layout of the windows.

• Using the menu command Options > Customize, you define whether the window contents
and layout are to be saved at the end of a session. At the start of the next session, these
window contents and layout are restored. In the open projects, the cursor is positioned on the
last folder selected.

• Using the menu command Window > Save Settings you save the current window contents
and the window arrangement.

• Using the menu command Window > Restore Settings you restore the window contents and
layout that you saved with the menu command Window > Save Settings. In the open projects,
the cursor is positioned on the last folder selected.

 Note

The window contents of online projects, the contents of the "Accessible Nodes" window, and the
contents of the "S7 Memory Card" window are not saved.

Any passwords you may have entered for access to programmable controllers (S7-300/S7-400) are
not saved at the end of a session.

5.5.7 Changing the Window Arrangement

To cascade all the displayed windows one behind the other, select one of the following options:

• Select the menu command Window > Arrange > Cascade.

• Press the key combination SHIFT + F5.

To arrange all the displayed windows from top to bottom on the screen, select the menu command
Window > Arrange > Horizontally.

To arrange all the displayed windows from left to right on the screen, select the menu command
Window > Arrange > Vertically.

Startup and Operation
5.5 User Interface and Operation

 Programming with STEP 7
130 Manual, 04/2017, A5E41552389-AA

5.5.8 Saving and Restoring the Window Arrangement

The STEP 7 applications have a feature which enables you to save the current window
arrangement and restore it at a later stage. You can make the setting using the menu command
Options > Customize in the "General" tab.

What Is Saved?
When you save the window layout the following information is recorded:

• Position of the main window

• Opened projects and libraries and their respective window positions

• Order of any cascaded windows

 Note

The window content of online projects, the content of the "Accessible Nodes" window, and the
content of the "S7 Memory Card" window are not saved.

Saving the Window Layout
To save the current window arrangement, select the menu command Window > Save Settings.

Restoring the Window Layout
To restore the saved window arrangement, select the menu command Window > Restore
Settings.

 Note

When you restore a window, only the part of the hierarchy containing the object that was selected when the
window arrangement was saved is displayed in detail.

 Startup and Operation
 5.6 Keyboard Operation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 131

5.6 Keyboard Operation

5.6.1 Keyboard Control

International Key Names German Key Names

 HOME POS1
 END ENDE
 PAGE UP BILD AUF
 PAGE DOWN BILD AB
 CTRL STRG
 ENTER Eingabetaste
 DEL ENTF
 INSERT EINFG

5.6.2 Key Combinations for Menu Commands

Every menu command can be selected by typing a key combination with the ALT key.

Press the following keys in the order shown:

• ALT key

• The letter underlined in the menu name you require (for example, ALT, F for the menu "File" - if
the menu "File" is included in the menu bar). The menu is opened.

• The letter underlined in the menu command you require (for example, N for the menu
command "New"). If the menu command has a submenu, the submenu is also opened.
Proceed as above until you have selected the whole menu command by typing the relevant
letters.

Once you have entered the last letter in the key combination, the menu command is executed.

Examples:

Menu Command Key Combination

File > Archive ALT, F, A

Window > Arrange > Cascade ALT, W, A, C

Startup and Operation
5.6 Keyboard Operation

 Programming with STEP 7
132 Manual, 04/2017, A5E41552389-AA

Shortcuts for Menu Commands

Command Shortcut

New (File Menu) CTRL+N
Open (File Menu) CTRL+O
Save as ("File" Menu) CTRL+S
Print > Object Table ("File" Menu) CTRL+P
Print > Object Content ("File" Menu) CTRL+ALT+P
Exit ("File" Menu) ALT+F4
Cut ("Edit" Menu) CTRL+X
Copy ("Edit" Menu) CTRL+C
Paste ("Edit" Menu) CTRL+V
Delete ("Edit" Menu) DEL
Select All ("Edit" Menu) CTRL+A
Rename ("Edit" Menu) F2
Object Properties ("Edit" Menu) ALT+RETURN
Open Object ("Edit" Menu) CTRL+ALT+O
Compile ("Edit" Menu) CTRL+B
Download (PLC Menu) CTRL+L
Diagnostics/Setting
> Module Status ("PLC" Menu)

CTRL+D

Diagnostics/Setting
> Operating Mode ("PLC" Menu)

CTRL+I

Update ("View" Menu) F5
Updates the status display of the visible CPUs in the online view CTRL+F5
Customize ("Options" Menu) CTRL+ALT+E
Reference Data > Show ("Options" Menu) CTRL+ALT+R
Arrange > Cascade (Window Menu) SHIFT+F5
Arrange > Horizontally (Window Menu) SHIFT+F2
Arrange > Vertically (Window Menu) SHIFT+F3
ContextSensitive Help (Help Menu) F1

(If there is a current context, for
example, a selected menu command,
the relevant help topic is opened.
Otherwise the help contents page is
displayed.)

 Startup and Operation
 5.6 Keyboard Operation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 133

5.6.3 Key Combinations for Moving the Cursor

Moving the Cursor in the Menu Bar/Pop-Up Menus

To Press

move to the menu bar F10
move to the pop-up menu SHIFT+F10
move to the menu that contains the letter or number
underlined which you typed in

ALT+underlined character in a menu title

select the menu command whose underlined letter
or number corresponds to the letter you have typed

Underlined character in the menu command

move one menu command to the left LEFT ARROW
move one menu command to the right RIGHT ARROW
move one menu command up UP ARROW
move one menu command down DOWN ARROW
activate the selected menu command ENTER
deselect the menu name or close the open menu
and return to the text

ESC

Moving the Cursor When Editing Text

To move Press

one line up or one character to the left in a text
consisting of only one line

UP ARROW

one line down or one character to the right in a text
consisting of only one line

DOWN ARROW

one character to the right RIGHT ARROW
one character to the left LEFT ARROW
one word to the right CTRL+RIGHT ARROW
one word to the left CTRL+LEFT ARROW
to the beginning of the line HOME
to the end of the line END
to the previous screen PAGE UP
to the next screen PAGE DOWN
to the beginning of the text CTRL+HOME
to the end of the text CTRL+END

Startup and Operation
5.6 Keyboard Operation

 Programming with STEP 7
134 Manual, 04/2017, A5E41552389-AA

Moving the Cursor When Editing Tables

To move Press

One row up UP ARROW
One row down DOWN ARROW
One character or cell to the left RIGHT ARROW
One character or cell to the right LEFT ARROW
To the beginning of the row CTRL+RIGHT ARROW
To the end of the row CTRL+LEFT ARROW
To the beginning of the cell HOME
To the end of the cell END
To the previous screen PAGE-UP
To the next screen PAGE-DOWN
To the beginning of the table CTRL+HOME
To the end of the table CTRL+END
In the symbol table only: to the "Symbol" column SHIFT+HOME
In the symbol table only: to the "Comment" column SHIFT+END

Moving the Cursor in Dialog Boxes

To Press

move from one input box to the next (from left to
right and from top to bottom)

TAB

move one input box in the reverse direction SHIFT+TAB
move to the input box or option that contains the
letter or number underlined which you typed in

ALT+underlined character in a menu title

select in a list of options an arrow key
open a list of options ALT+DOWN ARROW
select or deselect an item in a list SPACEBAR
confirm the entries and close the dialog box ("OK"
button)

ENTER

close the dialog box without saving the changes
("Cancel" button)

ESC

 Startup and Operation
 5.6 Keyboard Operation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 135

5.6.4 Key Combinations for Selecting Text

To select or deselect text Press

one character at a time to the right SHIFT+RIGHT ARROW
one character to the left SHIFT+LEFT ARROW
to the beginning of a comment line SHIFT+HOME
to the end of a comment line SHIFT+END
one row in a table SHIFT+SPACE
one line of text up SHIFT+UP ARROW
one line of text down SHIFT+DOWN ARROW
to the previous screen SHIFT+PAGE UP
to the next screen SHIFT+PAGE DOWN
the text to the beginning of the file CTRL+SHIFT+HOME
the text to the end of the file CTRL+SHIFT+END

5.6.5 Key Combinations for Access to Online Help

To Press

open the Help F1
(If there is a current context, for example, a
selected menu command, the relevant help topic
is opened. Otherwise the help contents page is
displayed.)

activate the question mark symbol for context-sensitive
help

SHIFT+F1

close the Help window and return to the application ALT+F4

Startup and Operation
5.6 Keyboard Operation

 Programming with STEP 7
136 Manual, 04/2017, A5E41552389-AA

5.6.6 Key Combinations for Toggling between Windows

To Press

toggle between the panes in a window F6
return to the previous pane, if there is no dockable
window

Shift+F6

toggle between the document window and a dockable
window in the document (for example, variable
declaration window).
If there are no dockable windows, you can use this key
combination to return to the previous pane.

Shift+F6

toggle between document windows Ctrl+F6
return to the previous document window Shift+Ctrl+F6
toggle between non-document windows (application
framework and dockable windows in the application
framework;
when you return to the framework, this key combination
activates the document window that was last active)

Alt+F6

return to the previous non-document window Shift+Alt+F6

close the active window Ctrl+F4

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 137

6 Setting Up and Editing the Project

6.1 Project Structure

Projects are used to store the data and programs which are created when you put together an
automation solution. The data collected together in a project include:

• Configuration data on the hardware structure and parameters for modules,

• Configuration data for communication in networks, and

• Programs for programmable modules.

The main task when you create a project is preparing these data for programming.

Data are stored in a project in object form. The objects in a project are arranged in a tree structure
(project hierarchy). The display of the hierarchy in the project window is similar to that of the
Windows Explorer. Only the object icons have a different appearance.

The top end of the project hierarchy is structured as follows:

1. 1st Level: Project

2. 2nd Level: Subnets, stations, or S7 programs

3. 3rd Level: depends on the object in level 2.

Project Window
The project window is split into two halves. The left half shows the tree structure of the project. The
right half shows the objects that are contained in the object open in the left half in the selected view
(large symbols, small symbols, list, or details).

Click in the left half of the window on the box containing a plus sign to display the full tree structure
of the project. The resulting structure will look something like the following figure.

At the top of the object hierarchy is the object "S7_Pro1" as the icon for the whole project. It can be
used to display the project properties and serves as a folder for networks (for configuring
networks), stations (for configuring the hardware), and for S7 programs (for creating software). The
objects in the project are displayed in the right half of the project window when you select the
project icon. The objects at the top of this type of object hierarchy (libraries as well as projects)
form the starting point in dialog boxes used to select objects.

Setting Up and Editing the Project
6.1 Project Structure

 Programming with STEP 7
138 Manual, 04/2017, A5E41552389-AA

Project View

You can display the project structure for the data available on the programming device in the
component view "offline" and for the data available on the programmable control system in the
component view "online" in project windows.

An additional view you can set is available if the respective optional package is installed: the plant
view.

 Note

Configuring hardware and networks can only be done in the "offline" view.

 Setting Up and Editing the Project
 6.2 What You Should Know About Access Protection

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 139

6.2 What You Should Know About Access Protection

As of STEP 7 V5.4, you have the option of restricting access to projects and libraries by assigning
a project password. This functionality is available only if SIMATIC Logon is installed.

You can also enable, disable and display a change log.

If SIMATIC Logon is installed on your computer, the following dynamic menu commands are
available in the SIMATIC Manager. You can use these commands to manage access protection for
a project or library:

• Access Protection, Enable

• Access Protection, Disable

• Access Protection, Manage

• Access Protection, Adjust in Multiproject

• Remove Access Protection and Change Log

You activate access protection in SIMATIC Manager with the menu command Options > Access
Protection > Enable. If you enable access protection for the first time with this menu command, a
dialog opens in which you will need to log on with SIMATIC Logon. You will then be prompted to
assign a project password. The relevant project or library can then only be edited by an
authenticated user or after entering the project password.

The Remove Access Protection and Change Log menu command removes access protection
as well as the change log for a password-protected project or library. After removing the access
protection, you can once again edit projects with a STEP 7 version prior to V5.4.

Opening and Closing Access-protected Projects
The following situations can be distinguished:

 PC with STEP 7 and

SIMATIC Logon
PC with STEP 7 and
SIMATIC Logon

PC with STEP 7 (no SIMATIC
Logon present)

1. The user logs on using
SIMATIC Logon with a user
name and password.

The project with access
protection is opened by
another user.

The user opens the access-
protected project by entering the
project password.

2. The project with access
protection is opened.

 Editing of the project is possible,
however without the functions of
SIMATIC Logon.

3. The project is edited. The project is edited. After closing and reopening the
project, users must authenticate
themselves again with the project
password.

4. Closing the project does not
mean logging off in SIMATIC
Logon.

Closing the project does not
mean logging off in SIMATIC
Logon.

5. The user must log off with
Options > SIMATIC Logon
Services > "Log Off" button.

Setting Up and Editing the Project
6.2 What You Should Know About Access Protection

 Programming with STEP 7
140 Manual, 04/2017, A5E41552389-AA

 Note
To disable access protection, you must be authorized in SIMATIC Logon as project administrator.
The first time you enable access protection, the project format is changed. You will receive a message
indicating that the modified project can no longer be edited with older STEP 7 versions.
The Options > Access Protection >Remove Access Protection and Change Log function allows the
project or the library to be used with a STEP 7 version lower than V5.4. You do, however, lose the information
on the users that are allowed access to this project or library and all change logs.
The user currently logged on is displayed in the status bar of the SIMATIC Manager.
The currently logged on Logon user who enables access protection is entered as the project administrator and
is requested to assign the project password the first time access protection is enabled.
To open an access protected project, you must be authenticated in SIMATIC Logon as project administrator or
project user or you must know the password.
Remember that a logged-on user is entered in the project as project administrator when a project is opened
with the project password.
If the project/library access protection is active, the icon has a red key. If the multiproject only contains
projects/libraries with active access protection, the icon also has a red key.
If the project/library access protection is disabled, the icon has a white key. If the multiproject contains
projects/libraries both with active and deactivated access protection or projects/libraries with deactivated
access protection, the icon is also displayed with a white key.

 Setting Up and Editing the Project
 6.3 What You Should Know About The Change Log

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 141

6.3 What You Should Know About The Change Log

As of STEP 7 V5.4, after setting up access protection for projects and libraries, you have the option
of keeping a change log that records online actions.

Examples include:

• Activate / deactivate / configure the access protection and change log

• Open / close projects and libraries

• Download to PLC (system data)

• Selected operations for loading and copying blocks

• Activities for changing the operating mode

• Clear/reset

You can display the change log and enter comments such as those explaining changes that you
have made. This functionality is available only if SIMATIC Logon is installed.

To enable the change log, go to the SIMATIC Manager and select the menu command Options >
Change Log > Enable. After you have enabled the change log, your can view it with the
appropriate menu command or disable it again.

Depending on the object you have selected in the project structure (for example project folder or
lower-level station), the corresponding change log is displayed.

 Note

The Options > Access Protection >Remove Access Protection and Change Log function allows the
project or the library to be used with a STEP 7 version lower than V5.4. You do, however, lose the information
on the users that are allowed access to this project or library and all change logs.
To use this function, you must be authenticated in SIMATIC Logon as project administrator and access
protection must be enabled for this project.

Setting Up and Editing the Project
6.4 Using Foreign-Language Character Sets

 Programming with STEP 7
142 Manual, 04/2017, A5E41552389-AA

6.4 Using Foreign-Language Character Sets

As of STEP 7 V5.3 SP2, you can enter texts in foreign languages in projects and libraries even if
these languages do not match the language that has been set for STEP 7. To do this, the
corresponding Windows language must be set in the Control Panel of the operating system. This
makes it possible, for example, to operate STEP 7 in the STEP 7 language English on a Chinese-
language version of Windows but still allows Chinese text be entered.

In this case, the following types and options for language settings must be distinguished:

Windows Language Setting
This setting is made in the Windows Control Panel. Texts pertaining to the operating system are
displayed in the language selected, and you can enter texts in foreign-language character strings.

Project Language
The project language is the language that is set in the Window Control Panel when a project is first
created. Once chosen, this project language cannot be changed. However, with the "language-
neutral" setting it is still possible to open a project on computers with other language settings in
Windows. Before changing the project language to "language-neutral", make sure that only
characters from the English-language character set (ASCII characters 0x2a - 0x7f) were previously
used in the project when entering text.

To find out the project language for a project or a library, select the Edit > Object Properties menu
command. In the dialog box that is then displayed you can also select the "Can be opened under
any Windows language setting (language-neutral)" option.

STEP 7 Language
The STEP 7 language is the one that you set in the SIMATIC Manager by using the Options >
Customize menu command. This language is the one use for interface elements, menu command,
dialog boxes and error messages in STEP 7.

If you are using another Windows language such as German, English, French, Italian or Spanish,
you can ensure that the STEP 7 interface is correctly displayed by selecting English as the STEP
7 language.

Rules
If you will be editing your projects or libraries on computers that have different language settings,
be sure to observe the following "rules and regulations" to prevent incompatibilities or data
corruption from occurring when using a foreign-language character set:

• Install STEP 7 only in folders with names that contain the characters of the English character
set (ASCII characters 0x2a - 0x7f).

• Only use project names and project paths with names that contain the characters of the
English character set (ASCII characters 0x2a - 0x7f). For example, if you use German umlauts,
Cyrillic or Chinese characters, then the project can only be opened on computers that have a
compatible language setting in Windows.

• In multiprojects, only use projects and libraries with the same project language or those that
are identified as being language-neutral ones. The multiproject itself is language-neutral.

 Setting Up and Editing the Project
 6.4 Using Foreign-Language Character Sets

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 143

• When creating libraries, always make them language-neutral to ensure than they can be used
on computers with different Windows language settings. When assigning names to library
projects, entering comments, or creating symbol names, etc. be sure to only use ASCII
characters (0x2a - 0x7f) so that the libraries can be used without any problems.

• When importing/exporting hardware configurations or symbol tables, make sure that you only
import/export language-compatible files.

• In the names of user-defined attributes, use only characters from the English-language
character set (ASCII characters 0x2a - 0x7f).

• If, in an STL source, you are using characters that are not in the English character set (ASCII
characters 0x2a - 0x7f) for the TITLE, AUTHOR, FAMILY block properties, then place these
entries in single quote marks.

 Notes

If you change or copy projects or libraries that were created on a computer that is identified as being
language-neutral with respect to the Windows language setting but is not compatible with the setting on the
computer currently being used, data corruption may occur if characters that are not contained in the English
character set (ASCII characters 0x2a - 0x7f) were used in the project or library.
For this reason, before editing "foreign" projects or libraries, make sure to check whether the Windows
language setting on your computer matches the project language.
If you export hardware configurations or symbol tables that are to be imported in another Windows language
setting, make sure that only characters from the English-language character set (ASCII characters 0x2a -
0x7f) were previously used and that no other language-specific characters such as German umlauts,
Japanese characters or Cyrillic characters are present.
Exported hardware configurations or symbol tables that contain language-specific characters such as German
umlauts, Japanese characters or Cyrillic characters may only be imported in the same Windows language
setting from which they were exported. This means that if you import older symbol tables that might contain
such language-specific characters, be sure to check the results carefully: the symbols must be unique, must
not contain any question marks or other incorrect characters, and must be plausible.
If symbol tables contain special characters that are not defined in ("known to") the current Windows language
setting, then the question marks or other incorrect characters now part of the symbol names may cause
problems and errors when sorting by names and comments.
Please note that with symbolic addressing the symbolic names must be written in quotation marks
("<Symbolic Name>").

Basic Procedure
To be able to enter text in foreign-language character sets in projects and libraries, proceed as
follows:

1. In the Windows Control Panel, set the language setting to the language desired.

2. Create a project.

3. Enter the text in foreign-language characters.

For project and libraries that were created before STEP 7 V5.3 SP2, the project language is "not
yet specified". In this case, you can select the Edit > Object Properties menu command to set the
project language to the language currently set in Windows. Before doing so, make sure that the
project does not contain any characters that are not defined in ("known to") the current Windows
language setting.

Setting Up and Editing the Project
6.5 Setting the MS Windows Language

 Programming with STEP 7
144 Manual, 04/2017, A5E41552389-AA

6.5 Setting the MS Windows Language

To set the Windows language, proceed as follows:

Setting the Language in Windows XP and Windows Server 2003:
1. To set the desired display language for programs that do not support Unicode, select the

following menu command sequence:
Control Panel > Regional and Language Options > Advanced > Language for non-
Unicode programs.

2. To set the input language (standard regional settings properties), select the following menu
command sequence:
Control Panel > Regional and Language Options > Languages > Details.

3. To set the input language (standard regional settings properties), select the following menu
command sequence:
Control Panel > Regional and Language Options > Regional Settings (Standards and
Formats).

Setting the Language in Windows 7 and Windows Server 2008:
• Using Control Panel > Clock, Language and Region > Region and Language > Formats >

Format, set the required display language.

• Using Control Panel > Clock, Language and Region > Region and Language >Keyboards
and Languages > Change Keyboards, add the required input language.

• Using Control Panel > Clock, Language and Region > Region and Language >
Administrative Tools > Change System Locale..., set the display language for programs that
do not support unicode.

You can enter texts in the desired language and display them correctly only after you have made
all of these settings.

 Setting Up and Editing the Project
 6.6 Setting Up a Project

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 145

6.6 Setting Up a Project

6.6.1 Creating a Project

To construct a solution to your automation task using the framework of a project management, you
will need to create a new project. The new project is created in the directory you set for projects in
the "General" tab when you selected the menu command Options > Customize.

 Note

The SIMATIC Manager allows names that are longer than eight characters. The name of the
project directory is, however, cut off to eight characters. Project names must therefore differ in their
first eight characters. The names are not case-sensitive.

You will find a step-by-step guide to creating a project under Creating a Project Manually or under
Creating a Project Using the Wizard.

Creating a Project Using the Wizard
The easiest way to create a new project is using the "New Project" wizard. Use the menu
command File > "New Project" Wizard to open the wizard. The wizard prompts you to enter the
required details in dialog boxes and then creates the project for you. In addition to the station, CPU,
program folder, source file folder, block folder, and OB1 you can even select existing OBs for error
and alarm processing.

The following figure shows an example of a project created with the wizard.

Creating a Project Manually
You can also create a new project using the menu command File > New in the SIMATIC Manager.
It already contains the "MPI Subnet" object.

Setting Up and Editing the Project
6.6 Setting Up a Project

 Programming with STEP 7
146 Manual, 04/2017, A5E41552389-AA

Alternative Procedures
When editing a project, you are flexible as to the order in which you perform most of the tasks.
Once you have created a project, you can choose one of the following methods:

• First configure the hardware and then create the software for it, or

• Start by creating the software independent of any configured hardware.

Alternative 1: Configure the Hardware First
If you want to configure the hardware first, proceed as described in Volume 2 of the Configuring
Hardware with STEP 7 Manual. When you have done this, the "S7 Program" folder required to
create software is already inserted. Then continue by inserting the objects required to create
programs. Then create the software for the programmable modules.

Alternative 2: Create Software First
You can also create software without first having to configure the hardware; this can be done later.
The hardware structure of a station does not have to be set for you to enter your programs.

The basic procedure is as follows:

1. Insert the required software folders (S7 Program without a Station or CPU) in your project.

2. Then create the software for the programmable modules.

3. Configure your hardware.

4. Once you have configured the hardware, you can link the S7 program to a CPU.

 Setting Up and Editing the Project
 6.6 Setting Up a Project

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 147

6.6.2 Inserting Stations

In a project, the station represents the hardware structure of a programmable controller and
contains the data for configuring and assigning parameters to individual modules.

New projects created with the "New Project" wizard already contain a station. Otherwise you can
create the station using the menu command Insert > Station.

You can choose between the following stations:

• SIMATIC 300 station

• SIMATIC 400 station

• SIMATIC H station

• SIMATIC PC station

• PC/programming device

• SIMATIC S5

• Other stations, meaning non- SIMATIC S7 and SIMATIC S5

The station is inserted with a preset name (for example, SIMATIC 300 Station(1), SIMATIC 300
Station(2), etc.). You can replace the name of the stations with a relevant name, if you wish.

You will find a step-by-step guide to inserting a station under Inserting a Station.

Configure the Hardware
When you configure the hardware you specify the CPU and all the modules in your programmable
controller with the aid of a module catalog. You start the hardware configuration application by
double-clicking the station.

For each programmable module you create in your configuration, an S7 program and a connection
table ("Connections" object) are created automatically once you have saved and exited the
hardware configuration. Projects created with the "New Project" wizard already contain these
objects.

You will find a step-by-step guide to configuring under Configuring the Hardware, and detailed
information under Basic Steps for Configuring a Station.

Creating a Connection Table
An (empty) connection table ("Connections" object) is created automatically for each
programmable module. The connection table is used to define communication connections
between programmable modules in a network. When it is opened, a window is displayed containing
a table in which you define connections between programmable modules.

You will find detailed information under Networking Stations within a Project.

Next Steps
Once you have created the hardware configuration, you can create the software for your
programmable modules (Also refer to Inserting a S7 Program).

Setting Up and Editing the Project
6.6 Setting Up a Project

 Programming with STEP 7
148 Manual, 04/2017, A5E41552389-AA

6.6.3 Inserting an S7 Program

The software for programmable modules is stored in object folders. For SIMATIC S7 modules this
object folder is called "S7 Program."

The following figure shows an example of an S7 program in a programmable module in a
SIMATIC 300 station.

Existing Components
An S7 program is created automatically for each programmable module as a container for the
software:

The following objects already exist in a newly created S7 program:

• Symbol table ("Symbols" object)

• "Blocks" folder for containing the first block

• "Source Files" folder for source files

Creating S7 Blocks
You want to create Statement List, Ladder Logic, or Function Block Diagram programs. To do this,
select the existing "Blocks" object and then select the menu command Insert > S7 Block. In the
submenu, you can select the type of block you want to create (such as a data block, Userdefined
Data Type (UDT), function, function block, organization block, or variable table).

You can now open the (empty) block and start entering the Statement List, Ladder Logic, or
Function Block Diagram program. You will find more information on this in Basic Procedure for
Creating Logic Blocks and in the Statement List, Ladder Logic, and Function Block Diagram
manuals.

 Note

The object "System Data" (SDB) which may exist in a user program was created by the system.
You can open it, but you cannot make changes to it for reasons of consistency. It is used to make
changes to the configuration once you have loaded a program and to download the changes to the
programmable controller.

 Setting Up and Editing the Project
 6.6 Setting Up a Project

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 149

Using Blocks from Standard Libraries
You can also use blocks from the standard libraries supplied with the software to create user
programs. You access the libraries using the menu command File > Open. You will find further
information on using standard libraries and on creating your own libraries in Working with Libraries
and in the online help.

Creating Source Files/CFC Charts
You want to create a source file in a particular programming language or a CFC chart. To do this,
select the "Source Files" or "Charts" object in the S7 program and then select the menu command
Insert > S7 Software. In the submenu, you can select the source file that matches your
programming language. You can now open the empty source file and start entering your program.
You will find more information under Basic Information on Programming in STL Source Files.

Creating a Symbol Table
An (empty) symbol table ("Symbols" object) is created automatically when the S7 program is
created. When you open the symbol table, the "Symbol Editor" window opens displaying a symbol
table where you can define symbols. You will find more information under Entering Multiple Shared
Symbols in the Symbol Table.

Inserting External Source Files
You can create and edit source files with any ASCII editor. You can then import these files into your
project and compile them to create individual blocks.

The blocks created when the imported source file is compiled are stored in the "Blocks" folder.

You will find more information under Inserting External Source Files.

Setting Up and Editing the Project
6.7 Editing a Project

 Programming with STEP 7
150 Manual, 04/2017, A5E41552389-AA

6.7 Editing a Project

Opening a Project
To open an existing project, enter the menu command File > Open. Then select a project in the
dialog boxes that follow. The project window is then opened.

 Note

If the project you require is not displayed in the project list, click on the "Browse" button. In the
browser you can then search for other projects and include any projects you find in the project list.
You can change the entries in the project list using the menu command File > Manage.

Copying a Project
You copy a project by saving it under another name using the menu command File > Save As.

You copy parts of a project such as stations, programs, blocks etc. using the menu command Edit
> Copy.

You will find a step-by-step guide to copying a project under Copying a Project and Copying Part of
a Project.

Deleting a Project
You delete a project using the menu command File > Delete.

You delete parts of a project such as stations, programs, blocks etc. using the menu command
Edit > Delete.

You will find a step-by-step guide to deleting a project under Deleting a Project and Deleting Part of
a Project.

6.7.1 Checking Projects for Software Packages Used

If a project that you are editing contains objects that were created with another software package,
this software package is required to edit this project.

No matter what programming device you are using to work with multiprojects, projects or libraries,
STEP 7 assists you by showing you what software packages and versions are required to do so.

This information on the software packages required is complete under the following conditions:

• If the project (or all projects in a multiproject) or library was created in STEP 7 as of V5.2.

• If you yourself have checked the project for any software packages used in creating it. To do
this, first go to the SIMATIC Manager and select the project concerned. Then select the menu
command Edit > Object Properties. In the dialog box that is displayed, select the "Required
software packages" tab. The information in this tab will tell you whether you should check the
project for software packages.

 Setting Up and Editing the Project
 6.7 Editing a Project

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 151

6.7.2 Managing Multilingual Texts

STEP 7 offers the possibility of exporting text that has been created in a project in one language,
having it translated, re-importing it, and displaying it in the translated language.

The following text types can be managed in more than one language:

• Titles and comments

- Block titles and block comments (latter does not apply to PCS 7 projects)

- Network titles and network comments

- Line comments from STL programs

- Comments from symbol tables, variable declaration tables, user-defined data types, and
data blocks

- Comments, state names, and transition names in HiGraph programs

- Extensions of step names and step comments in S7-Graph programs

• Display texts

- Message texts generated by STEP 7, S7-Graph, S7-HiGraph, S7-PDIAG or ProTool

- System text libraries

- User-specific text libraries

- Operator-relevant texts

- User texts

Export
Exporting is done for all blocks and symbol tables located under the selected object. An export file
is created for each text type. This file contains a column for the source language and a column for
the target language. Text in the source language must not be changed.

Import
During import, the contents of the target-language columns (right-hand column) are integrated into
the project to which the selected object belongs. Only those translations whose source text
(exported text) matches an existing text in the "Source Language column are accepted.

 Note

When you import the translated texts, these texts are replaced in the entire project. If, for example,
you have translated texts belonging to a certain CPU and these texts occur at other places in the
project, all the occurrences in the project will be replaced.

Changing Languages
When changing languages, you can choose from all the languages that were specified during
import into the selected project. The language change for "Title and Comments" is only applied to
the selected object. A language change for "Display Texts" is always applied to the complete
project.

Setting Up and Editing the Project
6.7 Editing a Project

 Programming with STEP 7
152 Manual, 04/2017, A5E41552389-AA

Deleting a Language
When a language is deleted all the texts in this language are deleted from the internal database.

One language should always be available as a reference language in your project. This can, for
example, be your local language. This language should not be deleted. During exporting and
importing always specify this reference language as the source language. The target language can
be set as desired.

Reorganize
During reorganization, the language is changed to the language currently set. The currently set
language is the language that you selected as the "Language for future blocks". Reorganization
only affects titles and comments.

Comment Management
You can specify how comments for blocks should be managed in projects with texts being
managed in many languages.

Basic Procedure

 Setting Up and Editing the Project
 6.7 Editing a Project

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 153

6.7.2.1 Types of Multilingual Texts

For export, a separate file will be created for each type of text. This file will have the text type as its
name and the export format as its extension (texttype.format: for example, SymbolComment.CSV
or SymbolComment.XLS). Files that do not satisfy the naming convention cannot be used as
source or target.

The translatable text within a project is divided into the following text types:

Text Type Description

BlockTitle Block title
BlockComment Block comments
NetworkTitle Network title
NetworkComment Network comments
LineComment Line comments in STL
InterfaceComment Var_Section comments (declaration tables in code

blocks) and
UDT comments (user-defined data types) and
Data block comments

SymbolComment Symbol comments
S7UserTexts Texts entered by the user which can be output on

display devices
S7SystemTextLibrary Texts of system libraries which are integrated into

messages can be updated dynamically during
runtime, and displayed on the PG or other display
devices

S7UserTextLibrary Texts of user libraries which are integrated into
messages can be updated dynamically during
runtime, and displayed on the PG or other display
devices

HiGraphStateName
HiGraphStateComment

HiGraphTansitionName
HiGraphTransitionComment

S7-HiGraph
State name
State comment

Transition name
Transition comment

S7GraphStateName
S7GraphStateComment

S7-Graph
Step name extension
Step comment

Editors in other optional packages (such as ProTool, WinCC, etc.) may have other application-
specific text types that are not described here.

Setting Up and Editing the Project
6.7 Editing a Project

 Programming with STEP 7
154 Manual, 04/2017, A5E41552389-AA

6.7.2.2 Structure of the Export File

The export file is structured as follows:

Example:

Fundamentally, the following applies:

1. The following may not be changed, overwritten, or deleted:

- Fields beginning with "$_" (these are keywords)

- The numbers for the language (in the example above: 9(1) for the source language English
(USA) and 7(1) for the target language German).

2. Each file holds the text for just a single test type. In the example, the text type is NetworkTitle
($_Type(NetworkTitle). The rules for the translator who will edit this file are contained in the
introductory text of the export file itself.

3. Additional information regarding the text or comments must always appear before the type
definition ($_Type…) or after the last column.

 Note

If the column for the target language has been overwritten with "512(32) $_Undefined," no target language
was specified when the file was exported. To obtain a better overview, you can replace this text with the target
language, for example, "9(1) English (US)" When importing the translated files, you must verify the proposed
target language and, if necessary, select the correct language.
You can hide text not to be displayed in the target language by entering the keyword $_hide. This does not
apply to comments on variables (InterfaceComment) and to symbols (SymbolComment).

 Setting Up and Editing the Project
 6.7 Editing a Project

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 155

Export File Format
You specify the format in which export files are to be saved.

If you have decided to use CSV format, you must keep in mind when editing in Excel that a CSV
file can be only opened properly in Excel if the Open dialog is used. Opening a CSV file by
double-clicking in Explorer often results in an unusable file. You will find it easier to work with
CSV files in Excel if you use the following procedure:

1. Open the export file in Excel

2. Save the files as XLS files

3. Translate the text in the XLS files

4. Save the XLS files in Excel in CSV format.

 Note

Export files may not be renamed.

Setting Up and Editing the Project
6.7 Editing a Project

 Programming with STEP 7
156 Manual, 04/2017, A5E41552389-AA

6.7.2.3 Information on the Log File

Error messages and warnings that appear when working with text managed in many languages are
output in a log file (TXT format). This file is stored in the same folder as the export files.

In general, the messages are self-explanatory. Any further explanations are listed below:

Warning: The Text 'xyz' in the 'xyz' file already exists. Further occurrences of the text were ignored.

Explanation
Regardless of its language, a text is used as the basis for the translation. If an identical text is used
for different terms in more than one language or more than once in one language, it can no longer
be uniquely identified and will thus not be translated.

Example:

This only applies to titles and comments.

Remedy
Rename the texts concerned in the exported file (in the example, a single German word must be
used instead of three different ones), and then re-import the texts.

 Setting Up and Editing the Project
 6.7 Editing a Project

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 157

6.7.2.4 Managing User Texts Whose Language Font is Not Installed

You can export user texts whose language font is not installed in your operating system, have them
translated and then import them back in and save them for use in your project.

However, such texts can only be displayed on a computer that has the appropriate language font
installed on it.

For example, if you have user texts that have to be translated into Russian and do not have a
Cyrillic font installed on you operating system, proceed as follows:

1. Export the user text to be translated with the source language "English" and target language
"Russian".

2. Send the export files to the translator, who will definitely have a Cyrillic font available.

3. Import the translated export files.
Result: The project is now available in English and Russian on you computer.

4. Save the whole project and send it to the customer who will use the Russian texts and will thus
have a Cyrillic font available to display them.

Setting Up and Editing the Project
6.7 Editing a Project

 Programming with STEP 7
158 Manual, 04/2017, A5E41552389-AA

6.7.2.5 Optimizing the Source for Translation

You can prepare the source material for translation by combining different terms and expressions.

Example
Before preparation (export file):

Combining to a single expression:

After preparation (that is, after import and subsequent export):

 Setting Up and Editing the Project
 6.7 Editing a Project

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 159

6.7.2.6 Optimizing the Translation Process

If you have projects where the structure and text are similar to a previous project, you can optimize
the translation process.

In particular, the following procedure is recommended for projects that were created by copying
and then modifying.

Prerequisite
There must be an existing translated export target.

Procedure
1. Copy the export files into the project folder for the new project to be translated.

2. Open the new project and export the text (menu command Options > Manage Multilingual
Texts > Export). Since the export target already exists, you will be asked whether the export
target should be extended or overwritten.

3. Click on the Add button.

4. Have the export files translated (only new text needs to be translated).

5. Then import the translated files.

6.7.2.7 Hiding Texts in Selected Languages

Texts you do not want displayed in the target language can be hidden with the "$_hide" keyword.
This does not apply to comments on variables (InterfaceComment) and symbols
(SymbolComment).

Example:

Setting Up and Editing the Project
6.7 Editing a Project

 Programming with STEP 7
160 Manual, 04/2017, A5E41552389-AA

6.7.3 Micro Memory Card (MMC) as a Data Carrier

6.7.3.1 What You Should Know About Micro Memory Cards (MMC)
Micro Memory Cards (MMC) are plug-in memory cards, for example, for a CPU 31xC or an IM
151/CPU (ET 200S). Their most distinguishing feature is the highly compact design.
A new memory concept has been introduced for MMCs. It is briefly described below.

Content of the MMCs
The MMC serves as both the load memory and a data storage device (data carrier).

MMC as Load Memory
The MMCs contain the complete load memory for an MMC-compatible CPU. The load memory
contains the program with the blocks (OBs, DBs, FCs, ...) as well as the hardware configuration.
The contents of the load memory influence the functioning of the CPU. In the MMC's function as
load memory, blocks and the hardware configuration with loading functions can be transferred from
it (i.e. Download to CPU). Blocks downloaded to the CPU take effect immediately; however, the
hardware configuration does so only after the CPU is restarted.

Response to Memory Reset
The blocks stored on the MMC are retained after a memory reset.

Loading and Deleting
You can overwrite the blocks on the MMC.

You can erase the blocks on the MMC.

You cannot restore overwritten or erased blocks.

Accessing Data Blocks on the MMC
On the MMC, you can use data blocks and data block contents to handle larger quantities of data
or data rather scarcely required in the user program. New system operations are available for that
purpose:
• SFC 82: creating data blocks in the load memory
• SFC 83: reading from the data block in the load memory
• SFC 84: writing to a data block in the load memory

MMC and Password Protection
If a CPU (i.e. a CPU in the 300-C family) that is fitted with a Micro Memory Card (MMC) is
password-protected, then the user will also be prompted to enter this password when opening this
MMC in the SIMATIC Manager (on a programming device/PC).

Displaying Memory Assignment in STEP 7
The display of the load memory assignment in the module status dialog ("Memory" tab) shows both
the EPROM and the RAM area.
Blocks on MMCs show a 100% EPROM behavior.

 Setting Up and Editing the Project
 6.7 Editing a Project

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 161

6.7.3.2 Using a Micro Memory Card as a Data Carrier

A SIMATIC Micro Memory Card (MMC) can be used with STEP 7 in the same manner as any
other type of external data storage medium.

After you have determined that the MMC has enough capacity to accommodate all the data to be
stored, you can transfer any data visible in the operating system's file explorer to the MMC.

In this way, you can make additional drawings, service instructions and functional descriptions
pertaining to your plant available to other personnel.

6.7.3.3 Memory Card File

Memory Card files (*.wld) are generated for the

• Software PLC WinLC (WinAC Basis and WinAC RTX) and

• SlotPLCs CPU 41x-2 PCI (WinAC Slot 412 and WinAC Slot 416).

The blocks and system data for a WinLC or CPU 41x-2 PCI can be saved in a Memory Card file as
in an S7-Memory Card. The contents of these files then correspond to the contents of a
corresponding Memory Card for a S7-CPU.

This file can then be downloaded by a menu command of the operating panel of the WinLC or CPU
41x-2 PCI into their download memories, corresponding to the downloading of the user program
with STEP 7.

In the case of the CPUs 41x-2 PCI this file can be downloaded automatically when the PC
operating system is started up, if the CPU 41x-2 PCI is not buffered and is only operated with a
RAM Card ("Autoload" function).

Memory Card files are "normal" files in the sense of Windows, which can be moved, deleted or
transported with a data medium with the Explorer.

For further information please refer to the corresponding documentation of the WinAC products.

Setting Up and Editing the Project
6.7 Editing a Project

 Programming with STEP 7
162 Manual, 04/2017, A5E41552389-AA

6.7.3.4 Storing Project Data on a Micro Memory Card (MMC)

With STEP 7 you can store the data for your STEP 7 project as well as any other kind of data
(such as WORD or Excel files) on a SIMATIC Micro Memory Card (MMC) in a suitable CPU or a
programming device (PG)/PC. This allows you to access project data with programming devices
that do not have the project saved on them.

Requirements
You can only store project data on an MMC if it is inserted in the slot of a suitable CPU or a
programming device (PG)/PC and there is an online connection established.

Be sure that the MMC has enough capacity to accommodate all the data to be stored on it.

Data that can be stored on an MMC
After you have determined that the MMC has enough capacity to accommodate all the data to be
stored, you can transfer all data visible in the operating system's file explorer to the MMC. These
data can include the following:

• Complete project data for STEP 7

• Station configurations

• Symbol tables

• Blocks and sources

• Texts managed in many languages

• Any other kinds of data, such as WORD or Excel files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 163

7 Editing Projects with Different Versions of STEP 7

7.1 Editing Version 2 Projects and Libraries

Version V5.2 of STEP 7 no longer supports Changes in V2 Projects. When you edit V2 projects
or libraries, inconsistencies can occur such that V2 projects or libraries can no longer be edited
with older versions of STEP 7.

In order to continue to edit V2 projects or libraries, a STEP 7 version older that V5.1 must be used.

7.2 Expanding DP Slaves That Were Created with Previous Versions
of STEP 7

Constellations That Can Be Formed by Importing New *.GSD Files
New DP slaves can be accepted by the HW Config if you install new device database files
(*.GSD files) into the Hardware Catalog. After installation, they are available in the Other Field
Devices folder.

You cannot reconfigure or expand a modular DP slave in the usual manner if all of the following
conditions exist:

• The slave was configured with a previous version of STEP 7.

• The slave was represented in the Hardware Catalog by a type file rather than a *.GSD file.

• A new *.GSD file was installed over the slave.

Remedy
If you want to use the DP slave with new modules that are described in the *.GSD file:

• Delete the DP slave and configure it again. Then the DP slave is described completely by the
*.GSD file, not by the type file.

If you do not want to use any new modules that are described only in the *.GSD file:

• Under PROFIBUS-DP in the Hardware Catalog window, select the "Other FIELD
DEVICES/Compatible PROFIBUS-DP Slaves" folder. STEP 7 moves the "old" type files into
this folder when they are replaced by new *.GSD files. In this folder you will find the modules
with which you can expand the already configured DP slave.

Editing Projects with Different Versions of STEP 7
7.2 Expanding DP Slaves That Were Created with Previous Versions of STEP 7

 Programming with STEP 7
164 Manual, 04/2017, A5E41552389-AA

Constellation after Replacement of Type Files by GSD Files in STEP 7 V5.1 Service Pack 4
As of STEP 7 V5.1, Service Pack 4, the type files have been either updated or largely replaced by
GSD files. This replacement only affects the catalog profiles supplied with STEP 7, not any catalog
profiles that you may have created yourself.

DP slaves whose properties were previously determined by type files and are now determined by
GSD files are still located in the same place in the hardware catalog.

The "old" type files were not deleted but moved to another place in the hardware catalog. They are
now located in the catalog folder "Other field devices\Compatible PROFIBUS DP slaves\...".

Expanding an Existing DP Configuration with STEP 7, as of V5.1 Service Pack 4
If you edit a project that was created with a previous version of STEP 7 (earlier than V5.1, SP4)
and you want to expand a modular DP slave, then you cannot use the modules or submodules
taken from the usual place in the hardware catalog. In this case, use the DP slave found at "Other
FIELD DEVICES\Compatible PROFIBUS DP slaves\...".

Editing a DP Configuration with an Earlier Version of STEP 7 V5.1, SP4)
If you configure an "updated" DP slave with STEP 7 as of V5.1, Service Pack 4 and then edit the
project with a previous version of STEP 7 (earlier than STEP 7 V5.1, SP4), you will not be able to
edit this DP slave since the GSD file used is unknown to the previous version.

Remedy: You can install the required GSD file in the previous version of STEP 7. In this case, the
GSD file is stored in the project. If the project is subsequently edited with the current STEP 7
version will use the newly installed GSD file for the configuration.

 Editing Projects with Different Versions of STEP 7
 7.3 Editing Current Configurations with Previous Versions of STEP 7

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 165

7.3 Editing Current Configurations with Previous Versions of STEP 7

Configuring Direct Data Exchange (Lateral Communication)
Configuring direct data exchange with a DP master without a DP master system:

• Not possible with STEP 7 V5.0, Service Pack 2 (or older version)

• Possible with STEP 7 V5.0, as of Service Pack 3 and as of STEP 7 V5.1

If you save a DP master without its own DP master system with configured assignments for direct
data exchange and you continue to edit this project with an older version of STEP 7 V5
(STEP 7 V5.0, Service Pack 2 (or older)), the following effects can occur:

• A DP master system is displayed with slaves that are used for a STEP 7-internal data storage
area of the assignments for direct data exchange. These DP slaves do not belong to the
displayed DP master system.

• You cannot connect a new or an orphaned DP master system to this DP master.

Online Connection to the CPU by Means of a PROFIBUS-DP Interface
Configuring the PROFIBUS-DP interface without a DP master system:

• STEP 7 V5.0, Service Pack 2 (or older): a connection to the CPU by means of this interface is
not possible.

• As of STEP 7 V5.0, Service Pack 3: During compilation, system data for the PROFIBUS-DP
interface are generated; a connection to the CPU by means of this interface is possible after
downloading.

Editing Projects with Different Versions of STEP 7
7.4 Appending SIMATIC PC Configurations of Previous Versions

 Programming with STEP 7
166 Manual, 04/2017, A5E41552389-AA

7.4 Appending SIMATIC PC Configurations of Previous Versions

PC Configurations of STEP 7 V5.1 Projects (up to SP 1)
As of STEP 7 V5.1, Service Pack 2 you can download communications to the PC station in the
same way as to an S7-300 or S7-400 station (without having to take the roundabout via
configuration file). Nevertheless, a configuration file is always generated during a storing or
compiling operation in order to enable the transmission of the configuration to the target PC station
using this method.

This bears the consequence that "older" PC stations cannot interpret some of the information
included in the newly generated configuration files. STEP 7 automatically adapts itself to this
circumstance:

• If you create a new SIMATIC PC station configuration with STEP 7 as of V5.1, Service Pack 2,
STEP 7 assumes that the target PC station was configured with the help of SIMATIC NET DVD
as of 7/2001, that is, under the presumption that S7RTM (Runtime Manager) is installed. The
configuration files are generated in such a way that they can be interpreted by a "new" PC
station.

• If you append a SIMATIC PC station configuration of a previous version (for example, the PC
station was configured with STEP 7 V5.1, Service Pack 1),. STEP 7 does not presume that the
target PC station was configured with the help of SIMATIC NET DVD as of 7/2001. Those
configuration files are then generated in such a way that they can be interpreted by an "old" PC
station.

If this default behavior does not match your requirements, you can modify it as described below:

Setting in the Context Menu "Configuring Hardware ":
1. Open the PC station hardware configuration

2. Right-click on the station window (white area)

3. Select the context-sensitive menu "Station Properties"

4. Check or clear the "Compatibility" checkbox.

Setting in the Context Menu "Configuring Networks"
1. Open the network configuration

2. Highlight the PC station

3. Select the menu command Edit > Object properties

4. In the dialog, select the "Configuration" tab

5. Check or clear the "Compatibility" checkbox.

 Editing Projects with Different Versions of STEP 7
 7.4 Appending SIMATIC PC Configurations of Previous Versions

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 167

PC Configurations of STEP 7 V5.0 Projects
You must convert the station if you want to edit a SIMATIC PC station configuration with STEP 7 as
of V5.0, Service Pack 3 to configure new components that are only supported by Service Pack 3 or
higher:

1. In the SIMATIC Manager, highlight the SIMATIC PC station and select the menu command
Edit > Object properties.

2. In the "Functions" tab of the properties dialog, click on the "Expand" button.
The SIMATIC PC station is then converted. Now, it can only be edited with STEP 7 V5.0,
Service Pack 3 or later versions.

Editing Projects with Different Versions of STEP 7
7.5 Displaying Modules Configured with Later STEP 7 Versions or Optional Packages

 Programming with STEP 7
168 Manual, 04/2017, A5E41552389-AA

7.5 Displaying Modules Configured with Later STEP 7 Versions or
Optional Packages

As of STEP 7 V5.1 Service Pack 3, all modules are displayed, even those that were configured
with a later STEP 7 version and are thus unknown to the "older" STEP 7. Modules configured with
an optional package are also displayed, even if the required corresponding optional package is not
installed on the programming device (PG) used to open the given project.

In previous STEP 7 versions, such modules and their subordinate objects were not displayed. In
the current version, these objects are visible and can be edited to certain extent. For example, you
can use this function to also change user programs, even if the project was created on another
computer running a newer version of STEP 7 and the module (such as a CPU) cannot be
configured with the existing earlier STEP 7 version because this module has new properties and
new parameters.

The module "unknown" to STEP 7 is displayed as a generic, dummy module with the following
icon:

If you open the project with the appropriate STEP 7 version or with a compatible optional package,
all modules are displayed their standard way and there are no restrictions on editing.

PG with latest STEP 7 / with
optional package

 PG with older STEP 7 / without
optional package

 >>>---Project data--->>>
Represented by "known", latest
module

 Represents the latest module as an
"unknown" module

 Editing Projects with Different Versions of STEP 7
 7.5 Displaying Modules Configured with Later STEP 7 Versions or Optional Packages

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 169

Working with a Dummy Module in the SIMATIC Manager
The dummy module is visible below the station level. All subordinate objects at this level such as
user programs, system data and connection tables are visible and can be downloaded from the
SIMATIC Manager.

You also open, edit, compile and load the user program (such as its blocks).

However, the following restrictions apply to projects with dummy blocks:

• You cannot copy a station containing a dummy block.

• In the menu command "Save project as..." the option "with reorganization" cannot be applied
completely.
The dummy module and all references and subordinate objects of these modules will be
missing in the copied and reorganized project (for example, the user program).

Working with a Dummy Module in the Hardware Configuration
The dummy module is displayed at the slot where it was configured.

You can open this module, but you cannot change its parameters or download to it. The module
properties are limited to those given in the "Dummy" tab property sheet. The station configuration
cannot be changed (such as by adding new modules).

Hardware diagnostics (such as opening a station online) are also possible (to a limited extent: new
diagnostic options and texts are not recognized.).

Working with a Dummy Module in the Network Configuration
The dummy module is also displayed in NetPro. In this case, the name of the module on the station
is preceded by question mark.

A project with a dummy module can only be opened write-protected in NetPro.

If you open the project in write-protected mode, you can display and print the network
configuration. You can also obtain the connection status, which will at least contain the information
supported by the STEP 7 version being used.

In general, however, you cannot make any changes or save, compile or download them.

Subsequent Installation of Modules
If the module is from a later version of STEP 7 and there is a HW update available for it, you can
replace the dummy module with the "real" one. Upon opening the station, you receive information
on the necessary HW updates or optional packages, and you can install them using the dialog. As
an alternative, you can install the modules from the start menu or in HW Config by selecting the
menu command Options > Install HW Updates.

Editing Projects with Different Versions of STEP 7
7.5 Displaying Modules Configured with Later STEP 7 Versions or Optional Packages

 Programming with STEP 7
170 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 171

8 Defining Symbols

8.1 Absolute and Symbolic Addressing

In a STEP 7 program you work with addresses such as I/O signals, bit memory, counters, timers,
data blocks, and function blocks. You can access these addresses in your program absolutely, but
your programs will be much easier to read if you use symbols for the addresses (for example,
Motor_A_On, or other identifiers according to the code system used within your company or
industry). An address in your user program can then be accessed via this symbol.

Absolute Addresses
An absolute address comprises an address identifier and a memory location (for example, Q 4.0,
I 1.1, M 2.0, FB21).

Symbolic Addresses
You can make your program easier to read and simplify troubleshooting if you assign symbolic
names to the absolute addresses.

STEP 7 can translate the symbolic names into the required absolute addresses automatically. If
you would prefer to access ARRAYs, STRUCTs, data blocks, local data, logic blocks, and user-
defined data types using symbolic names, you must first assign symbolic names to the absolute
addresses before you can address the data symbolically.

You can, for example, assign the symbolic name MOTOR_ON to the address Q 4.0 and then use
MOTOR_ON as an address in a program statement. Using symbolic addresses it is easier to
recognize to what extent the elements in the program match the components of your process
control project.

 Note

Two consecutive underline characters (for example, MOTOR__ON) are not permitted in a symbolic
name (variable ID).

Defining Symbols
8.1 Absolute and Symbolic Addressing

 Programming with STEP 7
172 Manual, 04/2017, A5E41552389-AA

Support with Programming
In the programming languages Ladder Logic, Function Block Diagram, and Statement List you can
enter addresses, parameters, and block names as absolute addresses or as symbols.

Using the menu command View > Display > Symbolic Representation you can toggle between
the absolute and symbolic representation of addresses.

To make it easier to program using symbolic addresses you can display the absolute address and
the symbol comment that belongs with the symbol. You can activate this information using the
menu command View > Display > Symbol Information. This means that the line comment
following every STL statement contains more information. You cannot edit the display; you must
make any changes in the symbol table or the variable declaration table.

The following figure shows you the symbol information in STL.

When you print out a block, the current screen representation with statement comments or symbol
comments is printed.

 Defining Symbols
 8.2 Shared and Local Symbols

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 173

8.2 Shared and Local Symbols

A symbol allows you to work with meaningful symbolic names instead of absolute addresses. The
combination of short symbols and longer comments can be used effectively to make programming
easier and program documentation better.

You should distinguish between local (block-specific) and shared symbols.

 Shared Symbols Local Symbols

Validity • Is valid in the whole user program,
• Can be used by all blocks,
• Has the same meaning in all blocks,
• Must be unique in the whole user program.

• Only known to the block in

which it was defined,
• The same symbol can be used

in different blocks for different
purposes.

Permitted
characters

• Letters, numbers, special characters,
• Accents other than 0x00, 0xFF, and quotation

marks,
• The symbol must be placed within quotation

marks if you use special characters.

• Letters,
• Numbers,
• Underscore (_).

Use • You can define shared symbols for:
• I/O signals (I, IB, IW, ID, Q, QB, QW, QD)
• I/O inputs and outputs (PI, PQ)
• Bit memory (M, MB, MW, MD)
• Timers (T)/ counters (C)
• Logic blocks (OB, FB, FC, SFB, SFC)
• Data blocks (DB)
• Userdefined data types (UDT)
• Variable table (VAT)

• You can define local symbols

for:
• Block parameters (input,

output, and in/out parameters),
• Static data of a block,
• Temporary data of a block.

Defined where? Symbol table Variable declaration table for the
block

Defining Symbols
8.3 Displaying Shared or Local Symbols

 Programming with STEP 7
174 Manual, 04/2017, A5E41552389-AA

8.3 Displaying Shared or Local Symbols

You can distinguish between shared and local symbols in the code section of a program as follows:

• Symbols from the symbol table (shared) are shown in quotation marks "..".

• Symbols from the variable declaration table of the block (local) are preceded by the character
"#".

You do not have to enter the quotation marks or the "#". When you enter your program in Ladder,
FBD, or STL the syntax check adds these characters automatically.

If you are concerned that there may be some confusion because, for example, the same symbols
are used in both the symbol table and the variable declaration, you must code the shared symbol
explicitly when you want to use it. Any symbols without the respective coding are interpreted as
block-specific (local) variables in this case.

Coding shared symbols is also necessary if the symbol contains blanks.

When programming in an STL source file the same special characters and guidelines for their use
apply. Code characters are not added automatically in free-edit mode, but they are still necessary if
you wish to avoid confusion.

 Note

Using the menu command View > Display > Symbolic Representation you can toggle the display
between the declared shared symbolic and the absolute addresses.

 Defining Symbols
 8.4 Setting the Address Priority (Symbolic/Absolute)

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 175

8.4 Setting the Address Priority (Symbolic/Absolute)

The address priority helps you to adapt the program code as you see fit when making changes in
the symbol table, changing parameter names of data blocks or function blocks or when changing
UDTs referring to component names or changing multiple instances

When making changes in the following situations, be sure to set the address priority carefully and
with a definite purpose in mind. In order for you to benefit from address priority, each change
procedure must be completed in itself before you start with another type of change.

To set the address priority, go to the SIMATIC Manager and select the block folder and then select
the menu command Edit > Object Properties. In the "Address Priority" tab, you can make the
settings that you deem appropriate.

Making optimal settings in address priority requires that the following situations for making a
change be distinguished:

• Correction of Individual Names

• Switching Names or Assignments

• New Symbols, Variables, Parameters or Components

 Note

Please be aware that the absolute block number is the determining factor when making block calls
("Call FC" or "Call FB, DB") for the logic block – even when symbolic address priority has been set!

Correction of Individual Names

Examples:
In the symbol table or in the program editor/block editor a spelling error in a name has to be
corrected. This applies to all names in the symbol table as well as to all the names of parameters,
variables or components that can be changed with the program editor/block editor.

Setting the Address Priority:

Defining Symbols
8.4 Setting the Address Priority (Symbolic/Absolute)

 Programming with STEP 7
176 Manual, 04/2017, A5E41552389-AA

Tracking Changes:
In the SIMATIC Manager, select the block folder and then select the menu command Edit > Check
Block Consistency. The "Check block consistency' function make the changes necessary in the
individual blocks.

Switching Names or Assignments

Examples:
• The names of existing assignments in the symbol table are switched.

• Existing assignments in the symbol table are assigned new addresses.

• Variable names, parameter names or component names are switched in the program
editor/block editor.

Setting the Address Priority:

Tracking Changes:
• In the SIMATIC Manager, select the block folder and then select the menu command Edit >

Check Block Consistency. The "Check block consistency" function makes the changes
necessary in the individual blocks.

 Defining Symbols
 8.5 Symbol Table for Shared Symbols

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 177

New Symbols, Variables, Parameters or Components

Examples:
• You are creating new symbols for addresses used in the program.

• You are adding new variable or parameters to data blocks, UDTs or function blocks.

Setting the Address Priority:
• For changes in the symbol table.

• For changes in the program/block editor.

Tracking Changes:
In the SIMATIC Manager, select the block folder and then select the menu command Edit > Check
Block Consistency. The "Check block consistency' function make the changes necessary in the
individual blocks.

Defining Symbols
8.5 Symbol Table for Shared Symbols

 Programming with STEP 7
178 Manual, 04/2017, A5E41552389-AA

8.5 Symbol Table for Shared Symbols

Shared symbols are defined in the symbol table.

An (empty) symbol table ("Symbols" object) is created automatically when you create an S7
program.

Validity
The symbol table is only valid for the module to which you link the program. If you want to use the
same symbols in a number of different CPUs, you yourself must ensure that the entries in the
various symbol tables all match up (for example, by copying the table).

8.5.1 Structure and Components of the Symbol Table

Structure of the Symbol Table

Row
 If the columns for "Special Object Properties" were hidden (the menu command View >

Columns O, M, C, R, CC was deselected), this symbol appears in the row if the row
concerned has at least one "Special Object Property" set for it.

"Status" Column
 The symbol name or address is identical to another entry in the symbol table.

 The symbol is still incomplete (the symbol name or the address is missing).

R/O/M/C/CC Columns
The columns R/O/M/CC show whether a symbol was assigned special object properties
(attributes):

 Defining Symbols
 8.5 Symbol Table for Shared Symbols

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 179

• R (monitoring) means that error definitions for process diagnostics were created for the symbol
with the optional package S7-PDIAG (V5).

• O means that the symbol can be operated and monitored with WinCC.

• M means that a symbolrelated message (SCAN) was assigned to the symbol.

• C means that the symbol is assigned communication properties.

• CC means that the symbol can be quickly and directly monitored and controlled in the program
editor ('Control at Contact').

Click on the check box to enable or disable these "special object properties". You can also edit the
"special object properties" via Edit > Special Object Properties menu command

"Symbol" Column
The symbolic name must not be longer than 24 characters.

You cannot assign symbols in the symbol table for addresses in data blocks (DBD, DBW, DBB,
DBX). Their names are assigned in the data block declaration.

For organization blocks (OB) and some system function blocks (SFB) and system functions (SFC),
predefined symbol table entries already exist which you can import into the table when you edit the
symbol table of your S7 program. The import file is stored in the STEP 7 directory under
...\S7data\Symbol\Symbol.sdf.

"Address" Column
An address is the identifier for a particular memory area and memory location.
Example: Input I 12.1

The syntax of the address is checked as it is entered.

"Data Type" Column
You can choose between a number of data types available in STEP 7. The data type field already
contains a default data type that you may change, if necessary. If the change you make is not
suitable for the address or its syntax is incorrect, an error message appears as you exit the field.

"Comment" Column
You can assign comments to all symbols. The combination of brief symbolic names and more
detailed comments makes creating programs more effective and makes your program
documentation more complete. A comment can be up to 80 characters in length.

Defining Symbols
8.5 Symbol Table for Shared Symbols

 Programming with STEP 7
180 Manual, 04/2017, A5E41552389-AA

8.5.2 Addresses and Data Types Permitted in the Symbol Table

Only one set of mnemonics can be used throughout a symbol table. Switching between SIMATIC
(German) and IEC (English) mnemonics must be done in the SIMATIC Manager using the menu
command Options > Customize in the "Language" tab.

IEC SIMATIC Description Data Type Address

Range

I E Input bit BOOL 0.0 to 65535.7
IB EB Input byte BYTE, CHAR 0 to 65535
IW EW Input word WORD, INT, S5TIME, DATE 0 to 65534
ID ED Input double word DWORD, DINT, REAL, TOD, TIME 0 to 65532
Q A Output bit BOOL 0.0 to 65535.7
QB AB Output byte BYTE, CHAR 0 to 65535
QW AW Output word WORD, INT, S5TIME, DATE 0 to 65534
QD AD Output double word DWORD, DINT, REAL, TOD, TIME 0 to 65532
M M Memory bit BOOL 0.0 to 65535.7
MB MB Memory byte BYTE, CHAR 0 to 65535
MW MW Memory word WORD, INT, S5TIME, DATE 0 to 65534
MD MD Memory double word DWORD, DINT, REAL, TOD, TIME 0 to 65532
PIB PEB Peripheral input byte BYTE, CHAR 0 to 65535
PQB PAB Peripheral output byte BYTE, CHAR 0 to 65535
PIW PEW Peripheral input word WORD, INT, S5TIME, DATE 0 to 65534
PQW PAW Peripheral output word WORD, INT, S5TIME, DATE 0 to 65534
PID PED Peripheral input double word DWORD, DINT, REAL, TOD, TIME 0 to 65532
PQD PAD Peripheral output double word DWORD, DINT, REAL, TOD, TIME 0 to 65532
T T Timer TIMER 0 to 65535
C Z Counter COUNTER 0 to 65535
FB FB Function block FB 0 to 65535
OB OB Organization block OB 1 to 65535
DB DB Data block DB, FB, SFB, UDT 1 to 65535
FC FC Function FC 0 to 65535
SFB SFB System function block SFB 0 to 65535
SFC SFC System function SFC 0 to 65535
VAT VAT Variable table 0 to 65535
UDT UDT Userdefined data type UDT 0 to 65535

 Defining Symbols
 8.5 Symbol Table for Shared Symbols

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 181

8.5.3 Incomplete and Non-Unique Symbols in the Symbol Table

Incomplete Symbols
It is also possible to store incomplete symbols. You can, for example, enter only the symbol name
first and then add the corresponding address at a later date. This means you can interrupt your
work on the symbol table at any time, save the interim result, and complete your work another time.
Incomplete symbols are identified in the "Status" column by the symbol. When you come to use
the symbol for creating software (without an error message appearing), you must have entered the
symbolic name, the address, and the data type.

How Ambiguous Symbols Occur
Ambiguous symbols occur when you insert a symbol in the symbol table whose symbolic name
and/or address was already used in another symbol row. This means both the new symbol and the
existing symbol are ambiguous. This status is indicated by the symbol in the "Status" column.

This happens, for example, when you copy and paste a symbol in order to change the details in the
copy slightly.

Identification of Ambiguous Symbols
In the symbol table, ambiguous symbols are identified by highlighting them graphically (color, font).
This change in their representation means they still require editing. You can either display all
symbols or filter the view so that only unique or ambiguous symbols are displayed.

Making Symbols Unique
An ambiguous symbol becomes unique when you change the component (symbol and/or address)
which caused this status. If two symbols are ambiguous and you change one of them to make it
unique, the other one also becomes unique.

Defining Symbols
8.6 Entering Shared Symbols

 Programming with STEP 7
182 Manual, 04/2017, A5E41552389-AA

8.6 Entering Shared Symbols

Using the menu command Insert > Symbol you can insert symbols in the code section of your
program. If the cursor is positioned at the beginning, the end, or within a string, the symbol is
already selected that starts with this string - if such a symbol exists. If you change the string, the
selection is updated in the list.

Separators for the beginning and end of a string are, for example, blank, period, colon. No
separators are interpreted within shared symbols.

To enter symbols, proceed as follows:

1. Enter the first letter of the required symbol in the program.

2. Press CTRL and J simultaneously to display a list of symbols. The first symbol starting with the
letter you entered is already selected.

3. Enter the symbol by pressing RETURN or select another symbol.

The symbol enclosed in quotation marks is then entered instead of the first letter.

In general the following applies: if the cursor is located at the beginning, the end, or within a string,
this string is replaced by the symbol enclosed in quotation marks when inserting a symbol.

8.6.1 General Tips on Entering Symbols

To enter new symbols in the symbol table, position the cursor in the first empty row of the table and
fill out the cells. You can insert new rows before the current row in the symbol table using the menu
command Insert > Symbol. If the row before the cursor position already contains an address, you
will be supported when inserting new symbols by a presetting of the "Address" and "Data Type"
columns. The address is derived from the previous row; the default data type is entered as data
type.

You can copy and modify existing entries using the commands in the Edit menu. Save and then
close the symbol table. You can also save symbols which have not been completely defined.

When you enter the symbols, you should note the following points:

Column Note

Symbol The name must be unique within the whole symbol table. When you confirm the entry in
this field or exit the field, a non-unique symbol is marked. The symbol can contain up to 24
characters. Quotation marks (") are not permitted.

Address When you confirm the entry in this field or exit the field, a check is made as to whether the
address entered is allowed.

Data Type When you enter the address, this field is automatically assigned a default data type. If you
change this default, the program checks whether the new data type matches the address.

Comment You can enter comments here to briefly explain the functions of the symbols (max. 80
characters). Entering a comment is optional.

 Defining Symbols
 8.6 Entering Shared Symbols

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 183

8.6.2 Entering Single Shared Symbols in a Dialog Box

The procedure described below shows you how you can change symbols or define new symbols in
a dialog box while programming blocks without having to display the symbol table.

This procedure is useful if you only want to edit a single symbol. If you want to edit a number of
symbols, you should open the symbol table and work in it directly.

Activating Symbol Display in a Block
You activate the display of symbols in the block window of an open block using the menu
command View > Display > Symbolic Representation. A check mark is displayed in front of the
menu command to show that the symbolic representation is active.

Defining Symbols When Entering Programs
1. Make certain that the symbolic representation is switched on in the block window (menu

command View > Display > Symbolic Representation.)

2. Select the absolute address in the code section of your program to which you want to assign a
symbol.

3. Select the menu command Edit > Symbol.

4. Fill out the dialog box and close it, confirming your entries with "OK" and making sure you enter
a symbol.

The defined symbol is entered in the symbol table. Any entries that would lead to non-unique
symbols are rejected with an error message.

Editing in the Symbol Table
Using the menu command Options > Symbol Table you can open the symbol table to edit it.

Defining Symbols
8.6 Entering Shared Symbols

 Programming with STEP 7
184 Manual, 04/2017, A5E41552389-AA

8.6.3 Entering Multiple Shared Symbols in the Symbol Table

Opening the Symbol Table
There are a number of ways of opening a symbol table:

• Double-click the symbol table in the project window.

• Select the symbol table in the project window and select the menu command Edit > Open
Object.

The symbol table for the active program is displayed in its own window. You can now create
symbols or edit them. When you open a symbol table for the first time after it was created, it is
empty.

Entering Symbols
To enter new symbols in the symbol table, position the cursor in the first empty row of the table and
fill out the cells. You can insert new empty rows before the current row in the symbol table using
the menu command Insert > Symbol. You can copy and modify existing entries using the
commands in the Edit menu. Save and then close the symbol table. You can also save symbols
that have not been completely defined.

Sorting Symbols
The data records in the symbol table can be sorted alphabetically according to symbol, address,
data type, or comment.

You can change the way the table is sorted by using the menu command View > Sort to open a
dialog box and define the sorted view.

Filtering Symbols
You can use a filter to select a subset of the records in a symbol table.

Using the menu command View > Filter you open the "Filter" dialog box.

You can define criteria that the records must fulfill in order to be included in the filtered view. You
can filter according to:

• Symbol names, addresses, data types, comments

• Symbols with operator control and monitoring attribute, symbols with communication
properties, symbols for binary variables for messages (bit memory or process input)

• Symbols with the status "valid," "invalid (non-unique, incomplete)"

The individual criteria are linked by an AND operation. The filtered records start with the specified
strings.

If you want to know more about the options in the "Filter" dialog box, open the context-sensitive
online help by pressing F1.

 Defining Symbols
 8.6 Entering Shared Symbols

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 185

8.6.4 Using Upper and Lower Case for Symbols

No Distinction between Upper and Lower Case Characters
Previously it was possible to define symbols in STEP 7 which differed from one another only in the
case used for individual characters. This was changed in STEP 7, V4.02. It is now no longer
possible to distinguish between symbols on the basis of the case used.
This change was made in response to the wishes of our customers, and will greatly reduce the risk
of errors occurring in a program. The restrictions which have been made to the symbol definition
also support the aims of the PLCopen forum to define a standard for transferable programs.

Symbol definition based solely on a distinction between upper and lower case characters is now no
longer supported. Previously, for example, the following definition was possible in the symbol table:

Motor1 = I 0.0

motor1 = I 1.0

The symbols were distinguished on the basis of the case used for the first letter. This type of
differentiation carries with it a significant risk of confusion. The new definition eliminates this
possible source of errors.

Effects on Existing Programs
If you have been using this criterion to distinguish between different symbols you may experience
difficulties with the new definition if:

• Symbols differ from one another only in their use of upper and lower case characters

• Parameters differ from one another only in their use of upper and lower case characters

• Symbols differ from parameters only in their use of upper and lower case characters

All three of these conflicts can, however, be analyzed and resolved as described below.

Defining Symbols
8.6 Entering Shared Symbols

 Programming with STEP 7
186 Manual, 04/2017, A5E41552389-AA

Symbols which Differ from One Another Only in their Use of Upper and Lower Case Characters
Conflict:

If the symbol table has not yet been edited with the current version of the software, the first of the
non-unique symbols in the table is used when source files are compiled.

If the symbol table has already been edited, such symbols are invalid; this means that the symbols
are not displayed when blocks are opened and source files containing these symbols can no longer
be compiled without errors.

Remedy:

Check your symbol table for conflicts by opening the table and saving it again. This action enables
the non-unique symbols to be recognized. You can then display the non-unique symbols using the
filter "Non-Unique Symbols" and correct them. You should also correct any source files which
contain conflicts. You do not need to make any further changes to the blocks, as the current (now
conflict-free) version of the symbol table is automatically used or displayed when a block is opened.

Parameters which Differ from One Another Only in their Use of Upper and Lower Case
Characters

Conflict:

Source files containing such interfaces can no longer be compiled without errors. Blocks with such
interfaces can be opened, but access to the second of these parameters is no longer possible.
When you try to access the second parameter, the program automatically returns to the first
parameter when the block is saved.

Remedy:

To check which blocks contain such conflicts, it is advisable to generate a source file for all the
blocks of a program using the function "Generate Source File." If errors occur when you attempt to
compile the source file you have created, there must be a conflict.

Correct your source files by ensuring that the parameters are unique; for example, by means of the
"Find and Replace" function. Then compile the files again.

Symbols which Differ from Parameters Only in their Use of Upper and Lower Case Characters
Conflict:

If shared and local symbols in a source file only differ from one another in their use of upper and
lower case characters, and is no initial characters have been used to identify shared ("symbol
name") or local (#symbol name) symbols, the local symbol will always be used during compilation.
This results in a modified machine code.

Remedy:

In this case it is advisable to generate a new source file from all of the blocks. This will
automatically assign local and shared access with the corresponding initial characters and will
ensure that they are handled correctly during future compilation procedures.

 Defining Symbols
 8.6 Entering Shared Symbols

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 187

8.6.5 Exporting and Importing Symbol Tables

You can export the current symbol table to a text file in order to be able to edit it with any text
editor.

You can also import tables created using another application into your symbol table and continue to
edit them there. The import function can be used, for example, to include in the symbol table
assignment lists created with STEP5/ST following conversion.

The file formats *.SDF, *.ASC, *.DIF, and *.SEQ are available to choose from.

Rules for Exporting
You can export the whole symbol table, a filtered subset of the symbol table, or rows selected in
the table view.

The properties of symbols that you can set using the menu command Edit > Special Object
Properties are not exported.

Rules for Importing
• For frequently used system function blocks (SFBs), system functions (SFCs)and organization

blocks (OBs)predefined symbol table entries already exist in the file
...\S7DATA\SYMBOL\SYMBOL.SDF which you can import as required.

• The properties of symbols that you can set using the menu command Edit > Special Object
Properties are not taken into consideration when exporting and importing.

Defining Symbols
8.6 Entering Shared Symbols

 Programming with STEP 7
188 Manual, 04/2017, A5E41552389-AA

8.6.6 File Formats for Importing/Exporting a Symbol Table

The following file formats can be imported into or exported out from the symbol table:

• ASCII file format (ASC)

• Data Interchange Format (DIF)
You can open, edit, and save DIF files in Microsoft Excel.

• System Data Format (SDF)
You can open, edit, and save SDF files in Microsoft Access.

- To import and export data to and from the Microsoft Access application, use the SDF file
format.

- In Access, select the file format "Text (with delimiters)".

- Use the double inverted comma (") as the text delimiter.

- Use the comma (,) as the cell delimiter.

• Assignment list (SEQ)
Caution: When exporting the symbol table to a file of the type .SEQ comments that are longer
than 40 characters are truncated after the 40th character.

ASCII File Format (ASC)

File Type *.ASC

Structure: Record length, delimiter comma, record
Example: 126,green_phase_ped. T 2 TIMER Duration of green phase for

pedestrians
126,red_ped. Q 0.0 BOOL Red for pedestrians

 Defining Symbols
 8.6 Entering Shared Symbols

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 189

Data Interchange Format (DIF)

File Type *.DIF

Structure: A DIF file consists of the file header and the data:

Header TABLE Start of a DIF File

 0,1
 "<Title>" Comment string
 VECTORS Number of records in the file
 0,<No. of records>
 ""
 TUPLES Number of data fields in a record
 0,<No. of columns>
 ""
 DATA ID for the end of the header and start of the data
 0,0
 ""
Data (per record) <type>,<numeric value> ID for the data type, numeric value
 <String> Alphanumeric part or
 V if the alphanumeric part is not used

Header: the file header must contain the record types TABLE, VECTORS, TUPLES, and DATA in
the order specified. Before DATA, DIF files can contain further, optional record types. These are,
however, ignored by the Symbol Editor.

Data: in the data part, each entry consists of three parts: the ID for the Type (data type), a numeric
value, and an alphanumeric part.

You can open, edit, and save DIF files in Microsoft Excel. You should not use accents, umlauts, or
other special language characters.

System Data Format (SDF)

File Type *.SDF

Structure: Strings in quotation marks, parts separated by commas
Example: "green_phase_ped.","T 2","TIMER","Duration of green phase for pedestrians"

"red_ped.","Q 0.0","BOOL","Red for pedestrians"

To open an SDF file in Microsoft Access you should select the file format 'Text (with delimiter)'. Use
the double quotation mark (") as the text delimiter and the comma (,) as the field delimiter.

Defining Symbols
8.6 Entering Shared Symbols

 Programming with STEP 7
190 Manual, 04/2017, A5E41552389-AA

Assignment List (SEQ)

File Type *.SEQ

Structure: TAB Address TAB Symbol TAB Comment CR
Example: T 2 green_phase_ped. Duration of green phase for pedestrians

Q 0.0 red_ped. Red for pedestrians

TAB stands for the tabulator key (09H),
CR stands for carriage return with the RETURN key (0DH).

 Defining Symbols
 8.6 Entering Shared Symbols

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 191

8.6.7 Editing Areas in Symbol Tables

As of STEP 7 V5.3, you can now select and edit contiguous areas within a symbol table. This
means that you can copy and/or cut parts of one symbol table and insert them into another symbol
table or delete them as required.

This makes it easier to update symbol tables by quickly transferring data from one symbol table to
another.

Areas that can be selected:

• You can select entire rows as soon as you click in the first column in the row. If you want to
select all the fields, ranging from the "Status" column to the "Comments" column, then these
are also part of the selected row.

• You can select one or more contiguous fields as an overall area. To be able to select this area,
all fields must belong to the "Symbol", "Address", "Data Type" and "Comments" columns. If you
make an invalid selection, the menu commands for editing will not be available.

• The R, O, M, C, CC columns contain the special object properties for the respective symbols
and are only copied if the "Also copy special object properties" check box is selected in the
"Customize" dialog box (menu command Options > Customize).

• The contents of the R, O, M, C, CC columns are copied if these columns are displayed. To
show or hide these columns, select the View > R, O, M, C, CC Columns menu command.

To edit a symbol table, proceed as follows:

1. Select the area that you want to edit in the symbol table by using either of the following
methods:

- Using the mouse, click in the starting cell, and while keeping the left mouse button
depressed, move the mouse over the area that you want to select.

- Using the keyboard, select the area by pressing the shift key and then the cursor (arrow)
keys.

2. The selected area is shown in reverse video. The cell selected first is shown in normal display
and is surrounded by a frame.

3. Edit the area selected as required.

Defining Symbols
8.6 Entering Shared Symbols

 Programming with STEP 7
192 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 193

9 Creating Blocks and Libraries

9.1 Selecting an Editing Method

Depending on the programming language you use to create a program, you can enter your
program either in incremental input mode and/or free-edit (text) mode.

Incremental Editors for the Programming Languages Ladder Logic (LAD), Function Block
Diagram (FBD), Statement List (STL), or S7-GRAPH

In the incremental input mode editors for Ladder, FBD, STL, and S7-GRAPH, you create blocks
that are stored in the user program. You should choose to use incremental input mode if you want
to check what you have entered immediately. This edit mode is particularly suitable for beginners.
In incremental input mode, the syntax of each line or element is checked immediately after it has
been entered. Any errors are indicated and must be corrected before completing the entry. Entries
with correct syntax are automatically compiled and stored in the user program.

Any symbols used must be defined before editing the statements. If certain symbols are not
available, the block can not be fully compiled; this inconsistent interim version can, however, be
saved.

Source Code (Text) Editors for the Programming Languages STL, S7 SCL, or S7 HiGraph
In source code editors, you create source code files for subsequent compilation to generate
blocks.

We recommend you use source code editing, as this is a highly efficient program editing and
monitoring method.

The source code of the program or block is edited in a text file and then compiled.

The text files (source files) are stored in the sources folder of your S7 program, for example, as an
STL source file or SCL source file. A source file can contain code for one or multiple blocks. The
STL and SCL text editors allow you to generate source code for OBs, FBs, FCs, DBs, and UDTs
(user-defined data types), though you can use them to create a complete user program. One such
text file may contain the complete program (that is, all blocks) for a CPU.

When you compile the source file, the corresponding blocks will be generated and written to the
user program. All symbols used must be defined before you can compile them. Data errors are not
reported until the respective compiler interprets the source file.

It is imperative for compilation to stay conform with the prescribed syntax of the programming
language. A syntax check is only performed on account of a user instruction or when the source file
is compiled into blocks.

Creating Blocks and Libraries
9.2 Selecting the Programming Language

 Programming with STEP 7
194 Manual, 04/2017, A5E41552389-AA

9.2 Selecting the Programming Language

Setting the Programming Language for the Editor
Before you you generate a particular block or a source file, select the programming language and
editor via the object properties. This selection determines which editor is started when the block or
source file is opened.

Starting the Editor
Start the appropriate language editor either in SIMATIC Manager with a double-click on the
corresponding object (block, source file, etc.), by selecting the menu command Edit > Open
Object or click on the corresponding toolbar button.

To create an S7 program, the programming languages listed in the table are available to you. The
STEP 7 programming languages LAD, FBD, and STL are supplied with the standard STEP 7
software package. You can purchase other programming languages as optional software
packages.

You then have the choice of a number of different programming philosophies (Ladder Logic,
Function Block Diagram, Statement List, standard language, sequential control, or status graph)
and whether to use a text-based or a graphic programming language.

Select a programming language to determine the input mode (X).

Programming
Language

User Group Application Incremental
Input

Free-
Edit
Mode

Block can be
Documented
Back from the
CPU

Statement List STL Users who prefer
programming in a
language similar to
machine code

Programs
optimized in
terms of run time
and memory
requirements

X X X

Ladder Logic LAD Users who are
accustomed to working
with circuit diagrams

Programming of
logic controls

X − X

Function Block
Diagram FBD

Users who are familiar
with the logic boxes of
Boolean algebra

Programming of
logic controls

X − X

F-LAD, F-FBD

Optional package

Users who are familiar
with the programming
languages LAD and
FDB.

Programming of
safety programs
for F-systems

X − X

SCL (Structured
Control Language)

Optional package

Users who have
programmed in high-
level languages such
as PASCAL or C

Programming
data processing
tasks

− X −

S7-GRAPH

Optional package

Users who want to
work oriented on the
technological functions
and do not have
extensive knowledge
of programming/PLCs

Convenient
description of
sequential
processes

X − X

 Creating Blocks and Libraries
 9.2 Selecting the Programming Language

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 195

Programming
Language

User Group Application Incremental
Input

Free-
Edit
Mode

Block can be
Documented
Back from the
CPU

HiGraph

Optional package

Users who want to
work oriented on the
technological functions
and do not have
extensive knowledge
of programming/PLCs

Convenient
description of
asynchronous,
non-sequential
processes

− X −

CFC

Optional package

Users who want to
work oriented on the
technological functions
without extensive
programming or PLC
experience

Description of
continuous
processes

− − −

If blocks contain no errors, you can switch between Ladder Logic, Function Block Diagram, or
Statement List format. Program parts that cannot be displayed in the target language are shown in
Statement List format.

Under STL, you can generate blocks from source files and vice versa.

Creating Blocks and Libraries
9.2 Selecting the Programming Language

 Programming with STEP 7
196 Manual, 04/2017, A5E41552389-AA

9.2.1 Ladder Logic Programming Language (LAD)

The graphic programming language Ladder Logic (LAD) is based on the representation of circuit
diagrams. The elements of a circuit diagram, e.g. normally open contacts and normally closed
contacts, are combined to form networks. The code section of a logic block represents one or more
networks.

Example of Networks in LAD

The programming language LAD is supplied with the standard STEP 7 software package.
Programs are created under LAD with an incremental editor.

 Creating Blocks and Libraries
 9.2 Selecting the Programming Language

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 197

9.2.2 Function Block Diagram Programming Language (FBD)

The programming language Function Block Diagram (FBD) is based on graphic logic symbols also
known in Boolean algebra. Complex functions such as math functions can also be displayed
directly in combination with the logic boxes.

The programming language FBD is supplied with the standard STEP 7 software package.

Example of a Network in FBD

Programs are created in FBD with an incremental editor.

Creating Blocks and Libraries
9.2 Selecting the Programming Language

 Programming with STEP 7
198 Manual, 04/2017, A5E41552389-AA

9.2.3 Statement List Programming Language (STL)

The programming language STL is a text-based programming language with a structure similar to
machine code. Each statement represents a program processing operation of the CPU. Multiple
statements can be linked to form networks.

Example of Networks in Statement List

The programming language STL is supplied with the standard STEP 7 software package. With this
programming language, you can use incremental editors to edit S7 blocks and you can create and
compile STL program source files in a source code editor to generate blocks.

 Creating Blocks and Libraries
 9.2 Selecting the Programming Language

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 199

9.2.4 S7 SCL Programming Language

The programming language SCL (Structured Control Language) is available as an optional
package. This is a high-level text-based language whose global language definition conforms to
IEC 1131-3. The language closely resembles PASCAL and, other than in STL, simplifies the
programming of loops and conditional branches due to its high-level language commands, for
example. SCL is therefore suitable for calculating equations, complex optimization algorithms, or
the management of large data volume.

S7 SCL programs are written in the source code editor.

Example:
FUNCTION_BLOCK FB20

VAR_INPUT

ENDVAL: INT;

END_VAR

VAR_IN_OUT

IQ1 : REAL;

END_VAR

VAR

INDEX: INT;

END_VAR

BEGIN

CONTROL:=FALSE;

FOR INDEX:= 1 TO ENDVALUE DO

 IQ1:= IQ1 * 2;

 IF IQ1 >10000 THEN

 CONTROL = TRUE

 END_IF

END_FOR;

END_FUNCTION_BLOCK

Creating Blocks and Libraries
9.2 Selecting the Programming Language

 Programming with STEP 7
200 Manual, 04/2017, A5E41552389-AA

9.2.5 S7-GRAPH Programming Language (Sequential Control)

The graphic programming language S7-GRAPH is available as optional package. It allows you to
program sequential controls. This includes the creation of sequencers and the specification of
corresponding step contents and transitions. You program the contents of the steps in a special
programming language (similar to STL). Transitions are programmed in a Ladder Logic Editor (a
light version of LAD).

S7-GRAPH displays even complex sequences very clearly and makes programming and
troubleshooting more effective.

Example of a Sequential Control in S7-GRAPH

Blocks Created
With the S7-GRAPH editor you program the function block that contains the sequencer. A
corresponding instance DB contains the data for the sequencer, e.g. the FB parameters, step and
transition conditions. You can generate this instance DB automatically in the S7-GRAPH editor.

Source File
A text-based source file (GRAPH source file) can be generated from a function block created in S7-
GRAPH which can be interpreted by OPs or text-based displays for displaying the sequencer.

 Creating Blocks and Libraries
 9.2 Selecting the Programming Language

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 201

9.2.6 S7 HiGraph Programming Language (State Graph)

The graphic programming language S7 HiGraph is available as an optional package. It allows you
to program a number of the blocks in your program as status graphs. Here you split your system
into dedicated functional units which can acquire different states and you define the transition
conditions between states. You describe the actions assigned to the states and the conditions for
the transitions between the states in a zoom-type language similar to Statement List.

You create a graph for each functional unit that describes the response of this functional unit. The
plant graphs are gathered in graph groups. The graphs can communicate to synchronize functional
units.

The well arranged view of the status transitions of a functional unit allows systematic programming
and simplifies debugging. The difference between S7-GRAPH and S7-HiGraph is, that the latter
acquires only one state (in S7-GRAPH: "step") at any one time. The figure below shows how to
create graphs for functional units (example).

Creating Blocks and Libraries
9.2 Selecting the Programming Language

 Programming with STEP 7
202 Manual, 04/2017, A5E41552389-AA

A graph group is stored in a HiGraph source file in the "Source" folder of the S7 program. This
source file is then compiled to generate S7 blocks for the user program.

Syntax and formal parameters are checked after the last entry was made in a graph (when the
working window is closed). Addresses and symbols are not checked until the source file is being
compiled.

9.2.7 S7 CFC Programming Language

The optional software package CFC (Continuous Function Chart) is a programming language used
to link complex functions graphically.

You use the programming language S7 CFC to link existing functions. You do not need to program
many standard functions yourself, instead you can use libraries containing standard blocks (for
example, for logic, math, control, and data processing functions). To use CFC you do not require
any detailed programming knowledge or specific knowledge of programmable control, and you can
concentrate on the technology used in your branch of industry.

The program created is stored in the form of CFC charts. These are stored in the "Charts" folder
beneath the S7 program. These charts are then compiled to form the S7 blocks for the user
program.

You may want to create blocks to be connected yourself, in which case you program them for
SIMATIC S7 with one of the S7 programming languages.

 Creating Blocks and Libraries
 9.3 Creating Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 203

9.3 Creating Blocks

9.3.1 Blocks Folder

You can create the program for an S7 CPU in the form of:

• Blocks

• Source files

The folder "Blocks" is available under the S7 program for storing blocks.

This block folder contains the blocks you need to download to the S7 CPU for your automation
task. These loadable blocks include logic blocks (OBs, FBs, FCs) and data blocks (DB). An empty
organization block OB1 is automatically created with the block folder because you will always need
this block to execute your program in the S7 CPU.

The block folder also contains the following objects:

• The user-defined data types (UDT) you created. These make programming easier but are not
downloaded to the CPU.

• The variable tables (VAT) that you can create to monitor and modify variables for debugging
your program. Variable tables are not downloaded to the CPU.

