SIEMENS

SINAMICS

Variateur basse tension SINAMICS G120C

Appareil encastrable de taille A ... C

Instructions de service

Informations produit 07/2015

Exigences supplémentaires pour la protection de dérivation

Les informations suivantes sont des indications supplémentaires concernant les détails spécifiques pour le protection de dérivation du variateur SINAMICS G120C.

Protection de dérivation selon CEI

	Puissance		N	° d'article	Courant assigné max.	Volume
Taille	assignée	Entraînement	Fusible	Disjoncteur	de l'appareil de protection	minimal de l'enveloppe
	0,55 kW	6SL3210-1KE11-8			16 A	0,03 m ³
	0,75 kW	6SL3210-1KE12-3	3NA3805	3RV2011-4AA		
	1,1 kW	6SL3210-1KE13-2				
FSA	1,5 kW	6SL3210-1KE14-3				
	2,2 kW	6SL3210-1KE15-8				
	3 kW	6SL3210-1KE17-5				
	4 kW	6SL3210-1KE18-8				
FSB	5,5 kW	6SL3210-1KE21-3	3NA3812	3RV2021-4EA	32 A	0,06 m ³
гов	7,5 kW	6SL3210-1KE21-7	3NA3012	3RV2U21-4EA	32 A	0,06 111
	11 kW	6SL3210-1KE22-6		•		
FSC	15 kW	6SL3210-1KE23-2	3NA3822	3RV1041-4JA	63 A	0,2 m ³
	18,5 kW	6SL3210-1KE23-8				

Il est également possible d'utiliser des fusibles de la série 3NA38 et des disjoncteurs de la série 3RV de Siemens d'une plage de courant assigné inférieure à celles indiquées. Le variateur doit être monté dans une enveloppe appropriée (p. ex. armoire d'appareillage en métal).

Si un disjoncteur est utilisé, le volume intérieur de l'enveloppe ne doit pas être inférieur à celui indiqué dans le tableau ci-dessus.

Protection de dérivation selon normes UL

Une utilisation en Amérique du Nord nécessite des appareils de protection qui satisfont aux normes UL, telles que détaillées dans les tableaux ci-après. Le variateur doit être monté dans une enveloppe homologuée UL dont le volume n'est pas inférieur au volume minimal à moins que la protection de dérivation est une fusible Mersen (Ferraz Shawmut) de classe AJT.

Tableau 1 : Vue d'ensemble des appareils de protection homologués selon les normes UL

Appareil de protection	Catégorie UL
Fusibles de tout fabricant ayant une caractéristique de déclenchement plus rapide que la classe RK5 et une tension assignée de 600 V CA, p. ex. classe J, T, CC, G ou CF	JDDZ
Disjoncteur SIEMENS	DIVQ
Commandes de moteur de combinaison de type E SIEMENS	NKJH

Le variateur convient pour une utilisation sur un circuit capable de fournir le courant de court-circuit indiqué dans les tableaux ci-dessous lorsqu'il est protégé par la protection de dérivation indiquée.

Tableau 2 : Protection de dérivation avec fusibles non à semiconducteurs de classe J, T, CC, G, CF (JDDZ)

Taille	Puissance assignée	Entraînement	Courant assigné max. du fusible	Courant de court- circuit assigné (SCCR)	Volume minimal de l'enveloppe
	0,55 kW	6SL3210-1KE11-8			
	0,75 kW	6SL3210-1KE12-3	10 A		1830 in ³
FSA	1,1 kW	6SL3210-1KE13-2	10 A	100 kA, 480 V CA	
	1,5 kW	6SL3210-1KE14-3			
	2,2 kW	6SL3210-1KE15-8	15 A		
	3 kW	6SL3210-1KE17-5			
	4 kW	6SL3210-1KE18-8			
FSB	5,5 kW	6SL3210-1KE21-3	35 A		3660 in ³
FSC	7,5 kW	6SL3210-1KE21-7	35 A		3000 111
	11 kW	6SL3210-1KE22-6	60 A		
	15 kW	6SL3210-1KE23-2			12 200 in ³
	18,5 kW	6SL3210-1KE23-8			

Tableau 3 : Protection de dérivation avec disjoncteurs (DIVQ)

Taille	Puissance assignée	Entraînement	Courant assigné max. du disjoncteur	Types de disjoncteur	Courant de court- circuit assigné (SCCR)	Volume minimal de l'enveloppe
	0,55 kW	6SL3210-1KE11-8	15 A	3RV1742, LGG, CED6 3RV2711	65 kA, 480 V CA 65 kA, 480Y / 277 V CA	
	0,75 kW	6SL3210-1KE12-3	15 A	3RV1742, LGG, CED6 3RV2711		
	1,1 kW	6SL3210-1KE13-2	15 A	3RV1742, LGG, CED6 3RV2711		
FSA	1,5 kW	6SL3210-1KE14-3	15 A	3RV1742, LGG, CED6 3RV2711		1830 in ³
	2,2 kW	6SL3210-1KE15-8	15 A	3RV1742, LGG, CED6 3RV2711		
	3 kW	6SL3210-1KE17-5	15 A	3RV1742, LGG, CED6 3RV2711		
	4 kW	6SL3210-1KE18-8	15 A	3RV1742, LGG, CED6 3RV2711		
505	5,5 kW	6SL3210-1KE21-3	35 A	NCGA 3RV2721 LGG, CED6, HCGA 3RV1742 3RV2711	35 kA, 480 V CA 50 kA, 480Y / 277 V CA 65 kA, 480 V CA 65 kA, 480Y / 277 V CA* 65 kA, 480Y / 277 V CA	0000:3
FSC	7,5 kW	6SL3210-1KE21-7	35 A	NCGA 3RV2721 LGG, CED6, HCGA 3RV1742 3RV2711	35 kA, 480 V CA 50 kA, 480Y / 277 V CA 65 kA, 480 V CA 65 kA, 480Y / 277 V CA* 65 kA, 480Y / 277 V CA	3660 in ³
	11 kW	6SL3210-1KE22-6	60 A	NCGA LGG, CED6, HCGA 3RV1742	35 kA, 480 V CA 65 kA, 480 V CA 65 kA, 480 V CA*	
	15 kW	6SL3210-1KE23-2	60 A	NCGA LGG, CED6, HCGA 3RV1742	35 kA, 480 V CA 65 kA, 480 V CA 65 kA, 480Y / 277 V CA*	8780 in ³
	18,5 kW	6SL3210-1KE23-8	60 A	NCGA LGG, CED6, HCGA 3RV1742	35 kA, 480 V CA 65 kA, 480 V CA 65 kA, 480 V CA	

 $^{^{\}star}$ 65 kA, 480 V CA pour type 3RV1742 avec plage de courant assigné < 35 A

Tableau 4 : Protection de dérivation avec commandes de moteur de combinaison de type E (NKJH)

Taille	Puissance assignée	Entraînement	Nº de modèle de la CMC*	Courant assigné max. de la CMC	Puissance assignée de la CMC sous 460 V CA	Courant de court- circuit assigné (SCCR)	Volume minimal de l'enveloppe
	0,55 kW	6SL3210-1KE11-8	3RV20_1-1JA	10 A	5 HP		
	0,75 kW	6SL3210-1KE12-3	3RV20_1-1JA	10 A	5 HP	_	
	1,1 kW	6SL3210-1KE13-2	3RV20_1-1JA	10 A	5 HP		
	1,5 kW	6SL3210-1KE14-3	3RV20_1-1JA	10 A	5 HP		
FSA	2 2 144	601 2240 41/045 0	3RV20_1-4AA	16 A	10 HP	65 kA, 480Y /	1830 in ³
FSA	2,2 kW	6SL3210-1KE15-8	3RV_031-4AA	16 A	10 HP	277 V CA	1030 111
	3 kW	6SL3210-1KE17-5	3RV20_1-4AA	16 A	10 HP		
	3 KVV	03L3210-1KE17-3	3RV_031-4AA	16 A	10 HP		
	4 kW	6SL3210-1KE18-8	3RV20_1-4AA	16 A	10 HP		
			3RV_031-4AA	16 A	10 HP		
	5,5 kW	6SL3210-1KE21-3	3RV2021-4DA	25 A	15 HP	65 kA, 480Y / 277 V CA	
			3RV2021-4EA	32 A	20 HP	50 kA, 480Y / 277 V CA	
FSB			3RV_031-4EA	32 A	20 HP	65 kA, 480Y / 277 V CA	3660 in ³
		5 kW 6SL3210-1KE21-7	3RV2021-4DA	25 A	15 HP	65 kA, 480Y / 277 V CA	3000 111
	7,5 kW		3RV2021-4EA	32 A	20 HP	50 kA, 480Y / 277 V CA	
			3RV_031-4EA	32 A	20 HP	65 kA, 480Y / 277 V CA	
	44 130/	601 2040 41/500 6	3RV_031-4HA	50 A	40 HP		
	11 kW	6SL3210-1KE22-6	3RV1041-4JA	63 A	50 HP		
FSC	15 1/1/	6SI 3310 1KE33 3	3RV_031-4HA	50 A	40 HP	65 kA, 480Y /	12 200 in ³
130	15 kW	6SL3210-1KE23-2	3RV1041-4JA	63 A	50 HP	277 V CA	12 200 111
	19 5 WM	6SI 3310 1KE33 9	3RV_031-4HA	50 A	40 HP		
	18,5 kW	kW 6SL3210-1KE23-8	3RV1041-4JA	63 A	50 HP		

^{* &}quot;_" peut être remplacé par "1" ou "2"

Il est également possible d'utiliser des CMC Siemens homologués de même type (NKJH) avec une plage de courant assigné inférieure à celle indiquée dans le tableau, correspondant au numéro de modèle du variateur G120C et avec une plage de tension assignée d'au moins 480 V CA.

SINAMICS G120C SINAMICS G120

Variateur avec les Control Units CU230P-2, CU240B/E-2, CU250S-2

Informations produit

07/2015

Modification du comportement de mise en service de l'entraînement

L'assistant de mise en service pour les variateurs suivants a été révisé et unifié avec le firmware V4.7 SP3 :

- SINAMICS G120 avec Power Module PM240, PM240-2 ou PM330
- SINAMICS G120C

Les classes d'applications SINAMICS *Standard Drive Control*, *Dynamic Drive Control* et *Expert* ont fait l'objet de nouveaux développements. L'assistant de mise en service règle la classe d'applications en fonction du variateur :

- Standard Drive Control pour SINAMICS G120C et SINAMICS G120 avec Power Module PM240, PM240-2 jusqu'à la taille D
- Dynamic Drive Control pour SINAMICS G120 avec Power Module PM240, PM240-2 à partir de la taille D et avec Power Module PM330
- Expert pour SINAMICS G120 avec Power Module PM230, PM250 et PM260

Pour *Standard Drive Control*, une identification des paramètres moteur (IDMot) est réglée de manière fixe. Une fois l'assistant de mise en service terminé, le variateur réagit de la manière suivante au premier ordre de MARCHE :

- 1. Le variateur exécute une IDMot avec le moteur à l'arrêt. La durée de l'IDMot a été réduite à environ ⅓ par rapport au firmware V4.7.
- 2. Le variateur accélère immédiatement le moteur jusqu'à la consigne spécifiée. Un deuxième ordre de MARCHE n'est pas nécessaire après l'IDMot pour la classe *Standard Drive Control*.

Pour *Dynamic Drive Control*, une IDMot avec le moteur à l'arrêt est également réglée par défaut. Le réglage par défaut peut être modifié :

- Vous pouvez choisir également l'IDMot avec mesure en rotation. Les résultats de la mesure en rotation permettent au variateur d'optimiser la régulation de vitesse.
- Vous pouvez définir si, après l'IDMot, le moteur accélère immédiatement jusqu'à la consigne spécifiée ou si un deuxième ordre de MARCHE est nécessaire.

Expert correspond à quelques détails près à l'assistant de mise en service pour les versions de firmware antérieures à V4.7 SP3. Aucune IDMot n'est réglée par défaut. Vous pouvez choisir les éléments suivants :

- Pas d'IDMot, IDMot avec mesure avec le moteur à l'arrêt ou IDMot avec mesure en rotation
- Après l'IDMot, le moteur accélère immédiatement jusqu'à la consigne spécifiée ou seulement après un deuxième ordre de MARCHE.

Les logiciels de mise en service suivants prennent en charge le nouvel assistant de mise en service :

- STARTER à partir de la version V4.4 SP1
- Startdrive à partir de la version V13 SP1 avec Hardware Support Package V4.7 SP3
- IOP à partir de la version V1.6
- BOP-2

SIEMENS

Historique des modifications	
Consignes de sécurité élémentaires	1
Introduction	2
Description	3
Installation	4
Mise en service	5
Mise en service avancée :	6
Sauvegarde des données et mise en service en série	7
Maintenance corrective	8
Alarmes, défauts et messages système	9
Caractéristiques techniques	10

Annexe

Variateur SINAMICS G120C

Instructions de service

Edition 07/2015, firmware 4.7 SP3

Mentions légales

Signalétique d'avertissement

Ce manuel donne des consignes que vous devez respecter pour votre propre sécurité et pour éviter des dommages matériels. Les avertissements servant à votre sécurité personnelle sont accompagnés d'un triangle de danger, les avertissements concernant uniquement des dommages matériels sont dépourvus de ce triangle. Les avertissements sont représentés ci-après par ordre décroissant de niveau de risque.

/ DANGER

signifie que la non-application des mesures de sécurité appropriées entraîne la mort ou des blessures graves.

ATTENTION

signifie que la non-application des mesures de sécurité appropriées **peut entraîner** la mort ou des blessures graves.

! PRUDENCE

signifie que la non-application des mesures de sécurité appropriées peut entraîner des blessures légères.

IMPORTANT

signifie que la non-application des mesures de sécurité appropriées peut entraîner un dommage matériel.

En présence de plusieurs niveaux de risque, c'est toujours l'avertissement correspondant au niveau le plus élevé qui est reproduit. Si un avertissement avec triangle de danger prévient des risques de dommages corporels, le même avertissement peut aussi contenir un avis de mise en garde contre des dommages matériels.

Personnes qualifiées

L'appareil/le système décrit dans cette documentation ne doit être manipulé que par du **personnel qualifié** pour chaque tâche spécifique. La documentation relative à cette tâche doit être observée, en particulier les consignes de sécurité et avertissements. Les personnes qualifiées sont, en raison de leur formation et de leur expérience, en mesure de reconnaître les risques liés au maniement de ce produit / système et de les éviter.

Utilisation des produits Siemens conforme à leur destination

Tenez compte des points suivants:

! ATTENTION

Les produits Siemens ne doivent être utilisés que pour les cas d'application prévus dans le catalogue et dans la documentation technique correspondante. S'ils sont utilisés en liaison avec des produits et composants d'autres marques, ceux-ci doivent être recommandés ou agréés par Siemens. Le fonctionnement correct et sûr des produits suppose un transport, un entreposage, une mise en place, un montage, une mise en service, une utilisation et une maintenance dans les règles de l'art. Il faut respecter les conditions d'environnement admissibles ainsi que les indications dans les documentations afférentes.

Marques de fabrique

Toutes les désignations repérées par ® sont des marques déposées de Siemens AG. Les autres désignations dans ce document peuvent être des marques dont l'utilisation par des tiers à leurs propres fins peut enfreindre les droits de leurs propriétaires respectifs.

Exclusion de responsabilité

Nous avons vérifié la conformité du contenu du présent document avec le matériel et le logiciel qui y sont décrits. Ne pouvant toutefois exclure toute divergence, nous ne pouvons pas nous porter garants de la conformité intégrale. Si l'usage de ce manuel devait révéler des erreurs, nous en tiendrons compte et apporterons les corrections nécessaires dès la prochaine édition.

Historique des modifications

Principales modifications par rapport à l'édition de 04/2015 de ce manuel

Nouveau matériel	Au chapitre
Nouvelle taille AA du variateur	Description (Page 27)
	Montage du variateur (Page 43)
	Raccordement du variateur (Page 61)
	Caractéristiques techniques dépen- dant de la puissance (Page 374)
Inductance réseau, filtre, inductances de sortie et résistance	Montage du variateur (Page 43)
de freinage en tant que composants de base	Montage des composants en semelle (Page 48)
	Accessoires (Page 387)

Sommaire

	Historique	des modifications	5
1	Consignes	de sécurité élémentaires	13
	1.1	Consignes de sécurité générales	13
	1.2	Consignes de sécurité relatives aux champs électromagnétiques (CEM)	17
	1.3	Manipulation des composants sensibles aux décharges électrostatiques (ESD)	18
	1.4	Sécurité industrielle	19
	1.5	Risques résiduels des systèmes d'entraînement (Power Drive Systems)	20
2	Introductio	n`	
	2.1	A propos du manuel	
	2.2	Guide d'utilisation du manuel	
3		1	
•	3.1	Etendue de livraison	
	3.2	Composants en option pour le variateur	
	3.3	Gammes de moteurs prises en charge	
	3.4	Outils de mise en service du variateur	
4			
	4.1	Procédure d'installation du variateur	
	4.2	Installation conforme aux exigences de CEM	36
	4.2.1	Conception de l'armoire conformément aux exigences de CEM	36
	4.2.2	Installation du variateur conformément aux exigences de CEM	
	4.3	Montage du variateur	43
	4.4	Montage des composants en semelle	48
	4.5	Montage de l'inductance réseau	51
	4.6	Montage de l'inductance de sortie	54
	4.7	Montage de la résistance de freinage	57
	4.8	Raccordement du variateur	61
	4.8.1	Réseaux d'alimentation autorisés	
	4.8.2	Raccordement au réseau du variateur et de ses composants	
	4.8.3	Raccordement du moteur	
	4.8.4	Utilisation d'un variateur sur le dispositif différentiel résiduel	
	4.8.5	Vue d'ensemble des interfaces	
	4.8.6 4.8.7	Borniers	
	4.8.8	Réglages par défaut des interfaces	
	4.8.9	Câblage du bornier	

	4.8.10	Surveillez la température de la résistance de freinage	
	4.8.11	Connexion du variateur au bus de terrain	
	4.8.11.1	Interfaces de communication	
	4.8.11.2	PROFINET	
	4.8.11.3	PROFIBUS	92
5	Mise en se	ervice	95
	5.1	Guide pour la mise en service	95
	5.2	Préparation de la mise en service	96
	5.2.1	Recherche des paramètres du moteur	96
	5.2.2	Réglage d'usine du variateur	97
	5.2.3	Définition d'autres spécifications de l'application	98
	5.3	Mise en service à l'aide d'un pupitre opérateur BOP-2	
	5.3.1	Démarrage de la mise en service rapide	99
	5.3.2	Standard Drive Control	101
	5.3.3	Dynamic Drive Control	
	5.3.4	Mise en service de base pour experts	107
	5.4	Mise en service avec un PC	
	5.4.1	Création d'un projet	
	5.4.2	Intégration au projet d'un variateur connecté par USB	
	5.4.3	Connexion en ligne et démarrage de l'assistant de configuration	
	5.4.4	Standard Drive Control	
	5.4.5	Dynamic Drive Control	
	5.4.6	Configuration pour experts	
	5.4.7	Identification des paramètres moteur	125
	5.5	Rétablissement des réglages d'usine	
	5.5.1	Rétablissement des réglages d'usine des fonctions de sécurité	
	5.5.2	Rétablissement des réglages d'usine (sans fonctions de sécurité)	132
6	Mise en se	ervice avancée :	135
	6.1	Vue d'ensemble des fonctions du variateur	135
	6.2	Commande du variateur	136
	6.2.1	Mise en marche et mise hors tension du moteur	
	6.2.2	Adaptation du réglage par défaut du bornier	
	6.2.2.1	Entrées TOR	
	6.2.2.2	Entrée de sécurité	
	6.2.2.3	Sorties TOR	
	6.2.2.4	Entrée analogique	
	6.2.2.5	Sortie analogique	
	6.2.3	Commande du variateur par les entrées TOR	
	6.2.4	Commande à deux fils Méthode 1	
	6.2.5	Commande à deux fils, méthode 2	
	6.2.6	Commande à deux fils, méthode 3	
	6.2.7	Commande à trois fils, méthode 1	
	6.2.8	Commande à trois fils, méthode 2	
	6.2.9	Déplacement du moteur en marche par à-coups (fonction JOG)	
	6.2.10 6.2.10.1	Commande via PROFIBUS ou PROFINET avec le profil PROFIdrive Mots de commande et d'état 1	
	6.2.10.1	Structure du canal de paramètres	
	6.2.10.2	Exemples du canal de paramètres	
	U.Z. 1U.J	Exemples au canai de paramentos	

6.2.10.4 6.2.10.5	Extension des télégrammes et modification de la connexion des signaux Configuration de l'interface IP	
6.2.10.6	Transmission directe	
6.2.10.7	Lecture et écriture acycliques des paramètres de variateur	
6.2.11	Commande via d'autres bus de terrain	
6.2.11.1	Modbus RTU	
6.2.11.2	USS	177
6.2.11.3	CANopen	181
6.2.11.4	Ethernet/IP	
6.2.12	Commutation de la commande du variateur (jeu de paramètres de commande)	
6.3	Consignes	
6.3.1	Vue d'ensemble	
6.3.2	Entrée analogique en tant que source de consigne	
6.3.3	Spécification de consigne par le bus de terrain	
6.3.4	Potentiomètre motorisé en tant que source de consigne	
6.3.5	Vitesse fixe en tant que source de consigne	
6.4	Calcul de consigne	
6.4.1	Vue d'ensemble du traitement des consignes	
6.4.2	Inverser la valeur de consigne	
6.4.3 6.4.4	Blocage du sens de rotation	
6.4.5	Limitation de la vitesse	
6.4.6	Générateur de rampe	
6.5	Commande du moteur	
6.5.1	Régulation U/f	
6.5.1.1	Caractéristiques de la commande U/f	
6.5.1.2	Optimiser le démarrage du moteur	
6.5.2	Régulation vectorielle avec régulateur de vitesse	
6.5.2.1	Optimisation du régulateur de vitesse	
6.5.2.2	Caractéristique de frottement	
6.5.2.3	Estimateur de moment d'inertie	
6.5.2.4	Identification de la position des pôles	224
6.6	Fonctions de protection	
6.6.1	Surveillance de température du variateur	
6.6.2	Surveillance de la température du moteur à l'aide d'une sonde thermométrique	
6.6.3	Protection contre les surintensités	_
6.6.4	Limitation de la tension maximale du circuit intermédiaire	
6.7	Fonctions spécifiques à l'application	
6.7.1	Commutation d'unités	
6.7.1.1	Changement de norme moteur	
6.7.1.2	Commutation du système d'unités	
6.7.1.3	Commutation des grandeurs de process pour régulateurs technologiques	
6.7.1.4 6.7.2	Commutation d'unités avec STARTER	
6.7.2	Calcul de l'économie d'énergie Freinage électrique du moteur	
6.7.3.1	Freinage par injection de courant continu	
6.7.3.1	Freinage combiné	
6.7.3.3	Freinage dynamique	
6.7.4	Frein de maintien moteur	
6.7.5	Reprise au vol - Mise en marche avec moteur tournant	

	6.7.6	Redémarrage automatique	
	6.7.7	Maintien cinétique (régulation Vdc-min)	
	6.7.8	Commande du contacteur réseau	
	6.7.9	Régulateur technologique PID	
	6.7.9.1	Vue d'ensemble	
	6.7.9.2	Réglage du régulateur	
	6.7.9.3	Optimisation des régulateurs	271
	6.8	Fonction de sécurité Safe Torque Off (STO)	
	6.8.1	Description de la fonction	
	6.8.2	Conditions requises pour l'utilisation de STO	
	6.8.3	Mise en service de STO	
	6.8.3.1	Outils de mise en service	
	6.8.3.2	Protection des réglages contre les modifications non autorisées	
	6.8.3.3	Configuration de la fonction de sécurité	
	6.8.3.4	Configuration de la fonction de sécurité	
	6.8.3.5	Connexion du signal "STO actif"	
	6.8.3.6	Réglage du filtre pour les entrées de sécurité	
	6.8.3.7	Réglage de la dynamisation forcée (stop pour test)	
	6.8.3.8	Activation des réglages et contrôle des entrées TOR	
	6.8.3.9	Réception – achèvement de la mise en service	288
	6.9	Commutation entre différents réglages	292
7	Sauvegar	de des données et mise en service en série	295
	7.1	Enregistrement des réglages sur une carte mémoire	
	7.1.1	Sauvegarde du réglage sur la carte mémoire	
	7.1.2	Transfert du réglage de la carte mémoire	301
	7.1.3	Retrait de la carte mémoire en toute sécurité	305
	7.2	Enregistrement des réglages sur un PC	307
	7.3	Enregistrement des réglages sur un pupitre opérateur	311
	7.4	Autres possibilités de sauvegarde des réglages	313
	7.5	Protection en écriture et du savoir-faire	314
	7.5.1	Protection en écriture	314
	7.5.2	Protection du savoir-faire	316
	7.5.2.1	Paramétrages pour la protection de savoir-faire	318
	7.5.2.2	Création d'une liste d'exception pour la protection de savoir-faire	320
8	Maintena	nce corrective	321
	8.1	Remplacement des composants du variateur	321
	8.1.1	Vue d'ensemble du remplacement de variateur	
	8.1.2	Remplacement d'un variateur avec fonction de sécurité activée	
	8.1.3	Remplacement d'un variateur sans fonction de sécurité activée	329
	8.1.4	Remplacement d'un variateur sans sauvegarde des données	331
	8.1.5	Remplacement d'appareils avec la protection de savoir-faire active	
	8.1.6	Pièces de rechange	
	8.1.7	Remplacement de l'unité de ventilation du radiateur	335
	8.1.8	Remplacement du ventilateur de toit	337
	8.2	Mise à niveau du firmware et restauration d'une version antérieure	
	8.2.1	Mise à niveau du firmware	
	8.2.2	Restauration d'une version antérieure du firmware	342

	8.2.3	Correction d'une mise à niveau ou de la restauration d'une version antérieure du firmware qui a échoué	344
	8.3	Essai de réception réduit après un remplacement de composant et un changement de firmware	345
	8.4	Si le variateur ne réagit plus	346
9	Alarmes, d	éfauts et messages système	349
	9.1	Etats de fonctionnement signalisés par LED	350
	9.2	Alarmes	353
	9.3	Défauts	357
	9.4	Liste des défauts et alarmes	361
	9.5	Données d'identification & de maintenance (I&M)	368
10	Caractérist	iques techniques	
	10.1	Caractéristiques techniques des entrées et des sorties	
	10.2	High Overload et Low Overload	
	10.3	Caractéristiques de puissance communes	
	10.4	Caractéristiques techniques dépendant de la puissance	
	10.5	Informations concernant la puissance dissipée à l'état de fonctionnement en charge partielle	
	10.6 10.6.1 10.6.2 10.6.3	Compatibilité électromagnétique des variateurs	380 383
	10.7	Déclassement en fonction de la température et de la tension	384
	10.8	Réduction du courant en fonction de l'altitude d'implantation	
	10.9	Déclassement de courant en fonction de la fréquence de découpage	
	10.10 10.10.1 10.10.2 10.10.3 10.10.4 10.10.5	Accessoires Inductance réseau Filtre réseau Inductances de sortie Filtre sinus Résistance de freinage	387 389 390
	10.11	Normes	396
Α	Annexe		397
	A.1	Nouvelles fonctions et fonctions étendues	397
	A.2	Paramètres	403
	A.3 A.3.1 A.3.2	Utilisation du pupitre opérateur BOP-2 Structure de menu, symboles et touches Modification des réglages avec le BOP-2	405 406
	A.3.3 A.3.4	Modification des paramètres indexés	

Indev		427
A.8 A.8.1 A.8.2 A.8.3	Informations complémentaires sur le variateur	424 425
A.7 A.7.1 A.7.2 A.7.3	Essai de réception de la fonction de sécurité	418 421
A.5 A.6	Connexion des signaux dans le variateur	
A.4	La fonction Trace d'appareil dans STARTER	
A.3.5	Impossible de modifier un paramètre	409

Consignes de sécurité élémentaires

1.1 Consignes de sécurité générales

DANGER

Danger de mort en cas de contact avec des pièces sous tension et d'autres sources d'énergie

Tout contact avec des composants sous tension peut entraîner la mort ou des blessures graves.

- Ne travailler sur des appareils électriques que si l'on a les compétences requises.
- Respecter les règles de sécurité propre au pays lors de toute intervention.

Six étapes doivent toujours être observées pour garantir les conditions de sécurité :

- Préparer la mise hors tension et informer toutes les personnes concernées par la procédure.
- 2. Mettre la machine hors tension.
 - Mettre la machine hors service.
 - Attendre la fin du temps de décharge qui est indiqué sur les panneaux d'avertissement.
 - Vérifier l'absence de tension entre conducteurs et entre conducteurs et blindage.
 - Vérifier que les circuits de tension auxiliaire existants sont hors tension.
 - S'assurer que les moteurs ne peuvent pas tourner.
- 3. Identifier toutes les autres sources d'énergie dangereuses, par exemple de l'air comprimé, de l'énergie hydraulique ou de l'eau.
- Isoler ou neutraliser toutes les sources d'énergie dangereuses, par exemple par la fermeture de commutateurs, la mise à la terre ou en court-circuit ou la fermeture des vannes.
- 5. Condamner les sources d'énergie pour empêcher la remise sous tension.
- 6. S'assurer que la bonne machine est entièrement verrouillée.

Au terme des travaux, rétablir l'état de marche en suivant les étapes dans l'ordre inverse.

<u>/!\</u>ATTENTION

Danger de mort dû à une tension dangereuse lors du raccordement d'une alimentation non appropriée

Tout contact avec des parties sous tension peut entraîner des blessures graves ou la mort.

 Pour tous les connecteurs et toutes les bornes des modules électroniques, utiliser uniquement des alimentations qui fournissent des tensions de sortie TBTS (très basse tension de sécurité) ou TBTP (très basse tension de protection).

1.1 Consignes de sécurité générales

! ATTENTION

Danger de mort par contact avec des pièces sous tension en cas d'endommagement des appareils

Une manipulation inappropriée des appareils peut entraîner leur endommagement.

En cas d'endommagement des appareils, des tensions dangereuses peuvent être présentes sur l'enveloppe ou sur des composants accessibles et entraîner, en cas de contact, des blessures graves ou la mort.

- Lors du transport, du stockage et du fonctionnement, respecter les valeurs limites indiquées dans les caractéristiques techniques.
- · Ne jamais utiliser d'appareils endommagés.

/!\ATTENTION

Danger de mort par choc électrique en cas de blindages de câbles non connectés

Le surcouplage capacitif peut engendrer des tensions de contact mortelles lorsque les blindages de câbles ne sont pas connectés.

• Connecter les blindages de câbles et les conducteurs inutilisés des câbles d'énergie (p. ex. conducteurs du frein) au potentiel de terre de l'enveloppe, au moins d'un côté.

ATTENTION

Danger de mort dû à un choc électrique en cas d'absence de mise à la terre

Lorsque des appareils de la classe de protection I ne sont pas connectés au conducteur de protection ou si cette connexion est incorrecte, des tensions élevées risquent d'être présentes au niveau de pièces accessibles et d'entraîner, en cas de contact, des blessures graves ou la mort.

• Mettre l'appareil à la terre conformément aux directives.

/ ATTENTION

Danger de mort par choc électrique en cas de déconnexion de connecteurs pendant le fonctionnement

En cas de déconnexion de connecteurs pendant le fonctionnement, des arcs électriques peuvent entraîner des blessures graves ou la mort.

 Ne déconnecter des connecteurs qu'à l'état hors tension, à moins que leur déconnexion en fonctionnement ne soit explicitement autorisée.

/!\ATTENTION

Danger de mort par propagation d'incendie lorsque les enveloppes sont insuffisantes

Le feu et le dégagement de fumée peuvent provoquer de graves blessures ou d'importants dégâts matériels.

- Encastrer les appareils sans enveloppe de protection dans une armoire métallique (ou protéger l'appareil par des mesures équivalentes) de sorte à empêcher tout contact avec le feu.
- S'assurer que la fumée s'échappe uniquement par des voies prévues à cet effet.

/ ATTENTION

Danger de mort dû au mouvement inattendu de machines en cas d'utilisation d'émetteurs/récepteurs radio mobiles ou de téléphones portables

L'utilisation d'émetteurs/récepteurs radio mobiles ou de téléphones portables d'une puissance émettrice > 1 W à une distance inférieure à 2 m des composants peut induire des perturbations dans le fonctionnement des appareils, qui ont des conséquences sur la sécurité fonctionnelle des machines et peuvent ainsi mettre en danger des personnes ou entraîner des dégâts matériels.

• Eteindre les émetteurs/récepteurs radio ou les téléphones portables se trouvant à proximité immédiate des composants.

/ ATTENTION

Danger de mort en cas d'incendie du moteur dû à une surcharge de l'isolement

En cas de défaut à la terre dans un réseau IT, la charge de l'isolement du moteur devient plus importante. Cela peut entraîner une défaillance de l'isolement et provoquer un dégagement de fumée et un incendie et par conséquent des blessures graves ou la mort.

- Utiliser un dispositif de surveillance signalant les défauts d'isolement.
- Eliminer le défaut le plus vite possible afin de ne pas surcharger l'isolement du moteur.

/!\ATTENTION

Danger de mort en cas d'incendie par surchauffe due à une ventilation insuffisante

Des dégagements de circulation d'air insuffisants peuvent entraîner une surchauffe des constituants et provoquer un dégagement de fumée et un incendie. Cela peut entraîner des blessures graves ou la mort, De plus, ils peuvent provoquer des défaillances plus fréquentes et réduire la durée de vie des appareils/systèmes.

• Respecter impérativement les distances minimales pour les dégagements de circulation d'air indiquées pour chaque constituant.

1.1 Consignes de sécurité générales

! ATTENTION

Risque d'accident en cas de panneaux d'avertissement absents ou illisibles

L'absence ou l'illisibilité de panneaux d'avertissement peut provoquer des accidents ayant pour conséquence des blessures graves ou la mort.

- Contrôler la présence de tous les panneaux d'avertissement mentionnés dans la documentation.
- Apposer sur les composants les panneaux d'avertissement manquants, le cas échéant dans la langue du pays concerné.
- · Remplacer les panneaux d'avertissement illisibles.

IMPORTANT

Endommagement de l'appareil dû à des essais diélectriques / d'isolement inappropriés

Tout essai diélectrique / d'isolement inapproprié peut causer des dommages à l'appareil.

 Déconnecter les appareils avant un essai diélectrique / d'isolement de la machine ou de l'installation car tous les variateurs et les moteurs ont été soumis à un test haute tension chez le constructeur et un test supplémentaire au sein de la machine ou de l'installation n'est donc pas nécessaire.

/!\ATTENTION

Danger de mort en cas de fonctions de sécurité inactives

Des fonctions de sécurité inactives ou non adaptées peuvent être la cause de dysfonctionnements des machines risquant d'entraîner des blessures graves ou la mort.

- Tenir compte, avant la mise en service, des informations contenues dans la documentation produit correspondante.
- Effectuer, pour les fonctions conditionnant la sécurité, une évaluation de la sécurité de l'ensemble du système, y compris de tous les constituants de sécurité.
- S'assurer par un paramétrage adéquat que les fonctions de sécurité sont adaptées aux tâches d'entraînement et d'automatisation et qu'elles sont activées.
- Effectuer un test des fonctions.
- N'exploiter l'installation en production qu'après s'être assuré de l'exécution correcte des fonctions conditionnant la sécurité.

Remarque

Importantes consignes de sécurité relatives aux fonctions Safety Integrated

Si vous voulez utiliser les fonctions Safety Integrated, tenez compte des consignes de sécurité indiquées dans les manuels Safety Integrated.

/ ATTENTION

Danger de mort lié à des dysfonctionnements de la machine suite à un paramétrage incorrect ou modifié

Un paramétrage incorrect ou modifié peut entraîner des dysfonctionnements sur les machines, susceptibles de provoquer des blessures, voire la mort.

- Protéger les paramétrages de tout accès non autorisé.
- Prendre les mesures appropriées pour remédier aux dysfonctionnements éventuels (p. ex. un arrêt ou une coupure d'urgence).

1.2 Consignes de sécurité relatives aux champs électromagnétiques (CEM)

ATTENTION

Danger de mort dû aux champs électromagnétiques

Certaines installations électriques, comme les transformateurs, les variateurs, les moteurs, etc. génèrent des champs électromagnétiques (CEM) lorsqu'elles sont en fonctionnement.

Cela constitue un risque en particulier pour les personnes portant un stimulateur cardiaque ou un implant et qui se trouvent à proximité immédiate des appareils/systèmes.

 S'assurer que les personnes concernées respectent la distance nécessaire (au moins 2 m).

1.3 Manipulation des composants sensibles aux décharges électrostatiques (ESD)

Les composants sensibles aux décharges électrostatiques (ESD) sont des composants individuels, des connexions, modules ou appareils intégrés pouvant subir des endommagements sous l'effet de champs électrostatiques ou de décharges électrostatiques.

IMPORTANT

Endommagement sous l'effet de champs électriques ou de décharges électrostatiques

Les champs électriques ou les décharges électrostatiques peuvent induire des perturbations de fonctionnement en raison de composants individuels, de connexions, modules ou appareils intégrés endommagés.

- Emballer, stocker, transporter ou expédier les composants, modules ou appareils électroniques uniquement dans l'emballage d'origine du produit ou dans d'autres matériaux appropriés comme du papier aluminium ou du caoutchouc mousse possédant des propriétés conductrices.
- Ne toucher les composants, modules et appareils que si vous êtes relié à la terre par l'une des méthodes suivantes :
 - Port d'un bracelet antistatique
 - Port de chaussures antistatiques ou de chaussures munies de bandes de terre antistatiques dans les zones ESD pourvues de planchers conducteurs
- Ne poser les composants, modules ou appareils électroniques que sur des surfaces conductrices (table à revêtement antistatique, mousse conductrice antistatique, sachets antistatiques, conteneurs antistatiques).

1.4 Sécurité industrielle

Remarque

Sécurité industrielle

Siemens commercialise des produits et solutions comprenant des fonctions de sécurité industrielle qui contribuent à une exploitation sûre des installations, solutions, machines, équipements et/ou réseaux. Ces fonctions jouent un rôle important dans un système global de sécurité industrielle. Dans cette optique, les produits et solutions Siemens font l'objet de développements continus. Siemens vous recommande donc vivement de vous tenir régulièrement informé des mises à jour des produits.

Pour garantir une exploitation fiable des produits et solutions Siemens, il est nécessaire de prendre des mesures de protection adéquates (par ex. concept de protection des cellules) et d'intégrer chaque composant dans un système de sécurité industrielle global et moderne. Tout produit tiers utilisé devra également être pris en considération. Pour plus d'informations sur la sécurité industrielle, rendez-vous sur cette adresse (http://www.siemens.com/industrialsecurity).

Veuillez vous abonner à la newsletter d'un produit particulier afin d'être informé des mises à jour dès qu'elles surviennent. Pour plus d'informations, rendez-vous sur cette adresse (http://support.automation.siemens.com).

/!\ATTENTION

Danger dû à des états de fonctionnement non sûrs en raison d'une manipulation du logiciel

Les manipulations du logiciel (p. ex. les virus, chevaux de Troie, logiciels malveillants, vers) peuvent provoquer des états de fonctionnement non sûrs de l'installation, susceptibles de provoquer des blessures graves ou mortelles ainsi que des dommages matériels.

- Maintenez le logiciel à jour.
 - Vous trouverez des informations et la newsletter à ce sujet à cette adresse (http://support.automation.siemens.com).
- Intégrez les constituants d'entraînement et d'automatisation dans un concept global de sécurité industrielle (Industrial Security) de l'installation ou de la machine selon l'état actuel de la technique.
 - Vous trouverez de plus amples informations à cette adresse (http://www.siemens.com/industrialsecurity).
- Tenez compte de tous les produits mis en œuvre dans le concept global de sécurité industrielle (Industrial Security).

1.5 Risques résiduels des systèmes d'entraînement (Power Drive Systems)

Les constituants de la commande et de l'entraînement d'un système d'entraînement sont autorisés pour une utilisation industrielle et professionnelle dans des réseaux industriels. Leur mise en œuvre dans des réseaux publics exige une autre configuration et/ou des mesures supplémentaires.

La mise en œuvre de ces constituants est autorisée uniquement dans des coffrets fermés ou dans des armoires avec les recouvrements fermés et en utilisant l'ensemble des dispositifs de protection.

La manipulation de ces constituants est réservée aux personnes qualifiées et formées à cet effet qui connaissent et respectent toutes les consignes de sécurité liées à l'usage de ces constituants et figurant dans la documentation technique de l'utilisateur.

Pour évaluer les risques de sa machine conformément à la réglementation locale (par exemple directive machines de la CE), le constructeur de machines doit tenir compte des risques résiduels suivants émanant des constituants de la commande et de l'entraînement d'un système d'entraînement :

- Déplacements intempestifs des pièces entraînées de la machine lors de la mise en service, de l'exploitation, de la maintenance et de la réparation, provoqués par exemple par :
 - des défauts matériels et/ou logiciels des capteurs, de la commande, des actionneurs et de la connectique
 - les temps de réponse de la commande et des entraînements
 - des conditions d'exploitation et/ou ambiantes ne correspondant pas à la spécification
 - de la condensation / un encrassement ayant des propriétés conductrices
 - des erreurs de paramétrage, de programmation, de câblage et de montage
 - l'utilisation d'appareils radio / de téléphones portables à proximité immédiate de la commande
 - des impacts / dommages extérieurs
- 2. En cas de défaut, des températures particulièrement élevées peuvent apparaître à l'intérieur et à l'extérieur du variateur, avec éventuellement développement de flammes ; l'appareil est susceptible d'émettre de la lumière, des bruits, des particules, des gaz, etc...
 - des composants défaillants
 - des défauts logiciels
 - des conditions d'exploitation et/ou ambiantes ne correspondant pas à la spécification
 - des impacts / dommages extérieurs

Les variateurs au degré de protection Open Type / IP20 doivent être encastrés dans une armoire métallique (ou protégés par des mesures équivalentes) de sorte à empêcher tout contact avec du feu à l'intérieur ou à l'extérieur du variateur.

- 3. Tensions de contact dangereuses, provoquées par exemple par :
 - des composants défaillants
 - l'influence de charges électrostatiques
 - des tensions induites par des moteurs en mouvement
 - des conditions d'exploitation et/ou ambiantes ne correspondant pas à la spécification
 - de la condensation / un encrassement ayant des propriétés conductrices
 - des impacts / dommages extérieurs
- 4. des champs électriques, magnétiques et électromagnétiques au cours du fonctionnement pouvant p. ex. présenter un danger pour les porteurs d'un stimulateur cardiaque, d'un implant ou d'objets métalliques en cas de distance insuffisante
- 5. dégagement de substances et d'émissions nocives pour l'environnement en cas de fonctionnement inapproprié et/ou d'élimination incorrecte des constituants

Remarque

Les constituants doivent être protégés contre les salissures conductrices, par exemple par l'installation dans une armoire avec un degré de protection IP54 selon CEI 60529 ou NEMA 12.

Si l'apparition de salissures conductrices sur le lieu d'installation peut être évitée, un degré de protection inférieur est admis pour l'armoire.

Vous trouverez de plus amples informations concernant les risques résiduels des constituants d'un système d'entraînement dans les chapitres correspondants de la documentation technique de l'utilisateur.

1.5 Risques résiduels des systèmes d'entraînement (Power Drive Systems)

Introduction

2.1 A propos du manuel

Qui a besoin des instructions de service et dans quel but ?

Les instructions de service s'adressent essentiellement aux monteurs, au personnel de mise en service et aux opérateurs machine. Elles décrivent les appareils et leurs composants, et rendent les groupes ciblés aptes au montage, au raccordement, au paramétrage et à la mise en service du variateur dans les règles de l'art et sans danger.

Qu'est-ce qui est décrit dans les instructions de service ?

Les instructions de service sont un condensé de toutes les informations nécessaires pour l'exploitation normale et sûre du variateur.

Les informations contenues dans les instructions de service ont été rassemblées de façon à être pleinement suffisantes pour les applications standard et de permettre la mise en service efficace d'un entraînement. Là où cela s'avérait utile, nous avons ajouté des informations complémentaires pour les débutants.

Les instructions de service contiennent en outre des informations pour les applications spéciales. Compte tenu que la configuration et le paramétrage de ces applications supposent de solides connaissances de la technologie concernée, les informations sont représentées sous une forme condensée. C'est le cas notamment pour l'exploitation avec des systèmes de bus de terrain et l'utilisation dans des applications à sécurité intégrée.

Que signifient les symboles dans le manuel?

La marche à suivre commence ici.

La marche à suivre se termine ici.

Le texte suivant s'applique à un pupitre opérateur.

Le texte suivant s'applique si vous utilisez un PC avec STARTER.

Symbole des fonctions du variateur.

Voir aussi: Vue d'ensemble des fonctions du variateur (Page 135).

2.2 Guide d'utilisation du manuel

Chapitre	Dans ce chapitre, vous trouverez des réponses aux questions suivantes :
Description (Page 27)	Qu'est-ce qui caractérise le variateur ?
	De quels composants est constitué le variateur ?
	Quels sont les composants en option pour le variateur ?
	Quelle est la fonction des composants en option ?
	Quels moteurs le variateur peut-il exploiter ?
	Quels sont les outils concernant la mise en service ?
Installation (Page 35)	Quel est l'ordre recommandé pour l'installation du variateur ?
	Qu'est-ce qu'une installation conforme aux exigences de CEM ?
	Quelles sont les possibilités d'installation de composants optionnels en dessous du variateur ?
	Quelles sont les dimensions du variateur ?
	Quel est le matériel de montage requis pour l'installation du variateur?
	Sur quels réseaux le variateur peut-il être exploité ?
	Comment est raccordé le variateur au réseau ?
	Comment est raccordée la résistance de freinage au variateur ?
	Quelles sont les bornes et interfaces de bus de terrain présentes sur le variateur ?
	Quelle est la fonction des interfaces ?
Mise en service (Page 95)	Quels sont les paramètres moteur requis pour la mise en service ?
	Comment est réglé le variateur en usine ?
	Comment fonctionne la mise en service ?
	Comment rétablir les réglages d'usine du variateur ?
Mise en service avancée :	Quelles sont les fonctions contenues dans le firmware du variateur ?
(Page 135)	Comment se conjuguent les fonctions ?
	Comment sont réglées les fonctions ?
Sauvegarde des données et	Pourquoi a-t-on besoin d'une sauvegarde des réglages du variateur?
mise en service en série (Page 295)	Quelles sont les possibilités de sauvegarde des réglages ?
(1 age 290)	Comment fonctionne la sauvegarde de données ?
	Comment empêche-t-on la modification des réglages du variateur ?
	Comment empêche-t-on la lecture des réglages du variateur ?
Maintenance corrective	Comment remplace-t-on des composants du variateur ?
(Page 321)	Comment modifie-t-on la version de firmware du variateur ?
Alarmes, défauts et mes-	Que signifient les LED sur le variateur ?
sages système (Page 349)	Comment se comporte le temps de fonctionnement du système ?
	Comment le variateur enregistre-t-il les alarmes et les défauts ?
	Que signifient les alarmes et les défauts du variateur ?
	Comment éliminer les défauts du variateur ?
	Quelles données I&M sont enregistrées dans le variateur ?

Chapitre	Dans ce chapitre, vous trouverez des réponses aux questions suivantes :			
Caractéristiques techniques	Quelles sont les caractéristiques techniques du variateur ?			
(Page 369)	Que signifient "High Overload" et "Low Overload" ?			
Annexe (Page 397)	Quelles nouveautés contient le firmware actuel ?			
	Quels sont les paramètres les plus importants du variateur ?			
	Comment est utilisé le variateur avec le pupitre opérateur BOP-2 ?			
	Comment fonctionne la fonction Trace appareil dans STARTER ?			
	Comment modifier les connexions de signaux dans le firmware du variateur?			
	Que signifie "technique FCOM" ?			
	Où trouve-t-on des manuels ou des informations complémentaires sur le variateur ?			

2.2 Guide d'utilisation du manuel

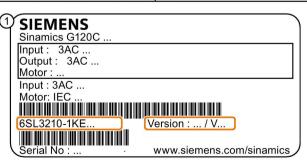
Description

Utilisation conforme

Le variateur décrit dans le présent manuel est un appareil pour la commande d'un moteur triphasé. Le variateur est destiné à être intégré dans des installations électriques ou des machines.

Le variateur est approuvé pour une utilisation industrielle et professionnelle dans des réseaux industriels. Une utilisation dans des réseaux publics requiert des mesures supplémentaires.

Les caractéristiques techniques et les indications concernant les conditions de raccordement se trouvent sur la plaque signalétique et dans les instructions de service.


3.1 Etendue de livraison

Les éléments suivants sont fournis :

- Variateur prêt à fonctionner avec firmware enregistré. Vous trouverez les possibilités de mise à jour ou de restauration d'une version antérieure du firmware sur Internet : Firmware (http://support.automation.siemens.com/WW/news/fr/67364620)
 - Vous trouverez le numéro d'article 6SL3210-1KE..., la version du matériel (par exemple C02) et celle du firmware (par ex. V4.7) sur la plaque signalétique du variateur.
- 1 jeu de connecteurs pour le raccordement des entrées et sorties
- 1 jeu de connecteurs pour le raccordement du réseau, du moteur et de la résistance de freinage
- Uniquement pour les variateurs avec bus de terrain via USS ou Modbus RTU : 1 connecteur pour le raccordement du bus de terrain
- 1 jeu de tôles de blindage
- Notice de service compacte en allemand et en anglais
- Le variateur comporte un logiciel open source (OSS). Les conditions de licence OSS sont enregistrées sur le variateur.

Plaque signalétique et caractéristiques techniques

Taille	Puissance de sortie assignée	Courant de sortie assigné			
	basé sur une surcharge faible		Sans filtre		Avec filtre
	0,55 kW	1,7 A	6SL3210-1KE11-8U	2	6SL3210-1KE11-8A 2
	0,75 kW	2,2 A	6SL3210-1KE12-3U [2	6SL3210-1KE12-3A ☐ 2
	1,1 kW	3,1 A	6SL3210-1KE13-2U [] 2	6SL3210-1KE13-2A ☐ 2
FSAA	1,5 kW	4,1 A	6SL3210-1KE14-3U [6SL3210-1KE14-3A 2
SINAMICS G120C		Modbus RTU)		В	В
SINAMICS G120C	· ·	- 50. Z		P	P
SINAMICS G120C		NET, EtherNet/IP)		F	F COL 2040 4KE44 0A 🖽 4
5.50	0,55 kW	1,7 A	6SL3210-1KE11-8U		6SL3210-1KE11-8A 1 1
	0,75 kW	2,2 A	6SL3210-1KE12-3U	1	6SL3210-1KE12-3A 1 1
	1,1 kW	3,1 A	6SL3210-1KE13-2U	_	6SL3210-1KE13-2A 1 1
	1,5 kW	4,1 A	6SL3210-1KE14-3U	_	6SL3210-1KE14-3A 1 1
FSA	2,2 kW	5,6 A	6SL3210-1KE15-8U		6SL3210-1KE15-8A 1 1
10/1	3,0 kW	7,3 A	6SL3210-1KE17-5U	_	6SL3210-1KE17-5A 1 1
~	4,0 kW	8,8 A	6SL3210-1KE18-8U		6SL3210-1KE18-8A 1 1
They	5,5 kW	12,5 A	6SL3210-1KE21-3U	1	6SL3210-1KE21-3A 1 1
1 FSB	7,5 kW	16,5 A	6SL3210-1KE21-7U [1	6SL3210-1KE21-7A 1 1
200.00	11,0 kW	25,0 A	6SL3210-1KE22-6U	1	6SL3210-1KE22-6A 🔲 1
100000000000000000000000000000000000000	15,0 kW	31,0 A	6SL3210-1KE23-2U	1	6SL3210-1KE23-2A 1 1
1	18,5 kW	37,0 A	6SL3210-1KE23-8U [1	6SL3210-1KE23-8A ☐ 1
FSC				ı	
SINAMICS G120C USS/MB (USS, Modbus RTU)				В	В
SINAMICS G120C	IBUS)		Р	P	
SINAMICS G120C	INET, EtherNet/IP)		F	F	
SINAMICS G120C			C	C	

La plaque signalétique du variateur fournit le numéro d'article ainsi que la version du matériel et de firmware du variateur. La plaque signalétique se trouve

- Sur la face avant du variateur, une fois la plaque d'obturation du pupitre opérateur retirée.
- Sur le côté du radiateur.

3.2 Composants en option pour le variateur

Résistance de freinage

La résistance de freinage permet au variateur de freiner une charge avec forte inertie des masses

Inductance réseau

L'inductance réseau augment la protection du variateur contre les surtensions, les harmoniques et les coupures de commutation.

Remarque

Si la tension relative de court-circuit u_k du transformateur de réseau est inférieure à 1 %, une inductance réseau est requise afin de garantir la durée de vie du variateur.

Inductance de sortie

L'inductance de sortie augmente la longueur de câble moteur maximale admissible.

Affectation de résistance de freinage, inductance réseau et inductance de sortie au variateur

Variateur 6SL3210-			Résistance de freinage	Inductance réseau	Inductance de sortie
Frame Size AA, A	0,55 kW 1,1 kW	1KE11-8□□□, 1KE12-3□□□, 1KE13-2□□□	6SL3201-0BE14- 3AA0	6SL3203-0CE13- 2AA0	6SL3202-0AE16- 1CA0
	1,5 kW	1KE14-3□□□		6SL3203-0CE21-	
Frame Size A	2,2 kW	1KE15-8□□1	5-8□□1 6SL3201-0BE21- 0AA0		
	3,0 kW 4,0 kW	1KE17-5□□1, 1KE18-8□□1	0AA0		6SL3202-0AE18- 8CA0
Frame Size B	5,5 kW 7,5 kW	1KE21-3□□1, 1KE21-7□□1	6SL3201-0BE21- 8AA0	6SL3203-0CE21- 8AA0	6SL3202-0AE21- 8CA0
Frame Size C	11,0 kW 18,5 kW	1KE22-6□□1, 1KE23-2□□1, 1KE23-8□□1	6SL3201-0BE23- 8AA0	6SL3203-0CE23- 8AA0	6SL3202-0AE23- 8CA0

Cartes mémoire

Tableau 3-1 Cartes mémoire pour la sauvegarde des réglages du variateur

Etendue de livraison	Numéro d'article
Carte mémoire sans firmware	6SL3054-4AG00-2AA0
Carte mémoire avec firmware V4.6	6SL3054-7EG00-2BA0
Carte mémoire avec firmware V4.7	6SL3054-7EH00-2BA0
Carte mémoire avec firmware V4.7 SP3	6SL3054-7TB00-2BA0

3.3 Gammes de moteurs prises en charge

Moteurs pris en charge

Le variateur est conçu pour les gammes de moteurs suivantes :

Moteurs CEI SIMOTICS GP, SIMOTICS SD

Moteurs asynchrones standard 1LG6, 1LA7, 1LA9 et 1LE1

L'entraînement à commande sectionnelle, c'est-àdire l'exploitation de plusieurs moteurs sur un variateur, est admissible selon CEI. Voir aussi : Entraînement à commande sectionnelle (http://support.automation.siemens.com/WW/view/en/84049346).

Dans les installations selon UL, l'entraînement à commande sectionnelle n'est pas admissible.

Moteurs principaux SIMOTICS M

Moteurs asynchrones 1PH8

Moteurs synchrones à aimants permanents sans capteur SIMOTICS S 1FK7

Moteurs synchrones 1FK7

Moteurs d'autres constructeurs Moteurs asynchrones standard Moteurs synchrones (sur demande)

Motoréducteurs synchrones sans capteur SIMOTICS 1FG1

Motoréducteur synchrone 1FG1

Fonctionnement avec moteur synchrone sans capteur 1FK7 ou 1FG1

La dynamique de régulation qui peut être obtenue avec un moteur synchrone correspond à celle d'un moteur asynchrone :

- Temps de montée de l'immobilisation à la vitesse assignée ≥ 1 s
- Couple de démarrage ≤ 2 × couple assigné du moteur

Le fonctionnement est prévu pour les applications exigeant un rendement énergétique accru par rapport à celui d'un moteur asynchrone.

3.3 Gammes de moteurs prises en charge

Plusieurs restrictions s'appliquent pour le fonctionnement :

Tableau 3-2 Restrictions pour le fonctionnement avec des moteurs synchrones sans capteur

Propriété	Restriction		
Firmware	Version de firmware ≥ FW V4.7 SP3		
Matériel	Taille AA : toutes les versions		
	Taille A : à partir de la version C02		
	Tailles FSB et FSC : à partir de la version C01		
Applications	Convient pour les applications avec fonctionnement stationnaire dans la plage de la vitesse assignée du moteur :		
	Entraînements de convoyeurs		
	Pompes		
	Ventilateur		
Vitesse du moteur	Vitesse ≤ vitesse assignée du moteur.		
	L'exploitation en régime défluxé n'est pas autorisée.		
	En fonctionnement stationnaire ≥ 15 % de la vitesse assignée.		
	Des vitesses de 0 à 15 % de la vitesse assignée sont autorisées pour les phases d'accélération et d'inversion.		
Mise en marche moteur tournant	La fonction "reprise au vol" n'est pas possible.		
Safety Integrated	Parmi les fonctions de sécurité intégrées à l'entraînement, seule "STO" est autorisée.		
Température ambiante du	≤ 40 °C		
moteur	Le variateur surveille le moteur au moyen d'un modèle de température. Le modèle de température suppose une température ambiante de 40 °C.		
	A des températures ambiantes supérieures, le variateur ne peut plus protéger suffisamment le moteur. Si vous exploitez le moteur à des températures ambiantes > 40 °C, vous devez réduire la puissance du moteur de manière suffisante.		
	Pour obtenir des informations sur le déclassement de puissance en fonction de la température, se reporter au manuel du moteur.		

3.4 Outils de mise en service du variateur

Les outils suivants servent à la mise en service, au diagnostic et à la commande du variateur ainsi qu'à la sauvegarde et à la transmission des réglages du variateur.

Pupitres op	Pupitres opérateur Numéro d'article						
BOP-2 (Basic Operator Panel) - à encliqueter sur le variateur • Affichage sur deux lignes • Mise en service rapide assistée IOP (Intelligent Operator Panel) - à encliqueter sur le variateur • Affichage de texte en clair • Guidage par menus et assistants d'application			Kit de montage sur porte pour IOP/BOP-2 Pour le montage du BOP-2 ou de l'IOP dans une porte d'armoire. Degré de protection avec IOP: IP54 ou UL Type 12 Degré de protection avec BOP-2: IP55	BOP-2: 6SL3255-0AA00-4CA1 IOP avec langues européennes: 6SL3255-0AA00-4JA1 IOP avec langue chinoise: 6SL3255-0AA00-4JC1 Kit de montage sur porte: 6SL3256-0AP00-0JA0			
		Pour une utilisation mobile de l'IOP : IOP portatif avec bloc d'alimentation et accumulateurs ainsi qu'un câble de raccordement RS232 Si vous utilisez votre propre câble de raccordement, respectez la longueur maximale admissible de 5 m.			6SL3255-0AA00-4HA0		
Outils sur P	PC	т.					
		STARTER Connexion au variateur via interface USB, PROFIBUS ou PROFINET Téléchargement : STARTER (http://support.automation.siemens.com/WW/view/fr/26233208)			STARTER sur DVD: 6SL3072-0AA00-0AG0		
		Startdrive Connexion au variateur via interface USB, PROFIBUS ou PROFINET			Startdrive sur DVD : 6SL3072-4CA02-1XG0		
붓붓			nt : Startdrive	com/WW/view/en/68034568)			
<u> </u>		`	on SINAMICS PC - va		6SL3255-0AA00-2CA0		
					0020200 0/ V 100 20A0		
	Consiste du câble USB approprié (3 m) pour raccorder un PC au variateur.						

3.4 Outils de mise en service du variateur

Installation 4

4.1 Procédure d'installation du variateur

Conditions à remplir pour le montage d'un variateur

S'assurer que les conditions suivantes sont remplies avant d'installer le variateur :

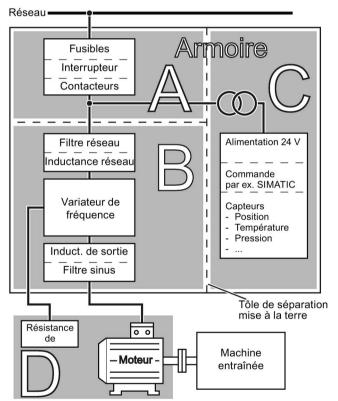
- Tous les constituants, outils et petites pièces nécessaires pour l'installation sont-ils disponibles ?
- Les conditions d'environnement sont-elles admissibles ? Voir Caractéristiques techniques (Page 369).

Procédure d'installation

- 1. Monter le variateur.
- 2. Le cas échéant, monter l'inductance réseau.
- 3. Le cas échéant, monter la résistance de freinage.
- 4. Raccorder les constituants suivants :
 - Variateur moteur
 - Variateur inductance réseau réseau
 - Variateur résistance de freinage
- 5. Câbler le bornier de la Control Unit.
- 6. Une fois l'installation terminée et vérifiée, le variateur peut être mis sous tension.

La mise en service du variateur peut commencer dès que l'installation est achevée.

4.2 Installation conforme aux exigences de CEM


4.2.1 Conception de l'armoire conformément aux exigences de CEM

Les mesures d'antiparasitage les plus simples et les plus économiques dans l'armoire consistent à installer les sources de perturbations et les dispositifs susceptibles dans des zones distinctes.

Concept de zones CEM dans l'armoire

Diviser l'ensemble de l'armoire en zones CEM.

Découpler les zones les unes par rapport aux autres sur le plan électromagnétique, soit par de grands espacements (environ 25 cm), soit par des enveloppes métalliques séparées ou des tôles séparatrices de grande surface. Affecter les appareils aux zones de l'armoire.

Zone A :

Raccordement au réseau Les valeurs limites de l'immunité aux perturbations et de l'émission de perturbations liées aux câbles doivent être respectées.

Zone B : Electronique de puissance Source perturbatrice

Zone C : Commande et capteurs Dispositifs susceptibles

Zone D : Moteur, résistance de freinage et câbles correspondants Sources de perturbations

Répartition de l'armoire ou du système d'entraînement dans les zones CEM

Des câbles non blindés peuvent être utilisés à l'intérieur d'une zone. Les câbles de zones différentes ne doivent pas être posés dans des faisceaux de câbles communs ou dans des goulottes communes.

Le cas échéant, des filtres et/ou blocs de couplage doivent être utilisés au niveau des interfaces des zones.

Utiliser des câbles blindés pour tous les câbles de communication et de signaux quittant l'armoire. Relier les blindages à la terre de l'armoire par une grande surface de contact et avec une faible impédance. Veiller à ce qu'aucune différence de potentiel n'apparaisse entre les zones afin d'éviter des courants de compensation trop élevés dans les blindages de câble.

Conception de l'armoire

- Réaliser toutes les liaisons de façon durable.
- Relier toutes les parties métalliques de l'armoire (portes, panneaux arrière, tôles latérales, de toiture et de fond) au cadre de l'armoire de manière à assurer une bonne conductivité.
- Pour les liaisons par vis aux parties métalliques peintes ou anodisées, utiliser soit des rondelles de contact spéciales qui traversent les surfaces isolantes, ou retirer la surface isolante au niveau des points de contact, afin d'établir un contact métallique conducteur.
- Relier la barre PE et la barre des blindages CEM au cadre de l'armoire de manière à assurer une bonne conductivité et une grande surface de contact.
- Relier toutes les enveloppes métalliques des composants intégrés dans l'armoire au cadre de l'armoire de manière à assurer une bonne conductivité et une grande surface de contact. Monter les composants sur une plaque de montage en métal nu présentant une bonne conductivité, reliée à son tour au cadre de l'armoire et en particulier à la barre PE et à la barre des blindages CEM, de manière à assurer une bonne conductivité et une grande surface de contact.

Antiparasitage

 Connecter les contacteurs, relais, électrovannes et freins à l'arrêt du moteur à des circuits d'antiparasitage directement au niveau de la bobine correspondante, afin d'atténuer les émissions haute fréquence à la mise hors tension. Utiliser des circuits RC ou des varistances pour les bobines en courant alternatif et des diodes de roue libre ou des varistances pour les bobines en courant continu.

Pose des câbles dans l'armoire

- Poser les câbles d'énergie de l'entraînement à une distance minimale de 25 cm par rapport aux câbles de signaux et de données. Les câbles d'énergie sont les câbles réseau, les câbles de circuit intermédiaire et les câbles moteur ainsi que les câbles de liaison entre le Braking Module et la résistance de freinage. La séparation peut également être réalisée par des tôles de séparation assurant une bonne conductivité et reliées à la plaque de montage.
- Poser les câbles d'énergie à faible niveau de perturbation séparément des câbles d'énergie à niveau de perturbation élevé.
 - Câbles d'énergie à faible niveau de perturbation :
 - Câbles allant du réseau au filtre réseau
 - Câbles d'énergie à niveau de perturbation élevé :
 - Câbles entre le filtre réseau et le variateur
 - Câbles de circuit intermédiaire

4.2 Installation conforme aux exigences de CEM

- Câbles entre le Braking Module et la résistance de freinage
- Câbles moteur
- Poser les câbles de manière à ce que les câbles de signaux et de données ainsi que les câbles d'énergie à faible niveau de perturbation croisent les câbles d'énergie à niveau de perturbation élevé à angle droit uniquement.
- Faire en sorte que les câbles soient aussi courts que possible.
- Poser les câbles le plus près possible des parties de l'enveloppe mises à la terre, telles que les tôles de montage ou le cadre de l'armoire.
- Poser les câbles de signaux et de données et le câble de liaison équipotentielle associé en parallèle et le plus près possible les uns des autres.
- Les conducteurs aller et retour au sein d'une zone, conçus en tant que câbles unifilaires non blindés, doivent être posés de manière torsadée ou en parallèle et le plus près possible les uns des autres.
- Mettre à la terre les conducteurs de réserve des câbles de signaux et de données à leurs deux extrémités.
- Introduire les câbles de signaux et de données dans l'armoire par un seul endroit (p. ex. par le bas).

Câbles à l'extérieur de l'armoire

- Poser les câbles d'énergie de l'entraînement à une distance minimale de 25 cm par rapport aux câbles de signaux et de données.
- Utiliser des câbles de raccordement du moteur blindés.
- Utiliser des câbles de signaux et de données blindés.

Blindages de câble

- Utiliser comme câbles blindés uniquement des câbles munis d'un blindage tressé souple.
- Connecter les blindages aussi bien aux enveloppes mises à la terre qu'à la barre des blindages CEM.
 - Relier les blindages à leurs deux extrémités aux enveloppes mises à la terre par une grande surface de contact et avec une faible impédance. Fixer les blindages au moyen des colliers de blindage CEM correspondants.
 - Relier les blindages de câble juste après l'entrée du câble dans l'armoire par une grande surface de contact et avec une faible impédance à la barre des blindages CEM.
- Poser les blindages de câble si possible sans interruptions.
- Utiliser uniquement des connecteurs métalliques ou métallisés pour les connexions enfichables des câbles de données blindés (p. ex. connexion PROFIBUS).

Mesures de mise à la terre

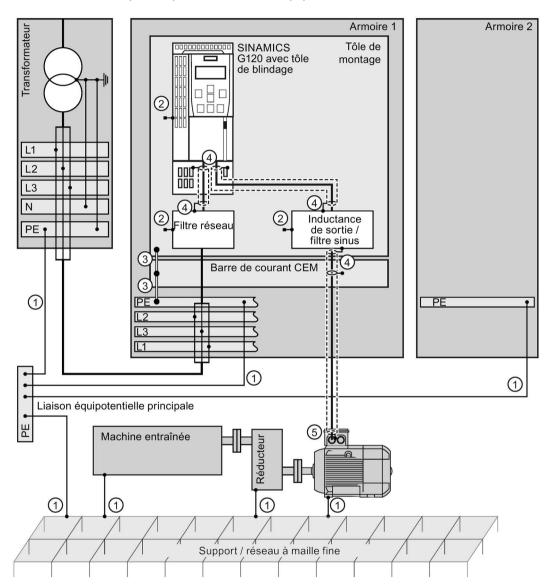
Pour mettre à la terre le système d'entraînement, procéder comme suit :

- En présence de plusieurs armoires, installer une barre PE commune pour tous les éléments d'armoire.
- Raccorder tous les composants du système d'entraînement au conducteur PE.
- Raccorder le conducteur PE à la barre PE de l'armoire.

Mesures pour la liaison équipotentielle haute fréquence

Pour assurer la liaison équipotentielle haute fréquence, procéder comme suit :

- Relier les composants métalliques se trouvant dans l'armoire à la barre PE et à la barre CEM, de manière à assurer une bonne conductivité et une grande surface de contact.
 - Soit sur une grande superficie sur les surfaces de contact en métal nu des composants de l'armoire avec une section minimale de plusieurs cm² par zone de contact.
 - Soit avec des câbles en cuivre tressés souples et courts, avec des sections ≥ 95 mm²
 / 000 (3/0) (-2) AWG.
- Dans les installations comportant plusieurs éléments d'armoire, visser les cadres des différents éléments d'armoire entre eux en plusieurs endroits en assurant une bonne conductivité au moyen de rondelles de contact.
- Dans les installations avec deux rangées d'armoires très longues placées dos à dos, relier les barres PE de ces deux groupes d'armoires entre elles en plusieurs points (le plus grand nombre possible).
- Relier le conducteur de protection et le blindage du câble moteur au moteur ainsi qu'au variateur.


Mesures supplémentaires pour la liaison équipotentielle haute fréquence

Poser les câbles en cuivre tressés ou souples en parallèle du câble moteur avec l'écartement le plus faible possible dans les cas suivants :

- Dans les installations plus anciennes comportant des câbles non blindés déjà posés
- Pour des câbles dont les propriétés haute fréquence du blindage sont insuffisantes
- Pour les systèmes de mise à la terre en mauvais état

Figures indiquant les mesures de liaison équipotentielle pour la mise à la terre et la haute fréquence

La figure ci-dessous indique toutes les mesures de liaison équipotentielle pour la mise à la terre et la haute fréquence pour une armoire équipée d'un variateur SINAMICS G120.

Mesures de mise à la terre

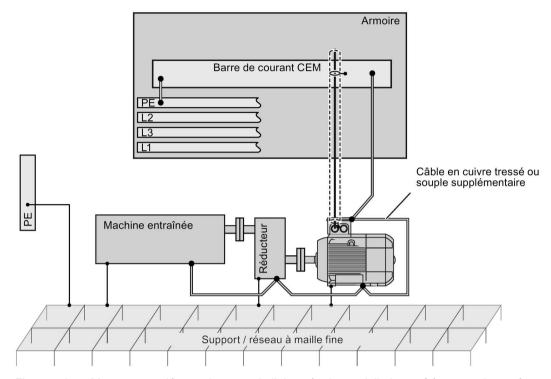
Mise à la terre conventionnelle sans propriétés haute fréquence particulières

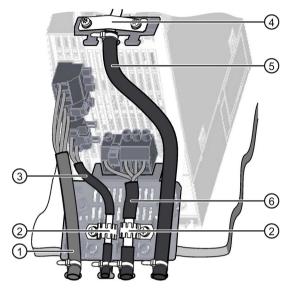
Mesures de liaison équipotentielle haute fréquence

- 2 Liaison conductrice à la tôle de montage sur la plus grande surface possible
- 3 Liaison équipotentielle HF
- 4 Relier et mettre à la terre le blindage sur une grande surface de contact
- (5) Relier et mettre à la terre le blindage par un presse-étoupe Pg conducteur

Figure 4-1 Mesures de liaison équipotentielle pour la mise à la terre et la haute fréquence dans le système d'entraînement et dans l'installation

La figure suivante indique les mesures supplémentaires pour la liaison équipotentielle haute fréquence




Figure 4-2 Mesures supplémentaires pour la liaison équipotentielle haute fréquence du système d'entraînement

Pour plus d'informations...

Vous trouverez de plus amples informations sur les directives de CEM sur Internet :Directives de CEM (http://support.automation.siemens.com/WW/view/fr/60612658).

4.2.2 Installation du variateur conformément aux exigences de CEM

Vue d'ensemble

Câblage conforme aux exigences de CEM en prenant pour exemple un variateur Frame Size A

- 1 Câble réseau non blindé
- ② Colliers CEM (collier crantés) sur la plaque de montage du Power Module
- ③ Câble blindé vers la résistance de freinage (pas présent sur tous les variateurs)
- 4 Collier CEM pour le câble relié au bornier sur la tôle de blindage de la CU
- 6 Câble blindé vers le bornier
- 6 Câble moteur blindé

Règles pour une pose des câbles conforme aux exigences de CEM

- Monter le variateur sur une plaque de montage métallique. Celle-ci doit être non peinte et de bonne conductivité électrique.
- Utiliser des câbles blindés pour les connexions suivantes :
 - Moteur et sonde thermométrique du moteur
 - Résistance de freinage (pas présent sur tous les variateurs)
 - Bus de terrain
 - Entrées et sorties du bornier
- Poser les blindages de câble conformément aux exigences de CEM :

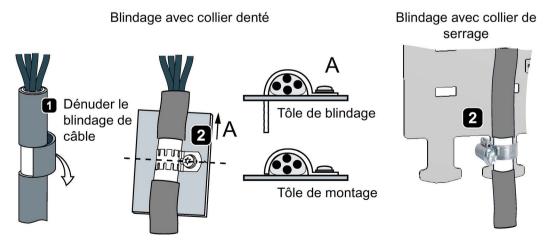


Figure 4-3 Exemples de raccordement conforme à la CEM

4.3 Montage du variateur

Position de montage

Installer le variateur dans une armoire.

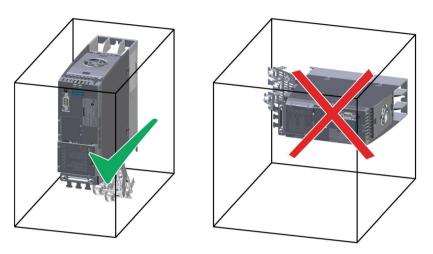


Figure 4-4 Le variateur ne doit pas être monté à l'horizontale.

Les appareils susceptibles de gêner la circulation de l'air de refroidissement ne doivent pas être montés dans cette zone. Veiller à ce que les prises d'air de refroidissement du variateur soient dégagées et que la circulation de l'air ne soit pas gênée.

Dimensions

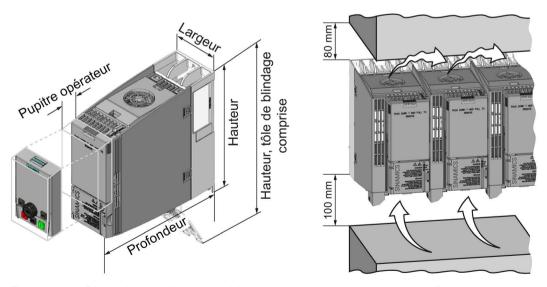


Figure 4-5 Dimensions et distances minimales par rapport aux autres appareils

4.3 Montage du variateur

Tableau 4-1 Dimensions

	Frame Size AA 0,55 kW 1,5 kW	Frame Size A 0,55 kW 4,0 kW	Frame Size B 5,5 kW 7,5 kW	Frame Size C 11 kW 18,5 kW	
Hauteur, connecteurs compris	181 mm	196 mm	196 mm	295 mm	
Hauteur, tôle de blindage comprise	268 mm	276 mm	276 mm	375 mm	
Largeur	73 mm	73 mm	100 mm	140 mm	
Profondeur du variateur à interface PROFINET	178 mm	226 mm	226 mm	226 mm	
Profondeur du variateur à interface USS/MB, CANopen ou PROFIBUS	155 mm	203 mm	203 mm	203 mm	
Profondeur supplémentaire	+ 21 mm avec un IOP (Intelligent Operator Panel) enfiché				
avec un pupitre opérateur enfiché	+ 11 mm avec un BOP-2 (Basic Operator Panel) enfiché				

Montage des tôles de blindage

Nous vous recommandons d'installer les tôles de blindage fournis. Les tôles de blindage simplifient l'installation du variateur conformément aux règles de CEM et offrent une décharge de traction des câbles raccordés.

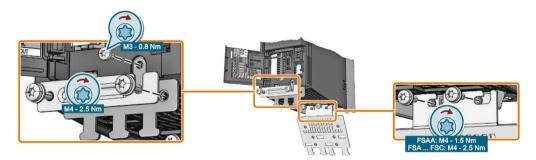
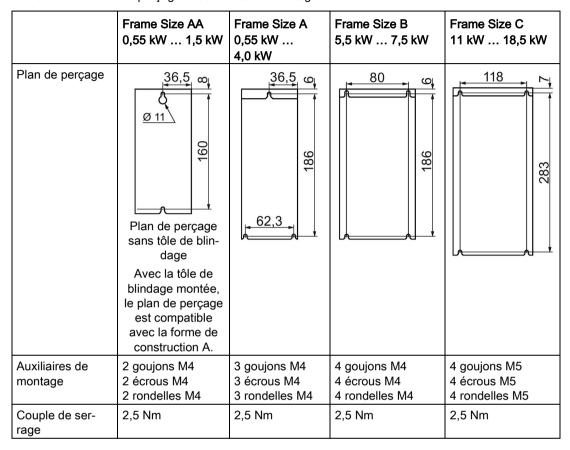



Figure 4-6 Montage des tôles de blindage à l'exemple d'un variateur de taille A

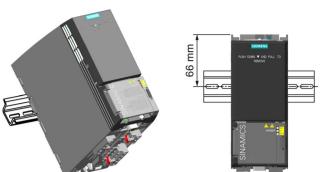

Montage sur la paroi d'une armoire

Tableau 4-2 Plans de perçage et auxiliaires de montage

4.3 Montage du variateur

Montage sur rail DIN symétrique (TS 35)

Les variateurs de taille AA peuvent être montés sur un rail DIN symétrique TS 35.

Marche à suivre

Pour monter le variateur sur rail DIN symétrique, procédez comme suit :

- 1. Placez le variateur sur le bord supérieur du rail.
- 2. A l'aide d'un tournevis, appuyez sur le bouton de déverrouillage situé sur la face supérieure du variateur.
- 3. Continuez à appuyer sur le bouton de déverrouillage jusqu'à ce que le variateur s'encliquette de manière audible sur le rail.

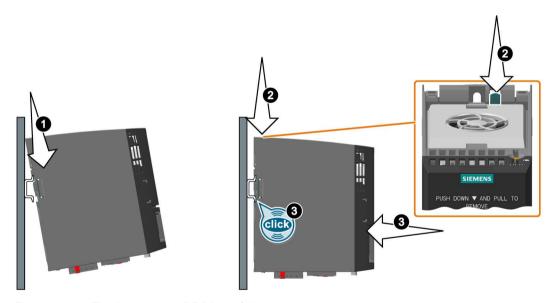


Figure 4-7 Fixation sur un rail DIN symétrique

Le variateur est à présent monté sur un rail DIN symétrique.

Pour démonter le variateur, appuyez sur le bouton de déverrouillage et retirez en même temps l'appareil du rail.

Montage sur un composant en semelle (taille AA uniquement)

Pour les variateurs de taille AA, il existe des inductances, des filtres et des résistances de freinage sous forme de composants en semelle.

Montez le variateur sur le composant en semelle en utilisant deux vis M4.

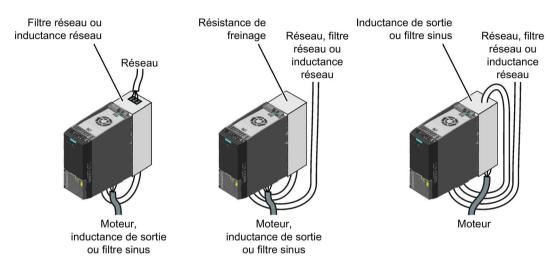
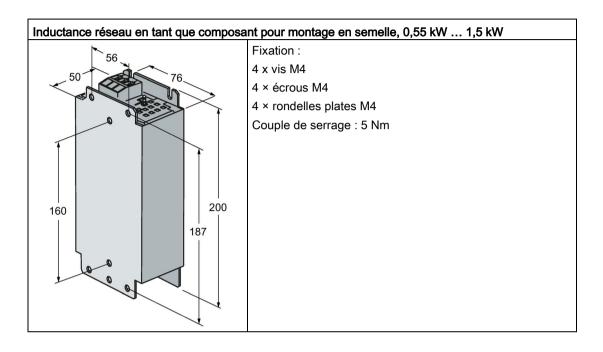
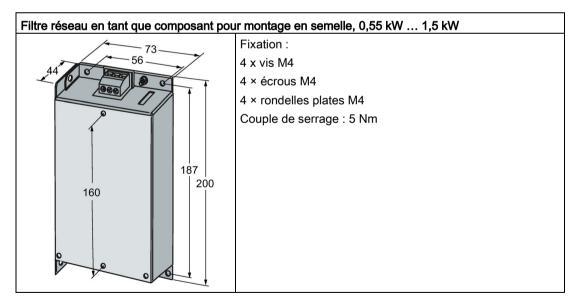
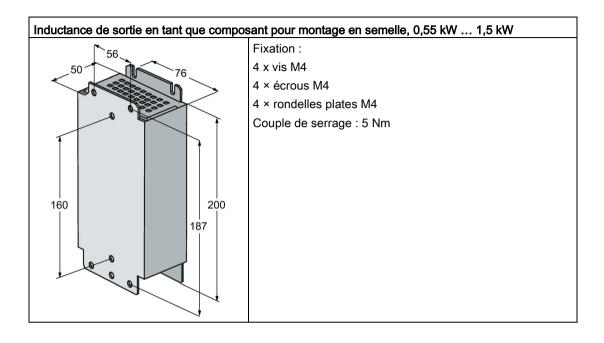
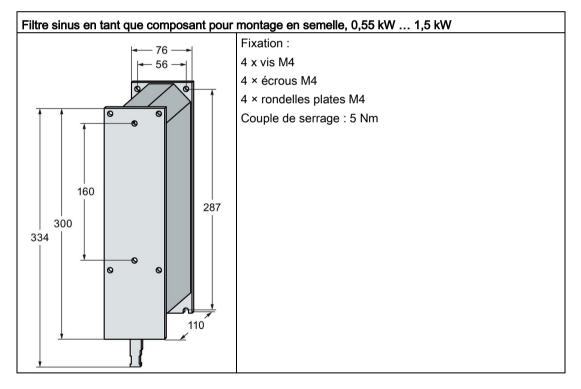


Figure 4-8 Constituants en semelle disponibles

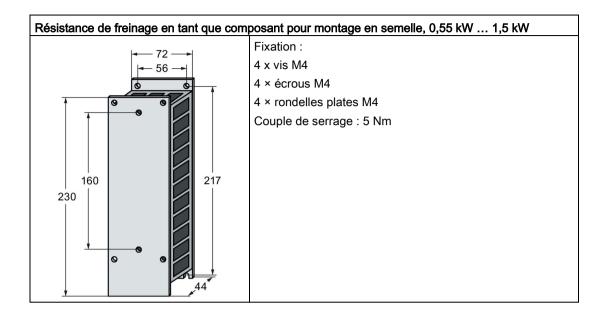

Vous pouvez combiner jusqu'à deux composants en semelle.

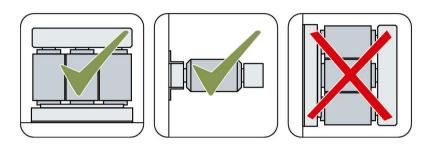

1 Filtre réseau ou 1 Filtre réseau 1 Filtre réseau ou 1 Filtre réseau ou inductance réseau inductance réseau inductance réseau (2) Inductance (2) Résistance de (2) Inductance de sortie (2) Filtre sinus réseau freinage Réseau Réseau Réseau Réseau (1)Moteur, Moteur Moteur, Moteur inductance de sortie inductance de sortie ou filtre sinus ou filtre sinus


Figure 4-9 Combinaisons autorisées de deux composants en semelle


4.4 Montage des composants en semelle

Cotes





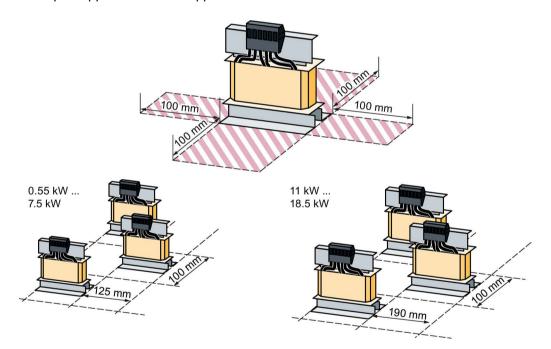
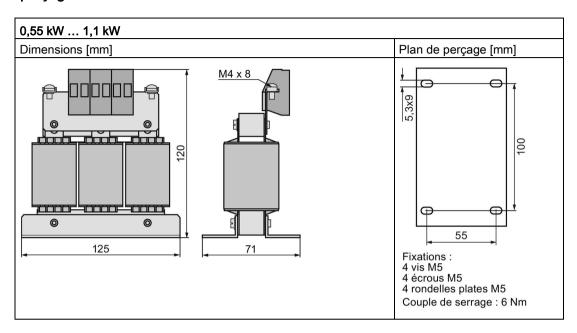
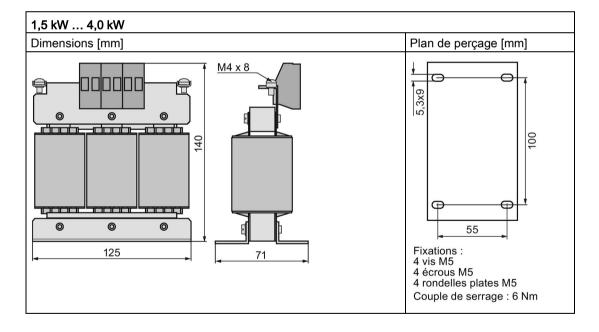
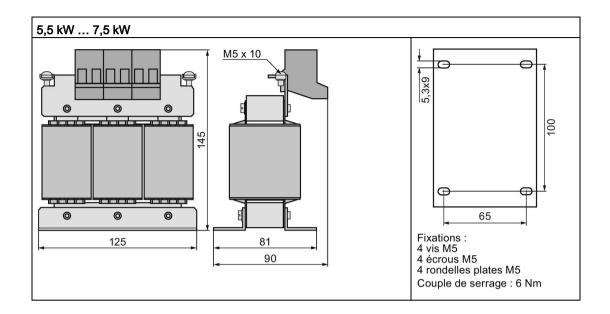
4.4 Montage des composants en semelle

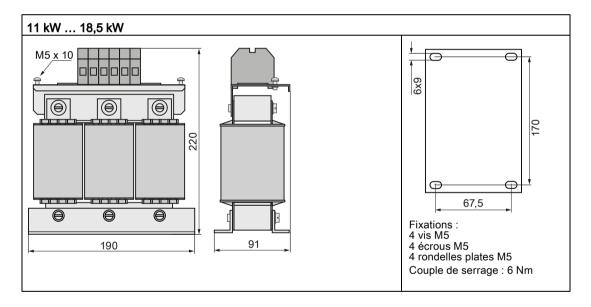
4.5 Montage de l'inductance réseau

Orientation de montage

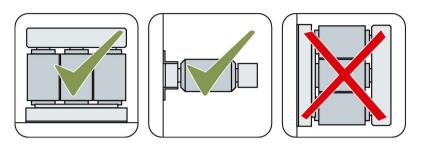
Distances par rapport aux autres appareils

En présence d'une inductance réseau, une distance minimale doit être respectée des deux côtés par rapport aux autres appareils.


Figure 4-10 Distances des inductances réseau par rapport aux autres appareils, exemples de montage à faible encombrement

Cotes et plans de perçage

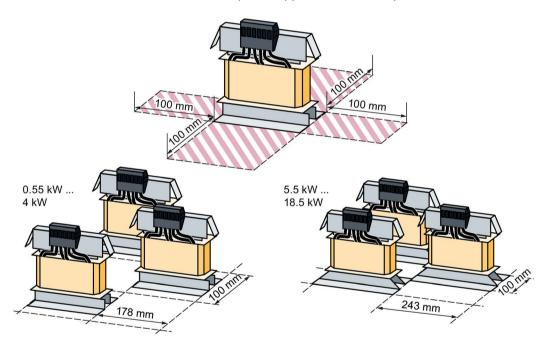
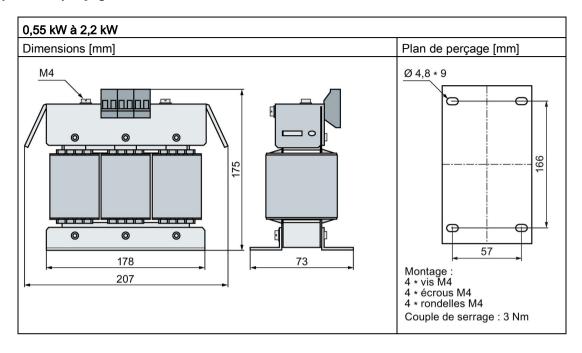
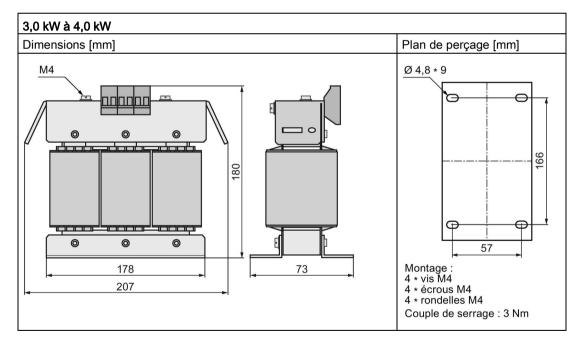


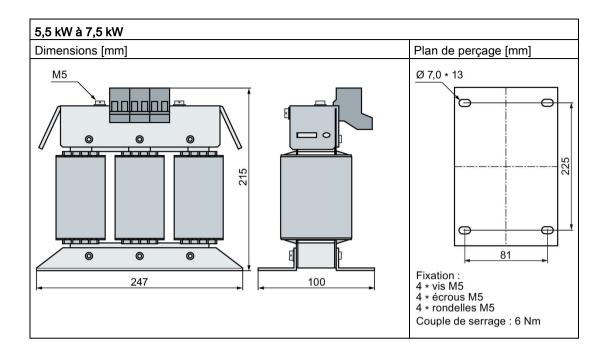
4.6 Montage de l'inductance de sortie

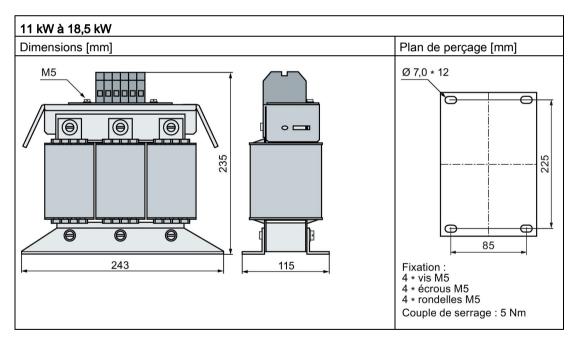
Position de montage

Distances par rapport aux autres appareils

Les zones ombrées doivent être exemptes d'appareils et de composants.


Figure 4-11 Distances minimales de l'inductance de sortie par rapport aux autres appareils, exemples de montages à faible encombrement


Dimensions et plans de perçage

4.6 Montage de l'inductance de sortie

4.7 Montage de la résistance de freinage

Position de montage

/!\PRUDENCE

Risque de brûlure en cas de contact avec les surfaces chaudes

Pendant le fonctionnement du variateur et peu de temps après son arrêt, la surface de l'appareil peut atteindre une température élevée. Tout contact avec la surface du variateur peut entraîner des brûlures.