• The object "System Data" (system data blocks) that contains the system information (system
configuration, system parameters). These system data blocks are created and supplied with
data when you configure the hardware.

• The system functions (SFC) and system function blocks (SFB) that you need to call in your
user program. You cannot edit the SFCs and SFBs yourself.

With the exception of the system data blocks (which can only be created and edited via the
configuration of the programmable logic controller), the blocks in the user program are all edited
using the respective editor. This editor is started automatically by double-clicking the respective
block.

 Note

The blocks you programmed as source files and then compiled are also stored in the block folder.

Creating Blocks and Libraries
9.3 Creating Blocks

 Programming with STEP 7
204 Manual, 04/2017, A5E41552389-AA

9.3.2 Using UserDefined Data Types to Access Data

UserDefined Data Types
Userdefined data types (UDTs) can combine elementary and complex data types. You can assign
a name to UDTs and use them more than once. The following figure illustrates the structure of a
user-defined data type consisting of an integer, a byte, a character, a floating-point number, and a
Boolean value.

Instead of entering all the data types singly or as a structure, you only need to specify "UDT20" as
the data type and STEP 7 automatically assigns the corresponding memory space.

Creating a UserDefined Data Type
You define UDTs with STEP 7. The following figure shows a UDT consisting of the following
elements: an integer (for saving the amount), a byte (for saving the original data), a character (for
saving the control code), a floating-point number (for saving the temperature), and a Boolean
memory bit (for terminating the signal). You can assign a symbolic name to the UDT in the symbol
table (for example, process data).

Once you have created a UDT, you can use the UDT like a data type if, for example, you declare
the data type UDT200 for a variable in a DB (or in the variable declaration of an FB).

 Creating Blocks and Libraries
 9.3 Creating Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 205

The following figure shows a DB with the variables process_data_1 with the data type UDT200.
You only specify UDT200 and process_data_1. The arrays shown in italics are created when you
compile the DB.

Assigning Initial Values for a User-Defined Data Type
If you want to assign an initial value to every element of a user-defined data type, you specify a
value that is valid for the data type and the name of the element. You can, for example, assign the
following initial values (to the user-defined data type declared in the above figure):

Amount = 100
Original_data = B#16#0)
Control_code = 'C'
Temperature = 1.200000e+002
End = False

If you declare a variable as a UDT, the initial values of the variables are the values you specified
when you created the UDT.

Saving and Accessing Data in a User-Defined Data Type
You access the individual elements of a UDT. You can use symbolic addresses (for example
Stack_1.Temperature). You can, however specify the absolute address at which the element is
located (example: if Stack_1 is located in DB20 starting at byte 0, the absolute address for amount
is DB20.DBW0 and the address for temperature is DB20.DBD6).

Using User-Defined Data Types as Parameters
You can transfer variables of the data type UDT as parameters. If a parameter is declared as UDT
in the variable declaration, you must transfer a UDT with the same structure. An element of a UDT
can, however, also be assigned to a parameter when you call a block providing the element of the
UDT corresponds to the data type of the parameter.

 Note

If you call a block created in the S7-SCL programming language that contains a UDT parameter in
the program editor, this can result in a type conflict. You should therefore avoid using blocks
created in SCL if you use UDTs.

Advantages of DBs with an Assigned UDT
By using UDTs you have created once, you can generate a large number of data blocks with the
same data structure. You can then use these data blocks to enter different actual values for
specific tasks.

Creating Blocks and Libraries
9.3 Creating Blocks

 Programming with STEP 7
206 Manual, 04/2017, A5E41552389-AA

If, for example, you structure a UDT for a formula (for example, for blending colors), you can assign
this UDT to several DBs each containing different amounts.

The structure of the data block is determined by the UDT assigned to it.

 Creating Blocks and Libraries
 9.3 Creating Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 207

9.3.3 Block Properties

You can more easily identify the blocks you created if you use block properties and you can also
protect these blocks from unauthorized changes.

You should edit the block properties when the block is open. In addition to the properties you can
edit, the properties dialog box also displays data for your information only: you cannot edit this
information.

The block properties and system attributes are also displayed in the SIMATIC Manager in the
object properties for a block. Here you can only edit the properties NAME, FAMILY, AUTHOR, and
VERSION.

You edit the object properties after you insert the block via the SIMATIC Manager. If a block was
created using one of the editors and not in the SIMATIC Manager, these entries (programming
language) are saved automatically in the object properties.

 Note
The mnemonics you want to use to program your S7 blocks can be set in the SIMATIC Manager
using the menu command Options > Customize and the "Language" tab.

Table of Block Properties
When entering block properties, you should observe the input sequence shown in the following
table:

Keyword / Property Meaning Example

[KNOW_HOW_PROTECT] Block protection; a block compiled with
this option does not allow its code
section to be viewed. The interface for
the block can be viewed, but it cannot
be changed.

KNOW_HOW_PROTECT

[AUTHOR:] Name of author: company name,
department name, or other name
(max. 8 characters without blanks)

AUTHOR : Siemens, but no
keyword

[FAMILY:] Name of block family: for example,
controllers
(max. 8 characters without blanks)

FAMILY : controllers, but no
keyword

[NAME:] Block name (max. 8 characters) NAME : PID, but no keyword
[VERSION: int1 . int2] Version number of block

(both numbers between 0 and 15,
meaning 0.0 to 15.15)

VERSION : 3.10

[CODE_VERSION1] ID whether a function block can have
multiple instances declared or not. If
you want to declare multiple instances,
the function block should not have this
property

CODE_VERSION1

Creating Blocks and Libraries
9.3 Creating Blocks

 Programming with STEP 7
208 Manual, 04/2017, A5E41552389-AA

Keyword / Property Meaning Example

[UNLINKED] for DBs only! Data blocks with the UNLINKED
property are only stored in the load
memory. They take up no space in the
working memory and are not linked to
the program. They cannot be accessed
with MC7 commands. Depending on
the specific CPU, the contents of such
a DB can be transferred to the working
memory only with SFC 20 BLKMOV or
SFC 83 READ_DBL.

[Non-Retain] Data blocks with this attribute are reset
to the load values after every power
OFF and power ON and after every
STOP-RUN transition of the CPU.

[READ_ONLY] for DBs only Write protection for data blocks; its data
can only be read and cannot be
changed

READ_ONLY

Read-only block A copy of a block that is stored in read-
only status for reference purposes. This
property can only be assigned in the
program editor by selecting File >
Store Read-Only menu command.

The block protection KNOW_HOW_PROTECT has the following consequences:

• If you want to view a compiled block at a later stage in the incremental STL, FBD, or Ladder
editors, the code section of the block cannot be displayed.

• The variable declaration table for the block displays only the variables of the declaration types
var_in, var_out, and var_in_out. The variables of the declaration types var_stat and var_temp
remain hidden.

Assignment: Block Property to Block Type
The following table shows which block properties can be declared for which block types:

Property OB FB FC DB UDT

KNOW_HOW_PROTECT • • • • −

AUTHOR • • • • −

FAMILY • • • • −

NAME • • • • −

VERSION • • • • −

UNLINKED − − − • −

READ_ONLY − − − • −

Non-Retain − − − • −

Read-only block • • • • •

The KNOW_HOW_PROTECT property can be set in a source file when you program the block. It
is displayed in the "Block Properties" dialog box but cannot be changed.

 Creating Blocks and Libraries
 9.3 Creating Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 209

9.3.4 Displaying Block Lengths

Block lengths are displayed in "bytes."

Display in the Block Folder Properties
The following lengths are displayed in the block folder properties in the offline view:

• Size (sum of all blocks without system data) in the load memory of the programmable controller

• Size (sum of all blocks without system data) in the work memory of the programmable
controller

• Block lengths on the programming device (PG/PC) are not displayed in the block folder
properties.

Display in the Block Properties
The following are displayed in the block properties:

• Required number of local data: size of the local data in bytes

• MC7: size of the MC7 code in bytes, or size of the DB user data

• Size of the load memory in the programmable controller

• Size of the work memory in the programmable controller: only displayed if hardware
assignment is recognized.

For display purposes, it does not matter whether the block is located in the window of an online
view or an offline view.

Display in the SIMATIC Manager (Details View)
If a block folder is opened and the "Details View" selected, the work memory requirement is
displayed in the project window, irrespective of whether the block folder is located in the window of
an online view or an offline view.

You can calculate the sum of the block lengths by selecting all the relevant blocks. In this case, the
sum of the selected blocks is displayed in the status bar of the SIMATIC Manager.

No lengths are displayed for blocks which cannot be downloaded to the programmable controller
(for example, variable tables).

Block lengths on the programming device (PG/PC) are not displayed in the Details view.

Creating Blocks and Libraries
9.3 Creating Blocks

 Programming with STEP 7
210 Manual, 04/2017, A5E41552389-AA

9.3.5 Rewiring

The following blocks and addresses can be rewired:

• Inputs, outputs

• Memory bits, timers, counters

• Functions, function blocks

To rewire:

1. Select the "Blocks" folder that contains the individual blocks you want to rewire in the SIMATIC
Manager.

2. Select the menu command Options > Rewire.

3. Enter the required replacements (old address/new address) in the table in the "Rewire" dialog
box.

4. Select the option "All addresses within the specified address area" if you want to rewire
address areas (BYTE, WORD, DWORD).
Example: You enter IW0 and IW4 as the address areas. The addresses I0.0 – I1.7 are then
rewired to the addresses I4.0 – I5.7. Addresses from the rewired area (for example, I0.1) can
then no longer be entered in the table individually.

5. Click the "OK" button.

This starts the rewire process. After rewiring is completed, you can specify in a dialog box whether
you want to see the info file on rewiring. This info file contains the address lists "Old address" and
"New address." The individual blocks are listed with the number of wiring processes that have been
carried out in each one.

When rewiring, the following should be noted:

• When you rewire (that is, rename) a block, the new block cannot currently exist. If the block
exists, the process is interrupted.

• When you rewire a function block (FB), the instance data block is automatically assigned to the
rewired FB. The instance DB does not change, that is, the DB number is retained.

 Creating Blocks and Libraries
 9.3 Creating Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 211

9.3.6 Comparing Blocks

Introduction
To compare blocks that are in different locations, you can start the block comparison process in
either of the following ways:

• Go to the SIMATIC Manager and select the Options > Compare Blocks menu command. In the
"Compare Blocks - Results" dialog box that is displayed, click the "Go to" button. The results of
the comparison will appear in the program editor (LAD/FBD/STL) in the "Comparison" tab

• Go to the program editor. Select the Options > Compare On-/Offline Partners menu command.

The following sections explain how the block-comparison process functions. In the following
discussion, a distinction is maintained between logic blocks (OBs, FBs, FCs) and data blocks
(DBs).

The effect of the "Including SDBs" option during an ONLINE/offline comparison of blocks in the
SIMATIC Manager is described in the section: Comparing System Data Blocks (SDBs)

How Block Comparison Works: Logic Blocks
In the first step of the process, STEP 7 compares the time stamps for the interfaces of the logic
blocks to be compared. If these time stamps are identical, STEP 7 assumes that the interfaces are
identical.

If the time stamps are different, STEP 7 then compares the data types in the interfaces step-by-
step by section. When a difference is found, STEP 7 determines the first difference in a section;
that is, in each case the first difference in the respective declaration ranges. Multi-instances and
UDTs are also included in the comparison. If the data types in the sections are the same, STEP 7
then compares the initial values of the variables. All differences are displayed.

In the second step, STEP 7 checks the code by network by network (in case the "Execute code
comparison" option was not selected, the code will still be compared if the "Go to" button in the
Program Editor is clicked.).

First, the inserted or deleted networks are detected. The results of the comparison will show
networks that are only present in one block. These will have the comment "only in".

Then, the remaining networks are compared until the first difference in statements is found.
Statements are compared in the following manner:

• For the setting "Absolute address has priority", based on the absolute address

• For the setting "Symbol has priority", based on the symbol

Note: If the blocks have symbolic priority and therefore also need to be compared in terms of
symbols, the "Perform detailed comparison" option should be enabled.

Statements are considered to identical if their operators and addresses are the same.

If the blocks to be compared were programmed in different programming languages, STEP 7
performs the comparison based on the STL language.

Special feature of offline-offline comparisons:

In contrast to an offline-online comparison, in an offline-offline comparison, STEP 7also detects the
presence of different variable names. This additional step is not possible for an offline-offline
comparison since only replacement symbols are available online.

Comments for block networks and lines as well as other block attributes (such as S7-PDIAG
information and messages) are excluded from comparisons.

Creating Blocks and Libraries
9.3 Creating Blocks

 Programming with STEP 7
212 Manual, 04/2017, A5E41552389-AA

How Block Comparison Works: Data Blocks
In the first step of the process, STEP 7 compares the time stamps for the interfaces of the data
blocks to be compared (as for logic blocks). If these time stamps are identical, STEP 7 assumes
that the data structures are identical.

If the interface time stamps are different, STEP 7 then compares the data structures until the first
difference is found. If the data structures are in the sections are identical, STEP 7 then compares
the initial values and current values. All differences are displayed.

Special feature of offline-offline comparisons:

In contrast to an offline-online comparison, in an offline-offline comparison, STEP 7 also detects
the presence of different variable names. This additional step is not possible for an offline-offline
comparison since only replacement symbols are available online.

Comments and structures for UDTs that are used in a data block are excluded from comparisons.

How Block Comparison Works: Data Types (UDT)
In the first step of the process, STEP 7 compares the time stamps for the interfaces of the data
types to be compared (as for data blocks). If these time stamps are identical, STEP 7 assumes that
the data structures are identical.

If the interface time stamps are different, STEP 7 then compares the data structures until the first
difference is found. If the data structures are in the sections are identical, STEP 7 then compares
the initial values. All differences are displayed.

How Block Comparison Works: Comparison in the Program Editor
1. Open the block to be compared to the loaded version.

2. Select the Options > Compare On-/Offline Partners menu command.

- If the online ls are determined to be "different", then you can open the relevant network
simply by double-clicking in its row.

How Block Comparison Works: Comparison in the SIMATIC Manager
1. In the SIMATIC Manager, select the block folder or the blocks to be compared.

2. Select the Options > Compare Blocks menu command.

3. In the "Compare Blocks" dialog box that is displayed, select the type of comparison
(ONLINE/offline or Path1/Path2).

4. For a Path1/Path2 comparison: In the SIMATIC Manager, select the block folder or the blocks
to be compared. These blocks are then automatically entered in the dialog box.

5. If also want to compare SDBs, select the "Including SDBs" check box.

6. If you also want to compare code, select the "Execute code comparison" check box. In a
detailed comparison, in addition to the execution-related parts of the block (interface and code),
any changes in the names for local variables and parameters are displayed. In addition, you
can select the "Including blocks created in different programming languages" check box to
compare blocks created in different programming languages (e.g. AWL, FUP....). In this case,
the blocks are compared based on STL.

 Creating Blocks and Libraries
 9.3 Creating Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 213

7. Confirm your settings in the dialog box by clicking "OK".

The results of the comparison are displayed in the "Compare Blocks - Results" dialog box.

8. To display the properties (i.e. time of last modification, checksum, etc.) of the compared blocks,
click on the "Details" button in this dialog box

To open the program editor, in which the results of the comparison are displayed in the lower
portion of the window, click the "Go to" button.

 Note

When comparing an offline block folder with an online one, only loadable block types (OB, FB, ...)
are compared. When comparing offline/online or Path1/Path2, all blocks included in a multiple
selection are compared, even if some of then are not loadable ones (i.e. variable tables or UDTs).

9.3.7 Attributes for Blocks and Parameters

A description of the attributes can be found in the reference help on system attributes:

Jumps to Language Descriptions and Help on Blocks and System Attributes

Creating Blocks and Libraries
9.4 Working with Libraries

 Programming with STEP 7
214 Manual, 04/2017, A5E41552389-AA

9.4 Working with Libraries

Libraries serve to store reusable program components for SIMATIC S7. The program components
can be copied to the library from existing projects or created directly in the library independently of
other projects.

You can save yourself a lot of programming time and effort if you store blocks which you want to
use many times in a library in an S7 program. You can copy them from there to the user program
where they are required.

To create S7 programs in a library, the same functions apply as for projects – with the exception of
debugging.

Creating Libraries
You can create libraries just like projects using the menu command File > New. The new library is
created in the directory you set for libraries in the "General" tab when you selected the menu
command Options > Customize.

 Note

The SIMATIC Manager allows names that are longer than eight characters. The name of the library
directory is, however, cut off to eight characters. Library names must therefore differ in their first
eight characters. The names are not case-sensitive. When this directory is opened in the Browser,
the full name is displayed again, but when browsing for the directory, only the shortened name
appears.

Note that you cannot use blocks from libraries of a new STEP 7 version in projects of an older
STEP 7 version.

Opening Libraries
To open an existing library, enter the menu command File > Open. Then select a library in the
dialog boxes that follow. The library window is then opened.

 Note

If you cannot find the library you require in the library list, click the "Browse" button in the "Open"
dialog box. The standard Windows browser then displays the directory structure in which you can
search for the library.

Note that the name of the file always corresponds to the original name of the library when it was
created, meaning any name changes made in the SIMATIC Manager are not made at file level.

When you select a library it is added to the library list. You can change the entries in the library list
using the menu command File > Manage.

Copying Libraries
You copy a library by saving it under another name using the menu command File > Save As.

You copy parts of a library such as programs, blocks, source files etc. using the menu command
Edit > Copy.

 Creating Blocks and Libraries
 9.4 Working with Libraries

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 215

Deleting a Library
You delete a library using the menu command File > Delete.

You delete parts of a library such as programs, blocks, source files etc. using the menu command
Edit > Delete.

Creating Blocks and Libraries
9.4 Working with Libraries

 Programming with STEP 7
216 Manual, 04/2017, A5E41552389-AA

9.4.1 Hierarchical Structure of Libraries

Libraries are structured in a hierarchical manner, just like projects:

• Libraries can contain S7 programs.

• An S7 program can contain one "Blocks" folder (user program), one "Source Files" folder, one
"Charts" folder, and one "Symbols" object (symbol table).

• The "Blocks" folder contains the blocks that can be downloaded to the S7 CPU. The variable
tables (VAT) and user-defined data types in the folder are not downloaded to the CPU.

• The "Source Files" folder contains the source files for the programs created in the various
programming languages.

• The "Charts" folder contains the CFC charts (only if the S7 CFC optional software is installed).

When you insert a new S7 program, a "Blocks" folder, "Source Files" folder (S7 only), and a
"Symbols" object are inserted automatically in it.

9.4.2 Overview of the Standard Libraries

The STEP 7 standard software package contains the following standard libraries

• System Function Blocks: System Function Blocks (SFBs) and System Functions (SFCs)

• S5-S7 Converting Blocks: Blocks for converting STEP 5 programs

• IEC Function Blocks: Blocks for IEC functions, e.g. for processing time and date information,
comparison operations, string processing and selecting the min./max. values

• Organization Blocks: Default organization blocks (OB)s

• PID Control Blocks: Function Blocks (FBs) for PID control

• Communication Blocks: Functions (FCs) and function blocks for SIMATICNET CPs.

• TI-S7 Converting Blocks: Standard functions for general use

• Miscellaneous Blocks: Blocks for time stamping and for TOD synchronization

When you install optional software packages, other libraries may be added.

Deleting and Installing the Supplied Libraries
You can delete the supplied libraries in SIMATIC Manager and then reinstall them. Run STPE 7
Setup to install the libraries..

 Note

When you install STEP 7, the supplied libraries are always copied. If you edit these libraries, the
modified libraries will be overwritten with the originals when STEP 7 is installed again.

For this reason, you should copy the supplied libraries before making any changes and then only
edit the copies.

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 217

10 Basics of Creating Logic Blocks

10.1 Basics of Creating Logic Blocks

10.1.1 Structure of the Program Editor Window

The window of the program editor is split into the following areas:

Tables
The "Program Elements" tab displays a table of the program elements you can insert into your
LAD, FBD or STL program. The "Call Structure" tab shows the call hierarchy of the blocks in the
current S7 program.

Variable Declaration
The variable declaration is split in to the sections "Variable Table" and "Variable Detail View".

Instructions
The instruction list shows the block code that is to be processed by the PLC. It consists of one or
several networks.

Basics of Creating Logic Blocks
10.1 Basics of Creating Logic Blocks

 Programming with STEP 7
218 Manual, 04/2017, A5E41552389-AA

Details
The various tabs in the "Details" window provide functions, for example, for displaying error
messages, editing symbols, providing address information, controlling addresses, comparing
blocks and for editing error definitions for hardware diagnostics.

 Basics of Creating Logic Blocks
 10.1 Basics of Creating Logic Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 219

10.1.2 Basic Procedure for Creating Logic Blocks

Logic blocks (OBs, FBs, FCs) consist of a variable declaration section, a code section as well as
their properties. When programming, you must edit the following three parts:

• Variable declaration: In the variable declaration you specify the parameters, system attributes
for parameters, and local block-specific variables.

• Code section: In the code section you program the block code to be processed by the
programmable controller. This consists of one or more networks. To create networks you can
use, for example, the programming languages Ladder Logic (LAD), Function Block Diagram
(FBD), or Statement List (STL).

• Block properties: The block properties contain additional information such as a time stamp or
path that is entered by the system. In addition, you can enter your own details such as name,
family, version, and author and you can assign system attributes for blocks.

In principle it does not matter in which order you edit the parts of a logic block. You can, of course,
also correct them and add to them.

 Note

If you want to make use of symbols in the symbol table, you should first check that they are
complete and make any necessary corrections.

Basics of Creating Logic Blocks
10.1 Basics of Creating Logic Blocks

 Programming with STEP 7
220 Manual, 04/2017, A5E41552389-AA

10.1.3 Default Settings for the LAD/STL/FBD Program Editor

Before you start programming, you should make yourself familiar with the settings in the editor in
order to make it easier and more comfortable for you when programming.

Using the menu command Options > Customize you open a tabbed dialog box. In the various
tabs you can make the following default settings for programming blocks, e.g. in the "General" tab:

• The fonts (type and size) for text and tables.

• Whether you want symbols and comments to be displayed with a new block.

You can change the settings for language, comments, and symbols during editing using the
commands in the View >… menu.

You can change the colors used for highlighting, for example, networks or statement lines in the
"LAD/FBD" tab.

10.1.4 Access Rights to Blocks and Source Files

When editing a project, a common database is often used, meaning that a number of personnel
may want to access the same block or data source at the same time.

The read/write access rights are assigned as follows:

• Offline editing:
When you attempt to open a block/source file, a check is made to see whether you have 'write'
access to the object. If the block/source file is already open, you can only work with a copy. If
you then attempt to save the copy, the system queries whether you want to overwrite the
original or save the copy under a new name.

• Online editing:
When you open an online block via a configured connection, the corresponding offline block is
disabled, preventing it from being edited simultaneously.

 Basics of Creating Logic Blocks
 10.2 Editing the Variable Declaration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 221

10.1.5 Instructions from the Program Elements Table

The "Program elements" tab in the overview window provides LAD and FBD elements as well as
already declared multiple instances, pre-configured blocks and blocks from libraries. You can
access the tab via menu command View > Tables. You can also insert program elements in the
code section using the menu command Insert > Program Elements.

Example of the "Program Elements" Tab in LAD

Basics of Creating Logic Blocks
10.2 Editing the Variable Declaration

 Programming with STEP 7
222 Manual, 04/2017, A5E41552389-AA

10.2 Editing the Variable Declaration

10.2.1 Using the Variable Declaration in Logic Blocks

After you open a logic block, a window opens that contains in the upper section the variable table
and the variable detail view for the block as well as the instruction list in the lower section in which
you edit the actual block code.

Example: Variable Views and Instruction List in STL

In the variable detail view, you specify the local variables and the formal parameters for the block
as well as the system attributes for parameters. This has the following effects:

• During declaration, sufficient memory space is reserved for temporary variables in the local
data stack, and in the case of function blocks, for static variables in the instance DB to be
associated later.

• When setting input, output, and in/out parameters you also specify the "interface" for the call of
a block in the program.

• When you declare the variables in a function block, these variables (with the exception of the
temporary variables) also determine the data structure for every instance DB that is associated
with the function block.

 Basics of Creating Logic Blocks
 10.2 Editing the Variable Declaration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 223

• By setting system attributes you assign special properties, for example, for the configuration of
message and connection functions, for operator control and monitoring functions and the
process control configuration.

Basics of Creating Logic Blocks
10.2 Editing the Variable Declaration

 Programming with STEP 7
224 Manual, 04/2017, A5E41552389-AA

10.2.2 Interaction Between The Variable Detail View And The Instruction List

The variable declaration and instruction list of logic blocks are closely related, because for
programming the names specified in the variable declaration are used in the instruction list. All
changes in the variable declaration will therefore influence the entire instruction list.

Action in the Variable Declaration Reaction in the Code Section

Correct new entry If invalid code present, previously undeclared
variable now becomes valid

Correct name change without type change Symbol is immediately shown everywhere with its
new name

Correct name is changed to an invalid name Code remains unchanged
Invalid name is changed to a correct name If invalid code is present, it becomes valid
Type change If invalid code is present, it becomes valid and if valid

code is present, this may become invalid
Deleting a variable (symbolic name) used in the
code

Valid code becomes invalid

Change to comments, faulty input of a new variable, change to an initial value, or deleting an
unused variable has no effect on the instruction list.

 Basics of Creating Logic Blocks
 10.2 Editing the Variable Declaration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 225

10.2.3 Structure of the Variable Declaration Window

The variable declaration window consists of the overview of variables and of the variable detail
view.

After you have generated and opened a new code block, a default variable table is displayed. It
lists only the declaration types (in, out, in_out, stat, temp) permitted for the selected block, namely
in the prescribed order. You can edit the default variable declaration that is displayed after you
have generated a new OB.

Permitted data types of local data for the various block types are found under Assigning the Data
Typs To Local Data Of Code Blocks.

Basics of Creating Logic Blocks
10.3 Multiple Instances in the Variable Declaration

 Programming with STEP 7
226 Manual, 04/2017, A5E41552389-AA

10.3 Multiple Instances in the Variable Declaration

10.3.1 Using Multiple Instances

It is possible that you may want to or have to use a restricted number of data blocks for instance
data owing to the performance (for example, memory capacity) of the S7 CPUs you are using. If
other existing function blocks are called in an FB in your user program (call hierarchy of FBs), you
can call these other function blocks without their own (additional) instance data blocks.

Use the following solution:

• Include the function blocks you want to call as static variables in the variable declaration of the
calling function block.

• In this function block, call other function blocks without their own (additional) instance data
blocks.

• This concentrates the instance data in one instance data block, meaning you can use the
available number of data blocks more effectively.

The following example illustrates the solution described: FB2 and FB3 use the instance DB of the
function block FB1 from which they were called.

Only requirement: You must "tell" the calling function block which instances you are calling and
what (FB) type these instances are. These details must be entered in the declaration window of the
calling function block. The function block used must have at least one variable or parameter from
the data area (VAR_TEMP cannot be used).

Do not use multiple instance data blocks if online changes are expected while the CPU is running.
Surge-free reloading is only guaranteed when using instance data blocks.

 Basics of Creating Logic Blocks
 10.3 Multiple Instances in the Variable Declaration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 227

10.3.2 Rules for Declaring Multiple Instances

The following rules apply to the declaration of multiple instances:

• Declaring multiple instances is only possible in function blocks that were created with STEP 7
from Version 2 onwards (see Block Attribute in the properties of the function block).

• In order to declare multiple instances, the function block must be created as a function block
with multiple instance capability (default setting from STEP 7 Version x.x; can be deactivated
in the editor using Options > Customize).

• An instance data block must be assigned to the function block in which a multiple instance is
declared.

• A multiple instance can only be declared as a static variable (declaration type "stat").

 Note

• You can also create multiple instances for system function blocks.

• If the function block was not created as being able to have multiple instances and you want it to
have this property, you can generate a source file from the function block in which you then
delete the block property CODE_VERSION1 and then compile the function block again.

10.3.3 Entering a Multiple Instance in the Variable Declaration Window

1. Open the function block from which the subordinate function blocks are to be called.

2. Define a static variable in the variable declaration of the calling function block for each call of a
function block for whose instance you do not want to use an instance data block.

- In the variable table, select hierarchy level "STAT".

- Enter a name for the FB call in the "Name" column of the variable detail view

- Enter the function block you want to call in the "Data type" column as an absolute address
or with its symbolic name.

- You can enter any explanations required in the comment column.

Calls in the Code Section
When you have declared multiple instances, you can use FB calls without specifying an instance
DB.

Example: If the static variable "Name: Motor_1 , Data type: FB20" is defined, the instance can be
called as follows:

Call Motor_1 // Call of FB20 without instance DB

Basics of Creating Logic Blocks
10.4 General Notes on Entering Statements and Comments

 Programming with STEP 7
228 Manual, 04/2017, A5E41552389-AA

10.4 General Notes on Entering Statements and Comments

10.4.1 Structure of the Code Section

In the code section you program the sequence for your logic block by entering the appropriate
statements in networks, depending on the programming language chosen. After a statement is
entered, the editor runs an immediate syntax check and displays any errors in red and italics.

The code section for a logic block generally comprises a number of networks that are made up of a
list of statements.

In a code section you can edit the block title, block comments, network title, network comments,
and statement lines within the networks.

Structure of the Code Section Using the STL Programming Language as an Example

 Basics of Creating Logic Blocks
 10.4 General Notes on Entering Statements and Comments

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 229

10.4.2 Procedure for Entering Statements

You can edit the parts of the code section in any order. We recommend you proceed as follows
when you program a block for the first time:

You can make changes in either overwrite mode or insert mode. You switch between modes using
the INSERT key.

Basics of Creating Logic Blocks
10.4 General Notes on Entering Statements and Comments

 Programming with STEP 7
230 Manual, 04/2017, A5E41552389-AA

10.4.3 Entering Shared Symbols in a Program

Using the menu command Insert > Symbol you can insert symbols in the code section of your
program. If the cursor is positioned at the beginning, the end, or within a string, the symbol is
already selected that starts with this string - if such a symbol exists. If you change the string, the
selection is updated in the list.

Separators for the beginning and end of a string are, for example, blank, period, colon. No
separators are interpreted within shared symbols.

To enter symbols, proceed as follows:

1. Enter the first letter of the required symbol in the program.

2. Press CTRL and J simultaneously to display a list of symbols. The first symbol starting with the
letter you entered is already selected.

3. Enter the symbol by pressing RETURN or select another symbol.

The symbol enclosed in quotation marks is then entered instead of the first letter.

In general the following applies: if the cursor is located at the beginning, the end, or within a string,
this string is replaced by the symbol enclosed in quotation marks when inserting a symbol.

10.4.4 Entering Block Comments and Network Comments

1. Activate the comments with the menu command View > Display with > Comments (a check
mark is visible in front of the menu command).

2. Position the cursor in the gray field below the block name or below the network name by
clicking with the mouse. The gray comment field appears white and has a border.

3. Enter your comment in the open text box. You are allowed 64 Kbytes per block for block
comments and network comments.

4. Exit the text box by clicking with the mouse outside the text box, by pressing the TAB key, or
using the key combination SHIFT+TAB.

5. If you select the menu command View > Display with > Comments again, you can switch off
the comments again (the check mark disappears).

 Basics of Creating Logic Blocks
 10.4 General Notes on Entering Statements and Comments

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 231

10.4.5 Title and Comments for Blocks and Networks

Comments make your user program easier to read and therefore make commissioning and
troubleshooting easier and more effective. They are an important part of the program
documentation and should certainly be made use of.

Comments in LAD, FBD and STL Programs
The following comments are available:

• Block title: title for a block (max. 64 characters)

• Block comment: documents the whole logic block, for example, the purpose of the block

• Network title: title for a network (max. 64 characters)

• Network comment: documents the functions of a single network

• Comment column in the variable detail view: comments the declared local data

• Symbol comment: comments that were entered for an address when its symbolic name was
defined in the symbol table.
You can display these comments using the menu command View > Display with > Symbol
Information.

In the code section of a logic block you can enter the block title and network title, and block
comments or network comments.

Block Title or Network Title
To enter a block or network title, position the cursor on the word "Title" to the right of the block
name or network name (for example, Network 1: Title:). A text box is opened in which you can
enter the title. This can be up to 64 characters long.

Block comments pertain to the whole logic block. There they can comment the function of the
block. Network comments pertain to the individual networks and document details about the
network.

To assign network titles automatically, select menu command Options > Settings and click on the
option "Automatic Assignment of Network Title" in the "General" tab. The symbol comment of the
first address entered will then be applied as network title.

Basics of Creating Logic Blocks
10.4 General Notes on Entering Statements and Comments

 Programming with STEP 7
232 Manual, 04/2017, A5E41552389-AA

Block Comments and Network Comments
You can toggle the view of the gray comment fields on and off using the menu command View >
Display with > Comments. A double-click on the comment field opens the text box in which you
can now enter your remarks. You are allowed 64 Kbytes per block for block comments and network
comments.

 Basics of Creating Logic Blocks
 10.4 General Notes on Entering Statements and Comments

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 233

10.4.6 Working with Network Templates

When programming blocks, if you would like to use networks multiple times, you can store these
networks in a library as network templates, complete with wildcards, if appropriate (for example, for
addresses). The library must be available before you create the network template.

Creating a Network Template
Create a new library in the SIMATIC Manager if necessary. Select the menu command Insert >
Program > S7 Program to insert a program into the library.

1. Open the block that contains the network(s) from which you want to create a network template.

2. In the opened block, replace the title, comment, or addresses with wildcards as required. You
can use the strings %00 to %99 as wildcards. Wildcards for addresses are displayed in red.
This is not a problem here because you will not be saving the block after you create the
network template. You can replace the wildcards later with appropriate addresses when you
insert the network template into a block.

3. Select "Network <No.>" of the network(s) you want to include in the network template.

4. Select the menu command Edit > Create Network Template.

5. Enter a meaningful comment for each wildcard used in the dialog box displayed.

6. Click the "OK" button.

7. Select the source file folder of the S7 program in your network template library in the browser
that appears and enter a name for the network template.

8. Confirm your entry by clicking the "OK" button. The network template is stored in the selected
library.

9. Close the block without saving it.

Inserting a Network Template in a Program
1. Open the block in which you want to insert the new network.

2. In the opened block, click in the network after which you want to insert a new network based on
the network template.

3. Open the "Program Elements" tab (menu command Insert > Program Elements).

4. Open the "S7 Program" folder of the relevant library in the catalog.

5. Double-click the network template.

6. In the dialog box, enter the required replacements for the wildcards in the network template.

7. Click the "OK" button. The network template is then inserted after the current network.

 Note

You can also drag and drop the template from the tab to the editor window.

Basics of Creating Logic Blocks
10.4 General Notes on Entering Statements and Comments

 Programming with STEP 7
234 Manual, 04/2017, A5E41552389-AA

10.4.7 Search Function for Errors in the Code Section

Errors in the code section are easy to recognize by their red color. To make it easier to navigate to
errors that lie outside the visible area on the screen, the editor offers two search functions Edit >
Go To > Previous Error/Next Error.

The search for errors goes beyond one network. This means that the whole code section is
searched and not just one network or the area currently visible on the screen.

If you activate the status bar using the menu command View > Status Bar, notes on the errors
found are displayed there.

You can also correct errors and make changes in overwrite mode. You toggle between insert mode
and overwrite mode using the INSERT key.

 Basics of Creating Logic Blocks
 10.5 Editing LAD Elements in the Code Section

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 235

10.5 Editing LAD Elements in the Code Section

10.5.1 Settings for Ladder Logic Programming

Setting the Ladder Logic Layout
You can set the layout for creating programs in the Ladder Logic representation type. The format
you select (A4 portrait/landscape/maximum size) affects the number of Ladder elements that can
be displayed in one rung.

1. Select the menu command Options > Customize.

2. Select the "LAD/FBD" tab in the following dialog box.

3. Select the required format from the "Layout" list box. Enter the required format size.

Settings for Printing
If you want to print out the Ladder code section, you should set the appropriate page format before
you start to program the code section.

Settings in the "LAD/FBD" Tab
In the "LAD/FBD" tab which is accessed using the menu command Options > Customize you can
make basic settings, e.g. concerning layout and address field width.

10.5.2 Rules for Entering Ladder Logic Elements

You will find a description of the Ladder Logic programming language representation in the "Ladder
Logic for S7-300/400 - Programming Blocks" manual or in the Ladder Logic online help.

A Ladder network can consist of a number of elements in several branches. All elements and
branches must be connected; the left power rail does not count as a connection (IEC 1131-3).

When programming in Ladder you must observe a number of guidelines. Error messages will
inform you of any errors you make.

Closing a Ladder Network
Every Ladder network must be closed using a coil or a box. The following Ladder elements must
not be used to close a network:

• Comparator boxes

• Coils for midline outputs _/(#)_/

• Coils for positive _/(P)_/ or negative _/(N)_/ edge evaluation

Positioning Boxes
The starting point of the branch for a box connection must always be the left power rail. Logic
operations or other boxes can be present in the branch before the box.

Basics of Creating Logic Blocks
10.5 Editing LAD Elements in the Code Section

 Programming with STEP 7
236 Manual, 04/2017, A5E41552389-AA

Positioning Coils
Coils are positioned automatically at the right edge of the network where they form the end of a
branch.

Exceptions: Coils for midline outputs _/(#)_/ and positive _/(P)_/ or negative _/(N)_/ edge
evaluation cannot be placed either to the extreme left or the extreme right in a branch. Neither are
they permitted in parallel branches.

Some coils require a Boolean logic operation and some coils must not have a Boolean logic
operation.

• Coils which require Boolean logic:

- Output _/(), set output _/(S), reset output _/(R)

- Midline output _/(#)_/, positive edge _/(P)_/, negative edge _/(N)_/

- All counter and timer coils

- Jump if Not _/(JMPN)

- Master Control Relay On _/(MCR<)

- Save RLO into BR Memory _/(SAVE)

- Return _/(RET)

• Coils which do not permit Boolean logic:

- Master Control Relay Activate _/(MCRA)

- Master Control Relay Deactivate _/(MCRD)

- Open Data Block _/(OPN)

- Master Control Relay Off _/(MCR>)

All other coils can either have Boolean logic operations or not.

The following coils must not be used as parallel outputs:

• Jump if Not _/(JMPN)

• Jump _/(JMP)

• Call from Coil _/(CALL)

• Return _/(RET)

Enable Input/Enable Output
The enable input "EN" and enable output "ENO" of boxes can be connected but this is not
obligatory.

 Basics of Creating Logic Blocks
 10.5 Editing LAD Elements in the Code Section

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 237

Removing and Overwriting
If a branch consists of only one element, the whole branch is removed when the element is
deleted.

When a box is deleted, all branches which are connected to the Boolean inputs of the box are also
removed with the exception of the main branch.

The overwrite mode can be used to simply overwrite elements of the same type.

Parallel Branches
• Draw OR branches from left to right.

• Parallel branches are opened downwards and closed upwards.

• A parallel branch is always opened after the selected Ladder element.

• A parallel branch is always closed after the selected Ladder element.

• To delete a parallel branch, delete all the elements in the branch. When the last element in the
branch is deleted, the branch is removed automatically.

Constants
Binary links cannot be assigned constants (i.e. TRUE or FALSE). Instead, use addresses of the
data type BOOL.

Basics of Creating Logic Blocks
10.5 Editing LAD Elements in the Code Section

 Programming with STEP 7
238 Manual, 04/2017, A5E41552389-AA

10.5.3 Illegal Logic Operations in Ladder

Power Flow from Right to Left
No branches may be created which may cause power to flow in the reverse direction. The following
figure shows an example: With signal state "0" at I 1.4 a power flow from right to left would result
at I 6.8. This is not permitted.

Short Circuit
No branches may be created which cause a short circuit. The following figure shows an example:

 Basics of Creating Logic Blocks
 10.6 Editing FBD Elements in the Code Section

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 239

10.6 Editing FBD Elements in the Code Section

10.6.1 Settings for Function Block Diagram Programming

Setting the Function Block Diagram Layout
You can set the layout for creating programs in the Function Block Diagram representation type.
The format you select (A4 portrait/landscape/maximum size) affects the number of FBD elements
that can be displayed in one rung.

1. Select the menu command Options > Customize.

2. Select the "LAD/FBD" tab in the following dialog box.

3. Select the required format from the "Layout" list box. Enter the required format size.

Settings for Printing
If you want to print out the FBD code section, you should set the appropriate page format before
you start to program the code section.

Settings in the "LAD/FBD" Tab
In the "LAD/FBD" tab which is accessed using the menu command Options > Customize you can
make basic settings, e.g. concerning layout and address field width.

Basics of Creating Logic Blocks
10.6 Editing FBD Elements in the Code Section

 Programming with STEP 7
240 Manual, 04/2017, A5E41552389-AA

10.6.2 Rules for Entering FBD Elements

You will find a description of the programming language "FBD" in the "Function Block Diagram for
S7-300/400 - Programming Blocks" manual or in the FBD online help.

An FBD network can consist of a number of elements. All elements must be interconnected (IEC
1131-3).

When programming in FBD, you must observe a number of rules. Error messages will inform you
of any errors you make.

Entering and Editing Addresses and Parameters
When an FBD element is inserted, the characters ??? and ... are used as token characters for
addresses and parameters.

• The red characters ??? stand for addresses and parameters which must be connected.

• The black characters ... stand for addresses and parameters which can be connected.

If you position the mouse pointer on the token characters, the expected data type is displayed.

Positioning Boxes
You can add standard boxes (flip flops, counters, timers, math operations, etc.) to boxes with
binary logic operations (&, >=1, XOR). The exceptions to this rule are comparison boxes.

No separate logic operations with separate outputs can be programmed in a network. You can,
however, assign a number of assignments to a string of logic operations with the help of a branch.
The following figure shows a network with two assignments.

 Basics of Creating Logic Blocks
 10.6 Editing FBD Elements in the Code Section

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 241

The following boxes can only be placed at the right edge of the logic string where they close the
string:

• Set counter value

• Assign parameters and count up, assign parameters and count down

• Assign pulse timer parameters and start, assign extended pulse timer parameters and start

• Assign on-delay/off-delay timer parameters and start

Some boxes require a Boolean logic operation and some boxes must not have a Boolean logic
operation.

Boxes which require Boolean logic:
• Output, set output, reset output _/[R]

• Midline output _/[#]_/, positive edge _/[P]_/, negative edge _/[N]_/

• All counter and timer boxes

• Jump if Not _/[JMPN]

• Master Control Relay On _/[MCR<]

• Save RLO into BR Memory _/[SAVE]

• Return _/[RET]

Boxes which do not permit Boolean logic:
• Master Control Relay Activate [MCRA]

• Master Control Relay Deactivate [MCRD]

• Open Data Block [OPN]

• Master Control Relay Off [MCR>]

All other boxes can either have Boolean logic operations or not.

Enable Input/Enable Output
The enable input "EN" and enable output "ENO" of boxes can be connected but this is not
obligatory.

Removing and Overwriting
When a box is deleted, all branches which are connected to the Boolean inputs of the box are also
removed with the exception of the main branch.

The overwrite mode can be used to simply overwrite elements of the same type.

Constants
Binary links cannot be assigned constants (i.e. TRUE or FALSE). Instead, use addresses of the
data type BOOL.

Basics of Creating Logic Blocks
10.7 Editing STL Statements in the Code Section

 Programming with STEP 7
242 Manual, 04/2017, A5E41552389-AA

10.7 Editing STL Statements in the Code Section

10.7.1 Settings for Statement List Programming

Setting the Mnemonics
You can choose between two sets of mnemonics:

• German

• English.

You set the mnemonics in the SIMATIC Manager with the menu command Options > Customize
in the "Language" tab before opening a block. While editing a block you cannot change the
mnemonics.

You edit the block properties in their own dialog box.

In the editor you can have a number of blocks open and edit them alternately as required.

10.7.2 Rules for Entering STL Statements

You will find a description of the Statement List programming language representation in the
"Statement List for S7-300/400 - Programming Blocks" manual or in the STL online help (Language
Descriptions).

When you enter statements in STL in incremental input mode, you must observe the following
basic guidelines:

• The order in which you program your blocks is important. Called blocks must be programmed
before calling blocks.

• A statement is made up of a label (optional), instruction, address, and comment (optional).
Example: M001: A I 1.0 //Comment

• Every statement has its own line.

• You can enter up to 999 networks in a block.

• Each network can have up to approximately 2000 lines. If you zoom in or out, you can enter
more or fewer lines accordingly.

• When entering instructions or absolute addresses, there is no distinction made between lower
and upper case.

 Basics of Creating Logic Blocks
 10.8 Updating Block Calls

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 243

10.8 Updating Block Calls

10.8.1 Changing Interfaces

You can also use the incremental Editor to modify the interfaces of offline blocks that have been
edited with STEP 7, version 5:

1. Make sure that all the blocks have been compiled with STEP 7, version 5. To do this, generate
a source file for all the blocks and compile it.

2. Modify the interface of the relevant block.

3. Now open all the calling blocks one after another - the corresponding calls are displayed in red.

4. Select the menu command Edit > Block Call > Update.

5. Generate the relevant instance data blocks again.

 Note

• Interface changes to a block opened online may cause the CPU to go into STOP mode.

• Rewiring block calls
First modify the numbers of the called blocks and then execute the Rewire function to match up
the calls.

Basics of Creating Logic Blocks
10.9 Saving Logic Blocks

 Programming with STEP 7
244 Manual, 04/2017, A5E41552389-AA

10.9 Saving Logic Blocks

To enter newly created blocks or changes in the code section of logic blocks or in declaration
tables in the programming device database, you must save the respective block. The data are then
written to the hard disk of the programming device.

To save blocks on the hard disk of the programming device:
1. Activate the working window of the block you want to save.

2. Select one of the following menu commands:

- File > Save saves the block under the same name.

- File > Save As saves the block under a different S7 user program or under a different
name. Enter the new path or new block name in the dialog box which then appears.

In both cases the block is saved only if its syntax contains no errors. Syntax errors are identified
immediately when the block is created and are then displayed in red. These errors must be
corrected before the block can be saved.

 Note

You can also save blocks or source files beneath other projects or libraries in the SIMATIC Manager (by
dragging & dropping, for example).
You can only save blocks or complete user programs to a memory card in the SIMATIC Manager.
If problems occur when saving or compiling large blocks, you should reorganize the project. Use the menu
command File > Reorganize in the SIMATIC Manager to do this. Then try to save or compile again.

 Basics of Creating Logic Blocks
 10.9 Saving Logic Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 245

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 247

11 Creating Data Blocks

11.1 Basic Information on Creating Data Blocks

The data block (DB) is a block in which you can, for example, store values for your machine or
plant to access. In contrast to a logic block that is programmed with one of the programming
languages Ladder Logic, Statement List, or Function Block Diagram, a data block contains only the
variable declaration section. This means the code section is irrelevant here and so is programming
networks.

When you open a data block, you can either view the block in the declaration view or in the data
view. You can toggle between the two views with the menu commands View > Declaration View
and View > Data View.

Declaration View
You use the declaration view if you want to:

• View or determine the data structure of shared data blocks,

• View the data structure of data blocks with an associated user-defined data type (UDT), or

• View the data structure of data blocks with an associated function block (FB).

The structure of data blocks that are associated with a function block or user-defined data type
cannot be modified. To modify them you must first modify the associated FB or UDT and then
create a new data block.

Data View
You use the data view if you want to modify data. You can only display, enter, or change the actual
value of each element in the data view. In the data view of data blocks, the elements of variables
with complex data types are listed individually with their full names.

Differences between Instance Data Blocks and Shared Data Blocks
A shared data block is not assigned to a logic block. It contains values required by the plant or
machine and can be called directly at any point in the program.

An instance data block is a block that is assigned directly to a logic block, such as a function block.
The instance data block contains the data that were stored in a function block in the variable
declaration table.

Creating Data Blocks
11.2 Declaration View of Data Blocks

 Programming with STEP 7
248 Manual, 04/2017, A5E41552389-AA

11.2 Declaration View of Data Blocks

With data blocks that are not globally shared, the declaration view cannot be changed.

Column Explanation

Address Displays the address that STEP 7 automatically assigns for the variable when you finish
entering a declaration.

Declaration This column is only displayed for instance data blocks. It shows you how the variables in
the variable declaration of the function block are declared:
• Input parameter (IN)
• Output parameter (OUT)
• In/out parameter (IN_OUT)
• Static data (STAT)

Name Enter the symbolic name you have to assign to each variable here.
Type Enter the data type you want to assign to the variable (BOOL, INT, WORD, ARRAY, etc.).

The variables can have elementary data types, complex data types, or user-defined data
types.

Initial Value Here you can enter the initial value if you do not want the software to use the default value
for the data type entered. All values must be compatible with the data type.
When you save a block for the first time, the initial value is used as the current value if you
have not explicitly defined actual values for the variables.
Please note: Initial values cannot be downloaded to the CPU.

Comment Enter a comment in this field helps to document the variables. The comment can have up
to 79 characters.

 Creating Data Blocks
 11.3 Data View of Data Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 249

11.3 Data View of Data Blocks

The data view shows you the current values of all variables in the data block. You can only change
these values in the data view. The table representation in this view is the same for all shared data
blocks. For instance data blocks an additional "Declaration" column is displayed.

For variables with complex data types or user-defined data types, all elements are displayed in
their own row with their full symbolic name in the data view. If the elements are in the IN_OUT area
of an instance data block, the pointer points to the complex or user-defined data type in the "Actual
Value" column.

The data view displays the following columns:

Column Explanation

Address Displays the address that STEP 7 automatically assigns for the variable.
Declaration This column is only displayed for instance data blocks. It shows you how the variables in

the variable declaration of the function block are declared:
• Input parameter (IN)
• Output parameter (OUT)
• In/out parameter (IN_OUT)
• Static data (STAT)

Name The symbolic name assigned in the variable declaration for the variable. You cannot edit
this field in the data view.

Type Displays the data type defined for the variable.
For shared data blocks, only the elementary data types are listed here because the
elements are listed individually in the data view for variables with complex or user-
defined data types.
For instance data blocks the parameter types are also displayed, for in/out parameters
(IN_OUT) with complex or user-defined data types, a pointer points to the data type in
the "Actual Value" column.

Initial Value The initial value that you entered for the variable if you do not want the software to use
the default value for the specified data type.
When you save a data block for the first time, the initial value is used as the current value
if you have not explicitly defined actual values for the variables.
Please note: Unlike with actual values, initial values cannot be downloaded to the CPU.

Actual Value Offline: The value that the variable had when the data block was opened or to which you
last changed it and saved it (even if you opened the data block online, this display is not
updated).
Online: The current value on opening the data block is displayed but not updated
automatically. To update the view, press F5.
You can edit this field if it does not belong to an in/out parameter (IN_OUT) with a
complex or user-defined data type. All values must be compatible with the data type.
Please note. Only current values can be downloaded to the CPU/

Comment The comment entered to document the variable. You cannot edit this field in the data
view.

Creating Data Blocks
11.4 Editing and Saving Data Blocks

 Programming with STEP 7
250 Manual, 04/2017, A5E41552389-AA

11.4 Editing and Saving Data Blocks

11.4.1 Entering the Data Structure of Shared Data Blocks

If you open a data block which is not assigned to a user-defined data type or function block, you
can define its structure in the declaration view of the data block. With data blocks which are not
shared, the declaration view cannot be changed.

1. Open a shared data block, meaning a block which is not associated with a UDT or FB.

2. Display the declaration view of the data block if this view is not set already.

3. Define the structure by filling out the table displayed in accordance with the information below.

With data blocks which are not shared, the declaration view cannot be modified.

Column Explanation

Address Displays the address which STEP 7 automatically assigns for the variable when you finish
entering a declaration.

Name Enter the symbolic name you have to assign to each variable here.
Type Enter the data type you want to assign to the variable (BOOL, INT, WORD, ARRAY, etc.).

The variables can have elementary data types, complex data types, or user-defined data
types.

Initial Value Here you can enter the initial value if you do not want the software to use the default value
for the data type entered. All values must be compatible with the data type.
When you save a block for the first time, the initial value is used as the actual value if you
have not explicitly defined actual values for the variables.

Comment Entering an optional comment in this field helps to document the variable. The comment can
have up to 79 characters.

 Creating Data Blocks
 11.4 Editing and Saving Data Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 251

11.4.2 Entering and Displaying the Data Structure of Data Blocks Referencing an
FB (Instance DBs)

Input
When you associate a data block with a function block (instance DB), the variable declaration of
the function block defines the structure of the data block. Any changes can only be made in the
associated function block.
1. Open the associated function block (FB).
2. Edit the variable declaration of the function block.
3. Create the instance data block again.

Display
In the declaration view of the instance data block you can display how the variables in the function
block were declared.
1. Open the data block.
2. Display the declaration view of the data block if this view is not set already.
3. See below for more information on the table displayed.

With data blocks which are not shared, the declaration view cannot be changed.

Column Explanation

Address Displays the address which STEP 7 automatically assigns for the variable.
Declaration This column shows you how the variables in the variable declaration of the function block

are declared:
• Input parameter (IN)
• Output parameter (OUT)
• In/out parameter (IN_OUT)
• Static data (STAT)
The declared temporary local data of the function block are not in the instance data block.

Name The symbolic name assigned in the variable declaration of the function block.
Type Displays the data type assigned in the variable declaration of the function block. The

variables can have elementary data types, complex data types, or user-defined data types.
If additional function blocks are called within the function block for whose call static
variables have been declared, a function block or a system function block (SFB) can also
be specified here as the data type.

Initial Value The initial value that you entered for the variable in the variable declaration of the function
block if you do not want the software to use the default value.
When you save a data block for the first time, the initial value is used as the actual value if
you have not explicitly defined actual values for the variables.

Comment The comment entered in the variable declaration for the function block to document the
data element. You cannot edit this field.

 Note

For data blocks that are assigned to a function block, you can only edit the actual values for the
variables. To enter actual values for the variables, you must be in the data view of data blocks.

Creating Data Blocks
11.4 Editing and Saving Data Blocks

 Programming with STEP 7
252 Manual, 04/2017, A5E41552389-AA

11.4.3 Entering the Data Structure of User-Defined Data Types (UDT)

1. Open the user-defined data type (UDT).

2. Display the declaration view if this view is not set already.

3. Define the structure of the UDT by determining the sequence of variables, their data type, and
an initial value if required using the information in the table below.

4. You complete the entry of a variable by exiting the row with the TAB key or RETURN.

Column Explanation

Address Displays the address which STEP 7 automatically assigns for the variable when you finish
entering a declaration.

Name Enter the symbolic name you have to assign to each variable here.
Type Enter the data type you want to assign to the variable (BOOL, INT, WORD, ARRAY, etc.).

The variables can have elementary data types, complex data types, or their own user-
defined data types.

Initial Value Here you can enter the initial value if you do not want the software to use the default value
for the data type entered. All values must be compatible with the data type.
When you save an instance of the user-defined data type (or a variable, or a data block)
for the first time, the initial value is used as the actual value if you have not explicitly
defined actual values for the variables.

Comment Entering a comment in this field helps to document the variables. The comment can have
up to 79 characters.

 Creating Data Blocks
 11.4 Editing and Saving Data Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 253

11.4.4 Entering and Displaying the Structure of Data Blocks Referencing a UDT

Input
When you assign a data block to a user-defined data type, the data structure of the user-defined
data type defines the structure of the data block. Any changes can only be made in the associated
user-defined data type.

1. Open the user-defined data type (UDT).

2. Edit the structure of the user-defined data type.

3. Create the data block again.

Display
You can only display how the variables were declared in the user-defined data type in the
declaration view of the data block.

1. Open the data block.

2. Display the declaration view of the data block if this view is not set already.

3. See below for more information on the table displayed.

The declaration view cannot be modified. Any changes can only be made in the associated user-
defined data type.

Column Explanation

Address Displays the address which STEP 7 automatically assigns for the variable.
Name The symbolic name assigned in the variable declaration of the user data type.
Type Displays the data types assigned in the variable declaration of the user-defined data

type. The variables can have elementary data types, complex data types, or user-defined
data types.

Initial Value The initial value that you entered for the variable in the user-defined data type if you do
not want the software to use the default value.
When you save a data block for the first time, the initial value is used as the actual value
if you have not explicitly defined actual values for the variables.

Comment The comment entered in the variable declaration for the user-defined data type to
document the data element.

 Note

For data blocks that are assigned to a user-defined data type, you can only edit the actual values
for the variables. To enter actual values for the variables, you must be in the data view of data
blocks.

Creating Data Blocks
11.4 Editing and Saving Data Blocks

 Programming with STEP 7
254 Manual, 04/2017, A5E41552389-AA

11.4.5 Editing Data Values in the Data View

Editing actual values is only possible in the data view of data blocks.

1. If necessary, toggle to the table display in the data view using the menu command View >
Data View.

2. Enter the required actual values for the data elements in the fields of the column "Actual
Value." The actual values must be compatible with the data type of the data elements.

Any incorrect entries (for example, if an actual value entered is not compatible with the data type)
made during editing are recognized immediately and shown in red. These errors must be corrected
before saving the data block.

 Note

Any changes to the data values are only retained once the data block has been saved.

11.4.6 Resetting Data Values to their Initial Values

Resetting data values is only possible in the data view of data blocks.

1. If necessary, toggle to the table display in the data view using the menu command View >
Data View.

2. Select the menu command Edit > Initialize Data Block to do this.

All variables are assigned their intended initial value again, meaning the actual values of all
variables are overwritten by their respective initial value.

 Note

Any changes to the data values are only retained once the data block has been saved.

 Creating Data Blocks
 11.4 Editing and Saving Data Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 255

11.4.7 Saving Data Blocks

To enter newly created blocks or changed data values in data blocks in the programming device
database, you must save the respective block. The data are then written to the hard disk of the
programming device.

To save blocks on the hard disk of the programming device:
1. Activate the working window of the block you want to save.

2. Select one of the following menu commands:

- File > Save saves the block under the same name.

- File > Save As saves the block under a different S7 user program or under a different
name. Enter the new path or new block name in the dialog box which then appears. With
data blocks, you may not use the name DB0 because this number is reserved for the
system.

In both cases the block is saved only if its syntax contains no errors. Syntax errors are identified
immediately when the block is created and are then displayed in red. These errors must be
corrected before the block can be saved.

 Note

• You can also save blocks or source files beneath other projects or libraries in the
SIMATIC Manager (by dragging & dropping, for example).

• You can only save blocks or complete user programs to a memory card in the
SIMATIC Manager.

• If problems occur when saving or compiling large blocks, you should reorganize the project.
Use the menu command File > Reorganize in the SIMATIC Manager to do this. Then try to
save or compile again.

Creating Data Blocks
11.4 Editing and Saving Data Blocks

 Programming with STEP 7
256 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 257

12 Parameter Assignment for Data Blocks

12.1 Assigning Parameters to Technological Functions

With the function "Parameter Assignment for Data Blocks" you can easily assign parameters to the
temperature controller blocks FB 58 "TCONT_CP" and FB 59 "TCONT_S" that are supplied in the
standard library and monitor them online.

To do so, proceed as follows:
1. In the SIMATIC Manager, open the STEP 7 standard library by selecting the menu command

File > Open > Libraries.

2. Select "PID Control Blocks" and then click on "Blocks". Here you will find the following function
blocks with the attribute "S7_techparam":

- FB 58 "TCONT_CP": Temperature controller for actuators with continuous or pulsing input
signals

- FB 59 "TCONT_S": Temperature controller for integral-type actuators

3. Copy the appropriate function block (FB 58 or FB 59) from the standard library into your
project.

4. Select the menu command Insert > S7 Block > Data Block to create an instance DB for the
FB that you selected.

5. In the SIMATIC Manager, double-click the instance DB to open it and start the function
"Parameter Assignment for Data Blocks".
Result: The instance DB is opened in the technological view. You can now easily assign
parameters to the instance DB and monitor it online.

6. Enter suitable controller values in the technological view. Any pertinent information, warnings
or errors will be displayed in the message window. To go to the location of a warning or error,
double-click on the corresponding warning or error.

 Note

You can determine if blocks that have the system attribute "S7_techparam" by selecting a block in
the SIMATIC Manager, selecting the menu command Edit > Object Properties and then opening
the "Attributes" tab.

Parameter Assignment for Data Blocks
12.1 Assigning Parameters to Technological Functions

 Programming with STEP 7
258 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 259

13 Creating STL Source Files

13.1 Basic Information on Programming in STL Source Files

You can enter your program or parts of it as an STL source file and then compile it into blocks in
one step. The source file can contain the code for a number of blocks, which are then compiled as
blocks in one compilation run.

Creating programs using a source file has the following advantages:

• You can create and edit the source file with any ASCII editor, then import it and compile it into
blocks using this application. The compilation process creates the individual blocks and stores
them in the S7 user program.

• You can program a number of blocks in one source file.

• You can save a source file even if it contains syntax errors. This is not possible if you create
logic blocks using an incremental syntax check. However, the syntax errors are only reported
once you compile the source file.

The source file is created in the syntax of the programming language representation Statement List
(STL). The source file is given its structure of blocks, variable declaration, and networks using
keywords.

When you create blocks in STL source files you should note the following:

• Guidelines for Programming STL Source Files

• Syntax and Formats for Blocks in STL Source Files

• Structure of Blocks in STL Source Files

Creating STL Source Files
13.2 Rules for Programming in STL Source Files

 Programming with STEP 7
260 Manual, 04/2017, A5E41552389-AA

13.2 Rules for Programming in STL Source Files

13.2.1 Rules for Entering Statements in STL Source Files

An STL source file consists mainly of continuous text. To enable the file to be compiled into blocks,
you must observe certain structures and syntax rules.

The following general guidelines apply to creating user programs as STL source files:

Topic Rule

Syntax The syntax of the STL statements is the same as in the incremental Statement List
editor. One exception to this is the CALL instruction.

CALL In a source file, you enter parameters in brackets. The individual parameters are
separated by a comma.
Example: FC call (one line)
CALL FC10 (param1 :=I0.0,param2 :=I0.1);
Example: FB call (one line)
CALL FB10, DB100 (para1 :=I0.0,para2 :=I0.1);

Example: FB call (more than one line)
CALL FB10, DB100 (
 para1 :=I0.0,
 para2 :=I0.1);

Note:
When calling a block, transfer the parameters in the defined order in the ASCII
Editor. Otherwise the comment assignment for these lines may not match in the STL
and source file views.

Upper/lower case The editor in this application is not case-sensitive, the exception to this being
system attributes and jump labels. When entering strings (data type STRING) you
must also observe upper and lower case.
Keywords are shown in upper case. When compiled, upper and lower case are not
observed; therefore you can enter keywords in upper or lower case or a mixture of
the two.

Semicolon Designate the end of every STL statement and every variable declaration with a
semicolon (;). You can enter more than one statement per line.

Double slash (//) Begin every comment with a double slash (//) and end the comment with RETURN
(or line feed).

 Creating STL Source Files
 13.2 Rules for Programming in STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 261

13.2.2 Rules for Declaring Variables in STL Source Files

For every block in the source file you must declare the required variables.

The variable declaration section comes before the code section of the block.

The variables must - if they are being used - be declared in the correct sequence for declaration
types. This means all variables of one declaration type are together.

For Ladder, Function Block Diagram, and Statement List you fill out a variable declaration table, but
here you have to work with the relevant keywords.

Keywords for Variable Declaration

Declaration Type Keywords Valid for...

Input parameters "VAR_INPUT"
Declaration list
"END_VAR"

FBs, FCs

Output parameters "VAR_OUTPUT"
Declaration list
"END_VAR"

FBs, FCs

In/out parameters "VAR_IN_OUT"
Declaration list
"END_VAR"

FBs, FCs

Static variables "VAR"
Declaration list
"END_VAR"

FBs

Temporary variables "VAR_TEMP"
Declaration list
END_VAR

OBs, FBs, FCs

The keyword END_VAR denotes the end of a declaration list.

The declaration list is a list of the variables of a declaration type in which default values can be
assigned to the variables (exception: VAR_TEMP). The following example shows the structure of
an entry in the declaration list:

Duration_Motor1 : S5TIME := S5T#1H_30M ;

Variable Data type Default value

 Note

• The variable symbol must start with a letter. You may not assign a symbolic name for a
variable that is the same as one of the reserved keywords.

• If variable symbols are identical in the local declarations and in the symbol table, you can code
local variables by placing # in front of the name and putting variables in the symbol table in
quotation marks. Otherwise, the block interprets the variable as a local variable.

Creating STL Source Files
13.2 Rules for Programming in STL Source Files

 Programming with STEP 7
262 Manual, 04/2017, A5E41552389-AA

13.2.3 Rules for Block Order in STL Source Files

Called blocks precede the calling blocks. This means:

• The OB1 used in most cases, which calls other blocks, comes last. Blocks that are called from
OB1 must precede it.

• User-defined data types (UDT) precede the blocks in which they are used.

• Data blocks with an associated user-defined data type (UDT) follow the user-defined data type.

• Shared data blocks precede all blocks from which they are called.

• Instance data blocks follow the associated function block.

• DB0 is reserved. You cannot create a data block with this name.

13.2.4 Rules for Setting System Attributes in STL Source Files

System attributes can be assigned to blocks and parameters. They control the message
configuration and connection configuration, operator interface functions, and process control
configuration.

The following applies when entering system attributes in source files:

• The keywords for system attributes always start with S7_.

• The system attributes are placed in braces (curly brackets).

• Syntax: {S7_identifier := 'string'}
a number of identifiers are separated by ";".

• System attributes for blocks come before the block properties and after the keywords
ORGANIZATION_ and TITLE.

• System attributes for parameters are included with the parameter declaration, meaning before
the colon for the data declaration.

• A distinction is made between upper and lower case characters. This means that the correct
use of upper and lower case characters is important when entering system attributes.

The system attributes for blocks can be checked or changed in incremental input mode using the
menu command File > Properties under the "Attributes" tab.

The system attributes for parameters can be checked or changed in incremental input mode using
the menu command Edit > Object Properties. The cursor must be positioned in the name field of
the parameter declaration.

 Creating STL Source Files
 13.2 Rules for Programming in STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 263

13.2.5 Rules for Setting Block Properties in STL Source Files

You can more easily identify the blocks you created if you use block properties and you can also
protect these blocks from unauthorized changes.

The block properties can be checked or changed in incremental input mode using the menu
command File > Properties under the "General - Part 1" and "General - Part 2" tabs.

The other block properties can only be entered in the source file.

The following applies in source files:

• Block properties precede the variable declaration section.

• Each block property has a line of its own.

• The line ends with a semicolon.

• The block properties are specified using keywords.

• If you enter block properties, they must appear in the sequence shown in the Table of Block
Properties.

• The block properties valid for each block type are listed in the Assignment: Block Property to
Block Type.

 Note

The block properties are also displayed in the SIMATIC Manager in the object properties for a
block. The properties AUTHOR, FAMILY, NAME, and VERSION can also be edited there.

Creating STL Source Files
13.2 Rules for Programming in STL Source Files

 Programming with STEP 7
264 Manual, 04/2017, A5E41552389-AA

Block Properties and Block Order
When entering block properties, you should observe the input sequence shown in the following
table:

Order Keyword / Property Meaning Example

1. [KNOW_HOW_PROTECT] Block protection; a block compiled
with this option does not allow its
code section to be viewed. The
interface for the block can be
viewed, but it cannot be changed.

KNOW_HOW_PROTECT

2. [AUTHOR:] Name of author: company name,
department name, or other name
(max. 8 characters without blanks)

AUTHOR : Siemens, but
no keyword

3. [FAMILY:] Name of block family: for example,
controllers
(max. 8 characters without blanks)

FAMILY : controllers, but
no keyword

4. [NAME:] Block name (max. 8 characters) NAME : PID, but no
keyword

5. [VERSION: int1 . int2] Version number of block
(both numbers between 0 and 15,
meaning 0.0 to 15.15)

VERSION : 3.10

6. [CODE_VERSION1] ID whether a function block can
have multiple instances declared or
not. If you want to declare multiple
instances, the function block
should not have this property

CODE_VERSION1

7. [UNLINKED] for DBs only Data blocks with the UNLINKED
property are only stored in the load
memory. They take up no space in
the working memory and are not
linked to the program. They cannot
be accessed with MC7 commands.
The contents of such a DB can be
transferred to the working memory
only with SFC 20 BLKMOV (S7-
300. S7-400) or SFC 83
READ_DBL (S7-300C).

8. [NON_RETAIN] This option is only effective if the
CPU supports the Retain property
of DBs. A data block with the "Non-
Retain" property is not stored in
retentive memory in such a CPU
(for example CPU 317 V2.1) and is
therefore reset to the load values at
each power cycle and after every
change from STOP to RUN.

9. READ_ONLY] only for DBs! Write protection for data blocks; its
data can only be read and not
changed.

FAMILY= Examples
VERSION= 3.10
READ_ONLY

13.2.6 Permitted Block Properties for Each Block Type

The following table shows which block properties can be declared for which block types:

 Creating STL Source Files
 13.2 Rules for Programming in STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 265

Property OB FB FC DB UDT

KNOW_HOW_PROTECT • • • • −

AUTHOR • • • • −

FAMILY • • • • −

NAME • • • • −

VERSION • • • • −

UNLINKED − − − • −

NON_RETAIN − − − • −

READ_ONLY − − − • −

Setting Block Protection with KNOW_HOW_PROTECT
You can protect your blocks from unauthorized users by setting block protection using the keyword
KNOW_HOW_PROTECT when you program the block in the STL source file.

This block protection has the following consequences:

• If you want to view a compiled block at a later stage in the incremental STL, FBD, or Ladder
editors, the code section of the block cannot be displayed.

• The variable declaration list for the block displays only the variables of the declaration types
var_in, var_out, and var_in_out. The variables of the declaration types var_stat and var_temp
remain hidden.

• The keyword KNOW_HOW_PROTECT is entered before any other block properties.

Setting Write Protection for Data Blocks with READ_ONLY
For data blocks, you can set up write protection so that the block is not overwritten during program
processing. The data block must exist in the form of an STL source file to do this.

Use the keyword READ_ONLY in the source file to set write protection. This keyword must appear
immediately before the variable declarations in a line on its own.

Creating STL Source Files
13.3 Structure of Blocks in STL Source Files

 Programming with STEP 7
266 Manual, 04/2017, A5E41552389-AA

13.3 Structure of Blocks in STL Source Files

The blocks in STL source files are structured using keywords. Depending on the type of block,
there are differences in the structure of:

• Logic blocks

• Data blocks

• Userdefined data types (UDT)

13.3.1 Structure of Logic Blocks in STL Source Files

A logic block is made up of the following sections, each of which is identified by the corresponding
keyword:

• Block start,

• identified by keyword and block number or block name, for example

- "ORGANIZATION_BLOCK OB1" for an organization block,

- "FUNCTION_BLOCK FB6" for a function block, or

- "FUNCTION FC1 : INT" for a function. With functions the function type is also specified.
This can be an elementary or complex data type (with the exception of ARRAY and
STRUCT) and defines the data type of the return value (RET_VAL). If no value is to be
returned, the keyword VOID is given.

• Optional block title introduced by the keyword "TITLE" (max. length of title: 64 characters)

• Additional comments, beginning with a double slash // at the start of the line

• Block properties (optional)

• Variable declaration section

• Code section, beginning with "BEGIN." The code section consists of one or more networks that
are identified by "NETWORK." You cannot enter a network number.

• Optional network for each network used, introduced by the keyword "TITLE =" (max. length of
title: 64 characters)

• Additional comments for each network, beginning with a double slash // at the start of the line

• Block end, identified by END_ORGANIZATION_BLOCK, END_FUNCTION_BLOCK, or
END_FUNCTION

• A blank must be placed between the block type and the block number. The symbolic block
name can be identified by quotation marks to ensure that the symbolic names of local variables
and names in the symbol table remain unique.

 Creating STL Source Files
 13.3 Structure of Blocks in STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 267

13.3.2 Structure of Data Blocks in STL Source Files

A data block consists of the following areas that are introduced by their respective keywords:

• Block start, identified by keyword and block number or block name, for example,
DATA_BLOCK DB26

• Reference to an associated UDT or function block (optional)

• Optional block title introduced by the keyword TITLE = (entries longer than 64 characters are
cut off)

• Optional block comment, beginning with a double slash //

• Block properties (optional)

• Variable declaration section (optional)

• Assignment section with default values, beginning with BEGIN (optional)

• Block end, identified by END_DATA_BLOCK

There are three types of data block:

• Data blocks, user-defined

• Data blocks with an associated user-defined data type (UDT)

• Data blocks with an associated function block (known as "instance" data blocks)

13.3.3 Structure of User-Defined Data Types in STL Source Files

A user-defined data type consists of the following areas that are introduced by their respective
keywords:

• Block start, identified by keyword TYPE and number or name, for example, TYPE UDT20

• Structured data type

• Block end, identified by END_TYPE

When you enter a user-defined data type, you must ensure that user-defined data types precede
the blocks in which they are used.

Creating STL Source Files
13.4 Syntax and Formats for Blocks in STL Source Files

 Programming with STEP 7
268 Manual, 04/2017, A5E41552389-AA

13.4 Syntax and Formats for Blocks in STL Source Files

The format tables show the syntax and formats that you should observe when programming STL
source files. The syntax is represented as follows:

• Each element is described in the right column.

• Any elements that must be entered are shown in quotation marks.

• The square brackets [...] mean that the contents of these brackets are optional.

• Keywords are given in upper case letters.

13.4.1 Format Table of Organization Blocks

The following table shows a brief list of the format for organization blocks in an STL source file:

Structure Description

"ORGANIZATION_BLOCK" ob_no or
ob_name

ob_no is the block number, for example: OB1;
ob_name is the symbolic name of the block as defined in the
symbol table

[TITLE=] Block title (entries longer than 64 characters are cut off)
[Block comment] Comments can be entered after "//"
[System attributes for blocks] System attributes for blocks
[Block properties] Block properties
Variable declaration section Declaration of temporary variables
"BEGIN" Keyword to separate the variable declaration section from the

list of STL instructions
NETWORK Start of a network
[TITLE=] Network title (max. 64 characters)
[Network comment] Comments can be entered after "//"
List of STL instructions Block instructions
"END_ORGANIZATION_BLOCK" Keyword to end organization block

 Creating STL Source Files
 13.4 Syntax and Formats for Blocks in STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 269

13.4.2 Format Table of Function Blocks

The following table shows a brief list of the format for function blocks in an STL source file:

Structure Description

"FUNCTION_BLOCK" fb_no or fb_name fb_no is the block number, for example FB6;
fb_name is the symbolic name of the block as defined in the
symbol table

[TITLE=] Block title (entries longer than 64 characters are cut off)
[Block comment] Comments can be entered after "//"
[System attributes for blocks] System attributes for blocks
[Block properties] Block properties
Variable declaration section Declaration of input, output, and in/out parameters, and

temporary or static variables
The declaration of the parameters may also contain the
declarations of the system attributes for parameters.

"BEGIN" Keyword to separate the variable declaration section from the
list of STL instructions

NETWORK Start of a network
[TITLE=] Network title (max. 64 characters)
[Network comment] Comments can be entered after "//"
List of STL instructions Block instructions
"END_FUNCTION_BLOCK Keyword to end function block

Creating STL Source Files
13.4 Syntax and Formats for Blocks in STL Source Files

 Programming with STEP 7
270 Manual, 04/2017, A5E41552389-AA

13.4.3 Format Table of Functions

The following table shows a brief list of the format for functions in an STL source file:

Structure Description

"FUNCTION" fc_no : fc_type or
 fc_name : fc_type

fc_no is the block number, for example FC5;
fc_name is the symbolic name of the block as defined in the
symbol table;

fc_type is the data type of the return value (RET_VAL) of the
function. This can be an elementary or complex data type
(with the exception of ARRAY and STRUCT) or VOID.

If you want to use system attributes
for the return value (RET_VAL), you must enter the system
attributes for parameters in front of the colon for the data
declaration.

[TITLE=]

Block title (entries longer than 64 characters are cut off)

[Block comment] Comments can be entered after "//"
[System attributes for blocks] System attributes for blocks
[Block properties] Block properties
Variable declaration section Declaration of input, output, and in/out parameters, and

temporary variables
"BEGIN" Keyword to separate the variable declaration section from the

list of STL instructions
NETWORK Start of a network
[TITLE=] Network title (max. 64 characters)
[Network comment] Comments can be entered after "//"
List of STL instructions Block instructions
"END_FUNCTION" Keyword to end function

 Creating STL Source Files
 13.4 Syntax and Formats for Blocks in STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 271

13.4.4 Format Table of Data Blocks

The following table shows a brief list of the format for data blocks in an STL source file:

Structure Description

"DATA_BLOCK" db_no or db_name db_no is the block number, for example DB5;
db_name is the symbolic name of the block as defined in the
symbol table

[TITLE=] Block title (entries longer than 64 characters are cut off)
[Block comment] Comments can be entered after "//"
[System attributes for blocks] System attributes for blocks
[Block properties] Block properties
Declaration section Instance DB: specifies UDT or FB to which the block relates

as block number or name according to the symbol table.
Global DB: specifies the variables with their data type and
start value (optional)

"BEGIN" Keyword to separate the declaration section from the list of
value assignments

[Assignment of current values] Variables can have specific current values assigned.
Individual variables either have constants assigned or a
reference is made to other blocks.

"END_DATA_BLOCK" Keyword to end data block

Creating STL Source Files
13.5 Creating STL Source Files

 Programming with STEP 7
272 Manual, 04/2017, A5E41552389-AA

13.5 Creating STL Source Files

13.5.1 Creating STL Source Files

The source file must be created in the source file folder beneath the S7 program. You can create
source files in the SIMATIC Manager or the editor window.

Creating Source Files in the SIMATIC Manager

1. Open the appropriate "Source Files" folder by double-clicking on it.

2. To insert an STL source file select the menu command Insert > S7 Software > STL Source
File.

Creating Source Files in the Editor Window

1. Select the menu command File > New.

2. In the dialog box, select the source file folder of the same S7 program that contains the user
program with the blocks.

3. Enter a name for the new source file.

4. Confirm with "OK".

The source file is created under the name you entered and is displayed in a window for editing.

13.5.2 Editing S7 Source Files

The programming language and editor with which a source file is edited can be set in the object
properties for the source file. This ensures that the correct editor and the correct programming
language are started when the source file is opened for editing. The STEP 7 Standard package
supports programming in STL source files.

Other programming languages are also available as optional packages. You can only select the
menu command to insert the source file if the corresponding software option is loaded on your
computer.

To edit an S7 source file, proceed as follows:

1. Open the appropriate "Source Files" folder by double-clicking on it.

2. Start the editor required for editing as follows:

- Double-click the required source file in the right half of the window.

- Select the required source file in the right half of the window and select the menu
command Edit > Open Object.

13.5.3 Setting The Layout of Source Code Text

To improve readability of text in source files, select menu command Options > Settings and the
"Source Code" tab. Specify the font, font style and color for the various elements of the source
code.

For example, you can specify to display line numbers and to display keywords in upper case
letters.

 Creating STL Source Files
 13.5 Creating STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 273

13.5.4 Inserting Block Templates in STL Source Files

Block templates for organization blocks (OB), function blocks (FB), functions (FC), data blocks
(DB), instance data blocks, data blocks with associated user-defined data types, and user-defined
data types (UDT) are available for programming in STL source files. The block templates make it
easier to enter blocks in your source file and to observe syntax and structure guidelines.

To insert a block template, proceed as follows:

1. Activate the window of the source file in which you want to insert a block template.

2. Position the cursor at the point in the file after which you want to insert the block template.

3. Select one of the menu commands Insert > Block Template > OB/FB/FC/DB/Instance DB/DB
Referencing UDT/UDT.

The block template is inserted in the file after the cursor position.

13.5.5 Inserting the Contents of Other STL Source Files

You can insert the contents of other source files into your STL source file.

Proceed as follows:

1. Activate the window of the source file in which you want to insert the contents of another
source file.

2. Position the cursor at the location in the file after which you want to insert the source file.

3. Select the menu command Insert > Object > File.

4. Select the required source file in the dialog box which appears.

The contents of the selected source file are inserted after the cursor position. Line feeds (carriage
returns) are retained.

13.5.6 Inserting Source Code from Existing Blocks in STL Source Files

You can insert the source code from other blocks into your STL source file which were created in
Ladder, Function Block Diagram, or Statement List. This is possible for organization blocks (OB),
function blocks (FB), functions (FC), data blocks (DB), and user-defined data types (UDT).

Proceed as follows:

1. Activate the window of the source file in which you want to insert a block.

2. Position the cursor at the location in the file after which you want to insert the source code from
the block.

3. Select the menu command Insert > Object > Block.

4. Select the required block in the dialog box which appears.

An equivalent source file is generated from the block. The contents of the source file are inserted
after the cursor position.

13.5.7 Inserting External Source Files

You can create and edit a source file with any ASCII editor, then import it into a project and compile
it into individual blocks using this application. To do this, you must import the source files into the

Creating STL Source Files
13.5 Creating STL Source Files

 Programming with STEP 7
274 Manual, 04/2017, A5E41552389-AA

"Source Files" folder of the S7 program in whose S7 user program the blocks created during
compilation are to be stored.

To insert an external source file, proceed as follows:

1. Select the source file folder of the S7 program in which the external source files are to be
imported.

2. Select the menu command Insert > External Source File.

3. In the dialog box which appears, enter the source file you want to import.

The file name of the source file you are importing must have a valid file extension. STEP 7 uses
the file extension to determine the source file type. This means, for example, that STEP 7 creates
an STL source file when it imports a file with the extension .AWL. Valid file extensions are listed in
the dialog box under "File Type."

 Note

You can also use the menu command Insert > External Source File to import source files you
created with STEP 7 version 1.

13.5.8 Generating STL Source Files from Blocks

You can generate an STL source file which you can edit with any text editor from existing blocks.
The source file is generated in the source file folder of the S7 program.

To generate a source file from a block, proceed as follows:

1. In the program editor, select the menu command File > Generate Source File.

2. In the dialog box, select the source file folder in which you want to create the new source file.

3. Enter a name for the source file in the text box.

4. In the "Select STEP 7 Blocks" dialog box, select the block(s) which you want to generate as the
given source file. The selected blocks are displayed in the right list box.

5. Confirm with "OK."

One continuous STL source file is created from the selected blocks and is displayed in a window
for editing.

 Creating STL Source Files
 13.5 Creating STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 275

13.5.9 Importing Source Files

To import a source file from any directory into a project:

1. In the SIMATIC Manager, select the source file folder into which you want to import the source
file.

2. Select the menu command Insert > External Source File.

3. In the dialog box displayed, select the destination directory and the source file to be imported.

4. Click the "Open" button.

13.5.10 Exporting Source Files

To export a source file from a project to any destination directory:

1. Select the source file in the source file folder.

2. Select the menu command Edit > Export Source File in the SIMATIC Manager.

3. Enter the destination directory and file name in the dialog box displayed.

4. Click the "Save" button.

 Note

If the object name does not have a file extension, a file extension derived from the file type is
added to the file name. For example, the STL source file "prog" is exported to the file "prog.awl."

If the object name already has a valid file extension, this is retained and not changed. For example,
the STL source file "prog.awl" is exported to the file "prog.awl."

If an object name has an invalid file extension (meaning a period is contained in the name), no file
extension is added.

You will find a list of valid file extensions in the "Export Source File" dialog box under "File type."

Creating STL Source Files
13.6 Saving and Compiling STL Source Files and Executing a Consistency Check

 Programming with STEP 7
276 Manual, 04/2017, A5E41552389-AA

13.6 Saving and Compiling STL Source Files and Executing a
Consistency Check

13.6.1 Saving STL Source Files

You can save an STL source file at any time in its current state. The program is not compiled and
no syntax check is run, meaning any errors are saved as well.

Syntax errors are detected and reported only when the source file is compiled or following a
consistency check.

To save a source file under the same name:
1. Activate the window for the source file you want to save.

2. Select the menu command File > Save.

To save a source file under a new name/in another project:
1. Activate the window for the source file you want to save.

2. Select the menu command File > Save As.

3. In the dialog box, select the source file folder in which you want to save the source file and
enter its new name.

13.6.2 Checking Consistency in STL Source Files

Using the menu command File > Consistency Check you can display any syntax errors in the
STL source file. In contrast to compiling, no blocks are generated.

When the consistency check is completed, a dialog box is displayed showing you the total number
of errors found.

Any errors that are found are listed individually in the lower part of the window with a line reference.
Correct these errors before compiling the source file so that all the blocks can be created.

13.6.3 Debugging STL Source Files

The active window for source files is split into two. The following errors are listed in the lower half:

• Errors found after compilation was initiated via menu command File > Compile.

• Errors found after a consistency check was initiated via menu command File > Consistency
Check.

To find the location of an error in a source file, position the cursor on the "Error" tab of the message
window. The faulty element is automatically highlighted in the code section and an error message
is output at the status bar.

 Creating STL Source Files
 13.7 Examples of STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 277

13.6.4 Compiling STL Source Files

Requirements
In order to be able to compile the program you created in a source file into blocks, the following
requirements must be fulfilled:

• Only source files which are stored in the "Source Files" folder beneath an S7 program can be
compiled.

• As well as the "Source Files" folder, a "Blocks" folder must also lie beneath the S7 program in
which the blocks created during compilation can be stored. The blocks programmed in the
source file are only created if the source file was compiled without error. If there are a number
of blocks programmed in a source file, only those which contain no errors are created. You can
then open these blocks, edit them, download them to the CPU, and debug them individually.

Procedure in the Editor
1. Open the source file you want to compile. The source file must be in the source file folder of the

S7 program in whose S7 user program the compiled blocks are to be stored.

2. Select the menu command File > Compile.

3. The "Compiler Report" dialog box is displayed showing the number of lines compiled and
syntax errors found.

The blocks specified for the file are only created once the source file has been compiled without
errors. If there are a number of blocks programmed in a source file, only those which contain no
errors are created. Warnings of errors do not prevent blocks being created.

Any syntax errors detected during compilation are shown in the lower part of the working window
and must be corrected before the respective blocks can be created.

Procedure in the SIMATIC Manager
1. Open the appropriate "Source Files" folder by double-clicking on it.

2. Select one or more source files that you want to compile. You cannot start a compilation run for
a closed source file folder to compile all the source files in it.

3. Select the menu command File > Compile to start compilation. The correct compiler is called
for the source file you selected. The successfully compiled blocks are then stored in the block
folder beneath the S7 program.
Any syntax errors detected during compilation are displayed in a dialog box and must be
corrected so that the blocks where the errors were found can be created as well.

13.7 Examples of STL Source Files

13.7.1 Examples of Declaring Variables in STL Source Files

Variables of Elementary Data Type

Creating STL Source Files
13.7 Examples of STL Source Files

 Programming with STEP 7
278 Manual, 04/2017, A5E41552389-AA

 // Comments are separated from the declaration section by a double slash.
VAR_INPUT // Keyword for input variable
 in1 : INT; // Variable name and type are separated by ":"
 in3 : DWORD; // Every variable declaration is terminated with a semicolon
 in2 : INT := 10; // Optional setting for an initial value in the declaration
END_VAR // End declaration of variables of the same declaration type
VAR_OUTPUT // Keyword for output variable
 out1 : WORD;
END_VAR // Keyword for temporary variable
VAR_TEMP
 temp1 : INT;
END_VAR

Variable of Data Type Array

VAR_INPUT // Input variable
 array1 : ARRAY [1..20] of INT; // array1 is a one-dimensional array
 array2 : ARRAY [1..20, 1..40] of DWORD; // array2 is a two-dimensional array
END_VAR

Variables of Data Type Structure

VAR_OUT // Output variable
OUTPUT1: STRUCT // OUTPUT1 has the data type STRUCT
 var1 : BOOL; // Element 1 of the structure
 var2 : DWORD; // Element 2 of the structure
 END_STRUCT; // End of the structure
END_VAR

13.7.2 Example of Organization Blocks in STL Source Files

 Creating STL Source Files
 13.7 Examples of STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 279

ORGANIZATION_BLOCK OB1
TITLE = Example for OB1 with different block calls
//The 3 networks show block calls
//with and without parameters

{S7_pdiag := 'true'} //System attribute for blocks
AUTHOR Siemens
FAMILY Example
NAME Test_OB
VERSION 1.1
VAR_TEMP
Interim value : INT; // Buffer
END_VAR

BEGIN

NETWORK
TITLE = Function call transferring parameters
// Parameter transfer in one line
CALL FC1 (param1 :=I0.0,param2 :=I0.1);

NETWORK
TITLE = Function block call
// transferring parameters
// Parameter transfer in more than one line
CALL Traffic light control , DB6 (// Name of FB, instance data block
dur_g_p := S5T#10S, // Assign actual values to parameters

del_r_p := S5T#30S,
starter := TRUE,
t_dur_y_car := T 2,
t_dur_g_ped := T 3,
t_delay_y_car := T 4,
t_dur_r_car := T 5,
t_next_red_car := T 6,
r_car := "re_main", // Quotation marks show symbolic
y_car := "ye_main", // names entered in symbol table
g_car := "gr_main",
r_ped := "re_int",
g_ped := "gr_int");

NETWORK
TITLE = Function block call
// transferring parameters
// Parameter transfer in one line
CALL FB10, DB100 (para1 :=I0.0,para2 :=I0.1);

END_ORGANIZATION_BLOCK

13.7.3 Example of Functions in STL Source Files

Creating STL Source Files
13.7 Examples of STL Source Files

 Programming with STEP 7
280 Manual, 04/2017, A5E41552389-AA

FUNCTION FC1: VOID
// Only due to call
VAR_INPUT
 param1 : bool;
 param2 : bool;
END_VAR
begin
end_function

FUNCTION FC2 : INT
TITLE = Increment number of items
// As long as the value transferred is < 1000, this function
// increases the transferred value. If the number of items
// exceeds 1000, "-1" is returned via the return value
// for the function (RET_VAL).