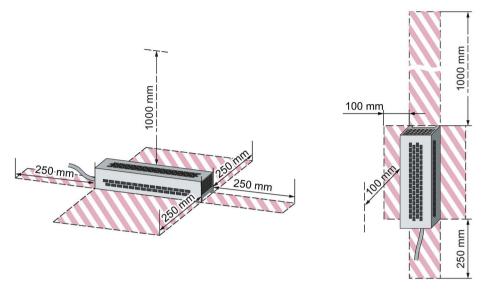
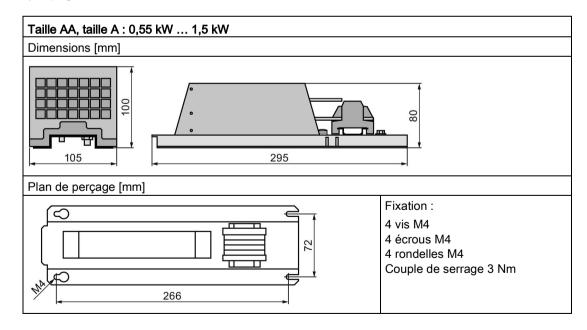
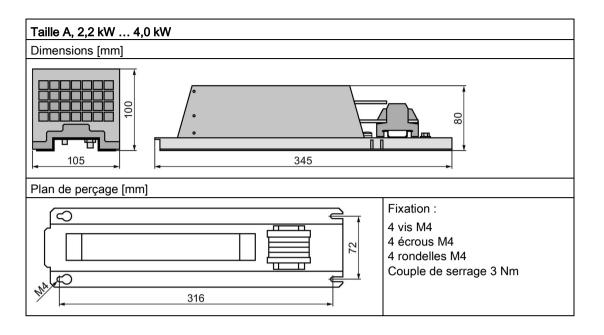
- Evitez tout contact avec l'appareil pendant son fonctionnement.
- Après l'arrêt du variateur, attendez que l'appareil ait refroidi avant tout contact.

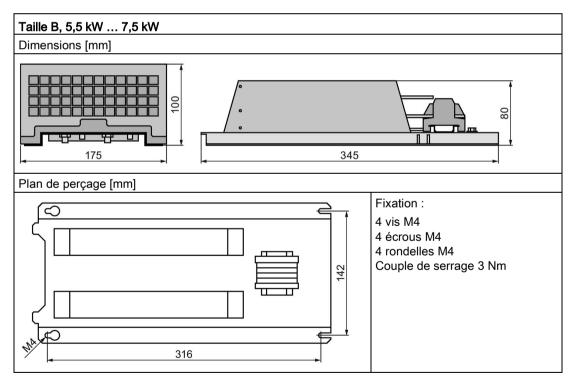
Consignes de montage

Monter la résistance sur une surface thermostable à conductibilité thermique élevée.

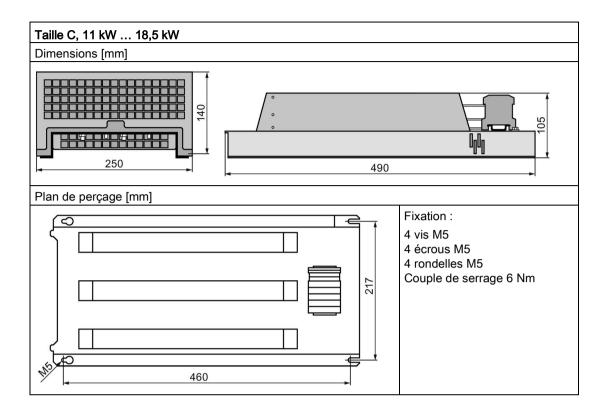
Ne pas recouvrir les prises d'air de refroidissement de la résistance de freinage.

Distances par rapport aux autres appareils


Figure 4-12 Distances minimales de la résistance de freinage lors du montage sur une surface plane et pour un montage mural

Laisser les zones hachurées dégagées de tout autre appareil ou composant.


Cotes et plans de perçage

4.7 Montage de la résistance de freinage

4.8 Raccordement du variateur

4.8.1 Réseaux d'alimentation autorisés

Le variateur est conçu pour les installations de distribution d'énergie suivantes selon la norme CEI 60364-1 (2005).

Au-dessus d'une altitude d'implantation de 2000 m, les réseaux d'alimentation autorisés sont limités. Voir aussi : Réduction du courant en fonction de l'altitude d'implantation (Page 385).

Réseau TN

Un réseau TN transfère le conducteur de protection PE à l'installation ou au système installé à l'aide d'un câble.

En règle générale, dans un réseau TN, le point neutre est mis à la terre. Il existe des versions de réseaux d'alimentation TN comportant un conducteur de ligne à la terre, p. ex. avec L1 à la terre.

Un réseau TN peut transférer le conducteur neutre N et le conducteur de protection PE séparément ou ensemble.

Conditions et restrictions pour le raccordement d'un variateur à un réseau TN

- Variateur avec filtre réseau intégré ou externe :
 - Fonctionnement sur des réseaux d'alimentation TN avec point neutre à la terre autorisé.
 - Fonctionnement sur des réseaux d'alimentation TN avec conducteur de ligne à la terre non autorisé.
- Variateur sans filtre réseau :
 - Fonctionnement autorisé sur toutes les réseaux d'alimentation TN.

4.8 Raccordement du variateur

Variateur connecté à un réseau d'alimentation TN

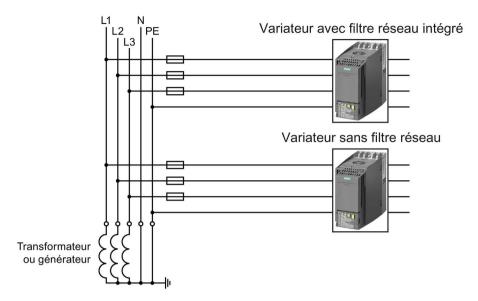


Figure 4-13 Réseau d'alimentation TN avec transfert séparé de N et de PE et avec un point neutre à la terre

Réseau TT

Dans un réseau TT, la mise à la terre du transformateur et celle de l'installation sont indépendantes l'une de l'autre.

Il existe des réseaux d'alimentation TT dans lesquelles le conducteur neutre N est transféré et d'autres où ce n'est pas le cas.

Conditions et restrictions pour le raccordement d'un variateur à un réseau TT

- Variateur avec filtre réseau intégré ou externe :
 - Fonctionnement sur des réseaux d'alimentation TT avec point neutre à la terre autorisé.
 - Fonctionnement sur des réseaux TT avec point neutre à la terre non autorisé.
- Variateur sans filtre réseau :
 - Le fonctionnement sur des réseaux TT est autorisé.
- Le fonctionnement des installations compatibles CEI sur réseaux TT est autorisé. Le fonctionnement des installations compatibles UL sur réseaux TT n'est par contre pas autorisé.

Variateur raccordé à un réseau d'alimentation TT

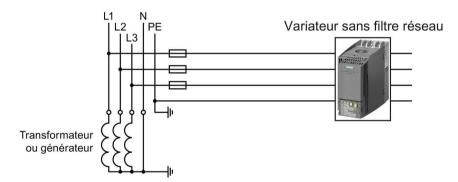


Figure 4-14 Réseau TT dans lequel le conducteur neutre N est transféré

4.8 Raccordement du variateur

Réseau IT

Dans un réseau IT, tous les conducteurs sont isolés par rapport au conducteur de protection PE, ou connectés au conducteur de protection PE par l'intermédiaire d'une impédance.

Il existe des réseaux d'alimentation IT dans lesquelles le conducteur neutre N est transféré et d'autres où ce n'est pas le cas.

Conditions et restrictions pour le raccordement d'un variateur à un réseau IT

- Variateur avec filtre réseau intégré ou externe :
 - Le fonctionnement sur des réseaux IT n'est pas autorisé.
- Variateur sans filtre réseau :
 - Le fonctionnement sur des réseaux IT est autorisé.

Variateur raccordé à un réseau d'alimentation IT

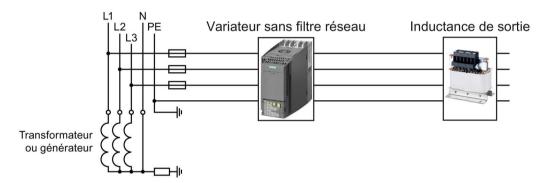
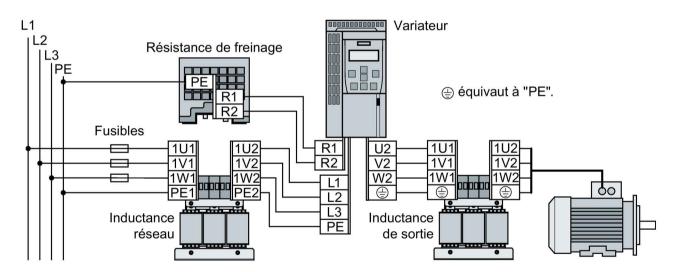


Figure 4-15 Réseau d'alimentation IT dans lequel le conducteur neutre N est transféré et avec une impédance par rapport au conducteur de protection PE

Comportement du variateur lorsqu'un défaut à la terre se produit

Dans certains cas, le variateur doit rester opérationnel, même en cas de défaut à la terre. Dans de tels cas, une inductance de sortie doit être installée. Cela permet d'éviter une coupure sur surintensité ou une détérioration de l'entraînement.

4.8.2 Raccordement au réseau du variateur et de ses composants


!\ATTENTION

Danger de mort en cas de rupture du conducteur de protection externe due à des courants de fuite élevés

Les constituants d'entraînement génèrent un courant de fuite important à travers le conducteur de protection. Tout contact direct avec des pièces conductrices peut entraîner la mort ou des blessures graves en cas de rupture du conducteur de protection.

- Veiller à ce que le conducteur de protection externe réponde au moins à l'une des conditions suivantes :
 - Il est protégé contre toute détérioration mécanique.¹⁾
 - S'il fait partie d'un câble à plusieurs conducteurs, il possède une section de 2,5 mm²
 Cu au minimum.
 - Il possède un deuxième conducteur de protection parallèle avec la même section.
 - Il satisfait aux réglementations locales relatives aux équipements à courant de fuite élevé.

¹⁾ Les câbles posés à l'intérieur des armoires ou des enveloppes de machine fermées sont considérés comme suffisamment protégés contre les détériorations mécaniques.

0000000	00000	Variateur							
	=_	Taille	e, puissance assignée	Section de raccordement (couple de serrage)					
		FSAA, FSA	0,55 kW 4,0 kW	1,0 2,5 mm²	(0,5 Nm)	18 14 AWG	(4,5 lbf in)		
		FSB	5,5 kW 7,5 kW	4,0 6,0 mm ²	(0,6 Nm)	12 10 AWG	(5,5 lbf in)		
UUU		FSC	11 kW	6,0 16 mm²	(1,5 Nm)	10 5 AWG	(13,5 lbf in)		
		130	15 kW 18,5 kW	10 16 mm²	(1,5 Nm)	7 5 AWG	(13,5 lbf in)		

Puissance assignée du	e 11011 a	0	Inductance réseau			
variateur		Section de raccordement (couple de serrage)				
0,55 kW 4,0 kW		2,5 mm ² (0,8 Nm)	14 AWG (7 lbf in)	PE M4 (3 Nm / 27 lbf in)		
5,5 kW 7,5 kW		6 mm ² (1,8 Nm)	10 AWG (16 lbf in)	PE M5 (5 Nm / 44 lbf in)		
11 kW 18,5 kW		16 mm² (4 Nm)	5 AWG (35 lbf in)	F E M3 (3 MIT / 44 IDI III)		

4.8 Raccordement du variateur

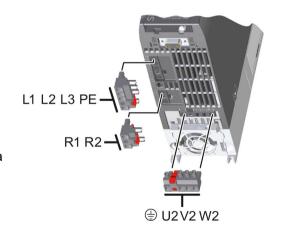
Puissance assignée du			Inductance de sortie			
variateur		Section de raccordement (couple de serrage)				
0,55 kW 4,0 kW		2,5 mm ² (0,8 Nm)	14 AWG (7 lbf in)	PE M4 (3 Nm / 27 lbf in)		
5,5 kW 7,5 kW		10 mm ² (1,8 Nm)	8 AWG (16 lbf in)	PE M5 (5 Nm / 44 lbf in)		
11 kW 18,5 kW		16 mm² (4 Nm)	5 AWG (35 lbf in)	1 L M3 (3 MIT / 44 IDI III)		

Puissance assignée du			Résistance de freinage			
variateur		Section de raccordement (couple de serrage)				
		R1, F	R2, PE	Thermocontact		
0,55 kW 7,5 kW	0,55 kW 7,5 kW		14 AWG (4,5 lbf in)	2.5 mm² (0.5 Nm)	14 AWG (4,5 lbf in)	
11 kW 18,5 kW		6 mm ² (0,6 Nm)	10 AWG (5,5 lbf in)	2,3 11111 (0,3 1411)	14 700 (4,3 101 111)	

Variateur			Inductance, filtre ou résistance de freinage en tant que composant pour montage en semelle		
Taille,	Taille, puissance assignée		Section de raccordement (couple de serrage)		
FSAA	0,55 kW 1,5 kW		1,0 2,5 mm ² (1,1 Nm) 17 14 AWG (10 lb	of in)	

Marche à suivre

Pour raccorder le variateur et ses composants, procédez comme suit :


1. Installez les fusibles appropriés :

Variateur		Fusible selon CEI	Fusible selon UL/cUL
FSAA,	,	3NA3801 (6 A) 3NA3803 (10 A)	10 A, 600 V CA, classe J
FSA	3,0 kW 4,0 kW	3NA3805 (16 A)	15 A, 600 V CA, classe J
FSB	5,5 kW	3NA3807 (20 A)	20 A, 600 V CA, classe J
	7,5 kW	3NA3810 (25 A)	25 A, 600 V CA, classe J
FSC	11 kW	3NA3817 (40 A)	40 A, 600 V CA, classe J
	15 kW	3NA3820 (50 A)	50 A, 600 V CA, classe J
	18,5 kW	3NA3822 (63 A)	60 A, 600 V CA, classe J

Raccorder le variateur et ses composants.

> Sur la face inférieure du variateur se trouvent les connecteurs pour le raccordement du réseau, du moteur et de la résistance de freinage.

 Si une installation conforme aux exigences de CEM est requise, des câbles blindés doivent être utilisés. Voir aussi la section : Installation conforme aux exigences de CEM (Page 36).

Vous avez raccordé le variateur et ses composants.

Installation aux Etats-Unis et au Canada (UL ou CSA)

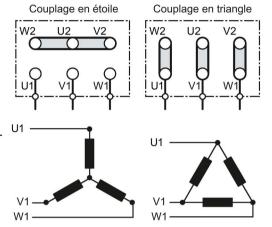
Pour installer le variateur conformément à UL/cUL, prendre les mesures suivantes :

- Utiliser des fusibles homologués UL/CSA de classe J.
- L'entraînement à commande sectionnelle, c'est-à-dire l'exploitation de plusieurs moteurs sur un variateur, n'est pas admissible.
- La protection intégrée contre les courts-circuits à semiconducteur dans le variateur n'offre aucune protection des dérivations. Toute protection de dérivation doit être installée en conformité avec le National Electric Code ainsi que d'éventuelles prescriptions locales complémentaires.
- Concernant la taille minimale de l'armoire électrique, les limitations suivantes s'appliquent :
 - Variateurs de taille AA : ≥ 30 000 cm³ (≥ 1830 in³)
 - Variateurs de taille A ... C : aucune limitation relative aux prescriptions UL
- Intallez le variateur dans des réseaux ≤ 40 000 A (symétrique, ≤ 480 V.
- Utilisez des câbles cuivre de classe 1, ≥ 60° C pour la taille AA.
- Utilisez des câbles cuivre de classe 1, ≥ 75° C pour les tailles A ... C.
- Laisser le paramètre p0610 dans le réglage d'usine.

Le réglage d'usine p0610 = 12 signifie : Le variateur réagit à une surchauffe du moteur immédiatement en déclenchant une alarme et après un certain temps en déclenchant un défaut.

Exigences supplémentaires concernant la conformité CSA:

- Utiliser un appareil de protection contre les surtensions avec le numéro d'article 5SD7424-1.
- Alternative : Installer le variateur avec un appareil externe de protection contre les surtensions présentant les caractéristiques suivantes :
 - Appareil de protection contre les surtensions avec la marque d'homologation UL : Numéros de contrôle de catégorie VZCA et VZCA7
 - Tension assignée triphasée, 480/277 V CA, 50/60 Hz
 - Tension aux bornes V_{PR} = 2000 V. I_N = 3 kA min. MCOV = 508 V CA. SCCR = 40 kA
 - Convient pour une application SPD, type 1 ou type 2
- Lors de la mise en service, réglez, à l'aide du paramètre p0640, la protection du moteur contre les surcharges sur 115 %, 230 % ou 400 % du courant assigné du moteur. Ainsi la protection du moteur contre les surcharges est conforme à CSA C22.2 No. 274.


4.8.3 Raccordement du moteur

Raccordement du moteur en étoile ou en triangle

La face interne du couvercle de la boîte à bornes des moteurs SIEMENS comporte une illustration des deux types de raccordement :

- Couplage en étoile (Y)
- Couplage en triangle (Δ)

La plaque signalétique du moteur fournit les informations sur les caractéristiques de raccordement correctes.

Exemples d'exploitation du variateur et du moteur sur le réseau 400 V

Hypothèse : la plaque signalétique du moteur comporte la mention 230/400 V Δ/Y.

Cas 1 : normalement, un moteur est exploité dans une plage allant de l'immobilisation à sa vitesse assignée (c'est-à-dire la vitesse qui correspond à la fréquence réseau). Dans ce cas, le moteur doit toujours être raccordé en Y.

L'exploitation du moteur au-dessus de sa vitesse assignée est alors seulement possible en défluxage, c'est-à-dire que le couple disponible du moteur diminue au-dessus de la vitesse assignée.

Cas 2 : si le moteur est exploité avec la "caractéristique 87 Hz", celui-ci doit être raccordé en ^

La caractéristique 87 Hz accroît la puissance de sortie du moteur. La caractéristique 87 Hz est principalement utilisée pour les motoréducteurs.

4.8.4 Utilisation d'un variateur sur le dispositif différentiel résiduel

/!\ATTENTION

Parties d'enveloppe sous tension du fait d'un dispositif de protection inapproprié

Le variateur de vitesse peut générer un courant continu dans le conducteur de protection. Si un dispositif différentiel résiduel (DDR) ou un dispositif de surveillance du courant résiduel (RCM) inapproprié est utilisé pour protéger contre les contacts directs ou indirects, le courant continu qui circule dans le conducteur de protection empêche le déclenchement du dispositif de protection en cas d'apparition d'un défaut.

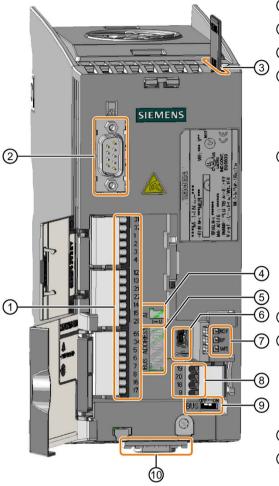
Par conséquent, certaines parties du variateur sans protection contre le contact peuvent présenter une tension dangereuse.

 Il convient d'observer les conditions énoncées ci-dessous relatives aux dispositifs différentiels résiduels.

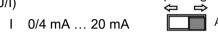
Conditions d'utilisation du variateur avec un dispositif différentiel résiduel

Vous pouvez utiliser le variateur avec un dispositif différentiel résiduel (DDR, disjoncteur de fuite à la terre ou interrupteur différentiel sans protection de surintensités incorporée) ou un dispositif de surveillance du courant de défaut (RCM) dans les conditions suivantes :

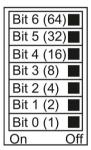
- Le variateur est connecté à un système TN.
- Vous utilisez un variateur, taille AA, A ou B.
- Vous utilisez un DDR/RCM super résistant (sensible à tous les courants), de type B, tel qu'un disjoncteur SIQUENCE de Siemens.
 - Courant de déclenchement de DDR/RCM pour dispositifs filtrés = 300 mA
 - Courant de déclenchement de DDR/RCM pour dispositifs non filtrés = 30 mA
- Chaque variateur est connecté via son propre DDR/RCM.
- Longueur maximale des câbles moteur blindés : 15 m.
- Longueur maximale des câbles moteur non blindés : 30 m.


Mesures de protection contre le contact sans DDR/RCM

Etablissez la protection contre le contact en prenant une des mesures suivantes :


- Double isolation
- Transformateur pour isoler le variateur du réseau d'alimentation

4.8.5 Vue d'ensemble des interfaces

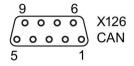

Pour accéder aux interfaces sur la face avant de la Control Unit, vous devez débrocher le pupitre opérateur (le cas échéant) et ouvrir les portes frontales.

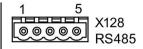
- Borniers
- 2) Liaison avec le pupitre opérateur
- (3) Emplacement pour carte mémoire
- ④ Commutateur pour Al 0 (U/I)

- U -10/0 V ... 10 V
 En fonction du bus de
 - terrain :
 G120C PN : Sans fonction
 - G120C DP, G120C USS/MB et G120C CANopen : Commutateur pour adresse de bus

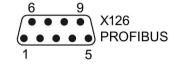
- (6) Interface USB pour la liaison avec un PC
- ⑦ LED d'état

LNK1/2 seulement pour G120C PN


- (8) Bornier
- - USS, Modbus : Terminaison [de bus

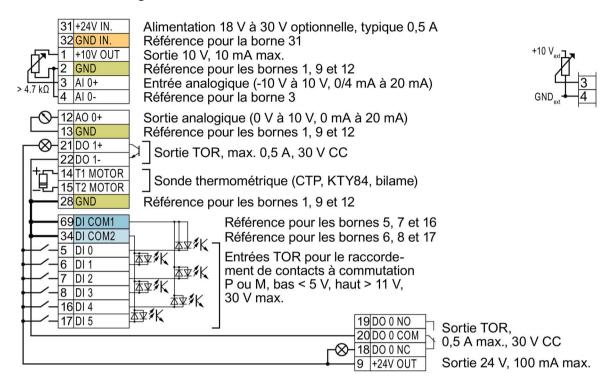

- PROFIBUS, PROFINET, EtherNet/IP: sans fonction
- ① Interface de bus de terrain sur la face inférieure

4.8.6 Affectation des interfaces de bus de terrain


L'interface de bus de terrain se trouve sur la face inférieure du variateur.

- 2 CAN_L, signal CAN (actif à l'état bas)
- 3 CAN_GND, masse
- 4 --
- 5 CAN _SHLD, blindage
- 6 GND, masse optionnelle
- 7 CAN_H, signal CAN (actif à l'état haut)
- 8 ---
- 9 ---

- 0 V
- 2 RS485P, réception et émission (+)
- 3 RS485N, réception et émission (-)
- 4 Blindage
- 5 ---


- 1 --
- 3 RxD/TxD-P, réception et émission (B/B')
- 4 CNTR-P, signal de commande
- 5 GND, référence pour données (C/C')
- 6 Alimentation +5 V
- 7 ---
- 8 RxD/TxD-N, réception et émission (A/A')
- 9 ---

- 1 RX+ Données de réception +
- 2 RX- Données de réception -
- 3 TX+ Données d'émission +
- 4 ---5 ---
- 6 TX- Données d'émission -
- 7 ---
- 8 ---

4.8.7 Borniers

Variantes de câblage des borniers

GND

Toutes les bornes avec le potentiel de référence "GND" sont reliées entre elles à l'intérieur du variateur.

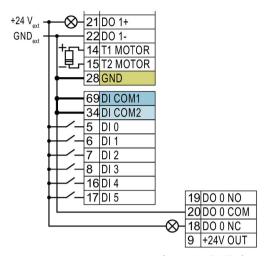
DI COM1

DI COM2

Les potentiels de référence "DI COM1" et "DI COM2" sont séparés galvaniquement de "GND".

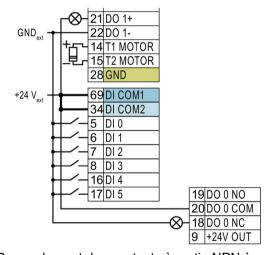
→ Si vous utilisez, comme représenté ci-dessus, l'alimentation 24 V de la borne 9 comme alimentation des entrées TOR, vous devez relier "GND", "DI COM1" et "DI COM2" entre elles.

Bornes 31, 32


GND IN

Lorsqu'une alimentation 24 V optionnelle est raccordée aux bornes 31 et 32, la Control Unit reste en service même lorsque le Power Module est coupé du réseau. Cela permet par exemple à la Control Unit de maintenir la communication sur le bus de terrain.

- → Raccordez aux bornes 31, 32 uniquement une alimentation qui fournit une tension de sortie TBTS (très basse tension de sécurité) ou TBTP (très basse tension de protection).
- → Si vous utilisez une alimentation externe sur les bornes 31, 32 également pour les entrées TOR, vous devez relier "DI COM1/2" und "GND IN" entre elles.
- Bornes 3, 4 : Pour l'entrée analogique, vous pouvez utiliser l'alimentation 10 V interne ou une alimentation externe. Consommation typique : 10 mA ... 20 mA.
 - → Si vous utilisez l'alimentation 10 V interne, vous devez relier AI 0- à GND.


Figure 4-16 Exemple de câblage des entrées TOR avec alimentation 24 V interne au variateur

Autres possibilités de câblage des entrées TOR

Si vous voulez relier entre eux les potentiels de l'alimentation externe et de l'alimentation interne au variateur, vous devez connecter "GND" avec les bornes 34 et 69.

Raccordement des contacts à sortie PNP à une alimentation externe

Reliez ensemble les bornes 69 et 34.

Raccordement des contacts à sortie NPN à une alimentation externe

4.8 Raccordement du variateur

Réglage d'usine du bornier

Le réglage d'usine des bornes dépend de la présence sur le variateur d'une interface PROFIBUS/PROFINET.

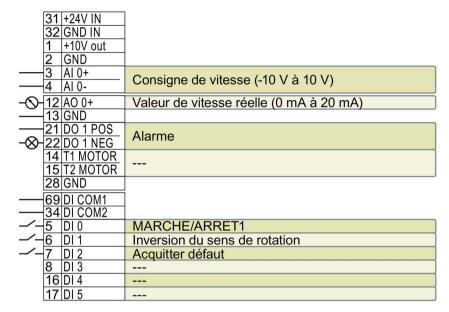


Figure 4-17 Réglage d'usine des bornes pour G120C USS et G120C CAN

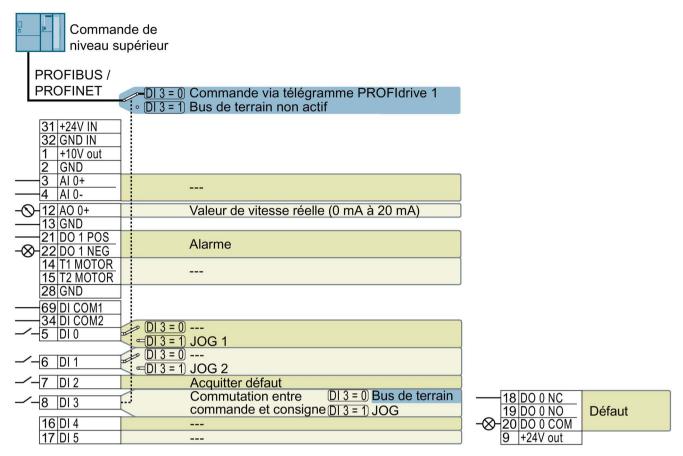


Figure 4-18 Réglage d'usine des bornes pour G120C DP et G120C PN

Modification de la fonction des bornes

La fonction des bornes repérées en couleur sur les deux figures ci-dessus est réglable.


Pour éviter la modification successive borne par borne, vous pouvez régler plusieurs bornes ensemble en utilisant les réglages par défaut ("p0015 Macro Groupe d'entraînement").

Les réglages usine des bornes décrits ci-dessus correspondent aux réglages par défaut suivants :

- Réglage par défaut 12 (p0015 = 12) : "Affectations E/S standard avec Csg analogique"
- Réglage par défaut 7 (p0015 = 7) : "Bus de terrain avec commutation entre jeux de paramètres"

4.8.8 Réglages par défaut des interfaces

Réglage par défaut 1 : "Manutention avec 2 fréquences fixes"

DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 5 : r0722.5

Consigne fixe de vitesse 3 : p1003, consigne fixe de vitesse 4 : p1004, consigne fixe de vitesse effec-

tive: r1024

Consigne de vitesse (consigne principale) : p1070[0] = 1024

DI 4 et DI 5 = état haut : le variateur additionne les deux consignes fixes de vitesse

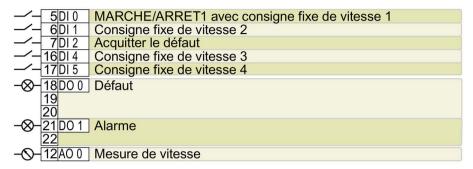
Désignation dans le BOP-2 : coN 2 SP

Réglage par défaut 2 : "Manutention avec Basic Safety"

-/-	5 DI 0	MARCHE/ARRET1 avec consigne fixe de vitesse 1
-/-	6 DI 1	Consigne fixe de vitesse 2
-/-	7 DI 2	Acquitter le défaut
- ∕-{	16 DI 4	Réservé pour une fonction de sécurité
	17 DI 5	Treserve pour une forfation de securite
− ⊗−	18 DO 0	Défaut
[19	
00000	20	
$-\otimes$	21 DO 1	Alarme
	22	
- Ø-	12 AO 0	Mesure de vitesse

DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 5 : r0722.5

Consigne fixe de vitesse 1 : p1001, consigne fixe de vitesse 2 : p1002, consigne fixe de vitesse effec-


tive : r1024

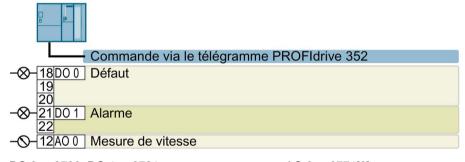
Consigne de vitesse (consigne principale) : p1070[0] = 1024

DI 0 et DI 1 = état haut : le variateur additionne les deux consignes fixes de vitesse.

Désignation dans le BOP-2 : coN SAFE

Réglage par défaut 3 : "Manutention avec 4 fréquences fixes"

DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 5 : r0722.5

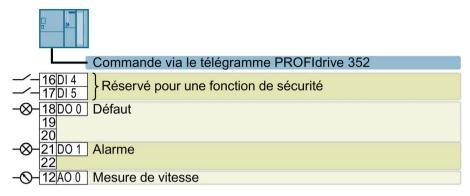

Consigne fixe de vitesse 1 : p1001, ... consigne fixe de vitesse 4 : p1004, consigne fixe de vitesse effective : r1024

Consigne de vitesse (consigne principale) : p1070[0] = 1024

Plusieurs des DI 0, DI 1, DI 4 et DI 5 = état haut : le variateur additionne les consignes fixes de vitesse correspondantes.

Désignation dans le BOP-2 : coN 4 SP

Réglage par défaut 4 : "Manutention avec bus de terrain"

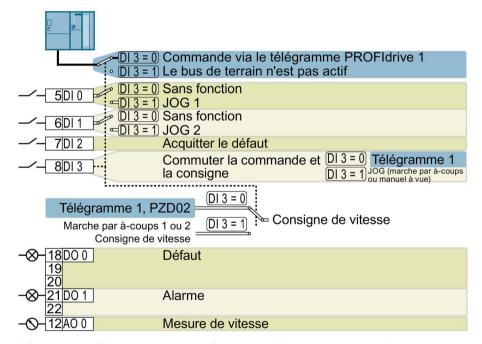

DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0]

Consigne de vitesse (consigne principale) : p1070[0] = 2050[1]

Désignation dans le BOP-2 : coN Fb

4.8 Raccordement du variateur

Réglage par défaut 5 : "Manutention avec bus de terrain et Basic Safety"

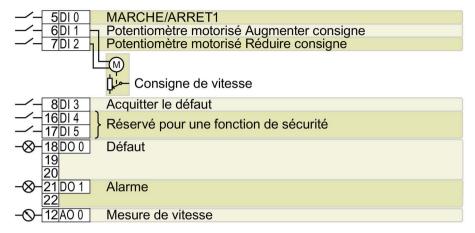

DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 4 : r0722.4, DI 5 : r0722.5

Consigne de vitesse (consigne principale) : p1070[0] = 2050[1]

Désignation dans le BOP-2 : coN Fb S

Réglage par défaut 7 : "Bus de terrain avec commutation du jeu de paramètres"

Réglage d'usine pour variateur avec interface PROFIBUS ou PROFINET

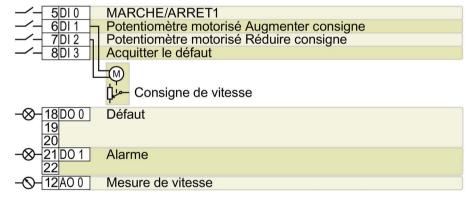


DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 3 : r0722.3

Consigne de vitesse (consigne principale) : p1070[0] = 2050[1] JOG 1 Consigne de vitesse : p1058, réglage d'usine : 150 tr/min JOG 2 Consigne de vitesse : p1059, réglage d'usine : -150 tr/min

Désignation dans le BOP-2 : FB cdS

Réglage par défaut 8 : "Potentiomètre motorisé avec Basic Safety"


DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 5 : r0722.5

Potentiomètre motorisé Consigne en aval du générateur de rampe : r1050

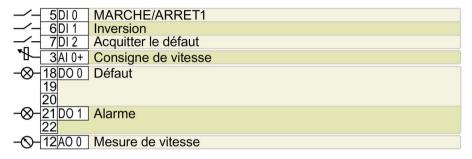
Consigne de vitesse (consigne principale) : p1070[0] = 1050

Désignation dans le BOP-2 : MoP SAFE

Réglage par défaut 9 : "E/S standard avec potentiomètre motorisé"

DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 3 : r0722.3

Potentiomètre motorisé Consigne en aval du générateur de rampe : r1050

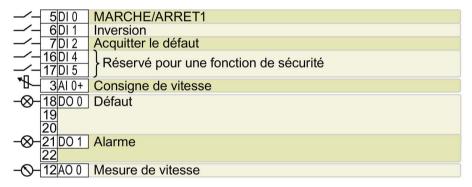

Consigne de vitesse (consigne principale) : p1070[0] = 1050

Désignation dans le BOP-2 : Std MoP

4.8 Raccordement du variateur

Réglage par défaut 12 : "E/S standard avec consigne analogique"

Réglage d'usine pour variateur avec interface USS

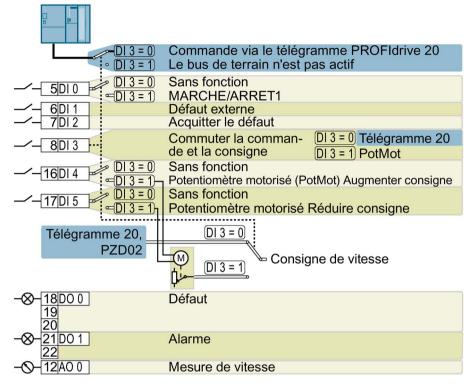


DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 2 : r0722.2 AI 0 : r0755[0]

Consigne de vitesse (consigne principale) : p1070[0] = 755[0]

Désignation dans le BOP-2 : Std ASP

Réglage par défaut 13 : "E/S standard avec consigne analogique et Safety Integrated"



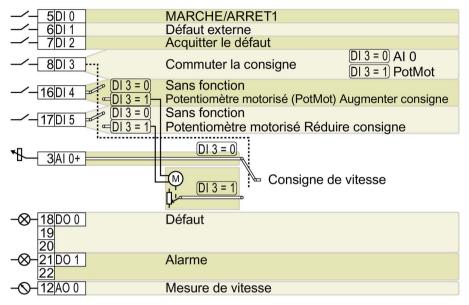
DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 5 : r0722.5 AI 0 : r0755[0]

Consigne de vitesse (consigne principale) : p1070[0] = 755[0]

Désignation dans le BOP-2 : ASPS

Réglage par défaut 14 : "Industrie des procédés avec bus de terrain"

DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 5 : r0722.5

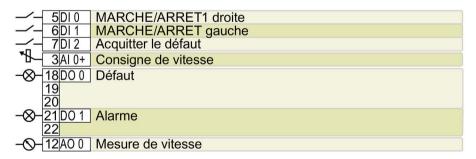

Potentiomètre motorisé Consigne en aval du générateur de rampe : r1050

Consigne de vitesse (consigne principale) : p1070[0] = 2050[1], p1070[1] = 1050

Désignation dans le BOP-2 : Proc Fb

4.8 Raccordement du variateur

Réglage par défaut 15 : "Industrie des procédés"


DO 0: p0730, DO 1: p0731 AO 0: p0771[0] DI 0: r0722.0, ..., DI 5: r0722.5 AI 0: r0755[0]

Potentiomètre motorisé Consigne en aval du générateur de rampe : r1050

Consigne de vitesse (consigne principale) : p1070[0] = 755[0], p1070[1] = 1050

Désignation dans le BOP-2 : Proc

Réglage par défaut 17 : "2 fils (avant/arrière1)"

DO 0: p0730, DO 1: p0731 AO 0: p0771[0] DI 0: r0722.0, ..., DI 2: r0722.2 AI 0: r0755[0]

Consigne de vitesse (consigne principale) : p1070[0] = 755[0]

Désignation dans le BOP-2 : 2-wlrE 1

Réglage par défaut 18 : "2 fils (avant/arrière2)"

	MARCHE/ARRET1 droite
- ∕- 6DI1	MARCHE/ARRET gauche
7DI 2	Acquitter le défaut
3 AI 0+	Consigne de vitesse
-⊗-18D00	Défaut
19 20	
-⊗-21D01	Alarme
22	
- ⊘ -12 A0 0	Mesure de vitesse

DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 0 : r0722.0, ..., DI 2 : r0722.2 AI 0 : r0755[0]

Consigne de vitesse (consigne principale) : p1070[0] = 755[0]

Désignation dans le BOP-2 : 2-wlrE 2

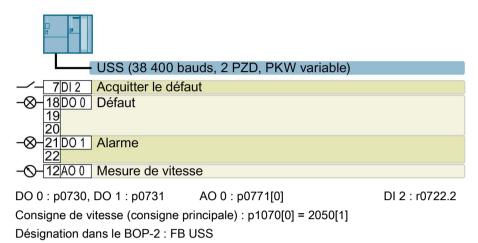
Réglage par défaut 19 : "3 fils (déblocage/avant/arrière)"

DO 0: p0730, DO 1: p0731 AO 0: p0771[0] DI 0: r0722.0, ..., DI 4: r0722.4 AI 0: r0755[0]

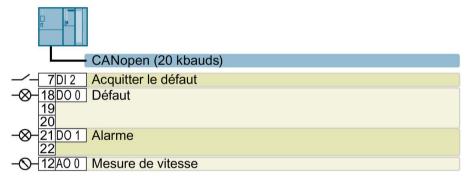
Consigne de vitesse (consigne principale) : p1070[0] = 755[0]

Désignation dans le BOP-2 : 3-wlrE 1

Réglage par défaut 20 : "3 fils (déblocage/marche/inverse)"


DO 0: p0730, DO 1: p0731 AO 0: p0771[0] DI 0: r0722.0, ..., DI 4: r0722.4 AI 0: r0755[0]

Consigne de vitesse (consigne principale) : p1070[0] = 755[0]


Désignation dans le BOP-2 : 3-wlrE 2

4.8 Raccordement du variateur

Réglage par défaut 21 : "Bus de terrain USS"

Réglage par défaut 22 : "Bus de terrain CAN"

DO 0 : p0730, DO 1 : p0731 AO 0 : p0771[0] DI 2 : r0722.2

Consigne de vitesse (consigne principale) : p1070[0] = 2050[1]

Désignation dans le BOP-2 : FB CAN

4.8.9 Câblage du bornier

IMPORTANT

Endommagement du variateur en cas de câbles de signaux longs

Les câbles longs au niveau des entrées TOR et de l'alimentation 24 V du variateur peuvent entraîner des surtensions lors des opérations de commutation. Les surtensions peuvent endommager le variateur.

 Pour les câbles > 30 m au niveau des entrées TOR et de l'alimentation 24 V, raccordez un élément de protection à maximum de tension entre la borne et le potentiel de référence correspondant.

Nous vous recommandons d'utiliser la borne de protection à maximum de tension de Weidmüller, type MCZ OVP TAZ DIODE 24VDC.

/!\ATTENTION

Danger de mort dû à une tension dangereuse lors du raccordement d'une alimentation non appropriée

Tout contact direct avec des pièces sous tension peut entraîner la mort ou des blessures graves en cas de défaut.

 Pour tous les connecteurs et toutes les bornes des modules électroniques, utilisez uniquement des alimentations qui fournissent des tensions de sortie TBTP (très basse tension de protection) ou TBTS (très basse tension de sécurité).

/!\ATTENTION

Danger de mort par choc électrique en cas de décharges électriques sur le câble de la sonde thermométrique du moteur

Pour les moteurs sans séparation électrique sûre de la sonde thermométrique, des décharges électriques vers l'électronique de traitement des signaux peuvent se produire en cas de défaut dans le moteur.

 Utilisez des sondes thermométriques de moteur respectant les prescriptions de séparation de protection selon CEI 61800-5-1.

Tableau 4-3 Câbles admissibles et options de câblage

Câble massif ou souple	Câble souple avec embout non isolé	Câble souple avec embout partiellement isolé	Deux câbles souples de même section avec embouts jumelés par- tiellement isolés
8 mm 0.5	8 mm 0.5	8 mm	8 mm
1.5 mm ²	1.0 mm ²	0.5 mm ²	2 * 0.5 mm ²

Câblage du bornier conforme aux exigences de CEM

 Si vous utilisez des câbles blindés, reliez le blindage à la plaque de montage de l'armoire ou à l'étrier de connexion des blindages du variateur avec une grande surface de contact et une bonne conductivité.

Voir aussi :Directives de CEM

(http://support.automation.siemens.com/WW/view/fr/60612658)

• Utilisez la tôle de raccordement du blindage du variateur comme décharge de traction.

4.8.10 Surveillez la température de la résistance de freinage.

/!\ATTENTION

Danger de mort dû à la propagation de feu en cas de résistance de freinage inappropriée ou installée de manière incorrecte

L'utilisation d'une résistance de freinage inappropriée ou incorrectement installée peut entraîner un incendie et un dégagement de fumée Le feu et le dégagement de fumée peuvent provoquer de graves blessures ou d'importants dégâts matériels.

- Utilisez uniquement les résistances de freinage autorisées pour le variateur.
- Installez la résistance de freinage conformément aux instructions.
- Surveillez la température de la résistance de freinage.

Procédure

Pour surveiller la température de la résistance de freinage, procédez comme suit :

1. Raccordez la surveillance de température de la résistance de freinage (bornes T1 et T2 de la résistance de freinage) à une entrée TOR libre sur le variateur.

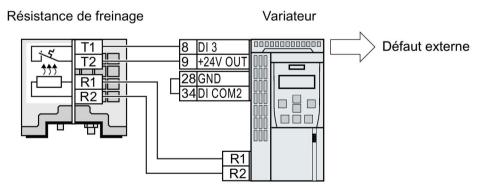


Figure 4-19 Exemple : Surveillance thermique de la résistance de freinage via l'entrée TOR DI 3 de la Control Unit

2. Définissez, à l'aide de p2106, la fonction de l'entrée TOR utilisée en tant que défaut externe.

Exemple pour la surveillance thermique via l'entrée TOR DI 3 : p2106 = 722.3

La surveillance thermique est ainsi assurée.

4.8.11 Connexion du variateur au bus de terrain

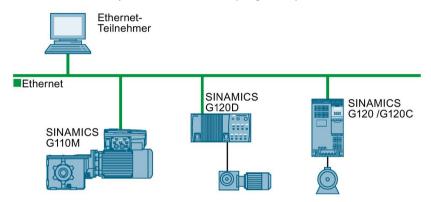
4.8.11.1 Interfaces de communication

Interfaces de bus de terrain du variateur

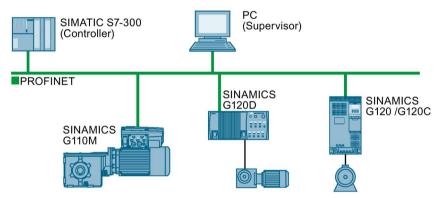
Le variateur est disponible dans différentes versions pour des commandes de niveau supérieur avec les interfaces de bus de terrain suivantes :

Bus de terrain	Interface	Profil
PROFIBUS DP (Page 92)	Connecteur SUB-D femelle	PROFIdrive et PROFIsafe1)
PROFINET IO (Page 88)	Deux connecteurs RJ45	-
EtherNet/IP ²⁾	Deux connecteurs RJ45	-
USS ²⁾	Connecteur mâle RS-485	-
Modbus RTU ²⁾	Connecteur mâle RS-485	-
CANopen ²⁾	Connecteur SUB-D mâle	-

¹ Vous trouverez des informations sur PROFIsafe dans la description fonctionnelle Safety Integrated.


Voir aussi la section : Manuels pour le variateur (Page 424).

² Vous trouverez des informations sur les bus de terrain dans la description fonctionnelle Systèmes de bus de terrain.


4.8.11.2 PROFINET

Vous pouvez soit communiquer avec le variateur via Ethernet, soit intégrer le variateur dans un réseau PROFINET.

Variateur en tant gu'abonné Ethernet (Page 424)

• Mode PROFINET IO (Page 89)

En mode PROFINET IO, le variateur prend en charge les fonctions suivantes :

- RT
- IRT

Le variateur transmet l'isochronisme, mais ne le prend pas en charge.

- MRP

Redondance de support, avec délai de commutation de 200 ms Condition : topologie en anneau

MRPD

Redondance de support, sans délai de commutation Condition : IRT et topologie en anneau dans la commande

 Alarmes de diagnostic
 Selon les classes d'erreur spécifiées dans le profil PROFIdrive. Voir Activation du diagnostic via la commande (Page 91).

Remplacement d'appareil sans support amovible
 Condition : topologie en anneau créée dans la commande

Shared Device
 Uniquement pour les Control Units avec fonctions de sécurité (voir Description fonctionnelle Safety Integrated)

Vous trouverez des informations sur PROFINET sur le site Internet sous les liens suivants :

- Des informations générales concernant PROFINET se trouvent sous Industrial Communication (http://www.automation.siemens.com/mcms/automation/en/industrial-communications/profinet/Pages/Default.aspx).
- La configuration des fonctions est décrite dans le manuel PROFINET Description du système (http://support.automation.siemens.com/WW/view/fr/19292127).

Ce manuel décrit le pilotage du variateur à l'aide d'une commande de niveau supérieur. L'accès au variateur en tant qu'abonné Ethernet est décrit dans la Description fonctionnelle "Feldbusse" (Bus de terrain) (Page 424) à la section "Der Umrichter als Ethernet-Teilnehmer" (Le variateur en tant qu'abonné Ethernet).

De quoi avez-vous besoin pour la communication via PROFINET?

Vérifiez les paramètres de communication à l'aide du tableau suivant. Si vous pouvez répondre aux questions par "oui", les paramètres de communication ont été réglés correctement et le variateur peut être commandé via le bus de terrain.

Questions	Réponse/description	Exemple
Le variateur est-il correctement rac- cordé au réseau de bus ?	Voir : Intégration de variateurs dans PROFINET (Page 90)	
L'adresse IP et le nom de l'appareil correspondent-ils dans le variateur et la commande ?	Voir Manuels pour le variateur (Page 424)	Voir Manuels pour le varia- teur, description fonction- nelle Bus de terrain (Page 424)
Le télégramme réglé dans le varia- teur est-il le même que dans la commande de niveau supérieur ?	Réglage du télégramme dans la commande.	
La connexion des signaux échangés par le variateur et la commande via PROFINET est-elle correcte ?	Connexion conforme à PRO- Fldrive dans le variateur, voir : Commande via PROFIBUS ou PROFINET avec le profil PRO- Fldrive. (Page 159)	

Intégration de variateurs dans PROFINET

Procédure

Pour raccorder le variateur à une commande via PROFINET, procédez comme suit :

1. Intégrez le variateur avec des câbles PROFINET au moyen des deux connecteurs femelles PROFINET X150-P1 et X150-P2 dans le système de bus (p. ex. topologie en anneau) de la commande.

Vous trouverez la position des connecteurs femelles et l'affectation des broches à la section Vue d'ensemble des interfaces (Page 70).

La longueur maximale admissible de câble vers l'abonné précédent ou suivant est de 100 m.

2. Alimentez le variateur en 24 V CC externe via les bornes 31 et 32.

L'alimentation externe 24 V n'est requise que lorsque la communication avec la commande doit continuer de fonctionner même si la tension du réseau dans l'installation est coupée.

Vous avez relié le variateur à la commande via PROFINET.

Configuration de la communication avec l'automate

Configuration de la communication avec une commande SIMATIC S7

Si le variateur n'est pas contenu dans la bibliothèque de matériel de HW Config, vous avez les possibilités suivantes :

- Installez la version de STARTER la plus récente
- Installez le fichier GSDML du variateur via "Outils / Installer fichier GSDML" dans HW Config.

De plus amples informations à ce sujet figurent dans la description fonctionnelle Bus de terrain, voir aussi Manuels pour le variateur (Page 424).

Configuration de la communication avec une commande non Siemens

- 1. Importez le fichier d'équipement (GSDML) du variateur dans le logiciel de configuration de votre commande.
- 2. Configurez la communication.

Installation du fichier GSDML

Procédure

Pour installer le fichier GSDML du variateur dans le logiciel de configuration de votre commande, procédez comme suit :

- 1. Enregistrez le fichier GSDML sur votre PC.
 - Sur Internet: GSDML (http://support.automation.siemens.com/WW/view/fr/22339653/133100).
 - Sur votre variateur :

Insérez une carte mémoire dans le variateur.

Réglez p0804 = 12.

Le variateur écrit le fichier GSDML sous forme de fichier compressé (*.zip) dans le répertoire /SIEMENS/SINAMICS/DATA/CFG sur la carte mémoire.

- 2. Décompressez le fichier GSDML dans un répertoire sur votre ordinateur.
- 3. Importez le fichier GSDML dans le logiciel de configuration de votre commande.
- Vous avez installé le fichier GSDML.

Activation du diagnostic via la commande

Le variateur offre une fonctionnalité permettant de transmettre les messages de défaut et les alarmes (messages de diagnostic) à la commande de niveau supérieur selon les classes d'erreur PROFIdrive.

Cette fonctionnalité doit être sélectionnée dans la commande de niveau supérieur (Manuels pour le variateur (Page 424)) et activée par un démarrage.

4.8.11.3 PROFIBUS

De quoi avez-vous besoin pour la communication via PROFIBUS?

Vérifiez les paramètres de communication à l'aide du tableau suivant. Si vous pouvez répondre aux questions par "oui", les paramètres de communication ont été réglés correctement et le variateur peut être commandé via le bus de terrain.

Questions	Description	Exemples
Le variateur est-il correctement raccordé au PROFIBUS ?	Voir section : Intégration de variateurs dans PROFIBUS (Page 92).	
Avez-vous configuré la com- munication entre le variateur et la commande de niveau supé- rieur ?	Voir section : Configuration de la communication avec une commande SIMATIC S7 (Page 93)	Voir Manuels pour le varia- teur (Page 424)
Les adresses dans le variateur et la commande de niveau supérieur concordent-elles ?	Voir section : Réglage de l'adresse (Page 93).	
Le télégramme réglé dans le variateur est-il le même que dans la commande de niveau supérieur ?	Réglage du télégramme dans la commande.	
La connexion des signaux échangés par le variateur et la commande via PROFIBUS est- elle correcte ?	Adaptez la connexion des signaux dans la commande en fonction du variateur. La connexion conforme à PROFIdrive dans le variateur figure à la section : Commande via PROFIBUS ou PROFINET avec le profil PROFIdrive. (Page 159).	

Intégration de variateurs dans PROFIBUS

Procédure

Pour raccorder le variateur à une commande via PROFIBUS DP, procédez comme suit :

1. Intégrez le variateur avec des câbles PROFIBUS via le connecteur femelle X126 dans le système de bus (p. ex. topologie en bus) de la commande.

Vous trouverez la position des connecteurs femelles et l'affectation des broches à la section Vue d'ensemble des interfaces (Page 70).

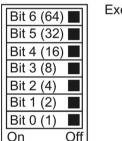
La longueur de câble maximale admissible vers l'abonné précédent ou suivant est de 100 m pour une vitesse de transmission de 12 Mbit/s.

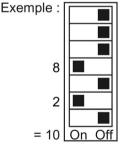
2. Alimentez le variateur en 24 V CC externe via les bornes 31 et 32.

L'alimentation externe 24 V n'est requise que lorsque la communication avec la commande doit continuer de fonctionner même si la tension du réseau dans l'installation est coupée.

Vous avez relié le variateur à la commande via PROFIBUS DP.

Communication avec la commande, même lorsque la tension réseau est coupée


Si la communication avec la commande doit continuer à fonctionner dans votre installation même quand la tension réseau est coupée, le variateur / la Control Unit doit être alimenté en 24 V CC en externe. Utiliser pour cela les bornes 31 et 32, ou le connecteur X01. Des informations supplémentaires figurent dans les instructions de service du variateur ou de la Control Unit.


Configuration de la communication avec une commande SIMATIC S7

- Si le variateur est contenu dans la bibliothèque de matériel de HW Config, vous pouvez configurer la communication dans la commande SIMATIC.
- Si le variateur n'est pas contenu dans la bibliothèque de matériel de HW Config, installez la version la plus récente de STARTER ou installez le fichier GSD du variateur via "Outils / Installer fichier GSD" dans HW Config. Voir aussi GSD (http://support.automation.siemens.com/WW/view/fr/22339653/133100).

Après avoir installé le fichier GSD, configurez la communication dans la commande SIMATIC.

Réglage de l'adresse

Pour paramétrer l'adresse PROFIBUS du variateur, utilisez le commutateur d'adresse sur la Control Unit, le paramètre p0918 ou STARTER.

Vous ne pouvez paramétrer l'adresse via le paramètre p0918 (réglage d'usine : 126) ou via STARTER que si tous les commutateurs d'adresse se trouvent sur "OFF" (0) ou sur "ON" (1).

Si vous spécifiez une adresse valide avec les commutateurs d'adresse, celle-ci reste toujours active et le paramètre p0918 ne peut pas être modifié.

Plage d'adresses valide: 1 ... 125

La position des commutateurs d'adresse est décrite à la section : Vue d'ensemble des interfaces (Page 70).

Procédure

Pour modifier l'adresse de bus, procédez comme suit :

- 1. Réglez l'adresse par l'un des moyens présentés ci-après :
 - via les commutateurs d'adresse
 - à l'aide d'un pupitre opérateur via p0918
 - dans STARTER via les masques "Control Unit / Communication / PROFIBUS" ou via la liste pour experts avec p0918

Après avoir modifié l'adresse dans STARTER, effectuez une copie RAM vers ROM ().

2. Coupez la tension d'alimentation du variateur.

4.8 Raccordement du variateur

- 3. Attendez que toutes les LED du variateur soient éteintes.
- 4. Rétablissez la tension d'alimentation du variateur.


Vos réglages prennent effet après la mise sous tension.

Vous avez ainsi modifié l'adresse du bus.

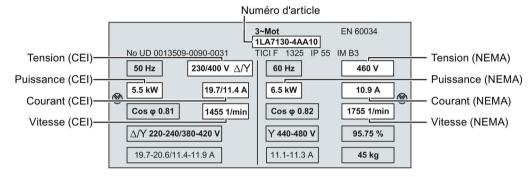
Mise en service

5.1 Guide pour la mise en service

Vue d'ensemble

- Définissez les exigences de votre application en matière d'entraînement.
 - → (Page 96).
- 2. Le cas échéant, rétablissez les réglages d'usine du variateur.
 - → (Page 128).
- 3. Vérifiez si le réglage d'usine du variateur est suffisant pour votre application.
- 4. A la mise en service de l'entraînement, vous réglez les paramètres suivants :
 - La régulation du moteur
 - Les entrées et sorties
 - L'interface de bus de terrain
- 5. Adaptez l'entraînement si besoin à
 - → (Page 135).
- 6. Sauvegardez vos réglages
 - → (Page 295).

5.2 Préparation de la mise en service


5.2.1 Recherche des paramètres du moteur

Avant de commencer la mise en service, vous devez connaître les données suivantes :

• Quel moteur est raccordé au variateur ?

Notez le numéro d'article du moteur et les caractéristiques sur la plaque signalétique du moteur.

Le cas échéant, notez le code moteur qui figure sur la plaque signalétique.

Dans quelle région du monde le moteur sera-t-il utilisé ?

- Europe CEI: 50 Hz [kW]

- Amérique du nord NEMA: 60 Hz [hp] ou 60 Hz [kW]

• Comment est raccordé le moteur ?

Prenez en compte le raccordement du moteur (montage en étoile [Y] ou montage en triangle [\Delta]). Notez les paramètres moteur appropriés pour le type de raccordement.

5.2.2 Réglage d'usine du variateur

Moteur

Le variateur est réglé en usine sur un moteur asynchrone qui convient pour la puissance assignée du Power Module.

Commande du variateur

Le réglage d'usine de la commande de variateur figure au chapitre : Borniers (Page 72)

Mise en marche et mise hors tension du moteur

Le variateur est réglé en usine de telle façon qu'après la mise en marche, le moteur accélère en 10 secondes pour atteindre sa consigne de vitesse (en rapport à une vitesse de 1500 tr/min). Après la mise hors tension, le moteur freine également avec un temps de descente de 10 secondes.

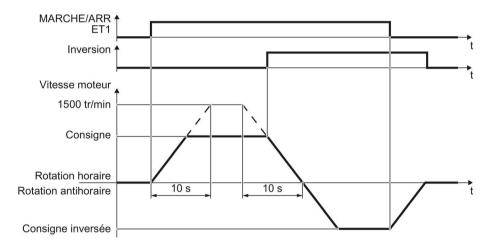


Figure 5-1 Mise en marche, mise hors tension et inversion du sens de rotation du moteur selon les réglages d'usine

Mise en marche et mise hors tension du moteur en mode JOG

Pour les variateurs avec interface PROFIBUS ou PROFINET, la commande peut être commutée via l'entrée TOR DI 3. Le moteur est soit mis en marche et mis hors tension via le bus de terrain, soit exploité en marche par à-coups via les entrées TOR.

Lors d'un ordre de commande à l'entrée TOR correspondante, le moteur tourne à ±150 tr/min. Le temps de montée et de descente est également de 10 secondes, en rapport à une vitesse de 1500 tr/min.

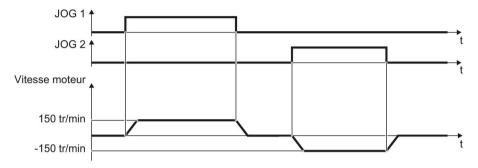


Figure 5-2 Mode JOG du moteur selon le réglage d'usine

Exploitation du moteur selon le réglage d'usine

Dans les applications simples, vous pouvez tenter d'exploiter l'entraînement avec une puissance assignée < 18,5 kW sans mise en service supplémentaire. Vérifiez si la qualité de régulation de l'entraînement sans mise en service est suffisante pour les exigences de l'application.

Nous vous recommandons de configurer l'entraînement avec les paramètres moteur précis.

5.2.3 Définition d'autres spécifications de l'application

Quelles limites de vitesse doivent être réglées ? (vitesse minimale et vitesse maximale)

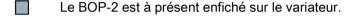
- Vitesse minimale réglage d'usine 0 [tr/min]
 La vitesse minimale est la vitesse la plus faible du moteur indépendamment de la consigne de vitesse. Une vitesse minimale est utile par ex. pour les ventilateurs ou les pompes.
- Vitesse maximale réglage d'usine 1500 [tr/min]
 Le variateur limite la vitesse du moteur à cette valeur.

Quels temps de montée et de descente du moteur sont requis pour l'application ?

Les temps de montée et de descente définissent l'accélération maximale du moteur lors de modifications de la consigne de vitesse. Ils correspondent au temps compris entre l'immobilisation du moteur et la vitesse maximale réglée ou entre la vitesse maximale et l'immobilisation.

- Temps de montée réglage d'usine 10 s
- Temps de descente réglage d'usine 10 s

5.3 Mise en service à l'aide d'un pupitre opérateur BOP-2


Enfichez le Basic Operator Panel BOP-2 sur le variateur

Procédure

Pour enficher le Basic Operator Panel BOP-2 sur le variateur, procéder comme suit :

- 1. Retirer la plaque d'obturation du variateur.
- 2. Insérer le bord inférieur du boîtier BOP-2 dans la cannelure adéquate du boîtier du variateur.
- 3. Appuyer le BOP-2 sur le variateur jusqu'à ce que le BOP-2 s'encliquette de manière audible sur le boîtier du variateur.

Le BOP-2 est prêt à fonctionner dès la mise sous tension du variateur.

5.3.1 Démarrage de la mise en service rapide

Exécution de la mise en service rapide

Conditions

- La tension d'alimentation est activée.
- Le pupitre opérateur affiche les valeurs de consigne et de mesure.

Marche à suivre

Pour exécuter la mise en service rapide, procédez comme suit :

- 1. FSC Appuyez sur la touche ESC.
- 2. Appuyez sur une des touches fléchées jusqu'à ce que le BOP-2 affiche le menu "SETUP".
- 3. SETUP Dans le menu "SETUP", appuyez sur la touche OK pour démarrer la mise en service rapide.
- 4. RESET Pour rétablir les réglages usine de tous les paramètres avant la mise en service rapide :
 - 4.1. Modifiez l'affichage à l'aide d'une touche fléchée : nO → YES
 - 4.2. Appuyez sur la touche OK.

5.3 Mise en service à l'aide d'un pupitre opérateur BOP-2

5. DRV APPL ON P96 __

La sélection d'une classe d'applications permet au variateur d'affecter les réglages par défaut qui conviennent à la régulation du moteur :

STANDARD → Standard Drive Control (Page 101)

DYNAMIC → Dynamic Drive Control (Page 103)

EXPERT → Mise en service de base pour experts (Page 107)

Sélection de la classe d'applications appropriée

La sélection d'une classe d'applications permet au variateur d'affecter les réglages qui conviennent à la régulation du moteur.

Classe d'applica-	Standard Drive Control	Dynamic Drive Control		
Moteurs exploi- tables	Moteurs asynchrones	Moteurs asynchrones et moteurs synchrones		
Exemples d'application	 Pompes, ventilateurs et compresseurs avec caractéristique hydraulique Sablage à sec ou humide Broyeurs, mélangeurs, malaxeurs, concasseurs, agitateurs Manutention horizontale (convoyeurs à bande, convoyeurs à rouleaux, convoyeurs à chaîne) Broches simples 	 Pompes et compresseurs avec machines volumétriques Fours rotatifs Extrudeuses Centrifugeuses 		
Caractéristiques	 Temps de régulation typique après une variation de vitesse : 100 ms 200 ms Temps de régulation typique après un à-coup de charge : 500 ms Standard Drive Control convient pour les exigences suivantes : Toutes les puissances moteur Temps de montée 0 → vitesse assignée (en fonction de la puissance assignée du moteur) : 1 s (0,1 kW) 10 s (18,5 kW) Applications avec un couple résistant continu sans à-coups de charge Standard Drive Control est insensible à un réglage imprécis des paramètres moteur 	 Temps de régulation typique après un changement de vitesse : < 100 ms Temps de régulation typique après un àcoup de charge : 200 ms Dynamic Drive Control régule et limite le couple moteur Précision de couple pouvant être atteinte : ±5 % pour la plage de 15 % à 100 % de la vitesse assignée Nous recommandons Dynamic Drive Control pour les applications suivantes : Puissances moteur > 11 kW En présence d'à-coups de charge de 10 % à >100 % du couple assigné du moteur Dynamic Drive Control est requis pour un temps de montée 0 → vitesse assignée (en fonction de la puissance assignée du moteur) : < 1 s (0,1 kW) < 10 s (18,5 kW). 		

Classe d'applica- tions	Standard Drive Control	Dynamic Drive Control		
Fréquence de sortie max.	550 Hz	240 Hz		
Mise en service	Contrairement à "Dynamic Drive Control", aucun régulateur de vitesse ne doit être ré- glé	Ensemble de paramètres réduit par rapport à la "configuration pour experts"		
	Comparé à la "configuration pour experts" : Mise en service simplifiée grâce aux paramètres moteur affectés par défaut Ensemble de paramètres réduit			

5.3.2 Standard Drive Control

6. EUR/USA P100_

Norme du moteur

KW 50HZ CEI

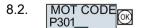
HP 60HZ NEMA

KW 60HZ CEI 60 Hz

7. INV VOLT OK P210__

Tension d'alimentation du variateur

8. Saisissez les paramètres moteur :


8.1. MOT TYPE

Type de moteur

Selon le variateur, le BOP-2 ne proposera peut-être pas tous les types de moteur suivants.

INDUCT Moteur asynchrone non-Siemens **SYNC** Moteur synchrone non-Siemens **RELUCT** Moteur à réluctance non-Siemens 1L... IND Moteurs asynchrones 1LE1, 1LG6, 1LA7, 1LA9 1LE1 IND Moteurs 1LE1□9 avec code moteur sur la plaque 100 signalétique 1PH8 IND Moteur asynchrone 1FP1 Moteur à réluctance

1F... SYN Moteur synchrone 1FG1, 1FK7 sans capteur

Si vous avez sélectionné un type de moteur > 100, vous devez saisir le code moteur :

Avec le code moteur correct, le variateur affecte des valeurs aux paramètres moteur suivants.

Si vous ne connaissez pas le code moteur, vous devez régler code moteur = 0 et saisir les paramètres moteur à partir de p0304 en relevant les informations de la plaque signalétique.

5.3 Mise en service à l'aide d'un pupitre opérateur BOP-2

8.3. Fonctionnement 87 Hz du moteur 87 HZ Le BOP-2 affiche cette étape seulement si vous avez sélectionné au préalable CEI comme norme du moteur (EUR/USA, P100 = KW 50 HZ). 8.4. MOT VOL Tension assignée P304 MOT CURR 8.5. Courant assigné P305 8.6. **MOT POV** Puissance assignée P307 8.7. Fréquence assignée MOT FREC P310_ 8.8. MOT RPM Vitesse assignée P311 8.9. MOT COOL Refroidissement moteur P335 **SELF** Refroidissement naturel **FORCED** Refroidissement externe LIQUID Refroidissement par liquide NO FAN Sans ventilateur 9. Sélectionnez l'application : P501 VEC STD Charge constante: Les applications typiques sont les entraînements de convoyeur. PUMP FAN Charge dépendante de la vitesse : Les applications typiques sont les pompes et les ventilateurs. Pour les interfaces du variateur, sélectionnez le réglage par défaut 10. MAc PAr P15 approprié pour l'application prévue. Les réglages par défaut disponibles sont décrits à la section : Réglages par défaut des interfaces (Page 76) Vitesse minimale et vitesse maximale du mo-11. MIN RPM p1082 P1080 teur 12. MAX RPN p1080 P1082 Consigne 13. Temps de montée du RAMP UP P1120 n_{max} .. (P1082) moteur Temps de descente du 14. RAMP DV Consigne P1121 moteur

P1121

P1120

15. OFF3 RP P113<u>5</u> Temps de descente pour la commande ARRET3

16. FINISH

Terminez la mise en service rapide :

- 16.1. Modifiez l'affichage à l'aide d'une touche fléchée : nO → YES
- 16.2. Appuyez sur la touche OK.
- Vous avez saisi tous les paramètres nécessaires à la mise en service rapide du variateur.

5.3.3 Dynamic Drive Control

6. EUR/USA P100___

Norme du moteur

KW 50HZ CEI

HP 60HZ NEMA

KW 60HZ CEI 60 Hz

7. INV VOLT
P210___

Tension d'alimentation du variateur

8. Saisissez les paramètres moteur :

8.1. MOT TYPE OK P300_

Type de moteur

Selon le variateur, le BOP-2 ne proposera peut-être pas tous les types de moteur suivants.

INDUCT Moteur asynchrone non-Siemens
SYNC Moteur synchrone non-Siemens
RELUCT Moteur à réluctance non-Siemens

1L... IND Moteurs asynchrones 1LE1, 1LG6, 1LA7, 1LA91LE1 IND Moteurs 1LE1□9 avec code moteur sur la plaque

100 signalétique

1PH8 IND Moteur asynchrone 1FP1 Moteur à réluctance

1F... SYN Moteur synchrone 1FG1, 1FK7 sans capteur

8.2. MOT CODE P301_

Si vous avez sélectionné un type de moteur > 100, vous devez saisir le code moteur :

Avec le code moteur correct, le variateur affecte des valeurs aux paramètres moteur suivants.

Si vous ne connaissez pas le code moteur, vous devez régler code moteur = 0 et saisir les paramètres moteur à partir de p0304 en relevant les informations de la plaque signalétique.

8.3. 87 HZ

Fonctionnement 87 Hz du moteur

Le BOP-2 affiche cette étape seulement si vous avez sélectionné au préalable CEI comme norme du moteur (EUR/USA, P100 = KW 50 HZ).

5.3 Mise en service à l'aide d'un pupitre opérateur BOP-2

	8.4.	MOT VOL P304	.T	Tension assignée				
	8.5. MOT CURR P305			Courant assigné				
	8.6. MOT POW P307_			Puissance assignée				
	8.7.	MOT FRE		Fréquence a	ssignée	;		
	8.8.	MOT RPI P311	M	Vitesse assi	gnée			
	8.9.	MOT COO		Refroidissen	nent mo	teur		
		P335	OK)	SELF		issement nat	urel	
				FORCED		issement exte		
				LIQUID	Refroid	issement par	liquide	
				NO FAN	Sans v	entilateur		
9.		APPL OK	Sélec	ionnez l'appli	cation :			
	P502_		OP LO	OOP Réglag	e recom	mandé pour	les applicat	ions standard.
			CL LC	0 0		•		ions avec temps
						e descente c les palans et		glage n'est pas de levage
			HVY I		•	•	•	ions avec couple
					ollage él		оо арриоат	iono avoo coapio
10.		PAr K					•	age par défaut
	appro					•		r défaut dispo- t des interfaces
			(Page		i ia seci	on . Neglage	s pai delad	t des interiaces
11.		N RPM	Vitess	e minimale et	vitesse	maximale du	p1082 —	n 4
	P108 <u>0</u>		moteu	r			p1062	
12.	MAX P1082	X RPM					p1080 —	-
								Consigne
							_/	
13.	PAM	IP UP	Temp	s de montée c	Ni i			
10.	P1120		mote		ıu	n _{max}		
14.	RAME	P DWN	Temp	s de descente	du	(P1082) — — Consigne — —		7,
	P112 <u>1</u>		moteu	r				
							P1120	P1121 t
							•	
15.	OFF	3 RP	Temp	s de descente	pour la	commande A	ARRET3	

Variateur SINAMICS G120C

16. MOT ID P190<u>0</u>

Identification des paramètres moteur

Sélectionnez la méthode employée par le variateur pour mesurer les paramètres du moteur raccordé :

OFF Pas de mesure des paramètres moteur.

ST RT OP Réglage recommandé : Mesure des paramètres moteur à

l'arrêt et moteur tournant.

STILL OP Mesure des paramètres moteur à l'arrêt.

Sélectionnez ce réglage si le moteur ne peut pas tourner librement – p. ex. dans le cas d'une zone de déplacement

limitée mécaniquement.

17. FINISH

Terminez la mise en service rapide :

- 17.1. Modifiez l'affichage à l'aide d'une touche fléchée : nO → YES
- 17.2. Appuyez sur la touche OK.
- Vous avez saisi tous les paramètres nécessaires à la mise en service rapide du variateur.

Identification des paramètres moteur et optimisation de la régulation

Le variateur dispose de plusieurs méthodes pour l'identification automatique des paramètres moteur et l'optimisation de la régulation de vitesse.

Pour lancer l'identification des paramètres moteur, vous devez mettre en marche ce dernier via le bornier, le bus de terrain ou le pupitre opérateur.

/!\ATTENTION

Danger de mort dû aux mouvements de la machine lorsque l'identification des paramètres moteur est activée

La mesure à l'arrêt peut entraîner la rotation du moteur de quelques tours. Le mesure en rotation accélère le moteur jusqu'à la vitesse assignée. Sécurisez les parties dangereuses de l'installation avant le début de l'identification des paramètres moteur :

- Avant la mise en marche, vérifier que personne ne travaille sur la machine ou ne se tient dans la zone de mouvement de la machine.
- Sécuriser la zone de mouvement des machines contre la présence involontaire de personnes.
- Faire descendre au sol les charges suspendues.

5.3 Mise en service à l'aide d'un pupitre opérateur BOP-2

Conditions

 Vous avez sélectionné une méthode pour l'identification des paramètres moteur dans la mise en service rapide, par ex. la mesure des paramètres moteur à l'arrêt.

A la fin de la mise en service rapide, le variateur génère l'alarme A07991.

Ce symbole dans le BOP-2 indique une alarme active.

• Le moteur a refroidi à la température ambiante.

Une température moteur trop élevée fausse les résultats de l'identification des paramètres moteur.

Méthode avec le pupitre opérateur BOP-2

Pour démarrer l'identification des paramètres moteur, procédez comme suit :

Four demander indentification des parametres moteur, procedez comme suit.

Appuyez sur la touche HAND/AUTO. Le BOP-2 affiche le symbole pour la commande manuelle.

1.

Mettez le moteur en marche.

L'identification des paramètres moteur dure quelques secondes.

Attendez que le variateur mette le moteur hors tension une fois l'identification des paramètres moteur terminée.

Lorsqu'une mesure en rotation a été sélectionnée en plus de l'identification des paramètres moteur, le variateur génère une nouvelle fois l'alarme A07991.

Remettre le moteur en marche afin d'optimiser la mesure en rotation.

Attendre que le variateur mette le moteur hors tension une fois l'optimisation terminée. La durée de l'optimisation dépend de la puissance assignée du moteur : 20 s ... 2 min.

Commutez le mode de commande du variateur de HAND à AUTO.

Vous avez terminé l'identification des paramètres moteur.

5.3.4 Mise en service de base pour experts

6. EUR/USA P100__

Norme du moteur

KW / 50HZ CEI

HP / 60HZ NEMA

KW / 60HZ CEI 60 Hz

7. Capacité de surcharge et tension d'alimentation du variateur

7.1. LOAD TYP P205_

Capacité de surcharge

HIGH OVL Cycle de charge avec "High Overload"

LOW OVL Cycle de charge avec "Low Overload"

7.2. INV VOLT OK P210

Tension d'alimentation du variateur

8. Saisissez les paramètres moteur :

8.1. MOT TYPE OK

Type de moteur

Selon le variateur, le BOP-2 ne proposera peut-être pas tous les types de moteur suivants.

INDUCT Moteur asynchrone non-Siemens
SYNC Moteur synchrone non-Siemens
RELUCT Moteur à réluctance non-Siemens

1L... IND Moteurs asynchrones 1LE1, 1LG6, 1LA7, 1LA91LE1 IND Moteurs 1LE1□9 avec code moteur sur la plaque

100 signalétique

1PH8 IND Moteur asynchrone 1FP1 Moteur à réluctance

1F... SYN Moteur synchrone 1FG1, 1FK7 sans capteur

8.2. MOT CODE P301_

Si vous avez sélectionné un type de moteur > 100, vous devez saisir le code moteur :

Avec le code moteur correct, le variateur affecte des valeurs aux paramètres moteur suivants.

Si vous ne connaissez pas le code moteur, vous devez régler code moteur = 0 et saisir les paramètres moteur à partir de p0304 en relevant les informations de la plaque signalétique.

8.3. 87 HZ

Fonctionnement 87 Hz du moteur

Le BOP-2 affiche cette étape seulement si vous avez sélectionné au préalable CEI comme norme du moteur (EUR/USA, P100 = KW 50 HZ).

8.4. MOT VOLT P304__

Tension assignée

8.5. MOT CURR P305

Courant assigné

8.6. MOT POW P307___

Puissance assignée

8.7. MOT FREQ OK P310___

Fréquence assignée

5.3 Mise en service à l'aide d'un pupitre opérateur BOP-2

8.8. MOT RPM (5)

Vitesse assignée

8.9.

MOT COOL P335__ Refroidissement moteur

SELF Refroidissement naturel
FORCED Refroidissement externe
LIQUID Refroidissement par liquide

NO FAN Sans ventilateur

9. Application et type de régulation

9.1. TEC APPL

Sélectionnez l'application :

VEC STD Dans toutes les applications qui ne conviennent

pas aux autres possibilités de réglage.

PUMP FAN Applications avec pompes et ventilateurs

SLVC 0HZ Applications avec temps de montée et de des-

cente courts. Le réglage n'est toutefois pas approprié pour les palans et les engins de le-

vage.

PUMP 0HZ Réglage uniquement pour fonctionnement sta-

tionnaire avec des variations de vitesse lentes. Si des à-coups de charge sont susceptibles de se produire au cours du fonctionnement, nous

recommandons le réglage VEC STD.

9.2. CTRL MOD P1300

Sélectionnez le type de régulation :

VF LIN Commande U/f à caractéristique linéaire
VF LIN F FCC (régulation du courant d'excitation)
VF QUAD Commande U/f à caractéristique quadratique

SPD N EN Régulation vectorielle sans capteur

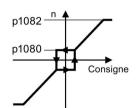
Sélection du type de régulation approprié

Type de régulation	Commande U/f ou régulation du courant d'excitation (FCC)	Régulation vectorielle sans capteur
Moteurs exploi- tables	Moteurs asynchrones	Moteurs asynchrones et moteurs synchrones
Exemples d'application	 Pompes, ventilateurs et compresseurs avec caractéristique hydraulique Sablage à sec ou humide Broyeurs, mélangeurs, malaxeurs, concasseurs, agitateurs Manutention horizontale (convoyeurs à bande, convoyeurs à rouleaux, convoyeurs à chaîne) Broches simples 	 Pompes et compresseurs avec machines volumétriques Fours rotatifs Extrudeuses Centrifugeuses
Caractéristiques	 Temps de régulation typique après une variation de vitesse : 100 ms 200 ms Temps de régulation typique après un à-coup de charge : 500 ms Le type de régulation convient pour les exigences suivantes : Toutes les puissances moteur Temps de montée 0 → vitesse assignée (en fonction de la puissance assignée du moteur) : 1 s (0,1 kW) 10 s (18,5 kW) Applications avec un couple résistant continu sans à-coups de charge Le type de régulation est insensible à un réglage imprécis des paramètres moteur 	 Temps de régulation typique après un changement de vitesse : < 100 ms Temps de régulation typique après un àcoup de charge : 200 ms Le type de régulation régule et limite le couple moteur Précision de couple pouvant être atteinte : ±5 % pour la plage de 15 % à 100 % de la vitesse assignée Nous recommandons le type de régulation pour les applications suivantes : Puissances moteur > 11 kW En présence d'à-coups de charge de 10 % à >100 % du couple assigné du moteur Le type de régulation est requis pour un temps de montée 0 → vitesse assignée (en fonction de la puissance assignée du moteur) : 1 s (0,1 kW) < 10 s (18,5 kW).
Fréquence de sortie max.	550 Hz	240 Hz
Régulation de couple	Sans régulation de couple	Régulation de vitesse avec régulation de couple de niveau inférieur
Mise en service	Contrairement à la régulation vectorielle sans capteur, aucun régulateur de vitesse ne doit être réglé.	

5.3 Mise en service à l'aide d'un pupitre opérateur BOP-2

10. MAc PAr P15

Pour les interfaces du variateur, sélectionnez le réglage par défaut approprié pour l'application prévue. Les réglages par défaut disponibles sont décrits à la section : Réglages par défaut des interfaces (Page 76)

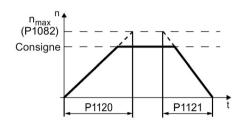

11. MIN RPM P1080

P1082

MAX RF

12.

Vitesse minimale et vitesse maximale du moteur



13. RAMP UP P1120

Temps de montée du moteur

RAMP DV P1121

Temps de descente du moteur

15. OFF3 RF P1135

Temps de descente pour la commande ARRET3

16. MOT ID P1900

Identification des paramètres moteur

Sélectionner la méthode employée par le variateur pour mesurer les paramètres du moteur raccordé :

OFF Pas de mesure des paramètres moteur.

STIL ROT Réglage recommandé : Mesure des paramètres moteur à l'arrêt et avec moteur tournant.

STILL Mesure des paramètres moteur à l'arrêt.

> Sélectionner ce réglage si l'un des cas suivants se présente:

- Le type de régulation "SPD N EN" a été sélectionné mais le moteur ne peut pas tourner librement – p. ex. dans le cas d'une zone de déplacement limitée mécaniquement.
- Une commande U/f a été sélectionnée comme type de régulation, p. ex. "VF LIN" ou "VF QUAD".

ROT Mesure des paramètres moteur avec moteur tournant.

17. FINISH Terminer la mise en service rapide :

- 17.1. Basculez l'affichage à l'aide d'une touche fléchée : nO → YES
- 17.2. Appuyez sur la touche OK.
- Vous avez saisi tous les paramètres nécessaires à la mise en service rapide de votre variateur.

Identification des paramètres moteur et optimisation de la régulation

Le variateur dispose de plusieurs méthodes pour l'identification automatique des paramètres moteur et l'optimisation de la régulation de vitesse.

Pour lancer l'identification des paramètres moteur, vous devez mettre en marche ce dernier via le bornier, le bus de terrain ou le pupitre opérateur.

ATTENTION

Danger de mort dû aux mouvements de la machine lorsque l'identification des paramètres moteur est activée

La mesure à l'arrêt peut entraîner la rotation du moteur de guelques tours. Le mesure en rotation accélère le moteur jusqu'à la vitesse assignée. Sécurisez les parties dangereuses de l'installation avant le début de l'identification des paramètres moteur :

- Avant la mise en marche, vérifier que personne ne travaille sur la machine ou ne se tient dans la zone de mouvement de la machine.
- Sécuriser la zone de mouvement des machines contre la présence involontaire de personnes.
- Faire descendre au sol les charges suspendues.

Conditions

 Vous avez sélectionné une méthode pour l'identification des paramètres moteur dans la mise en service rapide, par ex. la mesure des paramètres moteur à l'arrêt.

A la fin de la mise en service rapide, le variateur génère l'alarme A07991.

Ce symbole dans le BOP-2 indique une alarme active.

Le moteur a refroidi à la température ambiante.

Une température moteur trop élevée fausse les résultats de l'identification des paramètres moteur.

Méthode avec le pupitre opérateur BOP-2

Pour démarrer l'identification des paramètres moteur, procédez comme suit :

Appuyez sur la touche HAND/AUTO. Le BOP-2 affiche le symbole pour la commande manuelle.

Mettez le moteur en marche.

L'identification des paramètres moteur dure quelques secondes. Attendez que le variateur mette le moteur hors tension une fois l'identification des paramètres moteur terminée.

Lorsqu'une mesure en rotation a été sélectionnée en plus de l'identification des paramètres moteur, le variateur génère une nouvelle fois l'alarme A07991.

5.3 Mise en service à l'aide d'un pupitre opérateur BOP-2

4. Remettre le moteur en marche afin d'optimiser la mesure en rotation.

Attendre que le variateur mette le moteur hors tension une fois l'optimisation terminée. La durée de l'optimisation dépend de la puissance assignée du moteur : 20 s ... 2 min.

Commutez le mode de commande du variateur de HAND à AUTO.

Vous avez terminé l'identification des paramètres moteur.

5.4 Mise en service avec un PC

Outils PC de mise en service

STARTER et Startdrive sont des logiciels pour PC destinés à la mise en service des variateurs Siemens. L'interface utilisateur graphique vous assiste lors de la mise en service de votre variateur. La plupart des fonctions du variateur sont regroupées dans des "masques".

Les masques représentés dans ce manuel illustrent des exemples qui s'appliquent de manière générale. Selon le type de variateur, les masques peuvent comprendre plus ou moins de possibilités de paramétrage.

Conditions de la mise en service

STARTER et Startdrive vous permettent d'accéder au variateur par une connexion USB ou par le bus de terrain.

Configuration système requise et téléchargement :

- Téléchargement de STARTER (http://support.automation.siemens.com/WW/view/fr/10804 985/133100)
- Startdrive
 (http://support.automation.siemens.com/WW/view/en/88851 265)

Aide relative à l'utilisation et aux fonctions des logiciels de mise en service :

- Vidéos de STARTER (http://www.automation.siemens.com/mcms/mc-drives/en/low-voltage-inverter/sinamics-g120/videos/Pages/videos.aspx)
- Didacticiel Startdrive (http://support.automation.siemens.com/WW/view/en/73598459)

Vue d'ensemble de la mise en service rapide

La mise en service rapide via un PC se compose essentiellement des étapes suivantes :

- 1. Création d'un projet
- 2. Reprise d'un variateur dans le projet
- 3. Connexion en ligne et lancement de la mise en service rapide
- 4. Exécution de la mise en service rapide
- 5. Identification des paramètres moteur

Les étapes 1 à 5 sont décrites ci-dessous.

5.4.1 Création d'un projet

Création d'un projet

Procédure

Pour créer un nouveau projet, procédez comme suit :

- 1. Sélectionnez "Projet" → "Nouveau..." dans le menu.
- 2. Attribuez le nom de votre choix au projet.
- Vous avez créé un nouveau projet.

5.4.2 Intégration au projet d'un variateur connecté par USB

Intégrer un variateur connecté par USB dans le projet

Procédure

Pour intégrer à votre projet un variateur connecté par USB, procédez comme suit :

- 1. Mettez le variateur sous tension.
- 2. Branchez un câble USB d'abord à votre PC puis au variateur.
- 3. Le système d'exploitation du PC installe les pilotes USB lorsque vous connectez pour la première fois le variateur et le PC.
 - Windows 7 installe automatiquement les pilotes.
 - Sous Windows XP, vous devez confirmer guelgues messages du système.
- 4. Démarrez le logiciel de mise en service.
- 5. Cliquez sur le bouton "Abonnés joignables".



Figure 5-3 "Abonnés joignables" dans STARTER

Figure 5-4 "Abonnés joignables" dans Startdrive

 Si l'interface USB est réglée de manière appropriée, le masque "Abonnés joignables" affiche les variateurs joignables.

Figure 5-5 Variateur trouvé dans STARTER

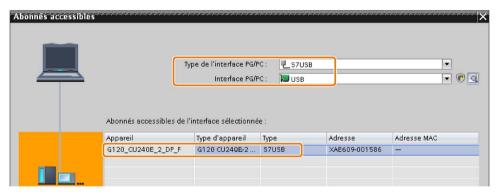


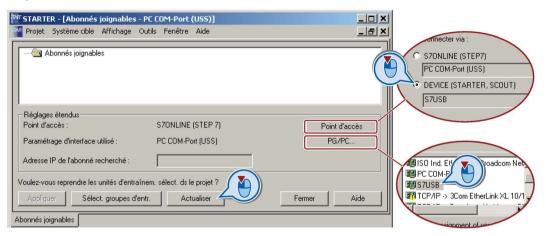
Figure 5-6 Variateur trouvé dans Startdrive

Si vous n'avez pas réglé correctement l'interface USB, le message "Aucun autre abonné trouvé" apparaît. Dans ce cas, suivez la description ci-dessous.

7. Suite de la procédure :

Avec STARTER	Avec Startdrive	
Sélectionnez	Validez le variateur dans le projet via le menu :	
Cliquez sur le bouton "Appliquer".	 "En ligne – Chargement de l'appareil en tant que nou- velle station (matériel et logiciel)" 	

Vous avez intégré à votre projet un variateur joignable via l'interface USB.


Réglage de l'interface USB dans STARTER

Procédure

Pour régler l'interface USB dans STARTER, procédez comme suit :

- 1. Réglez "Point d'accès" sur "DEVICE (STARTER, Scout)" et "Interface PG/PC" sur "S7USB".
- 2. Cliquez sur le bouton "Actualiser".

Vous avez paramétré l'interface USB.

Le logiciel STARTER affiche maintenant le variateur connecté via USB.

📩 Ajouter entraînement monoaxe

∔ 🗓 Drive_1

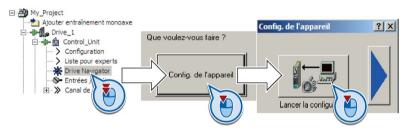
🖽 👍 🙆 Control_Un ⊕ i Documentation

i deligation Drive_2

BIBLIOTHEQUES S 🛓 📋 VISUALISATION

5.4.3 Connexion en ligne et démarrage de l'assistant de configuration

Marche à suivre avec STARTER

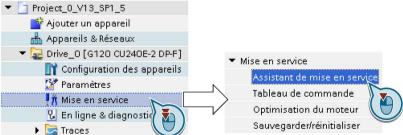


Pour démarrer la configuration du variateur, procédez comme suit :

- 1. Sélectionnez votre projet et passez en ligne : \(\frac{1}{2} \).
- 2. Dans le masque suivant, sélectionnez le variateur avec lequel vous voulez passer en ligne.
- 3. Chargez la configuration matérielle que vous avez trouvée en ligne, dans votre projet (PG ou PC).

Signification du symbole placé avant le variateur :

- (A) Le variateur est en ligne.
- (B) Le variateur est hors ligne
- 4. Lorsque vous êtes connecté, double-cliquez sur la "Control Unit".
- 5. Démarrez l'assistant de configuration :


Vous avez démarré la configuration du variateur.

Marche à suivre avec Startdrive

Pour démarrer la configuration du variateur, procédez comme suit :

- 1. Sélectionnez votre projet et passez en ligne : 🔊 Liaison en ligne
- 2. Dans le masque suivant, sélectionnez le variateur avec lequel vous voulez passer en ligne.
- 3. Lorsque vous êtes connecté, sélectionnez "Mise en service" → "Assistant de mise en service":

Vous avez démarré la configuration du variateur.

5.4 Mise en service avec un PC

Configuration d'un entraînement

Procédure

Pour configurer l'entraînement, procédez comme suit :

- 1. Casse d'applications La sélection d'une classe d'applications permet au variateur d'affecter les réglages par défaut qui conviennent à la régulation du moteur :
 - [1] Standard Drive Control (Page 120)
 - [2] Dynamic Drive Control (Page 121)
 - [0] Expert ou si aucune classe d'applications n'est proposée :
 - → Configuration pour experts (Page 122)

Sélection de la classe d'applications appropriée

La sélection d'une classe d'applications permet au variateur d'affecter les réglages qui conviennent à la régulation du moteur.