AUTHOR Siemens
FAMILY Throughput check
NAME : INCR_ITEM_NOS
VERSION : 1.0

VAR_IN_OUT
ITEM_NOS : INT; // No. of items currently manufactured
END_VAR

BEGIN

NETWORK
TITLE = Increment number of items by 1
// As long as the current number of items lies below 1000,
// the counter can be increased by 1
L ITEM_NOS; L 1000; // Example for more than one
> I; JC ERR; // statement in a line.
L 0; T RET_VAL;
L ITEM_NOS; INC 1; T ITEM_NOS; BEU;
ERR: L -1;
T RET_VAL;
END_FUNCTION

 Creating STL Source Files
 13.7 Examples of STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 281

FUNCTION FC3 {S7_pdiag := 'true'} : INT
TITLE = Increment number of items
// As long as the value transferred is < 1000, this function
//increases the transferred value. If the number of items
//exceeds 1000, "-1" is returned via the return value
//for the function (RET_VAL).
//
//RET_VAL has a system attribute for parameters here

AUTHOR : Siemens
FAMILY : Throughput check
NAME : INCR_ITEM_NOS
VERSION : 1.0

VAR_IN_OUT
ITEM_NOS {S7_visible := 'true'}: INT; // No. of items currently manufactured
//System attributes for parameters
END_VAR

BEGIN

NETWORK
TITLE = Increment number of items by 1
// As long as the current number of items lies below 1000,
// the counter can be increased by 1
L ITEM_NOS; L 1000; // Example for more than one
> I; JC ERR; // statement in a line.
L 0; T RET_VAL;
L ITEM_NOS; INC 1; T ITEM_NOS; BEU;
ERR: L -1;
T RET_VAL;

END_FUNCTION

Creating STL Source Files
13.7 Examples of STL Source Files

 Programming with STEP 7
282 Manual, 04/2017, A5E41552389-AA

13.7.4 Example of Function Blocks in STL Source Files

FUNCTION_BLOCK FB6
TITLE = Simple traffic light switching
// Traffic light control of pedestrian crosswalk
// on main street

{S7_m_c := 'true'} //System attribute for blocks
AUTHOR : Siemens
FAMILY : Traffic light
NAME : Traffic light01
VERSION : 1.3

VAR_INPUT

starter : BOOL := FALSE; // Cross request from pedestrian
t_dur_y_car : TIMER; // Duration green for pedestrian
t_next_r_car : TIMER; // Duration between red phases for cars
t_dur_r_car : TIMER;
number {S7_server := 'alarm_archiv'; S7_a_type := 'alarm_8'} :DWORD;
// Number of cars
// number has system attributes for parameters

END_VAR
VAR_OUTPUT

g_car : BOOL := FALSE; // GREEN for cars_

END_VAR
VAR
condition : BOOL := FALSE; // Condition red for cars
END_VAR

 Creating STL Source Files
 13.7 Examples of STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 283

BEGIN
NETWORK
TITLE = Condition red for main street traffic
// After a minimum duration has passed, the request for green at the
// pedestrian crosswalk forms the condition red
// for main street traffic.
 A(;
 A #starter; // Request for green at pedestrian crosswalk and
 A #t_next_r_car; // time between red phases up
 O #condition; // Or condition for red
);
 AN #t_dur_y_car; // And currently no red light
 = #condition; // Condition red
NETWORK
TITLE = Green light for main street traffic
 AN #condition; // No condition red for main street traffic
 = #g_car; // GREEN for main street traffic
NETWORK
TITLE = Duration of yellow phase for cars
 // Additional program required for controlling
 // traffic lights

END_FUNCTION_BLOCK

FUNCTION_BLOCK FB10
VAR_INPUT
 para1 : bool;
 para2: bool;
end_var
begin
end_function_block

data_block db10
FB10
begin
end_data_block

data_block db6
FB6
begin
end_data_block

Creating STL Source Files
13.7 Examples of STL Source Files

 Programming with STEP 7
284 Manual, 04/2017, A5E41552389-AA

13.7.5 Example of Data Blocks in STL Source Files

Data Block:

DATA_BLOCK DB 10
TITLE = DB Example 10
STRUCT
 aa : BOOL; // Variable aa of type BOOL
 bb : INT; // Variable bb of type INT
 cc : WORD;
END_STRUCT;
BEGIN // Assignment of actual values
 aa := TRUE;
 bb := 1500;
END_DATA_BLOCK

Data Block with Associated User-Defined Data Type:

DATA_BLOCK DB 20
TITLE = DB (UDT) Example
UDT 20 // Specifies associated UDT
BEGIN
 start := TRUE; // Assignment of actual values
 setp := 10;
END_DATA_BLOCK

 Note

The UDT used must come before the data block in the source file.

 Creating STL Source Files
 13.7 Examples of STL Source Files

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 285

Data Block with Associated Function Block:

DATA_BLOCK DB 30
TITLE = DB (FB) Example
FB 30 // Specifies associated FB
BEGIN
 start := TRUE; // Assignment of actual values
 setp := 10;
END_DATA_BLOCK

 Note

The associated function block must come before the data block in the source file.

13.7.6 Example of User-Defined Data Types in STL Source Files

TYPE UDT20
STRUCT
 start : BOOL; // Variable of type BOOL
 setp. : INT; // Variable of type INT
 value : WORD; // Variable of type WORD
END_STRUCT;
END_TYPE

Creating STL Source Files
13.7 Examples of STL Source Files

 Programming with STEP 7
286 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 287

14 Displaying Reference Data

14.1 Overview of the Available Reference Data

You can create and evaluate reference data to make it easier to debug and modify your user
program. You use the reference data for the following:

• As an overview of your whole user program

• As the basis for changes and tests

• To complement your program documentation

The following table shows which information you can extract from the individual views:

View Purpose

Cross-reference list Overview of the addresses in the memory areas I, Q, M, P, T, C, and DB, FB,
FC, SFB, SFC calls used in the user program.
Using the menu command View > Cross References for Address, you can
display all the cross-references including overlapping access to the selected
address.

Assignment list for inputs,
outputs, and bit memory

Overview of which bits of the addresses in the memory areas I, Q, and M, and
which timers and counters (T and C) are already occupied within the user
program; forms an important basis for troubleshooting or changes in the user
program

Program structure Call hierarchy of the blocks within a user program and an overview of the
blocks used and their nesting levels

Unused symbols Overview of all symbols which are defined in the symbol table but not used in
the parts of the user program for which reference data are available

Addresses without symbols Overview of all absolute addresses which are used in the parts of the user
program for which reference data are available but for which no symbol has
been defined in the symbol table

The reference data for the selected user program include all the lists in the table. It is possible to
create and display one or more of the lists for one user program or for more than one user
program.

Displaying Reference Data
14.1 Overview of the Available Reference Data

 Programming with STEP 7
288 Manual, 04/2017, A5E41552389-AA

Displaying a Number of Views Simultaneously
Displaying other lists in additional windows allows you, for example, to:

• Compare the same lists for different S7 user programs.

• Display various views of a list, for example, a cross-reference list, displayed differently and
placed side by side on the screen. You can, for example, display only the inputs of an S7 user
program in one of the cross-reference lists and only the outputs in another list.

• Open a number of lists for an S7 user program simultaneously, for example, program structure
and cross-reference list.

 Displaying Reference Data
 14.1 Overview of the Available Reference Data

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 289

14.1.1 CrossReference List

The cross-reference list provides an overview of the use of addresses within the S7 user program.

When you display the cross-reference list you obtain a list of the addresses of memory areas input
(I), output (Q), bit memory (M), timer (T), counter (C), function block (FB), function (FC), system
function block (SFB), system function (SFC), I/O (P) and data block (DB), as used in the S7 user
program along with their addresses (absolute address or symbol) and usage. It is displayed in an
active window. The working window's title bar shows the name of the user program to which the
cross-reference list belongs.

Every line in the window corresponds to a cross-reference list entry. The search function makes it
easier for you to find specific addresses and symbols.

The cross-reference list is the default view when you display reference data. You can change this
default.

Structure
A cross-reference list entry consists of the following columns:

Column Content/Meaning

Address (symbol) Address
Block (symbol) Block in which the address is used
Type Whether a read (R) and/or write (W) access to the address is involved
Language Information on the programming language used to create the block
Location Double-click the location field to jump to the location of use for the selected

address.

The Block, Type, Language and Location columns are displayed only if the corresponding
properties were selected for the cross-reference list. This block information varies, depending on
the programming language the block was written in.

You can set the column width in the crossreference list shown on the screen as required using the
mouse.

Sorting
The crossreference list default option is to sort by memory areas. If you click a column header with
the mouse, you can sort the entries of this column by the default sort criteria.

Example of Cross-Reference List Layout

Address (symbol) Block (symbol) Type Language Location

I1.0 (Motor on) OB2 R STL Nw 2 Inst 33 /0
M1.2 (MemoryBit) FC2 R LAD Nw 33
C2 (Counter2) FB2 FBD Nw2

Displaying Reference Data
14.1 Overview of the Available Reference Data

 Programming with STEP 7
290 Manual, 04/2017, A5E41552389-AA

14.1.2 Program Structure

The program structure describes the call hierarchy of the blocks within an S7 user program. You
are also given an overview of the blocks used, their dependencies, and their local data
requirements.

Using the menu command View > Filter in the "Generating Reference Data" window you open a
tabbed dialog box. In the "Program Structure" tab you can set how you want the program structure
displayed.

You can choose between:

• Call structure and

• Dependency structure

Symbols for the Program Structure
Symbol Meaning

 Block called normally (CALL FB10)

 Block called unconditionally (UC FB10)

 Block called conditionally (CC FB10)

 Data block

 Recursion

 Recursion and called conditionally

 Recursion and called unconditionally

 Block not called

• Recursions in the call are recognized and indicated graphically in the call structure.

• Recursions within the call hierarchy are indicated by different symbols.

• Regularly called blocks (CALL), conditionally called blocks (CC) or unconditionally called
blocks (UC) are marked by different symbols.

• Blocks not called are displayed at the bottom of the call structure and marked with a black
cross. There is no further breakdown of the call structure of a block which is not called.

 Displaying Reference Data
 14.1 Overview of the Available Reference Data

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 291

Call Structure
The complete call hierarchy is displayed.

If the program structure is to be created for all organization blocks (OB) and OB1 is not in the S7
user program, or if a starting block was specified which is not present in the program, you are
automatically prompted to specify another block for the program structure root.

Display of multiple calls of blocks can be deactivated by option settings, both for the call structure
and for the dependency structure.

Displaying the Maximum Local Data Requirement in the Call Structure
To give you a quick overview of the local data requirement of the organization blocks in the user
program displayed, the following can be displayed in the tree structure:

• The maximum local data requirement per OB and

• The local data requirement per path

You can activate and deactivate this display in the "Program Structure" tab.

If synchronous error OBs (OB121, OB122) are present, a plus sign and the additional requirement
for the synchronous error OBs are displayed after the numerical value for the maximum local data
requirement.

Dependency Structure
The dependency structure shows the dependency of each block in the project on other blocks. The
block is displayed at the outer left and listed below in the indented segments are the blocks that call
or use this block.

Displaying Deleted Blocks
Lines relating to deleted blocks are highlighted in red color.

Displaying Reference Data
14.1 Overview of the Available Reference Data

 Programming with STEP 7
292 Manual, 04/2017, A5E41552389-AA

14.1.3 Assignment List

The Assignment lists show you which addresses are already assigned in the user program. This
display is an important basis for troubleshooting or making changes in the user program.

The I/Q/M assignment list display gives you an overview of which bit in which byte of the memory
areas input (I), output (Q), bit memory (M), times (T) and counter (Z) is used. The I/Q/M
assignment list is displayed in a working window.

The working window's title bar shows the name of the S7 user program to which the assignment list
belongs.

I/Q/M Table
Each line contains one byte of the memory area in which the eight bits are coded according to their
access. It also indicates whether the access is of a byte, word, or double word.

Identification in the I/Q/M Table

White background The address is not accessed and thus not
assigned.

X The address is accessed directly.
Blue background The address is accessed indirectly (byte,

word, or double word access).

Columns in the I/Q/M Table

Column Content/Meaning

7
6
5
4
3
2
1
0

Bit number of the corresponding byte

B The byte is occupied by a one-byte access
W The byte is occupied by a one-word access
D The byte is occupied by a double-word access

Example
The following example shows the typical layout of an assignment list for inputs, outputs, and bit
memory (I/Q/M).

 Displaying Reference Data
 14.1 Overview of the Available Reference Data

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 293

The first row shows the assignment of input byte IB 0. Inputs for address IB 0 are accessed directly
(bit access). The columns "0", "1", "2", "3", "5", and "6" are identified with "X" for bit access.

There is also word access to memory bytes 1 and 2, 2 and 3 or 4 and 5. For this reason, a "bar" is
shown in the "W" column, and the cells also have a light blue background. The black tip of the bar
shows the start of word access.

T/C Table
Each row displays 10 timers or counters.

Example

 0 1 2 3 4 5 6 7 8 9

T 00-09 . T1 . . . T6 . . .
T 10-19 . . T12 T17 . T19
T 20-29 T24
Z 00-09 . . Z2 Z7 . .
Z 10-19 Z19
Z 20-29
Z 30-39 Z34

In this example, the timers T1, T6, T12, T17, T19, T24 and the counters Z2, Z7, Z19, Z34 are
occupied.

The lists are sorted alphabetically. You can arrange the entries by clicking on the column title.

Displaying Reference Data
14.1 Overview of the Available Reference Data

 Programming with STEP 7
294 Manual, 04/2017, A5E41552389-AA

14.1.4 Unused Symbols

You are shown an overview of all the symbols with the following characteristics:

• The symbols defined in the symbol table.

• The symbols not used in the parts of the user program for which reference data exist.

They are displayed in an active window. The working window's title bar shows the name of the user
program to which the list belongs.

Every line shown in the window corresponds to a list entry. A line consists of address, symbol, data
type, and comment.

Column Content/Meaning

Address Absolute address
Data Type Data type of the address
Comment Comment on the address from the symbol table

Example of List of Unused Symbols Layout

Symbol Address Data Type Comment

MCB1 I 103.6 BOOL Motor circuit breaker 1
MCB2 I 120.5 BOOL Motor circuit breaker 2
MCB3 I 121.3 BOOL Motor circuit breaker 3

You can sort the entries by clicking the column title.

You can also remove symbols that are no longer needed from the list. To do this, select symbols in
the list and then execute the "Delete symbols" function.

 Displaying Reference Data
 14.1 Overview of the Available Reference Data

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 295

14.1.5 Addresses Without Symbols

When you display the list of addresses without symbols, you obtain a list of the elements which are
used in the S7 user program, but which are not defined in the symbol table. They are displayed in
an active window. The working window's title bar shows the name of the user program to which the
list belongs.

A line consists of the address and the number of times that the address is used in the user
program. The entries are sorted according to address.

Example:

Address Number

Q 2.5 4
I 23.6 3
M 34.1 20

You can also assign names to addresses without symbols. To do this, select addresses in the list
and then execute the "Edit symbols" function.

14.1.6 Displaying Block Information for LAD, FBD, and STL

Language relevant information for Ladder Logic, Function Block Diagram, and Statement List is
displayed in the cross-reference list and the program structure. This information consists of the
block language and details.

The "Program Structure" view only displays language relevant information if the filter is set to "Call
Structure" in the "Program Structure" tab and if respective options were selected.

Language relevant information in the "Cross References" can be shown or hidden via menu
command View > Filter.

• Activate the "Block language" and "Details" check box in the "Cross References" tab of the
"Filter" dialog box to display the block language information.

Language relevant information varies according to the programming language the block was
written in and is shown using abbreviations.

Language Network Statement Instruction

STL Nw Inst /
LAD Nw
FBD Nw

Nw and Inst specify in which network and in which statement the address is used (cross-reference
list) or the block is called (program structure).

Displaying Block Information for the Optional Programming Languages
The online help topics on block information can be accessed if the corresponding optional package
is installed.

Displaying Reference Data
14.2 Working with Reference Data

 Programming with STEP 7
296 Manual, 04/2017, A5E41552389-AA

14.2 Working with Reference Data

14.2.1 Ways of Displaying Reference Data

The following possibilities are available for displaying reference data:

Displaying from the SIMATIC Manager
1. In the project window in the component view offline, select the "Blocks" folder.

2. Select the menu command Options > Reference Data > Display.

Displaying from the Editor Window
1. Open a block in the "Blocks" folder.

2. In the window of the programming language editor, select the menu command Options >
Reference Data.

The "Customize" dialog box is displayed. Here you can select the view that is shown first. The
default view is the one in the application for displaying reference data that was closed last. You can
suppress the dialog for future calls.

Displaying Directly from the Compiled Block
You can display the reference data for a compiled block directly from the language editor to get a
current overview of your user program.

 Displaying Reference Data
 14.2 Working with Reference Data

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 297

14.2.2 Displaying Lists in Additional Working Windows

Using the menu command Window > New Window you can open additional working windows and
display other views of the reference data (for example, List of Unused Symbols).

You open a working window for previously hidden reference data using the menu command
Reference Data > Open.

You can change to another view of the reference data by selecting one of the commands in the
"View" menu or the corresponding button in the toolbar:

Reference Data View Menu Command to Display this Reference Data View

Addresses Without Symbols View > Addresses Without Symbols
Unused Symbols View > Unused Symbols
Assignment View > Assignment
Program Structure View > Program Structure
Cross-Reference List View > Cross References

Displaying Reference Data
14.2 Working with Reference Data

 Programming with STEP 7
298 Manual, 04/2017, A5E41552389-AA

14.2.3 Generating and Displaying Reference Data

Generating Reference Data:
1. In the SIMATIC Manager, select the block folder for which you want to generate reference

data.

2. Select the menu command Options > Reference Data > Generate in the SIMATIC Manager.

Before generating reference data, the computer checks to see if any reference data are available
and if so, whether the data are current.

• If reference data are available, they are generated.

• If the reference data available are not current, you can choose whether to update the reference
data or whether to generate them again completely.

Displaying Reference Data:
Using the menu command Options > Reference Data > Display you can display the reference
data.

Before displaying reference data, a check is made to ascertain whether any reference data exist
and whether the existing reference data are current.

• If no reference data exist they are generated.

• If incomplete reference data exist, a dialog box is displayed showing a notice that the reference
data are inconsistent. You can then decide whether you want to update the reference data and
to what extent. You then have the following possibilities:

Choice Meaning

For modified blocks only The reference data are updated for any modified or new blocks; information
on any blocks deleted is removed from the reference database.

For all blocks The reference data are generated again from scratch for all blocks.
Do not update The reference data are not updated.

In order to update the reference data, the blocks are recompiled. The appropriate compiler is called
to compile each block. Using the menu command View > Update you can refresh the view of the
reference data already displayed in the active window.

 Displaying Reference Data
 14.2 Working with Reference Data

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 299

14.2.4 Finding Address Locations in the Program Quickly

You can use reference data to position the cursor at different locations of an address in the
program when programming. To do this, you must have up-to-date reference data. However, you
do not have to start the application for displaying reference data.

Basic Procedure
1. Select the menu command Options > Reference Data > Generate in the SIMATIC Manager

to generate the current reference data. This step is only necessary if there are no reference
data, or if you have old reference data.

2. Select the address in an open block.

3. Select the menu command Edit > Go To > Instance.
A dialog box is now displayed containing a list with all instances of the address in the program.

4. Select the option "Overlapping access to memory areas" if you also want to display the
instances of addresses whose physical addresses or address area overlap with that of the
called address. The "Address" column is added to the table.

5. Select a location in the list and click the "Go To" button.

If the reference data are not up-to-date when you open the dialog box, a message to this effect will
appear. You can then update the reference data.

List of Locations
The list of locations in the dialog box contains the following details:

• The block in which the address is used

• The symbolic name of the block, if one exists

• Details, for example, information on the location and, if appropriate, the instruction, which
depends on the original programming language of the block or source file (SCL)

• Language-dependent information

• Type of access to the address: read-only (R), write-only (W), read and write (RW), unknown
(?).

• Block language

You can filter the display of locations and in this way view, for example, write access only for an
address. The online help for this dialog box provides you with more detailed information on what to
enter in the fields and the other information displayed.

 Note

Reference data only exist offline. This function therefore always works with the cross references of
the offline blocks, even if you call the function in an online block.

Displaying Reference Data
14.2 Working with Reference Data

 Programming with STEP 7
300 Manual, 04/2017, A5E41552389-AA

14.2.5 Example of Working with Address Locations

You want to determine at which locations output Q1.0 (direct/indirect) is set. The following STL
code in OB1 is used as an example:

Network 1:

A Q 1.0 // irrelevant

= Q 1.1 // in this example

Network 2:

A M1.0

A M2.0

= Q 1.0 // assignment

Network 3:

//comment line only

SET

= M1.0 // assignment

Network 4:

A I 1.0

A I 2.0

= M2.0 // assignment

This results in the following assignment tree for Q1.0:

 Displaying Reference Data
 14.2 Working with Reference Data

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 301

Then proceed as follows:

1. Position the cursor on Q1.0 (NW 1, Inst 1) in OB1 in the LAD/STL/FBD Editor.

2. Select the menu command Edit > Go To > Location or use the right mouse button to select
"Go to Location."
The dialog box now displays all the assignments for Q1.0:
OB1 Cycle Execution NW 2 Inst 3 /= W STL
OB1 Cycle Execution NW 1 Inst 1 /A R STL

3. Jump to "NW 2 Inst 3" in the Editor using the "Go To" button in the dialog box:
Network 2:
A M1.0
A M2.0
= Q 1.0

4. The assignments to both M1.0 and M2.0 must now be checked. First position the cursor on
M1.0 in the LAD/STL/FBD Editor.

5. Select the menu command Edit > Go To > Location or use the right mouse button to select
"Go to Location." The dialog box now displays all the assignments for M1.0:
OB1 Cycle Execution NW 3 Inst 2 /= W STL
OB1 Cycle Execution NW 2 Inst 1 /A R STL

6. Jump to "NW 3 Inst 2" in the Editor using the "Go To" button in the dialog box.

7. In the LAD/STL/FBD Editor in Network 3, you will see the assignment to M1.0 is not important
(because it is always TRUE) and that the assignment to M2.0 needs to be examined instead.

In STEP 7 versions earlier than V5, you would now have to run through the entire
sequence of assignments all over again. The buttons ">>" and "<<" make this much
simpler:

8. Place the open dialog box "Go to Location" on top, or call the function "Go to Location" in the
LAD/STL/FBD Editor from your current position.

9. Click the "<<" button once or twice until all the locations of Q1.0 are displayed; the last jump
location "NW 2 Inst 3" is selected.

10. Jump from the address locations dialog box to "NW 2 Inst 3" in the Editor using the "Go To"
button (as in point 3):
Network 2:
A M1.0
A M2.0
= Q 1.0

11. In point 4, the assignment to M1.0 was checked. Now you have to check all the (direct/indirect)
assignments to M2.0. Position the cursor on M2.0 in the Editor and call the function "Go to
Location:" All the assignments to M2.0 are displayed:
OB1 Cycle Execution NW 4 Inst 3 /= W STL
OB1 Cycle Execution NW 2 Inst 2 /A R STL

12. Jump to "NW 4 Inst 3" in the LAD/STL/FBD Editor using the "Go To" button:
Network 4:
A I 1.0
A I 2.0
= M2.0

13. Now you have to check the assignments to I1.0 and I2.0. This process is not described in this
example, because you proceed in the same way as before (point 4 onwards).

By switching between the LAD/STL/FBD Editor and the address locations dialog box, you can find
and check the relevant locations in your program.

Displaying Reference Data
14.2 Working with Reference Data

 Programming with STEP 7
302 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 303

15 Checking Block Consistency and Time Stamps as
a Block Property

15.1 Checking Block Consistency

Introduction
If the interfaces or the code of individual objects have to be adapted or extended, this can lead to
time stamp conflicts. Time stamp conflicts can in turn cause block inconsistencies between calling
objects and called objects or reference blocks and thus to a high amount correction work.

The "Check block consistency" function eliminates a lot of this correction work. The "Check block
consistency" function removes a large part of all the time stamp conflicts and block inconsistencies.
In the case of objects whose block inconsistencies could not be eliminated automatically, the
function places you at the position to be changed in the corresponding editor, where you can carry
out the required changes. All the block inconsistencies are eliminated and the objects are compiled
step-by-step.

Requirements
It is only possible to check block consistency for projects created from STEP 7 V5.0, Service Pack
3. For older projects, you must first compile everything when starting the block consistency check
(menu command Program > Compile All).

For objects created with an options package, the options package must be installed for the
consistency check.

Starting the Block Consistency Check
At the start of the block consistency check, the time stamps of the block interfaces are checked,
and objects that could cause block inconsistencies are highlighted in the tree view (Dependency
Tree: References / Call Tree).

1. In the SIMATIC Manager, go to the project window, select the required block folder and then
initiate the block consistency via menu command Edit > Check Block Consistency.

2. In "Check Block Consistency" select the menu command Program > Compile
STEP 7 automatically recognizes the programming language for the relevant objects and calls
the corresponding editor. As far as possible, the time stamp conflicts and block inconsistencies
are corrected automatically and the objects are compiled. If the time stamp conflict or the
inconsistency in an object cannot be eliminated automatically, an error message appears in the
output window (refer to Step 3 for further procedures). This process is repeated automatically
for all the objects in the tree view.

3. If it was not possible to eliminate all the block inconsistencies automatically during the
compilation run, the corresponding objects are marked in the output windows as error
messages. Position the mouse on the corresponding error entry and use the right-hand mouse
to call the error display in the pop-up menu. The relevant error is opened and the program
jumps to the positions to be changed. Eliminate all the block inconsistencies, and save and
close the object. Repeat this process for all the objects marked as errors.

Checking Block Consistency and Time Stamps as a Block Property
15.1 Checking Block Consistency

 Programming with STEP 7
304 Manual, 04/2017, A5E41552389-AA

4. Start Steps 2 and 3 again. Repeat this process until no more errors are displayed in the
message window.

 Checking Block Consistency and Time Stamps as a Block Property
 15.2 Time Stamps as a Block Property and Time Stamp Conflicts

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 305

15.2 Time Stamps as a Block Property and Time Stamp Conflicts

Blocks contain a code time stamp and an interface time stamp. These time stamps are displayed in
the dialog box for the block properties. You can monitor the consistency of STEP 7 programs
using time stamps.

STEP 7 displays a time stamp conflict if it detects a violation of the rules when comparing time
stamps. The following violations may occur:

• A called block is more up-to-date than the calling block (CALL)

• A referenced block is more up-to-date than the block which is using it

• Examples of the second type of violation:

• A UDT is more up-to-date than the block that is using it; that is, a DB or another UDT, or an
FC, an FB, or an OB that is using the UDT in the variable declaration table.

• An FB is more up-to-date than its corresponding instance DB.

• An FB2 is defined as a multiple instance in FB1 and FB2 is more up-to-date than FB1.

 Note
Even if the relationship between the interface time stamps is correct, inconsistencies may occur:

• The definition of the interface for the referenced block does not match the definition in the
location at which it is used.

These inconsistencies are known as interface conflicts. They can occur, for example, when blocks
are copied from different programs or when an ASCII source file is compiled and not all of the
blocks in a program are generated.

Checking Block Consistency and Time Stamps as a Block Property
15.3 Time Stamps in Logic Blocks

 Programming with STEP 7
306 Manual, 04/2017, A5E41552389-AA

15.3 Time Stamps in Logic Blocks

Code Time stamp
The time and date the block was created is entered here. The time stamp is updated:

• When the program code is changed

• When the interface description is changed

• When the comment is changed

• When an ASCII source file is created for the first time and compiled

• When the block properties ("Properties" dialog box) are changed

Interface Time stamp
The time stamp is updated:

• When the interface description is changed (changes to data types or initial values, new
parameters)

• When an ASCII source file is created for the first time and compiled, if the interface is changed
structurally.

• The time stamp is not updated:

• When symbols are changed

• When comments in the variable declaration are changed

• When changes are made in the TEMP area

Rules for Block Calls
• The interface time stamp of the called block must be older than the code time stamp of the

calling block.

• Only change the interface of a block if no block is open which calls this block. Otherwise, if you
save the calling blocks later than the changed block, you will not recognize this inconsistency
from the time stamp.

Procedure if a Time stamp Conflict Occurs
A time stamp conflict is displayed when the calling block is opened. After making changes to an FC
or FB interface, all calls to this block in calling blocks are shown in expanded form.

If the interface of a block is changed, all blocks which call this block must be adjusted as well.

After making changes to an FB interface, the existing multiple instance definitions and instance
data blocks must be updated.

 Checking Block Consistency and Time Stamps as a Block Property
 15.4 Time Stamps in Shared Data Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 307

15.4 Time Stamps in Shared Data Blocks

Code Time stamp
The time stamp is updated:

• When an ASCII source file is created for the first time

• When an ASCII source file is compiled

• When changes are made in the declaration view or in the data view of the block

Interface Time stamp
The time stamp is updated:

• When the interface description is changed in the declaration view (changes to data types or
initial values, new parameters)

15.5 Time Stamps in Instance Data Blocks

An instance data block saves the formal parameters and static data for function blocks.

Code Time stamp
The time and date the instance data blocks were created is entered here. The time stamp is
updated when you enter actual values in the data view of the instance data block. The user cannot
make changes to the structure of an instance data block because the structure is derived from the
associated function block (FB) or system function block (SFB).

Interface Time stamp
When an instance data block is created, the interface time stamp of the associated FB or SFB is
entered.

Rules for Opening Without Conflicts
The interface time stamps of the FB/SFB and the associated instance data block must match.

Procedure if a Time stamp Conflict Occurs
If you change the interface of an FB, the interface time stamp of the FB is updated. When you open
an associated instance data block, a time stamp conflict is reported because the time stamps of the
instance data block and the FB no longer match. In the declaration section of the data block the
interface is displayed with the symbols generated by the compiler (pseudo-symbols). The instance
data block can now only be viewed.

To remedy time stamp conflicts of this type, you must create the instance data block for a changed
FB again.

Checking Block Consistency and Time Stamps as a Block Property
15.6 Time Stamps in UDTs and Data Blocks Derived from UDTs

 Programming with STEP 7
308 Manual, 04/2017, A5E41552389-AA

15.6 Time Stamps in UDTs and Data Blocks Derived from UDTs

User-defined data types (UDTs) can, for example, be used to create a number of data blocks with
the same structure.

Code Time stamp
The code time stamp is updated on every change.

Interface Time stamp
The interface time stamp is updated when the interface description is changed (changes to data
types or initial values, new parameters).

The interface time stamp of a UDT is also updated when the ASCII source file is compiled.

Rules for Opening Without Conflicts
• The interface time stamp of the user-defined data type must be older than the interface time

stamp in logic blocks in which this data type is used.

• The interface time stamp of the user-defined data type must be identical to the time stamp of a
data block derived from a UDT.

• The interface time stamp of the user-defined data type must be younger than the time stamp of
a secondary UDT.

Procedure if a Time stamp Conflict Occurs
If you change a UDT definition that is used in a data block, function, function block, or another UDT
definition, STEP 7 reports a time stamp conflict when the block is opened.

The UDT component is shown as a fanned-out structure. All variable names are overwritten by
values preset by the system.

15.7 Correcting the Interfaces in a Function, Function Block, or UDT

If you need to correct the interface in an FB, FC, or UDT, proceed as follows to avoid time stamp
conflicts:

1. Generate an STL source file from the block you want to change and all directly or indirectly
referenced blocks.

2. Save the changes in the source file you generated.

3. Compile the modified source file back into blocks.

You can now save/download the interface changes.

 Checking Block Consistency and Time Stamps as a Block Property
 15.8 Avoiding Errors when Calling Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 309

15.8 Avoiding Errors when Calling Blocks

STEP 7 Overwrites Data in the DB Register
STEP 7 modifies the registers of the S7-300/S7400 CPU when various instructions are executed.
The contents of the DB and DI registers are, for example, swapped when you call an FB. This
allows the instance DB of the called FB to be opened without losing the address of the previous
instance DB.

If you work with absolute addressing, errors can occur accessing data saved in the registers. In
some cases, the addresses in the register AR1 (address register 1) and in the DB register are
overwritten. This means that you could read or write to the wrong addresses.

!
Danger
Danger of damage to property and persons when:

1. Using CALL FC, CALL FB, CALL multiple instance

2. Accessing a DB using the complete absolute address (for example DB20.DBW10)

3. Accessing variables of a complex data type

It is possible that the contents of DB registers (DB and DI), address registers (AR1, AR2), and
accumulators (ACCU1, ACCU2) may be changed.
In addition, you cannot use the RLO bit of the status word as an additional (implicit) parameter
when you call an FB or FC.
When using the programming techniques mentioned above, you must make sure that you save
and restore the contents yourself; otherwise errors may occur.

Saving Correct Data
The contents of the DB register can cause critical situations if you access the absolute addresses
of data using the abbreviated format. If, for example, you assume that DB20 is open (and that its
number is saved in the DB register), you can specify DBX0.2 to access the data in bit 2 of byte 0 of
the DB whose address is entered in the DB register (in other words DB20). If, however, the DB
register contains a different DB number you access the wrong data.

You can avoid errors when accessing data of the DB register by using the following methods to
address data:

• Use the symbolic address

• Use the complete absolute address (for example DB20.DBX0.2)

If you use these addressing methods, STEP 7 automatically opens the correct DB. If you use the
AR1 register for indirect addressing, you must always load the correct address in AR1.

Checking Block Consistency and Time Stamps as a Block Property
15.8 Avoiding Errors when Calling Blocks

 Programming with STEP 7
310 Manual, 04/2017, A5E41552389-AA

Situations in which Registers are Modified
The manipulation of the address registers for indirect addressing is relevant only in STL. The other
languages do not support indirect access to the address registers.

The adaptation of the DB register by the compiler must be taken into account in all programming
languages to ensure correct parameter transfer when blocks are called.

The contents of the address register AR1 and the DB register of the calling block are overwritten in
the following situations:

Situation Description

With actual parameters from
a DB

• Once you have assigned an actual parameter to a block from a DB (for
example DB20.DBX0.2) STEP 7 opens the DB (DB20) and adapts the
content of the DB register. The program then works with the adapted
DB after the block call.

When calling blocks in
conjunction with higher data
types

• After a block has been called from within an FC that transfers a
component of a formal parameter of a higher data type (string, array,
structure or UDT) to the called block, the content of AR1 and the DB
register of the calling block are modified.

• The same applies to a call from within an FB if the parameter is in the
VAR_IN_OUT area of the caller.

When accessing components
of a higher data type

• When an FB accesses a component of a formal parameter of a higher
data type in the VAR_IN_OUT area (string, array, structure or UDT),
STEP 7 uses the address register AR1 and the DB register. This
means that the contents of both registers are modified.

• When an FC accesses a component of a formal parameter of a higher
data type in the VAR_IN_OUT area (string, array, structure or UDT),
STEP 7 uses the address register AR1 and the DB register. This
means that the contents of both registers are modified.

 Note

• When an FB is called from within a version 1 block, the actual parameter for the first Boolean
IN or IN_OUT parameter is not transferred correctly if the command before the call does not
limit the RLO. In this case, it is logically combined with the existing RLO.

• When an FB is called (single or multiple instance), the address register AR2 is written to.

• If the address register AR2 is modified in an FB, such by the operations UC, CC or CALL (Call
FC/SFC without parameters), there is no guarantee that the FB will be executed correctly.

• If the complete absolute DB address is not transferred to an ANY parameter, the ANY pointer
does not get the DB number of the open DB. Instead, it always gets the number 0.

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 311

16 Configuring Messages

16.1 The Message Concept

Messages allow you to detect, localize, and remedy errors during processing on the programmable
controllers quickly, thus reducing downtimes on a plant considerably.

Before messages can be output, they must first be configured.

With STEP 7, you can create and edit messages linked to events with assigned message texts and
message attributes. You can also compile the messages and display them on display devices.

16.1.1 What Are the Different Messaging Methods?

There are different methods of creating messages.

Bit Messaging
Bit messaging requires the programmer to perform three steps:

• Create the user program on the programming device and set the required bit.

• Create an assignment list using any text editor in which a message text is assigned to the
message bit (for example, M 3.1 = limit switch pressure).

• Create the list of message texts on the operator panel on the basis of the assignment list.

The operator interface system queries the programmable controller cyclically to see whether the
message bit has changed or not. If the programmable controller signals a change, the
corresponding message is displayed. The message receives the time stamp from the operator
interface system.

Message Numbering
Message numbering requires the programmer to perform only one step:

Configuring Messages
16.1 The Message Concept

 Programming with STEP 7
312 Manual, 04/2017, A5E41552389-AA

• Create the user program on the programming device, set the required bit, and assign the
required message text to the bit directly while programming.

There is no cyclic query of the programmable controller. When the programmable controller signals
a change, the corresponding message number is passed to the operator interface system and the
corresponding message text is displayed. The message receives the time stamp from the
programmable controller and can therefore be traced more exactly than with bit messaging.

 Configuring Messages
 16.1 The Message Concept

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 313

16.1.2 Choosing a Messaging Method

Overview
The following table shows the properties and requirements for the different messaging methods:

Message Numbering
• Messages are managed in a common database for

programming device and operator panel
• The load on the bus is low (programmable controller

signals active)
• Messages receive the timestamp from the

programmable controller

Bit Messaging
• There is no common database for the

programming device and operator panel
• The load on the bus is high (operator panel

polls)
• Messages receive the timestamp from the

operator panel

The message numbering method recognizes the following three types of messages:

Block-Related Messages Symbol-Related Messages User-Defined Diagnostic

Messages

• Synchronized with the
program

• Displayed by ProTool (only
ALARM_S) and WinCC

• Possible with S7-300/400
• Programming using

message blocks:
- ALARM (S7-400 only)
- ALARM_8 (S7-400 only)
- ALARM_8P (S7-400

only)
- NOTIFY (S7-400 only)
- NOTIFY_8P (S7-400

only)
- ALARM_S(Q)
- AR_SEND (S7-400

only)
- ALARM_D(Q)

• Transfer to the operator
control system

- for WinCC via

AS-OS engineering
- For ProTool using

ProTool functions

• Not synchronized with the
program

• Display by WinCC
• Only possible with S7-400
• Configuration using the

symbol table
• Transfer to the AS

using system data
blocks (SDBs)

• Transfer to
operator control system
using AS-OS engineering

• Synchronized with the program
• Display in the diagnostic buffer

on the PG
• Possible with S7-300/400
• Programming using message

block (system function)
- WR_USMSG

• No transfer to operator control
system

STEP 7 only supports the more user-friendly message numbering method which will be described
in detail below. Bit messaging is configured in the HMI devices and is described there.

Configuring Messages
16.1 The Message Concept

 Programming with STEP 7
314 Manual, 04/2017, A5E41552389-AA

Examples of Message Numbering

Messaging Method Application

Block-related messages Used to report program-synchronous events, for example, to show that a
controller has reached a limit value

Symbol-related messages Used to report events that are independent of the program, for example,
a switch setting being monitored

User-defined messages Used to report diagnostic events in the diagnostic buffer, with each call
of the SFC

 Configuring Messages
 16.1 The Message Concept

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 315

16.1.3 SIMATIC Components

Overview
The following figure shows an overview of which SIMATIC components are involved in configuring
and displaying messages.

Configuring Messages
16.1 The Message Concept

 Programming with STEP 7
316 Manual, 04/2017, A5E41552389-AA

16.1.4 Parts of a Message

How a message is displayed depends on the messaging method, the message block used, and the
display device.

The possible parts of a message are listed in the following table:

Part Description

Timestamp Generated in the programmable controller when the message event occurs
Message state The following states are possible: incoming, outgoing, outgoing without

acknowledgement, outgoing with acknowledgement
Associated value Some messages can be assigned a process value that can be evaluated by the

message block used
Image If the system crashes the messages that occurred can be displayed subsequently

on the operator station
Message number A unique number throughout the project or CPU (project-oriented or CPU-

oriented). The number is assign by the system and identifies a message
Message texts Configured by the user

Example
The following example shows an alarm message on an operator panel.

 Configuring Messages
 16.1 The Message Concept

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 317

16.1.5 Which Message Blocks Are Available?

You can choose between the following message blocks, each of which contains a programmed
message function:

• SFB 33: "ALARM"

• SFB 34: "ALARM_8"

• SFB 35 "ALARM_8P"

• SFB 36 "NOTIFY"

• SFC 18: "ALARM_S" and SFC 17: "ALARM_SQ"

• SFB 37: "AR_SEND" (for sending archives; no configuration of message texts and message
attributes possible)

• SFB 31: "NOTIFY_8P"

• SFC 107: "ALARM_DQ"

• SFC 108: "ALARM_D"

Details are found in the reference online help on blocks.

When to Use Which Message Block
The following table helps you decide which message block to choose for your particular task.
Selecting a message block depends on:

• The number of channels available in the block and therefore the number of signals that are
monitored with each block call

• Whether messages are to be acknowledged

• The option of also specifying associated values

• The display devices to be used

• The project data for the CPU to be used.

Message
Block

Chan-
nels

Acknow-
ledge-
ment

Asso-
ciated
Values

WinCC
Display

ProTool
Display

CPU
Messages
/S7 Status
Display

PLC Remarks

ALARM
SFB33

1 Possible Up to
10

Yes No No S7-400 Sends a
message for
each incoming
or outgoing
edge

ALARM_8
SFB34

8 Possible No Yes No No S7-400 Sends a
message for
each incoming
or outgoing
edge of one or
more signals

ALARM_8P
SFB35

8 Possible Up to
10

Yes No No S7-400 As ALARM_8

NOTIFY
SFB36

1 No Up to
10

Yes No No S7-400 As ALARM

Configuring Messages
16.1 The Message Concept

 Programming with STEP 7
318 Manual, 04/2017, A5E41552389-AA

Message
Block

Chan-
nels

Acknow-
ledge-
ment

Asso-
ciated
Values

WinCC
Display

ProTool
Display

CPU
Messages
/S7 Status
Display

PLC Remarks

NOTIFY_8P
SFB 31

8 No up to 10 Yes No No S7-400 As NOTIFY

AR_SEND
SFB37

1 Yes No No S7-400 Used to send an
archive; no
configuration of
message texts
and message
attributes
possible

ALARM_SQ
SFC17

1 Possible 1 Yes Yes* Yes S7-300/
S7-400

Each time there
is an SFC call
and a signal
change
compared with
the last SFC
call, a message
is generated

ALARM_S
SFC18

1 No 1 Yes Yes* Yes S7-300/
S7-400

As ALARM_SQ

ALARM_DQ
SFC 107

1 Possible 1 Yes Yes Yes S7-
300/400

As ALARM_SQ

ALARM_D
SFC 108

1 No 1 Yes Yes Yes S7-
300/400

As ALARM_SQ

 * depending on the OP type

 Configuring Messages
 16.1 The Message Concept

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 319

16.1.6 Formal Parameters, System Attributes, and Message Blocks

Formal Parameters as Message Number Inputs
For each message or group of messages you need a formal parameter in your program that you
specify as the IN parameter in the variable overview of your program. This formal parameter is then
used as a message number input and forms the basis of a message.

How to Provide Formal Parameters with System Attributes
As a prerequisite for starting message configuration, you must first provide the formal parameters
with system attributes as follows:

1. Add the following system attributes for parameters: "S7_server" and "S7_a_type"

2. Assign values to the system attributes corresponding to the message blocks that you called in
your program code. The value for "S7_server" is always "alarm_archiv", the value for
"S7_a_type" corresponds to the called message block.

System Attributes and Corresponding Message Blocks
The message blocks themselves are not displayed as objects in the message server; instead, the
display contains the corresponding values of the system attribute "S7_a_type". These values have
the same names as the message blocks that exist as SFBs or SFCs (exception: "alarm_s").

S7_a_type Message Block Description Properties

alarm_8 ALARM_8 SFB34 8 channels, can be acknowledged, no associated
values

alarm_8p ALARM_8P SFB35 8 channels, can be acknowledged, up to 10
associated values per channel

notify NOTIFY SFB36 1 channel, cannot be acknowledged, up to 10
associated values

alarm ALARM SFB33 1 channel, can be acknowledged, up to 10
associated values

alarm_s ALARM_S SFC18 1 channel, cannot be acknowledged, up to 1
associated value

alarm_s ALARM_SQ SFC17 1 channel, can be acknowledged, up to 1
associated value

ar_send AR_SEND SFB37 Used to send an archive
notify_8p NOTIFY_8P SFB 31 8 channels, cannot be acknowledged, up to 10

associated values
alarm_s ALARM_DQ SFC 107 1 channel, cannot be acknowledged, up to 1

associated value
alarm_s ALARM_D SFC 108 1 channel, cannot be acknowledged, up to 1

associated value

You will find more detailed information in the reference online help on system attributes.

The system attributes are assigned automatically if the message blocks that you use in your
program are SFBs or FBs with corresponding system attributes and are called as multiple
instances.

Configuring Messages
16.1 The Message Concept

 Programming with STEP 7
320 Manual, 04/2017, A5E41552389-AA

16.1.7 Message Type and Messages

Message configuration allows you to use different procedures to create a message type or a
message. This depends on the message-type block via which you gain access to message
configuration.

The message-type block can be either a function block (FB) or an instance data block.
• With an FB you can create a message type to use as a type for creating messages. All entries

you make for the message type are entered in the messages automatically. If you assign an
instance data block to the function block, messages for the instance data block are generated
automatically in accordance with the message type and assigned message numbers.

• For an instance data block, you can modify messages generated based on this message type
for a specific instance.

The visible difference here is that message numbers are assigned for messages but not for
message types.

Locking Data for a Message Type
Message configuration allows you to enter texts and attributes for event-dependent messages. You
can also specify, for example, how you want to display the messages on specific display devices.
To make it easier to generate messages, you can work with message types.

• When you enter data (attributes and texts) for the message type, you can specify whether they
are to be locked or not. With locked attributes a key symbol is added next to the input box or a
checkmark is placed in the "Locked" column. Locked texts show a checkmark in the "Locked"
column.

• With the message type "locked data" you cannot make changes in the instance-specific
messages. The data are only displayed.

• If you do need to make changes, you must go back to the message type, remove the lock, and
make the changes there. The changes do not apply for instances that were generated before
the change.

Modifying Data Of Message Types
Whether or not the modification of data at message types has an influence on the instances
depends on whether you have assigned message numbers globally to the project (project-oriented
message numbers) or to the CPU (CPU-oriented message numbers) when you generated your
project.

• Assigning project-oriented message numbers: When you subsequently modify message type
data you also want to apply to the instances, you must also modify data at the instances
accordingly.

• Assigning CPU-oriented message numbers: Subsequent modifications of message type data
are automatically applied at the instances.
Exceptions: You have previously modified data at the instance or have subsequently locked or
unlocked message type data. If you copy an FB and an instance DB from a project with project-
oriented message numbers to a project with CPU-oriented message numbers, you will then
have to change the data at the instance in the same way you did it at the message type.

 Configuring Messages
 16.1 The Message Concept

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 321

 Caution:
When you copy the instances to another program and do not include the message type, the instance might
only be partially displayed. To remedy, copy the message type to the new program.
If texts and attributes for an instance are displayed in green, this means the following: these texts and
attributes are still as they were configured in the message type. They have not been changed at the instance.

Configuring Messages
16.1 The Message Concept

 Programming with STEP 7
322 Manual, 04/2017, A5E41552389-AA

16.1.8 How to Generate an STL Source File from Message-Type Blocks

When you generate an STL source file from message-type blocks, the configuration information is
also written to the source file.

This information is written to a pseudo-comment that begins with "*$ALARM_SERVER" and ends
with "*".

 Caution

When you set a symbolic reference for a block, note that the symbol table may not be modified
prior to the compilation of the source file.

When the source file contains multiple blocks, several pseudo-comment blocks will be joined to
form a single comment block. Individual blocks with message attributes must not be deleted from
the STL source file.

16.1.9 Assigning Message Numbers

You can specify if you want to assign message numbers for the project (project-oriented message
numbers) or for the CPU (CPU-oriented message numbers). Assigning message numbers for the
CPU has the advantage of allowing you to copy a program without having the message numbers
change, in which case they would have to be recompiled. It is only possible to display message
numbers for the CPU on an HMI device with the applications "WinCC V6.0" and/or "ProTool V6.0".
If you are working with an earlier version of these applications, you have to select message
numbers for the project.

 Configuring Messages
 16.1 The Message Concept

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 323

16.1.10 Differences Between Project-Oriented and CPU-Oriented Assignment of
Message Numbers

The table below lists the differences between project-oriented and CPU-oriented assignment of
message numbers:

Project oriented CPU oriented

Some of the message attributes and texts
depend on the used HMI unit and must be
configured display specific.

The assigned attributes and texts do not depend on the
HMI unit used, that is, there is no need to enter further
display devices or specify a display specific message for
this device.

Programs must be recompiled after they have
been copied.

Programs can be copied to other locations of a project
and to other projects (cross-project copying). However,
the program must be recompiled if only single blocks
have been copied.

When you subsequently change message type
data (texts and attributes), you must also
modify the instances.

If you subsequently change message type data (texts and
attributes), all changes are applied automatically to the
instances (Exception: you have previously changed the
data of the instance).

Texts can only be written on one line. Texts can be written on several lines.
For all message types (except WR_USMSG) up
to 2097151 messages per program can be
created.

Up to 8191 alarm_s messages can be created per
program.
For all other message types (except WR_USMSG) up to
32767 messages per program can be created.
When you "Save As with Reorganization" of projects or
copy programs from the project-wide to the CPU-wide
message number concept, you should therefore make
sure that the maximum number of possible messages per
program is not exceeded in the CPU-wide message
number concept!

Configuring Messages
16.1 The Message Concept

 Programming with STEP 7
324 Manual, 04/2017, A5E41552389-AA

16.1.11 Options for Modifying the Message Number Assignment of a Project

In the "Message number" tab of the SIMATIC manager you can preset the way message numbers
will be assigned (Menu command Options > Customize) to future projects and libraries. In this tab
you determine whether the message numbers are to be assigned only to the CPU (CPU-oriented)
or only to the project (project-oriented). You can also choose "Always ask for setting" if you want to
specify the assignment later.

If the initially set default "CPU-oriented" or "project-oriented" was active when you created the
project or library, you can no longer change the type of message number assignment for this
project or library.

If you have set "project-oriented" unique message number assignment and want to set "CPU-
oriented" unique assignment proceed as follows:

1. In SIMATIC Manager, select the corresponding project or library.

2. Select menu command File > Save As.

3. Enable the "With rearrangement" check box In the next dialog box and enter a new name.

4. Start the process with "Save As" and confirm your entries with "OK".

5. In one of the next dialogs you can specify "CPU-oriented" unique message number
assignments.

You can use the File > Delete command to delete the original project or library.

 Configuring Messages
 16.2 Project-Oriented Message Configuration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 325

16.2 Project-Oriented Message Configuration

16.2.1 How to Assign Project-Oriented Message Numbers

Messages are identified by a number which is unique throughout a project. To achieve this, the
individual STEP 7 programs are each allocated a number range within the total available range (1
to 2097151). If you copy a program and a conflict results - that is, if the same message numbers
have already been assigned in the target range - the new program must be allocated a new
number range. If such a situation arises, STEP 7 automatically opens the dialog box in which you
can specify the new number range.

If no messages have been configured, you can also set or change the number range for an
S7 program using the menu command Edit > Special Object Properties > Message Numbers.

By default, the message number range is assigned in steps of 20,000.

16.2.2 Assigning and Editing BlockRelated Messages

Block-related messages are assigned to a block (instance DB). To create a block-related message,
you can use system function blocks (SFBs) and system functions (SFCs) as message blocks.

16.2.2.1 How to Create Block-Related Messages (Project-Oriented)

Basic Procedure

Configuring Messages
16.2 Project-Oriented Message Configuration

 Programming with STEP 7
326 Manual, 04/2017, A5E41552389-AA

Programming Message-Type Blocks (FB)

1. In the SIMATIC Manager select the function block (FB) for which you want to generate a block-
related message and open this block with a double-click.

Result: The selected block is opened and displayed in the "LAD/STL/FBD" window.

2. Fill out the variable declaration table. For every message block that is called in the function
block you must declare variables in the calling function block.

Enter the following variables in the variable overview column:

- For the parameter "IN" enter a symbolic name for the message block input, for example,
"Meld01" (for message input 01) and the data type (must be "DWORD" without an initial
value).

- For the parameter "STAT" enter a symbolic name for the message block to be called, for
example, "alarm" and the corresponding data type, in this case "SFB33."

3. In the code section of the function block, insert the call for the selected message block, here
"CALL alarm", and finish your entry with RETURN.
Result: The input variables for the called message block (here SFB33) are displayed in the
code section of the function block.

4. Assign the symbolic name you assigned in step 2 for the message block input, here "Mess01,"
to the variable "EV_ID". The system attributes are now applied for the message of type "alarm".

Result: A flag should appear in the "Name" column for the parameter "IN" if the column is not
selected. The selected block is then set as a message-type block. The required system
attributes (for example, S7_server and S7_a_type) and the corresponding values are assigned
automatically (Note: for certain SFCs you will have to assign the system attributes for the
parameter "IN" yourself. To do this select the menu command Edit > Object Properties and
then select the "Attributes" tab.).

Caution: If you do not call an SFB, but rather an FB that contains multiple instances and
configured messages, you must also configure the messages of this FB, with multiple
instances, in the calling block.

5. Repeat steps 2 to 4 for all calls to message blocks in this function block.

6. Save the block using the menu command File > Save.

7. Close the "LAD/STL/FBD" window.

Opening the Message Configuration Dialog Box
• Select the desired message block and then select the menu command Edit > Special Object

Properties > Message in the SIMATIC Manager.

Result: The STEP 7 message configuration dialog box (standard dialog box) is opened.
Information on opening the PCS7 Message Configuration function can be found under PCS 7
Message Configuration.

 Configuring Messages
 16.2 Project-Oriented Message Configuration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 327

Editing a Message Type
1. Select the desired message block, open the message configuration, and enter the required

message text in the "Text" and "Attributes" tabs or select the required message attributes.
If you selected a multi-channel message block (for example, "ALARM_8"), you can assign
specific texts and, to certain extent, specific attributes to each subnumber.

2. Assign the required display devices to the message type by clicking the "New Device" button
and selecting the required display devices in the "Add Display Device" dialog box.

In the following tabbed pages, enter the required texts and attributes for the display devices. Exit
the dialog box with "OK".

 Note

When editing the display device specific texts and attributes, please read the documentation
supplied with your display device.

Creating Instance Data Blocks
1. When you have created a message type, you can associate instance data blocks to it and edit

the instance-specific messages for these data blocks.
To do this, in the SIMATIC Manager open the block that is to call your previously configured
function block, for example, "OB1", by double-clicking it. In the open code section of the OB,
enter the call ("CALL"), the name and number of the FB to be called and of the instance DB
that you want to associate with the FB as an instance. Confirm your entry with RETURN.

Example: Enter "CALL FB1, DB1". If DB1 does not yet exist, confirm the prompt asking
whether you want the instance DB created with "Yes."

Result: The instance DB is created. In the code section of the OB, the input variables of the
associated FBs, here for example "Mess01," and the message number allocated by the
system, here "1," are displayed.

2. Save the OB with the menu command File > Save and close the "LAD/STL/FBD" window.

Editing Messages
1. In SIMATIC Manager, select the generated instance DB, for example, "DB1" and then call the

menu command Edit > Special Object Properties > Message to open the message
configuration dialog box.

Result: The "Message Configuration" dialog box is opened and the selected instance DB with
the message number allocated by the system is displayed.

2. Enter the required changes for the corresponding instance DB in the appropriate tabs and add
other display devices if you wish. Exit the dialog box with "OK."

Result: The message configuration for the selected instance DB is then complete.

Transferring Configuration Data
• Transfer the configured data to the WinCC database (via the AS-OS connection configuration)

or the ProTool database.

Configuring Messages
16.2 Project-Oriented Message Configuration

 Programming with STEP 7
328 Manual, 04/2017, A5E41552389-AA

16.2.2.2 How to Edit Block-Related Messages (Project-Oriented)

1. In the SIMATIC Manager, select a block and then select the menu command Edit > Special
Object Properties > Message.

2. In the folder structure, click a message block input or one of its subnumbers (if available).

Result: The tabbed section for a standard message is displayed.

3. Enter the required texts and attributes in the "Text" and "Attributes" tabs.

Result: You have created a standard message that can be displayed on all display devices.

4. Using the "New Device" button, add a new display device of the type "ProTool" (Opx) or
"WinCC." Only those display devices on which the configured messages can be displayed are
available for selection.

Result: The new device is added and selected, and the corresponding tabbed section is
displayed.

5. Enter attributes and texts for the display-specific message in the display-specific "Texts" and
"Attributes" tabs.

Result: You have created a message variation that is only used as the message for the
selected display device.

If you want to edit other message variations for existing display devices:

• Select and open the message block in the detailed view by double-clicking it.

Result: The first display device is automatically selected and you can now edit display-specific
message variations for it.

 Configuring Messages
 16.2 Project-Oriented Message Configuration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 329

16.2.2.3 How to Configure PCS 7 Messages (Project-Oriented)

For editing message types and messages to be output on WinCC display devices, the PCS7
message configuration function in STEP 7 provides a user-friendly method of:

• Simplifying the configuration of display devices (created automatically)

• Simplifying the entry of attributes and texts for messages

• Ensuring that messages are standardized.

Opening the PCS7 Message Configuration Function
1. In the SIMATIC Manager, select the block (FB or DB) whose message texts you want to edit.

Select the menu command Edit > Object Properties to open the dialog box for entering
system attributes.

2. In the table shown, enter the system attribute "S7_alarm_ui" and the value: "1" (the value 0
disables the PCS7 message configuration tool). Property parameters can be set in
LAD/STL/FBD. DBs generated afterwards and assigned to the corresponding FBs take on
these attributes and can be switched independently of their message type (FB).
Note: A syntax check is performed when you enter the system attributes. Faulty entries are
highlighted in red.

3. Exit the dialog box with "OK."

4. Select the menu command Edit > Special Object Properties > Message

Result: The "PCS7 Message Configuration" dialog box is opened.

Editing Message Types
1. In the SIMATIC Manager, select the FB whose message texts you want to edit, and open the

PCS7 message configuration dialog box.

Result: The dialog box displays a tab for each message block for which you declared a
variable in the FB.

2. Fill out the text boxes for the message components "Origin," "OS area," and "Batch ID."

3. Enter the message class and the event text for all events of the message blocks used and
specify whether every event must be acknowledged individually.

4. For the message parts that apply for all instances and should not be changed, select the
"Locked" check box.

Editing Messages
1. Open SIMATIC Manager. Select the instance DB whose message texts you want to edit and

open PCS7 message configuration function.

2. Do not edit instance-specific message parts that are not locked.

Configuring Messages
16.2 Project-Oriented Message Configuration

 Programming with STEP 7
330 Manual, 04/2017, A5E41552389-AA

16.2.3 Assigning and Editing Symbol-Related Messages

16.2.3.1 How to Assign and Edit Symbol-Related Messages (Project-Oriented)

Symbol-related messages (SCAN) are assigned directly to a signal in the symbol table. Permitted
signals are all Boolean addresses: inputs (I), outputs (Q), and bit memory (M). You can assign
these signals different attributes, messages texts, and up to 10 associated values with the
message configuration function. You can make it easier to select signals in the symbol table by
setting filters.

With a symbol related message you can scan a signal in a predefined time interval to determine
whether a signal change has taken place.

 Note
The time interval is dependent on the CPU used.

Basic Procedure

During processing, the signals for which you have configured messages are checked
asynchronously to your program. The checks take place at the configured time intervals. The
messages are displayed on the assigned display devices.

 Caution
If you want to assign or edit symbol-related messages and, during the same work procedure, you
have previously copied symbols between two symbol tables, you will then have to first close the
symbol table that you no longer need to work in. Otherwise, you will not be able to save your
message configurations. Under certain conditions, the last entries made in the message
configuration dialog will be lost.

 Configuring Messages
 16.2 Project-Oriented Message Configuration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 331

16.2.4 Creating and Editing UserDefined Diagnostic Messages

Using this function you can write a user entry in the diagnostic buffer and send a corresponding
message that you create in the message configuration application. User-defined diagnostic
messages are created by means of the system function SFC52 (WR_USMSG; Error Class A or B)
that is used as a message block. You must insert the call for the SFC52 in your user program and
allocate it the event ID.

Requirements
Before you can create a user-defined diagnostic message, you must have done the following:

• Created a project in the SIMATIC Manager

• Created a S7 program in the project to which you want to assign one or more messages.

Basic Procedure
To create and display a user-defined diagnostic message, proceed as follows:

Configuring Messages
16.3 CPU-Oriented Message Configuration

 Programming with STEP 7
332 Manual, 04/2017, A5E41552389-AA

16.3 CPU-Oriented Message Configuration

16.3.1 How to Assign CPU-Oriented Message Numbers

Messages of the CPU are identified by a unique number. This is done by assigning each CPU a
number area. Other than for assigning project-oriented message numbers, there is no need to
assign a new number area to the new program. A new compilation of the program is therefore not
required. Note the exception when you copy individual blocks: In this case, you must recompile the
program in order to implement the modified message number.

Requirements
• WinCC V6.0

• ProTool V6.0

16.3.2 Assigning and Editing BlockRelated Messages

16.3.2.1 How to Create Block-Related Messages (CPU-Oriented)

Principles of operation

 Configuring Messages
 16.3 CPU-Oriented Message Configuration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 333

Programming Message-Type Blocks (FB)
1. In SIMATIC Manager, select the function block (FB) for which you want to generate a block-

related message and double-click to open it.

Result: The selected block is opened and displayed in the "LAD/STL/FBD" window.

2. Fill out the variable declaration table. You must declare the corresponding variables in the
calling function block for every message block that is called in the function block.

Enter the following variables in the variable overview column:

- For the parameter "IN" enter a symbolic name for the message block input, for example,
"Meld01" (for message input 01) and the data type (must be "DWORD" without an initial
value).

- For the parameter "STAT" enter a symbolic name for the message block to be called, for
example, "alarm" and the corresponding data type, here "SFB33."

3. In the code section of the function block, insert the call for the selected message block, here
"CALL alarm", and finish your entry with RETURN.

Result: The input variables for the called message block (here SFB 33) are displayed in the
code section of the function block.

4. Assign the symbolic name you assigned in step 2. for the message block input, here "Mess01,"
to the variable "EV_ID".

Result: A flag should appear in the "Name" column for parameter "IN" if the column is not
selected. The selected block is then set as a message-type block. The required system
attributes (for example, S7_server and S7_a_type) and the corresponding values are assigned
automatically (Note: for certain SFCs you will have to assign the system attributes for the
parameter "IN" yourself. To do this select the menu command Edit > Object Properties and
then select the "Attributes" tab.).

Caution: If you call an FB that contains multiple instances and configured messages instead of
an SFB, you must also configure the messages of this FB in the calling block.

5. Repeat steps 2. to 4. for all calls to message blocks in this function block.

6. Save the block using the menu command File > Save.

7. Close the "LAD/STL/FBD" window.

Opening the Message Configuration Dialog Box
• Select desired message block and then select the menu command Edit > Special Object

Properties > Message in the SIMATIC Manager.

Result: The STEP 7 message configuration dialog box is opened. Information on opening the
PCS7 Message Configuration function can be found under PCS7 Message Configuration
(CPU-Oriented).

Configuring Messages
16.3 CPU-Oriented Message Configuration

 Programming with STEP 7
334 Manual, 04/2017, A5E41552389-AA

Editing a Message Type
• Select the desired message block.

• Enter the required text in the appropriate columns or select the required attributes.
In the "Message Configuration" dialog box, you can click on the "More" button and enter the
message text and additional text in the "Default Texts" tab
If you selected a multi-channel message block (for example, "ALARM_8"), you can assign
specific texts and, to certain extent, specific attributes to each subnumber.

• If the texts or attributes for the instance should not be changed, you can lock them in the
message type.

Creating Instance Data Blocks
1. When you have created a message type, you can associate instance data blocks to it and edit

the instance-specific messages for these data blocks.
To do this, in the SIMATIC Manager open the block that is to call your previously configured
function block, for example, "OB1" by double-clicking it. In the open code section of the OB,
enter the call ("CALL"), the name and number of the FB to be called and of the instance DB
that you want to associate with the FB as an instance. Confirm your entry with RETURN.

Example: Enter "CALL FB1, DB1". If DB1 does not yet exist, confirm the prompt asking
whether you want the instance DB created with "Yes."

Result: The instance DB is created. In the code section of the OB, the input variables of the
associated FBs, here for example "Mess01," and the message number allocated by the
system, here "1," are displayed.

2. Save the OB with the menu command File > Save and close the "LAD/STL/FBD" window.

Editing Messages
1. In the SIMATIC Manager, select the created instance DB, for example, "DB1" and select the

menu command Edit > Special Object Properties > Message to open the message
configuration dialog box.

Result: The "Message Configuration" dialog box is opened and the selected instance DB with
the message number assigned by the system is displayed.

2. Enter the required changes for the corresponding instance DB in the appropriate tabs and add
other display devices if you wish. Exit the dialog box with "OK."

Result: The message configuration for the selected instance DB is then complete.

 Note

If texts and attributes for an instance are displayed in green, this means the following: these texts
and attributes are still as they were configured in the message type. They have not been changed
at the instance.

Transferring Configuration Data
• Transfer the configured data to the WinCC database (via the AS-OS connection configuration)

or the ProTool database.

 Configuring Messages
 16.3 CPU-Oriented Message Configuration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 335

16.3.2.2 How to Edit Block-Related Messages (CPU-Oriented)

1. Select a message block, and then select the menu command Edit > Special Object
Properties > Message to call message configuration.

2. Enter your required text in the "Default Texts" and "Additional Texts" columns.
You can also click on the "More" button and enter your required text (with line breaks) in the
"Default Texts" and "Additional Texts" dialog boxes.

Result: You have created a standard message.

 Note

If texts and attributes for an instance are displayed in green, this means the following: these texts
and attributes are still as they were configured in the message type. They have not been changed
at the instance.

16.3.2.3 How to Configure PCS 7 Messages (CPU-Oriented)

For editing message types and messages to be output on WinCC display devices (as of V6.0), the
PCS7 message configuration function in STEP 7 provides a user-friendly method of:

• Simplifying the configuration of display devices

• Simplifying the input of attributes and texts for messages

• Ensuring that messages are standardized.

Opening the PCS7 Message Configuration Function
1. In SIMATIC Manager, select the block (FB or DB) whose message texts you want to edit.

Select the menu command Edit > Object Properties to open the dialog box for entering
system attributes.

2. In the table shown, enter the system attribute "S7_alarm_ui" and the value: "1" (the value 0
disables the PCS7 message configuration tool). Property parameters can be set in
LAD/STL/FBD. DBs generated afterwards and assigned to the corresponding FBs take on
these settings and can be switched using their own attribute settings, independently of their
message type (FB).
Note: A syntax check is performed when you enter the system attributes. Faulty entries are
highlighted in red.

3. Exit the dialog box with "OK."

4. Select the menu command Edit > Special Object Properties > Message

Result: The "PCS7 Message Configuration" dialog box is opened.

Configuring Messages
16.3 CPU-Oriented Message Configuration

 Programming with STEP 7
336 Manual, 04/2017, A5E41552389-AA

Editing Message Types
1. In SIMATIC Manager, select the FB whose message texts you want to edit, and open the

PCS7 message configuration dialog box.

2. Click on "More" to open the "Message text block". Fill out the text boxes for the message
components "Origin," "OS area," and "Batch ID."

3. Enter the message class and the event text for all events of the message blocks used and
specify whether every event must be acknowledged individually.

4. For the message parts that apply for all instances and should not be changed, select the
"Locked" check box.

Editing Messages
1. Open SIMATIC Manager. Select the instance DB whose message texts you want to edit and

open PCS7 message configuration function.

2. Do not edit instance-specific message parts that are not locked.

 Configuring Messages
 16.3 CPU-Oriented Message Configuration

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 337

16.3.3 Assigning and Editing Symbol-Related Messages

16.3.3.1 How to Assign and Edit Symbol-Related Messages (CPU-Oriented)

Symbol related messages (SCAN) are assigned directly to a signal in the symbol table. Permitted
signals are all Boolean addresses: inputs (I), outputs (Q), and bit memory (M). You can assign
these signals different attributes, messages texts, and up to 10 associated values with the
message configuration function. You can make it easier to select signals in the symbol table by
setting filters.

With a symbol related message you can scan a signal in a predefined time interval to determine
whether a signal change has taken place.

 Note

The time interval is dependent on the CPU used.

Basic Procedure

During processing, the signals for which you have configured messages are checked
asynchronously to your program. The checks take place at the configured time intervals. The
messages are displayed on the assigned display devices.

 Caution

If you want to assign or edit symbol-related messages and, during the same work procedure, you
have previously copied symbols between two symbol tables, you will then have to first close the
symbol table that you no longer need to work in. Otherwise, you will not be able to save your
message configurations. Under certain conditions, the last entries made in the message
configuration dialog will be lost.

Configuring Messages
16.3 CPU-Oriented Message Configuration

 Programming with STEP 7
338 Manual, 04/2017, A5E41552389-AA

16.3.4 Creating and Editing User-Defined Diagnostic Messages

Using this function you can write a user entry in the diagnostic buffer and send a corresponding
message that you create in the message configuration application. User-defined diagnostic
messages are created by means of the system function SFC52 (WR_USMSG; Error Class A or B)
that is used as a message block. You must insert the call for the SFC52 in your user program and
allocate it the event ID.

Requirements
Before you can create a user-defined diagnostic message, you must have done the following:

• Created a project in the SIMATIC Manager

• Created a S7 program in the project to which you want to assign one or more messages.

Basic Procedure
To create and display a user-defined diagnostic message, proceed as follows:

 Configuring Messages
 16.4 Tips for Editing Messages

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 339

16.4 Tips for Editing Messages

16.4.1 Adding Associated Values to Messages

To add current information (such as from a process) to block-related and symbol-related
messages, you can insert associated values at any point in a message text.

To add values, proceed as follows:
1. Create a block with the following structure:

@<No. of associated value><Element type><Format code>@.

2. Insert this block at the locations in the message text where the associated value is to be
displayed.

Element Type
This parameter assigns a unique identification to the data type of the associated value:

Element Type Data Type

 Y BYTE
 W WORD
 X DWORD
 I Integer
 D Integer
 B BOOL
 C CHAR
 R REAL

The element type only uniquely specifies the data type transferred by the PLC. It is not used as a
casting operator.

Format Code
These codes specify the output format for the associated value on the display device. A format
instruction is introduced by a "%" sign. For message texts, there are the following fixed message
codes:

Format Code Description

 %[i]X Hex value with i index
 %[i]u Unsigned decimal value

with i index
 %[i]d Signed decimal value

with i index
 %[i]b Binary value with i index

Configuring Messages
16.4 Tips for Editing Messages

 Programming with STEP 7
340 Manual, 04/2017, A5E41552389-AA

 %[i][.y]f Integer (fixed-point no.)
Signed value with the format
[-]dddd.dddd
dddd: one or more digits with y places after the decimal
point and i total places

 %[i]s or
 %[i]c (only for WinCC)

Character string (ANSI string) with i places
Characters are printed to the first 0 byte (00hex).

 %t#<name of the text library> Access to text library.

If the format code is too small, the value is still output in its full length.

If the format code is too large, an appropriate number of blanks are output before the value.

 Note

Note that you can also optionally specify the "[i]", in which case you must leave out the brackets
when you enter this parameter.

 Configuring Messages
 16.4 Tips for Editing Messages

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 341

Examples of Associated Values
@1I%6d@: The value from associated value 1 is displayed as a decimal number having a
maximum of 6 places.

@2R%6f@: The value "5.4," for example, from associated value 2 is displayed as an integer "5.4"
(three leading blanks).

@2R%2f@: The value "5.4," for example, from associated value 2 is displayed as an integer "5.4"
(for a number of places that is too small, truncation does not occur).

@1W%t#Textbib1@: Associated value 1 of the data type WORD is the index with which the text to
be used is referenced in the text library TextLib1.

 Note

When using S7-PDIAG, you must always indicate "C" for the element type CHAR and "R" for the
element type REAL. For all other element types valid for S7-PDIAG (BOOL, BYTE, WORD, INT,
DWORD and DINT), you must always specify "X".

If you wish to pass one of the ALARM_S blocks more than one associated value, you can send an
array with a maximum length of 12 bytes. This can be, for example, a maximum of 12 bytes or
characters, a maximum of 6 words or Int or a maximum of 3 double words, real or DInt.

Configuring Messages
16.4 Tips for Editing Messages

 Programming with STEP 7
342 Manual, 04/2017, A5E41552389-AA

16.4.2 Integrating Texts from Text Libraries into Messages

You can integrate as many texts as you want from a maximum of four different text libraries into
one message. The texts can be placed freely, so their use in foreign language messages is also
guaranteed.

Proceed as follows:

1. In the SIMATIC Manager, select the CPU or an object subordinate to the CPU and select the
menu command Options > Text Libraries > System Text Libraries or Options > Text
Libraries > User-Specific Text Libraries to open a text library.

 Caution

You can only integrate texts from user text libraries into messages if you have selected to assign
message numbers to the CPU (CPU-oriented message numbers).

2. Determine the index of the text that you want to integrate.

3. At the place in the message where you want the text to appear, enter a placeholder in the
format @[Index]%t#[Textbib]@

 Note

[Index] = 1W, where 1W is the first associated value for the message of type WORD.

Example
Configured message text: Pressure rose @2W%t#Textbib1@

Text library with the name Textbib1:

Index German English

1734 zu hoch too high

The second associated value transferred has been assigned the value 1734. The following
message is displayed: Pressure rose too high.

 Configuring Messages
 16.4 Tips for Editing Messages

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 343

16.4.3 Deleting Associated Values

You can delete associated values by deleting the character string in the message text which
represents the associated value.

Proceed as follows:
1. Locate the block of information in the message text corresponding to the associated value that

you want to delete.
The block begins with an @ sign, followed by a location designator identifying the associated
value as well as a format code; it ends with another @ sign.

2. Delete this information from the message text.

Configuring Messages
16.5 Translating and Editing Operator Related Texts

 Programming with STEP 7
344 Manual, 04/2017, A5E41552389-AA

16.5 Translating and Editing Operator Related Texts

Texts that are output on display devices during process editing were usually input in the same
language used to program the automation solution.

It may often be the case that an operator who is to react to messages on a display device does not
speak this language. This user needs texts written in his native language to ensure smooth,
problem-free processing and quick reaction to messages output by the system.

STEP 7 allows you to translate any and all operator related texts into any language required. To do
this, you have to install the desired language in your project. The number of languages available is
determined when Windows is installed (system property).

In this way you can be certain that any user faced with such a message at a later date will have it
displayed in the appropriate language. This system feature considerably increases processing
security and accuracy.

Operator related texts are user texts and text libraries.

16.5.1 Translating and Editing User Texts

You can create user texts for an entire project, for S7 programs, the block folder or individual
blocks, and for the symbol table if messages are configured in these objects. They contain all texts
and messages that can be shown on display devices, for example. For one project, there can be
several lists of operator related texts that you can translate into the required languages.

You can select the languages that are available in a project (menu command Options > Language
for Display Devices…). You can also add or delete languages later.

Exporting and Importing Operator Related Texts
You can translate or edit operator related texts that were created in STEP 7 outside of STEP 7. To
do this, export the displayed list of operator related texts in export files that you can edit with an
ASCII-based Editor or a spreadsheet tool such as Microsoft EXCEL (Menu command Options >
Manage Multilingual Texts > Export). After you have opened the file, the screen displays a table
that contains a column for each language. The first column always displays the set standard
language. After the texts have been translated, re-import them again in STEP 7.

You can only import operator related texts into the part of the project from which you exported
them.

 Configuring Messages
 16.5 Translating and Editing Operator Related Texts

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 345

Basic Procedure
Ensure that you have set your target languages for the text translation in SIMATIC manager, under
menu command Options > Language for Display Devices.

 Note

You can print user text only under the application used for the translation.

Configuring Messages
16.6 Translating and Editing Text Libraries

 Programming with STEP 7
346 Manual, 04/2017, A5E41552389-AA

16.6 Translating and Editing Text Libraries

16.6.1 User Text Libraries

A user text library lets you view text or text segments dynamically, depending on the associated
value. Here, the associated value provides the text library index for the current text. A placeholder
is entered at the position were the dynamic text is to be displayed.

You can create user libraries for a program in which you can enter text and select your own index.
The application will automatically check the index in the user library for uniqueness. All messages
available for this CPU can contain a cross-reference to a user text library.

The number of text libraries in a text library folder is unlimited. It is therefore possible, for example,
to use the same program for different controlling tasks and merely adapt the text libraries to
application requirements.

 Caution

When you copy a message-type block that contains a cross-reference to a text library into another
program, you must include the corresponding text libraries, or create a new text library of the same
name or edit the cross-reference in the message text.

An index is always assigned by default when you create a text entry. When you enter a new line,
the application proposes the next free index as the default. Ambiguous indexes are not permitted in
text library and are rejected by the application.

16.6.2 Creating User Text Libraries

To create a user text library, proceed as follows:

1. In SIMATIC Manager, select the program or the subordinate object within the program for
which you want to create a user text library. In SIMATIC Manager, select the menu command
Insert > Text Library > Text Library Folder.

Result: The "Text Library" folder is created.

2. Now, select the "Text Library" folder. Select the menu command Insert > Text Library > User
Text Library and name the text library.

3. To open the new text library, select menu command Options > Text Libraries > User Text
Library

4. Now you can enter your text.

 Note

An index is always assigned by default when you create a text entry. When you enter a new line,
the application proposes the next free index as the default. Ambiguous indexes are not permitted in
text library and are rejected by the application.

 Configuring Messages
 16.6 Translating and Editing Text Libraries

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 347

16.6.3 How to Edit User Text Libraries

To edit existing user text libraries, proceed as follows:

1. In SIMATIC Manager, select the program or the subordinate object within the program whose
text library you want to edit and then select the menu command Options > Text Libraries >
User Text Library.

2. Select the text library you want to open from the "Available Text Libraries" dialog box.

3. Edit the displayed texts. There are various editing functions available (such as Find and
Replace).
You can enter your own texts. You can always change the index that is automatically
generated for the texts. If you should happen enter a previously assigned index, its value is
highlighted in red.
To insert a new row, select the menu command Insert > New Row or click on the
corresponding toolbar icon.

4. If you require a hardcopy, print the texts.

5. Close the user text library after you have completed all tasks.

6. Close the application after you have edited all texts required.

 Caution

When you copy a message-type block that contains a cross-reference to a text
library into another program, you must include the corresponding text libraries, or
create a new text library of the same name or edit the cross-reference in the
message text.

When you change the name of an existing text library, you will render the
associated values cross-referenced to this text library invalid in already configured
messages!

16.6.4 System Text Libraries

System text libraries are automatically created when blocks are generated, e.g. in "Report System
Errors". The user can not create system text libraries and can only edit existing text libraries.

All messages available for this CPU can contain a cross-reference to a text library

Configuring Messages
16.6 Translating and Editing Text Libraries

 Programming with STEP 7
348 Manual, 04/2017, A5E41552389-AA

16.6.5 Translating Text Libraries

System text libraries and user text libraries provide a list of texts that can be integrated into
messages, updated dynamically at run time, and shown on a programming device or other display
device.

The texts in system text libraries are provided by STEP 7 or STEP 7 optional packages. There can
be several text libraries assigned to one CPU. You can translate these texts into the required
languages.

In the SIMATIC Manager, you can select the languages that are available in a project (menu
command Options > Language for Display Devices…). You can also add or delete languages
later.

When you initiate the translation of a text library (Menu command Options > Manage Multilingual
Texts > Export), an export file will be generated that you can edit in Microsoft EXCEL, for
example. After you have opened the file, the screen displays a table that contains a column for
each language

 Caution

Never open a *.cvs export file with double-click on the file. Always use menu command File >
Open under Microsoft EXCEL to open the file.

 Note

You can print user text only in the application used for the translation.

Example of an export file

German English

ausgefallen Failure
gestört Disruption
Parametrierfehler Parameter assignment

error

 Configuring Messages
 16.6 Translating and Editing Text Libraries

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 349

Basic Procedure
In the SIMATIC Manager, with the menu command Options > Language for Display Devices…,
make sure that you have set the languages into which you want to translate a text library.

Configuring Messages
16.7 Transferring Message Configuration Data to the Programmable Controller

 Programming with STEP 7
350 Manual, 04/2017, A5E41552389-AA

16.7 Transferring Message Configuration Data to the Programmable
Controller

16.7.1 Transferring Configuration Data to the Programmable Controller

Overview
Use the transfer program AS-OS Engineering to transfer the message configuration data generated
to the WinCC database.

Requirements
Before you start the transfer, the following requirements must be fulfilled:

• You have installed "AS-OS Engineering"

• You have generated the configuration data for creating messages.

Basic Procedure

 Configuring Messages
 16.8 Displaying CPU Messages and UserDefined Diagnostic Messages

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 351

16.8 Displaying CPU Messages and UserDefined Diagnostic
Messages

With the "CPU Messages" function (Menu command PLC > CPU Messages), you can display
asynchronous messages on diagnostic events and user-defined diagnostic messages as well as
messages from ALARM_S blocks (SFC 18 and SFC 108 for generating block-related messages
that are always acknowledged as well as SFC 17 and SFC 107 for generating block-related
messages that can be acknowledged).

You can also start the message configuration application from the CPU Messages application
using the menu command Edit > Message > User-Defined Diagnostics and create user-defined
diagnostic messages. The requirement for this is that you started the CPU Messages application
via an online project.

Display Options
With the "CPU Messages" function, you can decide whether and how online messages for selected
CPUs are displayed.

• "Highlight in the Task Bar": As soon as a message is received and the window is not on top,
"CPU Message" is highlighted in the Windows task bar.

• "Leave in the Background": The CPU messages are received in the background. The window
remains in the background when new messages are received and can be brought to the
foreground if required.

• "Ignore Message": New CPU messages are not displayed and, in contrast to the other two
modes, not archived.

In the "CPU Messages" window you can select the "Archive" tab or the "Interrupt" tab. In both tabs
you can select the menu command View > Display Info Text to specify whether the messages are
displayed with or without Info text. The user can sort the columns as required.

Configuring Messages
16.8 Displaying CPU Messages and User­Defined Diagnostic Messages

 Programming with STEP 7
352 Manual, 04/2017, A5E41552389-AA

"Archive" Tab
Incoming messages are here displayed and archived, sorted by the event message time. The
volume of the archive (between 40 and 3000 CPU messages) can be set via menu command
Options > Settings in the "Settings - CPU Messages" dialog box. The oldest queued message will
be deleted if the set archive volume is exceeded.

Acknowledgeable messages (ALARM_SQ and ALARM_DQ) are displayed in bold letters. You can
acknowledge these messages under the menu command Edit > Acknowledge CPU Message.

 Configuring Messages
 16.8 Displaying CPU Messages and UserDefined Diagnostic Messages

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 353

"Interrupt" Tab
The status of queued messages from ALARM_S blocks that have not yet been received or
acknowledged is also displayed in the "Interrupt" tab.

You can select the menu command View > Multiline Messages to display messages on one or
more lines. In addition, you can sort the columns as necessary.

Updating Messages from ALARM_S Blocks
During updating all unsent or unacknowledged messages are entered in the archive again. The
messages are updated:

• If a restart is performed on the module to which the messages relate (not a cold restart)

• If you click the option "A" for messages from ALARM_S Blocks in the module list.

Basic Procedure
To configure CPU messages for selected modules:

Configuring Messages
16.8 Displaying CPU Messages and User­Defined Diagnostic Messages

 Programming with STEP 7
354 Manual, 04/2017, A5E41552389-AA

16.8.1 Configuring CPU Messages

To configure CPU messages for selected modules, proceed as follows:

1. In the SIMATIC Manager, start the CPU Messages application via an online project. To do this,
select an S7 program online and call the CPU Messages application for the selected CPU
using the menu command PLC > CPU Messages.

Result: The "CPU Messages" application window appears which lists the registered CPU.

2. You can extend the list of registered CPUs by repeating step 1. for other programs or
interfaces.

3. Click the check box in front of the list entries and specify which messages should be received
for the module:

A: activates messages from ALARM_S blocks (SFC 18 and SFC 108 for generating block-
related messages that are always acknowledged as well as SFC 17 and SFC 107 for
generating block-related messages that can be acknowledged), for example, reporting process
diagnostic messages from S7 PDIAG, S7-GRAPH, or system errors.

W: activates diagnostic events.

4. Set the size of the archive.

Result: As soon as the above messages occur, they are written in the message archive and
displayed in the form you selected.

 Note

The CPUs for which you have called the menu command PLC > CPU Messages in the SIMATIC
Manager are entered in the list of registered modules in the "CPU Messages" application window.
The entries in the list are retained until they are deleted in the "CPU Messages" application
window.

16.8.2 Displaying Stored CPU Messages

CPU messages are always recorded in the archive unless you have selected the menu command
View > Ignore Message. All archived messages are always displayed.

 Configuring Messages
 16.9 Configuring the 'Report System Errors'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 355

16.9 Configuring the 'Report System Errors'

16.9.1 Overview of 'Report System Error'

With STEP 7, when system errors occur you can output messages with a description of the error
that has occurred and the location of the error to one or more display devices (for example, WinCC,
OP).

16.9.2 Configuring the Reporting of System Errors

Introduction
When a system error occurs, hardware components and DP standard slaves (slaves whose
properties are determined by their GSD file) can trigger organization block calls.

Example: If there is a wire break, a module with diagnostic capability can trigger a diagnostic
interrupt (OB82).

The hardware components provide information for the system errors that occur. The start event
information, that is, the local data of the assigned OB (which contain the data record 0, among
other things), provide general information on the location (such as the logical address of the
module) and type (such as channel error or backup battery failure) of the error.

In addition, the error can be specified in greater detail by means of additional diagnostic information
(reading data record 1 with SFC51 or reading the diagnostic message of DP standard slaves with
SFC13). Examples of this would be channel 0 or 1 and wire break or measuring-range overrun.

With the Report System Error function, STEP 7 offers a convenient way to display diagnostic
information supplied by the component in message form.

STEP 7 generates the necessary blocks and message texts. All the user has to do is load the
generated blocks into the CPU and transfer the texts to connected HMI devices.

To display diagnostic events on an HMI device graphically, you can create a PROFIBUS DP DB
(default DB 125) or a PROFINET IO DB (default DB 126). The elements "Map_ErrorNo" and
"Map_HelpNo" are declared in the interface of each data block. During operation, these are
supplied with an error or help text ID. The 'Report System Error' application exports the possible
values and their significance to csv files in the selected folder during generation. To be able to
display the significance of an error or help text ID, the HMI must import these texts.

You can create a data block to support the CPU Web server (default DB127) to display the module
status in the Web server of the CPU.

You will find a complete overview of the supported diagnostic information for various slaves in the
section Supported Components and Functional Scope

Configuring Messages
16.9 Configuring the 'Report System Errors'

 Programming with STEP 7
356 Manual, 04/2017, A5E41552389-AA

Basic Procedure

The messages are sent by means of the standard message path ALARM_S/SQ to CPU Messages
on the programming device or to the connected HMI devices. The sending of message to an HMI
device can be deselected.

 Configuring Messages
 16.9 Configuring the 'Report System Errors'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 357

16.9.3 Supported Components and Functional Scope

The components of S7 300 stations, S7 400 stations, PROFINET IO devices, DP slaves, and
WinAC are supported by Report System Error, as long as they support functions such as
diagnostic interrupt insert/remove module interrupt, and channel-specific diagnostics.

The following components are not supported by Report System Error:

• PROFIBUS-DP configurations on DP master interface module (CP 342-5 DP) in S7-300
stations

• PROFINET IO devices over an external controller (CP 343-1 Advanced) in S7-300 stations

In the case of a restart, you must also note that missing interrupt messages can occur. This is
because the message acknowledgement memory of the CPU cannot be deleted during restart but
Report System Error resets the internal data. The module or channel errors that occur before
startup or during a failure are not all reported.

A maximum of 8 channel errors are reported per submodule.

 Note

If you use a CP 443-5 and this is in STOP mode, no master system failure will be reported during
startup.

PROFIBUS-DP
In the tables that follow, you will find all the diagnostic blocks of the various PROFIBUS slaves
supported by "Report System Error".