Classe d'applica- tions	Standard Drive Control	Dynamic Drive Control
Moteurs exploi- tables	Moteurs asynchrones	Moteurs asynchrones et moteurs synchrones
Exemples d'appli- cation	Pompes, ventilateurs et compresseurs avec caractéristique hydraulique	Pompes et compresseurs avec machines vo- lumétriques
	Sablage à sec ou humide	Fours rotatifs
	Broyeurs, mélangeurs, malaxeurs, concas-	Extrudeuses
	seurs, agitateurs	Centrifugeuses
	Manutention horizontale (convoyeurs à bande, convoyeurs à rouleaux, convoyeurs à chaîne)	
	Broches simples	

Classe d'applica-	Standard Drive Control	Dynamic Drive Control
Caractéristiques	 Temps de régulation typique après une variation de vitesse : 100 ms 200 ms Temps de régulation typique après un à-coup de charge : 500 ms Standard Drive Control convient pour les exigences suivantes : Toutes les puissances moteur Temps de montée 0 → vitesse assignée (en fonction de la puissance assignée du moteur) : 1 s (0,1 kW) 10 s (18,5 kW) Applications avec un couple résistant continu sans à-coups de charge Standard Drive Control est insensible à un réglage imprécis des paramètres moteur 	 Temps de régulation typique après un changement de vitesse : < 100 ms Temps de régulation typique après un àcoup de charge : 200 ms Dynamic Drive Control régule et limite le couple moteur Précision de couple pouvant être atteinte : ±5 % pour la plage de 15 % à 100 % de la vitesse assignée Nous recommandons Dynamic Drive Control pour les applications suivantes : Puissances moteur > 11 kW En présence d'à-coups de charge de 10 % à >100 % du couple assigné du moteur Dynamic Drive Control est requis pour un temps de montée 0 → vitesse assignée (en fonction de la puissance assignée du moteur) : < 1 s (0,1 kW) < 10 s (18,5 kW).
Fréquence de sortie max.	550 Hz	240 Hz
Mise en service	 Contrairement à "Dynamic Drive Control", aucun régulateur de vitesse ne doit être réglé Comparé à la "configuration pour experts" : Mise en service simplifiée grâce aux paramètres moteur affectés par défaut Ensemble de paramètres réduit 	Ensemble de paramètres réduit par rapport à la "configuration pour experts"

5.4.4 Standard Drive Control

Marche à suivre pour la classe d'applications [1]: Standard Drive Control

- — Valeurs par défaut des Sélectionnez la configuration E/S pour le réglage par défaut des interfaces du variateur.
 - Les configurations possibles figurent aux sections : Borniers (Page 72) et Réglages par défaut des interfaces (Page 76).
- 3. ▶ Réglage de l'entraînen Réglez la norme moteur et la tension d'alimentation du variateur.
- 4.

 ✓ Moteur Sélectionnez votre moteur.
- 5. Paramètres moteur Saisissez les paramètres moteur figurant sur la plaque signalétique de votre moteur.
 - Si vous avez sélectionné un moteur à l'aide de son numéro d'article, les paramètres sont déjà saisis.
- 6. ✓ Paramètres importants Réglez les paramètres les plus importants en fonction de votre application.
- 7. Fonctions d'entraînem Sélectionnez l'application :
 - [0] Charge constante : les mécanismes de transport en sont des applications typiques
 - [1] Charge en fonction de la vitesse : les pompes et les ventilateurs en sont des applications typiques
- Vous avez configuré le variateur.

5.4.5 Dynamic Drive Control

Marche à suivre pour la classe d'applications [2]: Dynamic Drive Control

- 2.
 ✓ Valeurs par défaut des Sélectionnez la configuration E/S pour le réglage par défaut des interfaces du variateur.
 - Les configurations possibles figurent aux sections : Borniers (Page 72) et Réglages par défaut des interfaces (Page 76).
- 3. ☑Réglage de l'entraînenRéglez la norme moteur et la tension d'alimentation du variateur.
- 4. ✓ Moteur Sélectionnez votre moteur.
- 5. Paramètres moteur Saisissez les paramètres moteur figurant sur la plaque signalétique de votre moteur.
 - Si vous avez sélectionné un moteur à l'aide de son numéro d'article, les paramètres sont déjà saisis.
- Paramètres importants Réglez les paramètres les plus importants en fonction de votre application.
- 7. Fonctions d'entraînem Application:
 - [0] : Réglage recommandé pour les applications standard.
 - [1]: Réglage recommandé pour les applications avec des temps de montée et de descente < 10 s. Le réglage ne convient pas pour les dispositifs et engins de levage.
 - [5] Réglage recommandé pour les applications avec un couple de décollage élevé.

Identification du moteur :

- [11]: Réglage recommandé. Après un ordre de MARCHE, le variateur identifie les paramètres moteur et optimise le régulateur de vitesse avec un nouvel ordre de MARCHE.
- [12]: Après un ordre de MARCHE, le variateur identifie les paramètres moteur à l'arrêt. Réglage recommandé si le moteur ne peut pas tourner librement, p. ex. en raison d'un déplacement limité mécaniquement.
- Vous avez configuré le variateur.

5.4.6 Configuration pour experts

Marche à suivre sans classe d'applications ou pour la classe d'applications [0]: Expert

- 2. ✓ Structure de régulation Sélectionnez le type de régulation.
- 3. ✓ Valeurs par défaut des Sélectionnez la configuration E/S pour le réglage par défaut des interfaces du variateur.

Les configurations possibles figurent aux sections : Borniers (Page 72) et Réglages par défaut des interfaces (Page 76).

4. ☑ Réglage de l'entraînen Réglez la norme moteur et la tension d'alimentation du variateur.

Sélectionnez l'application pour le variateur :

- "[0] Cycle de charge avec forte surcharge" pour applications dynamiques, p. ex. manutention.
- "[1] Cycle de charge avec faible surcharge..." pour applications peu dynamiques, p. ex. pompes ou ventilateurs.
- [6], [7]: Cycles de charge pour applications avec moteur synchrone sans capteur 1FK7.
- 5. ✓ Moteur Sélectionnez votre moteur.
- 6. Paramètres moteur Saisissez les paramètres moteur figurant sur la plaque signalétique de votre moteur.

Si vous avez sélectionné un moteur à l'aide de son numéro d'article, les paramètres sont déjà saisis.

- 7. Paramètres importants Réglez les paramètres les plus importants en fonction de votre application.
- Fonctions d'entraînem Application :
 - [0]: Dans toutes les applications qui ne rentrent pas dans les cas [1] à [3]
 - [1]: Applications avec pompes et ventilateurs
 - [2] : Applications avec temps de montée et de descente courts. Le réglage n'est toutefois pas approprié pour les palans et les engins de levage.
 - [3]: Réglage uniquement pour fonctionnement stationnaire avec des variations de vitesse lentes. Si des à-coups de charge sont susceptibles de se produire pendant le fonctionnement, nous recommandons le réglage [1].

Identification du moteur :

- [1] : Réglage recommandé. Après un ordre de MARCHE, le variateur identifie les paramètres moteur et optimise le régulateur de vitesse avec un nouvel ordre de MARCHE.
- [2] : Après un ordre de MARCHE, le variateur identifie les paramètres moteur à l'arrêt. Réglage recommandé dans les cas suivants :
 - Vous avez sélectionné le type de régulation "régulation de la vitesse" mais le moteur ne peut pas tourner librement, p. ex. en cas de déplacements limités mécaniquement.
 - Vous avez sélectionné le type de régulation "commande U/f".
- [3] : Ce réglage est seulement pertinent après l'identification du moteur [2]. Le variateur optimise le régulateur de vitesse lors de l'ordre de MARCHE suivant.

Calcul des paramètres moteur : sélectionnez "Calcul complet".

 Cochez la case "RAM vers ROM (enregistrer les données dans l'entraînement)" pour enregistrer les données dans le variateur sous une forme non volatile.
 Sélectionnez "Terminer".

Terminer la configuration dans STARTER

Terminer la configuration dans Startdrive

Vous avez configuré le variateur.

Sélection du type de régulation approprié

Type de régulation	Commande U/f ou régulation du courant d'excitation (FCC)	Régulation vectorielle sans capteur
Moteurs exploi- tables	Moteurs asynchrones	Moteurs asynchrones et moteurs synchrones
Exemples d'application	 Pompes, ventilateurs et compresseurs avec caractéristique hydraulique Sablage à sec ou humide Broyeurs, mélangeurs, malaxeurs, concasseurs, agitateurs Manutention horizontale (convoyeurs à bande, convoyeurs à rouleaux, convoyeurs à chaîne) Broches simples 	 Pompes et compresseurs avec machines volumétriques Fours rotatifs Extrudeuses Centrifugeuses
Caractéristiques	 Temps de régulation typique après une variation de vitesse : 100 ms 200 ms Temps de régulation typique après un à-coup de charge : 500 ms Le type de régulation convient pour les exigences suivantes : Toutes les puissances moteur Temps de montée 0 → vitesse assignée (en fonction de la puissance assignée du moteur) : 1 s (0,1 kW) 10 s (18,5 kW) Applications avec un couple résistant continu sans à-coups de charge Le type de régulation est insensible à un réglage imprécis des paramètres moteur 	 Temps de régulation typique après un changement de vitesse : < 100 ms Temps de régulation typique après un àcoup de charge : 200 ms Le type de régulation régule et limite le couple moteur Précision de couple pouvant être atteinte : ±5 % pour la plage de 15 % à 100 % de la vitesse assignée Nous recommandons le type de régulation pour les applications suivantes : Puissances moteur > 11 kW En présence d'à-coups de charge de 10 % à >100 % du couple assigné du moteur Le type de régulation est requis pour un temps de montée 0 → vitesse assignée (en fonction de la puissance assignée du moteur) : 1 s (0,1 kW) < 10 s (18,5 kW).
Fréquence de sortie max.	550 Hz	240 Hz
Régulation de couple	Sans régulation de couple	Régulation de vitesse avec régulation de couple de niveau inférieur
Mise en service	Contrairement à la régulation vectorielle sans capteur, aucun régulateur de vitesse ne doit être réglé.	

5.4.7 Identification des paramètres moteur

Identification des paramètres moteur

/ ATTENTION

Danger de mort dû aux mouvements de la machine lorsque l'identification des paramètres moteur est active

La mesure fixe peut faire bouger le moteur de plusieurs tours. La mesure en rotation accélère le moteur jusqu'à la vitesse assignée. Sécuriser les parties dangereuses de l'installation avant le début de l'identification des paramètres moteur :

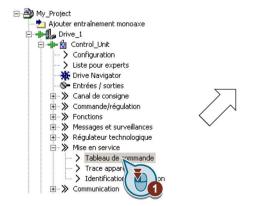
- Avant la mise en marche, vérifier que personne ne travaille sur la machine ou ne se tient dans la zone de mouvement de la machine.
- Sécuriser la zone de mouvement des machines contre la présence involontaire de personnes.
- · Faire descendre au sol les charges suspendues.

Conditions

 Vous avez sélectionné une méthode d'identification des paramètres moteur dans la mise en service rapide, p. ex. la mesure des paramètres moteur à l'arrêt

Le variateur signale l'alarme A07991 une fois la mise en service rapide terminée.

Le moteur a refroidi à la température ambiante.


Une température du moteur trop élevée fausse les résultats de l'identification des paramètres moteur.

Marche à suivre avec STARTER

Pour démarrer l'identification des paramètres moteur et l'optimisation de la régulation du moteur, procédez comme suit :

1. Ouvrez le tableau de commande :

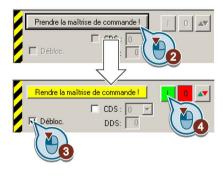


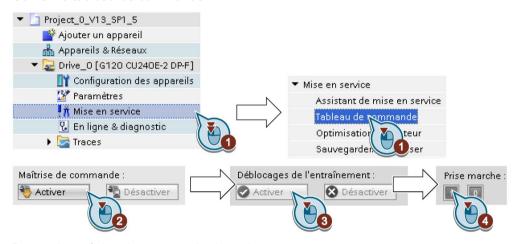
Figure 5-7 Tableau de commande

2. Prenez la maîtrise de commande du variateur.

5.4 Mise en service avec un PC

- 3. Activez les "Déblocages"
- 4. Mettez le moteur en marche.

Le variateur commence l'identification des paramètres moteur. Cette mesure peut durer plusieurs minutes. Une fois la mesure terminée, le variateur arrête le moteur.


- 5. Rendez la maîtrise de commande après identification des paramètres moteur.
- 6. Cliquez sur le bouton [8] (RAM vers ROM).
- Vous avez terminé l'identification des paramètres moteur.

Marche à suivre avec Startdrive

Pour démarrer l'identification des paramètres moteur et l'optimisation de la régulation du moteur, procédez comme suit :

1. Ouvrez le tableau de commande :

- 2. Prenez la maîtrise de commande du variateur.
- 3. Activez les "Déblocages de l'entraînement"
- 4. Mettez le moteur en marche.

Le variateur commence l'identification des paramètres moteur. Cette mesure peut durer plusieurs minutes. Une fois la mesure terminée, le variateur arrête le moteur.

- 5. Rendez la maîtrise de commande après identification des paramètres moteur.
- 6. Sauvegardez les réglages dans le variateur (RAM → EEPROM) :

Vous avez terminé l'identification des paramètres moteur.

5.4 Mise en service avec un PC

Optimisation automatique de la régulation de vitesse

Si vous avez sélectionné en plus de l'identification des paramètres moteur une mesure en rotation avec optimisation automatique de la régulation de vitesse, le moteur doit être remis en marche comme décrit ci-dessus et vous devez attendre la fin de l'optimisation.

5.5 Rétablissement des réglages d'usine

Dans le cas où à la mise en service ne se déroule pas comme prévue, si par exemple :

- une coupure de courant survient pendant la mise en service et vous empêche de la terminer :
- vous vous êtes retrouvé dans une impasse lors de la mise en service et vous ne savez pas comment vous en sortir;
- vous ne savez pas si le variateur a déjà été utilisé.

Dans de tels cas, réinitialisez les réglages d'usine du variateur.

Réinitialiser les réglages d'usine en cas de fonctions de sécurité débloquées

Si vous utilisez les fonctions de sécurité intégrées du variateur, p. ex. "Safe Torque Off", vous devez réinitialiser les fonctions de sécurité séparément des autres réglages du variateur.

Les réglages des fonctions de sécurité sont protégés par un mot de passe.

Réglages qui restent inchangés lors de la réinitialisation des réglages d'usine

Les réglages de la communication et de la norme du moteur (CEI/NEMA) restent inchangés en cas de réinitialisation des réglages d'usine.

5.5.1 Rétablissement des réglages d'usine des fonctions de sécurité

Marche à suivre avec STARTER

Pour rétablir les réglages d'usine des fonctions de sécurité sans modifier les paramètres standard, procédez comme suit :

- 1. Passez en ligne.
- 2. Ouvrez le dialogue des fonctions de sécurité.
- 3. Cliquez sur le bouton de rétablissement des réglages d'usine.

- 4. Entrez le mot de passe pour les fonctions de sécurité.
- 5. Confirmez l'enregistrement des paramètres (RAM vers ROM).
- 6. Passez hors ligne.
- 7. Coupez la tension d'alimentation du variateur.
- 8. Attendez que toutes les LED du variateur soient éteintes.
- 9. Rétablissez la tension d'alimentation du variateur.
- Vous avez rétabli les réglages d'usine des fonctions de sécurité dans le variateur.

5.5 Rétablissement des réglages d'usine

Marche à suivre avec Startdrive

Pour rétablir les réglages d'usine des fonctions de sécurité sans modifier les paramètres standard, procédez comme suit :

1. Passez en ligne.

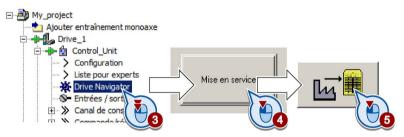
- 2. Sélectionnez "Mise en service".
- 3. Sélectionnez "Sauvegarder / Réinitialiser".
- 4. Sélectionnez "Les paramètres Safety seront réinitialisés".
- 5. Cliquez sur le bouton "Démarrer".
- 6. Entrez le mot de passe pour les fonctions de sécurité.
- 7. Confirmez l'enregistrement des paramètres (RAM vers ROM).
- 8. Passez hors ligne.
- 9. Coupez la tension d'alimentation du variateur.
- 10. Attendez que toutes les LED du variateur soient éteintes.
- 11. Rétablissez la tension d'alimentation du variateur.
- Vous avez rétabli les réglages d'usine des fonctions de sécurité dans le variateur.

Marche à suivre avec un pupitre opérateur

Pour rétablir les réglages d'usine des fonctions de sécurité dans le variateur, procédez comme suit :

- 1. Réglez p0010 = 30 Activer le rétablissement des réglages.
- 2. p9761 = ... Entrez le mot de passe pour les fonctions de sécurité.
- 3. Lancez le rétablissement avec p0970 = 5.
- 4. Attendez que le variateur règle p0970 = 0.
- 5. Réglez p0971 = 1.
- 6. Attendez que le variateur règle p0971 = 0.
- 7. Coupez la tension d'alimentation du variateur.
- 8. Attendez que toutes les LED du variateur soient éteintes.
- 9. Rétablissez la tension d'alimentation du variateur.
- Vous avez rétabli les réglages d'usine des fonctions de sécurité de votre variateur.

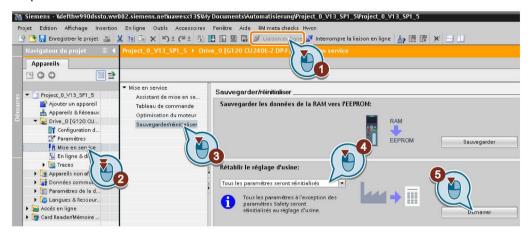
5.5.2 Rétablissement des réglages d'usine (sans fonctions de sécurité)


Rétablissement des réglages d'usine du variateur

Marche à suivre avec STARTER

Pour rétablir les réglages d'usine du variateur, procédez comme suit :

- 1. Sélectionnez votre entraînement.
- 2. Passez en ligne.
- 3. Ouvrez le "Drive Navigator".


- 4. Cliquez sur le bouton "Mise en service".
- 5. Cliquez sur le bouton "Réglage d'usine".
- 6. ☑ Sélectionnez "Copier la RAM vers la ROM après le chargement" dans le masque.
- 7. Lancez la réinitialisation.
- 8. Attendez que le réglage d'usine du variateur soit rétabli.
- Vous avez rétabli les réglages d'usine du variateur.

Marche à suivre avec Startdrive

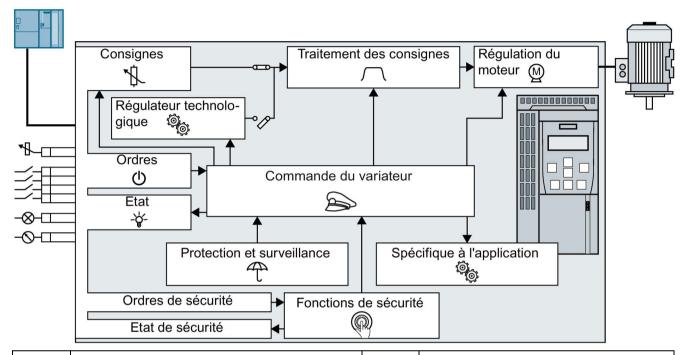
Pour rétablir les réglages d'usine du variateur, procédez comme suit :

- 1. Passez en ligne.
- 2. Sélectionnez "Mise en service".
- 3. Sélectionnez "Sauvegarder / Réinitialiser".
- 4. Sélectionnez "Tous les paramètres seront réinitialisés".
- 5. Cliquez sur le bouton "Démarrer".

- 6. Attendez que le réglage d'usine du variateur soit rétabli.
- Vous avez rétabli les réglages d'usine du variateur.

5.5 Rétablissement des réglages d'usine

Marche à suivre avec le pupitre opérateur BOP-2



Pour rétablir les réglages d'usine du variateur, procédez comme suit :

- 1. Dans le menu "Outils", sélectionnez l'entrée "DRVRESET".
- 2. Confirmer la réinitialisation à l'aide de la touche OK.
- 3. Attendez que le réglage d'usine du variateur soit rétabli.
- Vous avez rétabli les réglages d'usine du variateur.

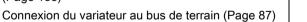
Mise en service avancée :

6.1 Vue d'ensemble des fonctions du variateur

La **commande du variateur** a la maîtrise de commande sur toutes les autres fonctions du variateur. Elle définit entre autres la façon dont le variateur réagit aux ordres de la commande de niveau supérieur.

La **régulation du moteur** veille à ce que le moteur suive la consigne de vitesse.

Commande du moteur (Page 203)


(Page 138)

Les **ordres** de la commande de niveau supérieur parviennent au variateur via les entrées TOR ou le bus de terrain. Le variateur renvoie ses **messages d'état** aux sorties TOR ou bien via le bus de terrain.

Commande du variateur (Page 136)

Les fonctions **spécifiques à l'application** commandent par exemple un frein à l'arrêt du moteur ou permettent de réaliser une régulation de pression ou de température de niveau supérieur avec le régulateur technologique.

Fonctions spécifiques à l'application (Page 233)

La **consigne** définit par ex. la vitesse du moteur. Consignes (Page 185)

Adaptation du réglage par défaut du bornier

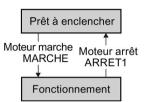
Les fonctions de **protection et de surveillance** empêchent l'endommagement du moteur, du variateur et de la machine entraînée, p. ex. grâce au contrôle de la température et à la surveillance de couple.

Le **traitement des consignes** empêche les variations brusques de vitesse provoquées par le générateur de rampe et limite la vitesse à une valeur maximale admissible.

La **fonction de sécurité** satisfait aux exigences en matière de sécurité fonctionnelle de l'entraînement.

Fonction de sécurité Safe Torque Off (STO) (Page 272)

Calcul de consigne (Page 193)


6.2 Commande du variateur

6.2.1 Mise en marche et mise hors tension du moteur

Après sa mise sous tension, le variateur passe normalement à l'état "Prêt à l'enclenchement". Dans cet état, le variateur attend l'ordre de mise en marche du moteur :

- Le variateur met le moteur en marche avec l'ordre de MARCHE. Le variateur passe à l'état "fonctionnement".
- Le variateur freine le moteur après l'ordre ARRET1. Lorsque le moteur est immobilisé, le variateur met le moteur hors tension. Le variateur est de nouveau "prêt à l'enclenchement".

Etats du variateur et ordres pour la mise en marche et l'arrêt du moteur

Outre MARCHE/ARRÊT1, "prêt à être mis sous tension" et "fonctionnement", il existe d'autres états du variateur et ordres pour la mise en marche et l'arrêt du moteur :

- ARRET2 le variateur arrête le moteur immédiatement sans le freiner auparavant.
- ARRET3 cet ordre signifie "arrêt rapide". Après un ARRET3, le variateur freine le moteur suivant le temps de descente ARRET3. Lorsque le moteur s'est immobilisé, le variateur le met hors tension.

Cet ordre est souvent utilisé pour des cas d'exploitation exceptionnels pour lesquels un freinage particulièrement rapide du moteur est requis. La protection anticollision est un cas d'utilisation typique.

- Bloquer le fonctionnement le variateur met le moteur hors tension.
- Débloquer le fonctionnement le variateur met le moteur sous tension.

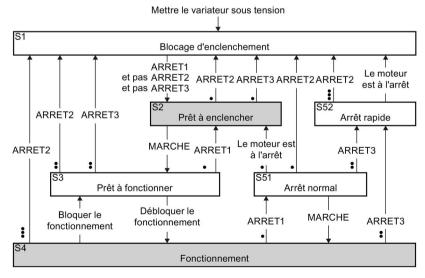


Figure 6-1 Commande séquentielle interne du variateur à la mise en marche et l'arrêt du moteur.

Les abréviations S1 ... S5b caractérisant les états du variateur sont définies dans le profil PROFIdrive.

Etat du variateur	Signification	
S1	Dans cet état, le variateur ne réagit pas à l'ordre de MARCHE. Le variateur passi à cet état dans les conditions suivantes :	
	MARCHE était actif à la mise en marche du variateur. Exception : lorsque la mise en marche automatique est active, l'ordre de MARCHE doit être actif après l'activation de l'alimentation.	
	ARRET2 ou ARRET3 est sélectionné.	
S2	Cet état est la condition à remplir pour la mise en marche du moteur.	
S3	Le variateur attend le déblocage du fonctionnement.	
S4	Le moteur est en marche.	
S51	Le moteur a été arrêté avec ARRET1 et freine suivant le temps de descente du générateur de rampe.	
S52	Le moteur a été arrêté avec ARRET3 et freine suivant le temps de descente d'ARRET3 ou à la limite de courant.	

6.2.2 Adaptation du réglage par défaut du bornier

Ce chapitre décrit comment adapter la fonction des différentes entrées et sorties TOR et analogiques du variateur.

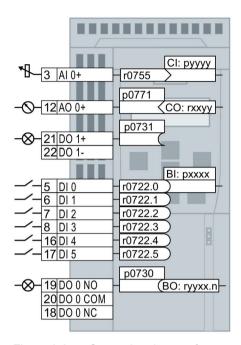
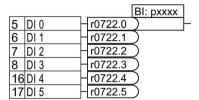



Figure 6-2 Connexion des entrées et sorties dans le variateur

6.2.2.1 Entrées TOR

Modification de la fonction d'une entrée TOR

Pour modifier la fonction d'une entrée TOR, connectez le paramètre d'état de l'entrée TOR à l'entrée binecteur de votre choix.

Voir aussi la section : Connexion des signaux dans le variateur (Page 414).

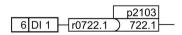

Les entrées binecteurs sont repérées par "BI" dans la liste des paramètres du Manuel de listes.

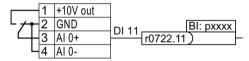
Tableau 6- 1 Entrées binecteur (BI) du variateur (sélection)

ВІ	Signification	ВІ	Signification
p0810	Sélection du jeu de paramètres de commande CDS bit 0	p1036	Potentiomètre motorisé Réduire consigne
p0840	MARCHE/ARRET1	p1055	JOG bit 0
p0844	ARRET2	p1056	JOG bit 1
p0848	ARRET3	p1113	Inversion de la valeur de consigne
p0852	Débloquer le fonctionnement	p1201	Reprise au vol Déblocage Source de signal
p0855	Desserrage inconditionnel du frein à l'arrêt	p2103	Acquittement de défauts
p0856	Débloquer le régulateur de vitesse	p2106	Défaut externe 1
p0858	Serrage inconditionnel du frein à l'arrêt	p2112	Alarme externe 1
p1020	Sélection de la consigne fixe de vitesse Bit 0	p2200	Déblocage du régulateur technologique
p1021	Sélection de la consigne fixe de vitesse Bit 1	p3330	Commande à deux/trois fils Ordre 1
p1022	Sélection de la consigne fixe de vitesse Bit 2	p3331	Commande à deux/trois fils Ordre 2
p1023	Sélection de la consigne fixe de vitesse Bit 3	p3332	Commande à deux/trois fils Ordre 3
p1035	Potentiomètre motorisé Augmenter consigne		

La liste complète des entrées binecteur figure dans le Manuel de listes.

Modification de la fonction d'une entrée TOR – Exemple

Pour acquitter des signalisations de défaut du variateur via l'entrée TOR DI 1, vous devez connecter DI1 à l'ordre d'acquittement des défauts (p2103) : Réglez p2103 = 722.1.

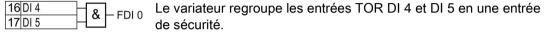

6.2 Commande du variateur

Réglages étendus

Le paramètre p0724 permet d'activer l'anti-rebond du signal de l'entrée TOR.

De plus amples informations figurent dans la liste des paramètres et dans les diagrammes fonctionnels 2220 et suivants du Manuel de listes.

Entrée analogique en tant qu'entrée TOR


Pour utiliser l'entrée analogique en tant qu'entrée TOR supplémentaire, vous devez câbler l'entrée analogique comme illustré et connecter le paramètre d'état r0722.11 à une entrée binecteur de votre choix.

6.2.2.2 Entrée de sécurité

Ce manuel décrit la fonction de sécurité STO avec activation par le biais d'une entrée de sécurité. Toutes les autres fonctions de sécurité, autres entrées de sécurité du variateur ainsi que la commande des fonctions de sécurité via PROFIsafe sont décrites dans la Description fonctionnelle Safety Integrated.

Définition d'une entrée de sécurité

Si vous utilisez la fonction de sécurité STO, le bornier doit être configuré lors de la mise en service rapide pour une entrée de sécurité, p. ex. p0015 = 2 (voir section Borniers (Page 72)).

Voir aussi la section : Fonction de sécurité Safe Torque Off (STO) (Page 272).

Quels appareils puis-je raccorder?

L'entrée de sécurité est conçue pour les appareils suivants :

- Raccordement de capteurs de sécurité, p. ex. dispositifs d'arrêt d'urgence ou barrières immatérielles.
- Raccordement d'appareils de prétraitement, p. ex. commandes de sécurité ou blocs logique de sécurité.

Etats des signaux

Le variateur attend des signaux de même état au niveau de son entrée de sécurité :

- Signal à l'état haut : la fonction de sécurité est désélectionnée.
- Signal à l'état bas : la fonction de sécurité est sélectionnée.

Détection d'erreur

Le variateur analyse les discordances entre les deux signaux de l'entrée de sécurité. Le variateur détecte ainsi p. ex. les erreurs suivantes :

- Rupture de câble
- Capteur défectueux

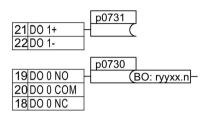
Le variateur ne peut pas détecter les erreurs suivantes :

- Court-circuit transversal des deux câbles
- Court-circuit entre le câble de signaux et la tension d'alimentation 24 V

Test d'activation et de désactivation

Le variateur filtre les changements de signal au moyen de tests d'activation et de désactivation sur ses entrées de sécurité. Les entrées de sécurité du variateur disposent d'un filtre logiciel réglable.

Mesures particulières lors du câblage


Lors d'une pose des câbles sur de longues distances, par exemple entre des armoires électriques éloignées, vous disposez des possibilités suivantes pour réduire le risque d'endommagement des câbles de votre machine ou installation :

- Utilisez des câbles blindés avec blindage relié à la terre.
- Posez les câbles de signaux dans des conduits en acier.

Des exemples de raccordement d'une entrée de sécurité figurent à la section : Raccordement d'une entrée de sécurité (Page 417).

6.2.2.3 Sorties TOR

Modification de la fonction d'une sortie TOR

Pour modifier la fonction d'une sortie TOR, connectez la sortie TOR à la sortie binecteur de votre choix.

Voir aussi la section : Connexion des signaux dans le variateur (Page 414).

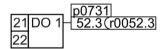

Les sorties binecteurs sont repérées par "BO" dans la liste des paramètres du Manuel de listes.

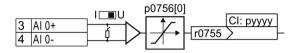
Tableau 6-2 Sorties binecteur (BO) du variateur (sélection)

0	Désactivation de la sortie TOR	r0052.9	Commande de données process
r0052.0	Entraînement prêt	r0052.10	f_réel >= p1082 (f_max)
r0052.1	Entraînement prêt à fonctionner	r0052.11	Alarme : Limitation de courant moteur / de couple
r0052.2	Entraînement en marche	r0052.12	Frein actif
r0052.3	Défaut entraînement actif	r0052.13	Surcharge du moteur
r0052.4	ARRET2 actif	r0052.14	Moteur Rotation horaire
r0052.5	ARRET3 actif	r0052.15	Surcharge du variateur
r0052.6	Blocage d'enclenchement actif	r0053.0	Freinage par injection de courant continu actif
r0052.7	Alarme entraînement active	r0053.2	f_réel > p1080 (f_min)
r0052.8	Configuration sur site différente de la configuration prévue	r0053.6	f_réel ≥ consigne (f_cons)

La liste complète des sorties binecteur figure dans le Manuel de listes.

Modification de la fonction d'une sortie TOR - Exemple

Pour générer des signalisations de défaut du variateur via la sortie TOR DO 1, vous devez connecter la DO1 aux signalisations de défaut : Réglez p0731 = 52.3.


Réglages étendus

Vous pouvez inverser le signal de la sortie TOR avec le paramètre p0748.

De plus amples informations figurent dans la liste des paramètres et dans les diagrammes fonctionnels 2230 et suivants du Manuel de listes.

6.2.2.4 Entrée analogique

Vue d'ensemble

Modification de la fonction de l'entrée analogique :

- Définissez le type de l'entrée analogique avec le paramètre p0756[0x] et le commutateur du variateur.
- Définissez la fonction de l'entrée analogique en connectant la sortie connecteur Cl de votre choix au paramètre p0755[0].

Voir aussi la section : Connexion des signaux dans le variateur (Page 414).

Définition du type de l'entrée analogique

Le variateur propose une série de réglages par défaut que vous pouvez sélectionner avec le paramètre p0756[0] :

Al 0	Entrée de tension unipolaire	0 V +10 V	p0756[0] =	0
	Entrée de tension unipolaire surveillée	+2 V +10 V		1
	Entrée de courant unipolaire	0 mA +20 mA		2
	Entrée de courant unipolaire surveillée	+4 mA +20 mA		3
	Entrée de tension bipolaire	-10 V +10 V		4
	Aucune sonde raccordée			8

Vous devez par ailleurs positionner le commutateur associé à l'entrée analogique. Le commutateur se trouve sur la Control Unit, derrière les portes frontales.

- Entrée de tension : position du commutateur U (réglage d'usine)
- Entrée de courant : position du commutateur I

Courbe caractéristique

Si vous modifiez le type de l'entrée analogique avec p0756, le variateur sélectionne automatiquement la normalisation adéquate de l'entrée analogique. La caractéristique de normalisation linéaire est définie par deux points (p0757, p0758) et (p0759, p0760). Les paramètres p0757 ... p0760 sont affectés par leur indice à une entrée analogique, les paramètres p0757[0] ... p0760[0] sont p. ex. associés à l'entrée analogique 0.

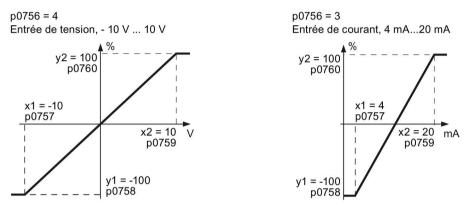


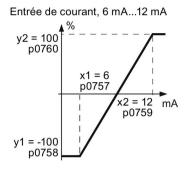
Figure 6-3 Exemples de caractéristiques de normalisation

Paramètre	Description
p0757	Coordonnée x du 1er point de la caractéristique [V ou mA]
p0758	Coordonnée y du 1er point de la caractéristique [% de p200x] p200x sont les paramètres des grandeurs de référence, p. ex. p2000 est la vitesse de référence
p0759	Coordonnée x du 2ème point de la caractéristique [V ou mA]
p0760	Coordonnée y du 2ème point de la caractéristique [% de p200x]
p0761	Seuil de réponse de la surveillance de rupture de fil

Adaptation de la caractéristique

Si aucun des types par défaut ne convient pour votre application, définissez votre propre caractéristique.

Exemple


On souhaite que le variateur convertisse via l'entrée analogique 0 un signal de 6 mA à 12 mA en une plage de valeurs allant de -100 % à 100 %. La surveillance de rupture de fil du variateur doit entrer en action lorsque le courant chute sous 6 mA.

Condition

Vous avez réglé l'entrée analogique 0 en tant qu'entrée de courant ("I") à l'aide du commutateur DIP sur la Control Unit.

Procédure

Pour régler l'entrée analogique en tant qu'entrée de courant avec surveillance, réglez les paramètres suivants :

- Réglez p0756[0] = 3.
 Cela définit l'entrée analogique 0 en tant qu'entrée de courant avec surveillance de rupture de fil.
- 2. Réglez p0757[0] = 6,0 (x1).
- 3. Réglez p0758[0] = -100,0 (y1).
- 4. Réglez p0759[0] = 12,0 (x2).
- 5. Réglez p0760[0] = 100,0 (v2).

Définition de la fonction d'une entrée analogique

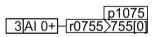
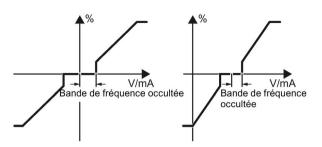

Vous définissez la fonction de l'entrée analogique en connectant l'entrée connecteur de votre choix au paramètre p0755. Le paramètre p0755 est affecté par son indice à l'entrée analogique voulue, le paramètre p0755[0] s'appliquant p. ex. à l'entrée analogique 0.

Tableau 6-3 Entrées connecteur (CI) du variateur (sélection)

CI	Signification	CI	Signification
p1070	Consigne principale	p1522	Limite de couple supérieure
p1075	Consigne additionnelle	p2253	Régulateur technologique Consigne 1
p1503	Consigne de couple	p2264	Régulateur technologique Mesure
p1511	Couple additionnel 1		

La liste complète des entrées connecteur figure dans le Manuel de listes.


Définition de la fonction d'une entrée analogique - exemple

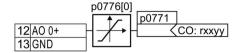
Pour spécifier la consigne additionnelle via l'entrée analogique Al 0, vous devez connecter Al 0 à la source de signal de la consigne additionnelle :

Réglez p1075 = 755[0].

Bande de fréquence occultée

Des interférences dans le câble peuvent déformer les petits signaux de l'ordre du millivolt. Pour pouvoir spécifier une consigne d'exactement 0 V via une entrée analogique, vous devez définir une bande de fréquence occultée.

Bande de fréquence occultée de l'entrée analogique


p0764[0] Bande d'occultation de fréquence de l'entrée analogique Al 0 (réglage usine : 0)

Exploitation de l'entrée analogique en tant qu'entrée TOR

Une entrée analogique peut être exploitée également en tant qu'entrée TOR. Voir aussi la section : Entrées TOR (Page 139).

6.2.2.5 Sortie analogique

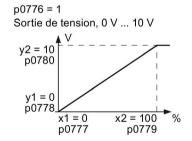
Vue d'ensemble

Modification de la fonction de la sortie analogique :

- 1. Définissez le type de la sortie analogique avec le paramètre p0776[0].
- Connectez le paramètre p0771 à une sortie connecteur de votre choix.

Voir aussi la section : Connexion des signaux dans le variateur (Page 414).

Les sorties connecteurs sont repérées dans la liste des paramètres du Manuel de listes par "CO".


Définir le type de la sortie analogique

Le variateur propose une série de réglages par défaut que vous pouvez sélectionner avec le paramètre p0776[0] :

Sortie de courant (réglage d'usine)	0 mA +20 mA	p0776[0] =	0
Sortie de tension	0 V +10 V		1
Sortie de courant	+4 mA +20 mA		2

Courbe caractéristique

Si vous modifiez le type de la sortie analogique, le variateur sélectionne automatiquement la normalisation adéquate de la sortie analogique. La caractéristique de normalisation linéaire est définie par deux points (p0777, p0778) et (p0779, p0780).

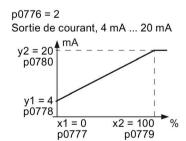
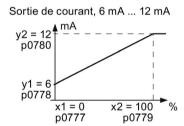


Figure 6-4 Exemples de caractéristiques de normalisation

Les paramètres p0777 ... p0780 sont affectés par leur indice à une sortie analogique, les paramètres p0777[0] ... p0770[0] sont p. ex. associés à la sortie analogique 0.

Tableau 6-4 Paramètres pour la caractéristique de normalisation

Paramètre	Description
p0777	Coordonnée x du 1er point de la caractéristique [% de p200x]
	p200x sont les grandeurs auxquelles se rapporte la normalisation, p. ex. p2000 est la vitesse de rotation de référence.
p0778	Coordonnée y du 1er point de la caractéristique [V ou mA]
p0779	Coordonnée x du 2ème point de la caractéristique [% de p200x]
p0780	Coordonnée y du 2ème point de la caractéristique [V ou mA]


Réglage de la caractéristique

Si aucun des types par défaut ne convient pour votre application, définissez votre propre caractéristique.

Exemple:

Le variateur doit convertir via la sortie analogique 0 un signal situé dans la plage de 0 % à 100 % en un signal de sortie de 6 mA à 12 mA.

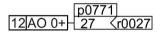
Procédure

Pour régler la caractéristique de manière conforme à l'exemple, réglez les paramètres suivants :

- Réglez p0776[0] = 2.
 Cela définit la sortie analogique 0 en tant que sortie de courant.
- 2. Réglez p0777[0] = 0.0 (x1).
- 3. Réglez p0778[0] = 6.0 (y1).
- 4. Réglez p0779[0] = 100,0 (x2).
- 5. Réglez p0780[0] = 12,0 (y2).

Définition de la fonction d'une sortie analogique

Définissez la fonction de la sortie analogique en connectant le paramètre p0771 à la sortie connecteur de votre choix. Le paramètre p0771 est affecté par son indice à la sortie analogique correspondante, le paramètre p0771[0] s'appliquant p. ex. à la sortie analogique 0.


Tableau 6-5 Sorties connecteurs (CO) du variateur (sélection)

СО	Signification	СО	Signification
r0021	Mesure de fréquence	r0026	Mesure tension de circuit intermédiaire
r0024	Mesure de fréquence de sortie	r0027	Courant de sortie
r0025	Mesure de tension sortie		

La liste complète des sorties connecteur figure dans le Manuel de listes.

De plus amples informations figurent dans la liste des paramètres et dans les diagrammes fonctionnels 2261 du Manuel de listes.

Définition de la fonction d'une sortie analogique – exemple

Pour générer le courant de sortie du variateur au niveau de la sortie analogique 0, vous devez connecter l'AO 0 au signal du courant de sortie :

Réglez p0771 = 27.

Réglages étendus

Vous pouvez manipuler le signal délivré par une sortie analogique comme suit :

- Formation de la valeur du signal (p0775)
- Inversion du signal (p0782)

De plus amples informations figurent dans la liste des paramètres du Manuel de listes.

6.2.3 Commande du variateur par les entrées TOR

Il existe cinq méthodes de commande du moteur via les entrées TOR.

Tableau 6-6 Commande à deux fils et à trois fils

Comportement du moteur		
Marche à Arrêt Marche à Arrêt gauche	Ordres de commande	Application type
Moteur Minversion Moteur Minversion Moteur Minversion Moteur Minversion Minve	Commande à deux fils, méthode 1 1. Mise en marche et arrêt du moteur (MARCHE/ARRET1). 2. Inversion du sens de rotation du moteur (Inversion).	Commande sur site en manutention.
Moteur marche/arrêt marche à droite Moteur marche/arrêt marche à gauche t	Commande à deux fils, méthode 2 et commande à deux fils, méthode 3 1. Mise en marche et arrêt du moteur (MARCHE/ARRET1), rotation horaire. 2. Mise en marche et arrêt du moteur (MARCHE/ARRET1), rotation antihoraire.	Propulsion com- mandée par commutateur maître
Déblocage / Moteur arrêt	Commande à trois fils, méthode 1 Déblocage de la mise en marche du moteur et de l'arrêt du moteur (ARRET1). Mise en marche du moteur (MARCHE), rotation horaire. Mise en marche du moteur (MARCHE), rotation antihoraire.	Propulsion com- mandée par commutateur maître
Déblocage / Moteur arrêt Moteur marche Inversion	Commande à trois fils, méthode 2 1. Déblocage de la mise en marche du moteur et de l'arrêt du moteur (ARRET1). 2. Mise en marche du moteur (MARCHE). 3. Inversion du sens de rotation du moteur (Inversion).	-

6.2.4 Commande à deux fils Méthode 1

Un ordre permet de mettre en marche et d'arrêter le moteur (MARCHE/ARRET1). Un deuxième ordre inverse le sens de rotation du moteur (Inversion).

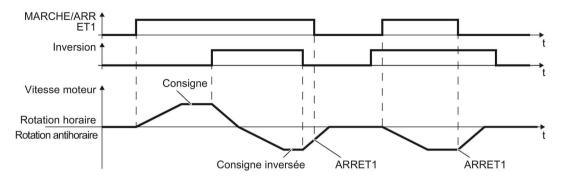


Figure 6-5 Commande à deux fils, méthode 1

Tableau 6-7 Tableau des fonctions

MARCHE/ARRET1	Inversion	Fonction	
0	0	ARRET1 : Le moteur s'arrête.	
0	1	ARRET1 : Le moteur s'arrête.	
1	0	MARCHE : Rotation horaire du moteur.	
1	1	MARCHE: Rotation antihoraire du moteur.	

Paramètre	Description			
p0015 = 12	Macro Groupe d'entraînement			
	Commande du moteur par les entrées	DI 0	DI 1	
	TOR du variateur :	MARCHE/ARRET1	Inversion	
Réglage étendu Connexion des ordres d	e commande aux entrées TOR souhaitée	es.		
p0840[0 n] = 722.x	BI : MARCHE/ARRET1 (MARCHE/ARRET1)			
	Exemple : p0840[0] = 722.3 ⇒ Lorsque CDS 0 (indice [0]) est sélectionné, le variateur obtient son ordre MARCHE/ARRET1 via DI 3.			
p1113[0 n] = 722.x	BI : Inversion de la consigne (Inversion)			

6.2.5 Commande à deux fils, méthode 2

Un ordre de commande permet de mettre en marche et d'arrêter le moteur (MARCHE/ARRET1) et de sélectionner en même temps la rotation horaire du moteur. Le deuxième ordre de commande permet également de mettre le moteur en marche et de l'arrêter mais il sélectionne la rotation antihoraire.

Le variateur n'accepte un nouvel ordre de commande qui si le moteur est arrêté.

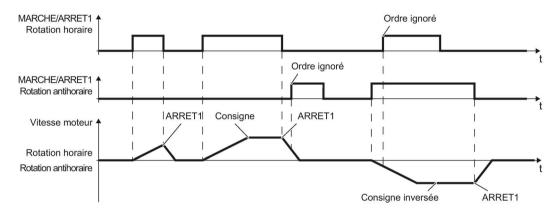


Figure 6-6 Commande à deux fils, méthode 2

Tableau 6-8 Tableau des fonctions

MARCHE/ARRET1 Rotation horaire	MARCHE/ARRET1 Rotation antihoraire	Fonction
0	0	ARRET1 : Le moteur s'arrête.
1	0	MARCHE: Rotation horaire du moteur.
0	1	MARCHE: Rotation antihoraire du moteur.
1	1	MARCHE : Le sens de rotation du moteur dépend du signal qui passe en premier à l'état "1".