Diagnostic Field ID (faulty slot) Channel

Designation
(channel error) 1)

Module Status
(module error,
incorrect/no
module)

Device Designation

Header ID 2) 0x01 0x10 0x00
Type 0x82

 0x00 + 1 byte
diagnostic info

ET 200S Message:
"Diagnostic
interrupt was
triggered"

Plain-text
message

Plain-text
message

-

ET 200pro Message:
"Diagnostic
interrupt was
triggered"

Plain-text
message

Plain-text
message

-

ET 200M Not evaluated Plain-text
message

Plain-text
message

-

ET 200X Message:
"Diagnostic
interrupt was
triggered"

- - -

ET 200X Desina Message:
"Diagnostic
interrupt was
triggered"

Plain-text
message

Plain-text
message

-

Configuring Messages
16.9 Configuring the 'Report System Errors'

 Programming with STEP 7
358 Manual, 04/2017, A5E41552389-AA

Diagnostic Field ID (faulty slot) Channel
Designation
(channel error) 1)

Module Status
(module error,
incorrect/no
module)

Device Designation

ET 200L Not evaluated - -
ET 200B Digital - - - Message:

"Diag info available"
ET 200B Analog - - - -
ET 200C Digital - - - -
ET 200C Analog Message:

"Diagnostic
interrupt was
triggered"

- - Message:
"Diag info available"

ET 200U Message:
"Diagnostic
interrupt was
triggered"

 Message:
"Diag info available"

ET 200iS Message:
"Diagnostic
interrupt was
triggered"

Plain-text
message

Plain-text
message

-

ET 200eco - - - Plain-text message

Diagnostic field DS0/DS1 1) Other version
Header ID 2) 0x00

Type 0x01
 0x00
Other Type

ET 200S Plain-text message -
ET 200pro Plain-text message -
ET 200M Plain-text message Not evaluated
ET 200X - -
ET 200X Desina Plain-text message -
ET 200L Plain-text message -
ET 200B Digital - -
ET 200B Analog Plain-text message -
ET 200C Digital - -
ET 200C Analog Plain-text message -
ET 200iS Plain-text message -
ET 200eco - -

 1) DS0: Standard diagnostics, for example module fault, external auxiliary voltage or front connector missing,

extent 4 bytes, contained in the local data of the OB 82.
DS1: Channel error, defined differently for each channel type, readable in the user program via SFC 51.
The texts come from the S7 HW diagnostics.

 2) Header identifier: Identifier in the diagnostic message that identifies different diagnostic parts.

 Configuring Messages
 16.9 Configuring the 'Report System Errors'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 359

 Note
• The station errors (failure/return) are displayed in plain text for all PROFIBUS DP slaves.

• The manufacturer-specific diagnostics is supported for all PROFIBUS DP slaves with the
following restrictions:

- Only V1 slaves are supported. These are slaves with a GSD file containing the entry
"DPV1_Slave=1".

- The DP interrupt mode must be set to "DPV0" for this slave.

Errors that do not occur during operation (CPU in STOP, DP slave failed):

• Station errors are supported

• Module errors are supported

• Channel errors are supported and extended channel error information is evaluated

In STEP 7 the diagnostics message is displayed via the call of the module state in the on-line
window "HW Config" (diagnose hardware) in the "DP Slave Diagnostics" tab card under "Hex
display".

Diagnostic Repeater: The messages of the Diagnostic Repeater are output as plain text in DPV0
mode. The text is read from the GSD file.

PROFIBUS DP over IE/PB Link or IWLAN/PB Link
The PROFIBUS DP master system of an IE/PB link cannot be diagnosed.

• For a PROFIBUS DP master system downstream from an IE/PB link, the status is not updated
in the PROFIBUS data block (DB 125). The diagnostics is partially performed via the
PROFINET IO-DB. In this case, only the status of the slaves (OK, disrupted, failed) in the
PROFINET IO DB is available, not the module and channel errors.

PROFIBUS DP/PA via DP/PA-Link
The following station statuses are detected:

• Station OK (the entire station is working properly)

• Station disrupted (an error occurred on the station, but it is continuing to run)

• Station failed (the entire station has failed)

 Note

• You cannot configure the DP/PA Link using a GSD file.

• Diagnostics of a DP/PA Link with a 300 series CPU is not supported.

Configuring Messages
16.9 Configuring the 'Report System Errors'

 Programming with STEP 7
360 Manual, 04/2017, A5E41552389-AA

PROFINET IO
Below, you will find the diagnostic information from the various PROFINET devices supported by
"Report System Error".

Errors that occur during operation (CPU in RUN):

• Device errors (failure, return) are supported

• Module error and submodule error (module/submodule removed, wrong module/submodule,
compatible module/submodule) are supported.

• Channel errors are supported and extended channel error information is evaluated

Errors that do not occur during operation (CPU in STOP, IO device failed):

• Integrated PROFINET IO interface are supported for CPUs as of firmware version 5.0 or later.

• Otherwise, device errors are reported.

All errors are displayed in plain language messages.

The diagnostic data records (according to the PROFINET standard) can be read by SFB54 and
SFB52 in the user program.

 Note

• ET 200S: Slaves with packed addresses are supported..

• On PROFINET IO devices, vendor-specific diagnostics is supported.

PROFINET IO via IO Link
Channel errors are supported and extended channel error information is evaluated.

AS Interface
For AS interface slaves, a message is sent if the planned configuration does not match the actual
configuration.

The following AS-i masters are supported:

• CP 342-2

• CP 343-2

• CP 343-2 P

• DP/AS-i Link 20E

• DP/AS-i LINK Advanced D (only if it is not configured per GSD file)

• DP/AS-i F-Link

• IE/AS-i Link

Shared Devices
RSE evaluates the information as to whether a (sub)module was configured as a shared device.
Since RSE always views a CPU, only the (sub)modules with full access set for the CPU are taken
into account in the diagnostics. Those configured as "not assigned" (sub)modules are ignored.

 Configuring Messages
 16.9 Configuring the 'Report System Errors'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 361

16.9.4 Settings for "Report System Error"

You have several possibilities for calling the dialog for the settings:

• In HW Config, select the CPU for which you would like to configure the reporting of system
errors. Then select the menu command Options > Report System Error.

• If you have already generated blocks for reporting system errors, you can call up the dialog by
double-clicking a generated block (FB, DB).

• In the Properties dialog of the station, select the option for automatic call up during Save and
Compile the configuration.

You get to the option for automatic call up during Save and Compile as follows:

1. In the SIMATIC Manager, select the appropriate station.

2. Select the menu command Edit > Object Properties.

3. Select the Settings tab.

 Note

You can also open the "Settings" tab of the properties dialog in HW Config via menu command
Station > Properties.

In the dialog box, enter the following, in addition to other things:

• Which FB and which assigned instance DB should be generated

• Whether reference data should be generated

• Whether warnings should always be displayed during the generation of Report System Error.

• Whether the dialog box should appear when Report System Error is automatically called after
saving and compiling the configuration (see setting above)

• Generating error OBs: whether or not error OBs that are not yet available should be generated
in the S7 program and in which OBs "Report System Error" is to be called.

• The CPU behavior on error: You can determine which error classes cause the CPU to change
to STOP mode when they occur.

• The appearance of the messages (structure and order of the possible text parts)

• Whether messages should be acknowledgeable

• Which parameters the user block interface should contain

• Which status DB(s) are generated for PROFIBUS DP, PROFINET IO or the module status in
the Web server of the CPU.

• Whether you wish to set the size of the internal message buffer manually and how many
messages should be sent per cycle.

You can find more detailed information in the Help on the open dialog.

16.9.5 Generating Blocks for Reporting System Errors

After you have completed your settings for reporting system errors, you can generate the required
blocks (FB with assigned instance DB and one or more global DB(s) and an FC, depending on the

Configuring Messages
16.9 Configuring the 'Report System Errors'

 Programming with STEP 7
362 Manual, 04/2017, A5E41552389-AA

setting even OBs that do not yet exist). To do this, click on the "Generate" button in the "Report
System Errors" dialog box.

The following blocks are generated:

• Diagnostic FB (default: FB49)

• Instance DB for the diagnostic FB (default: DB49)

• Shared DB (default: shared DB50)

• FC (default: FC49)

• Error OBs (if you have selected this option in the "OB Configuration" dialog box)

• Optional user block called by the diagnostic FB

FBs and instance DBs are called by OBs, FCs and global DBs are used by RSE-FB.

 Note

If you want to reorganize your project with the menu command File > Save As... and the "With
Reorganization" option, remember that the diagnostic blocks need to be regenerated in 'report
system error'. Since the reorganization of a project with diagnostic blocks is very slow, it is
advisable to delete the diagnostic blocks first and then generate them again.

 Configuring Messages
 16.9 Configuring the 'Report System Errors'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 363

16.9.6 Generated Error OBs

Depending on the CPU, you can generate the following Error OBs with "Report System Error":

• OB 70 (I/O redundancy error) with a call for the generated diagnostic FB. This OB only exists
with H-CPUs.

• OB 72 (CPU redundancy error) with a call for the generated diagnostic FB. This OB only exists
with H-CPUs.

• OB 73 (communication redundancy error) with a call for the generated diagnostic FB. This OB
only exists with a few H-CPUs.

• OB 80 (time error)
This OB is generated without content to prevent the CPU from going to STOP when a
communication error occurs. Errors are not evaluated, no message is generated.

• OB81 (power supply error) with a call for the generated diagnostic FB.

• OB82 (diagnostic interrupt OB) with a call for the generated diagnostic FB.

• OB83 (plug/remove interrupt) with a call for the generated diagnostic FB.

• OB84 (CPU hardware fault)
This OB is generated without contents so that the CPU does not switch to STOP mode when
communication errors occur (for example, problems with the MPI terminating resistor when
inserting and removing the MPI cable). Errors are not evaluated; no message is generated.

• OB85 (program execution error)
If 'Report system error' creates this OB during the generation of the diagnostic blocks,
additional networks are inserted which realize the following program sequences:
The CPU is prevented from switching to STOP when there is an error updating the process
image (for example, removing the module). This is so that the diagnostic FB in OB83 can be
processed. Any CPU STOP setting after a Report System Error message takes effect in OB83.
With all other OB85 error events, the CPU goes into STOP mode.

If OB 85 already exists, it is not changed by 'Report system error'.

• OB86 (failure of an expansion rack, a DP master system, or a distributed I/O device) with a call
for the generated diagnostic FB.

If the Error OBs Already Exist...
Existing error OBs are not overwritten. If required, the call for the diagnostics FB is appended.

Configuring Messages
16.9 Configuring the 'Report System Errors'

 Programming with STEP 7
364 Manual, 04/2017, A5E41552389-AA

If the Configuration Includes Distributed I/O Devices...
For evaluating errors in distributed I/O, the generated FB calls SFC13 automatically (reads
diagnostic data of the DP slaves). To ensure this function, the generated FB must be called either
only in OB1 or in a cyclic interrupt OB with a short time cycle and in startup OBs.

ATTENTION
Please note the following:

• The CPU no longer goes into STOP mode when Report System Error generates OB85 upon
the error event Error While Updating Process Image.

• OB85 is also called up by the CPU when the following errors occur:

- "Error event for an OB that is not loaded"

- "Error when calling or accessing an OB that Is not loaded"

When these errors occur, the CPU still goes into STOP mode when Report System Error
generates OB85, as was the case before Report System Error was in use.

• The setting "CPU goes into STOP mode after executing diagnostic FB" is NOT effective for
OB84 and OB85, because the FB of Report System Error is not called up in these OBs. In the
case of OB85, this setting is noted indirectly by the FB call in OB83.

 Configuring Messages
 16.9 Configuring the 'Report System Errors'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 365

16.9.7 Generated Blocks

The diagnostic block set by 'Report System Error' (FB with associated instance DB and one or
more shared DB(s) and an FC evaluates the local data of the error OB and reads any additional
diagnostic information from the hardware component that caused the error.

The FB has the following properties:

• Language of generation RSE (Report System Error) (also applies to the blocks listed above)

• Know-how protected (also applies to the blocks listed above)

• Interrupts arriving delayed during run time

• If you double-click on the block, the dialog for setting the "Report System Error" function opens.

User Block
Because the diagnostics FB is know-how protected, you cannot edit it. However, the FB provides
an interface for the user program so that you can access such things as the error status or the
message number.

The block for evaluating in the user program (can be set in the User Block tab of the dialog) is
called in the generated FB with the selected parameters. The following parameters are available:

Name Data Type Comments

EV_C BOOL //Message incoming (TRUE) or outgoing (FALSE)
EV_ID DWORD //Generated message number
IO_Flag BYTE //Input module: B#16#54 Output module: B#16#55
logAdr WORD //Logical address
TextlistId WORD //ID of the text library (default text library = 1)
ErrorNo WORD //Generated error number
Channel_Error BOOL //Channel error (TRUE)
ChannelNo WORD //Channel number
ErrClass WORD //Error Class
HErrClass WORD //Error Class of H Systems
SFC_RET_VAL INT //Return value for SFC 17/18 or SFC 107/108
ExtendedErrorNo WORD //Generated error number of an extended channel error
ExtendedTextlistId WORD //ID of the text library of an extended channel error
ExtendedAddValue DWORD //Additional value for extended channel diagnostics (4 bytes)

If the user FB does not exist yet, it is created by the RSE with the selected parameters.

Configuring Messages
16.9 Configuring the 'Report System Errors'

 Programming with STEP 7
366 Manual, 04/2017, A5E41552389-AA

The error texts generated for standard errors are arranged as follows:

Error Number
(decimal)

 Error-OB Affected Error Code in the OB

from to from to
 1 86 OB 72 B#16#1 B#16#56
 162 163 OB 70 B#16#A2 B#16#A3
 193 194 OB 72 B#16#C1 B#16#C2
 224 OB 73 B#16#E0
 289 307 OB 81 B#16#21 B#16#33
 513 540 OB 82
 849 900 OB 83 B#16#51 B#16#84
 1537 1540 OB 86
 1729 1736 OB 86 B#16#C1 B#16#C8
 1738 1742 OB 86 B#16#CA B#16#CE
 1743 1744 OB 86

Error numbers greater than 12288 refer to channel errors. If you view the error number in
hexadecimal representation, you can calculate the channel type and recognize the error bit. For an
exact description, refer to the respective module help or channel help text.

Example:

12288 = W#16#3000 -> high byte 0x30 - 0x10 = channel type 0x20 (CP interface);
 low byte 0x00, means error bit 0

32774 = W#16#8006 -> high byte 0x80 - 0x10 = channel type 0x70 (digital input);
 low byte 0x06, means error bit 6

Diagnostic support
To display diagnostic events on an HMI device graphically, you can create a PROFIBUS DP DB
(default DB 125) or a PROFINET IO DB (default DB 126). You can create a data block to support
the CPU Web server (default DB 127) to display the module status in the Web server of the CPU.

 Configuring Messages
 16.9 Configuring the 'Report System Errors'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 367

16.9.8 Assignment of System Errors to Error Classes

The following table shows the system errors and their error classes:

Hardware Error Error class
Central
Rack Failure Rack error
Power supply module / CPU Power supply error - *
H CPU Redundancy loss - *
 Redundancy reintegration - *
Module Plug/pull of the module or wrong

module type
Module error

 Data record 0 Module error
 Channel error Channel error
DP master Failure Rack error
IO controller Failure Rack error
AS i master Failure Rack error
PROFIBUS DP
DP station Failure Rack error
 Manufacturer-specific diagnostics - *
Head Manufacturer-specific diagnostics - *
Module Plug/pull of the module or wrong

module type
Module error

 Data record 0 Module error
 Channel error Channel error
Diag. rep. head Specific errors of the diagnostic

repeater
 - *

Head ET 200 B, C, U, Eco Faulty Module error
H station Failure Rack error
Head H station Redundancy loss - *
PROFINET IO
IO device Failure Rack error
IO device head module Manufacturer-specific error - *
 Channel error Channel error
 Maintenance - *
 Data record 0 Module error
 Channel error for the entire head

module (Subslot = 0)
Module error

IO device head submodule (PDEV) Channel error Channel error
 Maintenance - *
 Data record 0 Module error
 Channel error for the entire head

submodule (Subslot = 0)
Submodule error

Module Plug/pull of the module or wrong
module type

Module error

 Data record 0 Module error
 Channel error (channel 0...7FFF) Channel error

Configuring Messages
16.9 Configuring the 'Report System Errors'

 Programming with STEP 7
368 Manual, 04/2017, A5E41552389-AA

Hardware Error Error class

 Channel error for the entire module
(Subslot = 0)

Module error

 Maintenance (channel 0...7FFF) - *
 Maintenance (entire module) - *
Submodule Plug/pull of the module or wrong

module type
Submodule error

 Data record 0 Module error
 Channel error (channel 0...7FFF) Channel error
 Channel error for the entire

submodule (Subslot >= 1)
Submodule error

 Maintenance (channel 0...7FFF) - *
 Maintenance (entire submodule) - *
IE/PB link Failure Rack error
PROFIBUS station downstream
from a link

Failure Rack error

AS i Slave
AS i slave
PROFIBUS/central channel error

Failure - *

AS i slave
PROFINET module

Failure - *

* The CPU does not go to STOP.

 Note

The CPU doe not go to STOP in "Startup" mode.

 Configuring Messages
 16.9 Configuring the 'Report System Errors'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 369

16.9.9 Generating Foreign-Language Message Texts in 'Report System Error'

You can display the messages configured in 'Report System Error' in the languages that you
installed when you installed STEP 7.

To do so, proceed as follows:

1. In the SIMATIC Manager, select the Options > Language for Display Devices... menu
command. In the dialog box that is then displayed, add the desired language to your project.

2. Confirm your settings with "OK".

3. In HW Config, select the Options > Report System Error... menu command. In the dialog box
that is then displayed, click the "Generate" button.
Result: The message texts are generated for all the languages that you installed, but they are
only displayed in the language that you have set as the default in the "Add/Delete Language,
Set Default Language" dialog box by clicking the "Set as Default" button.

Example
You have installed STEP 7 in German, English and French, and these languages are defined in
your project. Now you generate the message texts as described above. To display the messages
texts in a given language, set this language as the default in the "Add/Delete Language, Set
Default Language" dialog box.

 Notes

 If you use messages and error texts in more than one language, check the language for display devices in
the "Add/Delete Languages, Set Standard Language" dialog and change it if necessary.
Texts in a language not supplied with STEP 7 are displayed in the language defined as default. You can
export these texts, translate them into the required language and the import them into STEP 7 again.
If you change the language settings while editing 'Report System Error", the block must be regenerated so
that the messages can be displayed in the required language.

Translating messages and error texts into a language not supplied with STEP 7
Text in a language other than those supplied with STEP 7 will be displayed in the language set as
default. You can export these texts, translate them into the desired language and then import them
back into STEP 7. Add the desired language (Options > Language for Display Devices) and set
this as the default language. Before you export and compile the texts with "Manage Multilingual
Texts", you must regenerate 'Report system error'.

Recommended procedure:

1. Create a reference project with all components you use.

2. In the SIMATIC Manager, select the menu command Options > Language for Display
Devices..., add the desired language to project in the dialog box that appears and set this
language as the default.

3. Confirm your settings with OK.

4. When you have completed the configuration, select the menu command Options > Report
System Errors... in HW Config and click "Generate" in the dialog box that appears.

5. In the SIMATIC Manager, select the menu command Options > Manage Multilingual Texts >
Export and select the texts you want to export in the dialog box that appears. Select as source
language a language installed in the project that is also one of the languages delivered from
STEP 7and select your desired language for target language.
Result: Several text files are generated in the selected directory.

Configuring Messages
16.9 Configuring the 'Report System Errors'

 Programming with STEP 7
370 Manual, 04/2017, A5E41552389-AA

6. Translate the texts from the "S7SystemTextLibrary.xls" and "S7UserTexts.xls" files.

7. In the SIMATIC Manager, select the menu command Options > Manage Multilingual Texts >
Import.
Result: The texts you have translated are now displayed in the configured language.

 Note

If you subsequently change your configuration in HW Config and/or regenerate "Report System
Error", the new messages and error texts will be displayed once again in a language supplied with
STEP 7. You have to translate these texts as described above. Please make sure that you select
the option to add an export target in the message that appears when exporting. The new texts are
inserted at the end of the corresponding text file (under "//$_Delta-Export").

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 371

17 Controlling and Monitoring Variables

17.1 Configuring Variables for Operator Control and Monitoring

Overview
STEP 7 provides a user-friendly method of controlling and monitoring variables in your process or
programmable controller using WinCC.

The advantage of this method over previous methods is that you no longer need to configure data
separately for each operator station (OS), you simply configure once using STEP 7. You can
transfer the data generated when you configure with STEP 7 to the WinCC database using the
transfer program AS-OS Engineering (part of the software package "Process Control System
PCS7"), during which the consistency of the data and their compatibility with the display system are
checked. WinCC uses the data in variable blocks and graphic objects.

Using STEP 7, you can configure or modify operator control and monitoring attributes for the
following variables:

• Input, output, and in/out parameters in function blocks

• Bit memory and I/O signals

• Parameters for CFC blocks in CFC charts

Basic Procedure
The procedure for configuring operator control and monitoring variables is dependent on the
selecting programming/configuration language and the type of variables you want to control and
monitor. The basic procedure always includes the following steps, however:

1. Assign system attributes for operator control and monitoring to the parameters of a function
block or to the symbols in a symbol table.

The step is not required in CFC because you take blocks that have already been prepared from
a library.

2. Assign the variables you want to control and monitor with the required attributes and logging
properties in a dialog box (S7_m_c). In the Operator Interface dialog box (menu command Edit
> Special Object Properties > Operator Interface), you can change WinCC attributes, such
as limit values, substitute values, and protocol properties, etc.

3. Transfer the configuration data generated with STEP 7 to your display system (WinCC) by
means of the AS-OS Engineering tool.

Controlling and Monitoring Variables
17.1 Configuring Variables for Operator Control and Monitoring

 Programming with STEP 7
372 Manual, 04/2017, A5E41552389-AA

Naming Conventions
For the configuration data for WinCC to be saved and transferred, they are stored under a unique
name automatically assigned by STEP 7. The names of the variables for operator control and
monitoring, the CFC charts, and the S7 programs form part of this name and for this reason are
subject to certain conventions:

• The names of the S7 programs in an S7 project must be unique (different stations may not
contain S7 programs with the same name).

• The names of the variables, S7 programs, and CFC charts may not contain underscores,
blanks, or the following special characters: [‘] [.] [%] [-] [/] [*] [+].

 Controlling and Monitoring Variables
 17.2 Configuring Operator Control and Monitoring Attributes with Statement List, Ladder Logic, and Function
Block Diagram

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 373

17.2 Configuring Operator Control and Monitoring Attributes with
Statement List, Ladder Logic, and Function Block Diagram

Overview
Using the procedure described below, you can make function block parameters suitable for
operator control and monitoring and assign the required O, C, and M attributes to associated
instance DBs or shared DBs in your user program.

Requirements
You must have created a STEP 7 project, an S7 program, and a function block.

Basic Procedure

Controlling and Monitoring Variables
17.3 Configuring Operator Control and Monitoring Attributes via the Symbol Table

 Programming with STEP 7
374 Manual, 04/2017, A5E41552389-AA

17.3 Configuring Operator Control and Monitoring Attributes via the
Symbol Table

Overview
Independent of the programming language used, you can configure the following variables using
the procedure described below:

• Bit memory

• I/O signals

Requirement
Before you start, the following requirements must be fulfilled:

• You have created a project in the SIMATIC Manager.

• An S7 program with a symbol table must exist in this project.

• The symbol table must be open.

Basic Procedure

 Controlling and Monitoring Variables
 17.4 Changing Operator Control and Monitoring Attributes with CFC

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 375

17.4 Changing Operator Control and Monitoring Attributes with CFC

Overview
With CFC, you create your user program by selecting blocks that already have operator control and
monitoring capabilities from a library, and placing and linking them in a chart.

Requirement
You have inserted an S7 program in a STEP 7 project, created a CFC chart, and placed blocks in
it.

Basic Procedure

 Note

If you use blocks which you have created yourself and to which you have assigned the system
attribute S7_m_c, you can give these blocks operator control and monitoring capabilities by
activating the "Operator Control and Monitoring" check box in the "Operator Control and
Monitoring" dialog box (menu command Edit > Special Object Properties > Operator Control
and Monitoring).

Controlling and Monitoring Variables
17.5 Transferring Configuration Data to the Operator Interface Programmable Controller

 Programming with STEP 7
376 Manual, 04/2017, A5E41552389-AA

17.5 Transferring Configuration Data to the Operator Interface
Programmable Controller

Introduction
Using the transfer program AS-OS Engineering you transfer the configuration data for operator
control and monitoring generated to the WinCC database.

Requirement
Before you start the transfer, the following requirements must be fulfilled:

• You have installed the program ASOS Engineering.

• You have generated the configuration data for operator control and monitoring.

Basic Procedure
To transfer the configuration data for operator control and monitoring to the WinCC database,
proceed as follows:

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 377

18 Establishing an Online Connection and Making
CPU Settings

18.1 Establishing Online Connections

An online connection between programming device and programmable logic controller is needed to
download S7 user programs/blocks, upload blocks from the S7 programmable controller to the
programming device, and for other activities:

• Debugging user programs

• Displaying and changing the operating mode of the CPU

• Displaying and setting the time and date of the CPU

• Displaying module information

• Comparing blocks online and offline

• Diagnosing hardware

To establish an online connection, the programming device and programmable logic controller
must be connected via a suitable interface (for example, multipoint interface (MPI)). You can then
access the programmable controller via the online window of the project or the "Accessible Nodes"
window.

18.1.1 Establishing an Online Connection via the "Accessible Nodes" Window

This type of access enables you to access a programmable logic controller quickly, for test
purposes, for example. You can access all the accessible programmable modules in the network.
Select this method if no project data about the programmable controllers are available on your
programming device.

You open the "Accessible Nodes" window using the menu command PLC > Display Accessible
Nodes. In the "Accessible Nodes" object, all the nodes accessible in the network are displayed
with their address.

Nodes that cannot be programmed with STEP 7 (such as programming devices or operator panels)
can also be displayed.

For PROFIBUS, the following additional information can also be shown in parentheses:

• (direct): This node is directly connected to the programming device (programming device or
PC).

• (passive): Programming and status/modify via PROFIBUS DP is not possible with this node

• (waiting): This node cannot be communicated with because its configuration does not match
the rest of the settings in the network.

Establishing an Online Connection and Making CPU Settings
18.1 Establishing Online Connections

 Programming with STEP 7
378 Manual, 04/2017, A5E41552389-AA

Finding directly connected nodes
The additional information "direct" is not supported for PROFINET nodes. To still be able to find
directly connected nodes, select the PLC > Diagnostics/Settings > Node Flashing Test menu
command.

In the dialog box that is displayed, you can set the flashing duration and then start the flashing test.
The directly connected node will be identified by a flashing FORCE LED.

The flashing test cannot be carried out if the FORCE function is active.

 Establishing an Online Connection and Making CPU Settings
 18.1 Establishing Online Connections

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 379

18.1.2 Establishing an Online Connection via the Online Window of the Project

Select this method if you have configured the programmable controller in a project on your
programming device/PC. You can open the online window in the SIMATIC Manager using the
menu command View > Online. It displays the project data on the programmable controller (in
contrast to the offline window that displays the project data on the programming device/PC). The
online window shows the data on the programmable controller for the S7 program.

You use this view of the project for functions involving access to the programmable controller.
Certain functions in the "PLC" menu of the SIMATIC Manager can be activated in the online
window but not in the offline window.

There are two types of access as follows:

• Access with Configured Hardware
This means you can only access modules which were configured offline. Which online modules
you can access is determined by the MPI address set when the programmable module was
configured.

• Access without Configured Hardware
The requirement for this is an existing S7 program which was created independently of the
hardware (meaning it lies directly beneath the project). Which online modules you can access
is determined here by specifying the corresponding MPI address in the object properties of the
S7 program.

Access via the online window combines the data on the programmable control system with the
relevant data on the programming device. If, for example, you open an S7 block beneath a project
online, the display is made up as follows:

• Code section of the block from the CPU in the S7 programmable logic controller, and

• Comments and symbols from the database in the programming device (provided they exist
offline) When you open blocks directly in the connected CPU without an existing project
structure, they are displayed as they are found in the CPU, which means without symbols and
comments.

Establishing an Online Connection and Making CPU Settings
18.1 Establishing Online Connections

 Programming with STEP 7
380 Manual, 04/2017, A5E41552389-AA

18.1.3 Online Access to PLCs in a Multiproject

Cross-project access with an assigned PG/PC
The "Assign PG/PC" function for the objects "PG/PC" and "SIMATIC PC Station" are also available
for the multiproject.

You can specify the target module for online access in any project of the multiproject. This
procedure is the same as if you were working with one project only.

Requirements
• PGs/PCs or PC stations you want to use for online access to PLCs must have been assigned

in any one project of the multiproject.

Note: The assigned PG/PC or PC station is highlighted in yellow color when the corresponding
project is open.

The PG/PC assignment is only visible if the PG that opens the project is properly assigned.

• The cross-project subnets are merged.

• All projects of the multiproject have been compiled and configuration data have been
downloaded to the participating stations; for example, to provide routing information to all
participating modules for establishing connections between the PG/PC and the target module.

• The target modules can be accessed across the networks.

 Establishing an Online Connection and Making CPU Settings
 18.1 Establishing Online Connections

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 381

Possible problems when working with distributed projects
The PG/PC assignment is not visible if the allocation of projects is changed and a project is opened
on a PG/PC on which it was not created.

Nonetheless, the configured PG/PC object still maintains the "assigned" status - but with the
"wrong" PG/PC.

In this case you must clear the existing assignment and then reassign the PG/PC object. Online
access to modules available within the multiproject is then possible without any problem.

Tip for working with distributed projects
If more than one of the team members wants to access the PLCs online on their PG, it would be
useful to create one "PG/PC" or "SIMATIC PC station" object in the multiproject and then set up an
assignment for each one of the PGs.

Depending on which PG has opened the project, SIMATIC Manager indicates only the object
assigned to this PG with a yellow arrow.

Establishing an Online Connection and Making CPU Settings
18.1 Establishing Online Connections

 Programming with STEP 7
382 Manual, 04/2017, A5E41552389-AA

18.1.4 Password Protection for Access to Programmable Controllers

Using password protection you can:

• Protect the user program in the CPU and its data from unauthorized changes (write protection)

• Protect the programming know-how in your user program (read protection)

• Prevent online functions that would interfere with the process

You can only protect a module or the content of a MMC (e.g. for a CPU 31xC) with a password if
the module supports this function.

If you want to protect a module or the content of a MMC with a password, you must define the
protection level and set the password in the course of assigning the module parameters and then
download the changed parameters to the module.

If you enable the access protection on a CPU (integrated function as of STEP 7 V4.02), please
remember the following: If, following enabling of this function, you attempt to edit the CPU with a
version lower than STEP 7 V4.02, messages will be displayed indicating that this CPU is password
protected (for example "protection level not reached", "...could not be loaded", "...could not be
opened").

 Note

If your CPU is set to protection level 1 and your CPU makes SFC 109 "PROTECT" available, you
can switch between protection levels 1, 2 and 3 with this SFC.

If protection level 2 is set on your CPU and your CPU provides the SFC 109 "PROTECT", you can
switch between the protection levels 2 and 3 with this SFC.

The call of the SFC 109 "PROTECT" with MODE=12 causes protection level 3 to be set without
password legitimation. This means that you cannot remove the read and write protection set with
the SFC 109 even if you have a valid password.

If you need to enter a password to execute an online function or access the content of a MMC, the
"Enter Password" dialog box is displayed. If you enter the correct password, you are given access
rights to modules for which a particular protection level was set during parameter assignment. You
can then establish online connections to the protected module and execute the online functions
belonging to that protection level.

 Establishing an Online Connection and Making CPU Settings
 18.1 Establishing Online Connections

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 383

Using the menu command PLC > Access Rights > Setup, you can call the "Enter Password"
dialog box directly. By doing this, for example at the beginning of a session, you can enter the
password once and will no longer be queried during later online accesses. The password remains
effective until either the SIMATIC Manager is closed or the password is cancelled with the menu
command PLC > Access Rights > Cancel.

CPU Parameter Remarks

Test operation/process
operation
(not for S7-400 or CPU
318-2)

Can be set in the "Protection" tab.
In process operation, test functions such as program status or monitor/modify
variables are restricted so that the set permissible scan cycle time increase is not
exceeded. This means, for example, that no call conditions are allowed in program
status and the status display of a programmed loop is interrupted at the point of
return.
Testing using breakpoints and single-step program execution cannot be used in
process operation.
In test operation, all test functions via programming device/PC even if they cause
considerable increases to the scan cycle time can be used without restrictions.

Protection level Can be set in the "Protection" tab. (Note: If your CPU is set to protection
level 1 and your CPU makes SFC 109 "PROTECT" available, you can
switch between protection levels 1, 2 and 3 with this SFC. If protection
level 2 is set on your CPU and your CPU provides the SFC 109
"PROTECT", you can switch between the protection levels 2 and 3 with
this SFC.) You can make write or read/write access to the CPU
dependent on knowing the correct password. The password is set in this
tab.

18.1.5 Updating the Window Contents

You should note the following:

• Changes in the online window of a project as a result of user actions (for example,
downloading or deleting blocks) are not automatically updated in any open "Accessible Nodes"
windows.

• Any such changes in the "Accessible Nodes" window are not automatically changed in any
open online windows of a project.

To update the display in a parallel open window, you must refresh the display in this window
explicitly (using the menu command or the function key F5).

Establishing an Online Connection and Making CPU Settings
18.2 Displaying and Changing the Operating Mode

 Programming with STEP 7
384 Manual, 04/2017, A5E41552389-AA

18.2 Displaying and Changing the Operating Mode

With this function you can, for example, switch the CPU to RUN again after correcting an error.

Displaying the Operating Mode
1. Open your project and select an S7 program, or open the "Accessible Nodes" window using

the menu command PLC > Display Accessible Nodes and select a node ("MPI=...").

2. Select the menu command PLC > Diagnostics/Settings > Operating Mode.

This dialog box displays the current and the last operating mode and the current setting of the
mode selector on the module. For modules for which the current keyswitch setting cannot be
displayed, the text "Undefined" is displayed.

Changing the Operating Mode
You can change the mode of the CPU using the buttons. Only those buttons are active that can be
selected in the current operating mode.

 Establishing an Online Connection and Making CPU Settings
 18.3 Displaying and Setting the Time and Date

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 385

18.3 Displaying and Setting the Time and Date

Proceed as follows:

1. Open your project and select an S7 program, or open the "Accessible Nodes" window using
the menu command PLC > Display Accessible Nodes and select a node ("MPI=...").

2. Select the menu command PLC > Diagnostics/Settings > Set Date and Time.
The menu command can be selected only if an S7 program is selected in the project window
(online view) or a node ("MPI=...") is selected in the "Accessible Nodes" window.

3. In the dialog box displayed you can read the current time and date on the selected module.

4. If required, you can enter new values in the "Date" and "Time" fields or you can use the default
option to accept the time and date on your programming device/PC as UTC.

 Note

If the module does not have a real-time clock, the dialog box shows "00:00:00" for the time and
"00.00.00" for the date.

Establishing an Online Connection and Making CPU Settings
18.3 Displaying and Setting the Time and Date

 Programming with STEP 7
386 Manual, 04/2017, A5E41552389-AA

18.3.1 CPU Clocks with Time Zone Setting and Summer/Winter Time

On S7-400 CPUs as of firmware version 3, you can make or evaluate the following settings in
addition to the time and date:

• Summer/Winter Time

• Offset factors for displaying time zones

Display of Time Zones
The system operates with a TOD that is global, continuous and free of interrupts, namely the
Module Time.

The local automation system allows the calculation of a Local Time that differs from Module Time
and which can be used by the user program. Local Time is not entered directly, but is rather
calculated using the Module Time plus/minus a time difference to Module Time).

Summer/Winter Time
You can also set daylight-saving or standard time when you set up the TOD and the date. When
switching from daylight-saving to standard time, for example, per user program only the time
difference to the Module Time is taken into account. You can make this changeover with the block
"SET_SW_S" (FB 61) from the standard library "Miscellaneous blocks".

Reading and Adjusting the TOD and The TOD Status
The summer/winter time identifier and time difference to the Module Time are included in the Time-
Of-Day (TOD) status.

You have the following options to read or adjust the TOD and its status:

With STEP 7 (online)

• Via menu command PLC > Diagnostics/Setting > Adjust TOD (read and adjust)

• Via the "Module Information" dialog box, "Time System" tab (read only)

In the user program

• SFC 100 "SET_CLKS" (read and adjust)

• SFC 51 "RDSYSST" with SZL 132, Index 8 (read only)

Time Stamp in the Diagnostic Buffer, Messages and OB-Start Information
Time stamps are generated using the Module Time.

 Establishing an Online Connection and Making CPU Settings
 18.3 Displaying and Setting the Time and Date

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 387

TOD Interrupts
OB 80 is called if TOD interrupts were not triggered due to the "Time jump" when standard time is
switched to daylight saving.

For daylight saving/standard time conversion the periodicity is maintained for TOD interrupts with
minute and hourly periodicity.

TOD Synchronization
A CPU that is configured as TOD Master (for example, in the CPU register "Diagnostics/Clock"),
always synchronizes other clocks with the Module Time and the current TOD status.

Establishing an Online Connection and Making CPU Settings
18.4 Updating the Firmware

 Programming with STEP 7
388 Manual, 04/2017, A5E41552389-AA

18.4 Updating the Firmware

18.4.1 Updating Firmware in Modules and Submodules Online

As of STEP 7 V5.1 Service Pack 3, you can update modules or submodules on a station in a
standardized way online. To do so, proceed as described below:

Concept
To update the firmware on a module (CPU, IM, etc.) or a submodule (DI, DO, etc.), you can
download the files (*.UPD) containing the latest firmware on the Internet
("http://www.siemens.com/automation/support").

Select one of these files and download it to the module (PLC Menu).

Prerequisites
The module in the station or module whose firmware is to be updated must be available online.
This means that the programming device (PG) is connected to the same MPI PROFIBUS or
Ethernet as the module whose firmware is to be updated. The firmware can also be updated when
the programming device (PG) is connected to the MPI interface of the DP master CPU and the
module whose firmware is to be updated is connected at the PROFIBUS of the DP interface or the
Ethernet of the PN interface. The CPU must support S7 routing between the MPI interface and the
DP interface or between the MPI interface and the PN interface.

The module or submodule itself must support Firmware updates. PROFINET GSD devices
(GSDML devices) only support firmware updates via "Show accessible devices".

http://www.siemens.com/automation/support

 Establishing an Online Connection and Making CPU Settings
 18.4 Updating the Firmware

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 389

The files containing the latest firmware versions must be available in the file system on your
PG/PC. Only files for one firmware version must be in one folder.

(1) PROFIBUS or Ethernet subnet

(2) MPI subnet

(3) CPU with MPI interface and DP interface or PN interface (with S7 routing)

Procedure in HW Config
1. Open the station containing the module to be updated.

2. Select the module
For PROFIBUS DP interface modules such as an IM 151, select the icon for the DP slave. In
this case, it is the one that stands for ET 200S.

3. Follow the same procedure for PROFINET IO devices.
If you want to update the firmware of modules of a DP slave or IO device, click the "Change
Slot" button and select the slot of the module you want to update in the "Change Slot" dialog.

4. Select the menu command PLC > Update Firmware.
You can only activate the menu command if the selected module / DP slave / IO device or the
selected submodule supports the "Update firmware" function.

5. In the "Update firmware" dialog that is displayed, click the "Browse" button and select the path
to the firmware update files (*.UPD).

6. After you have selected a file, the lower fields of the "Update firmware" dialog will contain
information telling you for which modules the file is suitable and as of which firmware version.

Establishing an Online Connection and Making CPU Settings
18.4 Updating the Firmware

 Programming with STEP 7
390 Manual, 04/2017, A5E41552389-AA

7. Click the "Run" button.
STEP 7 checks whether the selected file can be interpreted by the module. If the check result
is positive, the file is downloaded to the module.
If the operating mode of the CPU needs to be changed, dialogs will prompt you to carry out
these steps.
The module then carries out the firmware update independently.
Note: For a firmware update, such as to a CPU 317-2 PN/DP, a separate connection is usually
established to the CPU. In such case, the process can be interrupted. If no resources are
available for another connection, the existing connection is automatically used instead. In this
case, the connection cannot be interrupted. The "Cancel" button in the transfer dialog is grayed
out and unavailable.

8. In STEP 7, check (read out the CPU diagnostic buffer) whether the module was able to start up
with the new firmware.

Procedure in SIMATIC Manager
The procedure corresponds to that in HW Config. The menu command also is PLC > Firmware
update. STEP 7 however only checks if the module supports the function at the time of the
execution.

Firmware Update for Modules in Redundant Mode
As of STEP 7 V5.4, a firmware updates for a modules during redundant mode is supported, such
as for the IM 153-2BA00 with an active backplane bus at an H station. You can carry out a
firmware update for the redundant IMs in one process; the redundant IM will automatically be
provided with the latest firmware version.

Requirement: The programming device (PG) must be connected to the same PROFIBUS as one of
the IMs and you perform the update by means of "Accessible Nodes" in the SIMATIC Manager.

Principle

 Establishing an Online Connection and Making CPU Settings
 18.4 Updating the Firmware

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 391

Consequences of updating the firmware during operation
You can decide to activate the new firmware immediately after updating via an option in the update
dialog.

If you select this option, the station performs a restart like after POWER OFF/POWER ON. As
result, it may happen that a CPU remains in STOP mode or the processing of the user program is
adversely affected. You will need to take appropriate precautions in the operation of your plant to
anticipate and accommodate these conditions.

For example, during a restart all modules of the station will fail, including the existing F I/O.

The F I/O outputs a communication error to the interface during POWER OFF and switches off
safely - it is passivated. This passivation is not cleared by restarting the interface. You must
depassivate the modules individually. However, the safety-related applications will not run as a
result of this.

Updating the firmware fir CPUs 410 as of V8.2
With these CPUs, you have the option to update the firmware in one or more steps. This has the
advantage that longer standstill times are minimized. The "Activate firmware after download" check
box has been replaced by the following options:

If you select the option "Load and activate firmware version" the firmware is updated as decribed
above.

If you select the option "Load firmware version only" the firmware is only downloaded. If the CPU is
in "RUN", the firmware is downloaded to the first CPU and automatically copied to the second
CPU. The copy operation is not performed in "STOP" mode.

If you select the option "Activate the loaded firmware" the firmware is activated on the module.

Establishing an Online Connection and Making CPU Settings
18.4 Updating the Firmware

 Programming with STEP 7
392 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 393

19 Downloading and Uploading

19.1 Downloading from the PG/PC to the Programmable Controller

19.1.1 Requirements for Downloading

Requirements for Downloading to the Programmable Controller
• There must be a connection between your programming device and the CPU in the

programmable controller (for example, via the multipoint interface).

• Access to the programmable controller must be possible.

• For the download of blocks to the PLC, the entry "STEP 7" must have been selected for "Use"
in the object properties dialog of the project.

• The program you are downloading has been compiled without errors.

• The CPU must be in an operating mode in which downloading is permitted (STOP or RUN-P).
Note that in RUN-P mode the program will be downloaded a block at a time. If you overwrite an
old CPU program doing this, conflicts may arise, for example, if block parameters have
changed. The CPU then goes into STOP mode while processing the cycle. We therefore
recommend that you switch the CPU to STOP mode before downloading.

• If you opened the block offline and want to download it, the CPU must be linked to an online
user program in the SIMATIC Manager.

• Before you download your user program, you should reset the CPU to ensure that no "old"
blocks are on the CPU.

STOP Mode
Set the operating mode from RUN to STOP before you do the following:

• Download the complete user program or parts of it to the CPU

• Execute a memory reset on the CPU

• Compress the user memory

Restart (Warm Restart (Transition to RUN Mode)
If you execute a restart (warm restart) in the "STOP" mode, the program is restarted and first
processes the startup program (in the block OB100) in STARTUP mode. If the startup is
successful, the CPU changes to RUN mode. A restart (warm restart) is required after the following:

• Resetting the CPU

• Downloading the user program in STOP mode

Downloading and Uploading
19.1 Downloading from the PG/PC to the Programmable Controller

 Programming with STEP 7
394 Manual, 04/2017, A5E41552389-AA

19.1.2 Differences Between Saving and Downloading Blocks

You should always distinguish between saving and downloading blocks.

 Saving Downloading

Menu commands File > Save
File > Save As

PLC > Download

Function The current status of the block in the editor
is saved on the hard disk of the
programming device.

The current status of the block in the
editor is only downloaded to the CPU.

Syntax check A syntax check is run. Any errors are
reported in dialog boxes. The causes of
the errors and the error locations are also
shown. You must correct these errors
before you save or download the block. If
no errors are found in the syntax, the block
is compiled into machine code and either
saved or downloaded.

A syntax check is run. Any errors are
reported in dialog boxes. The causes of
the errors and the error locations are also
shown. You must correct these errors
before you save or download the block. If
no errors are found in the syntax, the
block is compiled into machine code and
either saved or downloaded.

The table applies independent of whether you have opened the block online or offline.

Tip for Block Changes - Save First Then Download
To enter newly created blocks or changes in the code section of logic blocks, in declaration tables
or to enter new or changed data values in data blocks, you must save the respective block. Any
changes you make in the editor and transfer to the CPU using the menu command PLC >
Download, -for example, for testing small changes-, must also be saved on the hard disk of the
programming device in every case before you exit the editor. Otherwise, you will have different
versions of your user program in the CPU and on the programming device. It is generally
recommended that you save all changes first and then download them.

 Downloading and Uploading
 19.1 Downloading from the PG/PC to the Programmable Controller

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 395

19.1.3 Load Memory and Work Memory in the CPU

After completing the configuration, parameter assignment, and program creation and establishing
the online connection, you can download complete user programs or individual blocks to a
programmable controller. To test individual blocks, you must download at least one organization
block (OB) and the function blocks (FB) and functions (FC) called in the OB and the data blocks
(DB) used. To download the system data created when the hardware was configured, the networks
configured, and the connection table created to the programmable controller, you download the
object "System Data".

You download user programs to a programmable controller using the SIMATIC Manager, for
example, during the end phase of the program testing or to run the finished user program.

Relationship - Load Memory and Work Memory
The complete user program is downloaded to the load memory; the parts relevant to program
execution are also loaded into the work memory.

CPU Load Memory
• The load memory is used to store the user program without the symbol table and the

comments (these remain in the memory of the programming device).

• Blocks that are not marked as required for startup will be stored only in the load memory.

• The load memory can either be RAM, ROM, or EPROM memory, depending on the
programmable controller.

• The load memory can also have an integrated EEPROM part as well as an integrated RAM
part (for example, CPU 312 IFM and CPU 314 IFM).

• In S7-400, it is imperative that you use a memory card (RAM or EEPROM) to extend the load
memory.

CPU Work Memory
The work memory (integrated RAM) is used to store the parts of the user program required for
program processing.

Downloading and Uploading
19.1 Downloading from the PG/PC to the Programmable Controller

 Programming with STEP 7
396 Manual, 04/2017, A5E41552389-AA

Possible Downloading/Uploading Procedures
• You use the download function to download the user program or loadable objects (for example,

blocks) to the programmable controller. If a block already exists in the RAM of the CPU, you
will be prompted to confirm whether or not the block should be overwritten.

• You can select the loadable objects in the project window and download them from the
SIMATIC Manager (menu command: PLC > Download).

• When programming blocks and when configuring hardware and networks you can directly
download the object you were currently editing using the menu in the main window of the
application you are working with (menu command: PLC > Download).

• Another possibility is to open an online window with a view of the programmable controller (for
example, using View > Online or PLC > Display Accessible Nodes) and copy the object you
want to download to the online window.

Alternatively you can upload the current contents of blocks from the RAM load memory of the CPU
to your programming device via the load function.

 Downloading and Uploading
 19.1 Downloading from the PG/PC to the Programmable Controller

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 397

19.1.4 Download Methods Dependent on the Load Memory

The division of the load memory of a CPU into RAM and EEPROM areas determines the methods
available for downloading your user program or the blocks in your user program. The following
methods are possible for downloading data to the CPU:

Load Memory Method of Loading Type of Communication between

PG and PLC

RAM Downloading and deleting individual
blocks

Online PG - PLC connection

 Downloading and deleting a
complete user program

Online PG - PLC connection

 Reloading individual blocks Online PG - PLC connection
Integrated (S7-300 only) or
plugin EPROM

Downloading complete user
programs

Online PG - PLC connection

Plugin EPROM Downloading complete user
programs

External loading of the EPROM and
inserting the memory card or via
online connection on the PLC
where the EPROM is inserted.

Downloading to the RAM via Online Connection
In the programmable controller the data are lost if there is a power failure and the RAM is not
backed up. The data in the RAM will then be lost in this case.

Saving to EPROM Memory Card
Blocks or the user program are saved on an EPROM memory card which is then inserted in a slot
on the CPU.

Memory cards are portable data media. They are written by the programming device and then
inserted in the appropriate slot on the CPU.

The data stored on them are retained following power down and when the CPU is reset. The
contents of the EPROM are copied to the RAM area of the CPU memory again when power returns
following a memory reset of the CPU and power down if the RAM is not backed up.

Saving in the Integrated EPROM
For the CPU 312, you can also save the contents of the RAM to the integrated EPROM. The data
in the integrated EPROM are retained during power down. The contents of the integrated EPROM
are copied to the RAM area of the CPU memory again when power returns following power down
and a memory reset of the CPU if the RAM is not backed up.

Downloading and Uploading
19.1 Downloading from the PG/PC to the Programmable Controller

 Programming with STEP 7
398 Manual, 04/2017, A5E41552389-AA

19.1.5 Updating Firmware in Modules and Submodules Online

As of STEP 7 V5.1 Service Pack 3, you can update modules or submodules on a station in a
standardized way online. To do so, proceed as described below:

Concept
To update the firmware on a module (CPU, IM, etc.) or a submodule (DI, DO, etc.), you can
download the files (*.UPD) containing the latest firmware on the Internet
("http://www.siemens.com/automation/support").

Select one of these files and download it to the module (PLC Menu).

Prerequisites
The module in the station or module whose firmware is to be updated must be available online.
This means that the programming device (PG) is connected to the same MPI PROFIBUS or
Ethernet as the module whose firmware is to be updated. The firmware can also be updated when
the programming device (PG) is connected to the MPI interface of the DP master CPU and the
module whose firmware is to be updated is connected at the PROFIBUS of the DP interface or the
Ethernet of the PN interface. The CPU must support S7 routing between the MPI interface and the
DP interface or between the MPI interface and the PN interface.

The module or submodule itself must support Firmware updates. PROFINET GSD devices
(GSDML devices) only support firmware updates via "Show accessible devices".

The files containing the latest firmware versions must be available in the file system on your
PG/PC. Only files for one firmware version must be in one folder.

(1) PROFIBUS or Ethernet subnet

(2) MPI subnet

(3) CPU with MPI interface and DP interface or PN interface (with S7 routing)

http://www.siemens.com/automation/support

 Downloading and Uploading
 19.1 Downloading from the PG/PC to the Programmable Controller

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 399

Procedure in HW Config
1. Open the station containing the module to be updated.

2. Select the module
For PROFIBUS DP interface modules such as an IM 151, select the icon for the DP slave. In
this case, it is the one that stands for ET 200S.

3. Follow the same procedure for PROFINET IO devices.
If you want to update the firmware of modules of a DP slave or IO device, click the "Change
Slot" button and select the slot of the module you want to update in the "Change Slot" dialog.

4. Select the menu command PLC > Update Firmware.
You can only activate the menu command if the selected module / DP slave / IO device or the
selected submodule supports the "Update firmware" function.

5. In the "Update firmware" dialog that is displayed, click the "Browse" button and select the path
to the firmware update files (*.UPD).

6. After you have selected a file, the lower fields of the "Update firmware" dialog will contain
information telling you for which modules the file is suitable and as of which firmware version.

7. Click the "Run" button.
STEP 7 checks whether the selected file can be interpreted by the module. If the check result
is positive, the file is downloaded to the module.
If the operating mode of the CPU needs to be changed, dialogs will prompt you to carry out
these steps.
The module then carries out the firmware update independently.
Note: For a firmware update, such as to a CPU 317-2 PN/DP, a separate connection is usually
established to the CPU. In such case, the process can be interrupted. If no resources are
available for another connection, the existing connection is automatically used instead. In this
case, the connection cannot be interrupted. The "Cancel" button in the transfer dialog is grayed
out and unavailable.

8. In STEP 7, check (read out the CPU diagnostic buffer) whether the module was able to start up
with the new firmware.

Procedure in SIMATIC Manager
The procedure corresponds to that in HW Config. The menu command also is PLC > Firmware
update. STEP 7 however only checks if the module supports the function at the time of the
execution.

Firmware Update for Modules in Redundant Mode
As of STEP 7 V5.4, a firmware updates for a modules during redundant mode is supported, such
as for the IM 153-2BA00 with an active backplane bus at an H station. You can carry out a
firmware update for the redundant IMs in one process; the redundant IM will automatically be
provided with the latest firmware version.

Requirement: The programming device (PG) must be connected to the same PROFIBUS as one of
the IMs and you perform the update by means of "Accessible Nodes" in the SIMATIC Manager.

Downloading and Uploading
19.1 Downloading from the PG/PC to the Programmable Controller

 Programming with STEP 7
400 Manual, 04/2017, A5E41552389-AA

Principle

Consequences of updating the firmware during operation
You can decide to activate the new firmware immediately after updating via an option in the update
dialog.

If you select this option, the station performs a restart like after POWER OFF/POWER ON. As
result, it may happen that a CPU remains in STOP mode or the processing of the user program is
adversely affected. You will need to take appropriate precautions in the operation of your plant to
anticipate and accommodate these conditions.

For example, during a restart all modules of the station will fail, including the existing F I/O.

The F I/O outputs a communication error to the interface during POWER OFF and switches off
safely - it is passivated. This passivation is not cleared by restarting the interface. You must
depassivate the modules individually. However, the safety-related applications will not run as a
result of this.

Updating the firmware fir CPUs 410 as of V8.2
With these CPUs, you have the option to update the firmware in one or more steps. This has the
advantage that longer standstill times are minimized. The "Activate firmware after download" check
box has been replaced by the following options:

If you select the option "Load and activate firmware version" the firmware is updated as decribed
above.

If you select the option "Load firmware version only" the firmware is only downloaded. If the CPU is
in "RUN", the firmware is downloaded to the first CPU and automatically copied to the second
CPU. The copy operation is not performed in "STOP" mode.

If you select the option "Activate the loaded firmware" the firmware is activated on the module.

 Downloading and Uploading
 19.1 Downloading from the PG/PC to the Programmable Controller

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 401

19.1.6 Downloading a Program to the S7 CPU

19.1.6.1 Downloading with Project Management

1. In the project window, select the user program or the blocks you want to download.

2. Download the selected objects to the programmable logic controller by selecting the menu
command PLC > Download.

Alternative Procedure (Drag & Drop)
1. Open an offline window and an online window of your project.

2. Select the objects you want to download in the offline window and drag them to the online
window.

19.1.6.2 Downloading without Project Management

1. Open the "Accessible Nodes" window using the menu command PLC > Display Accessible
Nodes or by clicking the corresponding button in the toolbar.

2. Double-click in the "Accessible Nodes" window on the required node ("MPI=...") to display the
"Blocks" folder.

3. Open the library or the project from which you want to download the user program or blocks to
the programmable logic controller. Use the menu command File > Open for this.

4. In the window which opens for the project or the library, select the objects you want to
download.

5. Download the objects to the programmable logic controller by copying them to the "Blocks"
folder in the "Accessible Nodes" window using drag & drop.

19.1.6.3 Reloading Blocks in the Programmable Controller

You can overwrite blocks which already exist in the load memory (RAM) or work memory of the
CPU in the S7 programmable logic controller with a new version (reload them). The existing
version is then overwritten.

The procedure for reloading S7 blocks is the same as for downloading. A prompt simply appears,
querying whether you want to overwrite the existing block.

A block stored in the EPROM cannot be deleted but is declared invalid once it is reloaded. The
replacement block is loaded in the RAM. This creates gaps in the load memory or the work
memory. If these gaps eventually mean that no new blocks can be downloaded, you should
compress the memory.

 Note

If the power goes down and then returns and the RAM does not have a battery backup, or following
a memory reset of the CPU the "old" blocks become valid again.

Downloading and Uploading
19.1 Downloading from the PG/PC to the Programmable Controller

 Programming with STEP 7
402 Manual, 04/2017, A5E41552389-AA

19.1.6.4 Saving Downloaded Blocks on Integrated EPROM

For CPUs that have an integrated EPROM (such as CPU 312), you can save blocks from the RAM
to the integrated EPROM so as not to lose the data following power off or memory reset.

1. Use the menu command View > Online to display a window containing the online view of an
open project or open the "Accessible Nodes" window by clicking the "Accessible Nodes" button
in the toolbar or selecting the menu command PLC > Display Accessible Nodes.

2. Select the S7 program in the online window of the project or the node in the "Accessible
Nodes" window.

3. Select the "Blocks" folder on the CPU which you want to save using one of the following
methods:

- In the online window of the project if you are working with project management

- In the "Accessible Nodes" window if you are working without project management

4. Select the menu command PLC > Save RAM to ROM.

19.1.6.5 Downloading via EPROM Memory Cards

Requirements
For access to EPROM memory cards in the programming device which are intended for an S7
programmable logic controller, you will require the appropriate EPROM drivers. EPROM drivers are
offered as options when you install the STEP 7 Standard package. If you are using a PC, an
external prommer will be required to save to EPROM memory cards.

You can also install the drivers at a later date. To do this, call up the corresponding dialog box via
Start > Simatic > STEP 7 > Memory Card Parameter Assignment or via the Control Panel
(double-click the "Memory Card Parameter Assignment" icon).

Saving on the Memory Card
To save blocks or user programs to a memory card, proceed as follows:

1. Insert the memory card in the slot of your programming device.

2. Open the "Memory Card" window by:

- Clicking the button for "Memory Card" in the toolbar. If necessary, activate the toolbar
using the menu command View > Toolbar.

- Alternatively, select the menu command File > S7 Memory Card > Open.

3. Open or activate one of the following windows displaying the blocks you want to save: The
following windows are possible:

- Project window, "ONLINE" view

- Project window, "offline" view

- Library window

- "Accessible Nodes" window

4. Select the "Blocks" folder or individual blocks and copy them to the "S7 Memory Card" window.

5. If a block already exists on the memory card, an error message is displayed. In this case, erase
the contents of the memory card and repeat the steps from 2.

 Downloading and Uploading
 19.2 Compiling and Downloading Several Objects from the PG

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 403

19.2 Compiling and Downloading Several Objects from the PG

19.2.1 Requirements for and Notes on Downloading

Downloading Block Folders
For block folders, only logic blocks can be downloaded. Other objects in the block folder, such as
system data (SDBs), etc. cannot be downloaded here. SDBs are downloaded through the
"Hardware" object.

 Note
For PCS 7 projects, blocks cannot be downloaded using the dialog "Compile and Download Objects"- just as
they cannot be downloaded from the SIMATIC Manager. For PCS 7 projects, the following applies: PLCs must
only be downloaded to by means of CFCs in order to ensure correct sequencing during the download. This
must be done to prevent the CPU from going into STOP mode.
To determine whether the given project is a PCS 7 project, check the project properties.

Downloading the F-Shares of Failsafe Controllers
For security reasons, a password must be entered before modified F-shares can be downloaded.
For this reason, with the "Compile and Download Objects" function, the download procedure will be
aborted with an error message. In this case, load the appropriate parts of the program along with
the optional package to the PLC.

Downloading the Hardware Configuration
Downloading the hardware configuration (i.e. downloading the offline SDBs) by means of the
"Compile and Download Objects" function will only run without interruption for all selected objects if
no error messages or prompts are triggered. The following section provides information on how to
avoid such messages or prompts.

Requirements for Downloading the Hardware Configuration
• CPUs must be in STOP mode.

• It must be possible to establish online connections to the CPUs. In the case of the selected
CPU or the selected block folder, password-projected CPUs require an authorized connection
or entry of a password ("Edit" button) before the "Compile and Download Objects" function can
be run.

• When loading the configuration from "Compile and download objects", please note that no user
input is possible during the entire process. If a connection is to take place via the TCP/IP
interface and the setting "Use different method to obtain IP address" is set, the download will
only be successful if the affected CPU has a valid access address. You assign the access
address in SIMATIC manager. To do this, select the program folder and call the menu item
"PLC/Access address".

Downloading and Uploading
19.2 Compiling and Downloading Several Objects from the PG

 Programming with STEP 7
404 Manual, 04/2017, A5E41552389-AA

• The interface of the target system that is being used for downloading must not be reconfigured
to any substantial extent:

- The interface address must not be changed.

- If you change the network settings, this may mean that not all the modules will be able to
be accessed.

• In the case of H-CPUs, you can select the CPU to receive the download (H-CPU 0 or H-CPU
1) before running the "Compile and Download Objects" function (Select the "CPU" object and
then click the "Edit" button).

• The following CPU parameters must not be changed:

- The maximum size for local data and communications resources on the CPU ("Memory"
tab)

- The password protection for the F-CPU ("Protection" tab)

• For each configured module, the following conditions must be fulfilled:

- The order number for the configured module must be identical with the order number of the
module that is actually inserted.

- The firmware version of the configured module must not be higher than the firmware
version of the module that is actually inserted.

- The station name, the name of the module and the plant designation must not have
changed since the last download. However, you can assign a new plant designation.

Tips on the Download Procedure
• All offline SDBs will be downloaded (that is, in addition to the hardware configuration, also the

connection SDBs and SDBs that were created through global data configurations).

• Downloading is only carried out if no errors occurred during the previous compilation process.

• During the download, any error feedback messages are suppressed. For example, if a CPU
memory bottleneck occurs, the data will be compressed automatically without the user being
informed.

• After the download is complete, the downloaded modules will be in STOP mode (except for
those modules that are automatically stopped and restarted without the user being informed).

Tip
If, after the download is completed, a message appears stating that the download of the object was
completed with warnings, then be sure to view the contents of the log. It may be that the object was
either not downloaded or was not downloaded completely.

 Downloading and Uploading
 19.2 Compiling and Downloading Several Objects from the PG

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 405

19.2.2 Compiling and Downloading Objects

In the "Compile and download objects" dialog you prepare the objects that can be selected in your
project or multiproject for transfer to the PLC and their subsequent download (if desired). This
dialog can be used for objects in a station, a project or a multiproject.

Depending on the object selected, certain information may not be displayed. In addition, not all the
functions described below may be available for these objects. In particular, these restrictions may
apply to objects that were created with optional software packages.

For blocks in a block folder "compile" means that the consistency of the blocks is checked. In the
following, for simplicity, the consistency check for blocks will be referred to as compilation.

Procedure:

1. In SIMATIC Manager, select the object that you want to compile, or compile and download.
The following objects can be selected in the SIMATIC Manager:

- Multiproject

- Project

- Station

- S7 program without station assignment

2. In the SIMATIC Manager, select menu command PLC > Compile And Download Objects.

3. Select "Only compile" if you want to perform a check of the blocks without downloading them to
the PLC. Select this option if you do not want to download any of these objects to the PLC.
Note: Stations with missing HSPs are not compiled and loaded (the check boxes are not
visisble).

4. To prevent incomplete downloads to stations due to compilation errors, select the check box
"No download on compilation error". If this check box is selected, nothing will be downloaded. If
the check box is not selected, then all objects compiled without error are downloaded. Objects
that caused an error during compilation are not downloaded.

5. If you want to compile and download connections, select the corresponding check box for the
"Connections" object.

A multiproject is particularly suited for use as a starting point, since all connection partners for
cross-project connections can also be downloaded from this object.

6. In the "Compile" and "Download" columns, select the objects that you want to compile or
download. You selections will be indicated by checkmarks. If you selected "Compile only" in
Step 3, the "Download" column will be grayed out and unavailable.

7. Click on "Start" to begin the compilation.

8. Follow the instructions on the screen.

After the compilation or download is complete, a full log is displayed. You can open the full log or
single-object log at any time:

• Click on the "All" button to view the full log of the complete action.

• Click on "Single object" button to view only the log of the object you have selected in the object
table.

Downloading and Uploading
19.2 Compiling and Downloading Several Objects from the PG

 Programming with STEP 7
406 Manual, 04/2017, A5E41552389-AA

Special considerations when compiling and downloading connections
If, in a module, you select the "Connections" object as the one to be compiled, then STEP 7
automatically selects the corresponding "Connections" object in the connection partner. By doing
this, STEP 7 always creates consistent configuration data (system data blocks). The automatically
selected objects cannot be directly deselected manually. However, the selection is automatically
removed if the originally selected "Connections" object is also deselected.

If, in a module, you select the "Connections" object as the one to be downloaded, then STEP 7
automatically selects the "Compile" check box. In addition, STEP 7 also selects the "Compile" and
"Download" check boxes for all connection partners. If only objects of the "Connections" type were
selected, you can also download the connections when the CPU is in RUN-P operating mode.

You can use NetPro to download individual connections.

Compiling and downloading hardware: effects on connections
If you select the "Hardware" object as the one to be compiled or downloaded, all "Connections"
objects below the hardware selected are also automatically selected to be compiled or
downloaded. In this case, however, the connection objects at the connections partners are not
automatically selected as well!

 Downloading and Uploading
 19.3 Uploading from the Programmable Controller to the PG/PC

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 407

19.3 Uploading from the Programmable Controller to the PG/PC

This function supports you when carrying out the following actions:

• Saving information from the programmable controller (for example, for servicing purposes)

• Fast configuring and editing of a station, if the hardware components are available before you
start configuring.

Saving Information from the Programmable Controller
This measure may be necessary if, for example, the offline project data of the version running on
the CPU are not, or only partially, available. In this case, you can at least retrieve the project data
that are available online and upload them to your programming device.

Fast Configuring
Entering the station configuration is easier if you upload the configuration data from the
programmable controller to your programming device after you have configured the hardware and
restarted (warm restart) the station. This provides you with the station configuration and the types
of the individual modules. Then all you have to do is specify these modules in more detail (order
number) and assign them parameters.

The following information is uploaded to the programming device:

• S7-300: Configuration for the central rack and any expansion racks

• S7-400: Configuration of the central rack with a CPU and signal modules without expansion
racks

• Configuration data for the distributed I/O cannot be uploaded to the programming device.

This information is uploaded if there is no configuration information on the programmable controller;
for example, if a memory reset has been carried out on the system. Otherwise, the Upload function
provides much better results.

For S7-300 systems without distributed I/O, all you have to do is specify these modules in more
detail (order number) and assign them parameters.

 Note

When you upload data (if you do not already have an offline configuration), STEP 7 cannot
determine all the order numbers of the components.

You can enter the "incomplete" order numbers when you configure the hardware using the menu
command Options > Specify Module. In this way, you can assign parameters to modules that
STEP 7 does not recognize (that is, modules that do not appear in the "Hardware Catalog"
window); however, STEP 7 will not then check whether you are keeping to the parameter rules.

Downloading and Uploading
19.3 Uploading from the Programmable Controller to the PG/PC

 Programming with STEP 7
408 Manual, 04/2017, A5E41552389-AA

Restrictions when Uploading from the Programmable Controller
The following restrictions apply to the data uploaded from the programmable controller to the
programming device:

• Blocks do not contain any symbolic names for parameters, variables, and labels

• Blocks do not contain any comments

• The entire program is uploaded with all the system data, whereby the system can only continue
to process the system data belonging to the "Configuring Hardware" application

• The data for global data communication (GD) and configuring symbol-related messages cannot
be processed further

• Force jobs are not uploaded to the programming device with the other data. They must be
saved separately as a variable table (VAT)

• Comments in the module dialog boxes are not uploaded

• The names of the modules are only displayed if this option has been selected during
configuration (HW Config: the option "Save object names in the programmable logic controller"
in the dialog box under Options > Customize).

19.3.1 Uploading a Station

Using the menu command PLC > Upload Station you can upload the current configuration and all
blocks from the programmable controller of your choice to the programming device.

To do this, STEP 7 creates a new station in the current project under which the configuration will be
saved. You can change the preset name of the new station (for example, "SIMATIC 300-
Station(1)"). The inserted station is displayed both in the online view and in the offline view.

The menu command can be selected when a project is open. Selecting an object in the project
window or the view (online or offline) has no effect on the menu command.

You can use this function to make configuring easier.

• For S7-300 programmable controllers, the configuration for the actual hardware configuration is
uploaded including the expansion racks, but without the distributed I/O (DP).

• For S7-400 programmable controllers, the rack configuration is uploaded without the expansion
racks and without the distributed I/O.

With S7-300 systems without distributed I/O, all you have to do is specify the modules in more
detail (order number) and assign them parameters.

Restrictions when Uploading Stations
The following restrictions apply to the data uploaded to the programming device:

• Blocks do not contain any symbolic names for parameters, variables, and labels

• Block do not contain any comments

• The entire program is uploaded with all the system data, whereby not all the data can be
processed further

• The data for global data communication (GD), configuring symbol-related messages, and
configuring networks cannot be processed further

• Force jobs cannot be uploaded to the programming device and then loaded back to the
programmable controller.

 Downloading and Uploading
 19.3 Uploading from the Programmable Controller to the PG/PC

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 409

19.3.2 Uploading Blocks from an S7 CPU

You can upload S7 blocks from the CPU to the hard disk of the programming device using the
SIMATIC Manager. Uploading blocks to the programming device is useful in the following
situations:

• Making a backup copy of the current user program loaded in the CPU. This backup can then
be downloaded again, for example, following servicing or following a memory reset of the CPU
by maintenance personnel.

• You can upload the user program from the CPU to the programming device and edit it there,
for example, for troubleshooting purposes. In this case you do not have access to symbols or
comments for program documentation. Therefore we recommend that this procedure is used
only for service purposes.

19.3.3 Editing Uploaded Blocks in the PG/PC

Being able to upload blocks from the CPU to the programming device has the following uses:

• During the test phase, you can correct a block directly on the CPU and document the result.

• You can upload the current contents of blocks from the RAM load memory of the CPU to your
programming device via the load function.

 Note

Time stamp Conflicts when Working Online and Offline
The following procedures lead to time stamp conflicts and should therefore be avoided.

Time stamp conflicts result when you open a block online if:

• Changes made online were not saved in the offline S7 user program

• Changes made offline were not downloaded to the CPU

Time stamp conflicts result when you open a block offline if:

• An online block with a time stamp conflict is copied to the S7 user program offline and the
block is then opened offline.

Two Distinct Cases
When uploading blocks from the CPU to the programming device, remember that there are two
distinct situations:

1. The user program to which the blocks belong is located on the programming device.

2. The user program to which the blocks belong is not on the programming device.

This means that the program sections listed below, that cannot be downloaded to the CPU, are not
available. These components are:

• The symbol table with the symbolic names of the addresses and the comments

• Network comments of a Ladder Logic or Function Block Diagram program

• Line comments of a Statement List program

• Userdefined data types

Downloading and Uploading
19.3 Uploading from the Programmable Controller to the PG/PC

 Programming with STEP 7
410 Manual, 04/2017, A5E41552389-AA

19.3.3.1 Editing Uploaded Blocks if the User Program is on the PG/PC

To edit blocks from the CPU, proceed as follows:

1. Open the online window of the project in the SIMATIC Manager.

2. Select a "Blocks" folder in the online window. The list of loaded blocks is displayed.

3. Now select the blocks, open and edit them.

4. Select the menu command File > Save to save the change offline on the programming device.

5. Select the menu command PLC > Download to download the changed blocks to the
programmable controller.

19.3.3.2 Editing Uploaded Blocks if the User Program is Not on the PG/PC

To edit blocks from the CPU, proceed as follows:

1. In the SIMATIC Manager, click the "Accessible Nodes" toolbar button or select the menu
command PLC > Display Accessible Nodes.

2. Select the node ("MPI=..." object) from the list displayed and open the "Blocks" folder to display
the blocks.

3. You can now open blocks and edit, monitor, or copy them as required.

4. Select the menu command File > Save As and enter the path for the programming device
where you want to store the blocks in the dialog box.

5. Select the menu command PLC > Download to download the changed blocks to the
programmable controller.

 Downloading and Uploading
 19.4 Deleting on the Programmable Controller

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 411

19.4 Deleting on the Programmable Controller

19.4.1 Erasing the Load/Work Memory and Resetting the CPU

Before downloading your user program to the S7 programmable controller, you should perform a
memory reset on the CPU to ensure that no "old" blocks are still on the CPU.

Requirement for Memory Reset
The CPU must be in STOP mode to perform a memory reset (mode selector set to STOP, or to
RUN-P and change the mode to STOP using the menu command PLC > Diagnostics/Settings >
Operating Mode).

Performing a Memory Reset on an S7 CPU
When a memory reset is performed on an S7 CPU, the following happens:

• The CPU is reset.

• All user data are deleted (blocks and system data blocks (SDB) with the exception of the MPI
parameters).

• The CPU interrupts all existing connections.

• If data are present on an EPROM (memory card or integrated EPROM), the CPU copies the
EPROM contents back to the RAM area of the memory following the memory reset.

The contents of the diagnostic buffer and the MPI parameters are retained.

19.4.2 Deleting S7 Blocks on the Programmable Controller

Deleting individual blocks on the CPU may be necessary during the test phase of the CPU
program. Blocks are stored in the user memory of the CPU either in the EPROM or RAM
(depending on the CPU and the load procedure).

• Blocks in the RAM can be deleted directly. The occupied space in the load or work memory
becomes free and can be used again.

• Blocks in the integrated EPROM are always copied to the RAM area following a memory reset
of the CPU. The copies in the RAM can be deleted directly. The deleted blocks are then
marked in the EPROM as invalid until the next memory reset or power down without RAM
backup. Following a memory reset or power down without RAM backup, the "deleted" blocks
are copied from the EPROM to the RAM and become active. Blocks in the integrated EPROM
(for example, in the CPU 312) are deleted by overwriting them with the new RAM contents.

• EPROM memory cards must be erased in the programming device.

Downloading and Uploading
19.5 Compressing the User Memory (RAM)

 Programming with STEP 7
412 Manual, 04/2017, A5E41552389-AA

19.5 Compressing the User Memory (RAM)

19.5.1 Gaps in the User Memory (RAM)

After deleting and reloading blocks, gaps can occur in the user memory (load and work memory)
and reduce the usable memory area. With the compress function, the existing blocks are
rearranged in the user memory without gaps, and a continuous free memory is created.

The following figure shows a diagram of how occupied blocks of memory are shifted together by
the compress function.

Always Try to Compress the Memory in STOP Mode
Only if you compress the memory in "STOP" mode are all the gaps closed up. In the RUNP mode
(mode selector setting), the blocks currently being processed cannot be shifted since they are
open. The compress function does not work in the RUN mode (mode selector setting) (write
protection!).

 Downloading and Uploading
 19.5 Compressing the User Memory (RAM)

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 413

19.5.2 Compressing the Memory Contents of an S7 CPU

Ways of Compressing the Memory
There are two methods of compressing the user memory, as follows:

• If there is insufficient memory available when you are downloading to the programmable
controller, a dialog box appears informing you of the error. You can compress the memory by
clicking the corresponding button in the dialog box.

• As a preventative measure, you can display the memory utilization (menu command PLC >
Diagnostics/Setting > Module Information, "Memory" tab) and start the compressing
function if required.

Procedure
1. Select the S7 program in the "Accessible Nodes" window or the online view of the project.

2. Select the menu command PLC > Diagnostics/Setting > Module Information.

3. In the dialog box which then appears, select the "Memory" tab. In this tabbed page there is a
button for compressing the memory if the CPU supports this function.

Downloading and Uploading
19.5 Compressing the User Memory (RAM)

 Programming with STEP 7
414 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 415

20 Testing with the Variable Table

20.1 Introduction to Testing with Variable Tables

Variable tables offer the advantage of being able to store various test environments. Thus, tests
and monitoring can be effortlessly reproduced during operation or for the purpose of service and
maintenance. There is no limit to the number of variable tables that can be stored.

When testing using variable tables, the following functions are available:

• Monitoring Variables
This function enables you to display on the programming device/PC the current values of
individual variables in a user program or a CPU.

• Modifying Variables
You can use this function to assign fixed values to individual variables of a user program or a
CPU. Modifying values once and immediately is also possible when testing using program
status.

• Enable Peripheral Output and Activate Modify Values
These two functions allow you to assign fixed values to individual I/O outputs of a CPU in
STOP mode.

• Forcing Variables
You can use this function to assign individual variables of a user program or a CPU with a fixed
value that cannot be overwritten by the user program.

You can assign or display the values for the following variables:

• Inputs, outputs, bit memory, timers, and counters

• Contents of data blocks

• I/O (periphery)

You enter the variables you want to display or modify in variable tables.

You can determine when and how often the variables are monitored or assigned new values by
defining a trigger point and trigger frequency.

Testing with the Variable Table
20.2 Basic Procedure when Monitoring and Modifying with the Variable Table

 Programming with STEP 7
416 Manual, 04/2017, A5E41552389-AA

20.2 Basic Procedure when Monitoring and Modifying with the
Variable Table

To use the Monitor and Modify functions, proceed as follows:

1. Create a new variable table or open an existing variable table.

2. Edit or check the contents of the variable table.

3. Establish an online connection between the current variable table and the required CPU using
the menu command PLC > Connect To.

4. Using the menu command Variable > Trigger, select a suitable trigger point and set the trigger
frequency.

5. The menu commands Variable > Monitor and Variable > Modify toggle the Monitor and
Modify functions on and off.

6. Save the completed variable table using the menu command Table > Save or Table > Save
As, so that you can call it up again at any time.

20.3 Editing and Saving Variable Tables

20.3.1 Creating and Opening a Variable Table

Before you can monitor or modify variables, you must create a variable table (VAT) and enter the
required variables. To create a variable table, you can choose from one of the following methods:

In the SIMATIC Manager:
• Select the "Blocks" folder and the menu command Insert > S7 Block > Variable Table. In the

dialog box, you can give the table a name ("Symbolic Name" text box). You can open the
variable table by double-clicking the object.

• Select a connection or, in the online view, an S7 program from the list of accessible nodes. You
create an unnamed variable table using the menu command PLC > Monitor/Modify
Variables.

In "Monitor/Modify Variables":
• You can use the menu command Table > New to create a new variable table which is not yet

assigned to any S7 program. You can open existing tables with Table > Open.

• You can use the corresponding symbols in the toolbar to create or open variable tables.

Once you have created a variable table, you can save it, print it out, and use it again and again for
monitoring and modifying.

 Testing with the Variable Table
 20.3 Editing and Saving Variable Tables

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 417

20.3.1.1 How to Create and Open a Variable Table

Alternative 1 in the SIMATIC Manager
1. Select the offline project view.

2. Open the block folder in which you want to save the variable table.

3. Select the menu command Insert > S7 Block > Variable Table.

4. In the dialog box, specify the name of the variable table.

5. You can open the variable table by double-clicking the object.

Alternative 2 in the SIMATIC Manager
1. In an online window (online view of the project or "Accessible Nodes"), select the menu

command PLC > Monitor/Modify Variables. The "Monitoring and Modifying Variables"
window is opened.

Alternative 3 in "Monitor/Modify Variables"
1. Create a new variable table using the menu command Table > New in the window displayed.

Testing with the Variable Table
20.4 Entering Variables in Variable Table

 Programming with STEP 7
418 Manual, 04/2017, A5E41552389-AA

20.3.2 Copying/Moving Variable Tables

You can copy or move variable tables in block folders of an S7 program.

Note the following when copying or moving variable tables:

• Existing symbols in the symbol table of the target program will be updated.

• When you move a variable table, the corresponding symbols from the symbol table of the
source program will also be moved to the symbol table of the target program.

• When you delete variable tables from the block folder, the corresponding symbols from the
symbol table of the S7 program will also be deleted.

• If the target program already contains a variable table with the same name, the next-highest
free number will be assigned when you copy the variable table.

• If the target program already contains a variable table with the same name, you can rename
the variable table when copying (as a default a number is attached to the existing name).

 Note
When copying/moving variable tables, remember that the symbolic name is the main criterion, in
other words, the number is assigned automatically.

Example 1: You want to copy or move the variable table with the symbolic name "OTTO" and the
(unchangeable) name "VAT1" to another project that also has a variable table with the symbolic
name "OTTO". You will be asked whether you want to overwrite the existing variable table or
assign a new name. If you assign a new (symbolic) name, the unchangeable name of the new
variable table is adapted.

Example 2: You want to copy or move the variable table with the symbolic name "OTTO" and the
(unchangeable) name "VAT1" to another project that does not have a variable table with the
symbolic name "OTTO". When you insert the new variable table, the unchangeable name of the
new variable table is adapted.

20.3.3 Saving a Variable Table

You can use saved variable tables to monitor and modify variables when you test a program again.

1. Save the variable table using the menu command Table > Save.

2. If the variable table has been created, you must now give the variable table a name, for
example, "ProgramTest_1."

When you save a variable table, all the current settings and the table format are saved. This means
that the settings made under the menu item "Trigger" are saved.

 Testing with the Variable Table
 20.4 Entering Variables in Variable Table

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 419

20.4 Entering Variables in Variable Table

20.4.1 Inserting Addresses or Symbols in a Variable Table

Select the variables whose values you want to modify or monitor and enter them in the variable
table. Start from the "outside" and work "inwards"; this means you should first select the inputs and
then the variables that are influenced by the inputs and which influence the outputs, and finally the
outputs.

If you want, for example, to monitor the input bit 1.0, the memory word 5, and the output byte 0,
enter the following in the "Address" column:
Example:

 I 1.0
 MW5
 QB0

Example of a Completed Variable Table
The following figure shows a variable table with the following visible columns: Address, Symbol,
Display Format, Monitor Value, and Modify Value

Testing with the Variable Table
20.4 Entering Variables in Variable Table

 Programming with STEP 7
420 Manual, 04/2017, A5E41552389-AA

Notes on Inserting Symbols
• You enter the variable you want to modify with your address or as a symbol. You can enter

symbols and addresses either in the "Symbol" column or in the "Address" column. The entry is
then written automatically in the correct column.
If the corresponding symbol is defined in the symbol table, the symbol column or the address
column is filled out automatically.

• You can enter only those symbols that are already defined in the symbol table.

• You must enter a symbol exactly as it is defined in the symbol table.

• Symbol names that contain special characters must be enclosed in quotation marks (for
example, "Motor.Off," "Motor+Off," "Motor-Off").

• To define new symbols in the symbol table select the menu command Options > Symbol
Table. Symbol can also be copied from the symbol table and pasted in a variable table.

Syntax Check
When you enter variables in the variable table, a syntax check is carried out at the end of each line.
Any incorrect entries are marked in red.

If you position the cursor in a row marked in red, brief information is displayed telling you the cause
of the error. Notes on correcting the error can be obtained by pressing F1.

 Note

If you prefer to edit the variable table with the keyboard (without the mouse), you should keep the
"Brief Information When Using the Keyboard" feature enabled.

If necessary, you can change the setting in the variable table by selecting the menu command
Option > Customize and then selecting the "General" tab.

Maximum Size
A maximum of 255 characters per line are permitted in a variable table. A carriage return into the
next row is not possible. A variable table can have up to a maximum of 1024 rows. This is then its
maximum size.

 Testing with the Variable Table
 20.4 Entering Variables in Variable Table

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 421

20.4.2 Inserting a Contiguous Address Range in a Variable Table

1. Open a variable table.

2. Position the cursor in the row after which you want the range of contiguous addresses to be
inserted.

3. Select the menu command Insert > Range of Variables. The "Insert Range of Variables"
dialog box appears.

4. Enter an address as the start address in the "From Address" field.

5. Enter the number of rows to be inserted in the "Number" field.

6. Select the required display format from the list displayed.

7. Click the "OK" button.

The range of variables is inserted in the variable table.

20.4.3 Inserting Modify Values

Modify Value as Comment
If you want to make the "modify value" of a variable ineffective, use the Variable > Modify Value
as Comment menu command. A comment marker "//" before the value to be modified of a variable
indicates that it is without effect. The command marker "//" can also be inserted in front of the
"modify value" instead of the menu command call. The ineffectiveness of the "modify value" can be
reversed by calling up the Variable > Modify Value as Comment menu command again or by
removing the comment marker.

Testing with the Variable Table
20.4 Entering Variables in Variable Table

 Programming with STEP 7
422 Manual, 04/2017, A5E41552389-AA

20.4.4 Upper Limits for Entering Timers

Note the following upper limits for entering timers:

Example: W#16#3999 (maximum value in BCD format)

Examples:

Address Monitor

Format
Enter Modify Value

Display
Explanation

T 1 SIMATIC_TIME 137 S5TIME#130MS Conversion to milliseconds
MW4 SIMATIC_TIME 137 S5TIME#890MS Representation in BCD format possible
MW4 HEX 137 W#16#0089 Representation in BCD format possible
MW6 HEX 157 W#16#009D Representation in BCD format not

possible, therefore the monitor format
SIMATIC_TIME cannot be selected

 Note

• You can enter timers in millisecond steps but the value entered is adapted to the time frame.
The size of the time frame depends on the size of the time value entered (137 becomes 130
ms; the 7 ms were rounded down).

• The modify values for addresses of the data type WORD, for example, IW1, are converted to
BCD format. Not every bit pattern is a valid BCD number, however. If the entry cannot be
represented as SIMATIC_TIME for an address of the data type WORD, the application reverts
automatically to the default format (here: HEX, see Select Monitor Format, Default Command
(View Menu)) so that the value entered can be displayed.

BCD Format for Variables in the SIMATIC_TIME Format
Values of variables in the SIMATIC_TIME format are entered in BCD format.
The 16 bits have the following significance:

| 0 0 x x | h h h h | t t t t | u u u u |

Bits 15 and 14 are always zero.
Bits 13 and 12 (marked with xx) set the multiplier for bits 0 to 11:
 00 => multiplier 10 milliseconds
 01 => multiplier 100 milliseconds
 10 => multiplier 1 second
 11 => multiplier 10 seconds
Bits 11 to 8 hundreds (hhhh)
Bits 7 to 4 tens (tttt)
Bits 3 to 0 units (uuuu)

 Testing with the Variable Table
 20.4 Entering Variables in Variable Table

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 423

20.4.5 Upper Limits for Entering Counters

Note the following upper limits for entering counters:

Upper limit for counters: C#999
W#16#0999 (maximum value in BCD format)

Examples:

Address Monitor

Format
Enter Modify Value

Display
Explanation

C1 COUNTER 137 C#137 Conversion
MW4 COUNTER 137 C#89 Representation in BCD format

possible
MW4 HEX 137 W#16#0089 Representation in BCD format

possible
MW6 HEX 157 W#16#009D Representation in BCD format

not possible, therefore the
monitor format COUNTER
cannot be selected

 Note

• If you enter a decimal number for a counter and do not mark the value with C#, this value is
automatically converted to BCD format (137 becomes C#137).

• The modify values for addresses of the data type WORD, for example, IW1, are converted to
BCD format. Not every bit pattern is a valid BCD number, however. If the entry cannot be
represented as COUNTER for an address of the data type WORD, the application reverts
automatically to the default format (here: HEX, see Select Monitor Format, Default Command
(View Menu)) so that the value entered can be displayed.

20.4.6 Inserting Comment Lines

Comment lines are introduced by the comment marker "//".

If you want to make one or more lines of the variable table ineffective (as a comment line), use the

Edit > Row not Effective menu command or the corresponding symbol in the toolbar.

Testing with the Variable Table
20.4 Entering Variables in Variable Table

 Programming with STEP 7
424 Manual, 04/2017, A5E41552389-AA

20.4.7 Examples

20.4.7.1 Example of Entering Addresses in Variable Tables

Permitted Address: Data Type: Example (English Mnemonics):

Input | Output | Bit memory BOOL I 1.0 | Q 1.7 | M 10.1
Input | Output | Bit memory BYTE IB 1 | QB 10 | MB 100
Input | Output | Bit memory WORD IW 1 | QW 10 | MW 100
Input | Output | Bit memory DWORD ID 1 | QD 10 | MD 100
I/O (Input | Output) BYTE PIB 0 | PQB 1
I/O (Input | Output) WORD PIW 0 | PQW 1
I/O (Input | Output) DWORD PID 0 | PQD 1
Timers TIMER T 1
Counters COUNTER C 1
Data block BOOL DB1.DBX 1.0
Data block BYTE DB1.DBB 1
Data block WORD DB1.DBW 1
Data block DWORD DB1.DBD 1

 Note

The entry "DB0. .." is not permitted because it is already used internally.

In the Force Values Window
• When forcing with S7-300 modules, only inputs, outputs, and I/O (outputs) are allowed.

• When forcing with S7-400 modules, only inputs, outputs, bit memory, and I/O (inputs/outputs)
are allowed.

 Testing with the Variable Table
 20.4 Entering Variables in Variable Table

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 425

20.4.7.2 Example of Entering a Contiguous Address Range

Open a variable table and call up the "Insert Range of Variables" dialog box with the menu
command Insert > Range of Variables.

For the dialog box entries the following lines for bit memory are inserted in the variable table:

• From address: M 3.0

• Number: 10

• Display format: BIN

Address Display Format

M 3.0 BIN
M 3.1 BIN
M 3.2 BIN
M 3.3 BIN
M 3.4 BIN
M 3.5 BIN
M 3.6 BIN
M 3.7 BIN
M 4.0 BIN
M 4.1 BIN

Note that in this example the designation in the "Address" column changes after the eighth entry.