Paramètre	Description			
p0015 = 17	Macro Groupe d'entraînement			
	Commande du moteur par les entrées TOR du variateur :	DI 0	DI 1	
		MARCHE/ARRET1 Rotation horaire	MARCHE/ARRET1 Rotation antihoraire	
Réglage étendu Connexion des ordres d	Réglage étendu Connexion des ordres de commande aux entrées TOR souhaitées.			
p3330[0 n] = 722.x	BI : Commande 2/3 fils Ordre 1 (MARCHE/ARRET1 Rotation horaire)			
p3331[0 n] = 722.x	BI : Commande 2/3 fils Ordre 2 (MARCHE/ARRET1 Rotation antihoraire)			
	Exemple: p3331[0] = 722.0 ⇒ Lorsque CDS 0 (indice [0]) est sélectionné, le variateur obtient son ordre MARCHE/ARRET1 Rotation antihoraire via DI 0.			

6.2.6 Commande à deux fils, méthode 3

Un ordre de commande permet de mettre en marche et d'arrêter le moteur (MARCHE/ARRET1) et de sélectionner en même temps la rotation horaire du moteur. Le deuxième ordre de commande permet également de mettre le moteur en marche et de l'arrêter mais il sélectionne la rotation antihoraire.

Contrairement à la méthode 2, le variateur accepte les ordres de commande à tout moment quelle que soit la vitesse du moteur.

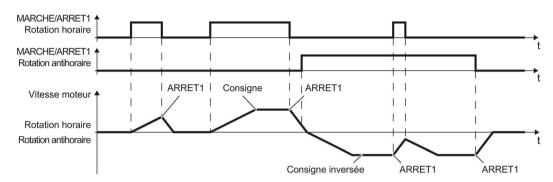


Figure 6-7 Commande à deux fils, méthode 3

Tableau 6-9 Tableau des fonctions

MARCHE/ARRET1 Rotation horaire	MARCHE/ARRET1 Rotation antihoraire	Fonction
0	0	ARRET1 : Le moteur s'arrête.
1	0	MARCHE : Rotation horaire du moteur.
0	1	MARCHE: Rotation antihoraire du moteur.
1	1	ARRET1 : Le moteur s'arrête.

Paramètre	Description				
p0015 = 18	Macro Groupe d'entraînement				
	Commande du moteur par	DI 0	DI 1		
	les entrées TOR du varia- teur :	MARCHE/ARRET1 Rotation horaire	MARCHE/ARRET1 Rotation antihoraire		
Réglage étendu Connexion des ordres d	e commande aux entrées TOI	R souhaitées.			
p3330[0 n] = 722.x	BI : Commande 2/3 fils Ordre 1 (MARCHE/ARRET1 Rotation horaire)				
p3331[0 n] = 722.x	BI : Commande 2/3 fils Ordre 2 (MARCHE/ARRET1 Rotation antihoraire)				
	Exemple : p3331[0] = 722.0 ⇒ Lorsque CDS 0 (indice [0]) est sélectionné, le variateur obtient son ordre MARCHE/ARRET1 Rotation antihoraire via DI 0.				

6.2.7 Commande à trois fils, méthode 1

Un ordre de commande permet de débloquer les deux autres. L'annulation du déblocage permet d'arrêter le moteur (ARRET1).

Le front montant du deuxième ordre fait passer le moteur en rotation horaire. Si le moteur est encore à l'arrêt, mettez-le en marche (MARCHE).

Le front montant du troisième ordre fait passer le moteur en rotation antihoraire. Si le moteur est encore à l'arrêt, mettez-le en marche (MARCHE).

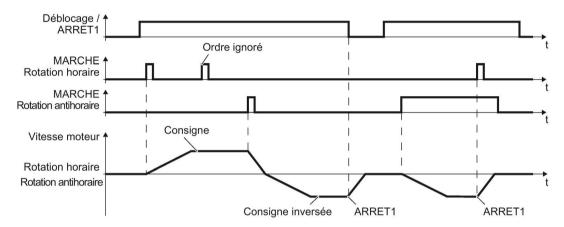


Figure 6-8 Commande à trois fils, méthode 1

Tableau 6- 10 Tableau des fonctions

Déblocage/ARRET1	MARCHE Rota- tion horaire	MARCHE Rota- tion antihoraire	Fonction
0	0 ou 1	0 ou 1	ARRET1 : Le moteur s'arrête.
1	0→1	0	MARCHE : Rotation horaire du moteur.
1	0	0→1	MARCHE : Rotation antihoraire du moteur.
1	1	1	ARRET1 : Le moteur s'arrête.

Paramètre	Description				
p0015 = 19	Macro Groupe d'entraînement				
	Commande du mo-	DI 0	DI 1	DI 2	
	teur par les entrées TOR du variateur :	Déblocage/ARRET1	MARCHE Rotation horaire	MARCHE Rotation antihoraire	
Réglage étendu Liaison des ordres de co	ommande aux entrées	TOR souhaitées (DI x).			
p3330[0 n] = 722.x	BI : Commande 2/3 fils Ordre 1 (Déblocage / ARRET1)				
p3331[0 n] = 722.x	BI : Commande 2/3 fils Ordre 2 (MARCHE Rotation horaire)				
p3332[0 n] = 722.x	BI : Commande 2/3 fils Ordre 3 (MARCHE Rotation antihoraire)				
	Exemple : p3332[0] = 722.0 ⇒ Lorsque CDS 0 (indice [0]) est sélectionné, le variateur obtient son ordre MARCHE Rotation antihoraire via DI 0.				

6.2.8 Commande à trois fils, méthode 2

Un ordre de commande permet de débloquer les deux autres. L'annulation du déblocage permet d'arrêter le moteur (ARRET1).

Le front montant du deuxième ordre de commande met le moteur en marche (MARCHE).

Le troisième ordre de commande définit le sens de rotation du moteur (inversion).

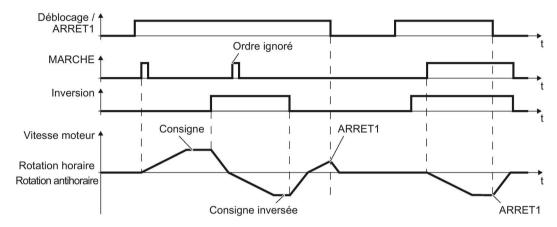


Figure 6-9 Commande à trois fils, méthode 2

Tableau 6- 11 Tableau des fonctions

Déblo- cage/ARRET1	MARCHE	Inversion	Fonction
0	0 ou 1	0 ou 1	ARRET1: Le moteur s'arrête.
1	0→1	0	MARCHE: Rotation horaire du moteur.
1	0→1	1	MARCHE : Rotation antihoraire du moteur.

Paramètre	Description				
p0015 = 20	Macro Groupe d'entraînement				
	Commande du moteur	DI 0	DI 1	DI 2	
	par les entrées TOR du variateur :	Déblocage/ARRET1	MARCHE	Inversion	
Réglage étendu Liaison des ordres de co	ommande aux entrées TOF	R souhaitées (DI x).			
p3330[0 n] = 722.x	BI : Commande 2/3 fils Ordre 1 (Déblocage / ARRET1)				
p3331[0 n] = 722.x	BI : Commande 2/3 fils Ordre 2 (MARCHE)				
	Exemple : p3331[0] = 722.0 ⇒ Lorsque CDS 0 (indice [0]) est sélectionné, le variateur obtient son ordre MARCHE via DI 0.				
p3332[0 n] = 722.x	BI: Commande 2/3 fils O	rdre 3 (inversion)			

6.2.9 Déplacement du moteur en marche par à-coups (fonction JOG)

La fonction "JOG" est généralement utilisée pour déplacer lentement un sous-ensemble de machine, p. ex. une bande transporteuse.

La fonction "JOG" permet de mettre le moteur en marche et hors tension via une entrée TOR. Après la mise en marche, le moteur accélère pour atteindre la consigne du mode JOG. Deux consignes différentes sont à disposition, p. ex. pour la rotation antihoraire et horaire du moteur.

Le même générateur de rampe agit sur la consigne que pour l'ordre MARCHE/ARRET1.

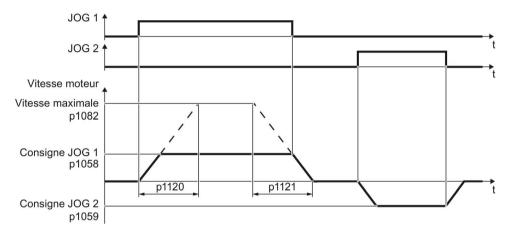
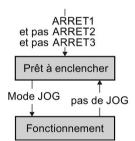



Figure 6-10 Comportement du moteur en mode "JOG"

Pour pouvoir donner l'ordre de commande "JOG", le variateur doit être prêt à l'enclenchement. Si le moteur est déjà en marche, l'ordre "JOG" est sans effet.

Réglages pour le mode JOG

Paramètre	Description				
p1058	JOG 1 Consigne de vitesse (réglage d'usine	150 tr/min)			
p1059	JOG 2 Consigne de vitesse (réglage d'usine	-150 tr/min)			
p1082	Vitesse maximale (réglage d'usine 1500 tr/m	in)			
p1110	Bloquer le sens de marche négatif				
	=0: Le sens de rotation négatif est débloqué =1: Le sens de rotation négatif est bloqué				
p1111	Bloquer le sens de marche positif				
	=0: Le sens de rotation positif est débloqué =1: Le sens de rotation positif bloqué				
p1113	Inversion de la valeur de consigne				
	=0: La consigne n'est pas inversée	=1: La consigne est inversée			
p1120	Générateur de rampe Temps de montée (réglage d'usine 10 s)				
p1121	Générateur de rampe Temps de descente (réglage d'usine 10 s)				
p1055 = 722.0	JOG Bit 0 : Sélectionner JOG 1 via l'entrée TOR 0				
p1056 = 722.1	JOG Bit 1 : Sélectionner JOG 2 via l'entrée T	OR 1			

6.2.10 Commande via PROFIBUS ou PROFINET avec le profil PROFIdrive.

La structure des télégrammes d'émission et de réception du variateur pour la communication cyclique est la suivante :

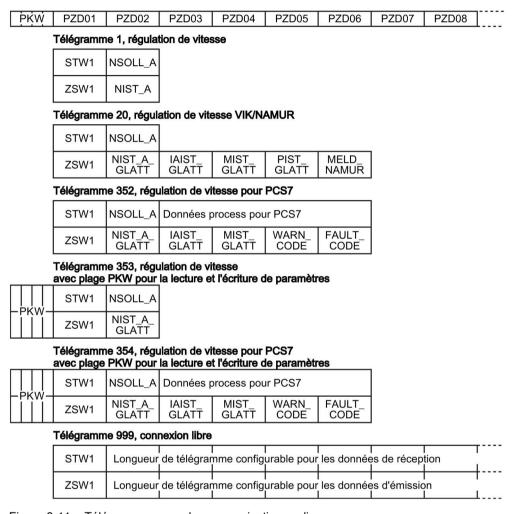


Figure 6-11 Télégrammes pour la communication cyclique

Tableau 6- 12 Explication des abréviations

Abréviation	Signification	Abréviation	Signification
STW	Mot de commande	MIST_GLATT	Couple actuel lissé
ZSW	Mot d'état	PIST_GLATT	Puissance active actuelle lissée
NSOLL_A	Consigne de vitesse	M_LIM	Valeur limite de couple
NIST_A	Mesure de vitesse	FAULT_CODE	Numéro de défaut
NIST_A_GLATT	Mesure de vitesse lissée	WARN_CODE	Numéro d'alarme
IAIST_GLATT	Mesure de courant lis- sée	MELD_NAMUR	Mot de défaut selon la définition VIK-NAMUR

Connexion des données process

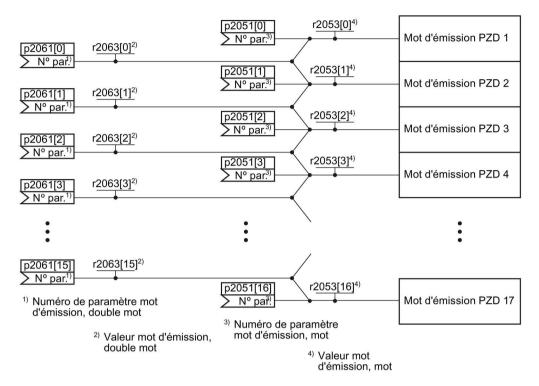


Figure 6-12 Connexion des mots d'émission

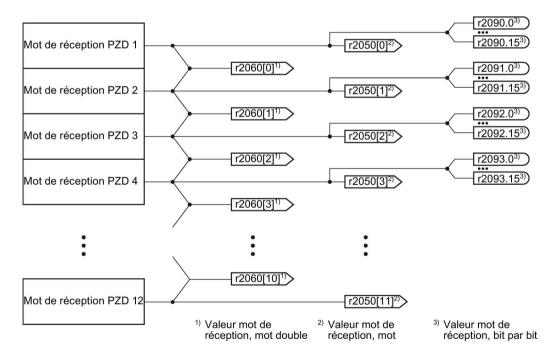


Figure 6-13 Connexion des mots de réception

A l'exception du télégramme 999 (connexion libre via FCOM), les télégrammes utilisent la transmission mot par mot des données d'émission et de réception (r2050/p2051).

Si l'application requiert un télégramme individuel (p. ex. transmission de doubles mots), il est possible d'adapter un des télégrammes prédéfinis au moyen des paramètres p0922 et p2079. Vous trouverez plus de détails à ce sujet dans les diagrammes fonctionnels 2420 et 2472 du Manuel de listes.

6.2.10.1 Mots de commande et d'état 1

Mot de commande 1 (STW1)

Bit	Signification		Explication	Connexion des	
	Télégramme 20	Tous les autres télégrammes		signaux dans le variateur	
0	0 = ARRET1		Le moteur freine avec le temps de des- cente p1121 du générateur de rampe. A l'arrêt, le variateur met le moteur hors tension.	p0840[0] = r2090.0	
	0 → 1 = MARCH	E	Le variateur passe à l'état "Prêt à fonction- ner". Si, en outre, le bit 3 = 1, le variateur met le moteur en marche.		
1	0 = ARRET2		Mettre immédiatement le moteur hors tension. Le moteur s'arrête ensuite par ralentissement naturel.	p0844[0] = r2090.1	
	1 = pas d'ARRE	T2	La mise en marche du moteur (ordre MARCHE) est possible.		
2	0 = arrêt rapide (ARRET3)		Arrêt rapide : le moteur freine jusqu'à l'im- mobilisation avec le temps de descente ARRET3 p1135.	p0848[0] = r2090.2	
	1 = pas d'arrêt rapide (ARRET3)		La mise en marche du moteur (ordre MARCHE) est possible.		
3	0 = Bloquer le fonctionnement		Mettre immédiatement le moteur hors tension (supprimer les impulsions).	p0852[0] = r2090.3	
	1 = Débloquer le	e fonctionnement	Mettre le moteur sous tension (déblocage des impulsions possible).		
4	0 = Bloquer le gerampe	énérateur de	Le variateur met sa sortie de générateur de rampe immédiatement à 0.	p1140[0] = r2090.4	
	1 = Ne pas bloquer le générateur de rampe		Le déblocage du générateur de rampe est possible.		
5	0 = Geler le générateur de rampe 1 = Débloquer le générateur de rampe		La sortie du générateur de rampe reste à la valeur actuelle.	p1141[0] = r2090.5	
			La sortie du générateur de rampe suit la consigne.		
6	0 = Bloquer la co	onsigne	Le variateur freine le moteur avec le temps de descente p1121 du générateur de rampe.	p1142[0] = r2090.6	
	1 = Débloquer la	a consigne	Le moteur accélère jusqu'à la consigne avec le temps de montée p1120.		

Bit	Signification		Explication	Connexion des
	Télégramme 20	Tous les autres télégrammes		signaux dans le variateur
7	0 → 1 = Acquitter les défauts		Acquitter le défaut. Si l'ordre ON est encore présent, le variateur passe à l'état "Blocage d'enclenchement".	p2103[0] = r2090.7
8, 9	Réservé			
10	0 = Pas de pilotage par AP		Le variateur ignore les données process du bus de terrain.	p0854[0] = r2090.10
	1 = Pilotage par	AP	Commande via bus de terrain, le variateur reprend les données process du bus de terrain.	
11	1 = Inversion de sens		Inverser la consigne dans le variateur.	p1113[0] = r2090.11
12	Non utilisé			
13	1)	1 = PotMot Augmenter	Augmenter la consigne enregistrée dans le potentiomètre motorisé	p1035[0] = r2090.13
14	1)	1 = PotMot Diminuer	Diminuer la consigne enregistrée dans le potentiomètre motorisé.	p1036[0] = r2090.14
15	CDS bit 0	Réservé	<u> </u>	

¹⁾ Si la commutation s'effectue d'un autre télégramme sur le télégramme 20, l'affectation de ce dernier est conservée.

Mot d'état 1 (ZSW1)

Bit	Signification		Remarques	Connexion des
	Télégramme 20	Tous les autres télégrammes		signaux dans le variateur
0	1 = Prêt à l'encle	nchement	L'alimentation en courant est mise en marche, le système électronique est initialisé, les impulsions sont bloquées.	p2080[0] = r0899.0
1	1 = Prêt au foncti	onnement	Le moteur est en marche (MARCHE/ARRET1 = 1), aucun défaut n'est actif. Avec l'ordre "Débloquer le fonctionnement" (STW1.3), le variateur met le moteur en marche.	p2080[1] = r0899.1
2	1 = Fonctionnem	ent débloqué	Le moteur suit la consigne. Voir Mot de commande 1, bit 3.	p2080[2] = r0899.2
3	1 = Défaut actif		Un défaut est présent dans le variateur. Acquitter le défaut par STW1.7.	p2080[3] = r2139.3
4	1 = ARRET2 inac	etif	L'arrêt par ralentissement naturel n'est pas actif.	p2080[4] = r0899.4
5	1 = ARRET3 inactif		L'arrêt rapide n'est pas actif.	p2080[5] = r0899.5
6	1 = Blocage d'enclenchement actif		La mise en marche du moteur est seule- ment possible après un ARRET1 et un nouvel ordre de MARCHE.	p2080[6] = r0899.6
7	1 = Alarme active		Le moteur reste enclenché ; aucun acquit- tement nécessaire.	p2080[7] = r2139.7
8	1 = Ecart de vites de la plage de to		Ecart consigne/mesure à l'intérieur de la plage de tolérance.	p2080[8] = r2197.7
9	1 = Commande o	lemandée	La demande de prise en charge de la commande du variateur est adressée au système d'automatisation.	p2080[9] = r0899.9
10	1 = Vitesse de co teinte ou dépasse		La vitesse est supérieure ou égale à la vitesse maximale correspondante.	p2080[10] = r2199.1
11	1 = Limite de courant ou de couple atteinte	1 = Limite de couple atteinte	La valeur de comparaison pour le courant ou le couple est atteinte ou dépassée.	p2080[11] = r0056.13 / r1407.7
12	1)	1 = Frein à l'arrêt desserré	Signal d'ouverture et de fermeture d'un frein à l'arrêt du moteur.	p2080[12] = r0899.12
13	0 = Alarme surchauffe du moteur			p2080[13] = r2135.14
14	1 = Le moteur tourne vers la droite		Mesure interne au variateur > 0.	p2080[14] = r2197.3
	0 = Le moteur tourne vers la gauche		Mesure interne au variateur < 0.	
15	1 = Affichage CDS	0 = Alarme surcharge thermique va- riateur		p2080[15] = r0836.0 / r2135.15

¹⁾ Si la commutation s'effectue d'un autre télégramme sur le télégramme 20, l'affectation de ce dernier est conservée.

6.2.10.2 Structure du canal de paramètres

Conception du canal de paramètres

Le canal de paramètres comprend quatre mots. Le 1er et le 2ème mot transmettent le numéro de paramètre, l'indice et le type de requête (lecture ou écriture). Le 3ème et le 4ème mot comprennent les contenus du paramètre. Les contenus de paramètre peuvent être constitués de valeurs 16 bits (par ex. vitesse de transmission) ou des valeurs 32 bits (par ex. paramètre CO).

Le bit 11 dans le 1er mot est réservé et toujours égal à 0.

	Canal de paramètres						
PKE (1e	PKE (1er mot) IND (2ème mot) PWE (3ème et 4ème mot)						
1512.11. 100 158 70 150 150				15 0			
AK S	PNU	Sous-indice	Indice de page	PWE 1	PWE 2		
М							

Des exemples de télégramme se trouvent à la fin de cette section.

Identifiants de requête et de réponse

Les bits 12 à 15 du 1er mot du canal des paramètres contiennent l'identifiant de requête et de réponse.

Tableau 6- 13 Identifiants de requête Commande → variateur

Identifiant de requête	Description	1	Identifiant de ré- ponse		
		positif	négatif		
0	Aucune requête	0	7/8		
1	Requête de valeur de paramètre	1/2	7/8		
2	Modification de valeur de paramètre (mot)	1	7/8		
3	Modification de valeur de paramètre (double mot)	2	7/8		
4	Requête d'élément descriptif 1)	3	7/8		
62)	Requête de valeur de paramètre (tableau) 1)	4/5	7/8		
72)	Modification de valeur de paramètre (tableau, mot) 1)	4	7/8		
82)	Modification de valeur de paramètre (tableau, double mot) 1)	5	7/8		
9	Requête de nombre d'éléments de tableau	6	7/8		

¹⁾ L'élément souhaité du paramètre est spécifié dans IND (2ème mot).

Les identifiants de requête suivants sont identiques : $1 \equiv 6$, $2 \equiv 7$ $3 \equiv 8$. Nous recommandons d'utiliser les identifiants 6, 7 et 8.

Tableau 6- 14 Identifiants de réponse Variateur → commande

Identifiant de réponse	Description
0	Aucune réponse
1	Transmission de valeur de paramètre (mot)
2	Transmission de valeur de paramètre (double mot)
3	Transmission d'élément descriptif 1)
4	Transmission de valeur de paramètre (tableau, mot) 2)
5	Transmission de valeur de paramètre (tableau, double mot) 2)
6	Transmission du nombre d'éléments de tableau
7	Le variateur ne peut pas traiter la requête. Le variateur envoie un numéro d'erreur dans le mot de poids le plus fort du canal de paramètres à la commande (voir le tableau suivant).
8	Pas d'état de commande maître / pas d'autorisation de modification des paramètres de l'interface du canal de paramètres

¹⁾ L'élément souhaité du paramètre est spécifié dans IND (2ème mot).

Tableau 6- 15 Numéros d'erreur pour l'identifiant de réponse 7

Nº	Description
00 hex	Numéro de paramètre invalide (Tentative d'accès à des paramètres inexistants.)
01 hex	Valeur de paramètre non modifiable (Tâche de modification d'une valeur de paramètre non modifiable.)
02 hex	Franchissement de limite inférieure ou supérieure (Tâche de modification dont la valeur est hors des limites définies.)
03 hex	Sous-indice erroné (Accès à un sous-indice inexistant.)
04 hex	Pas de tableau (Accès avec le sous-indice à un paramètre non indexé.)
05 hex	Type de données incorrect (Tâche de modification avec une valeur non conforme au type de données du paramètre.)
06 hex	Mise à 1 non autorisée, uniquement mise à 0 (Tâche de modification à valeur différente de 0 non autorisée.)
07 hex	Elément descriptif non modifiable (Tâche de modification d'un élément descriptif non modifiable)
0B hex	Pas de maîtrise de commande (Tâche de modification sans maîtrise de commande, voir également p0927.)
0C hex	Mot-clé absent
11 hex	Tâche non exécutable en raison de l'état de fonctionnement (L'accès est impossible pour une cause provisoire et non précisée.)
14 hex	Valeur non autorisée (Tâche de modification avec une valeur qui se situe dans les limites, mais qui n'est pas autorisée pour d'autres raisons permanentes, cà-d. un paramètre avec valeurs individuelles définies.)
65 hex	Numéro de paramètre actuellement désactivé (Dépend de l'état de fonctionnement du variateur.)
66 hex	Largeur de canal insuffisante (Canal de communication trop petit pour la réponse.)
68 hex	Valeur de paramètre non admissible (Le paramètre n'autorise que certaines valeurs.)

²⁾ L'élément souhaité du paramètre indexé est spécifié dans IND (2ème mot).

N°	Description
6A hex	Requête non incluse / tâche non prise en charge. (Les identifiants de requête valides se trouvent dans le tableau "Identifiants de requête Commande → variateur")
6B hex	Pas d'accès pour modification lorsque le régulateur est débloqué. (L'état de fonctionnement du variateur empêche toute modification de paramètre.)
86 hex	Accès en écriture uniquement à la mise en service (p0010 = 15) (L'état de fonctionnement du variateur empêche toute modification de paramètre.)
87 hex	Protection de savoir-faire activée, accès bloqué
C8 hex	Tâche de modification au-dessous de la limite actuellement valide (Tâche de modification à une valeur qui se trouve à l'intérieur des limites "absolues", mais qui est inférieure à la limite inférieure actuellement valide.)
C9 hex	Tâche de modification au-dessus de la limite actuellement valide (exemple : une valeur de paramètre est trop grande pour la puissance du variateur)
CC hex	Tâche de modification non autorisée (Modification interdite faute de clé d'accès.)

Offset et indice de page des numéros de paramètre

Numéros de paramètre < 2000 PNU = numéro de paramètre.

Ecrivez le numéro de paramètre dans PNU (PKE bits 10 à

0).

Numéros de paramètre ≥ 2000 PNU = numéro de paramètre - offset.

Ecrivez le numéro de paramètre moins l'offset dans PNU

(PKE bits 10 à 0).

Ecrivez l'offset dans l'indice de page (IND bits 7 à 0).

Numéro de para-	Offset	Indice de	e page							
mètre		hex	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0000 1999	0	0 hex	0	0	0	0	0	0	0	0
2000 3999	2000	80 hex	1	0	0	0	0	0	0	0
6000 7999	6000	90 hex	1	0	0	1	0	0	0	0
8000 9999	8000	20 hex	0	0	1	0	0	0	0	0
10000 11999	10000	A0 hex	1	0	1	0	0	0	0	0
20000 21999	20000	50 hex	0	1	0	1	0	0	0	0
30000 31999	30000	F0 hex	1	1	1	1	0	0	0	0
60000 61999	60000	74 hex	0	1	1	1	0	1	0	0

Paramètres indexés

En présence de paramètres indexés, vous devez écrire l'indice comme valeur hexadécimale dans le sous-indice (IND bits 15 à 8).

Contenus de paramètre

Les contenus de paramètre peuvent être des valeurs de paramètre ou des connecteurs.

Tableau 6- 16 Valeurs de paramètre dans le canal de paramètres

PWE, 3e mot	PWE,	4e mot
Bits 15 à 0	Bits 15 à 8	Bits 7 à 0
0	0	Valeur 8 bits
0	Valeur	16 bits
Valeur 32 bits		

Tableau 6- 17 Connecteur dans le canal de paramètres

PWE, 3e mot	PWE, 4e mot		
Bits 15 à 0	Bits 15 à 10	Bits 9 à 0	
Numéro du connecteur	3F hex	Indice ou numéro de champ de bits du connecteur	

6.2.10.3 Exemples du canal de paramètres

Requête de lecture : Lire le numéro de série du Power Module (p7841[2])

Pour obtenir la valeur du paramètre indexé p7841, le télégramme du canal de paramètres doit être renseigné avec les données suivantes :

- PKE, bits 12 ... 15 (AK) : = 6 (Requête de valeur de paramètre (tableau))
- PKE, bits 0 ... 10 (PNU) : = 1841 (Numéro de paramètre sans offset)
 Numéro de paramètre = PNU + offset (indice de page)
 (7841 = 1841 + 6000)
- IND, bits 8 ... 15 (sous-indice) : = 2 (Indice du paramètre)
- Etant donné que l'on cherche à lire la valeur du paramètre, les mots 3 et 4 sont sans importance dans le canal de paramètres pour la requête de valeur du paramètre et doivent se voir affecter par ex. la valeur 0.

	Canal de paramètres							
	PKE, 1er mot IND, 2è		me mot	PWE1 - poids fort, 3ème mot	PWE2 - poids faible, 4ème mo			
15	12	11	10 0	15 8	7 0	15 0	15 10	9 0
AK	AK Numéro de paramètre Sou		Sous-indice	Indice de page	Valeur de paramètre	Drive Object	Indice	
0 1 1	0	0	1 1 1 0 0 1 1 0 0 0 1	00000010	1001000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000	00000000000

Figure 6-14 Télégramme pour la requête de lecture de p7841[2]

Requête d'écriture : Modification du mode de redémarrage (p1210)

Le mode de redémarrage automatique est bloqué dans le réglage usine (p1210 = 0). Pour activer le redémarrage automatique avec "Acquitter tous défauts et redémarrage avec ordre de MARCHE", il faut régler p1210 = 26 :

- PKE, bits 12 ... 15 (AK) : = 7 (Modification de valeur de paramètre (tableau, mot))
- PKE, bits 0 ... 10 (PNU) : = 4BA hex (1210 = 4BA hex, pas d'offset car 1210 < 1999)
- IND, bits 8 ... 15 (sous-indice) : = 0 hex (le paramètre n'est pas indexé)
- IND, bits 0 ... 7 (indice de page) : = 0 hex (Offset 0 correspond à 0 hex)
- PWE1, bits 0 ... 15 : = 0 hex
- **PWE2, bits 0** ... **15** : **= 1A hex** (26 = 1A hex)

	Canal de paramètres					
PKE, 1er mot IND, 2ème mot		me mot	PWE1 - poids fort, 3ème mot	PWE2 - poids faible, 4ème mot		
15 12	11	10 0	15 8	7 0	15 0	15 0
AK	Π	Numéro de paramètre	Sous-indice	Indice de page	Valeur de paramètre (bit 16 31)	Valeur de paramètre (bit 0 15)
0 1 1 1	0	10010111010	00000000	00000000	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

Figure 6-15 Télégramme pour activer le redémarrage automatique avec p1210 = 26

Requête d'écriture : Affecter la fonction MARCHE/ARRET1 à l'entrée TOR 2 (p0840[1] = 722.2)

Pour associer l'entrée TOR 2 à MARCHE/ARRET1, la valeur 722.2 (DI 2) doit être affectée au paramètre p0840[1] (source MARCHE/ARRET1). Remplir à cet effet le télégramme du canal de paramètres comme suit :

- PKE, bits 12 ... 15 (AK) := 7 hex (Modification de valeur de paramètre (tableau, mot))
- PKE, bits 0 ... 10 (PNU) := 348 hex (840 = 348 hex, pas d'offset car 840 < 1999)
- IND, bits 8 ... 15 (sous-indice) : = 1 hex (CDS1 = Indice1)
- IND, bits 0 ... 7 (indice de page) : = 0 hex (Offset 0 ≜ 0 hex)
- **PWE1, bits 0 ... 15** : = **2D2 hex** (722 = 2D2 hex)
- PWE2, bits 10 ... 15 := 3F hex (Objet entraînement pour SINAMICS G120 toujours 63 = 3f hex)
- PWE2, bits 0 ... 9 : = 2 hex (Indice du paramètre (DI 2 = 2))

	Canal de paramètres					
PKE, 1er mot IND, 2ème mot		me mot	PWE1 - poids fort, 3ème mot	PWE2 - poi	ds faible, 4ème mot	
15 12 1	1 10 0	15 8	7 0	15 0	15 10	9 0
AK Numéro de paramètre Sous-indice Indice de page		Valeur de paramètre	Drive Object	Indice		
0 1 1 1 0	001101001000	00000001	00000000	0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0	1 1 1 1 1 1	00000000010

Figure 6-16 Télégramme pour affecter MARCHE/ARRET1 à DI 2

Exemple d'application "Lecture et écriture de paramètres"

Voir: Exemples d'application (https://support.industry.siemens.com/cs/ww/en/ps/13217/ae).

6.2.10.4 Extension des télégrammes et modification de la connexion des signaux

Si vous avez sélectionné un télégramme, le variateur connecte les signaux correspondants à l'interface du bus de terrain. Ces connexions sont normalement protégées contre les modifications. Elles peuvent être modifiées par un paramétrage adéquat dans le variateur.

Extension du télégramme

Chaque télégramme peut être étendu en y "suffixant" des signaux supplémentaires.

Procédure

Pour étendre un télégramme, procédez comme suit :

- 1. A l'aide de STARTER ou d'un pupitre opérateur, réglez le paramètre p0922 = 999.
- 2. Réglez le paramètre p2079 sur la valeur appropriée du télégramme correspondant.
- 3. Connectez des mots d'émission PZD et des mots de réception PZD supplémentaires via les paramètres r2050 et p2051 avec les signaux de votre choix.
- Vous avez étendu le télégramme.

Paramètre	Description					
p0922	PROFIdrive Sélection des télégrammes					
	999: Configuration de télégramme libre					
p2079	PROFIdrive PZD Sélection de télégramme étendue					
	1: Télégramme standard 1, PZD-2/2 20: Télégramme standard 20, PZD-2/6 352: Télégramme SIEMENS 352, PZD-6/6 353: Télégramme SIEMENS 353, PZD-2/2, PKW-4/4 354: Télégramme SIEMENS 354, PZD-6/6, PKW-4/4					
r2050[011]	PROFIdrive Réception de PZD Mot Sortie connecteur pour la connexion des PZD reçus du contrôleur PROFIdrive (consignes) au format mot.					
p2051[016]	PROFIdrive Emission de PZD Mot Sélection des PZD à envoyer au contrôleur PROFIdrive (mesures) au format mot.					

Sélection des PZD à envoyer au contrôleur PROFIdrive (mesures) au format mot. Des informations complémentaires figurent dans les diagrammes fonctionnels 2468 et 2470 du Manuel de listes.

Libre choix de la connexion des signaux du télégramme

Les signaux du télégramme peuvent être connectés librement.

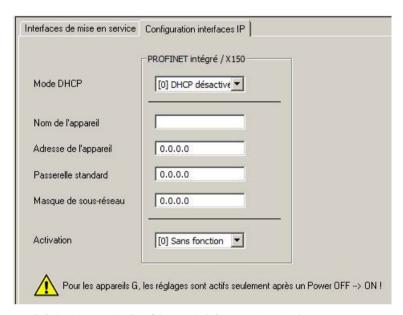
Procédure

Pour modifier la connexion des signaux d'un télégramme, procédez comme suit :

- 1. A l'aide de STARTER ou d'un pupitre opérateur, réglez le paramètre p0922 = 999.
- 2. A l'aide de STARTER ou d'un pupitre opérateur, réglez le paramètre p2079 = 999.
- 3. Connectez des mots d'émission PZD et des mots de réception PZD supplémentaires via les paramètres r2050 et p2051 avec les signaux de votre choix.

Vous avez librement connecté les signaux transmis dans le télégramme.

Paramètre	Descri	Description				
p0922	PROF	PROFIdrive Sélection des télégrammes				
	999:	Configuration de télégramme libre				
p2079	PROFIdrive PZD Sélection de télégramme étendue					
	999:	Configuration de télégramme libre				
r2050[011]	PROFIdrive Réception de PZD Mot Sortie connecteur pour la connexion des PZD reçus du contrôleur PROFIdrive (consignes) au format mot.					
p2051[016]		PROFIdrive Emission de PZD Mot Sélection des PZD à envoyer au contrôleur PROFIdrive (mesures) au format mot.				


Des informations complémentaires figurent dans les diagrammes fonctionnels 2468 et 2470 du Manuel de listes.

6.2.10.5 Configuration de l'interface IP

Configuration de la communication avec STARTER

STARTER offre un masque pour paramétrer la communication avec la commande.

Ouvrez le masque de dialogue "Control_Unit/Communication/Interface MES" et sélectionnez l'onglet "Configuration des interfaces IP"

- Réglez le mode DHCP sur 0 (réglage d'usine).
- Saisissez le nom d'appareil, l'adresse, la passerelle et l'adresse pour le masque de sousréseau.
- Dans le champ Activation, sélectionnez "[2] Enregistrer et activer la configuration".
- Pour activer les réglages, mettez le variateur hors puis à nouveau sous tension.

Vous pouvez aussi saisir ou consulter les données par l'intermédiaire de la liste pour experts. Les paramètres correspondants se trouvent dans la plage de numéros r8909 à p8925

6.2.10.6 Transmission directe

La "communication inter-esclave" est également désignée par "communication inter-esclave" ou "Data Exchange Broadcast". Les esclaves échangent des données par ce moyen sans participation directe du maître.

Pour de plus amples informations, consulter : "Manuels pour votre variateur dans la description fonctionnelle Bus de terrain (Page 424)".

6.2.10.7 Lecture et écriture acycliques des paramètres de variateur

Le variateur prend en charge l'écriture et la lecture de paramètres via la communication acyclique :

- Pour PROFIBUS : Jusqu'à 240 octets par requête d'écriture ou de lecture via le bloc de données 47
- Pour PROFINET : Requêtes d'écriture ou de lecture via B02E hex et B02F hex

De plus amples informations sur la communication acyclique figurent dans la description fonctionnelle Bus de terrain, voir aussi la section : Manuels pour le variateur (Page 424).

6.2.11 Commande via d'autres bus de terrain

6.2.11.1 Modbus RTU

Réglages pour Modbus RTU

Paramètre	Signification			
p2020	Vitesse de transmission de l'interface de bus de terrain (réglage d'usine : 7)	5 : 4800 bauds	10 : 76 800 bauds	
		6 : 9600 bauds	11 : 93 750 bauds	
		7 : 19 200 bauds	12 : 115 200 bauds	
		8 : 38 400 bauds	13 : 187 500 bauds	
		9 : 57 600 bauds		
p2021 Adresse de l'interface du bus de terrain (réglage d'usine : 1)			1)	
	Adresses valides : 1 à 247.			
	Le paramètre n'est effectif que si l'adresse 0 est réglée sur le commutateur d'adresses de la Control Unit.			
	Une modification ne prend effet qu'après la mise hors puis sous tension du variateur.			
p2024	Interface de bus de terrain Temps (réglage d'usine : [0]	[0] Temps maximum autorisé de traitement de télégramme de l'esclave Modbus		
	1000 ms, [2] 0 ms)	[2] Temps de pause entre deux télégrammes		
r2029	Statistique d'erreurs de l'interface de bus de terrain	[0] Nombre de télé- grammes corrects	[4] Nombre d'erreurs de parité	
		[1] Nombre de télé- grammes rejetés	[5] Nombre d'erreurs de caractères de début	
		[2] Nombre d'erreurs de trame	[6] Nombre d'erreurs de total de contrôle	
		[3] Nombre d'erreurs Overrun	[7] Nombre d'erreurs de longueur	
p2030 = 2	Interface de bus de terrain Sélection du protocole : Modbus RTU			
p2031	Interface de bus de terrain Parité Modbus (réglage d'usine : 2)	0 : No Parity 1 : Odd Parity 2 : Even Parity		
p2040	Interface de bus de terrain Ter	mps d'enveloppe (réglage d'	usine : 100 ms)	
	p2040 = 0 : La surveillance est désactivée			

Mot de commande 1 (STW1)

Bit	Signification	Explication	Connexion des signaux dans le variateur	
0	0 = ARRET1	= ARRET1 Le moteur freine avec le temps de descente p1121 du générateur de rampe. A l'arrêt, le variateur met le moteur hors tension.		
	0 → 1 = MARCHE	Le variateur passe à l'état "Prêt à fonction- ner". Si, en outre, le bit 3 = 1, le variateur met le moteur en marche.		
1	0 = ARRET2	Mettre immédiatement le moteur hors tension. Le moteur s'arrête ensuite par ralentissement naturel.	p0844[0] = r2090.1	
	1 = pas d'ARRET2	La mise en marche du moteur (ordre MARCHE) est possible.		
2	0 = arrêt rapide (ARRET3)	Arrêt rapide : le moteur freine jusqu'à l'immobilisation avec le temps de descente ARRET3 p1135.	p0848[0] = r2090.2	
	1 = pas d'arrêt rapide (ARRET3)	La mise en marche du moteur (ordre MARCHE) est possible.		
3	0 = Bloquer le fonctionnement	Mettre immédiatement le moteur hors tension (supprimer les impulsions).	p0852[0] = r2090.3	
	1 = Débloquer le fonctionne- ment	Mettre le moteur sous tension (déblocage des impulsions possible).		
4	0 = Bloquer le générateur de rampe	Le variateur met sa sortie de générateur de rampe immédiatement à 0.	p1140[0] = r2090.4	
	1 = Ne pas bloquer le généra- teur de rampe	Le déblocage du générateur de rampe est possible.		
5	0 = Geler le générateur de rampe	La sortie du générateur de rampe reste à la valeur actuelle.	p1141[0] = r2090.5	
	1 = Débloquer le générateur de rampe	La sortie du générateur de rampe suit la consigne.		
6	0 = Bloquer la consigne	Le variateur freine le moteur avec le temps de descente p1121 du générateur de rampe.	p1142[0] = r2090.6	
	1 = Débloquer la consigne	Le moteur accélère jusqu'à la consigne avec le temps de montée p1120.		
7	0 → 1 = Acquitter les défauts	Acquitter le défaut. Si l'ordre ON est encore présent, le variateur passe à l'état "Blocage d'enclenchement".	p2103[0] = r2090.7	
8, 9	Réservé			

Bit	Signification	Explication	Connexion des signaux dans le variateur
10	0 = Pas de pilotage par AP	Le variateur ignore les données process du bus de terrain.	p0854[0] = r2090.10
	1 = Pilotage par AP	Commande via bus de terrain, le variateur reprend les données process du bus de terrain.	
11	1 = Inversion de sens	Inverser la consigne dans le variateur.	p1113[0] = r2090.11
12	Réservé		
13	1 = PotMot Augmenter	Augmenter la consigne enregistrée dans le potentiomètre motorisé	p1035[0] = r2090.13
14	1 = PotMot Diminuer	Diminuer la consigne enregistrée dans le potentiomètre motorisé.	p1036[0] = r2090.14
15	Réservé		`

Mot d'état 1 (ZSW1)

Bit	Signification	Remarques	Connexion des signaux dans le variateur
0	1 = Prêt à l'enclenchement	L'alimentation en courant est mise en marche, le système électronique est initialisé, les impulsions sont bloquées.	p2080[0] = r0899.0
1	1 = Prêt au fonctionnement	Le moteur est en marche (MARCHE/ARRET1 = 1), aucun défaut n'est actif. Avec l'ordre "Débloquer le fonctionne- ment" (STW1.3), le variateur met le moteur en marche.	p2080[1] = r0899.1
2	1 = Fonctionnement débloqué	Le moteur suit la consigne. Voir Mot de commande 1, bit 3.	p2080[2] = r0899.2
3	1 = Défaut actif	Un défaut est présent dans le variateur. Acquitter le défaut par STW1.7.	p2080[3] = r2139.3
4	1 = ARRET2 inactif	L'arrêt par ralentissement naturel n'est pas actif.	p2080[4] = r0899.4
5	1 = ARRET3 inactif	L'arrêt rapide n'est pas actif.	p2080[5] = r0899.5
6	1 = Blocage d'enclenchement actif	La mise en marche du moteur est seulement possible après un ARRET1 et un nouvel ordre de MARCHE.	p2080[6] = r0899.6
7	1 = Alarme active	Le moteur reste enclenché ; aucun acquittement nécessaire.	p2080[7] = r2139.7
8	1 = Ecart de vitesse à l'intérieur de la plage de tolérance	Ecart consigne/mesure à l'intérieur de la plage de tolérance.	p2080[8] = r2197.7
9	1 = Commande demandée	La demande de prise en charge de la com- mande du variateur est adressée au système d'automatisation.	p2080[9] = r0899.9

Bit	Signification	Remarques	Connexion des signaux dans le variateur
10	1 = Vitesse de comparaison atteinte ou dépassée	La vitesse est supérieure ou égale à la vitesse maximale correspondante.	p2080[10] = r2199.1
11	1 = Limite de couple non atteinte	La valeur de comparaison pour le courant ou le couple est dépassée par le bas.	p2080[11] = r0056.13 / r1407.7
12	Réservé		p2080[12] = r0899.12
13	0 = Alarme surchauffe du moteur		p2080[13] = r2135.14
14	1 = Le moteur tourne vers la droite	Mesure interne au variateur > 0.	p2080[14] = r2197.3
	0 = Le moteur tourne vers la gauche	Mesure interne au variateur < 0.	
15	0 = Alarme surcharge ther- mique variateur		p2080[15] = r2135.15

¹⁾ Si la commutation s'effectue d'un autre télégramme sur le télégramme 20, l'affectation de ce dernier est conservée.

Pour plus d'informations...

Vous trouverez de plus amples informations sur Modbus RTU dans la description fonctionnelle "Bus de terrain" : Téléchargement des manuels (http://support.automation.siemens.com/WW/view/fr/48213081/133300).