Testing with the Variable Table
20.4 Entering Variables in Variable Table

 Programming with STEP 7
426 Manual, 04/2017, A5E41552389-AA

20.4.7.3 Examples of Entering Modify and Force Values

Bit Addresses

Possible bit addresses Permitted modify/force values

I1.0 true
M1.7 false
Q10.7 0
DB1.DBX1.1 1
I1.1 2#0
M1.6 2#1

Byte Addresses

Possible byte addresses Permitted modify/force values

IB 1 2#00110011
MB 12 b#16#1F
MB 14 1F
QB 10 'a'
DB1.DBB 1 10
PQB 2 -12

Word Addresses

Possible word addresses Permitted modify/force values

IW 1 2#0011001100110011
MW12 w#16#ABCD
MW14 ABCD
QW 10 b#(12,34)
DB1.DBW 1 'ab'
PQW 2 -12345
MW3 12345
MW5 s5t#12s340ms
MW7 0.3s or 0,3s
MW9 c#123
MW11 d#1990-12-31

 Testing with the Variable Table
 20.4 Entering Variables in Variable Table

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 427

Double Word Addresses

Possible double word
addresses

Permitted modify/force values

ID 1 2#00110011001100110011001100110011
MD 0 23e4
MD 4 2
QD 10 dw#16#abcdef10
QD 12 ABCDEF10
DB1.DBD 1 b#(12,34,56,78)
PQD 2 'abcd'
MD 8 l# -12
MD 12 l#12
MD 16 -123456789
MD 20 123456789
MD 24 t#12s345ms
MD 28 tod#1:2:34.567
MD 32 p#e0.0

Timers

Possible addresses of
the type "Timer"

Permitted modify/force
values

Explanation

T 1 0 Conversion to milliseconds (ms)
T 12 20 Conversion to ms
T 14 12345 Conversion to ms
T 16 s5t#12s340ms
T 18 3 Conversion to 1s 300 ms
T 20 3s Conversion to 1s 300 ms

Modifying a timer affects only the value, not the state. This means that the timer T1 can be
modified to the value 0, without the result of logic operation for A T1 being changed.

The strings 5t, s5time can be written in either upper or lower case.

Testing with the Variable Table
20.4 Entering Variables in Variable Table

 Programming with STEP 7
428 Manual, 04/2017, A5E41552389-AA

Counters

Possible addresses of the type
"Counter"

Permitted modify/force values

C 1 0
C 14 20
C 16 c#123

Modifying a counter only affects the value, not the state. This means that Counter C1 can be
modified to the value 0 without the result of logic operation for A C1 being changed.

 Testing with the Variable Table
 20.5 Establishing a Connection to the CPU

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 429

20.5 Establishing a Connection to the CPU

In order to be able to monitor or modify the variables you entered in your current variable table
(VAT), you must establish a connection to the appropriate CPU. It is possible to link each variable
table with a different CPU.

Displaying an Online Connection
If an online connection exists, the term "ONLINE" in the title bar of the variable table window
indicates this fact. The status bar displays the operating states "RUN", "STOP",
"DISCONNECTED" or "CONNECTED", depending on the CPU.

Establishing an Online Connection to the CPU
If an online connection to the required CPU does not exist, use the menu command PLC >
Connect To > ... to define a connection to the required CPU so that variables can be monitored or
modified.

Interrupting the Online Connection to the CPU
Using the menu command PLC > Disconnect you interrupt the connection between the variable
table and the CPU.

 Note

If you created an unnamed variable table with the menu command Table > New, you can establish
a connection to the last configured CPU configured if it is defined.

Testing with the Variable Table
20.6 Monitoring Variables

 Programming with STEP 7
430 Manual, 04/2017, A5E41552389-AA

20.6 Monitoring Variables

20.6.1 Introduction to Monitoring Variables

The following methods are available to you for monitoring variables:

• Activate the Monitor function with the menu command Variable > Monitor. The values of the
selected variables are displayed in the variable table in accordance with the trigger point and
trigger frequency set. If you set the trigger frequency "Every cycle", you can toggle the Monitor
function off again with the menu command Variable > Monitor.

• You can update the values of the selected variables once and immediately using the menu
command Variable > Update Monitor Values. The current values of the selected variables are
displayed in the variable table.

Aborting "Monitoring" with ESC
If you press ESC while the "Monitoring" function is active, the function is terminated without a
query.

20.6.2 Defining the Trigger for Monitoring Variables

You can display on the programming device the current values of individual variables in a user
program at a specific point during program processing (trigger point) in order to monitor them.

When you select a trigger point you determine the point in time at which the monitor values of
variables will be displayed.

You can set the trigger point and a trigger frequency using the menu command Variable > Trigger.

Trigger Possible Settings

Trigger point Start of cycle
End of cycle
Transition from RUN to STOP

Trigger frequency Once
Every cycle

 Testing with the Variable Table
 20.6 Monitoring Variables

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 431

Trigger Point
The following figure shows the position of the trigger points.

To display the modified value in the "Status Value" column, you should set the trigger point for
monitoring to "Start of cycle" and the trigger point for modifying to "End of cycle".

Trigger Immediately
You can update the values of selected variables using the menu command Variable > Update
Monitor Values. This command is taken to mean "trigger immediately" and is executed as quickly
as possible without reference to any point in the user program. These functions are mainly used for
monitoring and modifying in STOP mode.

Trigger Frequency
The following table shows the effect that the trigger frequency has on the monitoring of variables:

 Trigger frequency: Once Trigger frequency: Every cycle

Monitor
Variables

Update once
Dependent on trigger point

Monitoring with a defined trigger
When testing a block you can track the progress
of processing exactly.

Testing with the Variable Table
20.7 Modifying Variables

 Programming with STEP 7
432 Manual, 04/2017, A5E41552389-AA

20.7 Modifying Variables

20.7.1 Introduction to Modifying Variables

The following methods are available to you for modifying variables:

• Activate the Modify function with the menu command Variable > Modify. The user program
applies the modify values for the selected variables from the variable table in accordance with
the trigger point and trigger frequency set. If you set the trigger frequency "Every cycle," you
can toggle the Modify function off again with the menu command Variable > Modify.

• You can update the values of the selected variables once and immediately using the menu
command Variable > Activate Modify Values.

The functions Force and Enable Peripheral Output (PQ) provide other possibilities.

When Modifying, Note:
• Only those addresses that were visible in the variable table when you started modifying are

modified.
If you decrease the size of the visible area of the variable table once you have started
modifying, addresses may be modified that are no longer visible.
If the visible area of the variable table is made larger, there may be addresses visible that are
not modified.

• Modifying cannot be undone (for example, with Edit > Undo).

!
Danger
Changing the variable values while a process is running can lead to serious damage to property or
personnel if errors occur in the function or in the program.
Make sure that no dangerous situations can occur before you execute the "Modify" function.

Aborting "Modifying" with ESC
If you press ESC while the "Modifying" function is in process, the function is aborted without a
query.

 Testing with the Variable Table
 20.7 Modifying Variables

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 433

20.7.2 Defining the Trigger for Modifying Variables

You can assign fixed values to individual variables of a user program (once or every cycle) at a
specific point during program processing (trigger point).

When you select a trigger point you determine the point in time at which the modify values are
assigned to the variables.

You can set the trigger point and a trigger frequency using the menu command Variable > Trigger.

Trigger Possible Settings

Trigger point Start of cycle
End of cycle
Transition from RUN to STOP

Trigger frequency Once
Every cycle

Trigger Point
The following figure shows the position of the trigger points.

The position of the trigger points shows:

• Modifying inputs is only useful with the trigger point "Start of cycle" (corresponds to the start of
the user program OB 1), because otherwise the process image of the inputs is updated after
modifying and therefore overwritten).

• Modifying outputs is only useful with the trigger point "End of cycle" (corresponds to the end of
the user program OB 1), because otherwise the user program can overwrite the process image
of the outputs).

To display the modified value in the "Status Value" column, you should set the trigger point for
monitoring to "Start of cycle" and the trigger point for modifying to "End of cycle".

Testing with the Variable Table
20.7 Modifying Variables

 Programming with STEP 7
434 Manual, 04/2017, A5E41552389-AA

The following applies to trigger points when modifying variables:

• If you set "Once" as the trigger frequency, a message appears if the selected variables cannot
be modified.

• With the trigger frequency "Every cycle," no message appears.

Trigger Immediately
You can modify the values of selected variables using the menu command Variable > Activate
Modify Values. This command is taken to mean "trigger immediately" and is executed as quickly
as possible without reference to any point in the user program. This function is used mainly for
modifying in STOP mode.

Trigger Frequency
The following table shows the effect that the trigger condition set has on the modifying of variables:

 Trigger frequency: Once Trigger frequency: Every cycle

Modify
Variables

Activate once
You can assign values to variables
once, independent of the trigger point.

Modifying with a defined trigger
By assigning fixed values you can simulate
certain situations for your user program and use
this to debug the functions you have
programmed.

 Testing with the Variable Table
 20.8 Forcing Variables

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 435

20.8 Forcing Variables

20.8.1 Safety Measures When Forcing Variables

Beware of Injury to Personnel and Damage to Property

Note that when using the "Force" function, any incorrect action could:

• Endanger the life or health of personnel or

• Cause damage to machines or the whole plant.

!
Caution
• Before you start the Force function you should check that nobody is executing this function on the same

CPU at the same time.
• A Force job can only be deleted or terminated with the menu command Variable > Stop Forcing. Closing

the force values window or exiting the "Monitoring and Modifying Variables" application does not delete
the force job.

• Forcing cannot be undone (for example, with Edit > Undo).
• Read the information on the Differences between Forcing and Modifying Variables.
• If a CPU does not support the Force function, all menu commands in the Variable menu linked with

forcing are deactivated.
If the output disable is deactivated with the menu command Variable > Enable Peripheral Output, all forced
output modules output their force value.

Testing with the Variable Table
20.8 Forcing Variables

 Programming with STEP 7
436 Manual, 04/2017, A5E41552389-AA

20.8.2 Introduction to Forcing Variables

You can assign fixed values to individual variables of a user program so that they cannot be
changed or overwritten even by the user program executing in the CPU. The requirement for this is
that the CPU supports this function (for example, the S7-400 CPUs). By assigning fixed values to
variables you can set specific situations for your user program and use this to test the programmed
functions.

"Force Values" Window
Only when the "Force Values" window is active can the menu commands for forcing be selected.

To display this window, select the menu command Variable > Display Force Values.

You should only open one single "Force Values" window for a CPU. The variables together with
their respective force values for the active force job are displayed in this window.

Example of a Force Values Window

The name of the current online connection is shown in the title bar.

The data and time the force job was read from the CPU are shown in the status bar.

If no force job is active, the window is empty.

The different methods of displaying variables in the "Force Values" window have the following
significance:

Display Meaning

Bold: Variables that are already assigned a fixed value in the CPU.
Normal: Variables that are being edited.
Grayed out: Variables of a module that is not present/inserted in the rack

or
Variables with an address error; an error message is displayed.

Using Forcible Addresses from the Variable Table
If you want to enter a variable from a variable table in the force value window, select the table and
the required variable. Next, call menu command Variable > Force values to open the force value
window. The variables a module can force will be entered in the force value window.

 Testing with the Variable Table
 20.8 Forcing Variables

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 437

Using the Force Job from the CPU or Setting Up a New Force Job
If the "Force Values" window is open and active, another message is displayed:

• If you confirm it, the changes in the window are overwritten with the force job existing on the
CPU. You can restore the previous window contents with the menu command Edit > Undo.

• If you cancel it, the current contents of the window are retained.
You can then save the contents of the "Force Values" window as a variable table using the
menu command Table > Save As or select the menu command Variable > Force: this writes
the current contents of the window to the CPU as the new force job.

Monitoring and modifying variables is only possible in the variable table and not in the "Force
Values" window.

Deleting Force Values
Call menu command Variable > Display Force Values to open the force value window. next, you
can call menu command Variable > Delete Force to delete the force values from the selected
CPU.

Saving a Force Values Window
You can save the contents of the force values window in a variable table. Using the Insert >
Variable Table menu command, you can reinsert the saved contents in a force values window.

Notes on Symbols in the Force Values Window
The symbols in the last active window are entered except if you opened the "Monitoring and
Modifying Variables" application from another application which has no symbols.

If you cannot enter symbolic names, the "Symbol" column is hidden. The menu command Options
> Symbol Table is deactivated in this case.

Testing with the Variable Table
20.8 Forcing Variables

 Programming with STEP 7
438 Manual, 04/2017, A5E41552389-AA

20.8.3 Differences Between Forcing and Modifying Variables

The following table summarizes the differences between forcing and modifying:

Feature / Function Forcing with

S7-400 (incl.
CPU 318-2DP)

Forcing with
S7-300 (without
CPU 318-2DP)

Modify

Bit memory (M) yes − yes
Timers and counters (T, C) − − yes
Data blocks (DB) − − yes
Peripheral inputs (PIB, PIW, PID) yes − −
Peripheral outputs (PQB, PQW, PQD) yes − yes
Inputs and outputs (I, Q) yes yes yes
User program can overwrite the
modify/force values

− yes yes

Replacing the force value effective without
interruption

yes yes −

The variables retain their values when the
application is exited

yes yes −

The variables retain their values after the
connection to the CPU is broken

yes yes −

Addressing errors permitted:
e.g. IW1 modify/force value: 1
 IW1 modify/force value: 0

− − The last becomes
effective

Setting triggers Always trigger
immediately

always trigger
immediately

once or every cycle

Function only affects variable in visible
area of active window

Affects all force
values

affects all force
values

yes

 Note

• With "Enable Peripheral Outputs," the force values for forced peripheral outputs become
effective on the corresponding output modules; the modify values for peripheral outputs,
however, do not.

• With forcing, the variable always has the forced value. This value is read during each read
access to the user program. All forms of write access are ineffective.

• With permanent modifying, read access to the program is effective and remains so until the next
trigger point.

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 439

21 Testing Using Program Status

21.1 Testing Using Program Status

You can test your program by displaying the program status (RLO, status bit) or the contents of the
corresponding registers for every instruction. You can define the scope of the information displayed
in the "LAD/FBD" tab in the "Customize" dialog box. You open this dialog box using the menu
command Options > Customize in the "LAD/STL/FBD: Programming Blocks" window.

!
Warning
Testing a program while a process is running can lead to serious damage to property or persons if
errors occur in the function or in the program.

Ensure that no dangerous situations can occur before you execute this function.

Requirements
To display the program status, the following requirements must be fulfilled:

• You must have saved the block without errors and then downloaded it to the CPU.

• The CPU must be in operation and the user program running.

Basic Procedure for Monitoring the Program Status
It is strongly recommended that you do not call the whole program and debug it, but call the blocks
one by one and debug them individually. You should start with the blocks in the last nesting level of
the call hierarchy, for example, by calling them in OB1 and creating the environment to be tested
for the block by monitoring and modifying variables.

To set breakpoints, and to execute the program in single-step mode, test operation mode must be
set (see menu command Debug > Operation). These test functions are not possible in process
operation mode.

Testing Using Program Status
21.2 Program Status Display

 Programming with STEP 7
440 Manual, 04/2017, A5E41552389-AA

21.2 Program Status Display

The display of the program status is updated cyclically. It begins with the selected network.

Preset Color Codes in LAD and FBD
• Status fulfilled: green continuous lines

• Status not fulfilled: blue dotted lines

• Status unknown: black continuous lines

The preset for line type and color can be changed under the menu command Options >
Customize, "LAD/FBD" tab.

Status of Elements
• The status of a contact is:

- Fulfilled if the address has the value "1,"

- Not fulfilled if the address has the value "0,"

- Unknown if the value of the address is unknown.

• The status of elements with enable output (ENO) corresponds to the status of a contact with
the value of the ENO output as the address.

• The status of elements with a Q output corresponds to the status of a contact with the value of
the address.

• The status for CALLs is fulfilled if the BR bit is set following the call.

• The status of a jump instruction is fulfilled if the jump is executed, meaning if the jump condition
is fulfilled.

• Elements with enable output (ENO) are shown in black if the enable output is not connected.

Status of Lines
• Lines are black if they are not run through or if their status is unknown.

• The status of lines that start at the power rail is always fulfilled ("1").

• The status of lines at the start of parallel branches is always fulfilled ("1").

• The status of the line following an element is fulfilled if both the status of the line before the
element and the status of the element are fulfilled.

• The status of the line following NOT is fulfilled if the status of the line before NOT is not fulfilled
(and vice versa).

• The status of the line after an intersection of a number of lines is fulfilled if:

- The status of at least one line before the intersection is fulfilled.

- The status of the line before the branch is fulfilled.

 Testing Using Program Status
 21.2 Program Status Display

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 441

Status of Parameters
• The values of parameters in bold type are current.

• The values of parameters in thin type result from a previous cycle; the program section was not
processed in the current scan cycle.

Testing Using Program Status
21.3 What You Should Know About Testing in Single-Step Mode/Breakpoints

 Programming with STEP 7
442 Manual, 04/2017, A5E41552389-AA

21.3 What You Should Know About Testing in Single-Step
Mode/Breakpoints

When testing in single-step mode you can do the following:

• Execute programs statement by statement (in single steps)

• Set breakpoints

The function "testing in single-step mode" is not possible for all programmable controllers (refer to
the documentation for the relevant programmable controller).

Requirements
• The test operation mode must be set. Testing in single-step mode is not possible in process

operation mode (see menu command Debug > Operation).

• Testing in single-step mode is possible only in Statement List. For blocks in Ladder Logic or
Function Block Diagram you must change the view using the menu command View > STL.

• The block must not be protected.

• The block must be open online.

• The opened block must not be changed in the Editor.

 Testing Using Program Status
 21.3 What You Should Know About Testing in Single-Step Mode/Breakpoints

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 443

Number of Breakpoints
The number of breakpoints is variable and depends on the following:

• The number of breakpoints already set

• The number of variable statuses running

• The number of program statuses running

Refer to your programmable controller documentation to find out whether it supports testing in
single-step mode.

You will find the menu commands you can use to set, activate, or delete breakpoints in the "Debug"
menu. You can also select these menu commands using icons in the breakpoint bar. Display the
breakpoint bar using the menu command View > Breakpoint Bar.

Permitted Test Functions
• Monitor/modify variables

• Module information

• Operating mode

 Danger

Risk of dangerous plant status in HOLD mode.

Testing Using Program Status
21.4 What You Should Know About the HOLD Mode

 Programming with STEP 7
444 Manual, 04/2017, A5E41552389-AA

21.4 What You Should Know About the HOLD Mode

If the program encounters a breakpoint, the programmable controller goes into the HOLD operating
mode.

LED Display in HOLD Mode
• LED RUN flashes

• LED STOP is lit

Program Processing in HOLD Mode
• In HOLD mode, no S7 code is processed, meaning no priority classes are processed any

further.

• All timers are frozen:
- No timer cells are processed
- All monitoring times are paused
- The basic clock rate of the time-controlled levels are paused

• The real time clock continues to run

• For safety reasons, the outputs are always disabled in HOLD mode ("output disable").

Behavior following Power Supply Failure in HOLD Mode
• Programmable controllers with battery backup change to STOP mode and remain there

following a power supply failure during HOLD mode and a subsequent return of power. The
CPU does not execute an automatic restart (warm restart). From STOP mode you can
determine how processing continues (for example, by setting/resetting breakpoints, executing a
manual restart).

• Programmable controllers without battery backup are not "retentive" and therefore execute an
automatic warm restart when power returns, regardless of the previous operating mode.

 Testing Using Program Status
 21.5 Program Status of Data Blocks

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 445

21.5 Program Status of Data Blocks

From STEP 7 version 5 onwards, it is possible to observe a data block online in the data view. The
display can be activated either by an online data block or by an offline data block. In both cases,
the contents of the online data block in the programmable controller are displayed.

The data block must not be modified before the program status is started. If there is a structural
difference (declaration) between the online data block and the offline data block, the offline data
block can be downloaded to the programmable controller directly on request.

The data block must be located in the "data view," so that the online values can be displayed in the
"Actual Value" column. Only the part of the data block which is visible on the screen is updated.
While the status is active, you cannot switch to the declaration view.

While the update is in progress, a green bar is visible in the status bar and the operating mode is
displayed.

The values are issued in the format of the respective data type; the format cannot be changed.

After program status has been concluded, the "Actual Value" column displays again the contents
which were valid before the program status. It is not possible to transfer the updated online values
to the offline data block.

Updating data types:
All the elementary data types are updated in a shared DB, as well as in all the declarations
(in/out/in-out/stat) of an instance data block.

Some data types cannot be updated. When the program status is active, fields in the "Actual
Value" column which contain data which have not been updated are displayed with a gray
background.

• The complex data types DATE_AND_TIME and STRING are not updated.

• In the complex data types ARRAY, STRUCT, UDT, FB, and SFB, only those elements which
are elementary data types are updated.

• In the INOUT declaration of an instance data block only the pointer to the complex data type is
displayed, not the elements of the data type itself. The pointer is not updated.

• Parameter types are not updated

Testing Using Program Status
21.5 Program Status of Data Blocks

 Programming with STEP 7
446 Manual, 04/2017, A5E41552389-AA

21.5.1 Setting the Display for Program Status

You can set the display of the program status in a Statement List, Function Block Diagram, or
Ladder Logic block yourself.

To set the display, proceed as follows:

1. Select the menu command Options > Customize.

2. In the "Customize" dialog box, select the "STL" tab or the "LAD/FBD" tab.

3. Select the required options for testing the program. You can display the following status fields.

Activate... ...To Display

Status bit Status bit; bit 2 of the status word
RLO Bit 1 of the status word;

shows the result of a logic operation or a mathematical comparison

Standard status Content of accumulator 1
Address register
1/2

Content of the respective address register with register-indirect
addressing (area-internal or area-crossing)

Akku2 Content of accumulator 2
DB register 1/2 Content of the data block register, of the first and/or second open

data block
Indirect Indirect memory reference; pointer reference (address), not address

content reference;
for memory-indirect addressing only, not possible with register-
indirect addressing.
Contents of a timer word or counter word if corresponding
instructions appear in the statement

Status word All status bits of the status word

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 447

22 Testing using the Simulation Program
(Optional Package)

22.1 Testing using the Simulation Program S7 PLCSIM
(Optional Package)

With the optional software package PLC Simulation you can run and test your program on a
simulated programmable controller that exists on your computer or programming device (for
example, Power PG). As the simulation is realized completely by the STEP 7 software, you do not
require any S7 hardware (CPU or signal modules). Using the simulated S7 CPU you can test and
troubleshoot programs for S7-300 and S7-400 CPUs.

This application provides a simple user interface for monitoring and modifying the various
parameters that are used in your program (for example, for switching inputs on and off). You can
also use the various applications in the STEP 7 software while your program is being processed by
the simulated CPU. For example, you can monitor and modify variables with the variable table.

Testing using the Simulation Program (Optional Package)
22.1 Testing using the Simulation Program S7 PLCSIM (Optional Package)

 Programming with STEP 7
448 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 449

23 Diagnostics

23.1 Hardware Diagnostics and Troubleshooting

You can see whether diagnostic information is available for a module by the presence of
diagnostics symbols. Diagnostics symbols show the status of the corresponding module and, for
CPUs, the operating mode as well.

Diagnostics symbols are displayed in the project window in the online view as well as in the quick
view (default setting) or the diagnostic view when you call the function "Hardware Diagnostics."
Detailed diagnostic information is displayed in the "Module Information" application, which you can
start by double-clicking a diagnostics symbol in the quick view or the diagnostic view.

Diagnostics
23.1 Hardware Diagnostics and Troubleshooting

 Programming with STEP 7
450 Manual, 04/2017, A5E41552389-AA

Displaying Maintenance Information
As of STEP 7 V5.4 Service Pack 1, certain PROFINET components can display information
indicating whether or not preventive maintenance is necessary and, if it is, how urgent it is.

The following maintenance information is available:

• Maintenance required (indicated by a green wrench):
The relevant component must be replaced within a foreseeable period.

• Maintenance demanded (indicated by an yellow wrench):
The relevant component must be replaced soon.

One example of maintenance might be the replacement of a fiber-optic cable due to increasing
attenuation on a port of the PROFINET interface.

How to Locate Faults
1. Open the online window for the project with the menu command View > Online.

2. Open all the stations so that the programmable modules configured in them are visible.

3. Check to see which CPU is displaying a diagnostics symbol indicating an error or fault. You
can open the help page with an explanation of the diagnostics symbols using the F1 key.

4. Select the station that you want to examine.

5. Select the menu command PLC > Diagnostics/Settings > Module Information… to display
the module information for the CPU in this station.

6. Select the menu command PLC > Diagnostics/Settings > Hardware Diagnostics to display
the "quick view" with the CPU and the failed modules in this station. The display of the quick
view is set as default (menu command Option > Customize, "View" tab).

7. Select a faulty module in the quick view.

8. Click the "Module Information" button to obtain the information on this module.

9. Click the "Open Station Online" button in the quick view to display the diagnostic view. The
diagnostic view contains all the modules in the station in their slot order.

10. Double-click a module in the diagnostic view in order to display its module information. In this
way, you can also obtain information for those modules that are not faulty and therefore not
displayed in the quick view.

You do not necessarily have to carry out all of the steps; you can stop as soon as you have
obtained the diagnostic information you require.

 Diagnostics
 23.2 Diagnostics Symbols in the Online View

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 451

23.2 Diagnostics Symbols in the Online View

Diagnostics symbols are displayed in the online project window and in the hardware configuration
window with the online view of configuration tables.

Diagnostics symbols make it easier for you to detect a fault. You can see by a glance at a module
symbol whether diagnostic information is available. If there are no faults present, the symbols for
the module types are displayed without additional diagnostics symbols.

If diagnostic information is available for a module, a diagnostics symbol is displayed in addition to
the module symbol or the module symbol is displayed with reduced contrast.

Diagnostics Symbols for Modules (Example: FM / CPU)

Symbol Meaning

Mismatch between preset and actual configuration: the
configured module does not exist or a different module type
is inserted

Fault: module has a fault.
Possible causes: diagnostic interrupt, I/O access error, or
error LED detected

Diagnostics not possible: no online connection, or the CPU
does not return diagnostic information to the module (for
example, power supply, or submodule).

Diagnostics Symbols for Operating Modes (Example: CPU)

Symbol Mode

STARTUP

STOP

STOP
triggered by STOP mode on another CPU in
multicomputing operation

RUN

HOLD

Diagnostics
23.2 Diagnostics Symbols in the Online View

 Programming with STEP 7
452 Manual, 04/2017, A5E41552389-AA

Diagnostics Symbol for Forcing

Symbol Mode

Variables are being forced on this module, meaning
variables in the user program for the module are assigned
fixed values that cannot be changed by the program.
The symbol for forcing can also appear in combination with
other symbols (here with the symbol for RUN mode).

Diagnostics Symbols for Maintenance Information (Example CPU)

Symbol Meaning

Maintenance required

Maintenance demanded or redundancy loss at redundant
PROFINET devices or redundancy loss at redundant DP
slaves

Diagnostic Symbol for Deactivating (Example DP slave or PROFINET IO device)

Icon Meaning

This DP slave or this PROFINET IO device was
deactivated by SFC12.

Diagnostic symbols in H System
Refer to the manual "Fault-tolerant systems S7-400H ", section "System diagnostics on a fault-
tolerant system" for information on the diagnostic symbols in a fault-tolerant system.

Updating the Display of Diagnostic Symbols
The appropriate window must be activated.

• Press F5 or

• Select the menu command View > Update in the window.

 Diagnostics
 23.3 Diagnosing Hardware: Quick View

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 453

23.3 Diagnosing Hardware: Quick View

23.3.1 Calling the Quick View

The quick view offers you a quick way of using "Diagnosing Hardware" with less information than
the more detailed displays in the diagnostic view of HW Config. The quick view is displayed as
default when the "Diagnose Hardware" function is called.

Displaying the Quick View
You call this function from the SIMATIC Manager using the menu command PLC >
Diagnostics/Settings > Diagnose Hardware.

You can use the menu command as follows:

• In the online window of the project if a module or an S7 program is selected.

• If a node ("MPI=...") is selected in the "Accessible Nodes" window and this entry belongs to a
CPU.

From the configuration tables displayed, you can select modules whose module information you
want to display.

23.3.2 Information Functions in the Quick View

The following information is displayed in the quick view:

• Data for the online connection to the CPU

• Diagnostic symbol for the CPU

• Diagnostic symbols for the modules in which the CPU has detected a fault (for example,
diagnostic interrupt, I/O access error)

• Module type and address of the module (rack, slot, DP master system with station number).

Other Diagnostic Options in the Quick View
• Displaying the Module Information

You can call this dialog box by clicking the "Module Information" button. The dialog box
displays detailed diagnostic information, depending on the diagnostic capabilities of the
selected module. In particular, you can display the entries in the diagnostic buffer via the
diagnostic information of the CPU.

• Displaying the Diagnostic View
Using the "Open Station Online" button, you can open the dialog box which, in contrast to the
quick view, contains a graphic overview of the whole station as well as configuration
information. It focuses on the module which is highlighted in the list "CPU / Faulty Modules."

Diagnostics
23.4 Diagnosing Hardware: Diagnostic View

 Programming with STEP 7
454 Manual, 04/2017, A5E41552389-AA

23.4 Diagnosing Hardware: Diagnostic View

23.4.1 Calling the Diagnostic View

Using this method you can open the "Module Information" dialog box for all modules in the rack.
The diagnostic view (configuration table) shows the actual structure of a station at the level of the
racks and DP stations with their modules.

 Note

• If the configuration table is already open offline, you can also get the online view of the
configuration table using the menu command Station > Open Online.

• Depending on the diagnostics capability of the module, a varying number of tabs are displayed
in the "Module Information" dialog box.

• In the "Accessible Nodes" window, only the modules with their own node address (Ethernet,
MPI or PROFIBUS address) are ever visible.

 Diagnostics
 23.4 Diagnosing Hardware: Diagnostic View

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 455

Calling from the ONLINE view of a project in the SIMATIC Manager
1. Establish an online connection to the programmable controller using the menu command View

> Online in the project view in the SIMATIC Manager.

2. Select a station and double-click to open it.

3. Then open the "Hardware" object in it. The diagnostic view is opened.

Now you can select a module and call up its module information using the menu command PLC >
Diagnostics/Settings > Module Information.

Calling from the offline view of a project in the SIMATIC Manager
Execute the following steps:

1. Select a station from the project view of the SIMATIC Manager and open it with a double-click.

2. Then open the "Hardware" object in it. The configuration table is opened.

3. Select the Station > Open Online menu command.

4. The diagnostic view of HW Config is opened with the station configuration as determined from
the modules (for example, CPU). The status of the modules is indicated by means of symbols.
Refer to the online help for the meaning of the various symbols. Faulty modules and configured
modules which are missing are listed in a separate dialog box. From this dialog box you can
navigate directly to one of the selected module ("Go To" button).

5. Double-click the symbol for the module whose status you are interested in. A dialog box with
tabs (depending on the type of module) gives you a detailed analysis of the module status.

Calling from the "Accessible Nodes" window in the SIMATIC Manager
Execute the following steps:

1. Open the "Accessible Nodes" window in the SIMATIC Manager using the menu command PLC
> Display Accessible Nodes.

2. Select a node in the "Accessible Nodes" window.

3. Select the menu command PLC > Diagnostics/Settings > Diagnose Hardware.

 Note

In the "Accessible Nodes" window, only the modules with their own node address (Ethernet, MPI or
PROFIBUS address) are visible.

Diagnostics
23.4 Diagnosing Hardware: Diagnostic View

 Programming with STEP 7
456 Manual, 04/2017, A5E41552389-AA

23.4.2 Information Functions in the Diagnostic View

In contrast to the quick view, the diagnostic view displays the entire station configuration available
online. This consists of:

• Rack configurations

• Diagnostics symbols for all configured modules
From these, you can read the status of each module and, with CPU modules, the operating
mode.

• Module type, order number and address details, comments on the configuration.

Additional Diagnostic Options in the Diagnostic View
By double-clicking a module, you can display the operating mode of this module.

 Diagnostics
 23.5 Module Information

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 457

23.5 Module Information

23.5.1 Options for Displaying the Module Information

You can display the "Module Information" dialog box from different starting points. The following
procedures are examples of frequently used methods of calling module information:

• In the SIMATIC Manager from a window with the project view "online" or "offline."

• In the SIMATIC Manager from an "Accessible Nodes" window

• In the diagnostic view of HW Config

In order to display the status of a module with its own node address, you require an online
connection to the programmable controller. You establish this connection via the online view of a
project or via the "Accessible Nodes" window.

Diagnostics
23.5 Module Information

 Programming with STEP 7
458 Manual, 04/2017, A5E41552389-AA

23.5.2 Module Information Functions

The module information functions can each be found in the various tabs within the "Module
Information" dialog box. When displayed in an active situation, only those tabs relevant to the
selected module are displayed.

Function/Tab Information Use

General Identification data on the selected
module; for example, order number,
release number, status, slot in rack

The online information from the inserted
module can be compared with the data
for the configured module

Diagnostic Buffer Overview of events in the diagnostic
buffer and detailed information on the
selected event

To find the cause of a CPU STOP and
evaluate the events on the selected
module leading to it
Using the diagnostic buffer, errors in the
system can still be analyzed at a later
time to find the cause of a STOP or to
trace back and categorize the
occurrence of individual diagnostic
events

Diagnostic Interrupt Diagnostic data for the selected module To evaluate the cause of a module fault
DP Slave Diagnostics Diagnostic data for the selected DP

slave (to EN 50170)
To evaluate the cause of a fault in a DP
slave

Memory Memory capacity. Current utilization of
the work memory, load memory and
retentive memory of the selected CPU

Before new or extended blocks are
transferred to a CPU, to check whether
sufficient load memory is available in the
CPU/function module or to compress the
memory content.

Scan Cycle Time Duration of the longest, shortest, and
last scan cycle of the selected CPU

To keep a check on the configured
minimum cycle time, and the maximum
and current cycle times

Time System Current time, operating hours, and
information about synchronizing clocks
(synchronization intervals)

To display and set the time and date of
a module and to check the time
synchronization

Performance Data Address areas and the available blocks
for the selected module (CPU/FM)

Before and during the creation of a user
program to check whether the CPU
fulfils the requirements for executing a
user program; for example, load
memory size or size of the process
image

Blocks
(can be opened from
the "Performance
Data" tab)

Display of all block types available in the
scope of supply of the selected module
List of OBs, SFBs, and SFCs you can
use for this module

To check which standard blocks your
user program can contain or call to be
able to run on the selected CPU.

Communication Transmission rates, the overview of
communication connections, the
communication load, and the maximum
message frame size on the
communication bus of the selected
module

To determine how many and which CPU
connections are possible and how many
are in use

Connection statistics Statistics about the distribution of the
communication load on your CPU.

To determine whether an overload
through communication existst

 Diagnostics
 23.5 Module Information

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 459

Function/Tab Information Use

Stacks Stacks tab: Can only be called up in
STOP mode or HOLD mode.
The B stack for the selected module is
displayed. You can then also display the
I stack, the L stack, and the nesting
stack and jump to the error location in
the interrupted block.

To determine the cause of a transition to
STOP and to correct a block

IO device diagnostics Diagnostic data of the selected
PROFINET IO device

To find out the cause of an error on an
IO device

Identification Identification data of the selected
module, for example the serial number,
manufacturer's identification

The online information from the inserted
module can be compared with the data
of the configured module.

Process Objects Information on the license objects of
process automation CPUs and the
identification data of your system
expansion card

To obtain the number of license objects
of process automation CPUs

Communication
diagnostics

Diagnostic data (communication error)
of the selected PROFINET module

To find out the cause of a
communication error to a port or
interface of an IO device.

Interface Information on the selected PROFINET
module, for example IP address

To obtain out all the interface properties
of a PROFINET module

Network Connection Physical properties of the PROFINET
interface of a PROFINET module

To obtain all the physical properties of
the PROFINET interface of a
PROFINET module

Statistics Statistical data for sent and received
data packets of a PROFINET module

To evaluate the quality of the data
transfer from or to a PROFINET module

Sync Module
Diagnostics

Channel-specific diagnostics data of the
sync modules for the CPUs
41x-5H PN/DP

To determine the cause of sync module
errors and to remedy them

Diagnostics
23.5 Module Information

 Programming with STEP 7
460 Manual, 04/2017, A5E41552389-AA

Additional Information Displayed
For each tab, the following information is displayed:

• Online path to the selected module

• Operating mode of the corresponding CPU (for example, RUN, STOP)

• Status of the selected module (for example, error, OK)

• Operating mode of the selected module (for example, RUN, STOP) if it has its own operating
mode (for example, CP 342-5)

The operating mode of the CPU itself and the status of the selected module cannot be displayed if
the module information for a non-CPU module is opened from the "Accessible Nodes" window.

Displaying a Number of Modules Simultaneously
You can display the module information for a number of modules simultaneously. To do this, you
must change to the respective module context, select another module, and then call the module
information for it. Another "Module Information" dialog box is then displayed. Only one dialog box
can be opened for each module.

Updating the Display of Module Information
Each time you switch to a tab in the "Module Information" dialog box, the data are read from the
module again. While a page is displayed, however, the contents are not updated. If you click the
"Update" button, you can read the data from the module without changing the tab.

 Diagnostics
 23.5 Module Information

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 461

23.5.3 Scope of the Module Type-Dependent Information

The scope of information that can be evaluated and displayed is dependent on:

• The module selected, and

• From which view you call the module information
A full scope of information is available when called from the online view of the configuration
tables or from the project window.
A limited scope of information is available when called from the "Accessible Nodes" window.

Depending on the scope of the information, the modules are divided into the categories "with
system diagnostic capability," "with diagnostic capability," or "without diagnostic capability." The
following figure shows these categories:

• Modules with system diagnostic capability are, for example, the modules FM 351 and FM 354

• Modules with diagnostic capability are most analog signal modules.

• Modules without diagnostic capability are most digital signal modules.

Diagnostics
23.5 Module Information

 Programming with STEP 7
462 Manual, 04/2017, A5E41552389-AA

Tabs Displayed
The table shows which property tabs can be present in the "Module Information" dialog box for
each module type.

Tab page CPU Module

capable of
system
diagnostics

Module
capable of
 diagnostics

Module
without
diagnostic
capability

DP slave IO device

General yes yes yes yes yes yes

Diagnostic buffer yes yes − − − −

Diagnostic
interrupt

− yes yes − yes yes

Memory yes − − − − −

Cycle time yes − − − − −

Time system yes − − − − −

Performance data yes − − − − −

Stacks yes − − − − −

Communication yes − − − − −

Connection
statistics 2)

yes − − − − −

Identification yes yes yes − yes yes

DP slave
diagnostics

− − − − yes −

IO device
diagnostics

− − − − − yes

H status 1) yes − − − − −
Process objects 4) yes − − − − −

Communication
diagnostics

− − − − − yes

Interface − − − − − yes
Network
Connection

− − − − − yes

Statistics − − − − − yes
Sync Module
Diagnostics 3)

yes − − − − −

1) Only with CPUs in H systems
2) Only with S7-400 CPUs
3) Only with CPUs 41x-5H PN/DP
4) Only with process automation CPUs

In addition to the information in the tabbed property sheets, the operating mode is displayed for
modules with an operating mode. When you open the dialog box from the configuration tables
online, the status of the module from the viewpoint of the CPU is displayed (for example, OK, error,
module not available).

 Diagnostics
 23.5 Module Information

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 463

23.5.4 Displaying the Module Status of PA Field Devices and DP Slaves After a
Y-Link

As of STEP 7 V5.1 Service Pack 3, you can evaluate the module status of DP slaves and PA field
devices "after" a DP/PA link (IM 157).

This affects the following configurations:

• IM 157 with DP/PA connectors for connecting a PROFIBUS-PA

• IM 157 as a redundant modular interface module for connecting a non-redundant PROFIBUS-
DP ("Y-link")

In this configuration, the programming device (PG) is connected to the same PROFIBUS subnet as
the DP/PA link.

In addition, there is another configuration option in which the PG is connected to an Industrial
Ethernet and routes an S7-400 station to the PROFIBUS subnet.

The prerequisites for this setup are shown in the following diagram:

IM 157 with DP/PA connectors for connection to PROFIBUS-PA

IM 157 as Y-link

Diagnostics
23.5 Module Information

 Programming with STEP 7
464 Manual, 04/2017, A5E41552389-AA

PG in an Industrial Ethernet

 Diagnostics
 23.6 Diagnosing in STOP Mode

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 465

23.6 Diagnosing in STOP Mode

23.6.1 Basic Procedure for Determining the Cause of a STOP

To determine why the CPU has gone into "STOP" mode, proceed as follows:

1. Select the CPU that has gone into STOP.

2. Select the menu command PLC > Diagnostics/Settings > Module Information.

3. Select the "Diagnostic Buffer" tab.

4. You can determine the cause of the STOP from the last entries in the diagnostic buffer.

If a programming error occurs:

1. The entry "STOP because programming error OB not loaded" means, for example, that the
CPU has detected a program error and then attempted to start the (non-existent) OB to handle
the programming error. The previous entry points to the actual programming error.

2. Select the message relating to the programming error.

3. Click the "Open Block" button.

4. Select the "Stacks" tab.

Diagnostics
23.6 Diagnosing in STOP Mode

 Programming with STEP 7
466 Manual, 04/2017, A5E41552389-AA

23.6.2 Stack Contents in STOP Mode

By evaluating the diagnostic buffer and the stack contents you can determine the cause of the fault
in the processing of the user program.

If, for example, the CPU has gone into STOP as a result of a programming error or the STOP
command, the "Stacks" tab in the module information displays the block stack. You can display the
contents of the other stacks using the "I Stack", "L Stack", and "Nesting Stack" buttons. The stack
contents give you information on which instruction in which block led to the CPU going into STOP.

B Stack Contents
The B stack, or block stack, lists all the blocks that were called before the change to STOP mode
and which were not completely processed.

I Stack Contents
When you click the "I Stack" button, the data at the interrupt location are displayed. The I stack, or
interrupt stack, contains the data or the states which were valid at the time of the interrupt, for
example:

• Accumulator contents and register contents

• Open data blocks and their size

• Content of the status word

• Priority class (nesting level)

• Interrupted block

• Block in which program processing continues after the interrupt

L Stack Contents
For every block listed in the B stack, you can display the corresponding local data by selecting the
block and clicking the "L Stack" button.

The L stack, or local data stack, contains the local data values of the blocks the user program was
working with at the time of the interrupt.

In-depth knowledge of the system is required to interpret and evaluate the local data displayed.
The first part of the data displayed corresponds to the temporary variables for the block.

Nesting Stack Contents
When you click the "Nesting Stack" button, the contents of the nesting stack at the interrupt
location are displayed.

The nesting stack is a memory area that the logic operations A(, AN(, O(, ON(, X(, and XN(use.

The button is only active if bracket expressions were still open at the time of interruption.

 Diagnostics
 23.7 Checking Scan Cycle Times to Avoid Time Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 467

23.7 Checking Scan Cycle Times to Avoid Time Errors

23.7.1 Checking Scan Cycle Times to Avoid Time Errors

The "Scan Cycle Time" tab in the module information gives information about the scan cycle times
of the user program.

If the duration of the longest cycle time is close to the configured maximum scan cycle time, there
is a danger that fluctuations in the cycle time might cause a time error. This can be avoided if you
extend the maximum cycle time (watchdog time) of the user program.

If the cycle length is less than the configured minimum scan time, the cycle is automatically
extended by the CPU/FM to the configured minimum cycle time. In the case of a CPU, the
background OB (OB90) is processed during this extended time (if it has been downloaded).

Setting the Scan Cycle Time
You can set the maximum and minimum cycle times when you configure the hardware. To do this,
double-click in the offline view of the configuration table on the CPU/FM to define its properties.
You can enter the appropriate values in the "Cycle/Clock Memory" tab.

Diagnostics
23.8 Flow of Diagnostic Information

 Programming with STEP 7
468 Manual, 04/2017, A5E41552389-AA

23.8 Flow of Diagnostic Information

The following figure shows the flow of diagnostic information in SIMATIC S7.

Displaying Diagnostic Information
You can read out the diagnostic entries using SFC51 RDSYSST in the user program or display the
diagnostic messages in plain language with STEP 7.

They provide information about the following:
• Where and when the error occurred
• The type of diagnostic event to which the entry belongs (userdefined diagnostic event,

synchronous/asynchronous error, operating mode change).

Generating Process Control Group Messages
The CPU enters events of the standard diagnostics and extended diagnostics in the diagnostic
buffer. It also generates a process control group message for the standard diagnostic events if the
following conditions are met:
• You have specified that process control messages will be generated in STEP 7.
• At least one display unit has logged on at the CPU for process control messages.
• A process control group message is only generated when there is not currently a process

control group message of the corresponding class (there are seven classes).
• One process control group message can be generated per class.

 Diagnostics
 23.8 Flow of Diagnostic Information

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 469

23.8.1 System Status List SSL

The system status list (SSL) describes the current status of the programmable logic controller. It
provides an overview of the configuration, the current parameter assignment, the current statuses
and sequences on the CPU, and the modules belonging to it.

You can only read the data in the system status list but not modify them. It is a virtual list that is
only created on request.

The information that you can display using the system status list can be divided into four areas.

Reading Out the System Status List
There are two ways of reading out the information in system status lists, as follows:

• Implicitly, via STEP 7 menu commands from the programming device (for example, memory
configuration, static CPU data, diagnostic buffer, status displays).

• Explicitly, via the system function SFC 51 RDSYSST in the user program, by entering the
number of the required partial system status list (see Help on Blocks)

Diagnostics
23.8 Flow of Diagnostic Information

 Programming with STEP 7
470 Manual, 04/2017, A5E41552389-AA

System Data of the System Status List
System data are intrinsic or assigned characteristic data of a CPU. The following table shows the
topics about which information can be displayed (partial system status lists):

Topic Information

Module identification Order number, type ID, and version of the module
CPU characteristics Time system, system behavior (for example,. multicomputing)

and language description of the CPU
Memory areas Memory configuration of the module (size of the work memory).
System areas System memory of the module (for example, number of memory

bits, timers, counters, memory type).
Block types Which blocks (OB, DB, SDB, FC, FB) exist on the module, the

maximum number of blocks of one type, and the maximum size
of a block type

Assignment of interrupts and errors Assignment of interrupts/errors to OBs
Interrupt status Current status of interrupt processing/interrupts generated
Status of the priority classes Which OB is being executed, which priority class is disabled due

to the parameter setting
Operating mode and mode transition Which operating modes are possible, the last operating mode

change, the current operating mode

Diagnostic Status Data in the CPU
Diagnostic status data describe the current status of the components monitored by the system
diagnostics. The following table shows the topics about which information can be displayed (partial
system status lists):

Topic Information

Communication status data All the communication functions currently set in the system
Diagnostic modules The modules with diagnostics capability logged on at the CPU
Start information list of the OB Start information about the OBs of the CPU
Start event list Start events and priority classes of the OBs
Module status information Status information about all assigned modules that are plugged in,

faulty, or generate hardware interrupts

Diagnostic Data on Modules
In addition to the CPU, there are also other modules with diagnostic capabilities (SMs, CPs, FMs)
whose data are entered in the system status list. The following table shows the topics about which
information can be displayed (partial system status list):

Topic Information

Module diagnostic information Module start address, internal/external faults, channel faults, parameter
errors (4 bytes)

Module diagnostic data All the diagnostic data of a particular module

 Diagnostics
 23.8 Flow of Diagnostic Information

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 471

23.8.2 Sending Your Own Diagnostic Messages

You can also extend the standard system diagnostics of SIMATIC S7 by using the system function
SFC 52 WRUSMSG to:

• Enter your own diagnostic information in the diagnostic buffer (for example, information about
the execution of the user program).

• Send user defined diagnostic messages to logged-on stations (monitoring devices such as a
PG, OP or TD).

User Defined Diagnostic Events
The diagnostic events are divided into event classes 1 to F. The user defined diagnostic events
belong to event classes 8 to B. These can be divided into two groups, as follows:

• Event classes 8 and 9 include messages with a fixed number and predefined text that you can
call up based on the number.

• Event classes A and B include messages to which you can assign a number (A000 to A0FF,
B000 to B0FF) and text of your own choice.

Sending Diagnostic Messages to Stations
In addition to making a user defined entry in the diagnostic buffer, you can also send your own user
defined diagnostic messages to logged on display devices using SFC52 WRUSMSG. When
SFC52 is called with SEND = 1, the diagnostic message is written to the send buffer and
automatically sent to the station or stations logged on at the CPU.

If it is not possible to send messages (for example, because no display device is logged on or
because the send buffer is full) the user-defined diagnostic event is still entered in the diagnostic
buffer.

Generating a Message with Acknowledgement
If you acknowledge a user defined diagnostic event and want to record the acknowledgement,
proceed as follows:

• When the event enters the event state, write 1 to a variable of the type BOOL, when the event
leaves the event state write 0 to the variable.

• You can then monitor this variable using SFB33 ALARM.

Diagnostics
23.8 Flow of Diagnostic Information

 Programming with STEP 7
472 Manual, 04/2017, A5E41552389-AA

23.8.3 Diagnostic Functions

System diagnostics detect, evaluate, and report errors that occur within a programmable controller.
For this purpose, every CPU and every module with system diagnostics capability (for example,
FM 354) has a diagnostic buffer in which detailed information on all diagnostic events is entered in
the order they occurred.

Diagnostic Events
The following entries are displayed as diagnostic events, for example:

• Internal and external faults on a module

• System errors in the CPU

• Operating mode changes (for example, from RUN to STOP)

• Errors in the user program

• Inserting/removing modules

• User messages entered with the system function SFC52

The content of the diagnostic buffer is retained following a memory reset. Using the diagnostic
buffer, errors in the system can still be analyzed at a later time to find the cause of a STOP or to
trace back and categorize the occurrence of individual diagnostic events

Acquiring Diagnostic Data
You do not need to program the acquisition of diagnostic data by system diagnostics. This is a
standard feature that runs automatically. SIMATIC S7 provides various diagnostic functions. Some
of these functions are integrated on the CPU, others are provided by the modules (SMs, CPs, and
FMs).

Displaying Faults
Internal and external module faults are displayed on the front panels of the module. The LED
displays and their evaluation are described in the S7 hardware manuals. With the S7-300, internal
and external faults are displayed together as a group error.

The CPU recognizes system errors and errors in the user program and enters diagnostic
messages in the system status list and the diagnostic buffer. These diagnostic messages can be
read out on the programming device.

Signal and function modules with diagnostic capability detect internal and external module errors
and generate a diagnostic interrupt to which you can react using an interrupt OB.

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 473

23.9 Program Measures for Handling Errors

When it detects errors in program processing (synchronous errors) and errors in the programmable
controller (asynchronous errors), the CPU calls the appropriate organization block (OB) for the
error:

Error Error OB

I/O redundancy error OB70
CPU redundancy error OB72
Time error OB80
Power supply error OB81
Diagnostic interrupt OB82
Insert/remove module interrupt OB83
CPU hardware fault OB84
Priority class error OB85
Rack failure or failure of a station in the distributed I/O OB86
Communication error OB87
Programming error OB121
I/O access error OB122

If the appropriate OB is not available, the CPU goes into STOP mode (exceptions: OB70, OB72,
OB81, OB87). Otherwise, it is possible to store instructions in the OB as to how it should react to
this error situation. This means the effects of an error can be reduced or eradicated.

Basic Procedure

Creating and Opening the OB
1. Display the module information for your CPU.

2. Select the "Performance Data" tab.

3. Decide on the basis of the list displayed whether the OB you want to program is permitted for
this CPU.

4. Insert the OB in the "Blocks" folder of your program and open the OB.

5. Enter the program for handling the error.

6. Download the OB to the programmable controller.

Programming Measures for Handling Errors
1. Evaluate the local data of the OB to determine the exact cause of the error.

The variables OB8xFLTID and OB12xSWFLT in the local data contain the error code. Their
meaning is described in the "System and Standard Functions Reference Manual."

2. Branch to the program segment which reacts to this error.

You will find an example of handling diagnostic interrupts in the reference online help on System
and Standard Functions under the heading "Example of Module Diagnostics with SFC51
(RDSYSST)."

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
474 Manual, 04/2017, A5E41552389-AA

23.9.1 Evaluating the Output Parameter RET_VAL

Using the RET_VAL output parameter (return value), a system function indicates whether or not
the CPU was able to execute the SFC function correctly

Error Information in the Return Value
The return value is of the integer data type (INT). The sign of an integer indicates whether it is a
positive or negative integer. The relationship of the return value to the value "0" indicates whether
or not an error occurred while the function was being executed (see table):

• If an error occurs while the function is being executed, the return value is less than "0." The
sign bit of the integer is "1."

• If the function is executed free of errors, the return value is greater than or equal to "0." The
sign bit of the integer is "0."

Processing of the SFC by the CPU Return Value Sign of the Integer

Error occurred Less than "0" Negative (sign bit is "1")
No error Greater than or equal to "0" Positive (sign bit is "0")

Reacting to Error Information
If an error occurs while an SFC is being executed, the SFC provides an error code in the return
value (RET_VAL).

A distinction is made between the following:

• A general error code that all SFCs can output and

• A specific error code that the SFC can output depending on its specific function.

Transferring the Function Value
Some SFCs also use the output parameter RET_VAL to transfer the function value, for example,
SFC64 TIME_TCK transfers the system time it has read using RET_VAL.

You can find more detailed information on the output parameter RET_VAL in the Help on
SFBs/SFCs.

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 475

23.9.2 Error OBs as a Reaction to Detected Errors

Detectable Errors
The system program can detect the following errors:

• CPU functioning incorrectly

• Error in the system program execution

• Errors in the user program

• Error in the I/Os

Depending on the type of error, the CPU is set to STOP mode or an error OB is called.

Programming Reactions
You can design programs to react to the various types of errors and to determine the way in which
the CPU reacts. The program for a particular error can then be saved in an error OB. If the error
OB is called, the program is executed.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
476 Manual, 04/2017, A5E41552389-AA

Error OBs
A distinction is made between synchronous and asynchronous errors as follows:

• Synchronous errors can be assigned to an MC7 instruction (for example, load instruction for a
signal module which has been removed).

• Asynchronous errors can be assigned to a priority class or to the entire programmable logic
controller (for example, cycle time exceeded).

The following table shows what types of errors can occur. Refer to your "S7-300 Programmable
Controller, Hardware and Installation Manual" or the "S7-400 Programmable Controller, Hardware
and Installation Manual" for information as to whether your CPU provides the specified OBs.

Error Class Error Type OB Priority

Redundancy I/O redundancy error (only in H CPUs) OB 70 25
CPU redundancy error (only in H CPUs) OB 72 28

Asynchronous Time error OB 80 26
Power supply error OB 81 (or 28 if the error OB is called
Diagnostic Interrupt OB 82 in the startup program)
Insert/remove module interrupt OB 83
CPU hardware fault OB 84
Program sequence error OB 85
Rack failure OB 86
Communication error OB 87

Synchronous Programming error OB 121 Priority of the OB that caused
the error

I/O access error OB 122

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 477

Example of Using Error OB81
Using the local data (start information) of the error OB, you can evaluate the type of error that has
occurred.

If, for example, the CPU detects a battery error, the operating system calls OB81 (see figure).

You can write a program that evaluates the event code triggered by the OB81 call. You can also
write a program that brings about a reaction, such as activating an output connected to a lamp on
the operator station.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
478 Manual, 04/2017, A5E41552389-AA

Local Data of Error OB81
The following table shows the temporary variables that must be declared, in this case, in the
variable declaration table of OB81.

The symbol Battery error (BOOL) must be identified as an output (for example, Q 4.0) so that other
parts of the program can access these data.

Decl. Name Type Description

TEMP OB81EVCLASS BYTE Error class/error identifier 39xx
TEMP OB81FLTID BYTE Error code:

b#16#21 =
At least one backup battery of the CPU is
exhausted 1)

b#16#22 =
No backup voltage in the CPU
b#16#23 =
Failure of the 24-V power supply in
the CPU 1

b#16#31 =
At least one backup battery of an expansion
rack is exhausted 1)

b#16#32 =
Backup voltage not present in an expansion
rack 1

b#16#33 =
Failure of the 24-V power supply of an
expansion rack 1)

TEMP OB81PRIORITY BYTE Priority class = 26/28
TEMP OB81OBNUMBR BYTE 81 = OB81
TEMP OB81RESERVED1 BYTE Reserved
TEMP OB81RESERVED2 BYTE Reserved
TEMP OB81_RACK_CPU WORD Bits 0 to 7: B#16#00

Bits 8 to 15: on a standard CPU: B#16#00,
on an H CPU: bits 8 to 10 rack number, bit
11: 0=reserve CPU, 1=master-CPU, bits 12
to 15: 1111

TEMP OB81RESERVED3 BYTE Only relevant for error codes B#16#31,
B#16#32, B#16#33

TEMP OB81RESERVED4 BYTE
TEMP OB81RESERVED5 BYTE
TEMP OB81RESERVED6 BYTE
TEMP OB81DATETIME DATEAND

TIME
Date and time at which the OB was started

1) = Not with the S7-300.

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 479

Sample Program for the Error OB81
The sample STL program shows how you can read the error code in OB81.

The program is structured as follows:
• The error code in OB81 (OB81FLTID) is read and compared with the value of the event

"battery exhausted" (B#16#3921).
• If the error code corresponds to the code for "battery exhausted," the program jumps to the

label Berr and activates the output batteryerror.
• If the error code does not correspond to the code for "battery exhausted," the program

compares the code with the code for "battery failure".
• If the error code corresponds to the code for "battery failure," the program jumps to the label

Berr and activates the output batteryerror. Otherwise the block is terminated.

STL Description

 L B#16#21 // Compare event code "battery exhausted"

 //(B#16#21) with

 L #OB81_FLT_ID // the error code for OB81.

 ==I // If the same (battery is exhausted),

 // jump to Berr.

 JC Berr

 L B#16#22 // Compare event code "battery failure"

 //(b#16#22) with

 ==I // the error code for OB81.

 JC BF // If the same, jump to Berr.

 BEU // No message about battery failure

Berr: L B#16#39 // Compare the ID for the next event with

 L #OB81_EV_CLASS // the error code for OB81.

 ==I // If a battery failure or an exhausted
 //battery is found,

 S batteryerror // set the output "battery error."

 // (Variable from the symbol table)

 L B#16#38 // Compare the ID for the concluding event
 //with

 ==I // the error code for OB81.

 R batteryerror // reset the output "battery error, when

 // the error is fixed.

You can find detailed information on OBs, SFBs, and SFCs, as well as an explanation of event IDs,
in the corresponding Help on Blocks.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
480 Manual, 04/2017, A5E41552389-AA

23.9.3 Inserting Substitute Values for Error Detection

With certain types of error (for example, a wire break affecting an input signal), you can supply
substitute values for values that are not available due to the error. There are two ways in which you
can supply substitute values:

• You can assign substitute values for configurable output modules using STEP 7. Output
modules that cannot have parameters assigned have the default substitute value 0.

• Using SFC44 RPLVAL, you can program substitute values in error OBs (only for input
modules).

For all load instructions that lead to synchronous errors, you can specify a substitute value for the
accumulator content in the error OB.

Sample Program for Substituting a Value
In the following sample program, a substitute value is made available in SFC44 RPLVAL. The
following figure shows how OB122 is called when the CPU recognizes that an input module is not
reacting.

In this example, the substitute value in the following figure is entered in the program so that the
program can continue to operate with feasible values.

If an input module fails, the processing of the statement L PIB0 produces a synchronous error and
starts OB122. As standard, the load instruction reads in the value 0. With SFC44, however, you
can define any substitute value suitable for the process. The SFC replaces the accumulator content
with the specified substitute value.

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 481

The following sample program could be written in OB122. The following table shows the temporary
variables that must be declared, in this case, in the variable declaration table of OB122.

Decl. Name Type Description

TEMP OB122EVCLASS BYTE Error class/error ID 29xx
TEMP OB122SWFLT BYTE Error code:

16#42, 16#43, 16#44 1), 16#45 1)
TEMP OB122PRIORITY BYTE Priority class = priority of the OB in which the

error occurred
TEMP OB122OBNUMBR BYTE 122 = OB122
TEMP OB122BLKTYPE BYTE Block type in which the error occurred
TEMP OB122MEMAREA BYTE Memory area and type of access
TEMP OB122MEMADDR WORD Address in the memory at which the error

occurred
TEMP OB122BLKNUM WORD Number of the block in which the error occurred
TEMP OB122PRGADDR WORD Relative address of the instruction that caused

the error
TEMP OB122DATETIME DATEANDTIME Date and time at which the OB was started
TEMP Error INT Saves the error code of SFC44
1) Not with the S7-300.

STL Description

 L B#16#2942
 L #OB122SWFLT
 ==I
 JC Aerr
 L B#16#2943
 <> I
 JC Stop

Aerr: CALL "REPL_VAL"
 VAL : = DW#16#2912
 RETVAL : = #Error
 L #Error
 L 0
 ==I
 BEC

Stop: CALL "STP"

Compare the event code of OB122 with the event code
(B#16#2942) for the acknowledgement of a time error when
reading the I/O. If the same, jump to "Aerr".
Compare the event code of OB122 with the event code
(B#16#2943) for an addressing error (writing to a module
that does not exist). If not the same, jump to "Stop."
Label "Aerr": transfers DW#16#2912 (binary 10010) to
SFC44 (REPL_VAL). SFC44 loads this value in accumulator
1 (and substitutes the value that triggered the OB122 call).
The SFC error code is saved in #Error.

Compare #Error with 0 (if the same, no error occurred when
executing OB122). End the block if no error occurred.
"Stop" label: calls SFC46 "STP" and changes the CPU to
STOP mode.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
482 Manual, 04/2017, A5E41552389-AA

23.9.4 I/O Redundancy Error (OB70)

Description
The operating system of a H CPU calls OB70 if a loss of redundancy occurs on the PROFIBUS DP
(for example, if there is a bus failure on the active DP master or an error in the DP slave interface
module) or if the active DP master changes from DP slaves with switched I/Os.

Programming OB70
You must create OB70 as an object in your S7 program using STEP 7. Write the program to be
executed in OB70 in the generated block and download it to the CPU as part of your user program.

You can use OB70, for example, for the following purposes:

• To evaluate the start information of OB70 and determine which event triggered the loss of I/O
redundancy.

• To determine the status of your system using SFC51 RDSYSST (SZLID=B#16#71).

The CPU does not change to STOP mode if an I/O redundancy error occurs and OB70 is not
programmed.

If OB70 is downloaded and the H system is not in redundant mode, OB70 is processed in both
CPUs. The H system remains in redundant mode.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 483

23.9.5 CPU Redundancy Error (OB72)

Description
The operating system of the H CPU calls OB72 if one of the following events occurs:

• Loss of redundancy on the CPUs

• Comparison error (for example, RAM, PIQ)

• Standby-master switchover

• Synchronization error

• Error in a SYNC submodule

• Update process aborted

• OB72 is executed by all CPUs which are in RUN mode or STARTUP mode after an
accompanying start event.

Programming OB72
You must create OB72 as an object in your S7 program using STEP 7. Write the program to be
executed in OB72 in the generated block and download it to the CPU as part of your user program.

You can use OB72, for example, for the following purposes:

• To evaluate the start information of OB72 and determine which event triggered the loss of CPU
redundancy.

• To determine the status of your system using SFC51 RDSYSST (SZLID=B#16#71).

• To react to the loss of CPU redundancy specifically for the plant.

The CPU does not change to STOP mode if a CPU redundancy error occurs and OB72 is not
programmed.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
484 Manual, 04/2017, A5E41552389-AA

23.9.6 Time Error (OB80)

Description
The operating system of the CPU calls OB80 when a time error occurs. Time errors include the
following, for example:

• Maximum cycle time exceeded

• Timeofday interrupts skipped by moving the time forward

• Delay too great when processing a priority class

Programming OB80
You must create OB80 as an object in your S7 program using STEP 7. Write the program to be
executed in OB80 in the generated block and download it to the CPU as part of your user program.

You can use OB80, for example, for the following purposes:

• To evaluate the start information of OB80 and to determine which timeofday interrupts were
skipped.

• By including SFC29 CANTINT, you can deactivate the skipped timeofday interrupt so that it is
not executed and only timeofday interrupts relative to the new time will be executed.

If you do not deactivate skipped timeofday interrupts in OB80, the first skipped timeofday
interrupt is executed, all others are ignored.

If you do not program OB80, the CPU changes to STOP mode when a time error is detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 485

23.9.7 Power Supply Error (OB81)

Description
The operating system of the CPU calls OB81 if one of the following fails in a CPU or an expansion
unit

• The 24-V voltage supply

• A battery

• The complete backup

This OB is also called when the problem has been eliminated (the OB is called when an event
comes and goes).

Programming OB81
You must create OB81 as an object in your S7 program using STEP 7. Write the program to be
executed in OB81 in the generated block and download it to the CPU as part of your user program.

You can, for example, use OB81 for the following purposes:

• To evaluate the start information of OB81 and determine which power supply error has
occurred.

• To find out the number of the rack with the defective power supply.

• To activate a lamp on an operator station to indicate that maintenance personnel should
replace a battery.

If you do not program OB81, the CPU does not change to STOP mode if a power supply error is
detected. The error is, however, entered in the diagnostic buffer and the corresponding LED on the
front panel indicates the error.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
486 Manual, 04/2017, A5E41552389-AA

23.9.8 Diagnostic Interrupt (OB82)

Description
The operating system of the CPU calls OB82 when a module with diagnostics capability on which
you have enabled the diagnostic interrupt detects an error and when the error is eliminated (the OB
is called when the event comes and goes).

Programming OB82
You must create OB82 as an object in your S7 program using STEP 7. Write the program to be
executed in OB82 in the generated block and download it to the CPU as part of your user program.

You can, for example, use OB82 for the following purposes:

• To evaluate the start information of OB82.

• To obtain exact diagnostic information about the error that has occurred.

When a diagnostic interrupt is triggered, the module on which the problem has occurred
automatically enters 4 bytes of diagnostic data and their start address in the start information of the
diagnostic interrupt OB and in the diagnostic buffer. This provides you with information about when
an error occurred and on which module.

With a suitable program in OB82, you can evaluate further diagnostic data for the module (which
channel the error occurred on, which error has occurred). Using SFC51 RDSYSST, you can read
out the module diagnostic data and enter this information in the diagnostic buffer with SFC52
WRUSRMSG. You can also send a userdefined diagnostic message to a monitoring device.

If you do not program OB82, the CPU changes to STOP mode when a diagnostic interrupt is
triggered.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 487

23.9.9 Insert/Remove Module Interrupt (OB83)

Description
S7-400 CPUs monitor the presence of modules in the central rack and expansion racks at intervals
of approximately 1 second.

After the power supply is turned on, the CPU checks whether all the modules listed in the
configuration table created with STEP 7 are actually inserted. If all the modules are present, the
actual configuration is saved and is used as a reference value for cyclic monitoring of the modules.
In each scan cycle, the newly detected actual configuration is compared with the previous actual
configuration. If there are discrepancies between the configurations, an insert/remove module
interrupt is signaled and an entry is made in the diagnostic buffer and the system status list. In
RUN mode, the insert/remove module interrupt OB is started.

 Note

Power supply modules, CPUs, and IMs must not be removed in RUN mode.
Between removing and inserting a module, at least two seconds must be allowed to pass so that the CPU can
detect that a module has been removed or inserted.

Assigning Parameters to a Newly Inserted Module
If a module is inserted in RUN mode, the CPU checks whether the module type of the new module
matches the original module. If they match, the module is assigned parameters. Either the default
parameters or the parameters you assigned with STEP 7 are transferred to the module.

Programming OB83
You must create OB83 as an object in your S7 program using STEP 7. Write the program to be
executed in OB83 in the generated block and download it to the CPU as part of your user program.

You can use OB83, for example, for the following purposes:

• To evaluate the start information of OB83.

• By including system functions SFC55 to 59, to assign parameters to a newly inserted module.

If you do not program OB83, the CPU changes from RUN to STOP when an insert/remove module
interrupt occurs.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
488 Manual, 04/2017, A5E41552389-AA

23.9.10 CPU Hardware Fault (OB84)

Description
The operating system of the CPU calls OB84 when an error is detected on the interface to the MPI
network, to the communication bus, or to the network card for the distributed I/Os; for example, if
an incorrect signal level is detected on the line. The OB is also called when the error is eliminated
(the OB is called when the event comes and goes).

Programming OB84
You must create OB84 as an object in your S7 program using STEP 7. Write the program to be
executed in OB84 in the generated block and download it to the CPU as part of your user program.

You can use OB84, for example, for the following purposes:

• To evaluate the start information of OB84.

• By including system function SFC52 WRUSMSG to send a message to the diagnostic buffer.

If you do not program OB84, the CPU changes to STOP mode when a CPU hardware fault is
detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 489

23.9.11 Program Sequence Error (OB85)

Description
The operating system of the CPU calls OB85:

• When a start event for an interrupt OB exists but the OB cannot be executed because it has
not been downloaded to the CPU.

• When an error occurs accessing the instance data block of a system function block.

• When an error occurs updating the process image table (module configured but does not exist
or module configured but defective).

Programming OB85
You must create OB85 as an object in your S7 program using STEP 7. Write the program to be
executed in OB85 in the generated block and download it to the CPU as part of your user program.

You can use OB85, for example, for the following purposes:

• To evaluate the start information of OB85 and determine which module is defective or not
inserted (the module start address is specified).

• By including SFC49 LGCGADR to find out the slot of the module involved.

If you do not program OB85, the CPU changes to STOP mode when a priority class error is
detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
490 Manual, 04/2017, A5E41552389-AA

23.9.12 Rack Failure (OB86)

Description
The operating system of the CPU calls OB86 when it has detected one of the following events:

• Failure of a central expansion rack (not for S7-300) such as a broken connecting line,
distributed power failure on a rack

• Failure of a master system or a slave (PROFIBUS DP) or failure of an IO system or an IO
device (PROFINET IO)

OB86 is also called when the error is eliminated (the OB is called when the event comes and
goes).

Programming OB86
You must create OB86 as an object in your S7 program using STEP 7. Write the program to be
executed in OB86 in the generated block and download it to the CPU as part of your user program.

You can use OB86, for example, for the following purposes:

• To evaluate the start information of OB86 and determine which rack is defective or missing.

• To enter a message in the diagnostic buffer with system function SFC 52 WRUSMSG and to
send the message to a monitoring device.

If you do not program OB86, the CPU changes to STOP mode when a rack failure is detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

 Diagnostics
 23.9 Program Measures for Handling Errors

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 491

23.9.13 Communication Error (OB87)

Description
The operating system of the CPU calls OB87 when a communication error occurs in data exchange
using communication function blocks or in global data communication, for example:

• When receiving global data, an incorrect frame ID was detected

• The data block for the status information of the global data does not exist or is too short.

Programming OB87
You must create OB87 as an object in your S7 program using STEP 7. Write the program to be
executed in OB87 in the generated block and download it to the CPU as part of your user program.

You can use OB87, for example, for the following purposes:

• To evaluate the start information of OB87.

• To create a data block if the data block for the status information of global data communication
is missing.

The CPU does not change to "STOP" mode when a communication error is detected and OB87 is
not programmed.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

23.9.14 Programming Error (OB121)

Description
The operating system of the CPU calls OB121 when a programming error occurs, for example:

• Addressed timers do not exist.

• A called block is not loaded.

Programming OB121
You must create OB121 as an object in your S7 program using STEP 7. Write the program to be
executed in OB121 in the generated block and download it to the CPU as part of your user
program.

You can use OB121, for example, for the following purposes:

• To evaluate the start information of OB121.

• To enter the cause of an error in a message data block.

If you do not program OB121, the CPU changes to STOP mode when a programming error is
detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

Diagnostics
23.9 Program Measures for Handling Errors

 Programming with STEP 7
492 Manual, 04/2017, A5E41552389-AA

23.9.15 I/O Access Error (OB122)

Description
The operating system of the CPU calls OB122 when a STEP 7 instruction accesses an input or
output of a signal module to which no module was assigned at the last warm restart, for example:

• Errors with direct I/O access (module defective or missing)

• Access to an I/O address that is not known to the CPU.

Programming OB122
You must create OB122 as an object in your S7 program using STEP 7. Write the program to be
executed in OB122 in the generated block and download it to the CPU as part of your user
program.

You can use OB122, for example, for the following purposes:

• To evaluate the start information of OB122

• To call the system function SFC 44 and supply a substitute value for an input module so that
program execution can continue with a meaningful, process-dependent value.

If you do not program OB122, the CPU changes to STOP mode when an I/O access error is
detected.

You can find detailed information on OBs, SFBs, and SFCs in the corresponding Help on Blocks.

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 493

23.10 System Diagnostics with 'Report System Error'

23.10.1 Graphical Output of Diagnostic Events

To graphically output diagnostic events to an HMI device, you can create a PROFIBUS DP DB (DB
125 by default) or a PROFINET IO DB (DB 126 by default).

23.10.2 Diagnostic Status

23.10.2.1 Overview of the Diagnostic Status

You can configure the generation of blocks with 'Report system error', so that the generated data
blocks can be supplied with the current status of PROFIBUS master systems or PROFINET IO
systems.

• The PROFIBUS DP DB (DB125) supports the status of PROFIBUS slaves on DP master
systems (1), ..., (32).

• The PROFINET IO DB (DB126) supports the status of IO device on IO systems (100), ..., (115)
and the status of DP slaves on DP master systems (2980ff) downstream from an IE/PB Link.

• The diagnostic status DB (DB127) supports the status of racks, central modules, PROFIBUS
slaves and IO devices.

23.10.2.2 PROFIBUS Diagnostic Status

Interface for the PROFIBUS DP DB
The generated data block depicts the current status of all configured stations in the current DP
master system. If desired, it can describe the status of all DP slaves more exactly. The data block
is dynamically created and depends on the HW configuration. The DB uses the RSE diagnostics
FB (by default, FB49) to access the diagnostics data. This FB enters the current status of the DP
slaves directly in the PROFIBUS DB.

During processing of the PROFIBUS DB, all interrupts are delayed.

For information on the supported interfaces, refer to the Readme file.

 Note

The master system of an IE/PB link cannot be diagnoses. The diagnostics is performed via the
PROFINET IO DB.

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
494 Manual, 04/2017, A5E41552389-AA

"MANUAL" mode
In this mode all errors in the selected station are shown in sequence.

"AUTOMATIC" mode
In this mode all the errors in all configured stations are shown in sequence.

Static variable area

Address Name Data type Description

0 DP_MASTERSYSTEM INT Number of the DP master system
2.0 EXTERNAL_DP_INTERFACE BOOL External DP interface (CP/IM)
2.1 MANUAL_MODE BOOL Operating mode
2.2 SINGLE_STEP_SLAVE BOOL Switch to the next affected station
2.3 SINGLE_STEP_ERROR BOOL Switch to the next error
2.4 RESET BOOL DP master system (number and

interface) are applied; everything is
reinitialized

2.5 SINGLE_DIAG BOOL DP_Slave individual diagnostics
3 SINGLE_DIAG_ADR BYTE DP_Slave address for individual

diagnostics
4.0 ALL_DP_SLAVES_OK BOOL Group display showing whether all

DP slaves are operating correctly
5 SUM_SLAVES_DIAG BYTE Number of affected stations (faulty

or failed)
6 SLAVE_ADR BYTE Station number of current station
7 SLAVE_STATE BYTE Status of the station:0:OK

1:Failed
2:Faulty
3:Not configured/cannot be
diagnosed

8 SLAVE_IDENT_NO WORD PROFIBUS identification number
10 ERROR_NO BYTE Current error number
11 ERROR_TYPE BYTE 1: Rack diagnostics (general info)

2: Submodule status
3: Channel diagnostics as per DP
standard
4: S7 diagnostics (DS0/DS1)
5: Device diagnostics
(manufacturer-specific)
6: Line diagnostics (diagnostic
repeater)
7: Decoded device diagnostics

12 MODULE_NO BYTE Slot number.
13 CHANNEL_NO BYTE Channel number.
14 CHANNEL_TYPE BYTE Channel type
15 CHANNEL_ERROR_CODE BYTE Error code
16 CHANNEL_ERROR_INFO_1 DWORD Channel error, code 1
20 CHANNEL_ERROR_INFO_2 DWORD Channel error, code 2

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 495

Address Name Data type Description

24 DIAG_COUNTER BYTE Total of a diagnostic for the
displayed stations.

25.0 DIAG_OVERFLOW BOOL Diagnostic overflow
25.1 BUSY BOOL Evaluation in progress
932 - 1176 DIAG_DAT_NORM BYTE [1..244] Slave diagnostic data
1176 - 1191 CONFIG_SLAVES DWORD [1..4] Configured slaves
1192 - 1207 EXIST_SLAVES DWORD [1..4] Existing (addressable) slaves
1208 - 1223 FAILED_SLAVES DWORD [1..4] Failed slaves
1224 - 1239 FAULTY_SLAVES DWORD [1..4] Faulty slaves
1240 - 1255 AFFECT_SLAVES DWORD [1..4] Affected slaves (faulty or failed)
1256 - 1271 AFFECT_SLAVES_MEM DWORD [1..4] Affected slaves stored (internal)
1272 - 1397 DIAG_CNT BYTE [1..126] No. of diagnostic messages per

slave
1404 ERROR_CAT DWORD Text lexicon ID of error text
1408 HELP_CAT DWORD Text lexicon ID of help text
1412 ERROR_NO DWORD Text ID in the text lexicon
1416 MAP_ERRORNO WORD Error ID in the export file
1418 MAP_HELPNO WORD Help text ID in the export file
1420 MASTERSTATUS_FAILED BOOL [1..32] True, if at least one station of the

PROFIBUS master system (1 - 32)
has failed

1424 MASTERSTATUS_FAULTY BOOL [1..32] True, if at least one station of the
PROFIBUS master system (1 - 32)
is disrupted

Status of the station in the overview:

Status OK Failed Faulty Not configured/cannot be

diagnosed
Coding 0 1 2 3

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
496 Manual, 04/2017, A5E41552389-AA

23.10.2.3 Example of a DB 125 with a DP Slave

The following table shows an example of the assignment of DB125 in "Manual" mode.

DP_MASTERSYSTEM INT 0 (last value used)
EXTERNAL_DP_INTERFACE BOOL 2.0 Unused (last value used)
MANUAL_MODE BOOL 2.1 TRUE
SINGLE_STEP_SLAVE BOOL 2.2 Unused
SINGLE_STEP_ERROR BOOL 2.3 Positive edge changes to

next error
RESET BOOL 2.4 Unused (except for

positive edge)
SINGLE_DIAG BOOL 2.4 Positive edge: read frame

again
SINGLE_DIAG_ADR BYTE 3.0 Station number (1 to 126)

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 497

23.10.2.4 Example of a Request for the PROFIBUS DP DB

You want to display all errors of master system 27 on an OP. This master system is plugged into
an integrated interface.

The ET 200S station, PROFIBUS ID 15, diagnostic address 8190 has a channel error.

Query:

DP_MASTERSYSTEM 27
EXTERNAL_DP_INTERFACE FALSE
RESET to TRUE (positive edge)

Result:

ALL_DP_SLAVE_OK FALSE: Problems have occurred
SUM_SLAVES_DIAG 1: A station is faulty
SLAVE_ADR 15: PROFIBUS address
SLAVE_STATE 2: faulty
SLAVE_IDENT_NO W#16#80E0: ET 200S HF
ERROR_NO 1: First error
ERROR_TYPE 3: Channel diagnostics complying with DP standard
MODULE_NO 2
MODULE_STATE 0: Module is correct
CHANNEL_NO 2: Channel 2
CHANNEL_TYPE 2: Output
CHANNEL_ERROR_CODE 1: Short circuit
CHANNEL_ERROR_INFO_1 2: Short circuit
CHANNEL_ERROR_INFO_2 0
DIAG_COUNTER 3: 3 diagnostic interrupts have already been triggered
DIAG_OVERFLOW FALSE
BUSY FALSE

Variable Bit address Value Explanation

CONFIG_SLAVES 1176 + 15 - 1 = 1192 TRUE Station 15 is configured
EXIST_SLAVES 1192 + 15 – 1 = 1216 TRUE Station 15 exists
FAILED_SLAVES 1208 + 15 – 1 = 1222 FALSE Station 15 has not failed
FAULTY_SLAVES 1224 + 15 – 1 = 1238 TRUE Station 15 is faulty
AFFECT_SLAVES 1240 + 15 – 1 = 1254 TRUE Station 15 is affected
AFFECT_SLAVES_MEM 1256 + 15 – 1 = 1270 TRUE Station 15 was affected
DIAG_CNT 1272 + (15-1) * 8 = 1384 B#16#3 3 Diagnostic interrupts

When the error is eliminated, the boxes are updated:

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
498 Manual, 04/2017, A5E41552389-AA

Result:
ALL_DP_SLAVE_OK TRUE: No problem occurred

SUM_SLAVES_DIAG 0: No station is faulty

Variable Bit address Value Explanation

CONFIG_SLAVES 1176 + 15 - 1 = 1192 TRUE Station 15 is configured
EXIST_SLAVES 1192 + 15 – 1 = 1216 TRUE Station 15 exists
FAILED_SLAVES 1208 + 15 – 1 = 1222 FALSE Station 15 has not failed
FAULTY_SLAVES 1224 + 15 – 1 = FALSE Station 15 is faulty
AFFECT_SLAVES 1240 + 15 - 1 FALSE Station 15 is affected
AFFECT_SLAVES_MEM 1256 + 15 - 1 TRUE Station 15 was affected
DIAG_CNT 1272 + (15-12) * 8 B#16#4 4 Diagnostic interrupts

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 499

23.10.2.5 PROFINET Diagnostic Status

Interface for the PROFINET IO DB
The generated data block depicts the current status of all configured devices. If desired, it can
describe the status of a device more exactly in response to a query from an HMI device. The data
block is dynamically created and depends on the HW configuration. The DB uses the RSE
diagnostics FB (by default, FB49) to access the diagnostics data. This FB enters the current status
of the devices directly in the DB.

Only one HMI device (e.g. OP, MP, PC) can access and modify the DB. If several HMI devices are
connected, simultaneous access is blocked by the variable HMI_ID.

For information on the supported interfaces, refer to the Readme file.

 Note

The diagnostics downstream from an IE/PB link is restricted.

Static variable area

Address Name Data Type Description

0 HMI_ID WORD No. of OP that uses the DB (0 = unused)
2 System_No WORD No. of IO system to be evaluated
4 Device_No WORD No. of IO device to be evaluated
6.0 Enable BOOL Retrieves the error from the specified

device
6.1 Next_Error BOOL Retrieves the next error from the same

device
6.2 Busy BOOL Busy = 1; evaluation running
6.3 More_Errors BOOL There are more error messages present
7 Device_Status BYTE Status of affected device
8 Offset_System_Header WORD Address of Detail_IO_Sys[n] in the system

being evaluated
10 Offset_System_Array WORD Address of IO_Sys[n] in the system being

evaluated
12 Vendor_ID WORD Vendor ID; filled if supported by the CPU
14 Device_ID WORD Device ID; filled if supported by the CPU
16 Error_Level BYTE Error level 1=IO Device, 2=Module,

3=Submodule, 4=Channel
17 BYTE Reserved
18 Module_No WORD No. of affected module
20 Submodule_No WORD No. of affected submodule
22 Channel_No WORD No. of affected channel
24 Error_Cat DWORD Error category (lexicon ID)
28 Help_Cat DWORD Error category in Help lexicon
32 Error_No DWORD Error number (index in lexicon)
36 Map_ErrorNo WORD No. of the error text in the export table

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
500 Manual, 04/2017, A5E41552389-AA

Address Name Data Type Description

38 Map_HelpNo WORD No. of the help text in the export table
40 Number_IO_Sys WORD No. of configured IO systems
42 Systems_Status WORD Overview of all IO systems

Dynamic variable area

 Name Type Comment

Once Detail_IO_Sys Struct[n] Array of structures for
each IO system

Each IO system System_No Word System number
Max_Num_Dev Word Maximum ID for the

configured devices
Offset Word Offset at start of field in

bytes relative to
Detail_IO_Sys

Devices_Affected Word Number of affected
devices

Offset_Status Word Offset at start of field
IO_Sys_Status in bytes
independent of
Detail_IO_Sys

Each device IO_Sys_<n> ARRAY OF WORD[n] Status of the groups; 1
bit for 16 devices. The
table is large enough to
contain all configured
devices
(Max_Num_Dev).

Status of a device in the overview IO_Sys_<n>:

Status OK Faulty Failed Not configured

Coding
(bit b+1, bit b)

00 01 10 11

Byte N N+1
Bit 6-7 4-5 2-3 0-1 6-7 4-5 2-3 0-1
IO_Sys_<n>[0]: Device
number

4 3 2 1 8 7 6 5

IO_Sys_<n>[1]: Device
number

12 11 10 9 16 15 14 13

...

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 501

Status of a device in the overview IO_Sys_Status_<n>:

Status All devices in the group are OK or

not configured.
At least one device in the group is
faulty or has failed.

Coding 0 1

Byte N N+1
Bit 7 ... 0 7 ... 0
IO_Sys_Statu
s_<n>[0]:
Device
number

113-128 17-112 1 - 16 241 - 256 145 - 240 129 - 144

Group 8 2 - 7 1 16 10 - 15 9
...

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
502 Manual, 04/2017, A5E41552389-AA

23.10.2.6 Example of a DB126 with an IO System 100 and Devices with Device
Numbers 2, 3 and 4

Number_IO_Sys W#16#1 Number of configured IO systems
Detail_IO_Sys [0] .System_No W#16#64 System number
Detail_IO_Sys [0] .Max_Num_Dev W#16#4 Maximum ID for the configured

device
Detail_IO_Sys [0] .Offset W#16#2E Offset at the beginning of the

IO_Sys_Status field in bytes
relative to Detail_IO_Sys

Detail_IO_Sys [0] .Devices_Affected W#16#0 Number of affected devices
IO_Sys_0 ARRAY [0..0] OF WORD Status bar for IO system 100

Status:

Device 1 Not configured

Device 2 Faulty
Device 3 OK
Device 4 Not accessible

This has caused "Devices_Affected" to be changed:

Detail_IO_Sys [0] .Devices_Affected W#16#2 Number of affected devices

The status bar is grouped as a bit field, 2 bits indicate the status of a device. Byte 50 looks as
follows:

[11] [01] [00] [10]

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 503

23.10.2.7 Example of a Request for the PROFINET IO DB

You would like to call up the errors of device 50 on IO system 100 on the OP with HMI_ID 1. If the
HMI_ID is "0", the DB is not being used by anyone and a request can be set up.

Request

HMI_ID 1
System_No 100
Device_No 50
Enable TRUE
Next_Error *

Because the module works asynchronously, you have to wait until Busy becomes "FALSE".

The result for an IO system 100 device 50 has two channel errors.

Result 1

Bus y FALSE

Offset_Sys_Header 42
Offset_Sys_Array 50
Vendor Id 0
Device Id 0
Device_Status 1
More_Errors TRUE
Error_Level 4
…
Map_HelpNr 16884

*: Fields with * are ignored.

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
504 Manual, 04/2017, A5E41552389-AA

23.10.2.8 Diagnostic Status DB

Interface for the Diagnostic Status DB
The generated data block (DB127) allows the system status of a configured components and any
of its subcomponents to be queried.

This data block is required to support system diagnostics via the CPU Web server. As default, it is
disabled; if, however, one CPU is configured on which the functionality is enabled, DB127 is
enabled automatically by 'Report system error'.

 Note

After restarting a Web server CPU, the module information is displayed with a delay. To reduce the
waiting time, you can call the RSE diagnostics block in a cyclic interrupt OB with a short interval.

Static Variable Area

Address Name Data Type Description
+0 Directory
0 D_Version WORD Version that supports RSE
2 D_pGlobalState WORD Byte offset to start of "GlobalState" section
4 D_pQuery WORD Byte offset to start of "Query" section
6 D_pComponent WORD Byte offset to start of "Component" section
8 D_pError WORD Byte offset to start of "Error" section
10 D_pState WORD Byte offset to start of "State" section
12 D_pAlarm WORD Byte offset to start of "Alarm" section
14 D_pSub-

Component
WORD Byte offset to start of "Subcomponent" section

+16 GlobalState
0 G_EventCount WORD ID of the last event (counter)
2.0 G_StartReporting BOOL Startup evaluation active

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 505

Address Name Data Type Description
+20 Query
0 Q_ClientID_User DWORD ID of the client; here, please use a value

between 1 and 255. Make sure that different
clients use different IDs.