6.2.11.2 USS

Réglages pour USS

Paramètre	Signification		
p2020	Vitesse de transmission de l'interface de bus de terrain (réglage d'usine : 8)	4 : 2400 bauds 5 : 4800 bauds 6 : 9600 bauds 7 : 19 200 bauds 8 : 38 400 bauds	9 : 57 600 bauds 10 : 76 800 bauds 11 : 93 750 bauds 12 : 115 200 bauds 13 : 187 500 bauds
p2021	Adresse de l'interface du bus	de terrain (réglage d'usine :	0)
	Adresses valides : 0 à 30.		
	Le paramètre n'est effectif que d'adresses de la Control Unit.	e si l'adresse 0 est réglée su	r le commutateur
	Une modification ne prend effe	et qu'après la mise hors puis	sous tension du variateur.
p2022	Interface de bus de terrain US	S Nombre de PZD (réglage	d'usine : 2)
p2023	Interface de bus de terrain US	S Nombre de PKW (ré-	0 : PKW 0 mots
	glage d'usine : 127)		3 : PKW 3 mots
			4 : PKW 4 mots
			127 : PKW variable
p2024	Interface de bus de terrain Temps (réglage d'usine : [0] 1000 ms, [1] 0 ms, [1] Délai inter-caractère		
	[2] 0 ms)	[2] Temps de pause entre deux télégrammes	
r2029	Statistique d'erreurs de l'interface de bus de terrain	[0] Nombre de télé- grammes corrects	[4] Nombre d'erreurs de parité
		[1] Nombre de télé- grammes rejetés	[5] Nombre d'erreurs de caractères de début
		[2] Nombre d'erreurs de trame	[6] Nombre d'erreurs de total de contrôle
		[3] Nombre d'erreurs Overrun	[7] Nombre d'erreurs de longueur
p2030 = 1	Interface de bus de terrain Sélection du protocole : USS		
p2031	Interface de bus de terrain Parité Modbus (réglage d'usine : 2)	0 : No Parity 1 : Odd Parity 2 : Even Parity	
p2040	Interface de bus de terrain Temps d'enveloppe (réglage d'usine : 100 ms)		
p2040 = 0 : La surveillance est désactivée			

Mot de commande 1 (STW1)

Bit	Signification	Explication	Connexion des signaux dans le variateur	
0	0 = ARRET1	Le moteur freine avec le temps de descente p1121 du générateur de rampe. A l'arrêt, le variateur met le moteur hors tension.	rampe. A l'arrêt, le r2090.0	
	0 → 1 = MARCHE	Le variateur passe à l'état "Prêt à fonction- ner". Si, en outre, le bit 3 = 1, le variateur met le moteur en marche.		
1	0 = ARRET2	Mettre immédiatement le moteur hors tension. Le moteur s'arrête ensuite par ralentissement naturel.	p0844[0] = r2090.1	
	1 = pas d'ARRET2	La mise en marche du moteur (ordre MARCHE) est possible.		
2	0 = arrêt rapide (ARRET3)	Arrêt rapide : le moteur freine jusqu'à l'immobilisation avec le temps de descente ARRET3 p1135.	p0848[0] = r2090.2	
	1 = pas d'arrêt rapide (ARRET3)	La mise en marche du moteur (ordre MARCHE) est possible.		
3	0 = Bloquer le fonctionne- ment	Mettre immédiatement le moteur hors tension (supprimer les impulsions).	p0852[0] = r2090.3	
	1 = Débloquer le fonction- nement	Mettre le moteur sous tension (déblocage des impulsions possible).		
4	0 = Bloquer le générateur de rampe	Le variateur met sa sortie de générateur de rampe immédiatement à 0.	p1140[0] = r2090.4	
	1 = Ne pas bloquer le géné- rateur de rampe	Le déblocage du générateur de rampe est possible.		
5	0 = Geler le générateur de rampe	La sortie du générateur de rampe reste à la valeur actuelle.	p1141[0] = r2090.5	
	1 = Débloquer le générateur de rampe	La sortie du générateur de rampe suit la consigne.		
6	0 = Bloquer la consigne	Le variateur freine le moteur avec le temps de descente p1121 du générateur de rampe.	p1142[0] = r2090.6	
	1 = Débloquer la consigne	Le moteur accélère jusqu'à la consigne avec le temps de montée p1120.		
7	0 → 1 = Acquitter les défauts	Acquitter le défaut. Si l'ordre ON est encore présent, le variateur passe à l'état "Blocage d'enclenchement".	p2103[0] = r2090.7	
8, 9	Réservé			

Bit	Signification	Explication	Connexion des signaux dans le variateur
10	0 = Pas de pilotage par AP	Le variateur ignore les données process du bus de terrain.	p0854[0] = r2090.10
	1 = Pilotage par AP	Commande via bus de terrain, le variateur reprend les données process du bus de terrain.	
11	1 = Inversion de sens	Inverser la consigne dans le variateur.	p1113[0] = r2090.11
12	Réservé		
13	1 = PotMot Augmenter	Augmenter la consigne enregistrée dans le potentiomètre motorisé	p1035[0] = r2090.13
14	1 = PotMot Diminuer	Diminuer la consigne enregistrée dans le potentiomètre motorisé.	p1036[0] = r2090.14
15	Réservé	<u> </u>	

Mot d'état 1 (ZSW1)

Bit	Signification	Remarques	Connexion des signaux dans le variateur
0	1 = Prêt à l'enclenchement	L'alimentation en courant est mise en marche, le système électronique est initialisé, les im- pulsions sont bloquées.	p2080[0] = r0899.0
1	1 = Prêt au fonctionnement	Le moteur est en marche (MARCHE/ARRET1 = 1), aucun défaut n'est actif. Avec l'ordre "Débloquer le fonctionne- ment" (STW1.3), le variateur met le moteur en marche.	p2080[1] = r0899.1
2	1 = Fonctionnement débloqué	Le moteur suit la consigne. Voir Mot de commande 1, bit 3.	p2080[2] = r0899.2
3	1 = Défaut actif	Un défaut est présent dans le variateur. Acquitter le défaut par STW1.7.	p2080[3] = r2139.3
4	1 = ARRET2 inactif	L'arrêt par ralentissement naturel n'est pas actif.	p2080[4] = r0899.4
5	1 = ARRET3 inactif	L'arrêt rapide n'est pas actif.	p2080[5] = r0899.5
6	1 = Blocage d'enclenche- ment actif	La mise en marche du moteur est seulement possible après un ARRET1 et un nouvel ordre de MARCHE.	p2080[6] = r0899.6
7	1 = Alarme active	Le moteur reste enclenché ; aucun acquittement nécessaire.	p2080[7] = r2139.7
8	1 = Ecart de vitesse à l'inté- rieur de la plage de tolé- rance	Ecart consigne/mesure à l'intérieur de la plage de tolérance.	p2080[8] = r2197.7
9	1 = Commande demandée	La demande de prise en charge de la com- mande du variateur est adressée au système d'automatisation.	p2080[9] = r0899.9

6.2 Commande du variateur

Bit	Signification	Remarques	Connexion des signaux dans le variateur
10	1 = Vitesse de comparaison atteinte ou dépassée	La vitesse est supérieure ou égale à la vitesse maximale correspondante.	p2080[10] = r2199.1
11	1 = Limite de couple non atteinte	La valeur de comparaison pour le courant ou le couple est dépassée par le bas.	p2080[11] = r0056.13 / r1407.7
12	Réservé		p2080[12] = r0899.12
13	0 = Alarme surchauffe du moteur		p2080[13] = r2135.14
14	1 = Le moteur tourne vers la droite	Mesure interne au variateur > 0.	p2080[14] = r2197.3
	0 = Le moteur tourne vers la gauche	Mesure interne au variateur < 0.	
15	0 = Alarme surcharge ther- mique variateur		p2080[15] = r2135.15

¹⁾ Si la commutation s'effectue d'un autre télégramme sur le télégramme 20, l'affectation de ce dernier est conservée.

Pour plus d'informations...

Vous trouverez de plus amples informations sur USS dans la description fonctionnelle "Bus de terrain" : Téléchargement des manuels (http://support.automation.siemens.com/WW/view/fr/48213081/133300).

6.2.11.3 CANopen

Les réglages les plus importants pour CANopen

Paramètre	Significati	Signification			
p8620	CAN ID de nœud (réglage d'usine : 126)				
	Adresses valides : 1 à 247.				
	Le param de la Con		ue si l'adresse 0 est r	églée sur le commu	ıtateur d'adresses
	Une modi	fication ne prend e	effet qu'après la mise	hors puis sous tens	ion du variateur.
p8622	CAN Déb (réglage d	i t binaire l'usine : 6)	0 : 1 Mbit/s 1 : 800 kbit/s 2 : 500 kbit/s	3 : 250 kbit/s 4 : 125 kbit/s 5 : 50 kbit/s	6 : 20 kbit/s 7 : 10 kbit/s
p8700 à	CAN Rec	eive PDO n	[0] = COB ID du PD	0	
p8707	(n = 1 8	3)	[1] = Transmission ty	pe du PDO	
p8710 à p8717		eive Mapping O n (n = 1 à 8)	[0] = Objet mappé 1	à [3] = Objet mappé	é 4
p8720 à p8727	CAN Transmit PDO n (n = 1 à 8)		[0] = COB ID du PDO [1] = Transmission type du PDO [2] = Inhibit Time (en 100 μs) [3] = Réservé [4] = Event Timer (en ms)		
p8730 à p8737	CAN Transmit Mapping pour TPDO n (n = 1 à 8)		[0] = Objet mappé 1 à [3] = Objet mappé 4		
p8744	CAN PDC	Mapping Confi-	1 : Predefined Connection Set		
	guration (réglage o	l'usine : 2)	2 : Mappage PDO libre		
r8784	CAN Mot d'état	 .00 Prêt à l'enclenchement .01 Prêt à fonctionner .02 Fonctionnement débloqué .03 Défaut actif .04 Pas de ralentissement naturel actif .05 Pas d'arrêt rapide actif .06 Blocage d'enclenchement actif .07 Alarme active 		.09 Pilotage dem .10 Objectif atteir .11 Limite de cou .12 Vitesse égale .14 Librement co	nt iple atteinte
r8795	CAN Mot de com- mande	.00 MARCHE / ARRET1 .01 Ne pas activer d'arrêt par ralentis- sement naturel .02 Ne pas activer d'arrêt rapide .03 Débloquer le fonctionnement .04 Débloquer le générateur de rampe .05 Geler la reprise du générateur de rampe		.07 Acquitter le d .08 Arrêt .11 Librement co	nnectable

Pour plus d'informations...

Vous trouverez de plus amples informations sur CANopen dans la description fonctionnelle "Bus de terrain" : Téléchargement des manuels

(http://support.automation.siemens.com/WW/view/fr/48213081/133300).

6.2.11.4 Ethernet/IP

Réglages pour Modbus RTU

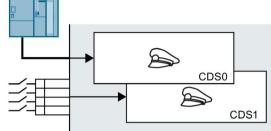
Paramètre	Signification			
p2030 = 10	Interface de bus de terrain Sélection du protocole : Ethernet/IP			
p8920	PN Name of Station			
p8921	PN IP Address (réglage d'usin	e:0)		
p8922	PN Default Gateway (réglage	d'usine : 0)		
p8923	PN Subnet Mask (réglage d'us	sine : 0)		
p8924	PN DHCP Mode (réglage	0 : DHCP désactivé		
	d'usine : 0)	2 : DHCP activé, identificati	ion via l'adresse MAC	
		3 : DHCP activé, identificati	ion via Name of Station	
p8925	PN Configuration d'interface	0 : Sans fonction	s fonction	
	(réglage d'usine : 0)	1 : Réservé		
	2 : Enregistrer et activer la configuration			
		3 : Supprimer la configurati	on	
p8980	Profil Ethernet/IP (réglage d'us	sine : 0)	0 : SINAMICS	
	Une modification ne prend effet qu'après la mise hors puis sous tension du variateur.		1 : ODVA AC/DC	
p8982	Ethernet/IP ODVA Vitesse de rotation Mise à l'échelle (réglage d'usine : 128)			
	Une modification ne prend effet qu'après la mise hors puis sous tension du variateu		sous tension du variateur.	
	123 : 32	127 : 2	131 : 0,125	
	124 : 16	128 : 1	132 : 0,0625	
	125 : 8	129 : 0,5	133 : 0,03125	
	126 : 4	130 : 0,25		

Pour plus d'informations...

Vous trouverez de plus amples informations sur USS dans la description fonctionnelle "Bus de terrain" : Téléchargement des manuels

(http://support.automation.siemens.com/WW/view/fr/48213081/133300).

6.2.12 Commutation de la commande du variateur (jeu de paramètres de commande)


Dans certaines applications`, il doit être possible de commuter la maîtrise de commande pour pouvoir utiliser le variateur.

Exemple : Le moteur doit être commandé sur site soit via le bus de terrain depuis une commande centralisée, soit via le bornier depuis un coffret électrique.

Jeu de paramètres de commande (Control Data Set, CDS)

Vous pouvez définir différents types de commande du variateur et passer de l'un à l'autre. Vous pouvez p. ex., comme décrit plus haut, commander le variateur via le bus de terrain ou par le bornier.

Les paramètres du variateur, qui sont affectés à une maîtrise de commande précise, sont appelés jeu de paramètres de commande.

Vous sélectionnez le jeu de paramètres de commande avec le paramètre p0810. Connectez pour ce faire le paramètre p0810 à l'ordre de commande voulu, p. ex. à une entrée TOR.

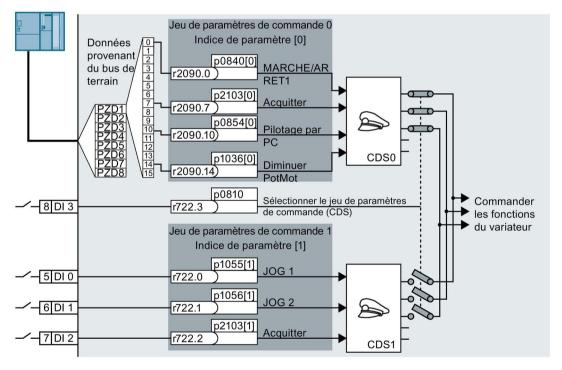
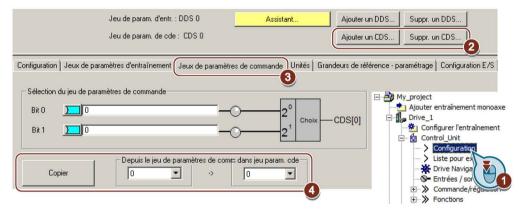


Figure 6-17 Exemple : Commutation entre commande par bornier et commande via PROFIBUS ou PROFINET

6.2 Commande du variateur


Dans le Manuel de listes figure une vue d'ensemble de tous les paramètres qui font partie des jeux de paramètres de commande.

Remarque

La commutation du jeu de paramètres de commande dure environ 4 ms.

Réglages étendus

Pour modifier le nombre de jeux de paramètres de commande dans STARTER, vous devez ouvrir votre projet STARTER hors ligne.

- ① En sélectionnant "Configuration" dans l'arborescence du projet de STARTER, vous passez dans l'édition des jeux de paramètres de commande.
- Si vous avez besoin de plus de deux jeux de paramètres de commande, ces boutons permettent d'ajouter ou de supprimer des jeux de paramètres de commande.
- ③, ④ Il existe une fonction copie pour simplifier la mise en service de plusieurs jeux de paramètres de commande dans l'onglet "Jeux de paramètres de commande".

Figure 6-18 Modifier les jeux de paramètres de commande dans STARTER

Paramètre	Description
p0010 = 15.	Mise en service de l'entraînement : Jeux de paramètres
p0170	Nombre de jeux de paramètres de commande (réglage d'usine : 2) p0170 = 2, 3 ou 4
p0010 = 0.	Mise en service de l'entraînement : Prêt
r0050	Affichage du numéro de jeu de paramètres de commande actuellement actif
p0809[0]	Numéro du jeu de paramètres de commande qui est copié (source)
p0809[1]	Numéro du jeu de paramètres de commande dans lequel la copie est effectuée (cible)
p0809[2] = 1	La procédure de copie est lancée A la fin de la procédure de copie, le variateur règle p0809[2] = 0.
p0810	Sélection du jeu de paramètres de commande CDS bit 0
p0811	Sélection du jeu de paramètres de commande CDS bit 1
r0050	Affichage du numéro de jeu de paramètres de commande actuellement actif

6.3 Consignes

6.3.1 Vue d'ensemble

Le variateur obtient sa consigne principale via la source de consigne. La consigne principale spécifie normalement la vitesse du moteur.

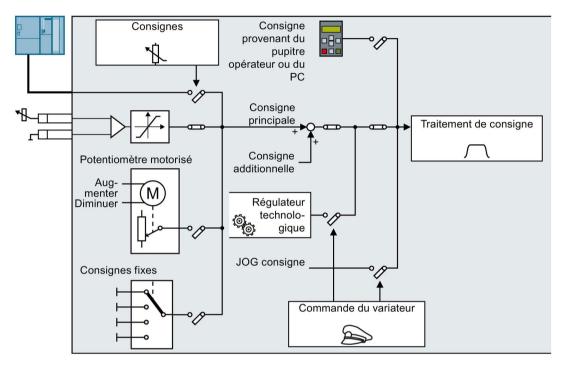


Figure 6-19 Sources de consigne du variateur

Pour la source de consigne de la consigne principale, vous avez les possibilités suivantes :

- Entrée analogique du variateur.
- Interface de bus de terrain du variateur.
- Potentiomètre motorisé simulé dans le variateur.
- Consignes fixes enregistrées dans le variateur.

Vous disposez des mêmes sélections possibles pour la source de consigne de la consigne additionnelle.

La commande du variateur commute de la consigne principale à d'autres consignes dans les conditions suivantes :

- Si le régulateur technologique est activé et connecté en conséquence, la sortie du régulateur technologique spécifie la vitesse du moteur.
- Lorsque le mode JOG est activé.
- En cas de commande depuis un pupitre opérateur ou l'outil PC STARTER.

6.3.2 Entrée analogique en tant que source de consigne

Connexion de l'entrée analogique

Si vous avez sélectionné une affectation par défaut sans fonction de l'entrée analogique, vous devez connecter le paramètre de la consigne principale avec une entrée analogique.

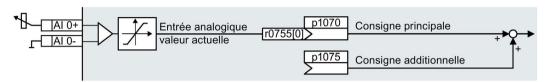


Figure 6-20 Exemple : Entrée analogique 0 en tant que source de consigne

Tableau 6-18 Réglage avec entrée analogique 0 en tant que source de consigne

Paramètre	Remarque
p1070 = 755[0]	Consigne principale Connecter la consigne principale à l'entrée analogique 0
p1075 = 755[0]	Consigne additionnelle Connecter la consigne additionnelle à l'entrée analogique 0

Vous devez adapter l'entrée analogique au signal raccordé, par ex. ± 10 V ou 4 ... 20 mA. Vous trouverez de plus amples informations à la section : Entrée analogique (Page 144).

6.3.3 Spécification de consigne par le bus de terrain

Connexion du bus de terrain à la consigne principale

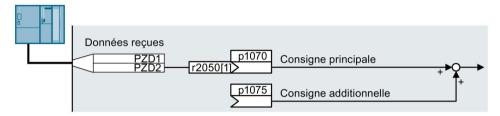


Figure 6-21 Bus de terrain en tant que source de consigne

La plupart des télégrammes standard reçoivent la consigne de vitesse en tant que deuxième donnée process PZD2.

Tableau 6- 19 Réglage du bus de terrain en tant que source de consigne

Paramètre	Remarque
p1070 = 2050[1]	Consigne principale
	Connecter la consigne principale à la donnée process PZD2 du bus de terrain.
p1075 = 2050[1]	Consigne additionnelle
	Connecter la consigne additionnelle à la donnée process PZD2 du bus de ter-
	rain.

6.3.4 Potentiomètre motorisé en tant que source de consigne

La fonction "Potentiomètre motorisé" simule un potentiomètre électromécanique. La valeur de sortie du potentiomètre motorisé peut être réglée via les signaux de commande "Augmenter" et "Diminuer".

Connexion du potentiomètre motorisé (PotMot) à la source de consigne

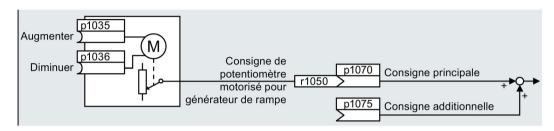


Figure 6-22 Potentiomètre motorisé en tant que source de consigne

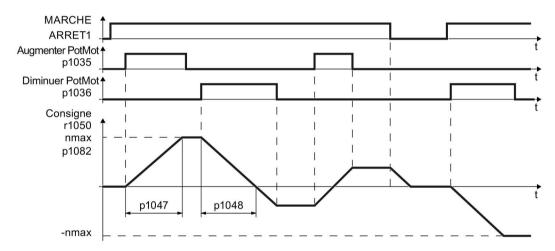


Figure 6-23 Diagramme fonctionnel du potentiomètre motorisé

Tableau 6-20 Réglage de base du potentiomètre motorisé

Paramètre	Description		
p1035	Potentiomètre motorisé Augmenter consigne	Connectez ces ordres avec les signaux de votre choix.	
p1036	Potentiomètre motorisé Réduire consigne		
p1040	PotMot Valeur de départ (réglage d'usine : 0 tr/min) Détermine la valeur de départ [tr/min] qui prend effet à la mise en marche du moteur.		
p1047	PotMot Temps de montée (réglage d'usine : 10 s)		
p1048	PotMot Temps de descente (réglage d'usine : 10 s)		
r1050	Consigne de potentiomètre motorisé en aval du générateur de rampe		
p1070 = 1050	Consigne principale		

Tableau 6-21 Réglage étendu du potentiomètre motorisé

Paramètre	Description		
p1030	PotMot Configuration (réglage d'usine : 00110 bin)		
	.00	Enregistrement actif = 0 : Après la mise sous tension du moteur, la consigne est = p1040 = 1 : Après la mise hors tension du moteur, le variateur enregistre la consigne. Après la mise sous tension, la consigne = valeur enregistrée	
	.01	Mode automatique Générateur de rampe actif (état logique 1 via BI : p1041) = 0 : Temps de montée/descente = 0 = 1 : Avec générateur de rampe	
		En mode manuel (p1041 = 0), le générateur de rampe est toujours actif.	
	.02	Lissage initial actif 1 : Avec lissage initial. Le lissage initial permet d'obtenir une réaction plus sensible aux petites variations de consigne	
	.03	Mémorisation en NVRAM active 1 : Si bit 00 = 1, la consigne est conservée en cas de coupure du réseau	
	.04	Générateur de rampe toujours actif 1 : Le variateur calcule le générateur de rampe même lorsque le moteur est hors tension	
p1037		ot Vitesse maximale (réglage d'usine : 0 tr/min) ration automatique à la mise en service	
p1038	PotMot Vitesse minimale (réglage d'usine : 0 tr/min) Affectation automatique à la mise en service		
p1039	Potentiomètre motorisé Inversion (réglage d'usine : 0) Source de signal pour inversion de la vitesse minimale ou maximale		
p1041	Potentiomètre motorisé manuel/automatique (réglage d'usine : 0) Source de signal pour la commutation de manuel à automatique		
p1043	Poten	tiomètre motorisé Appliquer la valeur de forçage (réglage d'usine : 0)	
		be de signal pour l'application de la valeur de forçage. Le potentiomètre motorisé que la valeur de forçage p1044 lors d'un changement de signal p1043 = $0 \rightarrow 1$.	
p1044	PotMot Valeur de forçage (réglage d'usine : 0) Source de signal pour la valeur de forçage.		

De plus amples informations sur le potentiomètre motorisé figurent dans le diagramme fonctionnel 3020 du Manuel de listes.

6.3.5 Vitesse fixe en tant que source de consigne

Dans nombre d'applications, il suffit de faire tourner le moteur à une vitesse constante après la mise en marche ou de commuter entre différentes vitesses fixes.

Exemple : Un convoyeur à bande fonctionne après la mise en marche uniquement à deux vitesses différentes.

Connexion des vitesses fixes à la consigne principale

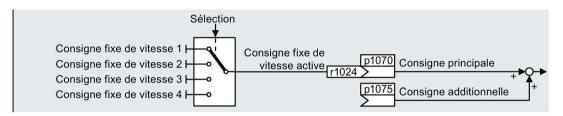


Figure 6-24 Vitesses fixes en tant que source de consigne

Tableau 6-22 Réglage de la vitesse fixe en tant que source de consigne

Paramètre	Remarque
p1070 = 1024	Consigne principale
	Connecter la consigne principale aux vitesses fixes.

Sélection directe ou binaire de la consigne fixe

Le variateur distingue deux méthodes pour la sélection des consignes fixes :

1. Sélection directe:

vous réglez 4 consignes fixes différentes. En additionnant une ou plusieurs des quatre consignes fixes, on obtient jusqu'à 16 consignes différentes.

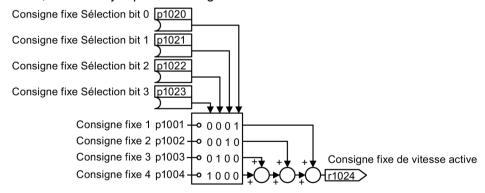


Figure 6-25 Diagramme fonctionnel simplifié lors de la sélection directe des consignes fixes

De plus amples informations sur la sélection directe figurent dans le diagramme fonctionnel 3011 du Manuel de listes.

2. Sélection binaire :

vous réglez 16 consignes fixes différentes. En combinant quatre bits de sélection, vous sélectionnez exactement une de ces 16 consignes fixes.

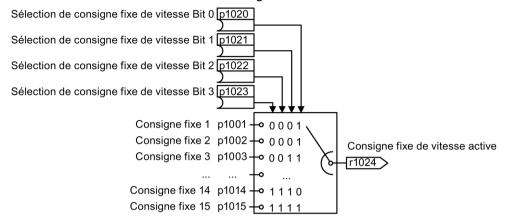


Figure 6-26 Diagramme fonctionnel simplifié lors de la sélection binaire des consignes fixes

De plus amples informations sur la sélection binaire figurent dans le diagramme fonctionnel 3010 du Manuel de listes.

Paramètres de réglage des valeurs de consigne fixe

Paramètre	Description				
p1001	Consigne fixe de vitesse 1 (réglage d'usine : 0 tr/min)				
p1002	Consigne fixe de vitesse 2 (réglage d'usine : 0 tr/min)				
p1015	Consigne fixe de vitesse 15 (réglage d'usine : 0 tr/min)				
p1016	Consigne fixe de vitesse Mode (réglage d'usine : 1)				
	1: directe				
	2: binaire				
p1020	Sélection de la consigne fixe de vitesse Bit 0 (réglage d'usine : 0)				
p1021	Sélection de la consigne fixe de vitesse Bit 1 (réglage d'usine : 0)				
p1022	Sélection de la consigne fixe de vitesse Bit 2 (réglage d'usine : 0)				
p1023	Sélection de la consigne fixe de vitesse Bit 3 (réglage d'usine : 0)				
r1024	Consigne fixe de vitesse active				
r1025.0	Consigne fixe de vitesse Etat				
	Etat log. 1 La consigne fixe de vitesse est sélectionnée.				

6.3 Consignes

Exemple : sélection directe de deux consignes fixes

Le moteur doit fonctionner avec différentes vitesses comme suit :

- Le signal à l'entrée TOR 0 met le moteur en marche et l'accélère à 300 tr/min.
- Le signal à l'entrée TOR 1 accélère le moteur à 2000 tr/min.
- Les signaux aux deux entrées TOR 1 accélèrent le moteur à 2300 tr/min.

Tableau 6-23 Réglages pour l'exemple

Paramètre	Description		
p1001 = 300.000	Consigne fixe de vitesse 1 en [tr/min]		
p1002 = 2000.000	Consigne fixe de vitesse 2 en [tr/min]		
p0840 = 722.0	MARCHE/ARRET1 : Mise en marche du moteur avec entrée TOR 0		
p1070 = 1024	Consigne principale : Connexion de la consigne principale à la consigne fixe de vitesse.		
p1020 = 722.0	Sélection de la consigne fixe de vitesse Bit 0 : Connexion de la consigne fixe 1 avec entrée TOR 0 (DI 0).		
p1021 = 722.1	Sélection de la consigne fixe de vitesse Bit 1 : Connexion de la consigne fixe 2 à l'entrée TOR 1 (DI 1).		
p1016 = 1	Consigne fixe de vitesse Mode : Sélection directe des consignes fixes.		

Tableau 6-24 Consignes fixes résultantes pour l'exemple ci-dessus

Consigne fixe sélectionnée par	Consigne résultante
DI 0 = 0	Le moteur s'arrête
DI 0 = 1 et DI 1 = 0	300 tr/min
DI 0 = 1 et DI 1 = 1	2300 tr/min

6.4 Calcul de consigne

6.4.1 Vue d'ensemble du traitement des consignes

Le traitement des consignes permet de modifier la consigne comme suit :

- Inverser la consigne pour inverser le sens de rotation du moteur (inversion).
- Bloquer le sens de rotation positif ou négatif, p. ex. pour les convoyeurs à bande, les pompes ou les ventilateurs.
- Bandes de fréquences occultées permettant d'éviter les effets de résonance mécaniques.
 La bande de fréquences occultées à la vitesse = 0 provoque une vitesse minimale après la mise en marche du moteur.
- Limitation à la vitesse maximale pour protéger le moteur et la mécanique.
- Générateur de rampe pour accélérer et freiner le moteur avec un couple optimal.

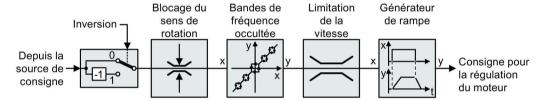
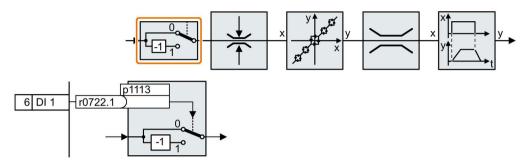



Figure 6-27 Traitement des consigne dans le variateur

6.4.2 Inverser la valeur de consigne

Le variateur offre la possibilité d'inverser le signe de la consigne au moyen d'un bit. L'inversion de la valeur de consigne via une entrée TOR est illustrée à titre d'exemple.

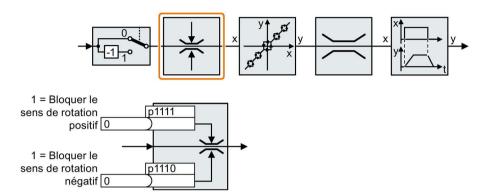

Pour inverser la consigne via l'entrée TOR DI 1, connectez le paramètre p1113 à un signal binaire, p. ex. l'entrée TOR 1.

Tableau 6-25 Exemples de réglage pour l'inversion de la consigne

Paramètre	Remarque
p1113 = 722.1	Inversion de la valeur de consigne
	Entrée TOR 1 = 0 : La consigne reste inchangée.
	Entrée TOR 1 = 1 : Le variateur inverse la valeur de consigne.
p1113 = 2090.11	Inversion de la consigne via le mot de commande 1, bit 11.

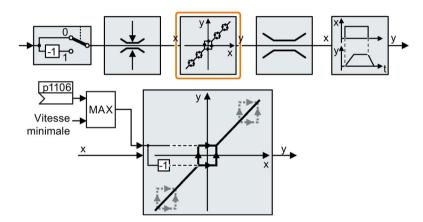
6.4.3 Blocage du sens de rotation

Dans le réglage d'usine du variateur, les deux sens de rotation du moteur sont débloqués.

Pour bloquer durablement un sens de rotation, réglez le paramètre correspondant sur la valeur = 1.

Tableau 6-26 Exemples de réglages pour bloquer le sens de rotation

Paramètre	Remarque	
p1110 = 1	Bloquer le sens de rotation négatif	
	Le sens de rotation négatif est bloqué durablement.	
p1110 = 722.3	Bloquer le sens de rotation négatif	
	Entrée TOR 3 = 0 : Le sens de rotation négatif est débloqué.	
	Entrée TOR 3 = 1 : Le sens de rotation négatif est bloqué.	


6.4.4 Bandes de fréquence occultée et vitesse minimale

Bandes de fréquence occultée

Le variateur dispose de quatre bandes de fréquence occultée qui empêchent un fonctionnement prolongé du moteur dans une certaine plage de vitesse. De plus amples informations figurent dans le diagramme fonctionnel 3050 du Manuel de listes, voir aussi : Manuels pour le variateur (Page 424).

Vitesse minimale

Le variateur empêche un fonctionnement prolongé du moteur à des vitesses inférieures à la vitesse minimale.

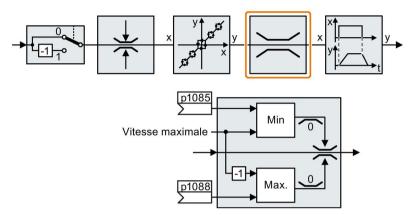

Les vitesses inférieures en valeur absolue à la vitesse minimale pendant le fonctionnement du moteur sont uniquement possibles à l'accélération ou au freinage.

Tableau 6-27 Réglage de la vitesse minimale

Paramètre	Description	
p1080	Vitesse minimale (réglage d'usine : 0 tr/min)	
p1106	CI: Vitesse minimale Source du signal (réglage d'usine : 0)	
	spécification dynamique de la vitesse minimale	

6.4.5 Limitation de la vitesse

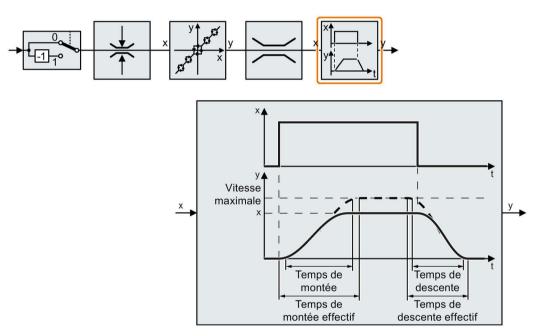
La vitesse maximale limite l'intervalle de consigne de vitesse dans les deux sens de rotation.

En cas de dépassement de la vitesse maximale, le variateur génère une signalisation (défaut ou alarme).

Si vous avez besoin d'une limitation de vitesse dépendante du sens de rotation, vous devez définir des limites de vitesse pour chaque sens.

Tableau 6-28 Paramètres de la limitation de vitesse

Paramètre	Description			
p1082	Vitesse maximale (réglage d'usine : 1500 tr/min)			
p1083	Limite de vitesse Sens de rotation positif (réglage d'usine : 210 000 tr/min)			
p1085	CI: Limite de vitesse Sens de rotation positif (réglage d'usine : 1083)			
p1086	Limite de vitesse Sens de rotation négatif (réglage d'usine : -210 000 tr/min)			
p1088	CI: Limite de vitesse Sens de rotation négatif (réglage d'usine : 1086)			


6.4.6 Générateur de rampe

Le générateur de rampe dans le canal de consigne limite la vitesse de modification de la consigne de vitesse (accélération). Une accélération réduite diminue le couple d'accélération du moteur. Cela permet au moteur de décharger la mécanique de la machine entraînée.

Le générateur de rampe étendu ne limite pas seulement l'accélération, mais aussi la modification de l'accélération (à-coup) grâce au lissage de la consigne. Ainsi, le couple ne s'établit pas de manière brusque dans le moteur.

Générateur de rampe étendu

Le temps de montée et le temps de descente du générateur de rampe étendu peuvent être réglés indépendamment l'un de l'autre. Les temps optimaux dépendent de votre application et peuvent se situer dans une plage allant de 100 ms (p. ex. pour les entraînements de convoyeurs à bande) à plusieurs minutes (p. ex. pour les centrifugeuses).

Un lissage de début et de fin permet une accélération et un freinage sans à-coups.

Dans ce cas de figure, les temps de montée et de descente du moteur sont allongés du fait des lissages.

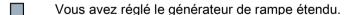
- Temps de montée effectif = p1120 + 0,5 × (p1130 + p1131).
- Temps de descente effectif = p1121 + 0,5 × (p1130 + p1131).

Tableau 6-29 Paramètres pour le réglage du générateur de rampe étendu

Paramètre	Description				
p1115	Générateur de rampe Sélection (réglage d'usine : 0) Sélectionner le générateur de rampe : 0 : Générateur de rampe simple 1 : Générateur de rampe étendu				
p1120	Générateur de rampe Temps de montée (réglage d'usine : 10 s) Durée de l'accélération en secondes de la vitesse nulle à la vitesse maximale p1082				
p1121	Générateur de rampe Temps de descente (réglage d'usine : 10 s) Durée de freinage en secondes de la vitesse maximale à l'immobilisation				
p1130	Générateur de rampe Temps de lissage de début (réglage d'usine : 0 s) Lissage de début pour le générateur de rampe étendu. La valeur s'applique pour la montée et pour la descente.				
p1131	Générateur de rampe Temps de lissage de fin (réglage d'usine : 0 s) Lissage de fin pour le générateur de rampe étendu. La valeur s'applique pour la montée et pour la descente.				
p1134	Générateur de rampe Type de lissage (réglage d'usine : 0) 0 : Lissage continu 1 : Lissage discontinu y p1134 = 0 y p1134 = 1				
p1135	ARRET3 Temps de descente (réglage d'usine : 0 s) L'arrêt rapide (ARRET3) a son propre temps de descente.				
p1136	ARRET3 Temps de lissage de début (réglage d'usine : 0 s) Temps de lissage de début pour ARRET3 pour le générateur de rampe étendu.				
p1137	ARRET3 Temps de lissage de fin (réglage d'usine : 0 s) Temps de lissage de fin pour ARRET3 pour le générateur de rampe étendu.				

Des informations complémentaires figurent dans le diagramme fonctionnel 3070 et dans la liste des paramètres du Manuel de listes.

6.4 Calcul de consigne


Réglage du générateur de rampe étendu

Procédure

Pour régler le générateur de rampe étendu, procédez comme suit :

- 1. Spécifiez la consigne de vitesse la plus grande possible.
- 2. Mettez le moteur en marche.
- 3. Observez le comportement de votre entraînement.
 - Si le moteur accélère trop lentement, diminuez le temps de montée.
 - Un temps de montée trop court a pour conséquence que le moteur atteint sa limite de courant lors de l'accélération et ne peut plus suivre la consigne de vitesse temporairement. L'entraînement dépasse dans ce cas le temps réglé.
 - Si le moteur accélère trop brutalement, allongez le temps de montée.
 - Si l'accélération s'effectue trop par à-coups, augmentez le lissage de début.
 - Nous vous recommandons de définir le lissage de fin sur la même valeur que le lissage de début.
- 4. Arrêtez le moteur.
- 5. Observez le comportement de votre entraînement.
 - Si le moteur freine trop lentement, diminuez le temps de descente.
 - Le temps de descente minimal pertinent dépend de votre application. Lorsque le temps de descente est trop court, le comportement dépend du Power Module utilisé : soit le variateur atteint la limite de courant du moteur, soit la tension du circuit intermédiaire du variateur atteint une valeur trop grande. Selon le réglage du variateur, le temps de freinage réel dépasse le temps de descente réglé ou le variateur passe à l'état de défaut lors du freinage.
 - Si le moteur freine trop brutalement ou que le variateur passe à l'état de défaut lors du freinage, allongez le temps de descente.
- 6. Répétez les étapes 1 à 5 jusqu'à ce que le comportement de l'entraînement réponde aux exigences de la machine ou de l'installation.

Modification des temps de montée et de descente pendant le fonctionnement

Les temps de montée et de descente du générateur de rampe peuvent être modifiés pendant le fonctionnement. La valeur de normalisation peut être fournie par le bus de terrain, par exemple.

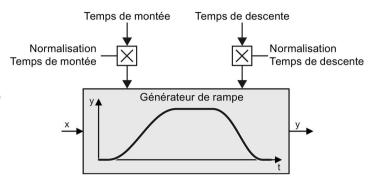


Tableau 6-30 Paramètres de réglage de la normalisation

Paramètre	Description	
p1138	Rampe de montée Normalisation (réglage d'usine : 1) Source de signal pour la normalisation de la rampe de montée.	
p1139	Rampe de descente Normalisation (réglage d'usine : 1) Source de signal pour la normalisation de la rampe de descente.	

Exemple

Dans l'exemple suivant, la commande de niveau supérieur règle les temps de montée et de descente du variateur via PROFIBUS.

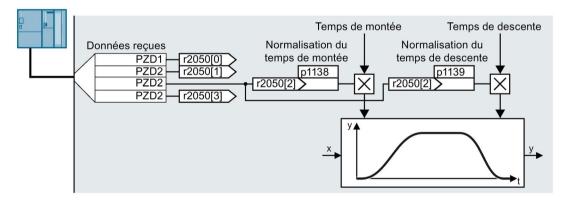


Figure 6-28 Exemple de modification des temps du générateur de rampe pendant le fonctionnement

Conditions

- Vous avez mis en service la communication entre la commande et le variateur.
- Le télégramme libre 999 est réglé dans le variateur et dans votre commande de niveau supérieur. Voir aussi la section : Extension des télégrammes et modification de la connexion des signaux (Page 169).
- La commande envoie la valeur de normalisation au variateur dans le PZD 3.

6.4 Calcul de consigne

Procédure

Pour connecter dans le variateur la normalisation des temps de montée et de descente avec le mot de réception du PZD 3 à partir du bus de terrain, procédez comme suit :

1. Réglez p1138 = 2050[2].

Vous avez ainsi connecté le facteur de normalisation pour le temps de montée avec le mot de réception PZD 3.

2. Réglez p1139 = 2050[2].

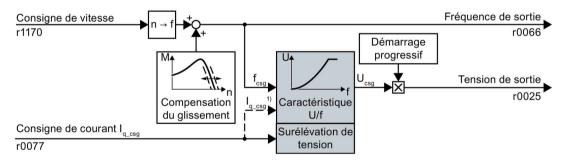
Vous avez ainsi connecté le facteur de normalisation pour le temps de descente avec le mot de réception PZD 3.

Le variateur reçoit la valeur pour la normalisation des temps de montée et de descente via le mot de réception PZD 3.

Pour plus d'informations, visitez notre site Internet : FAQ (https://support.industry.siemens.com/cs/ww/en/view/82604741).

6.5 Commande du moteur

Le variateur dispose de deux méthodes alternatives pour la régulation de la vitesse du moteur :


- Commande U/f
- Régulation vectorielle avec régulateur de vitesse

6.5.1 Régulation U/f

Vue d'ensemble de la commande U/f

La commande U/f est une régulation de vitesse présentant les caractéristiques suivantes :

- Le variateur régule la tension de sortie à l'aide de la caractéristique U/f
- La fréquence de sortie résulte principalement de la consigne de vitesse et du nombre de paires de pôles du moteur
- La compensation du glissement corrige la fréquence de sortie en fonction de la charge et accroît par conséquent la précision de la vitesse
- S'affranchir d'un régulateur PI n'implique pas une régulation de vitesse instable
- Dans les applications extrêmement exigeantes en matière de précision de vitesse, une régulation avec surélévation de tension en fonction de la charge peut être sélectionnée (régulation du courant d'excitation, FCC)

Dans la variante U/f "Régulation du courant d'excitation (FCC)", le variateur régule le courant moteur lors des phases à faible vitesse (courant de démarrage)

Figure 6-29 Diagramme fonctionnel simplifié de la commande U/f

Entre autres, l'atténuation de résonance pour l'amortissement des vibrations mécaniques n'est pas représenté sur le diagramme fonctionnel simplifié. L'intégralité des diagrammes fonctionnels 6300 et suivants figure dans le Manuel de listes.

Pour l'exploitation du moteur avec commande U/f, vous devez au moins régler les sousfonctions représentées sur fond gris dans la figure en fonction de votre application :

- Caractéristique U/f
- Surélévation de tension

Réglage par défaut après sélection de la classe d'applications Standard Drive Control

La sélection de la classe d'applications Standard Drive Control adapte la structure et les possibilités de réglage de la commande U/f comme suit :

- Régulation du courant de démarrage : Au cours des phases à faible vitesse, un courant moteur régulé réduit la tendance aux vibrations du moteur.
- Lors de la montée en vitesse, passage de la régulation du courant de démarrage à une commande U/f avec surélévation de tension en fonction de la charge
- Aucun démarrage progressif n'est possible.
- Ensemble de paramètres réduit

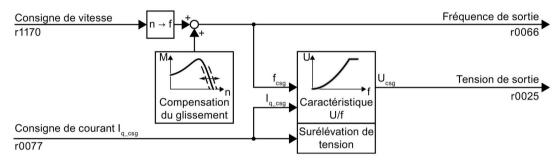
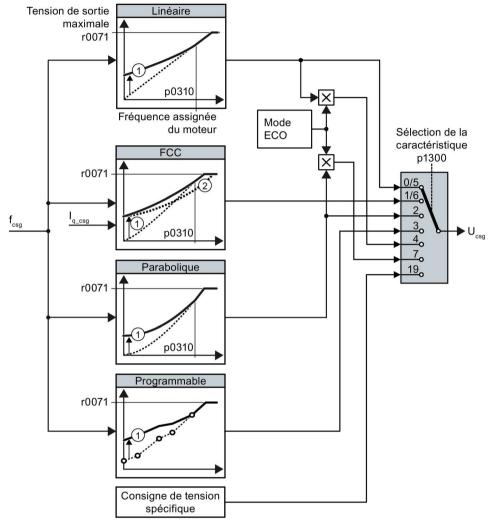



Figure 6-30 Réglage par défaut de la commande U/f après sélection de Standard Drive Control

L'intégralité des diagrammes fonctionnels 6850 et suivants relatifs à la classe d'applications Standard Drive Control figure dans le Manuel de listes.

6.5.1.1 Caractéristiques de la commande U/f

Le variateur dispose de différentes caractéristiques U/f.

- ① La surélévation de tension de la caractéristique optimise la régulation de vitesse au cours des phases à faible vitesse
- 2 Lors de la régulation du courant d'excitation (FCC), le variateur compense la chute de tension dans la résistance stator du moteur.

Figure 6-31 Caractéristiques de la commande U/f

Le variateur augmente sa tension de sortie à la tension de sortie maximale possible. Cette dernière dépend de la tension réseau.

Lorsque la tension de sortie maximale est atteinte, le variateur continue à augmenter uniquement la fréquence de sortie. Le moteur fonctionne alors en régime défluxé : lorsque le couple est constant, le glissement augmente de manière quadratique au fur et à mesure que la vitesse augmente.

6.5 Commande du moteur

La valeur de la tension de sortie pour la fréquence assignée du moteur dépend entre autres des grandeurs suivantes :

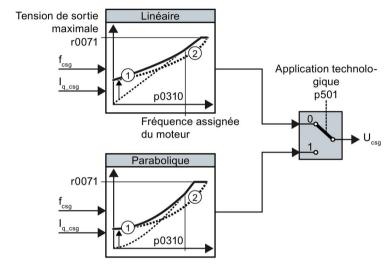
- Rapport entre la taille du variateur et la taille du moteur
- Tension réseau
- Impédance réseau
- Couple moteur actuel

Vous trouverez la tension de sortie maximale possible en fonction de la tension d'entrée dans les caractéristiques techniques, voir également la section Caractéristiques techniques (Page 369).