4 Q_ClientID_Intern DWORD ID of the client (internal)
8.0 Q_WithSubCompo

nent
BOOL With/without status of the lower-level component

(slower)
8.1 Q_SubComponent

Alarm
BOOL AS-i master returns AS-i slave alarms

8.2 Q_Reserved2 BOOL Reserved
8.3 Q_Reserved3 BOOL Reserved
8.4 Q_Reserved4 BOOL Reserved
8.5 Q_Reserved5 BOOL Reserved
8.6 Q_Reserved6 BOOL Reserved
8.7 Q_Reserved7 BOOL Reserved
9.0 Q_Start BOOL Start query
10.0 Q_Error BYTE Internal error in query
11.0 Q_Reserved8 BYTE Reserved
+32 Component
0 C_AddressMode BYTE Addressing mode of the module
1 C_Reserved1 BYTE Reserved
2 C_ComponentID WORD Hardware ID of the component (internal)
+36 Error
0 E_ErrorNo WORD Index of the requested/actual error
2.0 E_LastError BOOL Is set when E_ErrorNo is not equal to 0. Value

TRUE if E_ErrorNo is the index of the last error,
otherwise FALSE

2.1 E_Reserved ARRAY [1..15]
BOOL

Reserved

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
506 Manual, 04/2017, A5E41552389-AA

Address Name Data Type Description
+40 State
0 S_Hierarchy BYTE Reserved
1 S_Periphery BYTE Reserved
2.0 S_SupFault BOOL The component is unreachable
2.1 S_NotAvailable BOOL The component does not exist
2.2 S_Faulty BOOL The component is faulty; the "Alarm" section is

not empty
2.3 S_MoreErrors BOOL There are more errors than RSE can store
2.4 S_Maintenance1 BOOL Maintenance required is indicated
2.5 S_Maintenance2 BOOL Maintenance demanded is indicated
2.6 S_Deactivated BOOL The component was deactivated *)
2.7 S_Reserved2 BOOL Reserved
3.0 S_SubFault BOOL A subcomponent has a fault
3.1 S_SubMaintenanc

e1
BOOL Maintenance required is indicated for a

subcomponent
3.2 S_SubMaintenanc

e2
BOOL Maintenance demanded is indicated for a

subcomponent
3.3 S_SubDeactivated BOOL A subcomponent is deactivated
3.4 S_Reserved4 BOOL Reserved
3.5 S_Reserved5 BOOL Reserved
3.6 S_Reserved6 BOOL Reserved
3.7 S_Reserved7 BOOL Reserved
4.0 S_TIAMS DWORD Maintenance state of the component
8.0 S_TIAMSChannelE

xist
DWORD Maintenance state: Configured channels

12.0 S_TIAMSChannel
OK

DWORD Maintenance state: Disrupted channels

16.0 S_ChannelCount WORD Number of channels; valid only when
Q_WithSubComponent is set

18.0 S_ChannelVector ARRAY [0..255]
BOOL

List of channels affected; valid only when
Q_WithSubComponent is set

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 507

Address Name Data Type Description
+90 Alarm
0 A_ComponentID WORD Hardware ID of the component (internal)
2 A_TextID1 WORD ID of the first error text
4 A_TextLexikonID1 WORD ID of the first error text lexicon
6 A_HelpTextLexikon

ID1
WORD ID of the first help text lexicon

8 A_MapTextID WORD ID of the first error text in the export file (HMI)
10 A_MapHelpTextID WORD Reserved
12 A_TextID2 WORD Reserved
14 A_TextLexikonID2 WORD Reserved
16 A_HelpTextLexikon

ID2
WORD Reserved

18 A_MapTextID2 WORD Reserved
20 A_MapHelpTextID

2
WORD Reserved

22 A_AlarmID DWORD Message number
26 A_ValueCount WORD Number of other occupied bytes (12)
28 A_AssociatedValu

e
ARRAY [1..6] Associated values of the message

n = A_ValueCount / 2 (= 6)
+130 SubComponent
0 U_SubComponent

Count
WORD Number of subcomponents

2 U_SubComponent
Fault

ARRAY [1..n]
BOOL

List of subcomponents
"n" depends on the configuration **)

*) If the component was deactivated, the index of the requested/actual error is not changed and
"E_LastError" is set to "true". The variable area of the interrupt is also not filled in.

**) The list of subcomponents is valid only when Q_WithSubComponent is set. The ARRAY
contains one status byte per configured component. For a master. the ARRAY contains the
status of the configured stations sorted in ascending order according to the station ID. For a
station, the ARRAY contains the status of the configured slots sorted in ascending order
according to slot number. This array can contain up to a maximum of 4096 entries (for an IO
system); only the actual maximum size is displayed.
The status byte per subcomponent is defined as follows:
Bit 0 = SubFault: the component cannot be reached
Bit 1 = Fault: the component is not available or has a fault
Bit 2 = Maintenance1: the component has signaled maintenance
Bit 3 = Maintenance2: the component has signaled maintenance
Bit 4 = Deactivated: The component was deactivated
Bit 5 = SubFault: a subcomponent is disrupted
Bit 6 = SubMaintenance1: a subcomponent has signaled maintenance
Bit 7 = SubMaintenance2: a subcomponent has signaled maintenance

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
508 Manual, 04/2017, A5E41552389-AA

23.10.2.9 Example of a Diagnostic Status DB Query

You want to see the errors of the central module with I/O address QB 50 on the OP. This module
has two channels, channel 1 has signaled wire break.

You have selected the value "5" as the client ID.

Query
1. As long as Q_ClientID_Intern is not equal to DW#16#00000005,

Q_ClientID_User := DW#16#00000005

2. If Q_ClientID_Intern is equal to DW#16#00000005
Q_WithSubComponent := FALSE
C_AddressMode := B#16#1
C_ComponentID := W#16#8032
E_ErrorNo := 1
Q_Start := TRUE

3. Wait until Q_Start is set to FALSE

4. If Q_ClientID_Intern is not equal to DW#16#00000005,
return to step 1

5. Read out the data:

S_SupFault FALSE

S_NotAvailable FALSE

S_Faulty TRUE

S_MoreErrors FALSE

S_Maintenance1 FALSE

S_Maintenance2 FALSE

S_SubFault FALSE

S_SubMainenance1 FALSE

S_SubMaintenance2 FALSE

S_TIAMS DW#16#00000007

S_TIAMSChannelExist DW#16#00000003

S_TIAMSChannelOK DW#16#FFFFFFFD

S_ChannelCount W#16#2

A_ComponentID W#16#8002

A_TextID1 W#16#8C06

A_TextLexikonID1 W#16#1

A_AlarmID DW#32#60200032

A_ValueCount W#16#C

A_AssociatedValue[1] W#16#8C06

A_AssociatedValue[2] W#16#1

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 509

A_AssociatedValue[3] W#16#0

A_AssociatedValue[4] W#16#0

A_AssociatedValue[5] W#16#0

A_AssociatedValue[6] W#16#8002

U_SubComponentCount W#16#0

U_SubComponentFault[] {FALSE}

6. Check the validity:
If Q_ClientID_Intern is not equal to DW#16#00000005,
return to step 1

7. The data can be evaluated. The DB is reinitialized automatically.

Example 2:
You want to call up the errors of the DP master system connected to the CP with diagnostic
address E 16383 on an OP with the IP address 192.168.10.54. DP stations with PROFIBUS
addresses 1, 48, 50 were configured. Station 1 is disrupted, station 48 is running problem-free and
station 50 has failed.

Query
1. As long as Q_ClientID_Intern does not equal DW#16#00000005,

Q_ClientID_User := DW#16#00000005

2. If Q_ClientID_Intern is equal to DW#16#00000005,
Q_WithSubComponent := TRUE
C_AddressMode := B#16#1
C_ComponentID := W#16#3FFF
E_ErrorNo := 0
Q_Start := TRUE

3. Wait until Q_Busy is set to FALSE

4. If Q_ClientID_Intern is not equal to DW#16#00000005.
return to step 1

5. Read out the data:

6.
S_SupFault FALSE

S_NotAvailable FALSE

S_Faulty TRUE

S_MoreErrors FALSE

S_Maintenance1 FALSE

S_Maintenance2 FALSE

S_SubFault TRUE

S_SubMainenance1 FALSE

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
510 Manual, 04/2017, A5E41552389-AA

S_SubMaintenance2 FALSE

S_TIAMS DW#16#0

S_TIAMSChannelExist DW#16#0

S_TIAMSChannelOK DW#16#0

S_ChannelCount W#16#0

U_SubComponentCount W#16#3

U_SubComponentFault[1] TRUE

U_SubComponentFault[2] FALSE

U_SubComponentFault[3] TRUE

7.

8. Check the validity:
If Q_ClientID_Intern is not equal to DW#16#00000005,
return to step 1

9. The data can be evaluated. The DB is reinitialized automatically.

 Diagnostics
 23.10 System Diagnostics with 'Report System Error'

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 511

23.10.2.10 Importing Error and Help Texts

In order to be able to display error and help texts on HMI devices, these texts have to be imported
into the device. For this reason, several export files are created in the specified export directory
when generating 'Report System Error'. You can set the export directory in the ‘HMI Export Data’
field on the Diagnostics Support tab.

Because display options on HMI devices vary, several export files are created. These files differ in
the maximum length of the texts contained, longer texts are respectively shortened to the maximum
length. For this reason it is recommended that error and help texts be checked and adapted as
necessary.

Name Content

Other_Profibus40...csv Error/help texts for PROFIBUS with a text length of 40 characters
Other_Profinet40...csv Error/help texts for PROFINET with a text length of 40 characters
Other_Profibus80...csv Error/help texts for PROFIBUS with a text length of 80 characters
Other_Profinet80...csv Error/help texts for PROFINET with a text length of 80 characters
Other_Profibus256...csv Error/help texts for PROFIBUS with a text length of 256 characters
Other_Profinet256...csv Error/help texts for PROFINET with a text length of 256 characters

An identifier consisting of the project, station, and CPU is appended to the name of the file
specified above. This allows you to export files for different CPUs to the same folder.

You have to rename the export file with the desired text length in 'other.csv' and import it into the
OP.

In the following cases, you have to import a new export data to the HMI device:

• Modified hardware configuration

• Modified settings of ‘Report System Error’

Display Language German (Liechtenstein) on the OP
The display language German (Liechtenstein) may not be set on the HMI because the error and
help texts will otherwise not be properly displayed.

Diagnostics
23.10 System Diagnostics with 'Report System Error'

 Programming with STEP 7
512 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 513

24 Printing and Archiving

24.1 Printing Project Documentation

Once you have finished creating the program for your automation task, you can print out all the
important data for project documentation purposes using the print functions integrated in STEP 7.

Parts of the Project You Can Print
You can print the contents of objects both directly from the SIMATIC Manager and by opening the
respective object and starting the print procedure.

The following parts of a project can be printed directly via the SIMATIC Manager:

• Object tree (structure of the project/library)

• Object lists (contents of an object folder)

• Object contents

• Messages

By opening the respective object, the following parts of a project can be printed:

• Blocks in Ladder Logic, Statement List, or Function Block Diagram representation or in other
languages (optional software)

• Symbol table with the symbolic names for absolute addresses

• Configuration table with the arrangement of modules in the programmable controller and the
module parameters

• Diagnostic buffer content

• Variable table with monitor formats, and monitor and modify values

• Reference data; such as cross-reference lists, assignment lists, program structures, lists of
unused addresses, lists of addresses without symbols

• Global data table

• Module information with the module status

• Operator related texts (user texts and text libraries)

• Documents from optional packages such as other programming languages

DOCPRO Optional Package
To create, edit, and print standardized wiring manuals you can use the optional software package
DOCPRO. This creates plant documentation that fulfils the DIN and ANSI standards.

Printing and Archiving
24.1 Printing Project Documentation

 Programming with STEP 7
514 Manual, 04/2017, A5E41552389-AA

24.1.1 Basic Procedure when Printing

To print, proceed as follows:

10. Open the appropriate object to display the information you want to print on the screen.

11. Open the "Print" dialog box using the menu command File > Print in the application window.
Depending on which application you are in, the first entry in the menu bar may not be "File", but
the object processed by the application, such as "Symbol Table."

12. If necessary, change the print options (printer, print range, number of copies etc.) in the dialog
box and close it.

Some dialog boxes have a "Print" button, for example, the "Module Information" dialog box. Click
this button to print the contents of the dialog box.

Blocks do not need to be opened. You can print them directly in the SIMATIC Manager using the
menu command File > Print.

24.1.2 Print Functions

The following additional functions are available for printing print objects:

Print Objects Menu Command Function Function Function
 Print preview Page setup,

"Paper format" tab
Page setup,
"Headers and
Footers" tab

Blocks, STL source
files

File > * • • •

Module information − • •
Global data table GD Table> * • • •
Configuration table Station > * • • •
Object, object folder File > * − • •
Reference data Reference Data > * • • •
Symbol table Table > * • • •
Variable table Table > * − • •
Connection table Network > * • • •
Operator related texts
(user texts, text
libraries)

Texts > * • • •

 * : The * symbol serves as a wildcard for the respective function in the menu command (e.g. print preview
or page setup)

Step-for-step instructions for printing the individual print objects can be found under:

• How to Print

 Printing and Archiving
 24.1 Printing Project Documentation

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 515

Print Preview
You can use the "Print Preview" function to display the page layout of the document to be printed.

 Note

The print format of the finished document is not displayed in the print preview.

Setting the Page Format and the Headers and Footers
You can set the paper size (such as A4, A5, Letter) and the page format and the orientation
(portrait or landscape) for all documents that you want to print with the File > Page Setup menu
command. In addition, you can select whether the settings should apply to the entire project only
for the current session.

Adjust the layout of the document so that it matches the required paper format. If the document is
too wide, the right-hand margin will be printed on a consecutive page.

If you select a page format with a margin (for example, A4 margin), the printed document has a
margin on the left of the page that you can use to punch holes for binding.

To set headers and footers for the documents you want to print throughout the project or only for
the current session, go to the "Labeling Fields" tab.

24.1.3 Special Note on Printing the Object Tree

In the "Print Object List" dialog box, in addition to the object list you can also print the object tree by
selecting the option "Tree window."

If you select the option "All" under "Print range," the whole tree structure is printed. If you select the
option button "Selection," the tree structure from the selected object downwards is printed.

 Note

The settings made in the dialog box apply only to printing the list or tree and not for printing the
contents of the objects; the settings in the relevant applications are used for this.

Printing and Archiving
24.2 Archiving Projects and Libraries

 Programming with STEP 7
516 Manual, 04/2017, A5E41552389-AA

24.2 Archiving Projects and Libraries

24.2.1 Archiving Projects and Libraries

You can store individual projects or libraries in compressed form in an archive file. This
compressed storage procedure is possible on a hard disk or on a portable data medium (such as a
floppy disk).

Archive Programs
In STEP 7, you can use the archive program you prefer to archive projects. The archiving programs
ARJ and PKZip ship with STEP 7 and are installed automatically. You will find the relevant
descriptions in the installation paths of the archiving programs.

To use a specific archiving program, you require the following version (or newer):

• PKZip V12.4 (ships with STEP 7)

• WinZip (tested with Version 20)

• 7-Zip (tested with Version 9.20)

• ARJ V2.50a (only for retrieving, ships with STEP 7 (not for Windows 7/Server 2008))

Special Issues
If you used ARJ32 V3.x for archiving with previous STEP 7 versions, these archives may only be
retrieved with ARJ32 V3.x.

Creating an archive with PKZip will take substantially more time on network drives than on local
drives.

 Printing and Archiving
 24.2 Archiving Projects and Libraries

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 517

24.2.2 Uses for Saving/Archiving

Save As
With this function you create a copy of the project under another name.

You can use this function:

• To create backup copies

• To duplicate an existing project in order to adapt it for other purposes.

To use the fastest method of creating a copy, select the "Save As" option without rearranging in the
dialog box. The whole file structure from the project directory down is copied without a check and
saved under another name.

There must be sufficient space on the data medium to store the backup copy. Do not attempt to
save projects to diskette as there will not generally be sufficient space available. To transport
project data on diskette use the "Archive" function.

Saving with rearranging takes longer, but a message is displayed if an object cannot be copied and
saved. Causes for this may be a missing optional package or defective data for an object.

Archive
You can store individual projects or libraries in compressed form in an archive file. This
compressed storage procedure is possible on a hard disk or on a portable data medium (such as a
floppy disk).

Only transport projects on diskette in the form of archive files. If the project is too large, select an
archive program with which disk-crossing archives can be created.

Projects or libraries which were compressed into an archive file cannot be edited. If you want to
edit them again you must unpack the data which means retrieving the project or library.

24.2.3 Requirements for Archiving

To archive a project or library, the following requirements must be fulfilled:

• You must have installed the archive program in your system. The link to STEP 7 is explained in
the online help topic "Procedure for Archiving/Retrieving."

• All the data for the project without exception must be in the project directory or a subdirectory
of the project. When working with the C development environment, it is possible to store data in
other locations. These data would then not be included in the archive file.

• If you work with WinZip in MS Windows 7 and want to archive a multiproject, the destination
directory must be neither selected nor open in the Explorer. You will find more information in
the documentation of the archiving program.

Printing and Archiving
24.2 Archiving Projects and Libraries

 Programming with STEP 7
518 Manual, 04/2017, A5E41552389-AA

24.2.4 Procedure for Archiving/Retrieving

You archive/retrieve your project or library using the menu command File > Archive or File >
Retrieve.

 Note

Projects or libraries which were compressed into an archive file cannot be edited. If you want to
edit them again you must unpack the data which means retrieving the project or library.

When retrieving, the retrieved projects or libraries are automatically included in the project/library
list.

Setting the Target Directory
To set the target directory, use the menu command Options > Customize in the SIMATIC
Manager to open the "Customize" dialog box.

In the "Archive" tab of this dialog box you can switch the option "Check target directory on retrieval"
on and off.

If this option is deactivated, the path set in the "General" tab of the same dialog box for "Storage
location for projects" and "Storage location for libraries" is used as the target directory for retrieving.

Copying an Archive File to Diskette
You can archive a project/library and then copy the archive file to a diskette. It is also possible to
select a floppy disk drive in the "Archive" dialog box as the target directory.

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 519

25 Tips and Tricks

25.1 Exchanging Modules in the Configuration Table

If you using HW Config to revise a station configuration and you want to exchange a module for
one with a new order number for example, proceed as follows:

1. Use a drag-and-drop operation to drag the module from the Hardware Catalog window over the
old module that is already placed.

2. Drop the new module. To the extent possible, the new module assumes the parameters of the
one that was already inserted.

This procedure is faster than exchanging modules by deleting the old module and then inserting
the new one and assigning parameters to it.

You can turn this function on or off in HW Config by means of the menu command Options >
Settings ("Enable Module Swapping")

25.2 Projects with a Large Number of Networked Stations

If you configure all stations one after the other and then call NetPro by means of the menu
command Options > Configure Network in order to configure connections, the stations are placed
in the network view automatically. This procedure has the disadvantage that you then have to
arrange the stations and subnets according to topological criteria later.

If your project includes a large number of networked stations and you want to configure
connections between these stations, you should configure the system structure in the network view
from the beginning to preserve the overview:

1. Create the new project in the SIMATIC Manager (menu command File > New).

2. Start NetPro (menu command Options > Configure Network)

3. Create in NetPro station for station as follows:

- Use a drag-and-drop operation to place the station from the Catalog window.

- Double-click the station to start HW Config.

- Use a drag-and-drop operation to place the modules with communication capability (CPUs,
CPs, FMs, IF modules) in HW Config.

- If you want to network these modules, double-click on the corresponding rows in the
configuration table to create new subnets and to network the interfaces.

- Save the configuration and switch to NetPro.

- In NetPro, position stations and subnets (move objects with the mouse until you have
reached the position you want)

4. Configure the connections in NetPro and correct the networking where necessary.

Tips and Tricks
25.3 Rearranging

 Programming with STEP 7
520 Manual, 04/2017, A5E41552389-AA

25.3 Rearranging

If unexplained problems occur when working with STEP 7, it often helps to rearrange the database
of the project or library.

Select the menu command File > Rearrange to do this. This removes any gaps which occur when
contents are deleted, meaning that the amount of memory required for the project/library data is
reduced.

The function optimizes the data storage for the project or library in a similar way to which a
program defragments a hard disk also optimizes file storage on the hard disk.

The duration of the reorganization process depends on the amount of data to be moved around
and may take some time. The function is therefore not executed automatically (for example, when
you close a project) but must be triggered by the user when he/she wants to rearrange the project
or library.

To check the extent to which the data management is being used, select the block folder and select
the menu command Edit > Object Properties. The click the "Get fill level" button in the "Fill Level"
tab. When the fill level has been calculated, the values and a recommendation for the
reorganization of the project are displayed in the lower part of the tab.

Requirement
Projects and libraries can only be rearranged if no objects in them are being edited by other
applications and therefore locked for access.

25.4 Editing Symbols Across Multiple Networks

The LAD/STL/FBD program editor lets you view and edit the symbols of multiple networks.

1. Select a network name with a click on the network name (e.g. "Network 1").

2. Hold down the CRTL key and add further networks to your selection.

3. Right-click to call the context-sensitive menu command Edit Symbols.

Use the shortcut CTRL+A to select all networks of a block and then highlight a network name.

 Tips and Tricks
 25.5 Testing with the Variable Table

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 521

25.5 Testing with the Variable Table

For monitoring and modifying variables in the variable table, note the following editing tips:

• You can enter symbols and addresses in both the "Symbol" column as well as the "Address"
column. The entry is written into the appropriate column automatically.

• To display the modified value, you should set the trigger point for "Monitoring" to "Beginning of
Scan Cycle" and the trigger point for Modifying" to "End of Scan Cycle."

• If you place the cursor in a row that is marked with red, brief information is displayed telling you
the cause of the error. Press F1 to get suggestions for eliminating the error.

• You can enter only those symbols that are already defined in the symbol table.
You must enter a symbol exactly as it is defined in the symbol table.
Symbol names that contain special characters must be enclosed in quotation marks (for
example, "Motor.Off," "Motor+Off," "Motor-Off").

• Warnings can be switched off in the "Online" tab ("Customize" dialog box).

• The connection can be changed without having previously disconnected the connection.

• The monitoring trigger can be defined while monitoring variables.

• You can modify selected variables by selecting the rows and executing the "Force" function.
Only the highlighted variables are modified.

• Exiting without Confirmation:

If you press the ESC key while "Monitoring," "Modifying" "Release PQ," "Monitoring" and
"Modifying" are terminated without asking if you want to exit.

• Entering a Contiguous Address Range:

Use the menu command Insert > Range of Variables.

• Displaying and Hiding Columns:

Use the following menu commands to display or hide individual columns:
Symbol: View > Symbol
Symbol comment: View > Symbol Comment
Presentation format of the status value: View > Display Format
Status value of the variables: View > Status Value
Modify value of the variables: View > Modify Value

• Changing the display format of several rows of the table at the same time:

- Select the area of the table in which you want to change the display format by holding the
left mouse button down and dragging across the desired table area.

- Select the presentation with the menu command View > Select Display Format. The
format is changed only for those rows of the selected table for which a format change is
permitted.

• Input examples by means of the F1 key:

- If you place the cursor in the address column and you press F1, you will get examples for
address inputs.

- If you place the cursor in the modify value column and you press F1, you will get examples
for modify/force value inputs.

Tips and Tricks
25.6 Modifying Variables With the Program Editor

 Programming with STEP 7
522 Manual, 04/2017, A5E41552389-AA

25.6 Modifying Variables With the Program Editor

In the program editor, you can program buttons for binary inputs and memory bits that offer you a
quick and easy way to modify these addresses with mouse click.

Requirements
• In the symbol table, you have assigned this property to the address you want to modify via the

menu command Special Object Properties > Control at Contact

• You have selected the "Control at Contact" option in the "General" tab of the LAD/STL/FBD
program editor (Menu command Options > Customize).

• You have selected the menu command Debug > Monitor.

Triggering condition is here "permanent/at the cycle start".

The inputs actually available in your plant will be monitored for as long as you keep the button
pressed. You can also modify multiple inputs via multiple selection (CTRL key).

In the case of bit memories or unavailable inputs, pressing the button will cause the status to be set
to 1. The status will only be reset to 0 if this is explicitly requested through a shortcut menu entry or
in the variable table, or if the address is reset by the STEP 7 program.

In the case of a non-negated input or bit memory, pressing the button will cause the modify value
"1" to apply; in the case of a negated input or bit memory, the modify value "0" will apply.

Note on WinCC
If you have started the program editor in WinCC via the operator control and monitoring of a
variable, only the control options of WinCC are allowed. Otherwise, if the operator has been
granted "Maintenance rights" of WinCC, both modify options are allowed.

 Tips and Tricks
 25.7 Virtual Work Memory

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 523

25.7 Virtual Work Memory

Another reason for problems occurring in STEP 7 may be insufficient virtual work memory.

To work with STEP 7 you should adjust the setting for the virtual memory.

If the virtual workplace has been manually modified on your PC, proceed as follows:

4. Open the Control Panel, for example, via the Start menu Start > Control Panel and double-
click on the "System" icon.

5. Double-click on "Security and System" and select the "Advanced System Settings" entry and
click on "Settings" in the "Performance" section of the displayed dialog.

6. Click the "Change" button in the "Advanced" tab.

7. Select the option "Automatically manage paging file size for all drives".

 Note

As the virtual memory is on the hard disk (default C:) and dynamic, you should ensure that
sufficient memory is available for the directory TMP or TEMP (approx. 20 to 30 MB):

• If the S7 project is also on the same partition on which the virtual memory is set, approximately
twice the size of the S7 project should be available as free memory space.

• If the project is stored on another partition, this requirement becomes irrelevant.

Tips and Tricks
25.7 Virtual Work Memory

 Programming with STEP 7
524 Manual, 04/2017, A5E41552389-AA

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 525

26 Appendix

26.1 Operating Modes

26.1.1 Operating Modes and Mode Transitions

Operating Modes
Operating modes describe the behavior of the CPU at a particular point in time. Knowing the
operating modes of CPUs is useful when programming the startup, testing the controller, and for
troubleshooting.

The S7-300 and S7-400 CPUs can adopt the following operating modes:

• STOP

• STARTUP

• RUN

• HOLD

In STOP mode, the CPU checks whether all the configured modules or modules set by the default
addressing actually exist and sets the I/Os to a predefined initial status. The user program is not
executed in STOP mode.

In STARTUP mode, a distinction is made between the startup types "warm restart," "cold restart,"
and "hot restart:"

• In a warm restart, program processing starts at the beginning of the program with initial settings
for the system data and user address areas (the non-retentive timers, counters, and bit
memory are reset).

• In a cold restart, the process-image input table is read in and the STEP 7 user program is
processed starting at the first command in OB1 (also applies to warm restart).

- Any data blocks created by SFC in the work memory are deleted; the remaining data
blocks have the preset value from the load memory.

- The process image and all timers, counters, and bit memory are reset, regardless of
whether they were assigned as retentive or not.

• In a hot restart, the program is resumed at the point at which it was interrupted (timers,
counters, and bit memory are not reset). A hot restart is only possible on S7-400 CPUs.

In RUN mode, the CPU executes the user program, updates the inputs and outputs, services
interrupts, and process error messages.

In HOLD mode, processing of the user program is halted and you can test the user program step
by step. The HOLD mode is only possible when you are testing using the programming device.

In all these modes, the CPU can communicate via the multipoint interface (MPI).

Appendix
26.1 Operating Modes

 Programming with STEP 7
526 Manual, 04/2017, A5E41552389-AA

Other Operating Modes
If the CPU is not ready for operation, it is in one of the following modes:

• Off, in other words, the power supply is turned off.

• Defective, in other words, a fault has occurred.
To check whether the CPU is really defective, switch the CPU to STOP and turn the power
switch off and then on again. If the CPU starts up, display the diagnostic buffer to analyze the
problem. If the CPU does not start up it must be replaced.

Operating Mode Transitions
The following figure shows the operating modes and mode transitions for S7-300 and S7-400
CPUs:

The table shows the conditions under which the operating modes can change.

Transition Description

1. After you turn on the power supply, the CPU is in STOP mode.
2. The CPU changes to STARTUP mode:

• After the CPU is changed to RUN or RUNP using the key switch or by the
programming device.

• After a startup triggered automatically by turning on the power.
• If the RESUME or START communication function is executed.
In both cases the key switch must be set to RUN or RUNP.

3. The CPU changes back to STOP mode when:
• An error is detected during the startup.
• The CPU is changed to STOP by the key switch or on the programming device.
• A stop command is executed in the startup OB.
• The STOP communication function is executed.

4. The CPU changes to HOLD mode when a breakpoint is reached in the startup program.
5. The CPU changes to STARTUP mode when the breakpoint in a startup program was set

and the "EXIT HOLD" command was executed (test functions).
6. The CPU changes back to STOP mode when:

• The CPU is changed to STOP with the key switch or by the programming device.
• The STOP communication command is executed.

7. If the startup is successful, the CPU changes to RUN.
8. The CPU changes back to STOP mode when:

• An error is detected in RUN mode and the corresponding OB is not loaded.
• The CPU is changed to STOP by the key switch or on the programming device.
• A stop command is edited in the user program.
• The STOP communication function is executed.

 Appendix
 26.1 Operating Modes

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 527

Transition Description

9. The CPU changes to RUN mode when a breakpoint was set and the "EXIT HOLD"
command is executed.

10. The CPU changes to HOLD mode when a breakpoint is reached in the user program.

Operating Mode Priority
If a number of operating mode transitions is requested simultaneously, the operating mode with the
highest priority is selected. If, for example, the mode selector is set to RUN and you attempt to set
the CPU to STOP at the programming device, the CPU will change to STOP because this mode
has the highest priority.

Priority Mode

Highest STOP
 HOLD
 STARTUP
Lowest RUN

Appendix
26.1 Operating Modes

 Programming with STEP 7
528 Manual, 04/2017, A5E41552389-AA

26.1.2 STOP Mode

The user program is not executed in STOP mode. All the outputs are set to substitute values so
that the controlled process is in a safe state. The CPU makes the following checks:

• Are there any hardware problems(for example, modules not available)?

• Should the default setting apply to the CPU or are there parameter sets?

• Are the conditions for the programmed startup behavior satisfied?

• Are there any system software problems?

In STOP mode, the CPU can also receive global data and passive one-way communication is
possible using communication SFBs for configured connections and communication SFCs for not
configured connections.

Memory Reset
The CPU memory can be reset in STOP mode. The memory can be reset manually using the key
switch (MRES) or from the programming device (for example, before downloading a user program).

Resetting the CPU memory returns the CPU to its initial status, as follows:

• The entire user program in the work memory and in the RAM load memory and all address
areas are cleared.

• The system parameters and the CPU and module parameters are reset to the default settings.
The MPI parameters set prior to the memory reset are retained.

• If a memory card (Flash EPROM) is plugged in, the CPU copies the user program from the
memory card to the work memory (including the CPU and module parameters if the appropriate
configuration data are also on the memory card).

The diagnostic buffer, the MPI parameters, the time, and the runtime meters are not reset.

 Appendix
 26.1 Operating Modes

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 529

26.1.3 STARTUP Mode

Before the CPU can start processing the user program, a startup program must first be executed.
By programming startup OBs in your startup program, you can specify certain settings for your
cyclic program.

There are three types of startup: warm restart, cold restart, and hot restart. A hot restart is only
possible on S7-400 CPUs. This must be set explicitly in the parameter set for the CPU using
STEP 7.

The features of the STARTUP mode are as follows:

• The program in the startup OB is processed (OB100 for warm restart, OB101 for hot restart,
OB102 for cold restart).

• No time-driven or interrupt driven program execution is possible.

• Timers are updated.

• Runtime meters start running.

• Disabled digital outputs on signal modules (can be set by direct access).

Warm Restart
A warm restart is always permitted unless the system has requested a memory reset. A warm
restart is the only possible option after:

• Memory reset

• Downloading the user program with the CPU in STOP mode

• I stack/B stack overflow

• Warm restart aborted (due to a power outage or changing the mode selector setting)

• When the interruption before a hot restart exceeds the selected time limit.

Manual Warm Restart
A manual warm restart can be triggered by the following:

• The mode selector

(the CRST/WRST switch - if available - must be set to CRST)

• The corresponding command on the programming device or by communication functions

(if the mode selector is set to RUN or RUNP)

Appendix
26.1 Operating Modes

 Programming with STEP 7
530 Manual, 04/2017, A5E41552389-AA

Automatic Warm Restart
An automatic warm restart can be triggered following power up in the following situations:

• The CPU was not in STOP mode when the power outage occurred.

• The mode selector is set to RUN or RUNP.

• No automatic hot restart is programmed following power up.

• The CPU was interrupted by a power outage during a warm restart (regardless of the
programmed type of restart).

The CRST/WRST switch has no effect on an automatic warm restart.

Automatic Warm Restart Without a Backup Battery
If you operate your CPU without a backup battery (if maintenancefree operation is necessary), the
CPU memory is automatically reset and a warm restart executed after the power is turned on or
when power returns following a power outage. The user program must be located on a flash
EPROM (memory card) and there must be no battery monitoring set with the "Batt.Indic" switch on
the power supply.

Hot Restart
Following a power outage in RUN mode followed by a return of power, S7-400 CPUs run through
an initialization routine and then automatically execute a hot restart. During a hot restart, the user
program is resumed at the point at which its execution was interrupted. The section of user
program that had not been executed before the power outage is known as the remaining cycle. The
remaining cycle can also contain time-driven and interrupt driven program sections.

A hot restart is only permitted when the user program was not modified in STOP mode (for
example, by reloading a modified block) and when there are no other reasons for a warm restart.
Both a manual and automatic hot restart are possible.

 Appendix
 26.1 Operating Modes

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 531

Manual Hot Restart
A manual hot restart is only possible with the appropriate parameter settings in the parameter set
of the CPU and when the STOP resulted from the following causes:

• The mode selector was changed from RUN to STOP.

• User-programmed STOPs, STOPs after calling OBs that are not loaded.

• The STOP mode was the result of a command from the programming device or a
communication function.

A manual hot restart can be triggered by the following:

• The mode selector

The CRST/WRST must be set to WRST.

• The corresponding command on the programming device or by communication functions
(mode selector set to RUN or RUNP).

• When a manual hot restart is set in the parameter set of the CPU.

Automatic Hot Restart
An automatic hot restart can be triggered following power up in the following situations:

• The CPU was not in STOP or HOLD mode when the power outage occurred.

• The mode selector is set to RUN or RUNP.

• Automatic hot restart following power up is set in the parameter set of the CPU.

The CRST/WRST switch has no effect on an automatic hot restart.

Appendix
26.1 Operating Modes

 Programming with STEP 7
532 Manual, 04/2017, A5E41552389-AA

Retentive Data Areas Following Power Down
S7-300 and S7-400 CPUs react differently to power up following a power outage.

S7-300 CPUs (with the exception of the CPU 318) are only capable of a warm restart. With
STEP 7, you can, however, specify memory bits, timers, counters, and areas in data blocks as
retentive to avoid data loss caused by a power outage. When the power returns, an automatic
warm restart with memory is executed.

S7-400 CPUs react to the return of power depending on the parameter settings either with a warm
restart (following retentive or non-retentive power on) or a hot restart (only possible following
retentive power on).

The following table shows the data that are retained on S7-300 and S7-400 CPUs during a warm
restart, cold restart, or hot restart.

X means data retained
VC means logic block retained in EPROM, any overloaded logic blocks are lost
VX means data block is retained only if on the EPROM retentive data are taken from the NV-

RAM (loaded or created data blocks in the RAM are lost)
0 means data are reset or erased (content of DBs)
V means data are set to the initialization value taken from the EPROM memory
--- means not possible as no NV-RAM available

The following table shows the data that are retained on work memory (EPROM and RAM load
memory):

 EPROM (Memory Card or Integrated)
 CPU with Backup Battery CPU without Backup Battery
Data Blocks in

load
memory

DB in
work
memo-
ry

Memory
bits,
timers,
counters

Memory
bits,
timers,
counters

Blocks in
load
memory

DB in
work
memory

DB in
work
memory

Memory
bits,
timers,
counters

Memory
bits,
timers,
counters

 (defined as
retentive)

(defined
as
volatile)

 (defined
as re-
tentive)

(defined
as
volatile)

(defined
as re-
tentive)

(defined
as
volatile)

Warm
restart
on
S7-
300

X

X

X

0

VC

VX

V

X

0

Warm
restart
on
S7-
400

X

X

X

0

VC

V

0

0

Cold
restart
on
S7-
300

X

0

0

0

VC

V

V

0

0

 Appendix
 26.1 Operating Modes

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 533

 EPROM (Memory Card or Integrated)
 CPU with Backup Battery CPU without Backup Battery
Cold
restart
on
S7-
400

X

0

0

0

VC

V

0

0

Hot
restart
on S7-
400

X

X

X

X

Only

warm
restart

per-
mitted

Startup Activities
The following table shows which activities are performed by the CPU during startup:

Activities in Order of Execution In Warm

Restart
In Cold Restart In Hot Restart

Clear I stack/B stack X X 0
Clear volatile memory bits, timers, counters X 0 0
Clear all memory bits, timers, counters 0 X 0
Clear process-image output table X X selectable

Reset outputs of digital signal modules X X selectable
Discard hardware interrupts X X 0
Discard time-delay interrupts x x 0
Discard diagnostic interrupts X X X
Update the system status list (SZL) X X X
Evaluate module parameters and transfer to
modules or transfer default values

X X X

Execution of the relevant startup OB X X X
Execute remaining cycle (part of the user
program not executed due to the power down)

0 0 X

Update the process-image input table X X X
Enable digital outputs (cancel OD signal) after
transition to RUN

X X X

X means is performed
0 means is not performed

Appendix
26.1 Operating Modes

 Programming with STEP 7
534 Manual, 04/2017, A5E41552389-AA

Aborting a Startup
If an error occurs during startup, the startup is aborted and the CPU changes to or remains in
STOP mode.

An aborted warm restart must be repeated. After an aborted restart, both a warm restart and a hot
restart are possible.

A startup (restart (warm restart) or hot restart) is not executed or it is aborted in the following
situations:

• The operating mode switch of the CPU is set to STOP.

• A memory reset is requested.

• A memory card with an application code that is not permitted for STEP 7 is plugged in (for
example, STEP 5).

• More than one CPU is inserted in the single processor mode.

• If the user program contains an OB that the CPU does not recognize or that has been disabled.

• If, after power on, the CPU recognizes that not all the modules listed in the configuration table
created with STEP 7 are actually inserted (difference between preset and actual parameter
assignment not permitted).

• If errors occur when evaluating the module parameters.

A hot restart is not executed or it is aborted in the following situations:

• The CPU memory was reset (only a warm restart is possible after memory reset).

• The interruption time limit has been exceeded (this is the time between exiting RUN mode until
the startup OB including the remaining cycle has been executed).

• The module configuration has been changed (for example module replaced).

• The parameter assignment only permits a warm restart.

• When blocks have been loaded, deleted, or modified while the CPU was in STOP mode.

 Appendix
 26.1 Operating Modes

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 535

Sequence of Activities
The following figure shows the activities of the CPU during STARTUP and RUN:

Appendix
26.1 Operating Modes

 Programming with STEP 7
536 Manual, 04/2017, A5E41552389-AA

Key to the figure "Activities of the CPU during STARTUP and RUN"

1. All peripheral outputs are switched to a safe state (default value = 0) on the hardware side by
the I/O modules. This switch takes place regardless of whether the user program employs the
outputs inside the process-image area or outside of it.

If you are using signal modules that have substitute value capability, you can assign
parameters to the behavior of the outputs, such as Keep Last Value.

2. Necessary for processing the remaining scan cycle.

3. A current process-image input table is also available to the interrupt OBs the first time that they
are called up.

4. You can determine the status of the local and distributed peripheral outputs in the first scan
cycle of the user program by taking the following steps:

- Use output modules to which you can assign parameters to enable the output of substitute
values or to keep the last value.

- For a hot restart: activate the CPU startup parameter "Reset outputs during hot restart" in
order to output a 0 (corresponds to the default setting).

- Preset the outputs in the startup OB (OB100, OB101, OB102).

5. In S7-300 systems that are not backed up, only those DB areas that were configured as
retentive are retained.

 Appendix
 26.1 Operating Modes

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 537

26.1.4 RUN Mode

In RUN mode, the CPU executes the cyclic, timedriven, and interruptdriven program, as follows:

• The process image of the inputs is read in.

• The user program is executed.

• The process-image output table is output.

The active exchange of data between CPUs using global data communication (global data table)
and using communication SFBs for configured connections and using communication SFCs for
non-configured connections is only possible in RUN mode.

The following table shows an example of when data exchange is possible in different operating
modes:

Type of Communication Mode of CPU 1 Direction of Data

Exchange
Mode of CPU 2

Global data communication RUN ↔ RUN
 RUN → STOP/HOLD
 STOP ← RUN
 STOP X STOP
 HOLD X STOP/HOLD
One-way communication RUN → RUN
with communication SFBs RUN → STOP/HOLD
Two-way with communication
SFBs

RUN ↔ RUN

One-way communication RUN → RUN
with communication SFCs RUN → STOP/HOLD
Two-way with communication
SFCs

RUN ↔ RUN

↔ means data exchange is possible in both directions
→ means data exchange is possible in only one direction
X means data exchange is not possible

Appendix
26.1 Operating Modes

 Programming with STEP 7
538 Manual, 04/2017, A5E41552389-AA

26.1.5 HOLD Mode

The HOLD mode is a special mode. This is only used for test purposes during startup or in RUN
mode. The HOLD mode means the following:

• All timers are frozen: timers and runtime meters are not processed, monitoring times are
stopped, the basic clock pulses of the timedriven levels are stopped.

• The real-time clock runs.

• Outputs are not enabled but can be enabled explicitly for test purposes.

• Inputs and outputs can be set and reset.

• If a power outage occurs on a CPU with a backup battery while in HOLD mode, the CPU
changes to stop when the power returns but does not execute an automatic hot restart or
restart (warm restart). CPUs without battery backup execute an automatic restart (warm
restart) when power returns.

• Global data can be received and passive one-way communication using communication SFBs
for configured connections and communication SFCs for non-configured connections is
possible (see also table in RUN Mode).

 Appendix
 26.2 Memory Areas of S7 CPUs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 539

26.2 Memory Areas of S7 CPUs

26.2.1 Distribution of the Memory Areas

The memory of an S7 CPU can be divided into three areas (see figure below):

• The load memory is used for user programs without symbolic address assignments or
comments (these remain in the memory of the programming device). The load memory can be
either RAM or EPROM.

• Blocks that are not marked as required for startup will be stored only in the load memory.

• The work memory (integrated RAM) contains the parts of the S7 program relevant for running
your program. The program is executed only in the work memory and system memory areas.

• The system memory (RAM) contains the memory elements provided by every CPU for the user
program, such as the process-image input and output tables, bit memory, timers, and counters.
The system memory also contains the block stack and interrupt stack.

• In addition to the areas above, the system memory of the CPU also provides temporary
memory (local data stack) that contains temporary data for a block when it is called. This data
only remains valid as long as the block is active.

Appendix
26.2 Memory Areas of S7 CPUs

 Programming with STEP 7
540 Manual, 04/2017, A5E41552389-AA

26.2.2 Load Memory and Work Memory

When you download the user program from the programming device to the CPU, only the logic and
data blocks are loaded in the load and work memory of the CPU.

The symbolic address assignment (symbol table) and the block comments remain on the
programming device.

Dividing Up the User Program
To ensure fast execution of the user program and to avoid unnecessary load on the work memory
that cannot be expanded, only the parts of the blocks relevant for program execution are loaded in
the work memory.

Parts of blocks that are not required for executing the program (for example, block headers) remain
in the load memory.

The following figure shows a program being loaded in the CPU memory.

 Note

Data blocks that are created in the user program with the help of system functions (for example,
SFC22 CREAT_DB) are saved entirely in the work memory by the CPU.

Some CPUs have separately managed areas for code and data in the work memory. The size and
assignment of these areas is shown in the "Memory" tab of the Module Information for these CPUs.

 Appendix
 26.2 Memory Areas of S7 CPUs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 541

Identifying Data Blocks as "Not Relevant for Execution"
Data blocks that were programmed in a source file as part of an STL program can be identified as
"Not Relevant for Execution" (keyword UNLINKED). This means that when they are downloaded to
the CPU, the DBs are stored only in the load memory. The content of such blocks can, if
necessary, be copied to the work memory using SFC20 BLKMOV.

This technique saves space in the work memory. The expandable load memory is then used as a
buffer (for example, for formulas for a mixture: only the formula for the next batch is loaded in the
work memory).

Load Memory Structure
The load memory can be expanded using memory cards. Refer to your "S7-300 Programmable
Controller, Hardware and Installation Manual" and your "S7-400 Programmable Controller Module
Specifications Reference Manual" for the maximum size of the load memory.

The load memory can also have an integrated EPROM part as well as an integrated RAM part in
S7-300 CPUs. Areas in data blocks can be declared as retentive by assigning parameters in
STEP 7 (see Retentive Memory Areas on S7-300 CPUs).

In S7-400 CPUs, it is imperative that you use a memory card (RAM or EPROM) to expand the load
memory. The integrated load memory is a RAM memory and is mainly used to reload and correct
blocks. With several S7-400 CPUs, additional work memory can also be plugged in.

Load Memory Behavior in RAM and EPROM Areas
Depending on whether you select a RAM or an EPROM memory card to expand the load memory,
the load memory may react differently during downloading, reloading, or memory reset.

The following table shows the various loading methods:

Memory Type Method of Loading Type of Loading

RAM Downloading and deleting individual blocks PG-CPU connection
 Downloading and deleting an entire S7

program
PG-CPU connection

 Reloading individual blocks PG-CPU connection
Integrated (S7-300 only)
or plugin EPROM

Downloading entire S7 programs PG-CPU connection

Plugin EPROM Downloading entire S7 programs Uploading the EPROM to the PG
and inserting the memory card in the
CPU
Downloading the EPROM to the
CPU

Programs stored in RAM are lost when you reset the CPU memory (MRES) or if you remove the
CPU or RAM memory card.

Programs saved on EPROM memory cards are not erased by a CPU memory reset and are
retained even without battery backup (transport, backup copies).

Appendix
26.2 Memory Areas of S7 CPUs

 Programming with STEP 7
542 Manual, 04/2017, A5E41552389-AA

26.2.3 System Memory

26.2.3.1 Using the System Memory Areas

The system memory of the S7 CPUs is divided into address areas (see table below). Using
instructions in your program, you address the data directly in the corresponding address area.

Address Area Access via Units of

Following Size
S7 Notation
(IEC)

Description

Process image input
table

Input (bit) I At the beginning of the scan cycle, the
CPU reads the inputs from the input
modules and records the values in this
area.

Input byte IB
Input word IW
Input double word ID

Process image
output table

Output (bit) Q During the scan cycle, the program
calculates output values and places
them in this area. At the end of the
scan cycle, the CPU sends the
calculated output values to the output
modules.

Output byte QB
Output word QW
Output double word QD

Bit memory

Memory (bit) M This area provides storage for interim
results calculated in the program.

Memory byte MB
Memory word MW
Memory double word MD

Timers Timer (T) T This area provides storage for timers.
Counters Counter (C) C This area provides storage for

counters.
Data block

Data block, opened with
"OPN DB":

DB Data blocks contain information for the
program. They can be defined for
general use by all logic blocks (shared
DBs) or they are assigned to a specific
FB or SFB (instance DB).

Data bit DBX
Data byte DBB
Data word DBW
Data double word DBD
Data block, opened with
"OPN DI":

DI

Data bit DIX
Data byte DIB
Data word DIW
Data double word DID

 Appendix
 26.2 Memory Areas of S7 CPUs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 543

Address Area Access via Units of
Following Size

S7 Notation
(IEC)

Description

Local data

Local data bit L This area contains the temporary data
of a block while the block is being
executed. The L stack also provides
memory for transferring block
parameters and for recording interim
results from Ladder Logic networks.

Local data byte LB
Local data word LW
Local data double word LD

Peripheral (I/O) area:

inputs

Peripheral input byte PIB The peripheral input and output areas
allow direct access to central and
distributed input and output modules
(DP).

 Peripheral input word PIW
 Peripheral input double

word
PID

Peripheral (I/O) area:

outputs

Peripheral output byte PQB

 Peripheral output word PQW
 Peripheral output double

word
PQD

Refer to the following CPU manuals or instruction lists for information on which address areas are
possible for your CPU:

• "S7-300 Programmable Controller, Hardware and Installation" Manual

• "S7-400 Programmable Controller, Module Specifications" Reference Manual

• "S7-300 Programmable Controller, Instruction List"

• "S7-400 Programmable Controller, Reference Guide"

Appendix
26.2 Memory Areas of S7 CPUs

 Programming with STEP 7
544 Manual, 04/2017, A5E41552389-AA

26.2.3.2 Process-Image Input/Output Tables

If the input (I) and output (Q) address areas are accessed in the user program, the program does
not scan the signal states on the digital signal modules but accesses a memory area in the system
memory of the CPU and distributed I/Os. This memory area is known as the process image.

Updating the Process Image
The following figure shows the processing steps within a scan cycle.

One of the internal tasks of the operating system (OS) is to read the status of inputs into the
process image input table (PII). Once this step is complete, the user program is executed with all
blocks that are called in it. The cycle ends with writing the process image output table (PIQ) to the
outputs for the modules. Reading in the process image input table and writing the process image
output table to the outputs for the modules is all independently controlled by the operating system.

One of the internal tasks of the operating system (OS) is to write the process image output table
(PIQ) to the outputs for the modules and to read in the status of inputs into the process image input
table (PII). Once this step is complete, the user program is executed with all blocks that are called
in it. Writing the process image output table to the outputs for the modules and reading in the
process image input table is all independently controlled by the operating system.

 Appendix
 26.2 Memory Areas of S7 CPUs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 545

Advantages of the Process Image
Compared with direct access to the input/output modules, the main advantage of accessing the
process image is that the CPU has a consistent image of the process signals for the duration of
one program cycle. If a signal state on an input module changes while the program is being
executed, the signal state in the process image is retained until the process image is updated again
in the next cycle. The process of repeatedly scanning an input signal within a user program
ensures that consistent input information is always available.

Access to the process image also requires far less time than direct access to the signal modules
since the process image is located in the internal memory of the CPU.

Part Process Images (Process-Image Partitions)
In addition to having the process image (process-image input table, PII, and process-image output
table, PIQ) automatically updated by the operating system, you can assign parameters to a
maximum of 15 partial process images for an S7-400 CPU (CPU-specific, no. 1 to no. 15, see the
S7-400 Programmable Controller, Module Specifications Reference Manual). This means that you
can update sections of the process-image table, when necessary, independently of the cyclic
updating of the process image table.

Each input/output address that you assign with STEP 7 to a process-image partition no longer
belongs to the OB1 process-image input/output tables. Input and output address can only be
assigned once through the OB 1 process image and all process-image partitions.

You define process-image partition with STEP 7 when you assign addresses (which input/output
addresses of the modules are listed in which process-image partition). The process-image partition
is updated either by the user with SFCs or automatically by the system by connecting to an OB.

Exception: Process image partitions for synchronous cycle interrupt OBs are not updated on the
system side, even though they are linked to an OB (OB 61 to OB 64).

 Note

For S7-300 CPUs, unassigned process-image inputs and outputs can be used as additional bit
memory areas. Programs that use this capability can run on older (that is, before 4/99) S7-400
CPUs only under one of the following conditions:

For these S7-400 CPUs

• The process image areas used as bit memory must be located outside of the parameter
assignment for "Size of the Process Image" or.

• must be located in a process-image partition that is updated neither by the system nor by
SFC26/SFC27.

Updating Part Process Images (Process-Image Partitions) with SFCs
You can use SFCs to update the entire process image or a process-image partition from your user
program.

• Requirement: The process image in question is not updated by the system.

• SFC26 UPDAT_PI: Update process-image input table

• SFC27 UPDAT_PO: Update process-image output table.

Appendix
26.2 Memory Areas of S7 CPUs

 Programming with STEP 7
546 Manual, 04/2017, A5E41552389-AA

System Update of the Part Process Images (Process-Image Partitions)
You can also have the system update process-image partitions automatically by calling an OB -
similar to the (entire) process image, which is updated cyclically before or after OB1 is processed.
You can assign this function as a parameter only for specific CPUs.

During operation, the assigned process-image partition is updated automatically:

• Before the OB is processed, the process-image partition for inputs

• After the OB is processed, the process-image partition for the outputs

You assign the parameters for the CPU, along with the priority of the OBs, to indicate which
process-image partition is assigned to which OB.

I/O Access Error (PZF) during Update of the Process Image
The default reaction of the CPU families (S7-300 and S7-400) to an error during the update of the
process image varies:

• S7-300: No entry is made in the diagnostic buffer, no OB is called, the corresponding input
bytes are reset to "0" and will remain at "0" until the fault is gone again.

• S7-400: An entry is made in the diagnostic buffer and OB85 is started for each I/O access for
each update of the corresponding process image. The faulty input bytes are reset to "0" each
time the process image is accessed.

For new CPUs (as of 4/99), you can reassign parameters for the reaction to I/O access errors so
that the CPU functions in one of the following manners:

• Generates an entry in the diagnostic buffer and starts OB85 only for incoming and outgoing
PZF (before OB 85 is called, the faulty input bytes are reset to "0" and are no longer
overwritten by the operating system until the outgoing PZF)

• Produces the default reaction of an S7-300 (does not call OB85; the corresponding input bytes
are reset to "0" and are no longer overwritten by the operating system until the fault is cleared.)

• Produces the default reaction of an S7-400 (calls OB85 for each individual access; the faulty
input bytes are reset to "0" each time the process image is accessed.)

 Appendix
 26.2 Memory Areas of S7 CPUs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 547

How Often Does OB85 Start?
In addition to the reaction to PZF that is assigned as a parameter (incoming/outgoing, or for each
I/O access), the address space of a module also influences how often OB85 starts:

For a module with an address space of up to a double word, OB85 starts once, for example, for a
digital module with a maximum of 32 inputs or outputs, or for an analog module with two channels.

For modules with a larger address space, OB85 starts as often as access has to be made to it with
double word commands, for example, twice for an analog module with four channels.

Appendix
26.2 Memory Areas of S7 CPUs

 Programming with STEP 7
548 Manual, 04/2017, A5E41552389-AA

26.2.3.3 Local Data Stack

The L stack saves the following:

• The temporary variables of the local data of blocks

• The start information of the organization blocks

• Information about transferring parameters

• Interim results of the logic in Ladder Logic programs

When you are programming organization blocks, you can declare temporary variables (TEMP) that
are only available when the block is executed and are then overwritten again. Before you access
the local data stack for the first time, the local data must be initialized. In addition to this, every
organization block also requires 20 bytes of local data for its start information.

The CPU has a limited amount of memory for the temporary variables (local data) of blocks
currently being executed. The size of this memory area, the local data stack, is dependent on the
CPU. The local data stack is divided up equally among the priority classes (default). This means
that every priority class has its own local data area, thus guaranteeing that higher priority classes
and their OBs also have space available for their local data.

The following figure shows the assignment of local data to the priority classes in an example in
which in the L stack OB1 is interrupted by OB10 which is then interrupted by OB81.

!
Caution
When using temporary variables, remember that they are only valid within the relevant block or are
only available as previous local data for other blocks called in this block. In particular, there is no
guarantee that if you close and then re-open the block, the temporary variables will have the same
values they had when the previous block call was completed. Temporary variables are by definition
undetermined when a block is called and must be re-initialized again when they are used for the
first time in the block.

All the temporary variables (TEMP) of an OB and its associated blocks are saved in the L stack. If
you use too many nesting levels when executing your blocks, the L stack can overflow.

S7 CPUs change to STOP mode if the permitted L stack size for a program is exceeded.

Test the L stack (the temporary variables) in your program.

The local data requirements of synchronous error OBs must be taken into consideration.

 Appendix
 26.2 Memory Areas of S7 CPUs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 549

Assigning Local Data to Priority Classes
Not every priority class requires the same amount of memory in the local data stack. By assigning
parameters in STEP 7, you can set different sized local data areas for the individual priority classes
for S7-400 CPUs and for the CPU 318. Any priority classes you do not required can be deselected.
With S7-400 CPUs and the CPU 318 the memory area for other priority classes is then increased.
Deactivated OBs are ignored during program execution and save cycle time.

With the other S7-300 CPUs every priority class is assigned a fixed amount of local data (256
bytes) that cannot be changed.

Appendix
26.2 Memory Areas of S7 CPUs

 Programming with STEP 7
550 Manual, 04/2017, A5E41552389-AA

26.2.3.4 Interrupt Stack

If program execution is interrupted by a higher priority OB, the operating system saves the current
contents of the accumulators and address registers, and the number and size of the open data
blocks in the interrupt stack.

Once the new OB has been executed, the operating system loads the information from the I stack
and resumes execution of the interrupted block at the point at which the interrupt occurred.

When the CPU is in STOP mode, you can display the I stack on a programming device using
STEP 7. This allows you to find out why the CPU changed to STOP mode.

26.2.3.5 Block Stack

If processing of a block is interrupted by the call of another block or by a higher priority class
(interrupt/error servicing), the B stack stores the following data:

• Number, type (OB, FB, FC, SFB, SFC), and return address of the block that was interrupted.

• Numbers of the data blocks (from the DB and DI register) that were open when the block was
interrupted.

Using this data, the user program can then be resumed after the interrupt.

If the CPU is in STOP mode, you can display the B stack with STEP 7 on a programming device.
The B stack lists all the blocks that had not been completely executed when the CPU changed to
STOP mode. The blocks are listed in the order in which processing was started (see figure below).

Data Block Registers

There are two data block registers. These contain the numbers of opened data blocks, as follows:

• The DB register contains the number of the open shared data block

• The DI register contains the number of the open instance data block.

 Appendix
 26.2 Memory Areas of S7 CPUs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 551

26.2.3.6 Diagnostic Buffer

The diagnostic buffer displays the diagnostic messages in the order in which they occur. The first
entry contains the newest event. The number of entries in the diagnostic buffer is dependent on the
module and its current operating mode.

Diagnostic events include the following:

• Faults on a module

• Errors in the process wiring

• System errors in the CPU

• Mode transitions on the CPU

• Errors in the user program

• User-defined diagnostic events (via the system function SFC52).

26.2.3.7 Evaluating the Diagnostic Buffer

One part of the system status list is the diagnostic buffer that contains more information about
system diagnostic events and Userdefined diagnostic events in the order in which they occurred.
The information entered in the diagnostic buffer when a system diagnostic event occurs is identical
to the start information transferred to the corresponding organization block.

You cannot clear the entries in the diagnostic buffer and its contents are retained even after a
memory reset.

The diagnostic buffer provides you with the following possibilities:

• If the CPU changes to STOP mode, you can evaluate the last events leading up to the STOP
and locate the cause.

• The causes of errors can be detected far more quickly increasing the availability of the system.

• You can evaluate and optimize the dynamic system response.

Organizing the Diagnostic Buffer
The diagnostic buffer is designed to act as a ring buffer for a maximum number of entries which is
dependent on the individual module. This means that when the maximum number of entries is
reached, the next diagnostic buffer event causes the oldest entry to be deleted. All entries then
move back one place. This means that the newest entry is always the first entry in the diagnostic
buffer. For the S7-300 CPU 314 the number of possible entries is 100:

The number of entries displayed in the diagnostic buffer is dependent on the module and its current
operating mode. With some CPUs, it is possible to set the length of the diagnostic buffer.

Diagnostic Buffer Content
The upper list box contains a list of all the diagnostic events that occurred with the following
information:

• Serial number of the entry (the newest entry has the number 1)

• Time and date of the diagnostic event: The time and date of the module are displayed if the
module has an integrated clock. For the time data in the buffer to be valid, it is important that
you set the time and date on the module and check it regularly.

• Short description of the diagnostic event

Appendix
26.2 Memory Areas of S7 CPUs

 Programming with STEP 7
552 Manual, 04/2017, A5E41552389-AA

In the lower text box, all the additional information is displayed for the event selected in the list in
the upper window. This information includes:

• Event number

• Description of the event

• Mode transition caused by the diagnostic event

• Reference to the location of the error in a block (block type, block number, relative address)
which caused the entry in the buffer

• Event state being entered or left

• Additional information specific to the event

With the "Help on Event" button you can display additional information on the event selected in the
upper list box.

Information on event IDs can be found in the Reference Help on System Blocks and System
Functions (Jumps to Language Descriptions and Help on Blocks, System Attributes)

Saving the Contents in a Text File
Using the "Save As" button in the "Diagnostic Buffer" tab of the "Module Information" dialog box
you can save the contents of the diagnostic buffer as ASCII text.

Displaying the Diagnostic Buffer
You can display the contents of the diagnostic buffer on the programming device via the
"Diagnostic Buffer" tab in the "Module Information" dialog box or in a program using the system
function SFC51 RDSYSST.

Last Entry before STOP
You can specify that the last diagnostic buffer entry before the transition from RUN to STOP is
automatically sent to a logged on monitoring device (for example, PG, OP, TD) in order to locate
and remedy the cause of the change to STOP more quickly.

 Appendix
 26.2 Memory Areas of S7 CPUs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 553

26.2.3.8 Retentive Memory Areas on S7-300 CPUs

If a power outage occurs or the CPU memory is reset (MRES), the memory of the S7-300 CPU
(dynamic load memory (RAM), work memory, and system memory) is reset and all the data
previously contained in these areas is lost. With S7-300 CPUs, you can protect your program and
its data in the following ways:
• You can protect all the data in the load memory, work memory, and in parts of the system

memory with battery backup.
• You can store your program in the EPROM (either memory card or integrated on the CPU,

refer to the "S7-300 Programmable Controller, Hardware and Installation" Manual).
• You can store a certain amount of data depending on the CPU in an area of the nonvolatile

NVRAM.

Using the NVRAM
Your S7-300 CPU provides an area in the NVRAM (non-volatile RAM) (see figure below). If you
have stored your program in the EPROM of the load memory, you can save certain data (if there is
a power outage or when the CPU changes from STOP to RUN) by configuring your CPU
accordingly.

To do this set the CPU so that the following data are saved in the nonvolatile RAM:
• Data contained in a DB (this is only useful if you have also stored your program in an EPROM

of the load memory)
• Values of timers and counters
• Data saved in bit memory.

On every CPU, you can save a certain number of timers, counters, and memory bits. A specific
number of bytes is also available in which the data contained in DBs can be saved.

The MPI address of your CPU is stored in the NVRAM. This makes sure that your CPU is capable
of communication following a power outage or memory reset.

Using Battery Backup to Protect Data
By using a backup battery, the load memory and work memory are retentive during a power
outage. If you configure your CPU so that timers, counters, and bit memory are saved in the
NVRAM, this information is also retained regardless of whether you use a backup battery or not.

Configuring the Data of the NVRAM
When you configure your CPU with STEP 7, you can decide which memory areas will be retentive.

The amount of memory that can be configured in the NVRAM depends on the CPU you are using.
You cannot back up more data than specified for your CPU.

Appendix
26.2 Memory Areas of S7 CPUs

 Programming with STEP 7
554 Manual, 04/2017, A5E41552389-AA

26.2.3.9 Retentive Memory Areas on S7-400 CPUs

Operation Without Battery Backup
If you operate your system without battery backup, when a power outage occurs or when you reset
the CPU memory (MRES), the memory of the S7-400 CPU (dynamic load memory (RAM), work
memory, and system memory) is reset and all the data contained in these areas is lost.

Without battery backup, only a restart (warm restart) is possible and there are no retentive memory
areas. Following a power outage, only the MPI parameters (for example, the MPI address of the
CPU) are retained. This means that the CPU remains capable of communication following a power
outage or memory reset.

Operation With Battery Backup
If you use a battery to back up your memory:

• The entire content of all RAM areas is retained when the CPU restarts following a power
outage.

• During a restart (warm restart), the address areas for bit memory, timers, and counters is
cleared. The contents of data blocks are retained.

• The contents of the RAM work memory are also retained apart from bit memory, timers, and
counters that were designed as non-retentive.

Configuring Retentive Data Areas
You can declare a certain number of memory bits, timers, and counters as retentive (the number
depends on your CPU). During a restart (warm restart) when you are using a backup battery, this
data is also retained.

When you assign parameters with STEP 7, you define which memory bits, timers, and counters
should be retained during a restart (warm restart). You can only back up as much data as is
permitted by your CPU.

For more detailed information about defining retentive memory areas, refer to your "S7-400
Programmable Controller, Module Specifications" Reference Manual.

26.2.3.10 Configurable Memory Objects in the Work Memory

With some CPUs, the size of objects such as local or the diagnostic buffer can be set in HW
Config. If, for example, you reduce the default values, a larger section of the work memory is made
available elsewhere. The settings for these CPUs can be displayed in the "Memory" tab of the
Module Information ("Details" button).

After the memory configuration has been changed and downloaded to the programmable
controller, you must perform a cold restart in order for the changes to become effective.

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 555

26.3 Data Types and Parameter Types

26.3.1 Introduction to Data Types and Parameter Types

All the data in a user program must be identified by a data type. The following data types are
available:

• Elementary data types provided by STEP 7

• Complex data types that you yourself can create by combining elementary data types

• Parameter types with which you define parameters to be transferred to FBs or FCs

General Information
Statement List, Ladder Logic, and Function Block Diagram instructions work with data objects of
specific sizes. Bit logic instructions work with bits, for example. Load and transfer instructions (STL)
and move instructions (LAD and FBD) work with bytes, words, and double words.

A bit is a binary digit "0" or "1." A byte is made up of eight bits, a word of 16 bits, and a double word
of 32 bits.

Math instructions also work with bytes, words, or double words. In these byte, word, or double word
addresses you can code numbers of various formats such as integers and floating-point numbers.

When you use symbolic addressing, you define symbols and specify a data type for these symbols
(see table below). Different data types have different format options and number notations.

This chapter describes only some of the ways of writing numbers and constants. The following
table lists the formats of numbers and constants that will not be explained in detail.

Format Size in Bits Number Notation

Hexadecimal 8, 16, and 32 B#16#, W#16#, and DW#16#
Binary 8, 16, and 32 2#
IEC date 16 D#
IEC time 32 T#
Time of day 32 TOD#
Character 8 'A'

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
556 Manual, 04/2017, A5E41552389-AA

26.3.2 Elementary Data Types

Each elementary data type has a defined length. The following table lists the elementary data
types.

Type and
Description

Size
in Bits

Format Options Range and Number Notation
(lowest to highest value)_

Example

BOOL(Bit)

1 Boolean text TRUE/FALSE TRUE

BYTE
(Byte)

8 Hexadecimal
number

B#16#0 to B#16#FF L B#16#10
L byte#16#10

WORD
(Word)

16 Binary number

Hexadecimal
number

BCD
Decimal number
unsigned

2#0 to
2#1111_1111_1111_1111
W#16#0 to W#16#FFFF

C#0 to C#999
B#(0.0) to B#(255.255)

L 2#0001_0000_0000_0000

L W#16#1000
L word#16#1000
L C#998
L B#(10,20)
L byte#(10,20)

DWORD
(Double
word)

32 Binary number

Hexadecimal
number
Decimal number
unsigned

2#0 to
2#1111_1111_1111_1111
1111_1111_1111_1111
DW#16#0000_0000 to
DW#16#FFFF_FFFF
B#(0,0,0,0) to
B#(255,255,255,255)

2#1000_0001_0001_1000_
1011_1011_0111_1111

L DW#16#00A2_1234
L dword#16#00A2_1234
L B#(1, 14, 100, 120)
L byte#(1,14,100,120)

INT
(Integer)

16 Decimal number
signed

-32768 to 32767 L 1

DINT
(Integer, 32
bits)

32 Decimal number
signed

L#-2147483648 to
L#2147483647

L L#1

REAL
(Floating-
point
number)

32 IEEE
Floating-point
number

Upper limit: ±3.402823e+38
Lower limit: ±1.175 495e-38

L 1.234567e+13

S5TIME
(SIMATIC
time)

16 S7 time in
steps of
10 ms (default)

S5T#0H_0M_0S_10MS to
S5T#2H_46M_30S_0MS and
S5T#0H_0M_0S_0MS

L S5T#0H_1M_0S_0MS
L
S5TIME#0H_1H_1M_0S_0M
S

TIME
(IEC time)

32 IEC time in steps
of 1 ms, integer
signed

T#-24D_20H_31M_23S_648MS
to
T#24D_20H_31M_23S_647MS

L T#0D_1H_1M_0S_0MS
L TIME#0D_1H_1M_0S_0MS

DATE
(IEC date)

16 IEC date in steps
of 1 day

D#1990-1-1 to
D#2168-12-31

L D#1996-3-15
L DATE#1996-3-15

TIME_OF_D
AY (Time)

32 Time in steps of
1 ms

TOD#0:0:0.0 to
TOD#23:59:59.999

L TOD#1:10:3.3
L TIME_OF_DAY#1:10:3.3

CHAR
(Character)

8 ASCII characters 'A','B' etc. L 'E'

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 557

26.3.2.1 Format of the Data Type INT (16-Bit Integers)

An integer has a sign that indicates whether it is a positive or negative integer. The space that an
integer (16 bits) occupies in the memory is one word. The following table shows the range of an
integer (16 bits).

Format Range

Integer (16 bits) -32 768 to +32 767

The following figure shows the integer +44 as a binary number.

26.3.2.2 Format of the Data Type DINT (32-Bit Integers)

An integer has a sign that indicates whether it is a positive or negative integer. The space that a
double integer occupies in the memory is two words. The following table shows the range of a
double integer.

Format Range

Integer (32 bits) -2 147 483 648 to +2 147 483 647

The following figure shows the integer -500 000 as a binary number. In the binary system, the
negative form of an integer is represented as the twos complement of the positive integer. You
obtain the twos complement of an integer by reversing the signal states of all bits and then adding
+1 to the result.

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
558 Manual, 04/2017, A5E41552389-AA

26.3.2.3 Format of the Data Type REAL (Floating-Point Numbers)

Numbers in floating-point format are represented in the general form "number = m * b to the power
of E." The base "b" and the exponent "E" are integers; the mantissa "m" is a rational number.

This type of number representation has the advantage of being able to represent both very large
and very small values within a limited space. With the limited number of bits for the mantissa and
exponent, a wide range of numbers can be covered.

The disadvantage is in the limited accuracy of calculations. For example, when forming the sum of
two numbers, the exponents must be matched by shifting the mantissa (hence floating decimal
point) since only numbers with the same exponent can be added.

Floating-point number format in STEP 7
Floating-point numbers in STEP 7 conform to the basic format, single width, described in the
ANSI/IEEE standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic. They consist
of the following components:

• The sign S

• The exponent e = E + bias, increased by a constant (bias = +127)

• The fractional part of the mantissa m.
The whole number part of the mantissa is not stored with the rest, because it is always equal to
1 within the valid number range.

The three components together occupy one double word (32 bits):

The following table shows the values of the individual bits in floating-point format.

Component of the Floating-Point
Number

Bit Number Value

Sign S 31
Exponent e 30 2 to the power of 7
...
Exponent e 24 2 to the power of 1
Exponent e 23 2 to the power of 0
Mantissa m 22 2 to the power of -1
...
Mantissa m 1 2 to the power of -22
Mantissa m 0 2 to the power of -23

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 559

Using the three components S, e, and m, the value of a number represented in this form is defined
by the formula:

Number = 1.m ∗ 2 to the power of (e - bias)

Where:

• e: 1 ≤ e ≤ 254

• Bias: bias = 127. This means that an additional sign is not required for the exponent.

• S: for a positive number, S = 0 and for a negative number, S = 1.

Value Range of Floating-Point Numbers
Using the floating-point format shown above, the following results:

• The smallest floating-point number = 1.0 ∗ 2 to the power of (1-127) = 1.0 ∗ 2 to the power of (-
126)
= 1.175 495E-38 and

• The largest floating-point number = 2-2 to the power of (-23) ∗ 2 to the power of (254-127) = 2-
2 to the power of (-23) ∗ 2 to the power of (+127)
= 3.402 823E+38

The number zero is represented with e = m = 0; e = 255 and m = 0 stands for "infinite."

Format Range1)

Floating-point numbers according to the ANSI/IEEE
standard

-3.402 823E+38 to -1.175 495E-38
and 0 and

+1.175 495E-38 to +3.402 823E+38

The following table shows the signal state of the bits in the status word for the results of
instructions with floating-point numbers that do not lie within the valid range:

Invalid Range for a Result CC1 CC0 OV OS

-1.175494E-38 < result < -1.401298E-45 (negative number)
underflow

0 0 1 1

+1.401298E-45 < result < +1.175494E-38 (positive number)
underflow

0 0 1 1

Result < -3.402823E+38 (negative number) overflow 0 1 1 1
Result > 3.402823E+38 (positive number) overflow 1 0 1 1
Not a valid floating-point number or invalid instruction (input value
outside the valid value range)

1 1 1 1

Note when using mathematical operations:

The result "Not a valid floating-point number" is obtained, for example, when you attempt to extract
the square root from -2. You should therefore always evaluate the status bits first in math
operations before continuing calculations based on the result.

Note when modifying variables:

If the values for floating-point operations are stored in memory double words, for example, you can
modify these values with any bit patterns. However, not every bit pattern is a valid number.

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
560 Manual, 04/2017, A5E41552389-AA

Accuracy when Calculating Floating-Point Numbers

!
Caution
Calculations involving a long series of values including very large and very small numbers can
produce inaccurate results.

The floating-point numbers in STEP 7 are accurate to 6 decimal places. You can therefore only
specify a maximum of 6 decimal places when entering floating-point constants.

 Note

The calculation accuracy of 6 decimal places means, for example, that the addition of number1 +
number2 = number1 if number1 is greater than number2 ∗ 10 to the power of y, where y>6:

100 000 000 + 1 = 100 000 000.

Examples of Numbers in Floating-Point Format
The following figure shows the floating-point format for the following decimal values:

• 10.0

• Pi (3.141593)

• Square root of 2 (1.414214)

The number 10.0 in the first example results from its floating-point format (hexadecimal
representation: 4120 0000) as follows:

e = 2 to the power of 7 + 2 to the power of 1 = 2 + 128 = 130

m = 2 to the power of (-2) = 0.25

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 561

This results in:

(1 + m) ∗ 2 to the power of (e - bias) = 1.25 ∗ 2 to the power of 3 = 10.0

[1.25 ∗ 2 to the power of (130-127) = 1.25 ∗ 2 to the power of 3 = 10.0]

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
562 Manual, 04/2017, A5E41552389-AA

26.3.2.4 Format of the Data Types WORD and DWORD in Binary Coded Decimal
Numbers

The binary-coded decimal (BCD) format represents a decimal number by using groups of binary
digits (bits). One group of 4 bits represents one digit of a signed decimal number or the sign of the
decimal number. The groups of 4 bits are combined to form a word (16 bits) or double word (32
bits). The four most significant bits indicate the sign of the number (1111 indicates minus and 0000
indicates plus). Commands with BCDcoded addresses only evaluate the highestvalue bit (15 in
word, 31 in double word format). The following table shows the format and range for the two types
of BCD numbers.

Format Range

Word
(16 bits, threedigit BCD number with sign)

-999 to +999

Double word
(32 bits, sevendigit BCD number with sign)

-9 999 999 to +9 999 999

The following figures provide an example of a binary coded decimal number in the following
formats:

• Word format

• Double word format

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 563

26.3.2.5 Format of the Data Type S5TIME (Time Duration)

When you enter time duration using the S5TIME data type, your entries are stored in binary coded
decimal format. The following figure shows the content of the time address with a time value of 127
and a time base of 1 s.

When working with S5TIME, you enter a time value in the range of 0 to 999 and you indicate a time
base (see the following table). The time base indicates the interval at which a timer decrements the
time value by one unit until it reaches 0.

Time base for S5TIME

Time Base Binary Code for Time Base

10 ms 00
100 ms 01

1 s 10
10 s 11

You can preload a time value using either of the following syntax formats:

• L1) W#16#wxyz

- Where w = time base (that is, the time interval or resolution)

- Where xyz = the time value in binary coded decimal format

• L1) S5T#aH_bbM_ccS_dddMS

- Where a = hours, bb = minutes, cc = seconds, and dd = milliseconds

- The time base is selected automatically and the value is rounded to the next lower number
with that time base.

The maximum time value that you can enter is 9,990 seconds, or 2H_46M_30S.

 1) = L only to be specified in STL programming

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
564 Manual, 04/2017, A5E41552389-AA

26.3.3 Complex Data Types

Complex data types define data groups that are larger than 32 bits or data groups consisting of
other data types. STEP 7 permits the following complex data types:

• DATE_AND_TIME

• STRING

• ARRAY

• STRUCT

• UDT (user-defined data types)

• FBs and SFBs

The following table describes the complex data types. You define structures and arrays either in
the variable declaration of the logic block or in a data block.

Data Type Description

DATE_AND_TIME
DT

Defines an area with 64 bits (8 bytes). This data type saves in binary coded decimal
format:

STRING Defines a group with a maximum of 254 characters (data type CHAR). The standard
area reserved for a character string is 256 bytes long. This is the space required to
save 254 characters and a header of 2 bytes. You can reduce the memory required
for a string by defining the number of characters that will be stored in the character
string (for example: string[9] 'Siemens').

ARRAY Defines a multidimensional grouping of one data type (either elementary or
complex). For example: "ARRAY [1..2,1..3] OF INT" defines an array in the format 2
x 3 consisting of integers. You access the data stored in an array using the Index
("[2,2]"). You can define up to a maximum of 6 dimensions in one array. The index
can be any integer (-32768 to 32767).

STRUCT Defines a grouping of any combination of data types. You can, for example, define
an array of structures or a structure of structures and arrays.

UDT Simplifies the structuring of large quantities of data and entering data types when
creating data blocks or declaring variables in the variable declaration. In STEP 7,
you can combine complex and elementary data types to create your own
"userdefined" data type. UDTs have their own name and can therefore be used
more than once.

FB, SFB You determine the structure of the assigned instance data block and allow the
transfer of instance data for several FB calls in one instance DB.

Structured data types are saved in accordance with word limits (WORD aligned).

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 565

26.3.3.1 Format of the Data Type DATE_AND_TIME

When you enter date and time using the DATE_AND_TIME data type (DT), your entries are stored
in binary coded decimal format in 8 bytes. The DATE_AND_TIME data type has the following
range:

DT#1990-1-1-0:0:0.0 to DT#2089-12-31-23:59:59.999

The following examples show the syntax for the date and time for Thursday, December 25, 1993,
at 8:12 and 34,567 seconds in the morning. The following two formats are possible:

• DATE_AND_TIME#1993-12-25-8:12:34.567

• DT#1993-12-25-8:12:34.567

The following special IEC (International Electrotechnical Commission) standard functions are
available for working with the DATE_AND_TIME data type:

• Convert date and time of day to the DATE_AND_TIME format

FC3: D_TOD_DT

• Extract the date from the DATE_AND_TIME format

FC6: DT_DATE

• Extract the day of the week from the DATE_AND_TIME format

FC7: DT_DAY

• Extract the time of day from the DATE_AND_TIME format

FC8: DT_TOD

The following table shows the contents of the bytes that contain the date and time information for
the example Thursday, December 25, 1993, at 8:12 and 34,567 seconds in the morning.

Byte Contents Example

0 Year B#16#93
1 Month B#16#12
2 Day B#16#25
3 Hour B#16#08
4 Minute B#16#12
5 Second B#16#34
6 Two most significant digits of MSEC B#16#56
7

(4MSB)
Two least significant digits of MSEC

B#16#7

7
(4LSB)

Day of week
1 = Sunday
2 = Monday
...
7 = Saturday

B#16#_5

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
566 Manual, 04/2017, A5E41552389-AA

The permitted range for the data type DATE_AND_TIME is:

• min.: DT#1990-1-1-0:0:0.0

• max.: DT#2089-12-31-23:59:59.999

 Possible Value Range BCD Code

Year 1990 - 1999
2000 - 2089

90 - 99
00 - 89

Month 1 - 12 01 - 12
Day 1 - 31 01 - 31
Hour 00 - 23 00 - 23
Minute 00 - 59 00 - 59
Second 00 - 59 00 - 59
Millisecond 0 - 999 000 - 999
Day of week Sunday - Saturday 1 - 7

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 567

26.3.3.2 Using Complex Data Types

You can create new data types by combining the elementary and complex data types to create the
following complex data types:

• Array (data type ARRAY): an array combines a group of one data type to form a single unit.

• Structure (data type STRUCT): a structure combines different data types to form a single unit.

• Character string (data type STRING): a character string defines a onedimensional array with a
maximum of 254 characters (data type CHAR). A character string can only be transferred as a
unit. The length of the character string must match the formal and actual parameter of the
block.

• Date and time (data type DATE_AND_TIME): the date and time data type stores the year,
month, day, hours, minutes, seconds, milliseconds, and day of the week.

The following figure shows how arrays and structures can structure data types in one area and
save information. You define an array or a structure either in a DB or in the variable declaration of
an FB, OB, or FC.

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
568 Manual, 04/2017, A5E41552389-AA

26.3.3.3 Using Arrays to Access Data

Arrays
An array combines a group of one data type (elementary or complex) to form a unit. You can create
an array consisting of arrays. When you define an array, you must do the following:

• Assign a name to the array.

• Declare an array with the keyword ARRAY.

• Specify the size of the array using an index. You specify the first and last number of the
individual dimensions (maximum 6) in the array. You enter the index in square brackets with
each dimension separated by a comma and the first and last number of the dimension by two
periods. The following index defines, for example, a threedimensional array:

[1..5,-2..3,30..32]

• You specify the data type of the data to be contained in the array.

Example: 1
The following figure shows an array with three integers. You access the data stored in an array
using the index. The index is the number in square brackets. The index of the second integer, for
example, is Op_temp[2].

An index can be any integer (-32768 to 32767) including negative values. The array in the following
figure could also be defined as ARRAY [-1..1]. The index of the first integer would then be
Op_temp[-1], the second would be Op_temp[0], and the third integer would then be Op_temp[1].

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 569

Example 2
An array can also describe a multidimensional group of data types. The following figure shows a
two-dimensional array of integers.

You access the data in a multidimensional array using the index. In this example, the first integer
is Op_temp[1,1], the third is Op_temp[1,3], the fourth is Op_temp[2,1], and the sixth is
Op_temp[2,3].

You can define up to a maximum of 6 dimensions (6 indexes) for an array. You could, for example,
define the variable Op_temp as follows as a sixdimensional array:

ARRAY [1..3,1..2,1..3,1..4,1..3,1..4]

The index of the first element in this array is Op_temp[1,1,1,1,1,1]. The index of the last element
Op_temp[3,2,3,4,3,4].

Creating Arrays
You define arrays when you declare the data in a DB or in the variable declaration. When you
declare the array, you specify the keyword (ARRAY) followed by the size in square brackets, as
follows:

[lower limit value..upper limit value]

In a multi-dimensional array you also specify the additional upper and lower limit values and
separate the individual dimensions with a comma. The following figure shows the declaration for
creating an array of the format 2 x 3.

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
570 Manual, 04/2017, A5E41552389-AA

Entering Initial Values for an Array
You can assign an initial value to every array element when you create arrays. STEP 7 provides
two methods for entering initial values:

• Entry of individual values: for each element of the array, you specify a value that is valid for the
data type of the array. You specify the values in the order of the elements: [1,1]. Remember
that the individual elements must be separated from each other by a comma.

• Specifying a repetition factor: with sequential elements that have the same initial value, you
can specify the number of elements (the repetition factor) and the initial value for these
elements. The format for entering the repetition factor is x(y), where x is the repetition factor
and y is the value to be repeated.

If you use the array declared in the above figure, you can specify the initial value for all six
elements as follows: 17, 23, -45, 556, 3342, 0. You could also set the initial value of all six
elements to 10 by specifying 6(10). You could specify specific values for the first two elements and
then set the remaining four elements to 0 by specifying the following: 17, 23, 4(0).

Accessing Data in an Array
You access data in an array via the index of the specific element in the array. The index is used
with the symbolic name.

Example: If the array declared in the above figure begins at the first byte of DB20 (motor), you
access the second element in the array with the following address:

Motor.Heat_2x3[1,2].

Using Arrays as Parameters
You can transfer arrays as parameters. If a parameter is declared in the variable declaration as
ARRAY, you must transfer the entire array (and not individual elements). An element of an array
can, however be assigned to a parameter when you call a block, providing the element of the array
corresponds to the data type of the parameter.

If you use arrays as parameters, the arrays do not need to have the same name (they do not even
need a name). Both arrays (the formal parameter and the actual parameter) must however have
the same structure. An array in the format 2 x 3 consisting of integers, for example, can only be
transferred as a parameter when the formal parameter of the block is defined as an array in the
format 2 x 3 consisting of integers and the actual parameter that is provided by the call operation is
also an array in the format 2 x 3 consisting of integers.

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 571

26.3.3.4 Using Structures to Access Data

Structures
A structure combines various data types (elementary and complex data types, including arrays and
structures) to form one unit. You can group the data to suit your process control. You can therefore
also transfer parameters as a data unit and not as single elements. The following figure illustrates a
structure consisting of an integer, a byte, a character, a floating-point number, and a Boolean
value.

A structure can be nested to a maximum of 8 levels (for example, a structure consisting of
structures containing arrays).

Creating a Structure
You define structures when you declare data within a DB or in the variable declaration of a logic
block.

The following figure illustrates the declaration of a structure (Stack_1) that consists of the following
elements: an integer (for saving the amount), a byte (for saving the original data), a character (for
saving the control code), a floating-point number (for saving the temperature), and a Boolean
memory bit (for terminating the signal).

Assigning Initial Values for a Structure
If you want to assign an initial value to every element of a structure, you specify a value that is valid
for the data type and the name of the element. You can, for example, assign the following initial
values (to the structure declared in the above figure):

Amount = 100
Original_data = B#(0)
Control_code = 'C'
Temperature = 120
End = False

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
572 Manual, 04/2017, A5E41552389-AA

Saving and Accessing Data in Structures
You access the individual elements of a structure. You can use symbolic addresses (for example,
Stack_1.Temperature). You can, however, specify the absolute address at which the element is
located (example: if Stack_1 is located in DB20 starting at byte 0, the absolute address for amount
is DB20.DBW0 and the address for temperature is DB20.DBD6).

Using Structures as Parameters
You can transfer structures as parameters. If a parameter is declared as STRUCT in the variable
declaration, you must transfer a structure with the same components. An element of a structure
can, however, also be assigned to a parameter when you call a block providing the element of the
structure corresponds to the data type of the parameter.

If you use structures as parameters, both structures (for the formal parameters and the actual
parameters) must have the same components, in other words the same data types must be
arranged in the same order.

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 573

26.3.4 Parameter Types

In addition to elementary and complex data types, you can also define parameter types for formal
parameters that are transferred between blocks. STEP 7 recognizes the following parameter types:

• TIMER or COUNTER: this specifies a particular timer or particular counter that will be used
when the block is executed. If you supply a value to a formal parameter of the TIMER or
COUNTER parameter type, the corresponding actual parameter must be a timer or a counter,
in other words, you enter "T" or "C" followed by a positive integer.

• BLOCK: specifies a particular block to be used as an input or output. The declaration of the
parameter determines the block type to be used (FB, FC, DB etc.). If you supply values to a
formal parameter of the BLOCK parameter type, specify a block address as the actual
parameter. Example: "FC101" (when using absolute addressing) or "Valve" (with symbolic
addressing).

• POINTER: references the address of a variable. A pointer contains an address instead of a
value. When you supply a value to a formal parameter of the parameter type POINTER, you
specify an address as the actual parameter. In STEP 7, you can specify a pointer in the pointer
format or simply as an address (for example, M 50.0). Example of a pointer format for
addressing the data beginning at M 50.0: P#M50.0

• ANY: this is used when the data type of the actual parameter is unknown or when any data
type can be used. For more information about the ANY parameter type, refer to the sections
"Format of the Parameter Type ANY" and "Using the Parameter Type ANY".

A parameter type can also be used in a userdefined data type (UDT). For more information about
UDTs, refer to the section "Using UserDefined Data Types to Access Data".

Parameter Capacity Description

TIMER 2 bytes Indicates a timer to be used by the program in the called logic block.
Format: T1

COUNTER 2 bytes Indicates a counter to be used by the program in the called logic block.
Format: C10

BLOCK_FB
BLOCK_FC
BLOCK_DB
BLOCK_SDB

2 bytes Indicates a block to be used by the program in the called logic block.
Format: FC101
 DB42

POINTER 6 bytes Identifies the address.
Format: P#M50.0

ANY 10 Bytes Is used when the data type of the current parameter is unknown.
Format:
P#M50.0 BYTE 10 ANY format for data types
 P#M100.0 WORD 5
 L#1COUNTER 10 ANY format for
 parameter types

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
574 Manual, 04/2017, A5E41552389-AA

26.3.4.1 Format of the Parameter Types BLOCK, COUNTER, TIMER

STEP 7 stores the parameter types BLOCK, COUNTER, and TIMER as binary numbers in a word
(16 bits). The following figure shows the format of these parameter types.

The permitted number of blocks, timers, and counters is dependent on the type of your S7 CPU.
You will find more information on the permitted number of timers and counters and on the
maximum number of available blocks in the data sheets for your CPU in the "S7-300
Programmable Controller, Hardware and Installation Manual" or in the "S7-400 Programmable
Controller, Hardware and Installation Manual."

26.3.4.2 Format of the Parameter Type POINTER

The following figure shows the type of data that is stored in each byte.

The parameter type POINTER stores the following information:

• DB number (or 0 if the data are not stored in a DB)

• Memory area in the CPU (the following table shows the hexadecimal codes of the memory
areas for the parameter type POINTER)

Hexadecimal Code Memory Area Description

b#16#81 I Input area
b#16#82 Q Output area
b#16#83 M Bit memory area
b#16#84 DB Data block
b#16#85 DI Instance data block
b#16#86 L Local data (L stack)
b#16#87 V Previous local data

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 575

• Address of the data (in the format Byte.Bit)

STEP 7 provides the pointer format: p#memory_area byte.bit_address. (If the formal parameter
was declared as the parameter type POINTER, you only need to indicate the memory area and
the address. STEP 7 automatically reformats your entry into pointer format.) The following
examples show how you enter the parameter type POINTER for the data that start at M50.0:

• P#M50.0

• M50.0 (if the formal parameter was declared as POINTER).

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
576 Manual, 04/2017, A5E41552389-AA

26.3.4.3 Using the Parameter Type POINTER

A pointer is used to point to an address. The advantage of this type of addressing is that you can
modify the address of the statement dynamically during program processing.

Pointer for Memory-Indirect Addressing
Program statements that work with memory-indirect addressing are made up of an instruction, an
address identifier, and an offset (the offset must be given in square brackets).

Example of a pointer in double word format:

L P#8.7 Load the value of the pointer into accumulator 1.

T MD2 Transfer the pointer to MD2.

A I [MD2] Query the signal state at input bit I 8.7 and

= Q [MD2] assign the signal state to output bit Q 8.7.

Pointer for Area-Internal and Area-Crossing Addressing
The program statements that work with these types of addressing are comprised of an instruction
and the following parts: address identifier, address register identifier, offset.

The address register (AR1/2) and the offset must be specified together in square brackets.

Example for Area-Internal Addressing
The pointer contains no indication of a memory area:

L P#8.7 Load the value of the pointer into accumulator 1.

LAR1 Load the pointer from accumulator 1 into AR1.

A I [AR1, P#0.0] Query the signal state at input bit I 8.7 and

= Q [AR1, P#1.1] assign the signal state to output bit Q 10.0.

The offset 0.0 has no influence. Output 10.0 is calculated from 8.7 (AR1) plus the offset 1.1. The
result is 10.0 and not 9.8, see pointer format.

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 577

Example for Area-Crossing Addressing
In area-crossing addressing the memory area is indicated in the pointer (in the example I and Q).

L P# I8.7 Load the value of the pointer and the area identification in

accumulator 1.

LAR1 Load memory area I and the address 8.7 into AR1.

L P# Q8.7 Load the value of the pointer and the area identification in
accumulator 1.

LAR2 Load memory area Q and the address 8.7 into AR2.

A [AR1, P#0.0] Query the signal state at input bit I 8.7 and

= [AR2, P#1.1] assign the signal state to output bit Q 10.0.

The offset 0.0 has no influence. Output 10.0 is calculated from 8.7 (AR2) plus the offset 1.1. The
result is 10.0 and not 9.8, see pointer format.

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
578 Manual, 04/2017, A5E41552389-AA

26.3.4.4 Block for Changing the Pointer

Using the sample block FC3 "Routing Pointers" it is possible to change the bit or byte address of a
pointer. The pointer to be changed is transferred to the variable "pointer" when the FC is called
(area-internal and area-crossing pointers in double word format can be used).

With the parameter "Bit-Byte" you can change the bit or byte address of the pointer (0: bit address,
1: byte address). The variable "Inc_Value" (in integer format) specifies the number that should be
added to or subtracted from the address contents. You can also specify negative numbers to
decrement the address.

With a bit address change, there is a carry over to the byte address (also when decrementing), for
example:

• P#M 5.3, Bit_Byte = 0, Inc_Value = 6 => P#M 6.1 or

• P#M 5.3, Bit_Byte = 0, Inc_Value = -6 => P#M 4.5.

The area information of the pointer is not influenced by the function.

The FC intercepts an overflow/underflow of the pointer. In this case the pointer is not changed and
the output variable "RET_VAL" (error handling possible) is set to "1" (until the next correct
processing of FC3). This is the case where:

• 1. Bit address is selected and Inc_Value >7, or <-7

• 2. Bit or byte address is selected and the change would result in a "negative" byte address

• 3. Bit or byte address is selected and the change would result in an illegally large byte address.

Sample Block in STL to Change the Pointer
FUNCTION FC 3: BOOL

TITLE =Routing Pointers

//FC3 can be used to change pointers.

AUTHOR : AUT1CS1

FAMILY : INDADDR

NAME : ADDRPOINT

VERSION : 0.0

VAR_INPUT

 Bit_Byte : BOOL ; //0: Bit address, 1: byte address

 Inc_Value : INT ; //Increment (if value neg. => decrement/if value
pos. => increment)

END_VAR

VAR_IN_OUT

 Pointer : DWORD ; //Pointer to be changed

END_VAR

VAR_TEMP

 Inc_Value1 : INT ; //Interim value increment

 Pointer1 : DWORD ; //Interim value pointer

 Int_Value : DWORD ; //Auxiliary variable

END_VAR

BEGIN

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 579

NETWORK

TITLE =

//The block intercepts changes that change the area information of the
pointer

//or that lead to "negative" pointers automatically.

 SET ; //Set RLO to 1 and

 R #RET_VAL; //reset overflow

 L #Pointer; //Supply value to temporary

 T #Pointer1; //interim value pointer

 L #Inc_Value; //Supply value of temporary

 T #Inc_Value1; //interim value increment

 A #Bit_Byte; //If =1, byte address instruction

 JC Byte; //Jump to byte address calculation

 L 7; //If value of increment > 7,

 L #Inc_Value1;

 <I ;

 S #RET_VAL; //then set RET_VAL and

 JC End; //jump to End

 L -7; //If value of increment < -7,

 <I ;

 S #RET_VAL; //then set RET_VAL and

 JC End; //jump to End

 A L 1.3; //If bit 4 of the value = 1 (Inc_Value negative)

 JC neg; //then jump to bit address subtraction

 L #Pointer1; //Load pointer address information

 L #Inc_Value1; //and add the increment

 +D ;

 JU test; //Jump to test for negative result

neg: L #Pointer1; //Load pointer address information

 L #Inc_Value1; //Load the increment

 NEGI ; //Negate the negative value,

 -D ; //subtract the value

 JU test; //and jump to test

Byte: L 0; //Start of byte address change

 L #Inc_Value1; //If increment >=0, then

 <I ;

 JC pos; //jump to addition, otherwise

 L #Pointer1; //Load pointer address information,

 L #Inc_Value1; //load the increment,

 NEGI ; //negate the negative value,

 SLD 3; //shift the increment 3 digits to the left,

 -D ; //subtract the value,

 JU test; //and jump to test

pos: SLD 3; //Shift the increment 3 digits to the left

 L #Pointer1; //Load pointer address information

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
580 Manual, 04/2017, A5E41552389-AA

 +D ; //Add increment

test: T #Int_Value; //Transfer results of calculation to Int_Value

 A L 7.3; //If invalid byte address (too large or

 S #RET_VAL; //negative), then set RET_VAL

 JC End; //and jump to End,

 L #Int_Value; //otherwise transfer result

 T #Pointer; //to pointer

End: NOP 0;

END_FUNCTION

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 581

26.3.4.5 Format of the Parameter Type ANY

STEP 7 stores the parameter type ANY in 10 bytes. When constructing a parameter of the type
ANY, you must ensure that all 10 bytes are occupied because the called block evaluates the whole
contents of the parameter. If, for example, you specify a DB number in byte 4, you must also
explicitly specify the memory area in byte 6.

STEP 7 manages the data of elementary and complex data types differently from the data for
parameter types.

ANY Format for Data Types
For elementary and complex data types STEP 7 stores the following data:

• Data types

• Repetition factor

• DB number

• Memory area in which the information is stored

• Start address of the data

The repetition factor identifies a quantity of the indicated data type to be transferred by the
parameter type ANY. This means you can specify a data area and also use arrays and structures
in conjunction with the parameter type ANY. STEP 7 identifies arrays and structures as a number
(with the help of the repetition factor) of data types. If, for example, 10 words are to be transferred,
the value 10 must be entered for the repetition factor and the value 04 must be entered for the data
type.

The address is stored in the format Byte.Bit where the byte address is stored in bits 0 to 2 of
byte 7, in bits 0 to 7 of byte 8, and in bits 3 to 7 of byte 9. The bit address is stored in bits 0 to 2 of
byte 9.

With a null pointer of the type NIL all bytes from byte 1 are assigned 0.

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
582 Manual, 04/2017, A5E41552389-AA

The following tables show the coding of the data types or of the memory areas for the parameter
type ANY.

 Coding of the Data Types

Hexadecimal Code Data Type Description
b#16#00 NIL Null pointer
b#16#01 BOOL Bits
b#16#02 BYTE Bytes (8 bits)
b#16#03 CHAR Characters (8 bits)
b#16#04 WORD Words (16 bits)
b#16#05 INT Integers (16 bits)
B#16#06 DWORD Words (32 bits)
b#16#07 DINT Double integers (32 bits)
b#16#08 REAL Floating-point numbers (32 bits)
b#16#09 DATE Date
b#16#0A TIME_OF_DAY (TOD) Time of day
b#16#0B TIME Time
b#16#0C S5TIME Data type S5TIME
b#16#0E DATE_AND_TIME (DT) Date and time (64 bits)
b#16#13 STRING String

 Coding of the Memory Areas

Hexadecimal Code Area Description
b#16#80 P I/O area
b#16#81 I Input area
b#16#82 Q Output area
b#16#83 M Bit memory area
b#16#84 DB Data block
b#16#85 DI Instance data block
b#16#86 L Local data (L stack)
b#16#87 V Previous local data

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 583

ANY Format for Parameter Types
For parameter types STEP 7 stores the data type and the address of the parameters. The
repetition factor is always 1. Bytes 4, 5, and 7 are always 0. Bytes 8 and 9 indicate the number of
the timer, counter, or block.

The following table shows the coding of the data types for the parameter type ANY for parameter
types.

Hexadecimal Code Data Type Description

b#16#17 BLOCK_FB FB number
b#16#18 BLOCK_FC FC number
b#16#19 BLOCK_DB DB number
b#16#1A BLOCK_SDB SDB number
b#16#1C COUNTER Counter number
b#16#1D TIMER Timer number

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
584 Manual, 04/2017, A5E41552389-AA

26.3.4.6 Using the Parameter Type ANY

You can define formal parameters for a block that are suitable for actual parameters of any data
type. This is particularly useful when the data type of the actual parameter that is provided when
the block is called is unknown or can vary (and when any data type is permitted). In the variable
declaration of the block, you declare the parameter as data type ANY. You can then assign an
actual parameter of any data type in STEP 7.

STEP 7 assigns 80 bits of memory for a variable of the ANY data type. If you assign an actual
parameter to this formal parameter, STEP 7 codes the start address, the data type, and the length
of the actual parameter in the 80 bits. The called block analyzes the 80 bits of data saved for the
ANY parameter and obtains the information required for further processing.

Assigning an Actual Parameter to an ANY Parameter
If you declare the data type ANY for a parameter, you can assign an actual parameter of any data
type to the formal parameter. In STEP 7, you can assign the following data types as actual
parameters:

• Elementary data types: you specify the absolute address or the symbolic name of the actual
parameter.

• Complex data types: you specify the symbolic name of the data with a complex data type (for
example, arrays and structures).

• Timers, counters, and blocks: you specify the number (for example, T1, C20, or FB6).

• The following figure shows how data are transferred to an FC with parameters of the ANY data
type.

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 585

In this example, FC100 has three parameters (in_par1, in_par2, and in_par3) declared as the ANY
data type.

• When FB10 calls FC100, FB10 transfers an integer (the static variable speed), a word
(MW100), and a double word to DB10 (DB10.DBD40).

• When FB11 calls FC100, FB11 transfers an array of real numbers (the temporary variable
"Thermo"), a Boolean value (M 1.3), and a timer (T2).

Specifying a Data Area for an ANY Parameter
You can assign not only individual addresses (for example, MW100) to an ANY parameter but you
can also specify a data area. If you want to assign a data area as the actual parameter, use the
following format of a constant to specify the amount of data to be transferred:

p# Area ID Byte.Bit Data Type Repetition Factor

For the data type element, you can specify all elementary data types and the data type
DATE_AND_TIME in the format for constants. If the data type is not BOOL, the bit address of 0
(x.0) must be specified. The following table illustrates examples of the format for specifying
memory areas to be transferred to an ANY parameter.

Actual Parameter Description

p# M 50.0 BYTE 10 Specifies 10 bytes in the byte memory area:
MB50 to MB59.

p# DB10.DBX5.0 S5TIME 3 Specifies 3 units of data of the data type S5TIME, that are located in
DB10:
DB byte 5 to DB byte 10.

p# Q 10.0 BOOL 4 Specifies 4 bits in the output area:
Q 10.0 to Q 10.3.

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
586 Manual, 04/2017, A5E41552389-AA

Example for Using the Parameter Type ANY
The following example shows how you can copy a memory area of 10 bytes using the parameter
type ANY and the system function SFC20 BLKMOV.

STL Explanation
FUNCTION FC10: VOID
VAR_TEMP
 Source : ANY;
 Target : ANY;
END_VAR
BEGIN
LAR1 P#Source;

L B#16#10;
T LB[AR1,P#0.0];

L B#16#02;
T LB[AR1,P#1.0];

L 10;
T LW[AR1,P#2.0];

L 22;
T LW[AR1,P#4.0];
L P#DBX11.0;
T LD[AR1,P#6.0];

LAR1 P#Target;

L B#16#10;
T LB[AR1,P#0.0];

L B#16#02;
T LB[AR1,P#1.0];

L 10;
T LW[AR1,P#2.0];

L 33;
T LW[AR1,P#4.0];
L P#DBX202.0;
T LD[AR1,P#6.0];

CALL SFC 20 (
 SRCBLK := Source,
 RET_VAL := MW 12,
 DSTBLK := Target
);
END_FUNCTION

Load the start address of the ANY pointer in AR1.

Load the syntax ID and
transfer it to the ANY pointer.

Load data type Byte and
transfer it to the ANY pointer.

Load 10 bytes and
transfer them to the ANY pointer.

Source is DB22, DBB11

Load the start address of the ANY pointer in AR1.

Load the syntax ID and
transfer it to the ANY pointer.

Load data type Byte and
transfer it to the ANY pointer.

Load 10 bytes and
transfer them to the ANY pointer.

Target is DB33, DBB202

Call the system function BLKMOV

Evaluate the BR bit and MW12

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 587

26.3.4.7 Assigning Data Types to Local Data of Logic Blocks

With STEP 7, the data types (elementary and complex data types and parameter types) that can
be assigned to the local data of a block in the variable declaration are restricted.

Valid Data Types for the Local Data of an OB
The following table illustrates the restrictions (--) for declaring local data for an OB. Since you
cannot call an OB, an OB cannot have parameters (input, output, or in/out). Since an OB does not
have an instance DB, you cannot declare any static variables for an OB. The data types of the
temporary variables of an OB can be elementary or complex data types and the data type ANY.

The valid assignments are shown by the  symbol.

Declaration

Type
Elementary
Data Types

Complex
Data Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY
Input -- -- -- -- -- -- --
Output -- -- -- -- -- -- --
In/out -- -- -- -- -- -- --
Static -- -- -- -- -- -- --
Temporary (1) (1) -- -- -- -- (1)

 (1) Located in the L stack of the OB.

Valid Data Types for the Local Data of an FB
The following table illustrates the restrictions (-) for declaring local data for an FB. Due to the
instance DB, there are less restrictions when declaring local data for an FB. When declaring input
parameters there are no restrictions whatsoever; for an output parameter you cannot declare any
parameter types, and for in/out parameters only the parameter types POINTER and ANY are
permitted. You can declare temporary variables as the ANY data type. All other parameter types
are illegal.

The valid assignments are shown by the  symbol.

Declaration

Type
Elementary
Data Types

Complex
Data Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY
Input       
Output   -- -- -- -- --
In/out  (1)(3) -- -- --  
Static   -- -- -- -- --
Temporary (2) (2) -- -- -- -- (2)

 1 Stored as a reference (48-bit pointer) in the instance data block.
 2 Located in the L stack of the FB.
3 STRINGS can be defined in the default length only.

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
588 Manual, 04/2017, A5E41552389-AA

Valid Data Types for the Local Data of an FC
The following table illustrates the restrictions (-) for declaring local data for an FC. Since an FC
does not have an instance DB, it also has no static variables. For input, output, and in/out
parameters of an FC, only the parameter types POINTER and ANY are permitted. You can also
declare temporary variables of the ANY parameter type.

The valid assignments are shown by the  symbol.

Declaration

Type
Elementary
Data Types

Complex
Data Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY
Input  (2)     
Output  (2) -- -- --  
In/out  (2) -- -- --  
Temporary (1) (1) -- -- -- -- (1)

 1 Located in the L stack of the FC.
 2 STRINGS can be defined in the default length only.

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 589

26.3.4.8 Permitted Data Types when Transferring Parameters

Rules for Transferring Parameters Between Blocks
When you assign actual parameters to formal parameters, you can specify either an absolute
address, a symbolic name, or a constant. STEP 7 restricts the valid assignments for the various
parameters. Output and in/out parameters, for example, cannot be assigned a constant value
(since the purpose of an output or an in/out parameter is to change its value). These restrictions
apply particularly to parameters with complex data types to which neither an absolute address nor
a constant can be assigned.

The following tables illustrate the restrictions (--) involving the data types of actual parameters that
are assigned to formal parameters.

The valid assignments are shown by the  symbol.

 Elementary Data Types

Declaration
Type

Absolute
Address

Symbolic Name
(in the Symbol Table)

Temporary Local
Symbol

Constant

Input    
Output    --
In/out    --

 Complex Data Types

Declaration
Type

Absolute
Address

Symbolic Name of the DB
Element

(in the Symbol Table)

Temporary Local
Symbol

Constant

Input --   --
Output --   --
In/out --   --

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
590 Manual, 04/2017, A5E41552389-AA

Valid Data Types for the Call of a Function by a Function
You can assign the formal parameters of a calling FC to the formal parameters of a called FC. The
following figure illustrates the formal parameters of FC10 that are assigned as actual parameters to
the formal parameters of FC12.

STEP 7 restricts the assignment of formal parameters of an FC as actual parameters for the formal
parameters of a different FC. You cannot, for example, assign parameters with complex data types
or a parameter type as the actual parameter.

The following table shows the permitted data types () when one FC calls another FC.

Declaration Type Elementary

Data Types
Complex
Data
Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY

Input −> Input  -- -- -- -- -- --
Input −> Output -- -- -- -- -- -- --
Input −> In/out -- -- -- -- -- -- --
Output −> Input -- -- -- -- -- -- --
Output −> Output  -- -- -- -- -- --
Output −> In/out -- -- -- -- -- -- --
In/out −> Input  -- -- -- -- -- --
In/out −> Output  -- -- -- -- -- --
In/out −> In/out  -- -- -- -- -- --

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 591

Valid Data Types for the Call of a Function by a Function Block
You can assign the formal parameters of a calling FB to the formal parameters of a called FC. The
following figure illustrates the formal parameters of FB10 that are assigned as actual parameters to
the formal parameters of FC12.

STEP 7 restricts the assignment of the formal parameters of an FB to the formal parameters of an
FC. You cannot, for example, assign parameters of the parameter type as actual parameters. The
following table shows the permitted data types () when an FB calls an FC.

Declaration Type Elementary

Data Types
Complex

Data
Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY
Input −> Input   -- -- -- -- --
Input −> Output -- -- -- -- -- -- --
Input −> In/out -- -- -- -- -- -- --
Output −> Input -- -- -- -- -- -- --
Output −> Output   -- -- -- -- --
Output −> In/out -- -- -- -- -- -- --
In/out −> Input  -- -- -- -- -- --
In/out −> Output  -- -- -- -- -- --
In/out −> In/out  -- -- -- -- -- --

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
592 Manual, 04/2017, A5E41552389-AA

Valid Data Types for the Call of a Function Block by a Function
You can assign the formal parameters of a calling FC to the formal parameters of a called FB. The
following figure illustrates the formal parameters of FC10 that are assigned as actual parameters to
the formal parameters of FB12.

STEP 7 restricts the assignment of formal parameters of an FC to the formal parameters an FB.
You cannot, for example, assign parameters with a complex data type as actual parameters. You
can, however, assign input parameters of the parameter types TIMER, COUNTER, or BLOCK to
the input parameters of the called FB.

The following table shows the permitted data types () when an FC calls an FB.

Declaration Type Elementary

Data Types
Complex

Data
Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY
Input −> Input  --    -- --
Input −> Output -- -- -- -- -- -- --
Input −> In/out -- -- -- -- -- -- --
Output −> Input -- -- -- -- -- -- --
Output −> Output  -- -- -- -- -- --
Output −> In/out -- -- -- -- -- -- --
In/out −> Input  -- -- -- -- -- --
In/out −> Output  -- -- -- -- -- --
In/out −> In/out  -- -- -- -- -- --

 Appendix
 26.3 Data Types and Parameter Types

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 593

Valid Data Types for the Call of a Function Block by a Function Block
You can assign the formal parameters of a calling FB to the formal parameters of a called FB. The
following figure illustrates the formal parameters of FB10 that are assigned as actual parameters to
the formal parameters of FB12.

STEP 7 restricts the assignment of the formal parameters of an FB to the formal parameters of
another FB. You cannot, for example, assign input and output parameters with complex data types
as the actual parameters for the input and output parameters of a called FB. You can, however,
assign input parameters of the parameter types TIMER, COUNTER, or BLOCK to the input
parameters of the called FB.

The following table shows the permitted data types () when an FB calls another FB.

Declaration Type Elementary

Data Types
Complex

Data
Types

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

Parameter
Type

 TIMER COUNTER BLOCK POINTER ANY
Input −> Input      -- --
Input −> Output -- -- -- -- -- -- --
Input −> In/out -- -- -- -- -- -- --
Output −> Input -- -- -- -- -- -- --
Output −> Output   -- -- -- -- --
Output −> In/out -- -- -- -- -- -- --
In/out −> Input  -- -- -- -- -- --
In/out −> Output  -- -- -- -- -- --
In/out −> In/out  -- -- -- -- -- --

Appendix
26.3 Data Types and Parameter Types

 Programming with STEP 7
594 Manual, 04/2017, A5E41552389-AA

26.3.4.9 Transferring to IN_OUT Parameters of a Function Block

When complex data types are transferred to IN_OUT parameters of a function block (FB) the
address of the variable is transferred (call by reference).

When elementary data types are transferred to IN_OUT parameters of a function block the values
are copied into the instance data block before the function block is started and copied out of the
instance data block after the function block is ended.

This means IN_OUT variables of elementary data type can be initialized with a value.

It is not possible, however, to specify a constant in place of an IN_OUT variable as the actual
parameter in a call because a constant cannot be written to.

Variables of the data type STRUCT or ARRAY cannot be initialized because only one address is in
the instance data block in this case.

 Appendix
 26.4 Working with Older Projects

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 595

26.4 Working with Older Projects

26.4.1 Converting Version 2 Projects

In STEP 7 you can also open version 2 projects using the menu command File > Open.

Version 2 projects/libraries can be converted (migrated) to your current STEP 7 version using the
menu command File > Save As and the option "Rearrange before saving." The project is then
saved as a project with the current STEP 7 version.

You can edit projects and libraries from older STEP 7 versions retaining their format and save them
by selecting the older STEP 7 version as the file type in the "Save Project As" dialog box. For
example, to edit the objects with STEP 7 version 2.1, select "Project 2.x" or "Library 2.x" here (it is
not possible to save as Version 2 as from Version 5.1 on. Also refer to Editing Version 2 projects
and libraries).

Designation of the File Type

 STEP 7 V3 From STEP 7 V4

File type of the current version Project3.x
Library3.x

Project
Library

File type of the older version Project2.x
Library2.x

Project2.x
Library2.x

This means you only have access to the scope of functions of the older STEP 7 version. You can,
however, still continue to manage the projects and libraries with the older STEP 7 version.

 Note

The upgrade from version 3 to versions 4 and higher only involves a change in name: the format has
remained identical. Therefore there is no file type "Project3.x" in STEP 7 V4.

Procedure
To convert version 2 projects to the format of the current STEP 7 version, proceed as follows:

1. Execute the "Save As" command in the File menu with the "Rearrange before saving" option
for the project.

2. Select the file type "Project" in the "Save Project As" dialog box and click the "Save" button.

To convert version 2 projects to the current STEP 7 version while retaining their format, proceed as
follows:

1. Execute step 1 above if necessary.

2. Select the file type of the older STEP 7 version in the "Save Project As" dialog box and click
the "Save" button.

Appendix
26.5 Expanding DP Slaves That Were Created with Previous Versions of STEP 7

 Programming with STEP 7
596 Manual, 04/2017, A5E41552389-AA

26.5 Expanding DP Slaves That Were Created with Previous Versions
of STEP 7

Constellations That Can Be Formed by Importing New *.GSD Files
New DP slaves can be accepted by the HW Config if you install new device database files
(*.GSD files) into the Hardware Catalog. After installation, they are available in the Other Field
Devices folder.

You cannot reconfigure or expand a modular DP slave in the usual manner if all of the following
conditions exist:

• The slave was configured with a previous version of STEP 7.

• The slave was represented in the Hardware Catalog by a type file rather than a *.GSD file.

• A new *.GSD file was installed over the slave.

Remedy
If you want to use the DP slave with new modules that are described in the *.GSD file:

• Delete the DP slave and configure it again. Then the DP slave is described completely by the
*.GSD file, not by the type file.

If you do not want to use any new modules that are described only in the *.GSD file:

• Under PROFIBUS-DP in the Hardware Catalog window, select the "Other FIELD
DEVICES/Compatible PROFIBUS-DP Slaves" folder. STEP 7 moves the "old" type files into
this folder when they are replaced by new *.GSD files. In this folder you will find the modules
with which you can expand the already configured DP slave.

Constellation after Replacement of Type Files by GSD Files in STEP 7 V5.1 Service Pack 4
As of STEP 7 V5.1, Service Pack 4, the type files have been either updated or largely replaced by
GSD files. This replacement only affects the catalog profiles supplied with STEP 7, not any catalog
profiles that you may have created yourself.

DP slaves whose properties were previously determined by type files and are now determined by
GSD files are still located in the same place in the hardware catalog.

The "old" type files were not deleted but moved to another place in the hardware catalog. They are
now located in the catalog folder "Other field devices\Compatible PROFIBUS DP slaves\...".

Expanding an Existing DP Configuration with STEP 7, as of V5.1 Service Pack 4
If you edit a project that was created with a previous version of STEP 7 (earlier than V5.1, SP4)
and you want to expand a modular DP slave, then you cannot use the modules or submodules
taken from the usual place in the hardware catalog. In this case, use the DP slave found at "Other
FIELD DEVICES\Compatible PROFIBUS DP slaves\...".

Editing a DP Configuration with an Earlier Version of STEP 7 V5.1, SP4)
If you configure an "updated" DP slave with STEP 7 as of V5.1, Service Pack 4 and then edit the
project with a previous version of STEP 7 (earlier than STEP 7 V5.1, SP4), you will not be able to
edit this DP slave since the GSD file used is unknown to the previous version.

Remedy: You can install the required GSD file in the previous version of STEP 7. In this case, the
GSD file is stored in the project. If the project is subsequently edited with the current STEP 7
version will use the newly installed GSD file for the configuration.

 Appendix
 26.5 Expanding DP Slaves That Were Created with Previous Versions of STEP 7

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 597

Notes on STEP 7 V.2.1 Projects with GD Communication
• If you want to convert a project with global data from STEP 7 V2.1 to STEP 7 V5, you must first

open the GD table with STEP 7 V5.0 in the STEP 7 V2.1 project. The communication data
configured previously are automatically converted into the new structure via GD
communication.

• When you archive STEP 7 V2.1 projects, older programs (ARJ, PKZip...) may issue an error
message if the project contains files with names which are more than eight characters in
length. This message also appears if the MPI network in the STEP 7 V2.1 project was edited
with an ID which is more than 8 characters in length. In STEP 7 V2.1 projects with global data,
edit a name for the MPI network which is a maximum of eight characters in length before you
start to configure global data communication for the first time.

• If you want to rename a STEP 7 V2.1 project, you must reassign the headings of the columns
(CPUs) in the GD table by re-selecting the appropriate CPU. If you restore the old project
name, the assignments are displayed once more.

26.5.1 DP-Slaves with Missing or Faulty GSD Files

If you process older station configurations with STEP 7 Version 5.1, it is possible in rare cases that
the GSD file of a DP slave is missing or cannot be not compiled (for example, due to syntax errors
in the GSD file).

In this case STEP 7 generates a "dummy" slave that represents the configured slave, for example
after a station download to the programming device or after an older project has been opened and
processed further. This "dummy" slave can only be processed to a limited extent. You cannot
change the slave structure (DP identifiers) and the slave parameters. However, renewed
downloading to the station is possible. The original configuration of the slave is retained. The
complete DP slave can also be deleted.

Reconfiguring and Assigning Parameters to the DP Slave
If you wish to reconfigure or reassign parameters to the DP slave, you have to request an up-to-
date GSD file for this DP slave from the manufacturer and make it available by using the menu
command Options > Install GSD Files.

After the correct GSD file has been installed, it is used to represent the DP slave. The DP slave
contains its data and can be processed again completely.

Appendix
26.6 Sample Programs

 Programming with STEP 7
598 Manual, 04/2017, A5E41552389-AA

26.6 Sample Programs

26.6.1 Sample Projects and Sample Programs

The STEP 7 installation medium contains a number of useful sample projects that are listed below.
You will find the sample projects in the "open" dialog of the SIMATIC Manager ("Sample Projects"
tab). Other sample projects may also be added when optional packages are installed. For
information on these sample projects, refer to the documentation for the optional packages.

Examples and Sample Projects Included on

DVD
Described in this
Documentation

Description in
OB1

"ZEn01_01_STEP7_*" to "ZEn01_06_STEP7_*"
projects (getting started and exercises)

• Separate
Manual

•

"ZEn01_11_STEP7_DezP" project (sample
PROFIBUS DP configuration)

 • - -

"ZEn01_08_STEP7_Blending" project (industrial
blending process)

 • • -

"ZEn01_09_STEP7_Zebra" project (traffic signal
control at a zebra crossing/crosswalk)

• •

"Zen01_10_STEP7_COM_SFB" project (data
exchange between two S7-400 CPUs)

• •

"ZXX01_14_HSystem_S7400H project (starting
project for fault-tolerant systems)
"ZXX01_15_HSystem_RED_IO project (starting
project for fault-tolerant systems with redundant
I/O devices)

 •

 •

 Separate manual
 Separate manual

 •

 •

"Zen01_11_STEP7_COM_SFC1" and
"Zen01_12_STEP7_COM_SFC2" project (data
exchange using communication SFCs for non-
configured connections)

• •

Project "ZEn01_13_STEP7_PID-Temp" (Example
for temperature controllers FB 58 and FB 59)

 • •

Example of handling time-of-day interrupts •
Example of handling time-delay interrupts •
Example of masking and unmasking synchronous
errors

 •

Example of disabling and enabling interrupts and
asynchronous errors

 •

Example of the delayed processing of interrupts
and asynchronous errors

 •

The emphasis of the examples is not on teaching a particular programming style or the specialist
knowledge needed to control a particular process. The examples are simply intended to illustrate
the steps that must be followed to design a program.

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 599

Deleting and Installing the Supplied Sample Projects
The supplied sample projects can be deleted in the SIMATIC Manager and then reinstalled. To
install the sample projects, you must start the STEP 7 V5.0 setup program. The sample projects
can be installed selectively at a later date. Copies of the supplied sample projects and self-created
sample projects made using the menu command "Save As" can only be saved as user projects.

 Note

When STEP 7 is installed, the supplied sample projects are copied, unless otherwise specified. If
you have edited the supplied sample projects, these modified projects are overwritten with the
originals when STEP 7 is reinstalled.

For this reason, you should copy the supplied sample projects before making any changes and
then only edit the copies.

Appendix
26.6 Sample Programs

 Programming with STEP 7
600 Manual, 04/2017, A5E41552389-AA

26.6.2 Sample Program for an Industrial Blending Process

The sample program is makes use of information that you have already read in part 1 of the
manual about controlling an industrial blending process.

Task
Two ingredients (ingredient A and ingredient B) are mixed together in a mixing tank by an agitator.
The finished product is drained from the tank through a drain valve. The following figure shows a
diagram of the sample process.

Describing the Parts of a Process
Part 1 of the manual included a description of how you divide up the sample process into functional
areas and individual tasks. The individual areas are described below.

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 601

The area for ingredients A and B:
• The pipes for each of the ingredients are equipped with an inlet and a feed valve and feed

pump.

• The inlet pipes also have flow sensors.

• Turning on the feed pumps must be interlocked when the tank level sensor indicates that the
tank is full.

• The activation of the feed pumps must be interlocked when the drain valve is open.

• The inlet and feed valves must be opened at the earliest 1 second after starting the feed pump.

• The valves must be closed immediately after the feed pumps stop (signal from the flow sensor)
to prevent ingredients leaking from the pump.

• The activation of the feed pumps is combined with a time monitoring function, in other words,
within 7 seconds after the pumps start, the flow sensor must report a flow.

• The feed pumps must be turned off as quickly as possible if the flow sensor no longer signals a
flow while the feed pumps are running.

• The number of times that the feed pumps are started must be counted (maintenance interval).

Mixing tank area:

• The activation of the agitator motor must be interlocked when the tank level sensor indicates
"level below minimum" or the drain valve is open.

• The agitator motor sends a response signal after reaching the rated speed. If this signal is not
received within 10 seconds after the motor is activated, the motor must be turned off.

• The number of times that the agitator motor starts must be counted (maintenance interval).

• Three sensors must be installed in the mixing tank:

- Tank full: a normally closed contact. When the maximum tank level is reached, the contact
is opened.

- Level in tank above minimum: a normally open contact. If the minimum level is reached,
the contact is closed.

- Tank not empty: a normally open contact. If the tank is not empty, the contact is closed.

Drain area:
• Drainage of the tank is controlled by a solenoid valve.

• The solenoid valve is controlled by the operator, but must be closed again at the latest when
the "tank empty" signal is generated.

• Opening the drain valve is interlocked when

- the agitator motor is running

- the tank is empty

Appendix
26.6 Sample Programs

 Programming with STEP 7
602 Manual, 04/2017, A5E41552389-AA

Operator Station
To allow an operator to start, stop, and monitor the process, an operator station is also required.
The operator station is equipped with the following:

• Switches for controlling the most important stages of the process. Using the "reset
maintenance display" switch, you can turn off the maintenance display lamps for the motors
due for maintenance and reset the corresponding counters for the maintenance interval to 0.

• Display lamps to indicate the status of the process.

• The emergency stop switch.

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 603

26.6.2.1 Defining Logic Blocks

You structure the program by distributing the user program in various blocks and by establishing a
hierarchy for block calls.

Hierarchy of the Block Calls
The following figure shows the hierarchy of the blocks to be called in the structured program.

• OB1: The interface to the operating system of the CPU and contains the main program. In OB1
the blocks FB1 and FC1 are called and the specific parameters required to control the process
are transferred.

• FB1: The feed pump for ingredient A, the feed pump for ingredient B and the agitator motor can
be controlled by a single function block because the requirements (on, off, count applications
etc.) are identical.

• Instance DB 1-3: The actual parameters and the static data for controlling the feed pumps for
ingredient A, ingredient B and for the agitator motor are different and are therefore stored in
three instance DBs associated with FB1.

• FC1: The inlet and feed valves for ingredients A and B and the drain valve also use a common
logic block. As only the function "open and close" must be programmed, one single FC is
sufficient.

Appendix
26.6 Sample Programs

 Programming with STEP 7
604 Manual, 04/2017, A5E41552389-AA

26.6.2.2 Assigning Symbolic Names

Defining Symbolic Names
Symbols are used in the sample program and they must be defined in the symbol table using
STEP 7. The following tables show the symbolic names and the absolute addresses of the program
elements used.

Symbolic Addresses for Feed Pump, Agitator Motor, and Inlet Valves
Symbolic Name Address Data Type Description
Feed_pump_A_start I0.0 BOOL Starts the feed pump for ingredient A
Feed_pump_A_stop I0.1 BOOL Stops the feed pump for ingredient A
Flow_A I0.2 BOOL Ingredient A flowing
Inlet_valve_A Q4.0 BOOL Activates the inlet valve for ingredient A
Feed_valve_A Q4.1 BOOL Activates the feed valve for ingredient A
Feed_pump_A_on Q4.2 BOOL Lamp for "feed pump ingredient A running"
Feed_pump_A_off Q4.3 BOOL Lamp for "feed pump ingredient A not

running"
Feed_pump_A Q4.4 BOOL Activates the feed pump for ingredient A
Feed_pump_A_fault Q4.5 BOOL Lamp for "feed pump A fault"
Feed_pump_A_maint Q4.6 BOOL Lamp for "feed pump A maintenance"
Feed_pump_B_start I0.3 BOOL Starts the feed pump for ingredient B
Feed_pump_B_stop I0.4 BOOL Stops the feed pump for ingredient B
Flow_B I0.5 BOOL Ingredient B flowing
Inlet_valve_B Q5.0 BOOL Activates the inlet valve for ingredient A
Feed_valve_B Q5.1 BOOL Activates the feed valve for ingredient B
Feed_pump_B_on Q5.2 BOOL Lamp for "feed pump ingredient B running"
Feed_pump_B_off Q5.3 BOOL Lamp for "feed pump ingredient B not

running"
Feed_pump_B Q5.4 BOOL Activates the feed pump for ingredient B
Feed_pump_B_fault Q5.5 BOOL Lamp for "feed pump B fault"
Feed_pump_B_maint Q5.6 BOOL Lamp for "feed pump B maintenance"
Agitator_running I1.0 BOOL Response signal of the agitator motor
Agitator_start I1.1 BOOL Agitator start button
Agitator_stop I1.2 BOOL Agitator stop button
Agitator Q8.0 BOOL Activates the agitator
Agitator_on Q8.1 BOOL Lamp for "agitator running"
Agitator_off Q8.2 BOOL Lamp for "agitator not running"
Agitator_fault Q8.3 BOOL Lamp for "agitator motor fault"
Agitator_maint Q8.4 BOOL Lamp for "agitator motor maintenance"

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 605

Symbolic Addresses for Sensors and Displaying the Level of the Tank
Symbolic Name Address Data Type Description
Tank_below_max I1.3 BOOL Sensor "mixing tank not full"
Tank_above_min I1.4 BOOL Sensor "mixing tank above minimum level"
Tank_not_empty I1.5 BOOL Sensor "mixing tank not empty"
Tank_max_disp Q9.0 BOOL Lamp for "mixing tank full"
Tank_min_disp Q9.1 BOOL Lamp for "mixing tank below minimum level"
Tank_empty_disp Q9.2 BOOL Lamp for "mixing tank empty"

Symbolic Addresses for the Drain Valve
Symbolic Name Address Data Type Description
Drain_open I0.6 BOOL Button for opening the drain valve
Drain_closed I0.7 BOOL Button for closing the drain valve
Drain Q9.5 BOOL Activates the drain valve
Drain_open_disp Q9.6 BOOL Lamp for "drain valve open"
Drain_closed_disp Q9.7 BOOL Lamp for "drain valve closed"

Symbolic Addresses for the Other Program Elements
Symbolic Name Address Data Type Description
EMER_STOP_off I1.6 BOOL EMERGENCY STOP switch
Reset_maint I1.7 BOOL Reset switch for the maintenance lamps on all motors
Motor_block FB1 FB1 FB for controlling pumps and motor
Valve_block FC1 FC1 FC for controlling the valves
DB_feed_pump_A DB1 FB1 Instance DB for controlling feed pump A
DB_feed_pump_B DB2 FB1 Instance DB for controlling feed pump B
DB_agitator DB3 FB1 Instance DB for controlling the agitator motor

Appendix
26.6 Sample Programs

 Programming with STEP 7
606 Manual, 04/2017, A5E41552389-AA

26.6.2.3 Creating the FB for the Motor

What is Required of the FB?
The FB for the motor contains the following logical functions:

• There is a start and a stop input.

• A series of interlocks allow the operation of the devices (pumps and agitator motor). The status
of the interlocks is saved in the temporary local data (L stack) of OB1 ("Motor_enable,"
"Valve_enable") and is logically combined with the start and stop inputs when the FB for the
motor is processed.

• Feedback from the devices must appear within a certain time. Otherwise, it is assumed that an
error or fault has occurred. The function then stops the motor.

• The point in time and the duration of the response or error/fault cycle must be specified.

• If the start button is pressed and the motor enabled, the device switches itself on and runs until
the stop button is pressed.

• When the device is switched on, a timer starts to run. If the response signal from the device is
not received before the timer has expired, the device stops.

Specifying the Inputs and Outputs
The following figure shows the inputs and outputs of the general FB for the motor.

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 607

Defining the Parameters for the FB
If you use a multiple instance FB for the motor (for controlling both pumps and the motor) you must
define general parameter names for the inputs and outputs.

The FB for the motor in the sample process requires the following:

• It must have signals from the operator station to stop and start the motor and pumps.

• It requires a response signal from the motor and pumps to indicate that the motor is running.

• It must calculate the time between sending the signal to activate the motor and receiving the
response signal. If no response signal is received in this time, the motor must be switched off.

• It must turn the lamps on the operator station on and off.

• It supplies a signal to activate the motor.

These requirements can be specified as inputs and outputs to the FB. The following table shows
the parameters of the FB for the motor in our sample process.

Parameter Name Input Output In/Out

Start x
Stop x

Response x
Reset_Maint x
Timer_No x
Response_Time x
Fault x
Start_Dsp x
Stop_Dsp x
Maint x
Motor x

Appendix
26.6 Sample Programs

 Programming with STEP 7
608 Manual, 04/2017, A5E41552389-AA

Declaring the Variables of the FB for the Motor
You must declare the input, output, and in/out parameters of the FB for the motor.

Address Declaration Name Type Initial Value

0.0 IN Start BOOL FALSE
0.1 IN Stop BOOL FALSE
0.2 IN Response BOOL FALSE
0.3 IN Reset_Maint BOOL FALSE
2.0 IN Timer_No TIMER
4.0 IN Response_Time S5TIME S5T#0MS
6.0 OUT Fault BOOL FALSE
6.1 OUT Start_Dsp BOOL FALSE
6.2 OUT Stop_Dsp BOOL FALSE
6.3 OUT Maint BOOL FALSE
8.0 IN_OUT Motor BOOL FALSE
10.0 STAT Time_bin WORD W#16#0
12.0 STAT Time_BCD WORD W#16#0
14.0 STAT Starts INT 0
16.0 STAT Start_Edge BOOL FALSE

With FBs, the input, output, in/out, and static variables are saved in the instance DB specified in the
call statement. The temporary variables are stored in the L stack.

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 609

Programming the FB for the Motor
In STEP 7, every block that is called by a different block must be created before the block
containing its call. In the sample program, you must therefore create the FB for the motor before
OB1.

The code section of FB1 appears as follows in the STL programming language:

Network 1 Start/stop and latching

A(
O #Start
O #Motor
)
AN #Stop
= #Motor

Network 2 Startup monitoring

A #Motor
L #Response_Time
SD #Timer_No
AN #Motor
R #Timer_No
L #Timer_No
T #Time_bin
LC #Timer_No
T #Time_BCD
A #Timer_No
AN #Response
S #Fault
R #Motor

Network 3 Start lamp and fault reset

A #Response
= #Start_Dsp
R #Fault

Network 4 Stop lamp

AN #Response
= #Stop_Dsp

Network 5 Counting the starts

A #Motor
FP #Start_Edge
JCN lab1
L #Starts
+ 1
T #Starts

lab1: NOP 0

Network 6 Maintenance lamp

L #Starts
L 50
>=I
= #Maint

Appendix
26.6 Sample Programs

 Programming with STEP 7
610 Manual, 04/2017, A5E41552389-AA

Network 7 Reset counter for number of starts

A #Reset_Maint
A #Maint
JCN END
L 0
T #Starts

END: NOP 0

Creating the Instance Data Blocks
Create three data blocks and open them one after another. In the "New Data Block" dialog box
select the option "Data block referencing a function block." In the "Reference" list box select "FB1."
The data blocks are then specified as instance data blocks with a fixed assignment to FB1.

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 611

26.6.2.4 Creating the FC for the Valves

What is Required of the FC?
The function for the inlet and feed valves and for the drain valve contains the following logical
functions:

• There is an input for opening and an input for closing the valves.

• Interlocks allow the valves to be opened. The state of the interlocks is saved in the temporary
local data (L stack) of OB1 ("Valve_enable") and is logically combined with the inputs for
opening and closing when the FC for the valves is processed.

The following table shows the parameters that must be transferred to the FC.

Parameters for the Valves Input Output In/Out

Open x

Close x

Dsp_Open x

Dsp_Closed x

Valve x

Specifying the Inputs and Outputs
The following figure shows the inputs and outputs of the general FC for the valves. The devices
that call the FB for the motor transfer input parameters. The FC for the valves returns output
parameters.

Appendix
26.6 Sample Programs

 Programming with STEP 7
612 Manual, 04/2017, A5E41552389-AA

Declaring the Variables of the FC for the Valves
Just as with the FB for the motor, you must also declare the input, output, and in/out parameters for
the FC for the valves (see following variable declaration table).

Address Declaration Name Type Initial Value

0.0 IN Open BOOL FALSE
0.1 IN Close BOOL FALSE
2.0 OUT Dsp_Open BOOL FALSE
2.1 OUT Dsp_Closed BOOL FALSE
4.0 IN_OUT Valve BOOL FALSE

With FCs, the temporary variables are saved in the L stack. The input, output, and in/out variables
are saved as pointers to the logic block that called the FC. Additional memory space in the L stack
(after the temporary variables) is used for these variables.

Programming the FC for the Valves
The FC1 function for the valves must be created before OB1 since the called blocks must be
created before the calling blocks.

The code section of FC1 appears as shown below in the STL programming language:

Network 1 Open/close and latching

A(
O #Open
O #Valve
)
AN #Close
= #Valve

Network 2 Display "valve open"

A #Valve
= #Dsp_Open

Network 3 Display "valve closed"

AN #Valve
= #Dsp_Closed

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 613

26.6.2.5 Creating OB1

OB1 decides the structure of the sample program. OB1 also contains the parameters that are
transferred to the various functions, for example:

• The STL networks for the feed pumps and the agitator motor supply the FB for the motor with
the input parameters for starting ("Start"), stopping ("Stop"), for the response ("Response"), and
for resetting the maintenance display ("Reset_Maint"). The FB for the motor is processed in
every cycle of the PLC.

• If the FB for the motor is processed, the inputs Timer_No and Response_Time inform the
function of the timer being used and which time must be measured.

• The FC for the valves and the FB for the motors are processed in every program cycle of the
programmable controller because they are called in OB1.

The program uses the FB for the motor with different instance DBs to handle the tasks for
controlling the feed pumps and the agitator motor.

Declaring Variables for OB1
The variable declaration table for OB1 is shown below. The first 20 bytes contain the start
information of OB1 and must not be modified.

Address Declaration Name Type

0.0 TEMP OB1_EV_CLASS BYTE
1.0 TEMP OB1_SCAN1 BYTE
2.0 TEMP OB1_PRIORITY BYTE
3.0 TEMP OB1_OB_NUMBR BYTE
4.0 TEMP OB1_RESERVED_1 BYTE
5.0 TEMP OB1_RESERVED_2 BYTE
6.0 TEMP OB1_PREV_CYCLE INT
8.0 TEMP OB1_MIN_CYCLE INT
10.0 TEMP OB1_MAX_CYCLE INT
12.0 TEMP OB1_DATE_TIME DATE_AND_TIME
20.0 TEMP Enable_motor BOOL
20.1 TEMP Enable_valve BOOL
20.2 TEMP Start_fulfilled BOOL
20.3 TEMP Stop_fulfilled BOOL
20.4 TEMP Inlet_valve_A_open BOOL
20.5 TEMP Inlet_valve_A_closed BOOL
20.6 TEMP Feed_valve_A_open BOOL
20.7 TEMP Feed_valve_A_closed BOOL
21.0 TEMP Inlet_valve_B_open BOOL
21.1 TEMP Inlet_valve_B_closed BOOL
21.2 TEMP Feed_valve_B_open BOOL
21.3 TEMP Feed_valve_B_closed BOOL
21.4 TEMP Open_drain BOOL
21.5 TEMP Close_drain BOOL
21.6 TEMP Valve_closed_fulfilled BOOL

Appendix
26.6 Sample Programs

 Programming with STEP 7
614 Manual, 04/2017, A5E41552389-AA

Creating the Program for OB1
In STEP 7, every block that is called by a different block must be created before the block
containing its call. In the sample program, you must therefore create both the FB for the motor and
the FC for the valves before the program in OB1.

The blocks FB1 and FC1 are called more than once in OB1; FB1 is called with different instance
DBs:

The code section of OB1 appears as shown below in the STL programming language:

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 615

Network 1 Interlocks for feed pump A

A "EMER_STOP_off"
A "Tank_below_max"
AN "Drain"
= #Enable_Motor

Network 2 Calling FB Motor for ingredient A

A "Feed_pump_A_start"
A #Enable_Motor
= #Start_Fulfilled
A(
O "Feed_pump_A_stop"
ON #Enable_Motor
)
= #Stop_Fulfilled
CALL "Motor_block", "DB_feed_pump_A"
 Start :=#Start_Fulfilled
 Stop :=#Stop_Fulfilled
 Response :="Flow_A"
 Reset_Maint :="Reset_maint"
 Timer_No :=T12
 Reponse_Time:=S5T#7S
 Fault :="Feed_pump_A_fault"
 Start_Dsp :="Feed_pump_A_on"
 Stop_Dsp :="Feed_pump_A_off"
 Maint :="Feed_pump_A_maint"
 Motor :="Feed_pump_A"

Network 3 Delaying the valve enable ingredient A

A "Feed_pump_A"
L S5T#1S
SD T 13
AN "Feed_pump_A"
R T 13
A T 13
= #Enable_Valve

Network 4 Inlet valve control for ingredient A

AN "Flow_A"
AN "Feed_pump_A"
= #Close_Valve_Fulfilled
CALL "Valve_block"
 Open :=#Enable_Valve
 Close :=#Close_Valve_Fulfilled
 Dsp_Open :=#Inlet_Valve_A_Open
 Dsp_Closed:=#Inlet_Valve_A_Closed
 Valve :="Inlet_Valve_A"

Appendix
26.6 Sample Programs

 Programming with STEP 7
616 Manual, 04/2017, A5E41552389-AA

Network 5 Feed valve control for ingredient A

AN "Flow_A"
AN "Feed_pump_A"
= #Close_Valve_Fulfilled
CALL "Valve_block"
 Open :=#Enable_Valve
 Close :=#Close_Valve_Fulfilled
 Dsp_Open :=#Feed_Valve_A_Open
 Dsp_Closed:=#Feed_Valve_A_Closed
 Valve :="Feed_Valve_A"

Network 6 Interlocks for feed pump B

A "EMER_STOP_off"
A "Tank_below_max"
AN "Drain"
= "Enable_Motor

Network 7 Calling FB Motor for ingredient B

A "Feed_pump_B_start"
A #Enable_Motor
= #Start_Fulfilled
A(
O "Feed_pump_B_stop"
ON #Enable_Motor
)
= #Stop_Fulfilled
CALL "Motor_block", "DB_feed_pump_B"
 Start :=#Start_Fulfilled
 Stop :=#Stop_Fulfilled
 Response :="Flow_B"
 Reset_Maint :="Reset_maint"
 Timer_No :=T14
 Reponse_Time:=S5T#7S
 Fault :="Feed_pump_B_fault"
 Start_Dsp :="Feed_pump_B_on"
 Stop_Dsp :="Feed_pump_B_off"
 Maint :="Feed_pump_B_maint"
 Motor :="Feed_pump_B"

Network 8 Delaying the valve enable ingredient B

A "Feed_pump_B"
L S5T#1S
SD T 15
AN "Feed_pump_B"
R T 15
A T 15
= #Enable_Valve

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 617

Network 9 Inlet valve control for ingredient B

AN "Flow_B"
AN "Feed_pump_B"
= #Close_Valve_Fulfilled
CALL "Valve_block"
 Open :=#Enable_Valve
 Close :=#Close_Valve_Fulfilled
 Dsp_Open :=#Inlet_Valve_B_Open
 Dsp_Closed:=#Inlet_Valve_B_Closed
 Valve :="Inlet_Valve_B"

Network 10 Feed valve control for ingredient B

AN "Flow_B"
AN "Feed_pump_B"
= #Close_Valve_Fulfilled
CALL "Valve_block"
 Open :=#Enable_Valve
 Close :=#Close_Valve_Fulfilled
 Dsp_Open :=#Feed_Valve_B_Open
 Dsp_Closed:=#Feed_Valve_B_Closed
 Valve :="Feed_Valve_B"

Network 11 Interlocks for agitator

A "EMER_STOP_off"
A "Tank_above_min"
AN "Drain"
= #Enable_Motor

Network 12 Calling FB Motor for agitator

A "Agitator_start"
A #Enable_Motor
= #Start_Fulfilled
A(
O "Agitator_stop"
ON #Enable_Motor
)
= #Stop_Fulfilled
CALL "Motor_block", "DB_Agitator"
 Start :=#Start_Fulfilled
 Stop :=#Stop_Fulfilled
 Response :="Agitator_running"
 Reset_Maint :="Reset_maint"
 Timer_No :=T16
 Reponse_Time:=S5T#10S
 Fault :="Agitator_fault"
 Start_Dsp :="Agitator_on"
 Stop_Dsp :="Agitator_off"
 Maint :="Agitator_maint"
 Motor :="Agitator"

Appendix
26.6 Sample Programs

 Programming with STEP 7
618 Manual, 04/2017, A5E41552389-AA

Network 13 Interlocks for drain valve

A "EMER_STOP_off"
A "Tank_not_empty"
AN "Agitator"
= "Enable_Valve

Network 14 Drain valve control

A "Drain_open"
A #Enable_Valve
= #Open_Drain
A(
O "Drain_closed"
ON #Enable_Valve
)
= #Close_Drain
CALL "Valve_block"
 Open :=#Open_Drain
 Close :=#Close_Drain
 Dsp_Open :="Drain_open_disp"
 Dsp_Closed :="Drain_closed_disp"
 Valve :="Drain"

Network 15 Tank level display

AN "Tank_below_max"
= "Tank_max_disp"
AN "Tank_above_min"
= "Tank_min_disp"
AN "Tank_not_empty"
= "Tank_empty_disp"

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 619

26.6.3 Example of Handling Time-of-Day Interrupts

Structure of the User Program "Time-of-Day Interrupts"

FC12

OB10

OB1 and OB80

26.6.3.1 Structure of the User Program "Time-of-Day Interrupts"

Task
Output Q 4.0 should be set in the time from Monday, 5.00 am to Friday, 8.00 pm. In the time from
Friday, 8.00 pm to Monday, 5.00 am the output Q 4.0 should be reset.

Translating into a User Program
The following table shows the sub-tasks of the blocks used.

Block Sub-Task

OB1 Calls the function FC12
FC12 Depending on the state of the output Q 4.0, the time-of-day interrupt status, and the

inputs I 0.0 and I 0.1
• Specify the starting time
• Set the time-of-day interrupt
• Activate the time-of-day interrupt
• CAN_TINT

OB10 Depending on the current day of the week
• Specify the starting time
• Set or reset output Q 4.0
• Set next time-of-day interrupt
• Activate next time-of-day interrupt

OB80 Set output Q 4.1
Store start event information of OB80 in bit memory area

Appendix
26.6 Sample Programs

 Programming with STEP 7
620 Manual, 04/2017, A5E41552389-AA

Addresses Used
The following table shows the shared addresses used. The temporary local variables are declared
in the declaration section of the respective block.

Address Meaning

I0.0 Input to enable "set time-of-day interrupt" and "activate time-of-day interrupt"
I0.1 Input to cancel a time-of-day interrupt
Q4.0 Output set/reset by the time-of-day interrupt OB (OB10)
Q4.1 Output set by a time error (OB80)
MW16 STATUS of the time-of-day interrupt (SFC31 "QRY_TINT")
MB100 to MB107 Memory for start event information of OB10 (time-of-day only)
MB110 to MB129 Memory for start event information of OB80 (time error)
MW200 RET_VAL of SFC28 "SET_TINT"
MB202 Binary result (status bit BR) buffer for SFCs
MW204 RET_VAL of SFC30 "ACT_TINT"
MW208 RET_VAL of SFC31 "QRY_TINT"

System Functions and Functions Used
The following system functions are used in the programming example:

• SFC28 "SET_TINT" : Set Time-of-Day Interrupt

• SFC29 "CAN_TINT" : Cancel Time-of-Day Interrupt

• SFC30 "ACT_TINT" : Activate Time-of-Day Interrupt

• SFC31 "QRY_TINT" : Query Time-of-Day Interrupt

• FC3 "D_TOD_DT" : Combine DATE and TIME_OF_DAY to DT

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 621

26.6.3.2 FC12

Declaration Section
The following temporary local variables are declared in the declaration section of FC12:

Variable Name Data Type Declaration Comment

IN_TIME TIME_OF_DAY TEMP Start time
IN_DATE DATE TEMP Start date
OUT_TIME_DATE DATE_AND_TIME TEMP Start date/time converted
OK_MEMORY BOOL TEMP Enable for setting time-of-day interrupt

STL Code Section
Enter the following STL user program in the code section of FC12:

STL (FC12) Explanation

Network 1

 CALL SFC 31

 OB_NO := 10

 RET_VAL:= MW 208

 STATUS := MW 16

Network 2:

 AN Q 4.0

 JC mond

 L D#1995-1-27

 T #IN_DATE

 L TOD#20:0:0.0

 T #IN_TIME

 JU cnvt

mond: L D#1995-1-23

 T #IN_DATE

 L TOD#5:0:0.0

 T #IN_TIME

cnvt: NOP 0

SFC QRY_TINT

Query STATUS of time-of-day interrupts

Specify start time dependent on Q 4.0 (in
variable

#IN_DATE and #IN_TIME)

Start date is a Friday

Start date is a Monday

Appendix
26.6 Sample Programs

 Programming with STEP 7
622 Manual, 04/2017, A5E41552389-AA

STL (FC12) Explanation

Network 3:

 CALL FC 3

 IN1 := #IN_DATE

 IN2 := #IN_TIME

 RET_VAL :=
#OUT_TIME_DATE

Network 4:

 A I 0.0

 AN M 17.2

 A M 17.4

 = #OK_MERKER

Network 5:

 A #OK_MERKER

 JNB m001

 CALL SFC 28

 OB_NO := 10

 SDT :=
#OUT_TIME_DATE

 PERIOD :=
W#16#1201

 RET_VAL := MW 200

m001 : A BR

 = M 202.3

Network 6:

 A #OK_MERKER

 JNB m002

 CALL SFC 30

 OB_NO := 10

 RET_VAL := MW 204

m002 : A BR

 = M 202.4

Network 7:

 A I 0.1

 JNB m003

 CALL SFC 29

 OB_NO := 10

 RET_VAL := MW 210

m003 : A BR

 = M 202.5

Convert format from DATE and TIME_OF_DAY to
DATE_AND_TIME (for setting time-of-day
interrupt)

All requirements for setting time-of-day
interrupt fulfilled? (Input for enable set
and time-of-day interrupt not active and
time-of-day interrupt OB is loaded)

If yes, set time-of-day interrupt...

...and activate time-of-day interrupt.

If input for canceling time-of-day
interrupts is set, cancel time-of-day
interrupt.

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 623

26.6.3.3 OB10

Declaration Section
In contrast to the default declaration section of OB10 the following temporary local variables are
declared:

• Structure for the entire start event information (STARTINFO)

• Within the STARTINFO structure a structure for the time (T_STMP)

• Other temporary local variables WDAY, IN_DATE, IN_TIME, and OUT_TIME_DATE

Variable Name Data Type Declaration Comment

STARTINFO STRUCT TEMP Entire start event information of OB10
declared as structure

 E_ID WORD TEMP Event ID:
 PR_CLASS BYTE TEMP Priority class
 OB_NO BYTE TEMP OB number
 RESERVED_1 BYTE TEMP Reserved
 RESERVED_2 BYTE TEMP Reserved
 PERIOD WORD TEMP Periodicity of time-of-day interrupt
 RESERVED_3 DWORD TEMP Reserved
 T_STMP STRUCT TEMP Structure for time-of-day details
 YEAR BYTE TEMP
 MONTH BYTE TEMP
 DAY BYTE TEMP
 HOUR BYTE TEMP
 MINUTES BYTE TEMP
 SECONDS BYTE TEMP
 MSEC_WDAY WORD TEMP
 END_STRUCT TEMP
 END_STRUCT TEMP
WDAY INT TEMP Day of the week
IN_DATE DATE TEMP Input variable for FC3

(conversion of time format)
IN_TIME TIME_OF_DAY TEMP Input variable for FC3

(conversion of time format)
OUT_TIME_DATE DATE_AND_TIME TEMP Output variable for FC3 and input

variable for SFC28

Appendix
26.6 Sample Programs

 Programming with STEP 7
624 Manual, 04/2017, A5E41552389-AA

STL Code Section
Enter the following STL user program in the code section of OB10:

STL (OB10) Explanation
Network 1
 L
 #STARTINFO.T_STMP.MSEC_WDAY
 L W#16#F
 AW
 T #WDAY
Network 2:
 L #WDAY
 L 2
 <>I
 JC mond
Network 3:
 L D#1995-1-27
 T #IN_DATE
 L TOD#20:0:0.0
 T #IN_TIME
 SET
 = Q 4.0
 JU cnvt

mond: L D#1995-1-23
 T #IN_DATE
 L TOD#5:0:0.0
 T #IN_TIME
 CLR
 = Q 4.0

cnvt: NOP 0
Network 4:
 CALL FC 3
 IN1 := #IN_DATE
 IN2 := #IN_TIME
 RET_VAL := #OUT_TIME_DATE
Network 5:
 CALL SFC 28
 OB_NO := 10
 SDT := #OUT_TIME_DATE
 PERIOD := W#16#1201
 RET_VAL := MW 200
 A BR
 = M 202.1

Select day of week

and store.

If day of week is not Monday, then
specify Monday, 5.00 am as next
starting time and reset output Q 4.0.

Otherwise, if day of week is Monday,
specify Friday, 8.00 pm (20.00) as next
starting time and set output Q 4.0.

Starting time specified.
Convert specified starting time to
format DATE_AND_TIME (for SFC28).

Set time-of-day interrupt.

Network 6:
 CALL SFC 30
 OB_NO := 10
 RET_VAL := MW 204
 A BR
 = M 202.2
Network 7:
 CALL SFC 20
 SRCBLK := #STARTINFO.T_STMP
 RET_VAL := MW 206
 DSTBLK := P#M 100.0 BYTE 8

Activate time-of-day interrupt.

Block transfer: save time of day from
start event information of OB10 to the
memory area MB100 to MB107.

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 625

26.6.3.4 OB1 and OB80

As the start event information of OB1 (OB for cyclic program) is not evaluated in this example, only
the start event information of OB80 is displayed.

OB1 Code Section
Enter the following STL user program in the code section of OB1:

STL (OB1) Explanation

 CALL FC 12 Calls the function FC12

OB80 Declaration Section
In contrast to the default declaration section of OB80 the following temporary local variables are
declared:

• Structure for the entire start event information (STARTINFO)

• Within the STARTINFO structure a structure for the time (T_STMP)

Variable Name Data Type Declaration Comment

STARTINFO STRUCT TEMP Entire start event information of OB80
declared as structure

 E_ID WORD TEMP Event ID:
 PR_CLASS BYTE TEMP Priority class
 OB_NO BYTE TEMP OB number
 RESERVED_1 BYTE TEMP Reserved
 RESERVED_2 BYTE TEMP Reserved
 A1_INFO WORD TEMP Additional information about the event

that caused the error
 A2_INFO DWORD TEMP Additional information about the event

ID, priority class, and OB no. of the
error

 T_STMP STRUCT TEMP Structure for time-of-day details
 YEAR BYTE TEMP
 MONTH BYTE TEMP
 DAY BYTE TEMP
 HOUR BYTE TEMP
 MINUTES BYTE TEMP
 SECONDS BYTE TEMP
 MSEC_WDAY WORD TEMP
 END_STRUCT TEMP
 END_STRUCT TEMP

Appendix
26.6 Sample Programs

 Programming with STEP 7
626 Manual, 04/2017, A5E41552389-AA

OB80 Code Section
Enter the following STL user program in the code section of OB80 that is called by the operating
system if a time error occurs:

STL (OB80) Explanation

Network 1

 AN Q 4.1

 S Q 4.1

 CALL SFC 20

 SRCBLK := #STARTINFO

 RET_VAL := MW 210

 DSTBLK := P#M 110.0 Byte 20

Set output Q 4.1 if time error
occurred.

Block transfer: save entire
start event information to
memory area MB110 to MB129.

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 627

26.6.4 Example of Handling Time-Delay Interrupts

26.6.4.1 Structure of the User Program "Time-Delay Interrupts"

Task
When input I 0.0 is set, output Q 4.0 should be set 10 seconds later. Every time input I 0.0 is set,
the delay time should be restarted.

The time (seconds and milliseconds) of the start of the time-delay interrupt should appear as a
user-specific ID in the start event information of the time-delay interrupt OB (OB20).

If I 0.1 is set in these 10 seconds, the organization block OB20 should not be called; meaning the
output Q 4.0 should not be set.

When input I 0.2 is set, output Q 4.0 should be reset.

Translating into a User Program
The following table shows the sub-tasks of the blocks used.

Block Sub-Task

OB1 Read current time and prepare for start of time-delay interrupt
Dependent on edge change at input I 0.0, start time-delay interrupt
Depending on the status of the time-delay interrupt and the edge change at input I 0.1,
cancel time-delay interrupt
Dependent on the state of input I 0.2, reset output Q 4.0

OB20 Set output Q 4.0
Read and prepare current time
Save start event information to bit memory area

Appendix
26.6 Sample Programs

 Programming with STEP 7
628 Manual, 04/2017, A5E41552389-AA

Addresses Used
The following table shows the shared addresses used. The temporary local variables are declared
in the declaration section of the respective block.

Address Meaning

I0.0 Input to enable "start time-delay interrupt"
I0.1 Input to cancel a time-delay interrupt
I0.2 Input to reset output Q 4.0
Q4.0 Output set by the time-delay interrupt OB (OB20)
MB1 Used for edge flag and binary result (status bit BR) buffer for SFCs
MW4 STATUS of time-delay interrupt (SFC34 "QRY_TINT")
MD10 Seconds and milliseconds BCD-coded from the start event information of OB1
MW 100 RET_VAL of SFC32 "SRT_DINT"
MW102 RET_VAL of SFC34 "QRY_DINT"
MW104 RET_VAL of SFC33 "CAN_DINT"
MW106 RET_VAL of SFC20 "BLKMOV"
MB120 to MB139 Memory for start event information of OB20
MD140 Seconds and milliseconds BCD-coded from the start event information of OB20
MW144 Seconds and milliseconds BCD-coded from the start event information of OB1;

acquired from start event information of OB20 (user-specific ID SIGN)

System Functions Used
The following SFCs are used in the user program "time-delay interrupts:"

• SFC32 "SRT_DINT" : Start Time-Delay Interrupt

• SFC33 "CAN_DINT" : Cancel Time-Delay Interrupt

• SFC34 "QRY_DINT" : Query Status of a Time-Delay Interrupt

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 629

26.6.4.2 OB20

Declaration Section
In contrast to the default declaration section of OB20 the following temporary local variables are
declared:

• Structure for the entire start event information (STARTINFO)

• Within the STARTINFO structure a structure for the time (T_STMP)

Variable Name Data Type Declaration Comment

STARTINFO STRUCT TEMP Start information for OB20
 E_ID WORD TEMP Event ID:
 PC_NO BYTE TEMP Priority class
 OB_NO BYTE TEMP OB number
 D_ID 1 BYTE TEMP Data ID 1
 D_ID 2 BYTE TEMP Data ID 2
 SIGN WORD TEMP User-specific ID
 DTIME TIME TEMP Time with which the time-delay

interrupt is started
 T_STMP STRUCT TEMP Structure for time-of-day details

(time stamp)
 YEAR BYTE TEMP
 MONTH BYTE TEMP
 DAY BYTE TEMP
 HOUR BYTE TEMP
 MINUTES BYTE TEMP
 SECONDS BYTE TEMP
 MSEC_WDAY WORD TEMP
 END_STRUCT TEMP
 END_STRUCT TEMP

Appendix
26.6 Sample Programs

 Programming with STEP 7
630 Manual, 04/2017, A5E41552389-AA

Code Section
Enter the following STL user program in the code section of OB20:

STL (OB20) Explanation

Network 1

 SET

 = Q 4.0

Network 2:

 L QW 4

 T PQW 4

Network 3:

 L #STARTINFO.T_STMP.SECONDS

 T MW 140

 L
 #STARTINFO.T_STMP.MSEC_WDAY

 T MW 142

 L MD 140

 SRD 4

 T MD 140

Network 4:

 L #STARTINFO.SIGN

 T MW 144

Network 5:

 CALL SFC 20

 SRCBLK := STARTINFO

 RET_VAL := MW 106

 DSTBLK := P#M 120.0 Byte 20

Set output Q 4.0 unconditionally

Activate output word immediately

Read seconds from start event
information

Read milliseconds and day of week from
start event information

Eliminate day of week and

write milliseconds back (now BCD-coded
in MW 142)

Read starting time of time-delay
interrupt (= call SFC32) from start
event information

Copy start event information to memory
area (MB120 to MB139)

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 631

26.6.4.3 OB1

Declaration Section
In contrast to the default declaration section of OB1 the following temporary local variables are
declared:

• Structure for the entire start event information (STARTINFO)

• Within the STARTINFO structure a structure for the time (T_STMP)

Variable Name Data Type Declaration Comment

STARTINFO STRUCT TEMP Start information for OB1
 E_ID WORD TEMP Event ID:
 PC_NO BYTE TEMP Priority class
 OB_NO BYTE TEMP OB number
 D_ID 1 BYTE TEMP Data ID 1
 D_ID 2 BYTE TEMP Data ID 2
 CUR_CYC INT TEMP Current cycle time
 MIN_CYC INT TEMP Minimum cycle time
 MAX_CYC INT TEMP Maximum cycle time
 T_STMP STRUCT TEMP Structure for time-of-day details

(time stamp)
 YEAR BYTE TEMP
 MONTH BYTE TEMP
 DAY BYTE TEMP
 HOUR BYTE TEMP
 MINUTES BYTE TEMP
 SECONDS BYTE TEMP
 MSEC_WDAY WORD TEMP
 END_STRUCT TEMP
 END_STRUCT TEMP

Appendix
26.6 Sample Programs

 Programming with STEP 7
632 Manual, 04/2017, A5E41552389-AA

Code Section
Enter the following STL user program in the code section of OB1:

STL (OB1) Explanation
Network 1
 L #STARTINFO.T_STMP.SECONDS
 T MW 10
 L #STARTINFO.T_STMP.MSEC_WDAY
 T MW 12
 L MD 10
 SRD 4
 T MD 10
Network 2:
 A I 0.0
 FP M 1.0
 = M 1.1
Network 3:
 A M 1.1
 JNB m001
 CALL SFC 32
 OB_NO := 20
 DTME := T#10S
 SIGN := MW 12
 RET_VAL:= MW 100
m001: NOP 0

Network 4:
 CALL SFC 34
 OB_NO := 20
 RET_VAL:= MW 102
 STATUS := MW 4
Network 5:
 A I 0.1
 FP M 1.3
 = M 1.4

Network 6:
 A M 1.4
 A M 5.2
 JNB m002
 CALL SFC 33
 OB_NO := 20
 RET_VAL:= MW 104
m002: NOP 0
 A I 0.2
 R Q 4.0

Read seconds from start event
information
Read milliseconds and day of week
from start event information
Eliminate day of week and
write milliseconds back (now BCD-
coded in MW 12)
Positive edge at input I 0.0?

If so, start time-delay interrupt
(starting time of time-delay
interrupt assigned to the parameter
SIGN)

Query status of time-delay interrupt
(SFC QRY_DINT)

Positive edge at input I 0.1?

...and time-delay interrupt is
activated (bit 2 of time-delay
interrupt STATUS)?
Then cancel time-delay interrupt

Reset output Q 4.0 with input I 0.2

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 633

26.6.4.4 Example of Masking and Unmasking Synchronous Errors

The following example of a user program illustrates how to mask and unmask synchronous errors.
Using SFC36 "MSK_FLT" the following errors are masked in the programming error filter:

• Area length error when reading

• Area length error when writing

With a second call of SFC36 "MSK_FLT" an access area can also be masked:

• I/O access error when writing

With SFC38 "READ_ERR" the masked synchronous errors are queried. The "I/O access error
when writing" is unmasked again with SFC37 "DMSK_FLT."

Code Section
Below you will find the OB1 in which the example of the user program was programmed in
Statement List.

STL (Network 1) Explanation
 AN M 255.0

 JNB m001
 CALL SFC 36

 PRGFLT_SET_MASK :=DW#16#C

 ACCFLT_SET_MASK :=DW#16#0

 RET_VAL :=MW 100
 PRGFLT_MASKED :=MD 10
 ACCFLT_MASKED :=MD 14

m001: A BR
 S M 255.0

Non-retentive memory bit M 255.0
(only in first run = 0)

SFC36 MSK_FLT (mask synchronous
errors)
Bit 2 = Bit 3 = 1 (BLFL and BLFS are
masked)
All bits=0 (no access errors are
masked)
Return value
Output current programming error
filter to MD10
Output current access error filter
to MD14

Set M255.0 if masking successful

STL (Network 2) Explanation
 CALL SFC 36

 PRGFLT_SET_MASK :=DW#16#0

 ACCFLT_SET_MASK :=DW#16#8

 RET_VAL :=MW 102
 PRGFLT_MASKED :=MD 20

 ACCFLT_MASKED :=MD 24

SFC36 MSK_FLT (mask synchronous
errors)
All bits=0 (no further programming
errors masked)
Bit 3 = 1 (write access errors are
masked)
Return value
Output current programming error
filter to MD20
Output current access error filter
to MD24

Appendix
26.6 Sample Programs

 Programming with STEP 7
634 Manual, 04/2017, A5E41552389-AA

STL (Network 3) Explanation
 AN M 27.3
 BEC

Block end if write access error (bit
3 in ACCFLT_MASKED) not masked

STL (Network 4) Explanation
 L B#16#0
 T PQB 16

Write access (with value 0) to PQB
16

STL (Network 5) Explanation
 CALL SFC 38

 PRGFLT_QUERY :=DW#16#0

 ACCFLT_QUERY :=DW#16#8

 RET_VAL :=MW 104
 PRGFLT_CLR :=MD 30

 ACCFLT_CLR :=MD 34

 A BR

 A M 37.3
 NOT
 = M 0.0

SFC38 READ_ERR (query synchronous
errors)
All bits=0 (no programming errors
queried)
Bit 3 = 1 (write access error
queried)
Return value
Output current programming error
filter to MD30
Output current access error filter
to MD34
No error occurred and write access
error detected

Invert RLO
M 0.0=1 if PQB 16 present

STL (Network 6) Explanation
 L B#16#0
 T PQB 17

Write access (with value 0) to PQB
17

STL (Network 7) Explanation
 CALL SFC 38

 PRGFLT_QUERY :=DW#16#0

 ACCFLT_QUERY :=DW#16#8

 RET_VAL :=MW 104
 PRGFLT_CLR :=MD 30

 ACCFLT_CLR :=MD 34

 A BR

 A M 37.3
 NOT
 = M 0.1

SFC38 READ_ERR (query synchronous
errors)
All bits=0 (no programming errors
queried)
Bit 3 = 1 (write access error
queried)
Return value
Output current programming error
filter to MD30
Output current access error filter
to MD34
No error occurred and write access
error detected

Invert RLO
M 0.1=1 if PQB 17 present

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 635

STL (Network 8) Explanation
 L B#16#0
 T PQB 18

Write access (with value 0) to PQB
18

STL (Network 9) Explanation
 CALL SFC 38

 PRGFLT_QUERY :=DW#16#0

 ACCFLT_QUERY :=DW#16#8

 RET_VAL :=MW 104
 PRGFLT_CLR :=MD 30

 ACCFLT_CLR :=MD 34

 A BR

 A M 37.3
 NOT
 = M 0.2

SFC38 READ_ERR (query synchronous
errors)
All bits=0 (no programming errors
queried)
Bit 3 = 1 (write access error
queried)
Return value
Output current programming error
filter to MD30
Output current access error filter
to MD34
No error occurred and write access
error detected

Invert RLO
M 0.2=1 if PQB 18 present

STL (Network 10) Explanation
 L B#16#0
 T PQB 19

Write access (with value 0) to PQB
19

STL (Network 11) Explanation
 CALL SFC 38

 PRGFLT_QUERY :=DW#16#0

 ACCFLT_QUERY :=DW#16#8

 RET_VAL :=MW 104
 PRGFLT_CLR :=MD 30

 ACCFLT_CLR :=MD 34

 A BR

 A M 37.3
 NOT
 = M 0.3

SFC38 READ_ERR (query synchronous
errors)
All bits=0 (no programming errors
queried)
Bit 3 = 1 (write access error
queried)
Return value
Output current programming error
filter to MD30
Output current access error filter
to MD34
No error occurred and write access
error detected

Invert RLO
M 0.3=1 if PQB 19 present

Appendix
26.6 Sample Programs

 Programming with STEP 7
636 Manual, 04/2017, A5E41552389-AA

STL (Network 12) Explanation
 CALL SFC 37

 PRGFLT_RESET_MASK :=DW#16#0

 ACCFLT_RESET_MASK :=DW#16#8

 RET_VAL :=MW 102
 PRGFLT_MASKED :=MD 20

 ACCFLT MASKED :=MD 24

SFC37 DMSK_FLT (unmask synchronous
errors)
All bits=0 (no further programming
errors unmasked)
Bit 3 = 1 (write access error
unmasked)
Return value
Output current programming error
filter to MD20
Output current access error filter
to MD24

STL (Network 13) Explanation
 A M 27.3
 BEC

Block end if write access error (bit
3 in ACCFLT_MASKED) not unmasked

STL (Network 14) Explanation
 A M 0.0
 JNB m002
 L IB 0
 T PQB 16
m002: NOP 0

Transfer IB0 to PQB 16 if present

STL (Network 15) Explanation
 A M 0.1
 JNB m003
 L IB 1
 T PQB 17
m003: NOP 0

Transfer IB1 to PQB 17 if present

STL (Network 16) Explanation
 A M 0.2
 JNB m004
 L IB 2
 T PQB 18
m004: NOP 0

Transfer IB2 to PQB 18 if present

STL (Network 17) Explanation
 A M 0.3
 JNB m005
 L IB 3
 T PQB 19
m005: NOP 0

Transfer IB3 to PQB 19 if present

 Appendix
 26.6 Sample Programs

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 637

26.6.4.5 Example of Disabling and Enabling Interrupts and Asynchronous Errors
(SFC39 and SFC40)

In this example of a user program, a program section is assumed that cannot be interrupted by
interrupts. For this program section, OB35 calls (time-of-day interrupt) are disabled using SFC 39
"DIS_IRT" and later enabled again using SFC 40 "EN_IRT".

SFC39 and SFC40 are called in OB1:

STL (OB1) Explanation
 A M 0.0
 S M 90.1
 A M 0.1
 S M 90.0
 :
 :

 CALL SFC 39
 MODE :=B#16#2
 OB_NO :=35
 RET_VAL :=MW 100
 :
 :
 L PIW 100
 T MW 200
 L MW 90
 T MW 92
 :
 :
 CALL SFC 40
 MODE :=B#16#2
 OB_NO :=35
 RET_VAL :=MW 102

 A M 10.0
 S M 190.1
 A M 10.1
 S M 190.0
 :
 :

Program section that can be interrupted without
problems:

Program section that must not be interrupted by
interrupts:
Disable and discard interrupts
Mode 2: disable individual interrupt OBs
Disable OB35

Enable interrupts
Mode 2: enable individual interrupt OBs
Enable OB35

Program section that can be interrupted without
problems:

Appendix
26.6 Sample Programs

 Programming with STEP 7
638 Manual, 04/2017, A5E41552389-AA

26.6.4.6 Example of the Delayed Processing of Interrupts and Asynchronous Errors
(SFC41 and SFC42)

In this example of a user program, a program section is assumed that cannot be interrupted by
interrupts. For this program section, interrupts are delayed using SFC41 "DIS_AIRT" and later
enabled again using SFC42 "EN_AIRT."

SFC41 and SFC42 are called in OB1:

STL (OB1) Explanation
 A M 0.0
 S M 90.1
 A M 0.1
 S M 90.0
 :
 :

 CALL SFC 41
 RET_VAL :=MW 100
 L PIW 100
 T MW 200
 L MW 90
 T MW 92
 :
 :
 :
 CALL SFC 42
 RET_VAL :=MW 102
 L MW 100

 DEC 1
 L MW 102

 <>I

 JC err

 A M 10.0
 S M 190.1
 A M 10.1
 S M 190.0
 :
 :
 BEU
err: L MW 102
 T QW 12

Program section that can be interrupted
without problems:

Program section that must not be interrupted
by interrupts:
Disable and delay interrupts

Enable interrupts

The number of set interrupt disables is in
the return value

The number of set interrupt disables is in
the return value
The number must have the same value after
the interrupt is enabled
as before the interrupt disable (here "0")

Program section that can be interrupted
without problems:

The number of set interrupt disables is
displayed

 Appendix
 26.7 Accessing Process and I/O Data Areas

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 639

26.7 Accessing Process and I/O Data Areas

26.7.1 Accessing the Process Data Area

The CPU can access inputs and outputs of central and distributed digital input/output modules
either indirectly using the process image tables or directly via the backplane/P bus.

The CPU accesses inputs and outputs of central and distributed analog input/output modules
directly via the backplane/P bus. You can also enter the addresses of analog modules in the
process image area.

Addressing Modules
You assign the addresses used in your program to the modules when you configure the modules
with STEP 7, as follows:

• With central I/O modules: arrangement of the rack and assignment of the modules to slots in
the configuration table.

• For stations with a distributed I/O (PROFIBUS DP or PROFINET IO): arrangement of the DP
slaves or IO devices with the PROFIBUS address or device name and assignment of the
modules to slots.

By configuring the modules, it is no longer necessary to set addresses on the individual modules
using switches. As a result of the configuration, the programming device sends data to the CPU
that allow the CPU to recognize the modules assigned to it.

Peripheral I/O Addressing
There is a separate address area for inputs and outputs. This means that the address of a
peripheral area must not only include the byte or word access type but also the I identifier for inputs
and Q identifier for outputs.

The following table shows the available peripheral address areas.

Address Area Access via Units of Following Size S7 Notation (IEC)

Peripheral (I/O) area:
inputs

Peripheral input byte
Peripheral input word
Peripheral input double word

PIB
PIW
PID

Peripheral (I/O) area:
outputs

Peripheral output byte
Peripheral output word
Peripheral output double word

PQB
PQW
PQD

To find out which address areas are possible on individual modules, refer to the following manuals:

• CPU 31xC and CPU 31x, Technical Data

• S7-400 Programmable Controllers, CPU Data

Appendix
26.7 Accessing Process and I/O Data Areas

 Programming with STEP 7
640 Manual, 04/2017, A5E41552389-AA

Module Start Address
The module start address is the lowest byte address of a module. It represents the start address of
the user data area of the module and is used in many cases to represent the entire module.

The module start address is, for example, entered in hardware interrupts, diagnostic interrupts,
insert/remove module interrupts, and power supply error interrupts in the start information of the
corresponding organization block and is used to identify the module that initiated the interrupt.

 Appendix
 26.7 Accessing Process and I/O Data Areas

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 641

26.7.2 Accessing the Peripheral Data Area

The peripheral data area can be divided into the following:

• User data and

• Diagnostic and parameter data.

Both areas have an input area (can only be read) and an output area (can only be written).

User Data
User data is addressed with the byte address (for digital signal modules) or the word address (for
analog signal modules) of the input or output area. User data can be accessed with load and
transfer commands, communication functions (operator interface access), or by transferring the
process image. User data can be any of the following:

• Digital and analog input/output signals from signal modules

• Control and status information from function modules

• Information for pointtopoint and bus connections from communication modules (only S7-300)

When transferring user data, a consistency of a maximum of 4 bytes can be achieved (with the
exception of DP standard slaves, see Setting the Operating Behavior). If you use the "transfer
double word" statement, four contiguous and unmodified (consistent) bytes are transferred. If you
use four separate "transfer input byte" statements, a hardware interrupt OB could be inserted
between the statements and transfer data to the same address so that the content of the original 4
bytes is changed before they were all transferred.

Diagnostic and Parameter Data
The diagnostic and parameter data of a module cannot be addressed individually but are always
transferred in the form of complete data records. This means that consistent diagnostic and
parameter data are always transferred.

The diagnostic and parameter data is accessed using the start address of the module and the data
record number. Data records are divided into input and output data records. Input data records can
only be read, output data records can only be written. You can access data records using system
functions or communication functions (user interface). The following table shows the relationship
between data records and diagnostic and parameter data.

Data Description

Diagnostic data If the modules are capable of diagnostics, you obtain the diagnostic data of the module
by reading data records 0 and 1.

Parameter data If the modules are configurable, you transfer the parameters to the module by writing
data records 0 and 1.

Appendix
26.7 Accessing Process and I/O Data Areas

 Programming with STEP 7
642 Manual, 04/2017, A5E41552389-AA

Accessing Data Records
You can use the information in the data records of a module to reassign parameters to configurable
modules and to read diagnostic information from modules with diagnostic capability.

The following table shows which system functions you can use to access data records.

SFC Purpose

Assigning parameters to modules
SFC55 WR_PARM Transfers the modifiable parameters (data record 1) to the addressed signal

module
SFC56 WR_DPARM Transfers parameters from SDBs 100 to 129 to the addressed signal module
SFC57 PARM_MOD Transfers parameters from SDBs 100 to 129 to the addressed signal module
SFC58 WR_REC Transfers any data record to the addressed signal module
Reading out diagnostic information
SFC59 RD_REC Reads the diagnostic data

 Note

If a DPV1 slave is configured using a GSD file (GSD as of Rev. 3) and the DP interface of the DP
master is set to "S7 compatible", then data records must not be read from or written to the I/O
modules in the user program with SFC 58/59 or SFB 53/52. The reason is that in this case the DP
master addresses the incorrect slot (configured slot +3).
Remedy: Set the interface for the DP master to "DPV1".

Addressing S5 Modules
You can access S5 modules as follows:

• By connecting an S7400 to SIMATIC S5 expansion racks using the interface module IM 4632

• By plugging in certain S5 modules in an adapter casing in the central rack of the S7400

How you address S5 modules with SIMATIC S7 is explained in the "S7-400 Programmable
Controller, Hardware and Installation" Manual or the description supplied with the adapter casing.

 Appendix
 26.8 Setting the Operating Behavior

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 643

26.8 Setting the Operating Behavior

26.8.1 Setting the Operating Behavior

This chapter explains how you can modify certain properties of S7-300 and S7400 programmable
controllers by setting system parameters or using system functions (SFCs).

You will find detailed information on the module parameters in the STEP 7 online help and in the
following manuals:

• "S7-300 Programmable Controller, Hardware and Installation" Manual

• "S7-300 Programmable Controller, Module Specifications" Reference Manual

• "S7-400 Programmable Controller, Module Specifications" Reference Manual

You will find all you need to know about SFCs in the "System Software for S7-300 and S7-400,
System and Standard Functions" Reference Manual.

Addressing DP Standard Slaves
If you want to exchange data longer than 4 bytes with DP standard slaves, you must use special
SFCs for this data exchange.

CPUs that support the exchange of consistent data (> 4 bytes) by means of the I/O area do not
need SFCs 14/15 (see Distributed Reading and Writing of Consistent Data).

SFC Purpose

Assigning parameters to modules
SFC15 DPWR_DAT Transfers any data to the addressed signal module
Reading out diagnostic information
SFC13 DPNRM_DG Reads the diagnostic information (asynchronous read access)
SFC14 DPRD_DAT Reads consistent data (length 3 or greater than 4 bytes)

When a DP diagnostic frame arrives, a diagnostic interrupt with 4 bytes of diagnostic data is
signaled to the CPU. You can read out these 4 bytes using SFC13 DPNRM_DG.

Appendix
26.8 Setting the Operating Behavior

 Programming with STEP 7
644 Manual, 04/2017, A5E41552389-AA

26.8.2 Changing the Behavior and Properties of Modules

Default Settings
• When supplied, all the configurable modules of the S7 programmable controller have default

settings suitable for standard applications. With these defaults, you can use the modules
immediately without making any settings. The default values are explained in the module
descriptions in the following manuals:

• "S7-300 Programmable Controller, Hardware and Installation" Manual

• "S7-300 Programmable Controller, Module Specifications" Reference Manual

• "S7-400Programmable Controller, Module Specifications" Reference Manual

Which Modules Can You Assign Parameters To?
You can, however, modify the behavior and the properties of the modules to adapt them to your
requirements and the situation in your plant. Configurable modules are CPUs, FMs, CPs, and
some of the analog input/output modules and digital input modules.

There are configurable modules with and without backup batteries.

Modules without backup batteries must be supplied with data again following any power down. The
parameters of these modules are stored in the retentive memory area of the CPU (indirect
parameter assignment by the CPU).

Setting and Loading Parameters
You set module parameters using STEP 7. When you save the parameters, STEP 7 creates the
object "System Data Blocks" that is downloaded to the CPU with the user program and transferred
to the modules when the CPU starts up.

Which Settings Can Be Made?
The module parameters are divided into parameter blocks. Which parameter blocks are available
on which CPU is explained in the "S7-300 Programmable Controller, Hardware and Installation"
Manual and the "S7-400 Programmable Controller, Module Specifications" Reference Manual.

Examples of parameter blocks:

• Startup behavior

• Cycle

• MPI

• Diagnostics

• Retentive data

• Clock memory

• Interrupt handling

• Onboard I/Os (only for the S7-300)

• Protection level

• Local data

• Real-time clock

• Asynchronous errors

 Appendix
 26.8 Setting the Operating Behavior

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 645

Parameter Assignment with SFCs
In addition to assigning parameters with STEP 7, you can also include system functions in the S7
program to modify module parameters. The following table shows which SFCs transfer which
module parameters.

SFC Purpose

SFC55 WR_PARM Transfers the modifiable parameters (data record 1) to the addressed signal
module

SFC56 WR_DPARM Transfers the parameters from the corresponding SDBs to the addressed
signal module

SFC57 PARM_MOD Transfers all parameters from the corresponding SDBs to the addressed
signal module

SFC58 WR_REC Transfers any data record to the addressed signal module

The system functions are described in detail in the "System Software for S7-300 and S7-400,
System and Standard Functions" Reference Manual.

Which module parameters can be modified dynamically is explained in the following manuals:

• "S7-300 Programmable Controller, Hardware and Installation" Manual

• "S7-300 Programmable Controller, Module Specifications" Reference Manual

• "S7-400 Programmable Controller, Module Specifications" Reference Manual

Appendix
26.8 Setting the Operating Behavior

 Programming with STEP 7
646 Manual, 04/2017, A5E41552389-AA

26.8.3 Updating the Firmware (of the Operating System) in Modules and
Submodules Offline

The following section describes how to transfer a new firmware version (new operating system
version) to a module or a CPU by means of a memory card.

The update requires the following two steps:

1. Create an "update memory card" (transfer the update files to a memory card) with the
programming device (PG) or PC with an external prommer.

2. Using the "update memory card", update the operating system on the CPU.

Requirements
• Memory card with sufficient storage capacity. For information on this, refer to the download

pages at customer support. This is where you will also find the update files.

• Programming device (PG) or PC set up to program memory cards.

To transfer the update files to a memory card, proceed as follows:
1. Create a new directory with the Windows Explorer.

2. Transfer the desired update file to this directory and unzip it there. This directory will then
contain the UPD file.

3. Insert the S7 memory card into the programming device (PG) or the prommer.

4. Delete the memory card (menu command: File > S7 Memory Card > Delete in the SIMATIC
Manager).

5. Select the PLC > Update Operating System menu command in the SIMATIC Manager.

6. In the dialog box that is displayed, select the directory with the UPD files.

7. Double-click the UPD file.
This action starts the programming process. When this process is ended, the message "The
firmware update for the module was successfully transferred to the S7 memory card" is
displayed.

Updating the Operating System:
1. Switch off the power supply (PS) unit for the CPU.

2. Insert the prepared memory card with the update into the CPU.

3. Switch the power for the CPU back on.
The operating system is transferred from the S7 memory card to the internal FLASH EPROM.
During this time, all LEDs on the CPU are lit up.

4. After about two minutes, the update is finished. To indicate that the update is finished, the
STOP LED on the CPU flashes slowly (system request for memory reset)

5. Switch the power off at the power supply unit and, where appropriate, insert the S7 memory
card that is intended for the operation.

6. Switch the power back on. The CPU executes an automatic memory reset. After that, the CPU
is ready for operation.

 Appendix
 26.8 Setting the Operating Behavior

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 647

26.8.4 Using the Clock Functions

All S7-300/S7-400 CPUs are equipped with a clock (real-time clock or software clock). The clock
can be used in the programmable controller both as clock master or clock slave with external
synchronization. The clock is required for TimeOfDay interrupts and runtime meters.

Time Format
The clock always indicates the time (minimum resolution 1 s), date, and weekday. With some
CPUs it is also possible to indicate milliseconds (refer to the "S7-300 Programmable Controller,
Hardware and Installation" Manual and "S7-400 Programmable Controller, Module Specifications"
Reference Manual).

Setting and Reading the Time
You set the time and date for the CPU clock by calling SFC0 SET_CLK in the user program or with
a menu option on the programming device to start the clock. Using SFC1 READ_CLK or a menu
option on the programming device, you can read the current date and time on the CPU.

 Note

To prevent the time from being displayed differently on HMI systems, you should set winter time
on the CPU.

Assigning Parameters for the Clock
If more than one module equipped with a clock exists in a network, you must set parameters using
STEP 7 to specify which CPU functions as master and which as slave when the time is
synchronized. When setting these parameters, you also decide whether the time is synchronized
via the communication bus or via the multipoint interface and the intervals at which the time is
automatically synchronized.

Synchronizing the Time
To make sure that the time is the same on all modules in the network, the slave clocks are
synchronized by the system program at regular (selectable) intervals. You can transfer the date
and time from the master clock to the slave clocks using system function SFC48 SFC_RTCB.

Using a Runtime Meter
A runtime meter counts the operating hours of connected equipment or the total runtime hours of
the CPU.

In STOP mode, the runtime meter is stopped. Its count value is retained even after a memory
reset. During a restart (warm restart), the runtime meter must be restarted by the user program;
during a hot restart, it continues automatically if it had already been started.

You can set the runtime meter to an initial value using SFC2 SET_RTM. You can start or stop the
runtime meter with SFC3 CTRL_RTM. You can read the current total operating hours and the state
of the counter ("stopped" or "counting") with SFC4 READ_RTM.

A CPU can have up to eight run-time meters. Numbering starts at 0.

Appendix
26.8 Setting the Operating Behavior

 Programming with STEP 7
648 Manual, 04/2017, A5E41552389-AA

26.8.5 Using Clock Memory and Timers

Clock Memory
The clock memory is a memory byte that changes its binary state periodically at a pulsepause
ratio of 1:1. You select which memory byte is used on the CPU when you assign parameters for the
clock memory using STEP 7.

Uses
You can use clock memory bytes in the user program, for example, to activate flashing lights or to
trigger periodic activities (for example, measuring an actual value).

Possible Frequencies
Each bit of the clock memory byte is assigned a frequency. The following table shows the
assignment:

Bit of the Clock Memory
Byte

7 6 5 4 3 2 1 0

Period Duration (s) 2.0 1.6 1.0 0.8 0.5 0.4 0.2 0.1
Frequency (Hz) 0.5 0.625 1 1.25 2 2.5 5 10

 Note

Clock memory bytes are not synchronous with the CPU cycle, in other words, in long cycles, the state of the
clock memory byte may change several times.

Timers
Timers are a memory area of the system memory. You specify the function of a timer in the user
program (for example, ondelay timer). The number of timers available depends on the CPU.

 Note

• If you use more timers in your user program than the CPU permits, a synchronous error is
signaled and OB121 started.

• On the S7-300 (with the exception of the CPU 318), timers can be started and updated
simultaneously only in OB1 and OB100; in all other OBs timers can only be started.

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 649

Index

"
"Accessible Nodes" Window 377

*
*.awl file 162
*.sdf file 162

A
Absolute and Symbolic Addressing 171
Access Protection 139, 140
Access Rights 382, 383
Access Rights to Blocks and Source Files 220
Accessing the Peripheral Data Area 641
Accessing the Process Data Area 639
ACT_TINT 89, 619
Activating 183

Display of Symbols in the Block 183
Activating the Display of Symbols in the Block 183
Actual Parameters 77
Adding Associated Values to Messages 339
Address Areas 542, 543
Address Assignments

Checking 47
Address priority (symbolic/absolute) 175
Addresses

Inserting in a Variable Table 419
Rewiring 210
Without Symbols 297

Addresses and Data Types Permitted in the Symbol
Table 180

Addresses Without Symbols 295
Addressing 171, 643

Absolute 171, 172
area-crossing 576, 577
area-internal 576
DP Standard Slaves 643
Memory Indirect 576
Symbolic 171, 172, 174

Addressing Modules 639
Addressing S5 Modules 642
ANY 573, 581, 582, 583, 584, 585, 586
Archive 352, 353
Archiving

Procedure 518
Projects and libraries 516

Requirements 517
STEP 7 V.2.1 Projects with Global Data

Communication 597
Uses 517

ARRAY 564, 567, 568, 569, 570
Assigning and Editing Block-Related Messages 325
Assigning Data Types to Local Data of Logic Blocks 587

Assigning 587
Assigning Message Numbers 322
Assigning Parameters

Signal Modules with Hardware Interrupt Capability 94
Assigning Parameters to Technological Functions 257
Assigning Parameters to the PG/PC Interface 46
Assigning Symbolic Names 604
Assignment of Message Numbers 323
Assignment of system errors to error classes 367
Associated Value

Adding to Messages 339
Asynchronous error

OB81 475
Asynchronous Errors

Delayed Processing 638
Disabling and Enabling 637
Using OBs to React to Errors 99

Asynchronous events 75
Attributes for Blocks and Parameters 213
Automation License Manager 37
Avoiding Errors when Calling Blocks 309

B
B Stack

Data saved in the B Stack 550
Nested Calls 550

Background OB
Priority 97
Programming 98

Background OB (OB90) 97
Background Organization Block (OB90) 97
Basic Information

on Data Blocks 247
Basic Procedure

Planning an Automation Project 51
when Printing 514

Basic procedure for creating logic Blocks 219
Basic Time (see Module Time) 386
Basics 259, 311

Messaging concept 311
Programming in STL source files 259

Battery Backup 554

25BIndex

 Programming with STEP 7
650 Manual, 04/2017, A5E41552389-AA

BCD 562
Binary Coded Decimal 562
Bit Messaging 311, 312
BLKMOV 541
BLOCK 574

parameter type 573
Block - Downloaded

Saving on Integrated EPROM 402
Block - general

Checking consistency 303
Overview 62

Block Calls 69, 70
Block Comment 231
Block Comments

Entering 230
Block consistency 303
Block folder 114
Block folder object 114
Block Folder Properties 209

Displaying Block Lengths 209
Block for Changing the Pointer 578
Block Lengths 209

Displaying 209
Block properties 207, 208, 219, 305
Block Properties 264, 265
Block Stack 539, 550
Block Title 231
Block with message capability 332
Block with messaging capability 325
BLOCK_DB 573
BLOCK_FB 573
BLOCK_FC 573
BLOCK_SDB 573
Block-related messages

Creating CPU-oriented 332
Creating project-oriented 325
Editing project-oriented 328

Blocks
Access Rights 220
Attributes 213
Creating with S7-GRAPH 200
Deleting on the Programmable Controller 411
Entering in STL 229
Reloading in the Programmable Controller 401
Rewiring 210
Saving 244
Uploading from an S7 CPU 409

Blocks Folder 203
BOOL 556

Area 556
Boxes

Positioning 235, 240
Removing

Changing 240
Breakpoint Bar 443
Browser 128

Buttons 120
Toolbar 120

Buttons in the Toolbar 120
BYTE 556

Area 556

C
Call Hierarchy in the User Program 69
Calling the Help Functions 104
Calling the module information

Overview of the options 457
Calling the Module Information from the Project View

(Online) 454
Calling the Quick View 453
CAN_TINT 89, 619
Certificate of License 37, 39
CFC 202
CFC Programming Language 194
Change Log 139, 141
Changing Interfaces 243
Changing Operator Control and Monitoring Attributes with

CFC 375
Changing the Behavior and Properties of Modules 644
Changing the Declaration Type

changing 225
Changing the Operating Mode 384
Changing the Window Arrangement 129
CHAR 556
Checking 276

Consistency in STL Source Files 276
Checking consistency 303

Blocks 303
Checking Scan Cycle Times to Avoid Time Errors 467
Choosing a Messaging Method 313
Clock 647

Parameter Assignment 647
Synchronizing 647

Clock Functions 647
Clock Memory 648
Code section 219
Code Section 222

Editing 228
Search Function for Errors 234
Structure 228

Coils
Positioning 235, 236

Combination Box
Definition 121

Comment Character 419
Comment Line 419
Comment Lines

Inserting 423
Comments

for Blocks 231
for Networks 231

 25BIndex

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 651

Communication Error (OB87) 491
Communication Error Organization Block 491
Communication load 75
Communication processes 74
Compatibility 163, 597

DP slaves 163, 164, 597
V2 projects and libraries 163

Compiling 277, 406
Objects 405
STL Source Files 277

Compiling and downloading 403
Complex Data Types 564, 567, 568, 571
Compressing 413

the Memory Contents of an S7 CPU 413
User Memory 412

Compressing the User Memory 412
Configurable Memory Objects in the Work Memory 554
Configurable Modules 644
Configuration data 371, 372
Configuration Data

Transferring 350, 376
Configuration Diagram

Creating 60
Configuring hardware 519

in the configuration table 519
Configuring in general 354

CPU messages 354
Configuring Messages for System Errors 355
Configuring Operator Control and Monitoring Attributes

via the Symbol Table 374
Configuring Operator Control and Monitoring Attributes

with Statement List
Ladder Logic

and Function Block Diagram 373
Configuring the Reporting of System Errors 355
Configuring Variables for operator control and monitoring

371
Connection Table 147
Connection Test (See Flashing Test) 377
Connection to the CPU

Establishing 429
Context-Sensitive Help 104
Continuous Function Chart 194, 202
Control at contact 522
Converting 597

Project with Global Data Communication 597
Converting Version 2 Projects 595
Copying/Moving Variable Tables 418
Correcting a Memory Bottleneck 412
Correcting the Interfaces in a Function 308

Function Block
or UDT 308

Counter 292
Assignment List 292

COUNTER 573, 574
Memory Area

Retentive 553

parameter type 573
Counters

Upper Limits for Entering 423
CPU 447

Operating Modes 525, 526
Resetting 411
Simulating 447

CPU 31xC 160, 161, 162
CPU Clocks with Time Zone Setting 386
CPU Hardware Fault (OB84) 488
CPU Hardware Fault Organization Block 488
CPU messages 351, 353, 354

and displaying diagnostic messages 351
Archive size 351
Configuring 354
Displaying 351

CPU Oriented 323
CPU parameter "Cycle load due to communication" 71
CPU Redundancy Error (OB72) 483
CREAT_DB 540
Creating 122, 272, 610

FB for the Motor 606, 607, 608, 609
FC for the Valves 611, 612
OB1 for the Sample Industrial Blending Process 613
Objects 122
User programs 219
Variable Table 416

Creating - project 145
General procedure 145

Creating a Configuration Diagram 60
Example of Industrial Blending Process 60

Creating a Data Block in Load Memory 160
Creating a program

General procedure 21
Creating a Sample FB for the Industrial Blending Process

606
Creating a Sample FC for the Industrial Blending Process

611
Creating an I/O Diagram for the Motors 56
Creating an I/O Diagram for the Valves 57
Creating an Input Diagram for the Motors 56
Creating an Input Diagram for the Valves 57
Creating an Object 122
Creating an Output Diagram for the Motors 56
Creating an Output Diagram for the Valves 57
Creating and Editing User-Defined Diagnostic Messages

331
Creating and Managing Objects 122
Creating and Opening a Variable Table 417
Creating Sequential Controls 200

with S7-GRAPH 200
Creating User Text Libraries 346
Cross­Reference List 289
CRST/WRST 529, 530, 531
CTRL_RTM 647
Cycle 64, 71, 72, 73, 74, 75
Cycle load due to communication 71

25BIndex

 Programming with STEP 7
652 Manual, 04/2017, A5E41552389-AA

Cycle time 72, 73, 74, 75
Cyclic Interrupt

Rules 92
Starting 92

Cyclic Interrupt Organization Blocks (OB30 to OB38) 92
Cyclic Interrupts 92
Cyclic Program Execution 63

D
Data Block

Shared 85
Structure 85

Data block (DB) 62
Data Block (DB) 553

Instance Data Blocks 82
Retentive 553

Data Block Register 550
Data blocks

Data view 249
Declaration view 248

Data Blocks 247
Basic Information 247
Editing Data Values in the Data View 254
Resetting Data Values to their Initial Values 254
Saving 255

Data Blocks (DB)
Instance Data Blocks 79

Data Carrier 161
Data exchange

in different operating modes 537
Data Record

Accessing 642, 644
Reading 641, 642
Writing 641

Data storage 161
Data Type

DINT 557
DWORD 562
INT 557
S5TIME 563
WORD 562

Data Types 555, 584, 585
ARRAY 564
BOOL 556
BYTE 556
Complex 564
DATE_AND_TIME 564, 565
Description 556
Double Word (DWORD) 556
Elementary 556
FB

SFB 79, 564
REAL 558
STRING 564
STRUCT 564

UDT 564
User Defined 564
Word (WORD) 556

Data Values 254
Editing in the Data View of Data Blocks 254
Resetting to their Initial Values 254

Data view of data blocks 249
DATE_AND_TIME 564, 565, 566, 567
Daylight saving time 386
DB 85, 271, 284, 285
Deactivating

Time-of-Day Interrupt 88
Debugging 276

in STL Files 276
Declaration view of data blocks 248
Declaring Local Variables 613

OB for the Sample Industrial Blending Process 613
Declaring Parameters 611

FC for the Sample Industrial Blending Process 611
DeclaringLocal Data 587
Default Settings for the LAD/STL/FBD Program Editor

220
Defective

CPU Operating Mode 525
Defining 183

Symbols when Programming 183
Defining Logic Blocks 603
Delayed Processing of Interrupts and Asynchronous

Errors 638
Example 638

Delaying
Start Events 100

Deleting
S7 Blocks on the Programmable Controller 411
STEP 7 Objects 122

Deleting Associated Values 343
Describing the Individual Functional Areas 54
Describing the Operator Console

Example of Industrial Blending Process 59
Describing the Required Operator Displays and Controls

59
Detectable errors 475
Diagnosing Hardware

Detailed Diagnostic View 456
Quick View 453

Diagnostic Buffer 551, 552
Contents 472, 551, 552
Definition 551
Displaying 552
Evaluating 551
Reading 468

Diagnostic Data on Modules 470
Diagnostic Event 472, 551
Diagnostic Functions 472
Diagnostic Interrupt (OB82) 486
Diagnostic Interrupt Organization Block 486, 488
Diagnostic Message 471

 25BIndex

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 653

Diagnostic status
PROFIBUS 493, 494, 495
PROFINET 499

Diagnostic Status Data 470
Diagnostics 449, 450
Diagnostics Symbols in the Online View 451
Dialog Boxes 121
Differences Between Project-Oriented and CPU-Oriented

Assignment of Message Numbers 323
Differences Between Saving and Downloading Blocks

394
DINT 556, 557
DIS_AIRT 100
DIS_IRT 100
Disabling Interrupts and Asynchronous Errors 637

Example 637
Display language 344
Displaying

Addresses Without Symbols 297
Block Information for LAD

FBD
and STL 295

Block Lengths 209
Data Structure of Data Blocks Referencing an

(Instance DBs) 251
Deleted Blocks 291
Lists in Additional Working Windows 297
Maximum Local Data Requirement in the Tree

Structure 290
Missing Symbols 297
Program Structure 297
Reference Data 296, 298
Shared or Local Symbols 174
Unused Addresses 297

Displaying Accessible Nodes 377
Displaying and Setting the Time and Date 385
Displaying hardware

Module information 449
Displaying Stored CPU Messages 354
Displaying the Change Log 141
Displaying the Operating Mode 384
Disruptions 449

Narrowing down 449
Distributed I/O 163
Distribution of the Memory Areas 539
Dividing a Process into Tasks and Areas

for Example of Industrial Blending Process 52
Dividing the Process into Tasks and Areas 52
DMSK_FLT 100
Documentation 513
Documentation of a project 21, 105, 107
Double Integer (32 Bit) 557
Double Word (DWORD) 556

Area 556
Download 403, 404
Download Methods Dependent on the Load Memory 397
Downloading 405, 406, 541

Objects 405, 406
Requirements 393, 403
User Program 540
User Programs 395
Without Project Management 401

Downloading via EPROM Memory Cards 402
DP slave 163, 164

with missing or bad GSD files 597
DP Standard Slaves 643
DP/PA Link (IM 157) 463
DPNRM_DG 643
DPRD_DAT 643
DPWR_DAT 643
Dummy module 168, 169
Dummy slave 597
DWORD 556, 562

E
Editing 183, 347

Data Values in the Data View of Data Blocks 254
S7 Source Files 272
the Symbol Table 183
Uploaded Blocks

if the User Program is Not on the PG/PC 410
if the User Program is on the PG/PC 410

User text libraries 347
Editing a Project 150
Editing Areas in Symbol Tables 191
Editing projects and libraries 163
Editing Symbol Tables 191
Editing symbols across multiple networks 520
Editing Uploaded Blocks in the PG/PC 409
Editor

Settings for STL 220
Elementary Data Types 556
Elements in Dialog Boxes 121
EN_AIRT 100
EN_IRT 100
Enabling Interrupts and Asynchronous Errors 637

Example 637
Engineering Tools 32
Entering 251

Block Comments and Network Comments 230
Data Structure of Data Blocks Referencing an FB

(Instance DBs) 251
Data Structure of User-Defined Data Types (UDT) 252
Multiple Instance in the Variable Declaration Window

227
Shared Symbols in a Program 182
Single Shared Symbols in a Dialog Box 183

Entering and Displaying the Data Structure of Data
Blocks Referencing an FB (Instance DBs) 251

Entering and Displaying the Structure of Data Blocks
Referencing a UDT 253

Entering multiple shared symbols in the symbol table 184

25BIndex

 Programming with STEP 7
654 Manual, 04/2017, A5E41552389-AA

Entering Symbols 184
Entering the Data Structure of Shared Data Blocks 250
EPROM 402, 553

Saving dowonloaded block 402
EPROM Area 540
Erasing 411

Load/Work Memory 411
Erasing the Load/Work Memory and Resetting the CPU

411
Error detection 475

OB types
OB81 477, 478, 479

Program examples
Substitute values 480

Error Detection
Using Error OBs to React to Errors 99

Error Handling Organization Blocks (OB70 to OB87 /
OB121 to OB122) 99

Error OB
OB Types

OB121 and OB122 99
OB70 and OB72 99
OB80 to OB87 99

Using Error OBs to React to Events 99
error OBs

as reaction to a detected error 475
Error OBs 99, 100, 363, 476
Error Search

in Blocks 234
Establish

Online Connections 377
Establishing

Online Connection via the "Accessible Nodes" Window
377

Online Connection via the Online Window of the
Project 379

Establishing a Connection to the CPU 429
Establishing the Safety Requirements 58
Evaluating the Diagnostic Buffer 551
Evaluating the Output Parameter RET_VAL 474
Event 71
Example

Entering a Contiguous Address Area 425
Entering Addresses in Variable Tables 424
for Disabling and Enabling Interrupts and

Asynchronous Errors (SFC39 and SFC40) 637
for Masking and Unmasking Synchronous Errors 633
for the Delayed Processing of Interrupts and

Asynchronous Errors (SFC41 and SFC42) 638
Example of Working with Address Locations 300
Examples 426

Entering Modify and Force Values 426
Examples - data blocks 496, 497, 502, 503, 508

DB 125 with a DP slave 496
DB 126 with an IO system 100 and devices 502
Diagnostic Status DB 508
PROFIBUS DP DB 497

PROFINET IO-DB 503
Examples - STL Source Files 278

DBs 284
FBs 282
FCs 279
OBs 278
UDTs 285
Variable Declarations 277

Examples - various
Handling time-of-day interrupts 619

Exceeding the L Stack 548
Expanding DP slaves (created with previous versions of

STEP 7) 163
Expected-actual 529

Comparison 529
Export file 154, 155
Exporting

Source Files 275
Symbol Table 187

Extended Uses of the STEP 7 Standard Package 31

F
FB 79, 80, 81, 564

Example für STL Source Files 282
FBD 197

Displaying Block Information 295
Rules 240

FBD Elements 240
Representation 239
Rules for Entering 240

FBD Layout 239
FC 77, 78
FC12 621
FCs in STL Source Files

Example 280, 281
FEPROM 553
File Formats for Importing/Exporting a Symbol Table 188
Filtering Symbols 184
Finding Address Locations in the Program Quickly 299
Finding Nodes on the Subnet 377
Firmware update 646
Flash-File System 44
Flashing Test 378
Floating-Point Numbers 558, 559, 560
Flow

of Diagnostic Information 468
Folder 203

Blocks 203
for the CPU 324
for the project 324
FORCE LED Flashing 377
Force Values 426

Examples of Entering 426

 25BIndex

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 655

Forcing Variables 436
Introduction 436
Safety Measures 435

Formal parameters 319
Format

BLOCK 574
COUNTER 574
TIMER 574

Format of the Data Type DATE_AND_TIME 565
Format of the Data Type DINT (32-Bit Integers) 557
Format of the Data Type INT (16-Bit Integers) 557
Format of the Data Type REAL (Floating-Point Numbers)

558
Format of the Data Type S5TIME (Time Duration) 563
Format of the Data Types WORD and DWORD in Binary

Coded Decimal Numbers 562
Format of the Parameter Type ANY 581
Format of the Parameter Type POINTER 574
Format of the Parameter Types BLOCK

COUNTER
TIMER 574

Format Table 271
DBs 271

Format Table of Function Blocks 269
Format Table of Functions 270
Format Table of Organization Blocks 268
Formats 268

Blocks in STL Source Files 268
Forwarding parameters

parameter types 573
Function

Correcting the Interface 308
Function (FC) 62, 611
Function Block

Correcting the Interface 308
Function Block (FB) 606
Function Block Diagram 197
Function Block Diagram Programming Language (FBD)

197
Function Block Diagram(FBD) 194
Function Blocks 269

Format Table 269
Function Blocks (FB) 79

Actual Parameters 79, 80, 81
Application 79

Functional Scope of Report System Errors 357
Functions

Format Table 270
Functions (FC) 77

Application 77

G
Gaps in the User Memory (RAM) 412
GD Communication 597
General Tips

on Entering Symbols 182
Generated Blocks (Report System Error) 365
Generated Error OBs (Reporting System Errors) 363
Generating

Reference Data 298
STL Source Files from Blocks 274

Generating and Displaying Reference Data 298
Generating Blocks for Reporting System Errors 361
Generating Foreign-Language Message Texts in Report

System Error' 369
Global Data Communication 597
Global Symbols

Entering in a Program 182
Graphic output of diagnostic events 493
GSD file

DP slaves created with previous versions of STEP 7
163

Missing or bad GSD files 597
Guidelines

Handling License Keys 41
Guidelines for Handling License Keys 41

H
Handling 519

large projects 519
Handling Errors 473
Hardware diagnostics 449
Hardware Interrupt 94

Priority 94
Rules 94
Starting 94

Hardware Interrupt Organization Blocks (OB40 to OB47)
94

Hardware Interrupts 94
Header and footer lines 514
Help (Online)

Changing the Font Size 104
Topics 104

Hiding texts in selected languages 159
Hierarchical Structure of Libraries 216
HiGraph 195
HOLD

CPU Operating Mode 525
HOLD Mode 538
Hot restart 529, 530, 531, 532, 533, 534

Automatic 530, 531, 532
Canceling 529
Manual 529, 530, 531

25BIndex

 Programming with STEP 7
656 Manual, 04/2017, A5E41552389-AA

How to Assign CPU-Oriented Message Numbers 332
How to Assign Project-Oriented Message Numbers 325
How to Configure PCS 7 Messages (CPU-Oriented) 335
How to Configure PCS 7 Messages (Project-Oriented)

329
How to Edit Block-Related Messages (CPU-Oriented)

335
Human Machine Interface 35

I
I Stack

Description 550
I/O

Address Areas 639
I/O Access Error (OB122) 492
I/O Access Error (PZF) during Update of the Process

Image 544
I/O Data 641
I/O Redundancy Error (OB70) 482
Icons for objects in the SIMATIC Manager 105
ID Number

Entering 44
Identifying Nodes Directly Connected to a Programming

Device/PG 377
Illegal Logic Operations in Ladder 238
IM 157 (DP/PA Link) 463
Importing

External source file 148
Source Files 275
Symbol Table 187

Importing error and help texts 511
IN (Variable Declaration) 587
In/out Parameters 587, 588
IN_OUT (Variable Declaration) 587
IN_OUT Parameters of a Function Block 594
Incompatibility 597
Incomplete and Non-Unique Symbols in the Symbol

Table 181
Indirect Parameter Assignment 644
Industrial Blending Process 606, 611, 613
Information Functions 461
Information Functions in the Diagnostic View 456
Information Functions in the Quick View 453
Information on the Log File 156
Input Parameters 587
Inputs

Assignment List 292
Process Image 544

Insert/Remove Module Interrupt (OB83) 487
Insert/Remove Module Interrupt Organization Block 487
Inserting

Addresses or Symbols in a Variable Table 419
Block Templates in STL Source Files 273
Comment Lines 423
Contents of Other STL Source Files 273

Modify Values 421
Source Code from Existing Blocks in STL Source Files

273
Inserting a Contiguous Address Range in a Variable

Table 421
Inserting Block Templates in STL Source Files 273
Inserting External Source Files 273
Inserting in general

S7 program 148, 149
Substitute values for error detection 480

Inserting Program Elements 221
Inserting Source Code from Existing Blocks in STL

Source Files 273
Inserting Stations 147
Installation Errors 44
Installation Procedure 44
Installation Requirements 42
Installing

STEP 7 42, 43
Installing STEP 7 42
Installing the Automation License Manager 40
Instance 82, 83, 84
Instance Data Block 553

Retentive 553
Instance Data Blocks 82

Creating Multiple Instances for an FB 79
Time Stamps 307

Instance DB 82, 83, 84
Instruction List 224
Instructions from the Program Elements Table 221
INT 556, 557
Integer (16 Bit) 557
Interaction Between The Variable Detail View And The

Instruction List 224
Interrupt Assignments

Checking 46
Interrupt OBs 88

Using 88
Interrupt Stack 539, 550
Interrupt-Driven Program Execution 63
Interruption time 534
Interrupts 637, 638

Delayed Processing 638
Disabling and Enabling 637

Introduction 555
Introduction to Data Types and Parameter Types 555
Introduction to Forcing Variables 436
Introduction to testing with the variable table 415

 25BIndex

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 657

K
Key Combinations

for Access to Online Help 135
for Menu Commands 132
for Moving the Cursor 133
for Selecting Text 135

Key Combinations for Toggling between Windows 136
Keyboard control 131

L
L Stack 548

Assigning Memory to Local Variables 548
Overwriting 548
Storing Temporary Variables 79

LAD 196
Displaying Block Information 295

Ladder Elements
Representation 235

Ladder Layout 235
Ladder Logic 196

Guidelines 235
Ladder Logic (LAD) 194
Ladder Logic Programming Language (LAD) 196
Language Editors

Starting 194
Language for display 344
Language settings in Windows 144
Large projects 519
Libraries 149, 163

Archiving 516
Editing version 2 163
Hierarchical Structure 216
Rearranging 520
Working with 214

Library 108
Library object 108
License 37, 38, 39
License Key 37, 38, 39
License Keys 41
License Manager 37, 38
Linear Programming 63
List Box 121
Listing In/Outs 56
Listing Inputs 56

Outputs
and In/Outs 56

Listing Outputs 56
Lists of texts relevant to operator 344
Load Memory 395, 396, 539, 540
Load Memory and Work Memory 540
Load Memory and Work Memory in the CPU 395
Local Data Requirements 290

Local Data Stack 539, 548, 549
Local time 386
Logic blocks

in the incremental editor 219
Structure 219

Logic Blocks 603
Saving 244
Time Stamps 306

M
Maintenance demand 449
Maintenance Demanded 452
Maintenance information 450
Maintenance required 450
Maintenance Required 452
Make (see checking block consistency) 303
Make (see compiling and downloading Objects) 405
Make (see Compiling and Downloading Objects) 403
Managing

Objects 122, 123, 124, 125, 126, 127
Managing Multilingual Texts 151
Managing user texts whose language font is not installed

157
Masking

Start Events 99
Masking Synchronous Errors 633

Example 633
Maximum cycle time 71
Memory 554

Configurable 554
Memory Area 553

Memory Area
Retentive 553

Memory Areas 539
Address Areas 542
Load Memory 539
Retentive 553, 554
Special Features with S7-300 540
Special Features with S7-400 540
System Memory 539
Work Memory 539

Memory bit
Assignment List 292

Memory Card 541
Assigning Parameters 45

Memory card file 161
Memory Reset 528
Message

Example 316
Parts 316
Symbol-related CPU-oriented 337
Symbol-related project-oriented 330

Message blocks 319
Message Blocks

Overview 317

25BIndex

 Programming with STEP 7
658 Manual, 04/2017, A5E41552389-AA

Message Configuration
SIMATIC Components 315
Transferring Data to WinCC 350

Message number assignment 324
Message Numbering 311
Message Numbers 323
Message Type 320, 321
Message Type and Messages 320
Messaging

Basics 311
Messaging Method 314
Messaging Numbers 322

Assigning 322
Micro Memory Card (MMC) 161, 162
Micro Memory Cards (MMC) 160
Minimum cycle time 71
MMC 160, 161, 162
Mnemonics

Setting 242
Mode Transitions 526, 527
Modify Values 426

Examples of Entering 426
Inserting 421

Modifying
Basic Procedure 416
Variables 433, 434

Modifying Variables
Introduction 432

Modifying variables with the program editor 522
Module 447, 519

Simulating 447
Module Exists/Type Monitoring

Startup OBs 95
Module icon for unknown modules 168
Module information 450, 463

Calling 457
Displaying 450
Displaying DP slaves downstream from Y link 463
Displaying for PA field devices 463

Module Information 455
Calling 455
Updating 460

Module Information Functions 458
Module Parameters 644, 645

Transferring with SFCs 644
Transferring with STEP 7 644

Module Start Address 639
Module Status 461

Information Functions 458
Module Time 386, 387
Modules

Parameter Assignment 644, 645
Replacing 519

Monitoring
Basic Procedure 416
Variables 430, 431

Monitoring Times 96
Motors 56

Creating an I/O Diagram 56
Moving

Object 122, 123, 124, 125, 127
MPI Card for PG/PC 46
MPI FW Update 388
MPI Interface 42, 43
MPI-ISA Card (Auto) 46
MSK_FLT 100
Multiple Instance 79

entering in the Variable Declaration Window 227
Multiple instances

Use 226
Multiple Instances 84

Rules 227
Multiprojects with Access Protection 139

N
Naming conventions 371

for Configuration data 371
Narrowing down disruptions 449
Nested Calls of Logic Blocks 550

Effects on the B Stack and L Stack 550
Nesting 550
Nesting Depth 69
Network Comment 231
Network Comments

Entering 230
Network templates

Working with 233
Network Title 231
Networks 197

Ladder Logic 235
Non-retentive 207
Non-Volatile RAM 553
Notes on STEP 7 V.2.1 Projects with GD Communication

597
Number Notation 555
NVRAM 553

O
OB 63, 64, 65, 66, 67
OB 1 cycle time 71
OB1 613, 614, 631
OB1 and OB80 625
OB10 623, 624
OB100 529
OB101 529, 536
OB102 529
OB121 491
OB122 492
OB20 629

 25BIndex

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 659

OB70 482
OB72 483
OB80 484
OB81 485
OB82 486
OB83 487
OB84 488
OB85 489, 546, 547
OB86 490
OB87 491
Object 404, 405, 406

Compiling and downloading 405
Cutting

Copying
Pasting 124

Deleting 127
Moving 126
Opening 123
Properties 123, 124, 125
Renaming 125
Selecting 128

Object hierarchy 105
Object Hierarchy

Building 123
Objects

Managing 122
Objects in the SIMATIC Manager 105, 107

Object hierarchy 105
Project 107

OBs in STL Source Files
Example 279

Offline update 646
of the firmware of modules and submodules 646
of the operating system of modules and submodules

646
Offset factor 386
Online Connection

Establishing via the "Accessible Nodes" Window 377
Establishing via the Online Window of the Project 379

Online Connections
Establish 377

Online Help
Calling 104
Topics 104

Online Updating of Firmware in Modules and
Submodules 388

Online View
Diagnostics Symbols 451, 452

Opening
Symbol table 184
Variable Table 416

Operating Mode 526, 527
Displaying and Changing 384
HOLD 525, 526, 527
RUN 525, 526, 527
STARTUP 525, 526
STOP 528

Operating Mode STOP 466
Stack Contents 466

Operating modes
STARTUP 529

Operating Modes
Priority 527

Operating Modes and Mode Transitions 525
Operating philosophy 119
Operating system 71, 72, 75, 646
Operating System

Tasks 61
Operator Console 59
Operator control and monitoring attributes 371
Operator Control and Monitoring Attributes

CFC 375
Configuring with STL

LAD
FBD 373

Configuring with Symbol Table 374
Operator Displays and Controls

Example of Industrial Blending Process 59
Optimizing the Source for Translation 158
Optimizing the Translation Process 159
Optional Package 447
Options for modifiying the message number assignment

of a project 324
Organization Block (OB) 97

Background OB (OB90) 63
Organization blocks 62

Cyclic program execution (OB 1) 71
Error detection

OB122
Substitute values 480

Organization Blocks 268
Creating an OB for the Sample Industrial Blending

Process 613
Definition 63
Format Table 268
Priority Classes 63, 64, 65, 66
Reacting to Errors 99

Organization Blocks and Program Structure 63
Organization Blocks for Interrupt-Driven Program

Processing 88
OUT (Variable Declaration) 587
Output Parameter 474

Evaluating RET_VAL 474
Output Parameters 587
Outputs

Assignment List 292
Process Image 544

Overview 287, 317
Message Blocks 317
of the available reference data 287

Overview of report system error 355
Overview of STEP 7 21
Overview of the available reference Data 287
Overview of the diagnostic status 493

25BIndex

 Programming with STEP 7
660 Manual, 04/2017, A5E41552389-AA

Overview of the Standard Libraries 216
Overwrite Mode 234
Overwriting the L Stack 548

P
PA field devices 463
Page format 515
Parameter Assignment 647

Clock 647
Indirect 644
with SFCs 645
with STEP 7 645

Parameter type
ANY 573
BLOCK_DB 573
BLOCK_FB 573
BLOCK_FC 573
BLOCK_SDB 573
COUNTER 573
POINTER 573
TIMER 573

Parameter Type POINTER
Using 576

Parameter types 573
Parameter Types 584
Parameters 213

Attributes 213
Parent/Child Structure 290
PARM_MOD 642, 645
Part Process Image (Process Image Partition) 544

System Update 546
Updating with SFCs 544

Parts of a Message 316
Password 382, 383
Password Protection for Access to Programmable

Controllers 382
PC Station 166, 167
Peripheral Data 641
Permitted Data Types when Transferring Parameters

589
PG/PC Interface 46

Parameter Assignment 46
Phase Offset 92
Planning an Automation Project

Basic Procedure 51
Creating a Configuration Diagram 60
Creating an I/O Diagram for the Motors 56
Creating an I/O Diagram for the Valves 57
Describing the Individual Function Areas 54
Describing the Required Operator Displays and

Controls 59
Dividing the Process into Tasks and Areas 52
Establishing the Safety Requirements 58

Listing Inputs
Outputs

and In/Outs 56
Pointer 576, 577, 578, 579, 580
POINTER 573, 574, 575

parameter type 573
Pointer format 573
Positioning

Boxes 240, 241
Power down 529
Power Flow 238
Power Supply Error (OB81) 485
Power Supply Error Organization Block 485
Preventing Personal Injury 436
Preventing Property Damage 436
Previous versions of STEP 7 165

compatibility (direct data exchange) 165
compatibility (online connection via PROFIBUS DP

interface) 165
direct data exchange 165
distributed I/O 165
downward compatibility 165
editing current configurations with previous versions of

STEP 7 165
online connection via DP interface 165
PROFIBUS DP 165

Printer
Functions 514
Setting up 514

Printing
Blocks 513
Configuration Table 513
Diagnostic Buffer Content 513
Global Data Table 513
Reference Data 513
Symbol Table 513
Variable Table 513

Printing Project Documentation 513
Priority

Background OB 97
Hardware Interrupt 94
Time-Delay Interrupt 91
Time-of-Day Interrupt 88

Priority (symbolic/absolute address) 175
Procedure 518

for Archiving/Retrieving 518
for Entering Statements 229
for identifying a STOP cause 465

Process
Dividing into Tasks 52

Process control dialog
see How to Configure of PCS 7 Messages (CPU-

Oriented) 335
Process Control Dialog

see How to Configure PCS 7 Messages (Project-
Oriented) 329

 25BIndex

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 661

Process image 71
Updating 72, 74

Process Image 544
Clearing 96
Inputs/Outputs 544

Process mode 74, 76
Process monitoring 371
Process Monitoring 416
PROFIBUS DP 164, 389
PROFIBUS PA 463
PROFINET Nodes 378
Program Editor 217
Program examples

Inserting substitute values 480
Reacting to battery errors 475
Substitute values 480

Program Execution
Cyclic 63, 65, 66, 67
Interrupt-Driven 63

Program Measures for Handling Errors 473
Program Processing 88

Interrupt-Driven 88
Program Sequence Error (OB85) 489
Program Sequence Error Organization Block 489
Program Status

Setting the Display 446
Testing with 439

Program Status Display 440
Program Status of Data Blocks 445
Program Structure 290, 291

Displaying 297
Programmable Controller

Reloading Blocks 401
Programmable module object folder 110
Programming 21, 23, 24

Background OB 97
Transferring Parameters 79
Using Data Blocks 79
with STEP 7 22, 23

Programming Error (OB121) 491
Programming Error Organization Block 491
Programming Language

S7-GRAPH (Sequential Control) 200
Selecting 194

Programming Languages 25, 28
Function Block Diagram (FBD) 197
Ladder Logic (LAD) 196
S7 CFC 202
S7 HiGraph 201
S7 SCL 199
STL 198

Programs in a CPU 61
Project 107, 150

Checking software used 150
Copying 150
Creating 145, 146

Deleting 150
Opening 150

Project Documentation
Printing 513

Project Language 142, 143
Project Structure 138
Project View 138
Project Window 137
Project-Oriented 323
Projects 163, 516

Archiving 516
Editing a version 2 project 163
Order for editing 145
Rearranging 520
Renaming 122

Projects with a large number of networked stations 519
Projects with Access Protection 139
PZF (I/O Access Error) 544

Q
QRY_TINT 88, 619
Querying

Time-of-Day Interrupt 88
Quick View of the Diagnostic Information 453

R
Rack Failure (OB86) 490
Rack Failure Organization Block 490
RAM 539, 553
RAM Area 540, 554
RDSYSST 468, 469, 552
READ_CLK 647
READ_RTM 647
Reading and Adjusting the TOD and the TOD Status 386
Reading from a Data Block in Load Memory 160
REAL 556, 558
Rearranging projects and libraries 520
Redundant Mode 390
Reference data 287

Application 287
Reference Data

Displaying 296, 298
Generating 298

Reloading Blocks in the Programmable Controller 401
Remaining cycle 530, 533, 534
Removing Access Protection 139
Renaming 597

Projects 122, 125
STEP 7 V.2.1 Projects with Global Data

Communication 597
Replacing 519

Modules 519

25BIndex

 Programming with STEP 7
662 Manual, 04/2017, A5E41552389-AA

Report system error 361
Generating blocks 361
settings 361

Report System Error
Generated Blocks 365

Report system errors
Generating 361

Report System Errors 357, 365
Supported Components 357

Reporting System Errors 355, 365
Representation 168

FBD Elements 239
Ladder Elements 235
STL 242
Unknown modules 168

Requirements 393
Archiving 517
for downloading 393, 403, 404

Resetting 254
Data Values to their Initial Values 254
the CPU 411

Restoring
Window Arrangement 130

Retentive Memory Areas on S7-300 CPUs 553
Retentive Memory Areas on S7-400 CPUs 554
Retentivity

after power down 529
Retrieving

Procedure 518
Rewiring 210

Addresses 210
Blocks 210

Ring Buffer (Diagnostic Buffer) 551
RPL_VAL 480
Rules 187

Cyclic Interrupt 92
FBD 240
for Declaring Multiple Instances 227
for Exporting the Symbol Table 187
for Importing the Symbol Table 187
Hardware Interrupt 94
Ladder Logic 235
Statement List 242
Time-Delay Interrupt 91
Time-of Day-Interrupt 88

Rules for Entering FBD Elements 240
Rules for Entering Ladder Logic Elements 235
Rules for Entering STL Statements 242
Rules in STL Source Files 260

Order of Blocks 262
Programming 260
Setting Block Properties 263
Setting System Attributes 262
Variable Declaration 261

RUN
CPU activities 529
CPU Operating Mode 525

RUN Mode 537
Run-Time Meter 647
Run-Time Software 34

S
S5 TIME 556
S5TIME 563
S7 CFC Programming Language 202
S7 export file 162
S7 HiGraph 201
S7 HiGraph Programming Language (State Graph) 201
S7 program 112
S7 program folder 112
S7 Program without a Station or CPU 118
S7 programs

Inserting 149
S7 Routing 388
S7 SCL Programming Language 199
S7 Source Files 272

Editing 272
S7-GRAPH 194, 200
Safety Measures When Forcing Variables 435
Safety Notes 548

Exceeding the L Stack 548
Overwriting the L Stack 548

Safety Requirements 58
Example of an Industrial Blending Process 58

Sample Program 603, 604, 609, 611, 613, 614, 633,
637, 638

Sample Program for an Industrial Blending Process 600
Sample programs 598
Sample Programs 606

FB for the Industrial Blending Process 606
FC for an Industrial Blending Process 611
Industrial Blending Process 600

Creating a Configuration Diagram 60
Describing the Individual Functional Tasks and

Areas 54
Describing the Individual Tasks and Areas

Creating an I/O Diagram 56
Describing the Operator Displays and Controls 59
Describing the Safety Requirements 58
Dividing the Process into Tasks and Areas 52

OB for the Sample Industrial Blending Process 613
Sample projects 598, 599
save

to Micro Memory Card 162
Save 162

 25BIndex

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 663

Saving
Blocks 244
Data Blocks 255
Downloaded Blocks on Integrated EPROM 402
Logic Blocks 244
STL Source Files 276
Uses 517
Variable Table 418
Window Arrangement 130

SCAN message 330, 337
SCL 194, 199
Scope of the Module Type-Dependent Information 461
sdf 162
Search Function for Errors in the Code Section 234
Selecting

Editing Method 193
Programming Language 194

Selecting Objects in a Browser 128
Session Memory 129
SET_CLK 90, 647
SET_CLKS 386
SET_RTM 647
SET_TINT 89, 619
Setting

Operating Behavior 643
Time and Date 385
Virtual work memory 523

Setting the address priority (symbolic/absolute) 175
Setting the Display for Program Status 446
Setting The Layout of Source Code Text 272
Setting The Layout of Source Code Text Code 272
Setting the Mnemonics 242
Setting the PG/PC Interface 46
Setting the Windows language 144
Setting trigger points 430
Setting up Access Protection 139
Settings 361

report system errors 361
Settings for Function Block Diagram Programming 239
Settings for Ladder Logic Programming 235
Settings for Statement List Programming 242
Setup

Entering ID Number 44
Flash-File System 44
Memory Card Parameters 45

SFB 86, 564
SFB 20 STOP 71
SFB33 317
SFB34 317
SFB35 317
SFB36 317
SFB37 318
SFC 86

Using 544
SFC 13 DPNRM_DG 643
SFC 14 DPRD_DAT 643

SFC 15 DPWR_DAT 643
SFC 26 UPDAT_PI 71
SFC 27 UPDAT_PO 71
SFC 28 SET_TINT 619
SFC 29 CAN_TINT 619
SFC 30 ACT_TINT 619
SFC 31 QRY_TINT 619
SFC 44 RPL_VAL 480
SFC 46 STP 71
SFC 52 WR_USMSG 471
SFC 55 WR_PARM 644
SFC 56 WR_DPARM 644
SFC 57 PARM_MOD 644
SFC0 SET_CLK 647
SFC1 READ_CLK 647
SFC100 'SET_CLKS' 386
SFC17/18 317
SFC2 SET_RTM 647
SFC20 BLKMOV 540
SFC22 CREAT_DB 540
SFC26 UPDAT_PI 544
SFC27 UPDAT_PO 544
SFC28 SET_TINT 88
SFC29 CAN_TINT 88
SFC3 CTRL_RTM 647
SFC30 ACT_TINT 88
SFC31 QRY_TINT 88
SFC32 SRT_DINT 91
SFC36 MSK_FLT 99

Example in LAD 633
Example in STL 633

SFC37 DMSK_FLT 99
Example in LAD 633
Example in STL 633

SFC38 READ_ERR
Example in LAD 633
Example in STL 633

SFC39 DIS_IRT 99
Example in STL 637

SFC4 READ_RTM 647
SFC40 EN_IRT 99

Example in STL 637
SFC41 DIS_AIRT 99

Example in STL 638
SFC42 EN_AIRT 99

Example in STL 638
SFC48 SNC_RTCB 647
SFC51 RDSYSST 468, 469, 551
SFC55 WR_PARM 641
SFC56 WR_DPARM 641
SFC57 PARM_MOD 641
SFC82 160
SFC83 160
SFC84 160
Shared and Local Symbols 173
Shared Data Blocks 250

25BIndex

 Programming with STEP 7
664 Manual, 04/2017, A5E41552389-AA

Entering the Data Structure 250
Time Stamps 307

Shared Data Blocks (DB) 85
Short Circuit

Ladder Logic
Illegal Logic Operations 238

Signal Module 447
Simulating 447

Signal Modules with Hardware Interrupt Capability
Assigning Parameters 94

SIMATIC Components 315
SIMATIC Manager 101

Displaying Block Lengths 209
SIMATIC PC - Appending Configurations of Previous

Versions 166
SIMATIC PC Station 166
Simulating a CPU or Signal Module 447
Simulation Program 447
SlotPLC 161
SNC_RTCB 647
Software packages 150
Software PLC 161
Sorting in the Cross Reference List 289
Sorting symbols 184
Source Code 272
Source file Folder 117
Source file folder object 117
Source files

External 149
Source Files 275

Access Rights 220
Exporting 275
Generating STL Source Files from Blocks 274
Importing 275
Inserting External Source Files 273
Saving STL Source Files 276

Source Files in S7-GRAPH 200
Special Note on Printing the Object Tree 515
Specifying a trigger 430, 433

to modify variables 433
to monitor variables 430

Specifying the display
for CPU messages and user-defined diagnostics

messages 351
SRT_DINT 91
SSL 469
Stack Contents in STOP Mode 466
Standard Libraries 216

Overview 216
Standard library 148
Start Address 640
Start Events

Delaying 99
Masking 100
Startup OBs 95

Starting
Cyclic Interrupt 92, 93
Hardware Interrupt 94
Time-Delay Interrupt 91
Time-of-Day Interrupt 89

Starting STEP 7 Installation 44
Starting STEP 7 with Default Start Parameters 102
STARTUP 529, 533, 534, 535, 536

Canceling 529
CPU activities 529
CPU Operating Mode 525

Startup OBs 95, 529
Module Exists/Type Monitoring 96
OB 100/OB 101/OB 1002 529
Start Events 95

Startup Organization Blocks (OB100 / OB101 / OB102)
95

Startup Program 95
STAT (Variable Declaration) 587
State Graph 201
Statement List 198, 242

Representation 242
Rules 242

Statement List (STL) 194
Statement List Programming Language (STL) 198
Statements

Entering
Procedure 229

Station 109
Inserting 147
Uploading 408

Station object 109
Status Bar

Example 120
STEP 7 25, 26, 28

Error OBs
Reacting to Errors 99

Errors During Installation 44
Installation 42, 43
Removing 48
Starting the Software 101
Uninstalling 48
User Interface 120
What's new in STEP 7

Version 5.6 30
STEP 7

Programming Languages 25
STEP 7

Standard Software 25
STL 198

Displaying Block Information 295
Entering Blocks 229

STL Editor
Settings 220

 25BIndex

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 665

STL Examples of
FBs 282
FCs 279
OBs 278
UDTs 285
Variable Declaration 278

STL Examples of
DBs 284

STL Files
Debugging 276

STL source file
Basics of programming 259

STL Source File
Creating 272

STL Source Files
Checking Consistency 276
Compiling 277
Generating from Blocks 274
Inserting Block Templates 273
Inserting External Source Files

External Source Files 274
Inserting Source Code from Existing Blocks 273
Inserting the Contents of Other STL Source Files 273
Rules 260, 261, 262, 263, 268
Saving 276
Structure of Blocks 266
Structure of Data Blocks 267

STL Structures of Blocks
Logic Blocks 266
User-Defined Data Types 267

STOP 72, 73, 465
CPU Operating Mode 525
Identifying the cause 465

STOP Mode 528
Storing Mico Memory Card (MMC) Project data 162
STP 72
STRING 564, 567
STRUCT 564, 567, 571
Structure

Cross-Reference List 289
Load Memory 540, 541
of Blocks in STL Source Files 266
of Data Blocks in STL Source Files 267
Of Logic Blocks in STL Source Files 266
of the Code Section 228
of the User Program "Time-of-Day Interrupts" 619
User-Defined Data Types in STL Source Files 267
Variable Declaration Window 225

Structure and Components of the Symbol Table 178
Structure of the export file 154
Structure of the Program Editor Window 217
Structure of the User Program "Time-Delay Interrupts"

627
Structured Control Language 199
Structured Data Types 564

Structured program
Advantages 62

Structured Programming 68
Substitute value for error detection 480
Summer/winter time 386
Supported Components and Functional Scope 357
Symbol table

Opening 184
Symbol Table 174

File Formats for Importing/Exporting 188
for Shared Symbols 178
Permitted Addresses 180
Permitted Data Types 180
Structure and Components 178

Symbolic Addressing 174
Sample Program 604

Symbolic Names 604
Assigning 604

Symbol-related messages (project-oriented)
Assigning and editing 330
Assignment to symbol table 330
Permitted signals 330

Symbol-related messages CPU-oriented
Assigning and editing 337
Assignment to symbol table 337
Permitted signals 337

Symbols 171, 172, 174, 185
Defining when Programming 183
Entering 184
Filtering 184
for the Program Structure 290, 291
Inserting in a Variable Table 419
Local 173
Shared 173
Sorting 184
Unused 294
Upper and Lower Case 185

Synchronizing 647
Clock 647

Synchronous Errors 633
Masking and Unmasking 633
Using OBs to React to Errors 99

Syntax for Blocks in STL Source Files 268
System architecture

Cycle 71
System attributes

for message configuration 319
System Attributes

for Configuration of PCS 7 Messages (CPU-Oriented)
335

for configuring PCS 7 Messages (Project-Oriented)
329

for Parameters 222
in the Symbol Table 178, 179

System Data 470
System Diagnostics 471

25BIndex

 Programming with STEP 7
666 Manual, 04/2017, A5E41552389-AA

System Error 472
System function block SFB 62
System Function Blocks 86
System Function Blocks (SFB) and System Functions

(SFC) 86
System function SFC 62
System Functions 86
System Memory 539, 542
System Parameters 643
System Status List 469, 470

Contents 469
Reading 469

System Text Libraries 347

T
Tabs in Dialog Boxes 121
Tasks

Example of Industrial Blending Process 52
Tasks and Areas

Example of Industrial Blending Process 54
TEMP (Variable Declaration) 587
Temporary Variables 587, 588
Testing 415, 521

Using Program Status 439
using the Simulation Program (Optional Package) 447
with the variable table 415, 521

Testing in Single-Step Mode 442, 443
Text Libraries 348

Translating 348
Text Library 342

Integrating Texts into Messages 342
Text lists

See lists of texts relevant to operator 344
Texts relevant to operator 344
The STEP 7 Standard Package 26
Time 556

Reading 647
Setting 647

Time and Date 385
Setting 385

Time Error (OB80) 484
Time Error Organization Block 484
Time Format 647
TIME OF DAY 556
Time stamp 386

as block property 305
Time stamp conflicts 305
Time Stamps 307

in Instance Data Blocks 307
in Logic Blocks 306
in Shared Data Blocks 307

Time stamps in UDTs and Data Blocks Derived from
UDTs 308

Time Zones 386

Time-Delay Interrupt
Priority 91
Rules 91
Starting 91

Time-Delay Interrupt Organization Blocks (OB20 to
OB23) 91

Time-Delay Interrupts 91
Time-of-Day Interrupt

Changing the Time 88
Deactivating 89
Priority 89
Querying 89
Rules 89
Starting 89

Time-of-day interrupt - example
Handling 619

Time-of-Day Interrupt Organization Blocks (OB10 to
OB17) 88

Time-of-Day Interrupts 88
Structure 619

TIMER 573, 574
parameter type 573

Timers
Upper Limits for Entering 422

Timers (T) 648
Memory Area

Retentive 553
Times 292

Assignment List 292
Tips and tricks 519, 521
Tips and Tricks 520, 523
Title Bar 120
Titles

for Blocks 231
for Networks 231

TOD Interrupt 386
TOD Status 387
TOD Synchronization 387
Toggling between Windows 136
Toolbar

Buttons 120
Transferring Configuration Data to the Operator Interface

Programmable Controller 376
Transferring Configuration Data to the Programmable

Controller 350
Transferring Parameters

Saving the Transferred Values 79
Transferring to IN_OUT Parameters of a Function Block

594
Translating and editing user texts 344
Translating and Editing User Texts 344
Translation - texts

Of texts relevant for operator 344
Tree Structure 290
Trigger conditions 430

 25BIndex

Programming with STEP 7
Manual, 04/2017, A5E41552389-AA 667

Troubleshooting 449
Hardware 449

Type file 163
Types of Interrupt 63
Types of Licenses 39

Enterprise License 37
Floating License 39
Rental License 39
Trial License 39
Upgrade License 37

Types of Multilingual Texts 153

U
UDT 204, 205, 206, 564
UDT - User-defined Data Types in STL Source Files

Example 285
Uninstalling STEP 7 48
Uninstalling the User Authorization 41
Unknown modules 168
Unmasking

Start Events 99
Unmasking Synchronous Errors 633

Example 633
Unused Addresses

Displaying 297
Unused Symbols 294
UPDAT_PI 74, 544
UPDAT_PO 74, 544
Update (operating system of the CPU) 646
Updating 391, 646

Firmware (operating system) of module and
submodules - offline 646

Process image 71, 73, 74
Process Image 544, 545, 546

Updating Firmware 388
Updating Firmware in Modules and Submodules Online

388
Updating the Operating System (see Updating Firmware

in Modules and Submodules Online) 388
Updating the Window Contents 383
Uploaded Blocks

Editing in the PG/PC 409
Uploading

Blocks from an S7 CPU 409
Station 408

Uploading from the Programmable Controller to the
PG/PC 407

Upper and Lower Case 185, 186
Symbols 185, 186

Upper Limits for Entering Counters 423
Upper Limits for Entering Timers 422
User Data 641
User Interface 120
User Memory 412

Compressing 412

User program
Elements 62

User Program 540
Downloading 540
in the CPU Memory 540
Tasks 61

User Programs
Downloading 395

User rights 48
User Rights Through The Automation License Manager

37
User text libraries 347

Editing 347
User Text Libraries 346

Create 346
User-Defined Data Type

Correcting the Interface 308
User-Defined Data Types 205
User-Defined Data Types (UDT)

Entering the Structure 252
User-defined diagnostic messages

Displaying 351
User-Defined Diagnostic Messages

Creating and Editing 331
Uses for Saving/Archiving 517
Using

SFC 544
Using a Micro Memory Card as a data carrier 161
Using Arrays to Access Data 568
Using Clock Memory and Timers 648
Using Complex Data Types 567
Using Foreign-Language Character Sets 142
Using Multiple Instances 226
Using Older Projects 595
Using Structures to Access Data 571
Using the Clock Functions 647
Using the Parameter Type ANY 584
Using the Parameter Type POINTER 576
Using the System Memory Areas 542
Using the Variable Declaration in Logic Blocks 222
Using User­Defined Data Types to Access Data 204

V
Valves 57

Creating an I/O Diagram 57
Variable declaration table 219

for OB81 475
Variable Declaration Table 222

FC for the Sample Industrial Blending Process 611
OB for the Sample Industrial Blending Process 613
Purpose 222
System Attributes for Parameters 222

Variable Declaration Window
Entering a Multiple Instance entering 227

25BIndex

 Programming with STEP 7
668 Manual, 04/2017, A5E41552389-AA

Variable Declarations
in STL Source Files 277

Variable Detail View 224
Structure 225

Variable table
Saving 415
Using 415

Variable Table 418
Copying/Moving 418
Creating 417
Creating and Opening 416
Editing 419
Example 419, 420
Example of Entering Addresses 424
Inserting a Contiguous Address Range 421
Inserting Addresses or Symbols 419
Maximum Size 420
Opening 417
Saving 418
Syntax Check 420

Variables 371, 372
Modifying 432
Monitoring - introduction 430
Operator control and monitoring 371, 372

Version 2 Projects 595
Converting 595

Virtual work memory
Setting 523

W
Warm restart 529, 530, 532, 534

Automatic 529
unbuffered 529

Canceling 529
Manual 529

Warning 548
Exceeding the L Stack 548
Overwriting the L Stack 548

Watchdog time 71

What Are the Different Messaging Methods? 311
What You Should Know About Access Protection 139
What You Should Know About HOLD Mode 444
What You Should Know About Micro Memory Cards

(MMC) 160
What You Should Know About Testing in Single-Step

Mode/Breakpoints 442
What You Should Know About The Change Log 141
What You Should Know About the HOLD Mode 444
Which Message Blocks Are Available? 317
Which Message Blocks Exist? 317
WinAC 161
Window Arrangement 120

Changing 129
Restoring 130
Saving 130

Window Contents 383
Updating 383

Windows 136
Toggling 136

Windows Language Settings 143
WinLC 161
Winter time 386
Wizard for supported creation of a project 145
WORD 556, 562
Word (WORD) 556

Area 556
Work Memory 395, 539, 540, 541
Working Area of a Window 120
Working with Libraries 214
Working with network templates 233
WR_DPARM 642, 645
WR_PARM 642, 645
WR_USMSG 471
Writing to a Data Block in Load Memory 160

Y
Y link 463

	Programming with STEP 7
	Legal information
	Preface
	Table of Contents
	1 Introducing the Product and Installing the Software
	1.1 Overview of STEP 7
	1.2 The STEP 7 Standard Package
	1.3 What's New in STEP 7, Version 5.6?
	1.4 Extended Uses of the STEP 7 Standard Package
	1.4.1 Engineering Tools
	1.4.2 Run-Time Software
	1.4.3 Human Machine Interface

	2 Installation
	2.1 Automation License Manager
	2.1.1 User Rights Through The Automation License Manager
	2.1.2 Installing the Automation License Manager
	2.1.3 Guidelines for Handling License Keys

	2.2 Installing STEP 7
	2.2.1 Installation Procedure
	2.2.2 Setting the PG/PC Interface

	2.3 Uninstalling STEP 7
	2.4 User Rights

	3 Working Out the Automation Concept
	3.1 Basic Procedure for Planning an Automation Project
	3.2 Dividing the Process into Tasks and Areas
	3.3 Describing the Individual Functional Areas
	3.4 Listing Inputs, Outputs, and In/Outs
	3.5 Creating an I/O Diagram for the Motors
	3.6 Creating an I/O Diagram for the Valves
	3.7 Establishing the Safety Requirements
	3.8 Describing the Required Operator Displays and Controls
	3.9 Creating a Configuration Diagram

	4 Basics of Designing a Program Structure
	4.1 Programs in a CPU
	4.2 Blocks in the User Program
	4.2.1 Organization Blocks and Program Structure
	4.2.2 Call Hierarchy in the User Program
	4.2.3 Block Types
	4.2.3.1 Organization Block for Cyclic Program Processing (OB1)
	4.2.3.2 Functions (FC)
	4.2.3.3 Function Blocks (FB)
	4.2.3.4 Instance Data Blocks
	4.2.3.5 Shared Data Blocks (DB)
	4.2.3.6 System Function Blocks (SFB) and System Functions (SFC)

	4.2.4 Organization Blocks for Interrupt-Driven Program Processing
	4.2.4.1 Time-of-Day Interrupt Organization Blocks (OB10 to OB17)
	4.2.4.2 Time-Delay Interrupt Organization Blocks (OB20 to OB23)
	4.2.4.3 Cyclic Interrupt Organization Blocks (OB30 to OB38)
	4.2.4.4 Hardware Interrupt Organization Blocks (OB40 to OB47)
	4.2.4.5 Startup Organization Blocks (OB100 / OB101 / OB102)
	4.2.4.6 Background Organization Block (OB90)
	4.2.4.7 Error Handling Organization Blocks (OB70 to OB87 / OB121 to OB122)

	5 Startup and Operation
	5.1 Starting STEP 7
	5.2 Starting STEP 7 with Default Start Parameters
	5.3 Calling the Help Functions
	5.4 Objects and Object Hierarchy
	5.4.1 Project Object
	5.4.2 Library Object
	5.4.3 Station Object
	5.4.4 Programmable Module Object
	5.4.5 S7 Program Object
	5.4.6 Block Folder Object
	5.4.7 Source File Folder Object
	5.4.8 S7 Program without a Station or CPU

	5.5 User Interface and Operation
	5.5.1 Operating Philosophy
	5.5.2 Window Arrangement
	5.5.3 Elements in Dialog Boxes
	5.5.4 Creating and Managing Objects
	5.5.5 Selecting Objects in a Dialog Box
	5.5.6 Session Memory
	5.5.7 Changing the Window Arrangement
	5.5.8 Saving and Restoring the Window Arrangement

	5.6 Keyboard Operation
	5.6.1 Keyboard Control
	5.6.2 Key Combinations for Menu Commands
	5.6.3 Key Combinations for Moving the Cursor
	5.6.4 Key Combinations for Selecting Text
	5.6.5 Key Combinations for Access to Online Help
	5.6.6 Key Combinations for Toggling between Windows

	6 Setting Up and Editing the Project
	6.1 Project Structure
	6.2 What You Should Know About Access Protection
	6.3 What You Should Know About The Change Log
	6.4 Using Foreign-Language Character Sets
	6.5 Setting the MS Windows Language
	6.6 Setting Up a Project
	6.6.1 Creating a Project
	6.6.2 Inserting Stations
	6.6.3 Inserting an S7 Program

	6.7 Editing a Project
	6.7.1 Checking Projects for Software Packages Used
	6.7.2 Managing Multilingual Texts
	6.7.2.1 Types of Multilingual Texts
	6.7.2.2 Structure of the Export File
	6.7.2.3 Information on the Log File
	6.7.2.4 Managing User Texts Whose Language Font is Not Installed
	6.7.2.5 Optimizing the Source for Translation
	6.7.2.6 Optimizing the Translation Process
	6.7.2.7 Hiding Texts in Selected Languages

	6.7.3 Micro Memory Card (MMC) as a Data Carrier
	6.7.3.1 What You Should Know About Micro Memory Cards (MMC)
	6.7.3.2 Using a Micro Memory Card as a Data Carrier
	6.7.3.3 Memory Card File
	6.7.3.4 Storing Project Data on a Micro Memory Card (MMC)

	7 Editing Projects with Different Versions of STEP 7
	7.1 Editing Version 2 Projects and Libraries
	7.2 Expanding DP Slaves That Were Created with Previous Versions of STEP 7
	7.3 Editing Current Configurations with Previous Versions of STEP 7
	7.4 Appending SIMATIC PC Configurations of Previous Versions
	7.5 Displaying Modules Configured with Later STEP 7 Versions or Optional Packages

	8 Defining Symbols
	8.1 Absolute and Symbolic Addressing
	8.2 Shared and Local Symbols
	8.3 Displaying Shared or Local Symbols
	8.4 Setting the Address Priority (Symbolic/Absolute)
	8.5 Symbol Table for Shared Symbols
	8.5.1 Structure and Components of the Symbol Table
	8.5.2 Addresses and Data Types Permitted in the Symbol Table
	8.5.3 Incomplete and Non-Unique Symbols in the Symbol Table

	8.6 Entering Shared Symbols
	8.6.1 General Tips on Entering Symbols
	8.6.2 Entering Single Shared Symbols in a Dialog Box
	8.6.3 Entering Multiple Shared Symbols in the Symbol Table
	8.6.4 Using Upper and Lower Case for Symbols
	8.6.5 Exporting and Importing Symbol Tables
	8.6.6 File Formats for Importing/Exporting a Symbol Table
	8.6.7 Editing Areas in Symbol Tables

	9 Creating Blocks and Libraries
	9.1 Selecting an Editing Method
	9.2 Selecting the Programming Language
	9.2.1 Ladder Logic Programming Language (LAD)
	9.2.2 Function Block Diagram Programming Language (FBD)
	9.2.3 Statement List Programming Language (STL)
	9.2.4 S7 SCL Programming Language
	9.2.5 S7-GRAPH Programming Language (Sequential Control)
	9.2.6 S7 HiGraph Programming Language (State Graph)
	9.2.7 S7 CFC Programming Language

	9.3 Creating Blocks
	9.3.1 Blocks Folder
	9.3.2 Using User­Defined Data Types to Access Data
	9.3.3 Block Properties
	9.3.4 Displaying Block Lengths
	9.3.5 Rewiring
	9.3.6 Comparing Blocks
	9.3.7 Attributes for Blocks and Parameters

	9.4 Working with Libraries
	9.4.1 Hierarchical Structure of Libraries
	9.4.2 Overview of the Standard Libraries

	10 Basics of Creating Logic Blocks
	10.1 Basics of Creating Logic Blocks
	10.1.1 Structure of the Program Editor Window
	10.1.2 Basic Procedure for Creating Logic Blocks
	10.1.3 Default Settings for the LAD/STL/FBD Program Editor
	10.1.4 Access Rights to Blocks and Source Files
	10.1.5 Instructions from the Program Elements Table

	10.2 Editing the Variable Declaration
	10.2.1 Using the Variable Declaration in Logic Blocks
	10.2.2 Interaction Between The Variable Detail View And The Instruction List
	10.2.3 Structure of the Variable Declaration Window

	10.3 Multiple Instances in the Variable Declaration
	10.3.1 Using Multiple Instances
	10.3.2 Rules for Declaring Multiple Instances
	10.3.3 Entering a Multiple Instance in the Variable Declaration Window

	10.4 General Notes on Entering Statements and Comments
	10.4.1 Structure of the Code Section
	10.4.2 Procedure for Entering Statements
	10.4.3 Entering Shared Symbols in a Program
	10.4.4 Entering Block Comments and Network Comments
	10.4.5 Title and Comments for Blocks and Networks
	10.4.6 Working with Network Templates
	10.4.7 Search Function for Errors in the Code Section

	10.5 Editing LAD Elements in the Code Section
	10.5.1 Settings for Ladder Logic Programming
	10.5.2 Rules for Entering Ladder Logic Elements
	10.5.3 Illegal Logic Operations in Ladder

	10.6 Editing FBD Elements in the Code Section
	10.6.1 Settings for Function Block Diagram Programming
	10.6.2 Rules for Entering FBD Elements

	10.7 Editing STL Statements in the Code Section
	10.7.1 Settings for Statement List Programming
	10.7.2 Rules for Entering STL Statements

	10.8 Updating Block Calls
	10.8.1 Changing Interfaces

	10.9 Saving Logic Blocks

	11 Creating Data Blocks
	11.1 Basic Information on Creating Data Blocks
	11.2 Declaration View of Data Blocks
	11.3 Data View of Data Blocks
	11.4 Editing and Saving Data Blocks
	11.4.1 Entering the Data Structure of Shared Data Blocks
	11.4.2 Entering and Displaying the Data Structure of Data Blocks Referencing an FB (Instance DBs)
	11.4.3 Entering the Data Structure of User-Defined Data Types (UDT)
	11.4.4 Entering and Displaying the Structure of Data Blocks Referencing a UDT
	11.4.5 Editing Data Values in the Data View
	11.4.6 Resetting Data Values to their Initial Values
	11.4.7 Saving Data Blocks

	12 Parameter Assignment for Data Blocks
	12.1 Assigning Parameters to Technological Functions

	13 Creating STL Source Files
	13.1 Basic Information on Programming in STL Source Files
	13.2 Rules for Programming in STL Source Files
	13.2.1 Rules for Entering Statements in STL Source Files
	13.2.2 Rules for Declaring Variables in STL Source Files
	13.2.3 Rules for Block Order in STL Source Files
	13.2.4 Rules for Setting System Attributes in STL Source Files
	13.2.5 Rules for Setting Block Properties in STL Source Files
	13.2.6 Permitted Block Properties for Each Block Type

	13.3 Structure of Blocks in STL Source Files
	13.3.1 Structure of Logic Blocks in STL Source Files
	13.3.2 Structure of Data Blocks in STL Source Files
	13.3.3 Structure of User-Defined Data Types in STL Source Files

	13.4 Syntax and Formats for Blocks in STL Source Files
	13.4.1 Format Table of Organization Blocks
	13.4.2 Format Table of Function Blocks
	13.4.3 Format Table of Functions
	13.4.4 Format Table of Data Blocks

	13.5 Creating STL Source Files
	13.5.1 Creating STL Source Files
	13.5.2 Editing S7 Source Files
	13.5.3 Setting The Layout of Source Code Text
	13.5.4 Inserting Block Templates in STL Source Files
	13.5.5 Inserting the Contents of Other STL Source Files
	13.5.6 Inserting Source Code from Existing Blocks in STL Source Files
	13.5.7 Inserting External Source Files
	13.5.8 Generating STL Source Files from Blocks
	13.5.9 Importing Source Files
	13.5.10 Exporting Source Files

	13.6 Saving and Compiling STL Source Files and Executing a Consistency Check
	13.6.1 Saving STL Source Files
	13.6.2 Checking Consistency in STL Source Files
	13.6.3 Debugging STL Source Files
	13.6.4 Compiling STL Source Files

	13.7 Examples of STL Source Files
	13.7.1 Examples of Declaring Variables in STL Source Files
	13.7.2 Example of Organization Blocks in STL Source Files
	13.7.3 Example of Functions in STL Source Files
	13.7.4 Example of Function Blocks in STL Source Files
	13.7.5 Example of Data Blocks in STL Source Files
	13.7.6 Example of User-Defined Data Types in STL Source Files

	14 Displaying Reference Data
	14.1 Overview of the Available Reference Data
	14.1.1 Cross­Reference List
	14.1.2 Program Structure
	14.1.3 Assignment List
	14.1.4 Unused Symbols
	14.1.5 Addresses Without Symbols
	14.1.6 Displaying Block Information for LAD, FBD, and STL

	14.2 Working with Reference Data
	14.2.1 Ways of Displaying Reference Data
	14.2.2 Displaying Lists in Additional Working Windows
	14.2.3 Generating and Displaying Reference Data
	14.2.4 Finding Address Locations in the Program Quickly
	14.2.5 Example of Working with Address Locations

	15 Checking Block Consistency and Time Stamps as a Block Property
	15.1 Checking Block Consistency
	15.2 Time Stamps as a Block Property and Time Stamp Conflicts
	15.3 Time Stamps in Logic Blocks
	15.4 Time Stamps in Shared Data Blocks
	15.5 Time Stamps in Instance Data Blocks
	15.6 Time Stamps in UDTs and Data Blocks Derived from UDTs
	15.7 Correcting the Interfaces in a Function, Function Block, or UDT
	15.8 Avoiding Errors when Calling Blocks

	16 Configuring Messages
	16.1 The Message Concept
	16.1.1 What Are the Different Messaging Methods?
	16.1.2 Choosing a Messaging Method
	16.1.3 SIMATIC Components
	16.1.4 Parts of a Message
	16.1.5 Which Message Blocks Are Available?
	16.1.6 Formal Parameters, System Attributes, and Message Blocks
	16.1.7 Message Type and Messages
	16.1.8 How to Generate an STL Source File from Message-Type Blocks
	16.1.9 Assigning Message Numbers
	16.1.10 Differences Between Project-Oriented and CPU-Oriented Assignment of Message Numbers
	16.1.11 Options for Modifying the Message Number Assignment of a Project

	16.2 Project-Oriented Message Configuration
	16.2.1 How to Assign Project-Oriented Message Numbers
	16.2.2 Assigning and Editing Block­Related Messages
	16.2.2.1 How to Create Block-Related Messages (Project-Oriented)
	16.2.2.2 How to Edit Block-Related Messages (Project-Oriented)
	16.2.2.3 How to Configure PCS 7 Messages (Project-Oriented)

	16.2.3 Assigning and Editing Symbol-Related Messages
	16.2.3.1 How to Assign and Edit Symbol-Related Messages (Project-Oriented)

	16.2.4 Creating and Editing User­Defined Diagnostic Messages

	16.3 CPU-Oriented Message Configuration
	16.3.1 How to Assign CPU-Oriented Message Numbers
	16.3.2 Assigning and Editing Block­Related Messages
	16.3.2.1 How to Create Block-Related Messages (CPU-Oriented)
	16.3.2.2 How to Edit Block-Related Messages (CPU-Oriented)
	16.3.2.3 How to Configure PCS 7 Messages (CPU-Oriented)

	16.3.3 Assigning and Editing Symbol-Related Messages
	16.3.3.1 How to Assign and Edit Symbol-Related Messages (CPU-Oriented)

	16.3.4 Creating and Editing User-Defined Diagnostic Messages

	16.4 Tips for Editing Messages
	16.4.1 Adding Associated Values to Messages
	16.4.2 Integrating Texts from Text Libraries into Messages
	16.4.3 Deleting Associated Values

	16.5 Translating and Editing Operator Related Texts
	16.5.1 Translating and Editing User Texts

	16.6 Translating and Editing Text Libraries
	16.6.1 User Text Libraries
	16.6.2 Creating User Text Libraries
	16.6.3 How to Edit User Text Libraries
	16.6.4 System Text Libraries
	16.6.5 Translating Text Libraries

	16.7 Transferring Message Configuration Data to the Programmable Controller
	16.7.1 Transferring Configuration Data to the Programmable Controller

	16.8 Displaying CPU Messages and User­Defined Diagnostic Messages
	16.8.1 Configuring CPU Messages
	16.8.2 Displaying Stored CPU Messages

	16.9 Configuring the 'Report System Errors'
	16.9.1 Overview of 'Report System Error'
	16.9.2 Configuring the Reporting of System Errors
	16.9.3 Supported Components and Functional Scope
	16.9.4 Settings for "Report System Error"
	16.9.5 Generating Blocks for Reporting System Errors
	16.9.6 Generated Error OBs
	16.9.7 Generated Blocks
	16.9.8 Assignment of System Errors to Error Classes
	16.9.9 Generating Foreign-Language Message Texts in 'Report System Error'

	17 Controlling and Monitoring Variables
	17.1 Configuring Variables for Operator Control and Monitoring
	17.2 Configuring Operator Control and Monitoring Attributes with Statement List, Ladder Logic, and Function Block Diagram
	17.3 Configuring Operator Control and Monitoring Attributes via the Symbol Table
	17.4 Changing Operator Control and Monitoring Attributes with CFC
	17.5 Transferring Configuration Data to the Operator Interface Programmable Controller

	18 Establishing an Online Connection and Making CPU Settings
	18.1 Establishing Online Connections
	18.1.1 Establishing an Online Connection via the "Accessible Nodes" Window
	18.1.2 Establishing an Online Connection via the Online Window of the Project
	18.1.3 Online Access to PLCs in a Multiproject
	18.1.4 Password Protection for Access to Programmable Controllers
	18.1.5 Updating the Window Contents

	18.2 Displaying and Changing the Operating Mode
	18.3 Displaying and Setting the Time and Date
	18.3.1 CPU Clocks with Time Zone Setting and Summer/Winter Time

	18.4 Updating the Firmware
	18.4.1 Updating Firmware in Modules and Submodules Online

	19 Downloading and Uploading
	19.1 Downloading from the PG/PC to the Programmable Controller
	19.1.1 Requirements for Downloading
	19.1.2 Differences Between Saving and Downloading Blocks
	19.1.3 Load Memory and Work Memory in the CPU
	19.1.4 Download Methods Dependent on the Load Memory
	19.1.5 Updating Firmware in Modules and Submodules Online
	19.1.6 Downloading a Program to the S7 CPU
	19.1.6.1 Downloading with Project Management
	19.1.6.2 Downloading without Project Management
	19.1.6.3 Reloading Blocks in the Programmable Controller
	19.1.6.4 Saving Downloaded Blocks on Integrated EPROM
	19.1.6.5 Downloading via EPROM Memory Cards

	19.2 Compiling and Downloading Several Objects from the PG
	19.2.1 Requirements for and Notes on Downloading
	19.2.2 Compiling and Downloading Objects

	19.3 Uploading from the Programmable Controller to the PG/PC
	19.3.1 Uploading a Station
	19.3.2 Uploading Blocks from an S7 CPU
	19.3.3 Editing Uploaded Blocks in the PG/PC
	19.3.3.1 Editing Uploaded Blocks if the User Program is on the PG/PC
	19.3.3.2 Editing Uploaded Blocks if the User Program is Not on the PG/PC

	19.4 Deleting on the Programmable Controller
	19.4.1 Erasing the Load/Work Memory and Resetting the CPU
	19.4.2 Deleting S7 Blocks on the Programmable Controller

	19.5 Compressing the User Memory (RAM)
	19.5.1 Gaps in the User Memory (RAM)
	19.5.2 Compressing the Memory Contents of an S7 CPU

	20 Testing with the Variable Table
	20.1 Introduction to Testing with Variable Tables
	20.2 Basic Procedure when Monitoring and Modifying with the Variable Table
	20.3 Editing and Saving Variable Tables
	20.3.1 Creating and Opening a Variable Table
	20.3.1.1 How to Create and Open a Variable Table

	20.3.2 Copying/Moving Variable Tables
	20.3.3 Saving a Variable Table

	20.4 Entering Variables in Variable Table
	20.4.1 Inserting Addresses or Symbols in a Variable Table
	20.4.2 Inserting a Contiguous Address Range in a Variable Table
	20.4.3 Inserting Modify Values
	20.4.4 Upper Limits for Entering Timers
	20.4.5 Upper Limits for Entering Counters
	20.4.6 Inserting Comment Lines
	20.4.7 Examples
	20.4.7.1 Example of Entering Addresses in Variable Tables
	20.4.7.2 Example of Entering a Contiguous Address Range
	20.4.7.3 Examples of Entering Modify and Force Values

	20.5 Establishing a Connection to the CPU
	20.6 Monitoring Variables
	20.6.1 Introduction to Monitoring Variables
	20.6.2 Defining the Trigger for Monitoring Variables

	20.7 Modifying Variables
	20.7.1 Introduction to Modifying Variables
	20.7.2 Defining the Trigger for Modifying Variables

	20.8 Forcing Variables
	20.8.1 Safety Measures When Forcing Variables
	20.8.2 Introduction to Forcing Variables
	20.8.3 Differences Between Forcing and Modifying Variables

	21 Testing Using Program Status
	21.1 Testing Using Program Status
	21.2 Program Status Display
	21.3 What You Should Know About Testing in Single-Step Mode/Breakpoints
	21.4 What You Should Know About the HOLD Mode
	21.5 Program Status of Data Blocks
	21.5.1 Setting the Display for Program Status

	22 Testing using the Simulation Program (Optional Package)
	22.1 Testing using the Simulation Program S7 PLCSIM (Optional Package)

	23 Diagnostics
	23.1 Hardware Diagnostics and Troubleshooting
	23.2 Diagnostics Symbols in the Online View
	23.3 Diagnosing Hardware: Quick View
	23.3.1 Calling the Quick View
	23.3.2 Information Functions in the Quick View

	23.4 Diagnosing Hardware: Diagnostic View
	23.4.1 Calling the Diagnostic View
	23.4.2 Information Functions in the Diagnostic View

	23.5 Module Information
	23.5.1 Options for Displaying the Module Information
	23.5.2 Module Information Functions
	23.5.3 Scope of the Module Type-Dependent Information
	23.5.4 Displaying the Module Status of PA Field Devices and DP Slaves After a YLink

	23.6 Diagnosing in STOP Mode
	23.6.1 Basic Procedure for Determining the Cause of a STOP
	23.6.2 Stack Contents in STOP Mode

	23.7 Checking Scan Cycle Times to Avoid Time Errors
	23.7.1 Checking Scan Cycle Times to Avoid Time Errors

	23.8 Flow of Diagnostic Information
	23.8.1 System Status List SSL
	23.8.2 Sending Your Own Diagnostic Messages
	23.8.3 Diagnostic Functions

	23.9 Program Measures for Handling Errors
	23.9.1 Evaluating the Output Parameter RET_VAL
	23.9.2 Error OBs as a Reaction to Detected Errors
	23.9.3 Inserting Substitute Values for Error Detection
	23.9.4 I/O Redundancy Error (OB70)
	23.9.5 CPU Redundancy Error (OB72)
	23.9.6 Time Error (OB80)
	23.9.7 Power Supply Error (OB81)
	23.9.8 Diagnostic Interrupt (OB82)
	23.9.9 Insert/Remove Module Interrupt (OB83)
	23.9.10 CPU Hardware Fault (OB84)
	23.9.11 Program Sequence Error (OB85)
	23.9.12 Rack Failure (OB86)
	23.9.13 Communication Error (OB87)
	23.9.14 Programming Error (OB121)
	23.9.15 I/O Access Error (OB122)

	23.10 System Diagnostics with 'Report System Error'
	23.10.1 Graphical Output of Diagnostic Events
	23.10.2 Diagnostic Status
	23.10.2.1 Overview of the Diagnostic Status
	23.10.2.2 PROFIBUS Diagnostic Status
	23.10.2.3 Example of a DB 125 with a DP Slave
	23.10.2.4 Example of a Request for the PROFIBUS DP DB
	23.10.2.5 PROFINET Diagnostic Status
	23.10.2.6 Example of a DB126 with an IO System 100 and Devices with Device Numbers 2, 3 and 4
	23.10.2.7 Example of a Request for the PROFINET IO DB
	23.10.2.8 Diagnostic Status DB
	23.10.2.9 Example of a Diagnostic Status DB Query
	23.10.2.10 Importing Error and Help Texts

	24 Printing and Archiving
	24.1 Printing Project Documentation
	24.1.1 Basic Procedure when Printing
	24.1.2 Print Functions
	24.1.3 Special Note on Printing the Object Tree

	24.2 Archiving Projects and Libraries
	24.2.1 Archiving Projects and Libraries
	24.2.2 Uses for Saving/Archiving
	24.2.3 Requirements for Archiving
	24.2.4 Procedure for Archiving/Retrieving

	25 Tips and Tricks
	25.1 Exchanging Modules in the Configuration Table
	25.2 Projects with a Large Number of Networked Stations
	25.3 Rearranging
	25.4 Editing Symbols Across Multiple Networks
	25.5 Testing with the Variable Table
	25.6 Modifying Variables With the Program Editor
	25.7 Virtual Work Memory

	26 Appendix
	26.1 Operating Modes
	26.1.1 Operating Modes and Mode Transitions
	26.1.2 STOP Mode
	26.1.3 STARTUP Mode
	26.1.4 RUN Mode
	26.1.5 HOLD Mode

	26.2 Memory Areas of S7 CPUs
	26.2.1 Distribution of the Memory Areas
	26.2.2 Load Memory and Work Memory
	26.2.3 System Memory
	26.2.3.1 Using the System Memory Areas
	26.2.3.2 Process-Image Input/Output Tables
	26.2.3.3 Local Data Stack
	26.2.3.4 Interrupt Stack
	26.2.3.5 Block Stack
	26.2.3.6 Diagnostic Buffer
	26.2.3.7 Evaluating the Diagnostic Buffer
	26.2.3.8 Retentive Memory Areas on S7-300 CPUs
	26.2.3.9 Retentive Memory Areas on S7-400 CPUs
	26.2.3.10 Configurable Memory Objects in the Work Memory

	26.3 Data Types and Parameter Types
	26.3.1 Introduction to Data Types and Parameter Types
	26.3.2 Elementary Data Types
	26.3.2.1 Format of the Data Type INT (16-Bit Integers)
	26.3.2.2 Format of the Data Type DINT (32-Bit Integers)
	26.3.2.3 Format of the Data Type REAL (Floating-Point Numbers)
	26.3.2.4 Format of the Data Types WORD and DWORD in Binary Coded Decimal Numbers
	26.3.2.5 Format of the Data Type S5TIME (Time Duration)

	26.3.3 Complex Data Types
	26.3.3.1 Format of the Data Type DATE_AND_TIME
	26.3.3.2 Using Complex Data Types
	26.3.3.3 Using Arrays to Access Data
	26.3.3.4 Using Structures to Access Data

	26.3.4 Parameter Types
	26.3.4.1 Format of the Parameter Types BLOCK, COUNTER, TIMER
	26.3.4.2 Format of the Parameter Type POINTER
	26.3.4.3 Using the Parameter Type POINTER
	26.3.4.4 Block for Changing the Pointer
	26.3.4.5 Format of the Parameter Type ANY
	26.3.4.6 Using the Parameter Type ANY
	26.3.4.7 Assigning Data Types to Local Data of Logic Blocks
	26.3.4.8 Permitted Data Types when Transferring Parameters
	26.3.4.9 Transferring to IN_OUT Parameters of a Function Block

	26.4 Working with Older Projects
	26.4.1 Converting Version 2 Projects

	26.5 Expanding DP Slaves That Were Created with Previous Versions of STEP 7
	26.5.1 DP-Slaves with Missing or Faulty GSD Files

	26.6 Sample Programs
	26.6.1 Sample Projects and Sample Programs
	26.6.2 Sample Program for an Industrial Blending Process
	26.6.2.1 Defining Logic Blocks
	26.6.2.2 Assigning Symbolic Names
	26.6.2.3 Creating the FB for the Motor
	26.6.2.4 Creating the FC for the Valves
	26.6.2.5 Creating OB1

	26.6.3 Example of Handling Time-of-Day Interrupts
	26.6.3.1 Structure of the User Program "Time-of-Day Interrupts"
	26.6.3.2 FC12
	26.6.3.3 OB10
	26.6.3.4 OB1 and OB80

	26.6.4 Example of Handling Time-Delay Interrupts
	26.6.4.1 Structure of the User Program "Time-Delay Interrupts"
	26.6.4.2 OB20
	26.6.4.3 OB1
	26.6.4.4 Example of Masking and Unmasking Synchronous Errors
	26.6.4.5 Example of Disabling and Enabling Interrupts and Asynchronous Errors (SFC39 and SFC40)
	26.6.4.6 Example of the Delayed Processing of Interrupts and Asynchronous Errors (SFC41 and SFC42)

	26.7 Accessing Process and I/O Data Areas
	26.7.1 Accessing the Process Data Area
	26.7.2 Accessing the Peripheral Data Area

	26.8 Setting the Operating Behavior
	26.8.1 Setting the Operating Behavior
	26.8.2 Changing the Behavior and Properties of Modules
	26.8.3 Updating the Firmware (of the Operating System) in Modules and Submodules Offline
	26.8.4 Using the Clock Functions
	26.8.5 Using Clock Memory and Timers

	Index
	"
	*
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