Tableau 6-31 Caractéristiques linéaires et paraboliques

Exigence	Exemples d'application	Remarque	Caractéristique	Paramètre
Le couple néces-	Convoyeur à bande,	-	linéaire	p1300 = 0
saire est indépen- dant de la vitesse	convoyeur à rouleaux, convoyeur à chaîne, pompe à vis excen- trique, compresseur, extrudeuse, centrifu- geuse, agitateur, mé- langeur	Le variateur compense les pertes de tension dues à la résistance statorique. Recommandé pour les moteurs inférieurs à 7,5 kW. Condition : vous avez réglé les paramètres moteur selon la plaque signalétique et exécuté l'identification du moteur après la mise en service rapide.	Linéaire avec Flux Current Control (FCC)	p1300 = 1
Le couple néces- saire augmente avec la vitesse	Pompe centrifuge, ventilateur radial, venti- lateur axial	Moins de pertes dans le moteur et le variateur qu'avec la caractéristique linéaire.	Parabolique	p1300 = 2

Tableau 6-32 Caractéristiques pour applications spéciales


Exigence	Exemples d'application	Remarque	Caractéristique	Paramètre
Applications à faible dynamique et vitesse constante	Pompe centrifuge, ventilateur radial, venti- lateur axial	Le mode ECO permet d'économiser plus d'énergie par rapport à la caractéristique parabolique.	Mode ECO	p1300 = 4 ou p1300 = 7
		Lorsque la consigne de vitesse est atteinte et qu'elle reste inchangée pendant 5 secondes, le variateur réduit encore sa tension de sortie.		
Le variateur doit maintenir à tout prix la vitesse du moteur constante.	Entraînements dans le secteur textile	Lorsque la limite de courant maximale est atteinte, le variateur réduit uniquement la tension de stator, pas la vitesse.	Caractéristique à précision de fréquence	p1300 = 5 ou p1300 = 6
Caractéristique U/f à réglage libre	-	-	Caractéristique réglable	p1300 = 3
Caractéristique U/f avec consigne de tension indépen- dante	-	Le rapport entre la fréquence et la tension n'est pas calculé dans le variateur, mais spécifié par l'utilisateur.	Consigne de tension indépendante	p1300 = 19

De plus amples informations sur les caractéristiques U/f figurent dans la liste des paramètres et dans les diagrammes fonctionnels 6300 et suivants du Manuel de listes.

Caractéristiques après sélection de la classe d'applications Standard Drive Control

La sélection de la classe d'applications Standard Drive Control réduit le nombre de caractéristiques et les possibilités de réglage :

- Une caractéristique linéaire et une caractéristique parabolique sont disponibles.
- La sélection d'une application technologique détermine les caractéristiques.
- Le mode ECO, FCC, la caractéristique programmable et une consigne de tension propre ne peuvent pas être réglés.

- La régulation du courant de démarrage optimise la régulation de vitesse lors des phases à faible vitesse.
- 2 Le variateur compense la chute de tension dans la résistance stator du moteur

Figure 6-32 Caractéristiques après la sélection de Standard Drive Control

Tableau 6-33 Caractéristiques linéaires et paraboliques

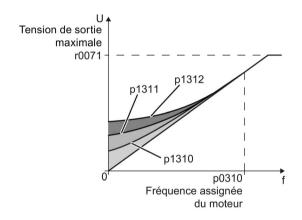
Exigence	Exemples d'application	Remarque	Caractéristique	Paramètre
Le couple néces- saire est indépen- dant de la vitesse	Convoyeur à bande, convoyeur à rouleaux, convoyeur à chaîne, pompe à vis excen- trique, compresseur, extrudeuse, centrifu- geuse, agitateur, mé- langeur	-	linéaire	p0501 = 0
Le couple néces- saire augmente avec la vitesse	Pompe centrifuge, ventilateur radial, venti- lateur axial	Moins de pertes dans le moteur et le va- riateur qu'avec la caractéristique linéaire.	Parabolique	p0501 = 1

Des informations complémentaires sur les caractéristiques figurent dans la liste des paramètres et dans les diagrammes fonctionnels 6851 et suivants du Manuel de listes.

6.5.1.2 Optimiser le démarrage du moteur

Réglage de la surélévation de tension de la commande U/f (boost)

Après la sélection de la caractéristique U/f, aucun autre réglage n'est requis dans la plupart des applications.


Dans les conditions suivantes, le moteur ne peut pas accélérer à sa consigne de vitesse après la mise sous tension :

- Moment d'inertie de la charge trop élevé
- Couple résistant trop grand
- Temps de montée p1120 trop court

Pour améliorer le comportement du moteur au démarrage, la caractéristique U/f peut être augmentée lors des phases à faible vitesse.

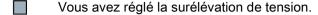
Le variateur élève la tension en fonction des courants de démarrage p1310 à p1312.

La figure ci-contre présente la surélévation de tension résultante en prenant pour exemple une caractéristique linéaire.

Conditions

- Réglez le temps de montée du générateur de rampe selon la puissance assignée du moteur à une valeur de 1 s (< 1 kW) ... 10 s (> 10 kW).
- Augmentez le courant de démarrage par incréments de ≤ 5 %. Des valeurs trop élevées dans p1310 ... p1312 peuvent entraîner une surchauffe du moteur et une coupure de surintensité du variateur.

Si le message A07409 s'affiche, vous ne pouvez plus augmenter aucun paramètre.


Procédure

Pour régler la surélévation de tension, procédez comme suit :

- 1. Mettez le moteur sous tension avec une consigne de quelques tours par minute.
- 2. Contrôlez si le moteur tourne rond.
- 3. Si le moteur ne tourne pas rond, voire reste immobile, augmentez la surélévation de tension p1310 jusqu'à ce qu'il tourne rond.
- 4. Accélérez le moteur avec une charge maximale à la vitesse maximale.
- 5. Contrôlez si le moteur suit la consigne.
- 6. Augmentez le cas échéant la surélévation de tension p1311 jusqu'à ce que le moteur accélère sans problème.

Pour obtenir un comportement satisfaisant du moteur, vous devez augmenter en outre le paramètre p1312 dans les applications présentant un couple de décollage élevé.

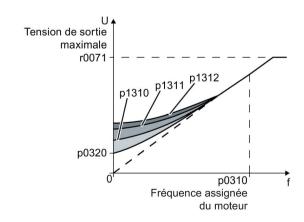
Paramètre	Description		
p1310	Courant de démarrage (surélévation de tension) permanent (réglage d'usine 50 %)		
	Compense les pertes de tension dues aux câbles moteur de grande longueur et les pertes ohmiques dans le moteur.		
p1311	Courant de démarrage (surélévation de tension) à l'accélération (réglage d'usine 0 %)		
	Génère un couple supplémentaire lorsque le moteur accélère.		
p1312	Courant de démarrage (surélévation de tension) en phase de montée (réglage d'us 0 %)		
	Génère un couple supplémentaire mais uniquement pour la première phase d'accélération après la mise en marche du moteur ("couple de décollage").		

Des informations complémentaires sur cette fonction figurent dans la liste des paramètres ainsi que dans le diagramme fonctionnel 6301 du Manuel de listes.

Régler le courant de démarrage (boost) après sélection de la classe d'applicationsStandard Drive Control

Après la sélection de la classe d'applications Standard Drive Control, aucun réglage supplémentaire n'est requis dans la plupart des applications.

Le variateur veille à ce que, moteur à l'arrêt, il circule au moins le courant assigné de magnétisation du moteur. Le courant de magnétisation p0320 correspond à peu près au courant à vide pour 50 % à 80 % de la vitesse assignée du moteur.


Dans les conditions suivantes, le moteur ne peut pas accélérer à sa consigne de vitesse après la mise sous tension :

- Moment d'inertie de la charge trop élevé
- Couple résistant trop grand
- Temps de montée p1120 trop court

Pour améliorer le comportement du moteur au démarrage, le courant peut être augmenté lors des phases à faible vitesse.

Le variateur élève la tension en fonction des courants de démarrage p1310 à p1312.

La figure ci-contre présente la surélévation de tension résultante en prenant pour exemple une caractéristique linéaire.

Conditions

- Réglez le temps de montée du générateur de rampe selon la puissance assignée du moteur à une valeur de 1 s (< 1 kW) ... 10 s (> 10 kW).
- Augmentez le courant de démarrage par incréments de ≤ 5 %. Des valeurs trop élevées dans p1310 ... p1312 peuvent entraîner une surchauffe du moteur et une coupure de surintensité du variateur.

Si le message A07409 s'affiche, vous ne pouvez plus augmenter aucun paramètre.

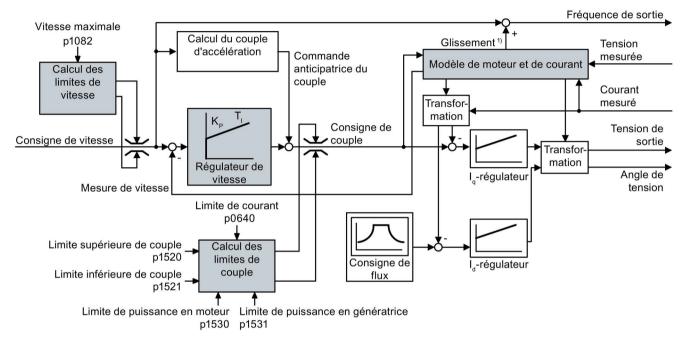
Procédure

Pour régler la surélévation de tension, procédez comme suit :

- 1. Mettez le moteur sous tension avec une consigne de quelques tours par minute.
- Contrôlez si le moteur tourne rond.
- 3. Si le moteur ne tourne pas rond, voire reste immobile, augmentez la surélévation de tension p1310 jusqu'à ce qu'il tourne rond.
- 4. Accélérez le moteur avec une charge maximale à la vitesse maximale.
- 5. Contrôlez si le moteur suit la consigne.
- 6. Augmentez le cas échéant la surélévation de tension p1311 jusqu'à ce que le moteur accélère sans problème.

Pour obtenir un comportement satisfaisant du moteur, vous devez augmenter en outre le paramètre p1312 dans les applications présentant un couple de décollage élevé.

Vous avez réglé la surélévation de tension.


Paramètre	Description		
p1310	Courant de démarrage (surélévation de tension) permanent (réglage d'usine 50 %		
	Compense les pertes de tension dues aux câbles moteur de grande longueur et les pertes ohmiques dans le moteur.		
	Après la mise en service, le variateur règle p1310 en fonction de la puissance du moteur et de l'application technologique p0501.		
p1311	Courant de démarrage (surélévation de tension) à l'accélération (réglage d'usine 0 %)		
	Génère un couple supplémentaire lorsque le moteur accélère.		
	Après la mise en service, le variateur règle p1311 en fonction de la puissance du moteur et de l'application technologique p0501.		
p1312	Courant de démarrage (surélévation de tension) en phase de montée (réglage d'usine 0 %)		
	Génère un couple supplémentaire mais uniquement pour la première phase d'accélération après la mise en marche du moteur ("couple de décollage").		

Des informations complémentaires sur cette fonction figurent dans la liste des paramètres ainsi que dans le diagramme fonctionnel 6851 du Manuel de listes.

6.5.2 Régulation vectorielle avec régulateur de vitesse

Vue d'ensemble

La régulation vectorielle se compose d'une régulation de courant et d'une régulation de vitesse de niveau supérieur.

1) Pour moteurs asynchrones

Figure 6-33 Diagramme fonctionnel simplifié pour régulation vectorielle sans capteur avec régulateur de vitesse

Les diagrammes fonctionnels complets 6020 et suivants relatifs à la régulation vectorielle figurent dans le Manuel de listes.

Le variateur calcule les signaux de régulation suivants à l'aide du modèle de moteur à partir des courants de phase mesurés et de la tension de sortie :

- Composante de courant I_d
- Composante de courant Iq
- Mesure de vitesse

La consigne de la composante de courant I_d (consigne de flux) résulte des paramètres moteur. A des vitesses supérieures à la vitesse assignée, le variateur réduit la consigne de vitesse en fonction de la caractéristique de défluxage.

Lorsque la consigne de vitesse est augmentée, le régulateur de vitesse réagit par l'augmentation de la consigne de la composante de courant I_q (consigne de couple). La régulation réagit à l'augmentation de la consigne de couple par l'ajout d'une fréquence de glissement plus importante à la fréquence de sortie. La fréquence de sortie plus élevée provoque en outre un glissement plus important, proportionnel au couple d'accélération, dans le moteur. Les régulateurs I_q et I_d maintiennent le flux du moteur constant au moyen de la tension de sortie et règlent la composante de courant I_q appropriée dans le moteur.

6.5 Commande du moteur

Pour obtenir un comportement satisfaisant du régulateur, vous devez régler au moins les sous-fonctions indiquées sur fond gris dans la figure ci-dessus sur des valeurs adaptées à votre application :

- Modèle de moteur et de courant : lors de la mise en service rapide, réglez correctement les paramètres moteur de la plaque signalétique en fonction du type de raccordement (Y/Δ) et procédez à l'identification des paramètres moteur à l'arrêt.
- Limites de vitesse et limites de couple: lors de la mise en service rapide, réglez la vitesse maximale (p1082) et la limite de courant (p0640) en fonction de votre application. A la fin de la mise en service rapide, le variateur calcule les limites de couple et de puissance en fonction de la limite de courant. Les limites de couple effectives sont obtenues à partir des limites de courant et de puissance calculées et des limites de couple réglées.
- Régulateur de vitesse : utilisez la mesure en rotation de l'identification des paramètres moteur. Lorsque la mesure en rotation n'est pas possible, vous devez optimiser manuellement le régulateur.

Réglages par défaut après sélection de la classe d'applications Dynamic Drive Control

La sélection de la classe d'applications Dynamic Drive Control adapte la structure de la régulation vectorielle et réduit les possibilités de réglage :

	Régulation vectorielle après sé- lection de la classe d'applications	Régulation vectorielle sans sélection d'une classe d'appli-
	Dynamic Drive Control	cations
Arrêt ou réglage de l'action intégrale du régulateur de vitesse	Impossible	Possible
Modèle d'accélération pour commande anticipatrice	Réglé par défaut	Peut être activé
Identification des paramètres moteur à l'arrêt ou moteur tour- nant	Raccourcie, avec passage facultatif à l'état de fonctionnement	Complète

6.5.2.1 Optimisation du régulateur de vitesse

Comportement de régulation optimal – aucune optimisation nécessaire

Conditions permettant d'évaluer le comportement du régulateur :

- Le moment d'inertie de la charge est constant et indépendant de la vitesse
- Lors de l'accélération, le variateur n'atteint pas les limites de couple réglées
- Le moteur est exploité dans la plage de 40 % à 60 % de sa vitesse assignée

Si le moteur présente le comportement suivant, la régulation de vitesse est réglée correctement et il n'est pas nécessaire d'optimiser manuellement le régulateur de vitesse :

La consigne de vitesse (ligne en pointillés) augmente en même temps que le temps de montée et le lissage réglés. La mesure suit la consigne sans surosciller.

Optimisation de la régulation nécessaire

Dans certains cas, le résultat de l'auto-optimisation n'est pas satisfaisant ou l'auto-optimisation n'est pas possible parce que le moteur ne peut pas tourner librement.

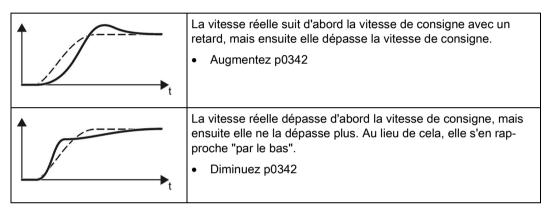
Dans ces cas, la régulation de vitesse doit être optimisée manuellement. Les paramètres suivants ont une influence sur le comportement de la régulation de vitesse :

- p1496 Commande anticipatrice d'accélération Normalisation
- p0342 Moment inertie Rapport total / moteur
- p1470 Gain proportionnel K_P
- p1472 Temps d'intégration T_I
- p1452 Régulateur de vitesse Mesure de vitesse Temps de lissage (sans capteur)

Optimisation du régulateur de vitesse

Conditions

- La commande anticipatrice du couple est active : p1496 = 100 %.
- Le moment d'inertie de la charge est constant et indépendant de la vitesse.
- Pour l'accélération, le variateur a besoin de 10 % à 50 % du couple assigné.
 Si nécessaire, adaptez les temps de montée et de descente du générateur de rampe (p1120 et p1121).
- Vous avez préparé la fonction Trace dans STARTER ou Startdrive afin de pouvoir enregistrer la consigne et la mesure de vitesse.


6.5 Commande du moteur

Procédure

Pour optimiser le régulateur de vitesse, procédez comme suit :

- 1. Mettez le moteur en marche.
- 2. Spécifiez une consigne de vitesse d'environ 40 % de la vitesse assignée.
- 3. Attendez que la vitesse réelle soit stabilisée.
- 4. Augmentez la consigne à 60 % maximum de la vitesse assignée.
- 5. Observez l'évolution respective de la vitesse de consigne et de la vitesse réelle.
- 6. Optimisez le régulateur en adaptant le rapport des moments d'inertie de la charge et du moteur (p0342) :

- 7. Arrêtez le moteur.
- 8. Démarrez un nouveau calcul du régulateur de vitesse : p0340 = 4.
- 9. Mettez le moteur en marche.
- 10. Vérifiez sur toute la plage de vitesse que la régulation de vitesse se comporte de manière satisfaisante avec les réglages optimisés.
- Vous avez optimisé le régulateur de vitesse.

Si nécessaire, réglez de nouveau les temps de montée et de descente du générateur de rampe (p1120 et p1121) sur la valeur avant l'optimisation.

Maîtriser les applications critiques

Pour les entraînements possédant un moment d'inertie de charge important et sans réducteur ou en présence d'un couplage susceptible d'entraîner des vibrations du moteur et de la charge, la régulation de vitesse peut devenir instable. Dans ce cas, nous vous recommandons les réglages suivants :

- Augmentez le lissage de la mesure de vitesse p1452.
- Augmentez le temps d'intégration : T₁ ≥ 4 × p1452.
- Lorsque la régulation de vitesse ne fonctionne plus de manière suffisamment dynamique après avoir pris ces mesures, augmentez graduellement le gain P K_P.

6.5.2.2 Caractéristique de frottement

Fonction

Dans de nombreuses applications, par exemple avec moto-réducteur ou bande transporteuse, le couple de frottement de la charge n'est pas négligeable.

Le variateur permet une commande anticipatrice de la consigne de couple en contournant le régulateur de vitesse au moyen du couple de frottement. La commande anticipatrice réduit la suroscillation de la vitesse à la suite de variations de vitesse.

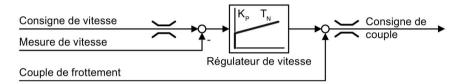


Figure 6-34 Commande anticipatrice du régulateur de vitesse au moyen du couple de frottement

Le variateur détermine le couple de frottement actuel à partir d'une caractéristique de frottement comportant 10 points d'interpolation.

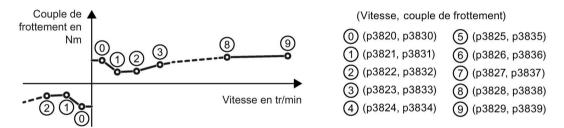


Figure 6-35 Caractéristique de frottement

Les points d'interpolation de la caractéristique de frottement sont définis pour les vitesses positives. Dans le sens de rotation négatif, le variateur utilise les points d'interpolation avec un signe moins.

Enregistrer la caractéristique de frottement

Après la mise en service rapide, le variateur règle les vitesses des points d'interpolation sur des valeurs adaptées à la vitesse assignée du moteur. Le couple de frottement de tous les points d'interpolation est encore égal à zéro. Le variateur enregistre la caractéristique de frottement sur demande : le variateur accélère graduellement le moteur jusqu'à la vitesse assignée, mesure le couple de frottement et inscrit le couple de frottement aux points d'interpolation de la caractéristique de frottement.

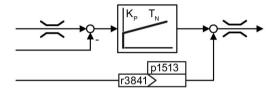
Condition

Le moteur peut accélérer jusqu'à la vitesse assignée sans que cela ne représente un danger pour les personnes ou un risque de dommages matériels.

6.5 Commande du moteur

Procédure

Pour enregistrer la caractéristique de frottement, procédez comme suit :


- Réglez p3845 = 1 : le variateur accélère le moteur successivement dans les deux sens de rotation et fait la moyenne des résultats de mesure des sens de rotation positif et négatif.
- 2. Mettez le moteur en marche (MARCHE/ARRET1 = 1).
- 3. Le variateur accélère le moteur.

Le variateur signale l'alarme A07961 pendant la mesure.

Lorsque le variateur a déterminé tous les points d'interpolation de la caractéristique de frottement sans code de défaut F07963. il arrête le moteur.

Vous avez enregistré la caractéristique de frottement.

Interconnecter la commande anticipatrice du régulateur de vitesse et le couple de frottement

Pour établir la connexion entre la commande anticipatrice du régulateur de vitesse et le couple de frottement, réglez p1513 = r3841 (couple de frottement = couple additionnel 2).

Des informations complémentaires figurent dans le diagramme fonctionnel 6060 du Manuel de listes.

Paramètres

Paramètre	Signification			
p3820	Points d'interpolation de la caractéristique de frottement [tr/min, Nm]			
p2839				
r3840	Caractéristique de frottement Mot d'état			
	.00	Etat logique 1 : Caractéristique de frottement OK		
	.01	Etat logique 1 : La détermination de la caractéristique de frottement est active		
	.02	Etat logique 1 : La détermination de la caractéristique de frottement est terminée		
	.03	Etat logique 1 : La détermination de la caractéristique de frottement a été interrompue		
	.08	Etat logique 1 : Caractéristique de frottement Sens positif		
r3841	Caractéristique de frottement Sortie [Nm]			
p3842	Caractéristique de frottement Activation			
	0 : Caractéristique de frottement désactivée 1 : Caractéristique de frottement activée			
p3845	Carac	Caractéristique de frottement Enregistrement Activation (réglage d'usine : 0)		
	0 : Caractéristique de frottement Enregistrement désactivé 1 : Caractéristique de frottement Enregistrement activé Tous les sens 2 : Caractéristique de frottement Enregistrement activé Sens positif 3 : Caractéristique de frottement Enregistrement activé Sens négatif			
p3846	Caract. de frottement Enregistrement Temps de montée/descente (réglage d'usine : 10 s)			
	Temps de montée et de descente pour l'enregistrement automatique de la ca tique de frottement			
p3847		ct. frottement Enregistrement Temps de montée en température (réglage le : 0 s)		
	Au début de l'enregistrement automatique, le variateur accélère le moteur jus vitesse = p3829 et maintient la vitesse constante pendant cette durée.			

Pour de plus amples informations, consulter le Manuel de listes.

6.5.2.3 Estimateur de moment d'inertie

Contexte

A partir du moment d'inertie de la charge et de la variation de la consigne de vitesse, le variateur calcule le couple d'accélération requis pour le moteur. Le couple d'accélération spécifie le pourcentage principal de la consigne de couple via la commande anticipatrice du régulateur de vitesse. Le régulateur de vitesse corrige les imprécisions de la commande anticipatrice.

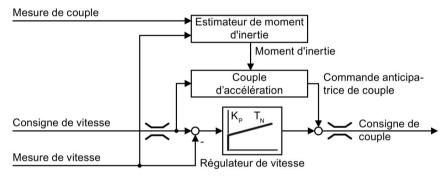


Figure 6-36 Influence de l'estimateur de moment d'inertie sur la régulation de vitesse

Plus la valeur du moment d'inertie est précise dans le variateur, moins le dépassement est important à la suite de variations de vitesse.

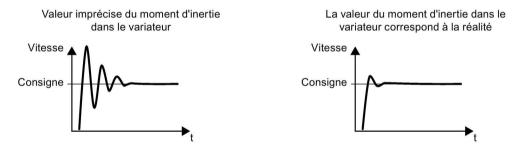


Figure 6-37 Influence de l'estimateur de moment d'inertie sur la vitesse

Fonction

A partir de la vitesse réelle de rotation, du couple réel du moteur et du couple de frottement de la charge, le variateur calcule le moment d'inertie total de la charge et du moteur.

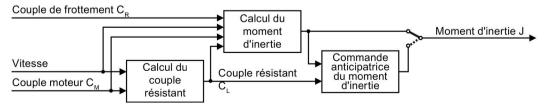
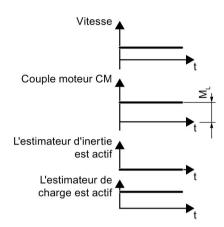
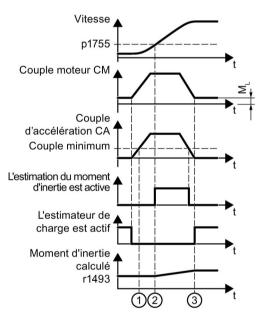



Figure 6-38 Vue d'ensemble de la fonction de l'estimateur de moment d'inertie

Calcul du couple de charge



Lors du fonctionnement à faible vitesse, le variateur calcule le couple de charge $C_{\mathbb{C}}$ à partir du couple réel du moteur.

Le calcul s'effectue selon les conditions suivantes :

- Vitesse ≥ p1226
- Consigne d'accélération < 8 1/s² (≜ variation de vitesse 480 tr/min par seconde)
- Accélération × moment d'inertie (r1493) < 0,9 × p1560

Calcul du moment d'inertie

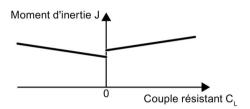
Pour les variations plus importantes, la variateur calcule d'abord le couple d'accélération C_A en tant que différence entre le couple moteur C_M , le couple de charge C_C et le couple de frottement C_F .

$$C_A = C_M - C_C - C_F$$

Le moment d'inertie J du moteur et de la charge est ensuite obtenu à partir du couple d'accélération C_A , et de l'accélération angulaire α (α = taux de variation de la vitesse) :

$$J = C_A / \alpha$$

Si toutes les conditions suivantes sont remplies, le variateur calcule le moment d'inertie :


- ① Le couple d'accélération assigné C_A doit satisfaire aux deux conditions suivantes :
 - Le signe de C_A est le même que la direction de l'accélération réelle
 - C_A > p1560 × couple du moteur assigné (r0333)
- ② vitesse > p1755
- Le variateur a calculé le couple de charge dans au moins un sens de rotation.
- Consigne d'accélération > 8 1/s² (≜ variation de vitesse 480 tr/min par seconde)
- 3 Le variateur calcule le couple de charge une nouvelle fois après l'accélération.

6.5 Commande du moteur

Commande anticipatrice de moment d'inertie

Pour des applications dans lesquelles le moteur fonctionne principalement à vitesse constante, le variateur ne peut calculer le moment d'inertie en utilisant la fonction décrite cidessus qu'occasionnellement. La commande anticipatrice du moment d'inertie est néanmoins disponible pour ce type de situations. La commande anticipatrice du moment d'inertie suppose qu'il y a un rapport approximativement linéaire entre le moment d'inertie et le couple de charge.

Exemple : pour une bande transporteuse horizontale, dans le cadre d'une première approximation, le moment d'inertie dépend de la charge.

Le rapport entre le couple de charge et le couple est enregistré dans le variateur en tant que caractéristique linéaire.

Pour un sens de rotation positif :

Moment d'inertie J = p5312 × couple de charge C_C + p5313

Pour un sens de rotation négatif :

Moment d'inertie J = p5314 × couple de charge C_C + p5315

Vous disposez des options suivantes pour déterminer la caractéristique :

- Vous connaissez déjà la caractéristique grâce à d'autres opérations de mesure. Dans ce cas, les paramètres doivent être réglés sur des valeurs connues lors de la mise en service du système.
- Le variateur détermine la caractéristique de manière itérative en effectuant des opérations de mesure pendant que le moteur est en état de fonctionnement.

Activation de l'estimateur de moment d'inertie

L'estimateur de moment d'inertie est désactivé dans le réglage d'usine. p1400.18 = 0, p1400.20 = 0, p1400.22 = 0.

Si vous avez effectué une mesure en rotation pour l'identification du moteur pendant la mise en service rapide, nous vous conseillons de laisser l'estimateur de moment d'inertie désactivé.

Conditions

- Vous utilisez un moteur synchrone à aimants permanents 1FK7 sans capteur.
- Vous avez sélectionné la régulation vectorielle sans capteur.
- Le couple de charge doit être constant lorsque le moteur accélère ou freine.

Les applications de convoyeurs et les centrifugeuses sont des exemples typiques de couple de charge constant.

En revanche, les applications de ventilateurs ne sont pas autorisées.

- La consigne de vitesse est exempte de signaux superposés indésirables.
- Le moteur et la charge sont connectés l'un à l'autre avec un ajustement serré.

Les entraînements ayant un glissement entre l'arbre moteur et la charge, p. ex. en raison de courroies détendues ou usées, ne sont pas autorisés.

Si les conditions ne sont pas satisfaites, vous ne devez pas activer l'estimateur de moment d'inertie.

Marche à suivre

Pour activer l'estimateur de moment d'inertie, procédez comme suit :

- 1. Réglez p1400.18 = 1
- 2. Vérifiez : p1496 ≠ 0
- 3. Activez le modèle d'accélération de la commande anticipatrice du régulateur de vitesse : p1400.20 = 1.
- Vous avez activé l'estimateur de moment d'inertie

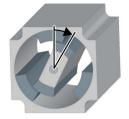
Paramètre	Signi	Signification				
r0333	Coup	ple assigné du moteur [Nm]				
p0341	Mom	nent d'inertie du moteur (réglage d'usine : 0 kgm²)				
			paramètre lorsqu'un moteur de liste est sélectionné. Le para- rotégé contre l'écriture.			
p0342	Rapp	ort du moment	t d'inertie, total/moteur (réglage d'usine : 1)			
	_	•	entre le moment d'inertie / la masse (charge + moteur) et le mo- asse du moteur seul (sans charge)			
p1400	Conf	iguration de la	régulation de vitesse			
	.18	Etat logique 1	: Estimateur de moment d'inertie actif			
	.20	Etat logique 1	: Modèle d'accélération activé			
	.22	Etat logique 1	L'estimateur de moment d'inertie conserve la valeur lorsque le moteur est mis hors tension			
			L'estimateur de moment d'inertie réinitialise la valeur à la valeur initiale J_0 lorsque le moteur est mis hors tension :			
	$J_0 = p0341 \times p0342 + p1498$					
	Si le couple de charge peut varier quand le moteur est mis hors tension, réglez p1400.22 = 0.					
	.24	Etat logique	e L'estimateur de moment d'inertie accéléré est actif.			
r1407	Mot	d'état, régulate	ur de vitesse			
	.24	Etat logique 1 : L'estimateur de moment d'inertie est actif				
	.25	Etat logique 1 : L'estimateur de charge est actif				
	.26	Etat logique 1 : L'estimateur de moment d'inertie est accouplé				
	.27	Etat logique 1 : L'estimateur de moment d'inertie accéléré est actif.				
r1493	Mom	ent d'inertie tot	al, normalisé			
	r1493	r1493 = p0341 × p0342 × p1496				

6.5 Commande du moteur

Paramètre	Signification				
p1496	Normalisation de la commande anticipatrice d'accélération (réglage d'usine : 0 %)				
	Selon la mesure en rotation de l'identification des paramètres moteur, p1496 = 100 %.				
p1498	Moment d'inertie de la charge (réglage d'usine : 0 kgm²)				
p1502	Geler l'estimateur de moment d'inertie (réglage d'usine : 0)				
	Si le couple de charge varie lors de l'accélération du moteur, réglez ce signal sur 0.				
	Etat logique 0	0 L'estimateur de moment d'inertie est actif			
	Etat logique 1	Le moment d'inertie déterminé est gelé			
p1775	Modèle de moteur Vitesse de commutation Fonctionnement sans capteur				
	Définit la commutation entre le mode commande et le mode régulation de la régulation vectorielle sans capteur.				
	Lorsque la régulation de vitesse est sélectionnée, le variateur règle p1755 = 13,3 % × vitesse assignée.				

Réglages avancés

Paramètre	Signification				
p1226	Déte	ection d'immobilisation Seuil de vitesse (réglage d'usine : 20 tr/min)			
		timateur de moment d'inertie mesure uniquement le couple de charge pour des sses ≥ p1226.			
		26 définit également à partir de quelle vitesse le variateur met le moteur hors ion pour ARRET1 et ARRET3.			
p1560	Estim	nateur d'inertie Co	uple d'acc	élération Valeur de seuil (réglage d'usine : 10 %)	
p1561	modi	Estimateur d'inertie Temps de modification Inertie (réglage d'usine : 500 ms) Plus p1561 ou p1562 est faible, plus les mesures de l'estimateur de moment d'inertie sont courts.			
p1562	Estim modif	timateur d'inertie Temps de dification Charge (réglage sine : 10 ms)		Plus p1561 ou p1562 est élevé, plus les résultats fournis par l'estimateur de moment d'inertie sont précis.	
p1563	Estim	stimateur d'inertie Couple sens de rotation positif (réglage d'usine : 0 Nm)			
p1564	Estimateur d'inertie Couple sens de rotation négatif (réglage d'usine : 0 Nm)				
p5310	Mom	oment d'inertie Commande anticipatrice Configuration (réglage d'usine : 0000 bin)			
	.00	Etat logique 1 : a	active le ca	lcul de la caractéristique (p5312 p5315)	
	.01	Etat logique 1 : a	active la co	ommande anticipatrice de moment d'inertie	
		p5310.00 = 0, p5310.01 = 0	d'inertie Adaptation e la commande anticipatrice de moment d'inertie Activation de la commande anticipatrice de moment d'inertie La caractéristique de la commande anticipatrice de moment d'inertie est conservée. Activation de la commande anticipatrice de moment d'inertie		
		p5310.00 = 1, p5310.01 = 0			
		p5310.00 = 0,			
		p5310.01 = 1			
		p5310.00 = 1, p5310.01 = 1			


Paramètre	Signi	Signification			
r5311	Mom	Moment d'inertie Commande anticipatrice Mot d'état			
	.00	Etat logique 1 : De nouveaux points de mesure pour la caractéristique de la commande anticipatrice de moment d'inertie sont disponibles			
	.01	Etat logique 1 : de nouveaux paramètres ont été calculés			
	.02	Etat logique 1 : commande anticipatrice	e de moment d'inertie active		
	.03	Etat logique 1 : la caractéristique dans le sens de rotation positif a été calculet et est prête			
.04 Etat logique 1 : la caractéristique dans le sens de rotation néga et est prête			le sens de rotation négatif a été calculée		
	.05	Etat logique 1 : le variateur écrit les rés	sultats réels dans le paramètre		
p5312		ent d'inertie Commande anticipatrice aire positif (réglage d'usine : 0 1/s²)	Pour un sens de rotation positif : Moment d'inertie = p5312 × couple de		
p5313	I -	ent d'inertie Commande anticipatrice stant positif (réglage d'usine : 0 kgm²)	charge + p5313		
p5314		ent d'inertie Commande anticipatrice aire négatif (réglage d'usine : 0 1/s²)	Pour un sens de rotation négatif : Moment d'inertie = p5314 × couple de		
p5315		ent d'inertie Commande anticipatrice stant négatif (réglage d'usine : 0 kgm²)	charge + p5315		

6.5.2.4 Identification de la position des pôles

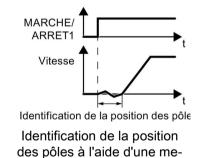
Position des pôles d'un moteur synchrone

La position des pôles d'un moteur synchrone correspond à l'écart entre l'axe magnétique présent dans le rotor et l'axe magnétique présent dans le stator.

La figure ci-dessous présente la position des pôles d'un moteur synchrone dans une coupe transversale simplifiée.

Le variateur doit connaître la position des pôles du rotor dans le moteur pour pouvoir commander le couple et la vitesse d'un moteur synchrone.

Identification de la position des pôles


Le variateur doit mesurer la position des pôles pour les moteurs non équipés d'un capteur, ou pour les capteurs qui ne fournissent pas d'informations en ce qui concerne la position des pôles.

Si vous utilisez un moteur Siemens, le variateur sélectionne automatiquement la technologie appropriée pour déterminer la position des pôles, et lorsque cela est nécessaire il démarre l'identification de la position des pôles.

Moteur sans capteur

Chaque fois que le moteur est mis sous tension (ordre MARCHE/ARRET1), le variateur mesure la position des pôles.

En conséquence de la mesure, le moteur réagit à un ordre de MARCHE avec une temporisation pouvant atteindre 1 seconde. L'arbre du moteur peut effectuer un petit mouvement de rotation pendant la mesure.

sure

6.6 Fonctions de protection

Le variateur offre des fonctions de protection contre la surchauffe et la surtension aussi bien du variateur que du moteur. En outre, le variateur se protège contre une tension de circuit intermédiaire trop élevée lorsque le moteur fonctionne en génératrice.

6.6.1 Surveillance de température du variateur

La température du variateur est déterminée essentiellement par les influences suivantes :

- La température ambiante
- Les pertes ohmiques qui augmentent avec le courant de sortie
- Les pertes par commutation qui augmentent avec la fréquence de découpage

Types de surveillance

Le variateur surveille sa température des façons suivantes :

- Surveillance I2t (alarme A07805, défaut F30005)
- Mesure de la température de semiconducteur du Power Module (alarme A05006, défaut F30024)
- Mesure de la température de radiateur du Power Module (alarme A05000, défaut F30004)

Réaction du variateur à une surcharge thermique

Paramètre	Description		
r0036	Partie puissance Surcharge I²t [%]		
	La surveillance l²t calcule la charge du variateur sur la base d'une valeur de référence de courant définie en usine.		
	Courant actuel > valeur de référence : r0036 augmente.		
	Courant actuel < valeur de référence : r0036 diminue ou reste = 0.		
r0037	Partie puissance Températures [°C]		
p0290	Partie puissance Réaction de surcharge		
	Le réglage d'usine et les possibilités de modification dépendent du matériel. La dépendance est décrite dans le Manuel de listes.		
	Une surcharge thermique est une température de variateur supérieure à p0292.		
	Ce paramètre permet de définir la réaction du variateur à un risque de surcharge thermique. Les détails sont décrits ci-après.		
p0292	Partie puissance Seuil d'alarme de température (réglage d'usine : radiateur [0] 5 °C, semiconducteur de puissance [1] 15 °C)		
	La valeur est réglée en tant que différence par rapport à la température de coupure.		
p0294	Partie puissance Alarme pour une surcharge l2t (réglage d'usine : 95 %)		

6.6 Fonctions de protection

Réaction de surcharge lorsque p0290 = 0

Le variateur réagit en fonction du type de régulation réglé :

- En régulation vectorielle, le variateur réduit le courant de sortie.
- En commande U/f, le variateur réduit la vitesse.

Dès que la surcharge est éliminée, le variateur débloque le courant de sortie ou la vitesse.

Lorsque la mesure ne peut pas éliminer la surcharge thermique du variateur, le variateur met le moteur hors tension et génère le défaut F30024.

Réaction de surcharge lorsque p0290 = 1

Le variateur met le moteur immédiatement hors tension et génère le défaut F30024.

Réaction de surcharge lorsque p0290 = 2

Nous recommandons ce réglage pour les entraînements avec couple quadratique, p. ex. les ventilateurs.

Le variateur réagit en deux étapes :

1. Lorsque le variateur fonctionne avec une consigne de fréquence de découpage p1800 élevée, le variateur réduit sa fréquence de découpage en partant de p1800.

Le courant de sortie de charge de base reste inchangé à la valeur affectée à p1800, malgré la fréquence de découpage temporairement réduite.

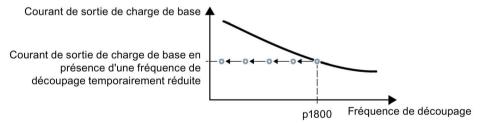


Figure 6-39 Courbe de déclassement et courant de sortie de charge de base en cas de surcharge

Dès que la surcharge est éliminée, le variateur augmente de nouveau la fréquence de découpage jusqu'à la consigne de la fréquence de découpage p1800.

- 2. Lorsqu'une réduction temporaire de la fréquence de découpage n'est pas possible ou ne peut pas empêcher le risque d'une surcharge thermique, l'étape 2 entre en jeu :
 - En régulation vectorielle, le variateur réduit son courant de sortie.
 - En commande U/f, le variateur réduit la vitesse.

Dès que la surcharge est éliminée, le variateur débloque le courant de sortie ou la vitesse.

Lorsque ces deux mesures ne permettent pas d'éliminer la surcharge thermique de la partie puissance, le variateur met le moteur hors tension et génère le défaut F30024.

Réaction de surcharge lorsque p0290 = 3

Lorsque le variateur fonctionne avec une fréquence de découpage élevée, le variateur réduit sa fréquence de découpage en partant de la consigne de la fréquence de découpage p1800.

Le courant de sortie maximal reste inchangé à la valeur affectée à la consigne de la fréquence de découpage, malgré la fréquence de découpage temporairement réduite. Voir aussi p0290 = 2.

Dès que la surcharge est éliminée, le variateur augmente de nouveau la fréquence de découpage jusqu'à la consigne de la fréquence de découpage p1800.

Lorsqu'une réduction temporaire de la fréquence de découpage n'est pas possible ou ne peut pas empêcher le risque d'une surcharge thermique de la partie puissance, le variateur met le moteur hors tension et génère le défaut F30024.

Réaction de surcharge lorsque p0290 = 12

Le variateur réagit en deux étapes :

- 1. Lorsque le variateur fonctionne avec une consigne de fréquence de découpage p1800 élevée, le variateur réduit sa fréquence de découpage en partant de p1800.
 - Il n'y a pas de déclassement du courant en raison de la consigne de fréquence de découpage élevée.
 - Dès que la surcharge est éliminée, le variateur augmente de nouveau la fréquence de découpage jusqu'à la consigne de la fréquence de découpage p1800.
- 2. Lorsqu'une réduction temporaire de la fréquence de découpage n'est pas possible ou ne peut pas empêcher la surcharge thermique du variateur, l'étape 2 entre en jeu :
 - En régulation vectorielle, le variateur réduit le courant de sortie.
 - En commande U/f, le variateur réduit la vitesse.

Dès que la surcharge est éliminée, le variateur débloque le courant de sortie ou la vitesse.

Lorsque ces deux mesures ne permettent pas d'éliminer la surcharge thermique de la partie puissance, le variateur met le moteur hors tension et génère le défaut F30024.

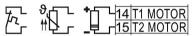
Réaction de surcharge lorsque p0290 = 13

Nous recommandons ce réglage pour les entraînements ayant un couple élevé au démarrage, p. ex. les convoyeurs horizontaux ou les extrudeuses.

Lorsque le variateur fonctionne avec une fréquence de découpage élevée, le variateur réduit sa fréquence de découpage en partant de la consigne de la fréquence de découpage p1800.

Il n'y a pas de déclassement du courant en raison de la consigne de fréquence de découpage élevée.

Dès que la surcharge est éliminée, le variateur augmente de nouveau la fréquence de découpage jusqu'à la consigne de la fréquence de découpage p1800.


Lorsqu'une réduction temporaire de la fréquence de découpage n'est pas possible ou ne peut pas empêcher le risque d'une surcharge thermique de la partie puissance, le variateur met le moteur hors tension et génère le défaut F30024.

6.6.2 Surveillance de la température du moteur à l'aide d'une sonde thermométrique

Raccordement de la sonde thermométrique

Pour protéger le moteur contre la surchauffe, vous pouvez utiliser l'une des sondes suivantes:

- thermocontacts (p. ex. interrupteur à bilame)
- Sonde CTP
- Sonde KTY84

Raccordez la sonde thermométrique du moteur aux bornes 14 et 15 du variateur.

Thermocontacts

Le variateur interprète une résistance \geq 100 Ω comme un interrupteur thermostatique ouvert et réagit selon le réglage de p0610.

Sonde CTP

 $_{
olimits$ Le variateur interprète une résistance ≥ 1650 Ω comme une surchauffe et réagit ∟ selon le réglage de p0610.

Le variateur interprète une résistance < 20 Ω comme un court-circuit et réagit avec la signalisation d'alarme A07015. Si l'alarme dure plus de 100 millisecondes, le variateur s'arrête avec le défaut F07016.

Sonde KTY84

IMPORTANT

Surchauffe du moteur en raison d'une sonde thermométrique KTY mal raccordée

Une sonde KTY raccordée avec une polarité inversée peut entraîner l'endommagement du moteur par surchauffe, compte tenu que le variateur ne détecte pas la surchauffe du moteur.

• Raccordez la sonde KTY avec la polarité correcte.

Une sonde KTY vous permet de surveiller la température du moteur ainsi que la présence d'une rupture de fil ou d'un court-circuit sur la sonde elle-même.

Surveillance de température :

Avec une sonde KTY, le variateur exploite la température du moteur dans la plage de - 48 °C à +248 °C.

Réglez la température pour le seuil d'alarme ou de défaut via les paramètres p0604 ou p0605.

- Alarme surchauffe (A07910) :
 - Température du moteur > p0604 et p0610 = 0
- Défaut surchauffe (F07011) :

Le variateur s'arrête dans les cas suivants avec un défaut :

- Température du moteur > p0605
- Température du moteur > p0604 et p0610 ± 0
- Surveillance de la sonde (A07015 ou F07016) :
 - Rupture de fil:

Le variateur interprète une résistance > 2120 Ω comme une rupture de fil et émet l'alarme A07015. Au bout de 100 millisecondes, le variateur passe en configuration de défaut avec F07016.

- Court-circuit:

Le variateur interprète une résistance < $50~\Omega$ comme un court-circuit et émet l'alarme A07015. Au bout de 100~millisecondes, le variateur passe en configuration de défaut avec F07016.

Réglage des paramètres pour la surveillance de température

Paramètre	Description		
p0335	Indiquer le refroidissement du moteur 0 : Refroidissement naturel – avec ventilateur sur l'arbre moteur (réglage d'usine) 1 : Refroidissement externe – avec ventilateur entraîné indépendamment du moteur 2 : Refroidissement par liquide 128 : Pas de ventilateur		
p0601	Sonde de température du moteur Type de sonde 0 : Pas de sonde (réglage d'usine) 1 : CTP (→ p0604) 2 : KTY84 (→ p0604, p0605) 4 : Thermocontacts		
p0604	Température moteur Seuil d'alarme (réglage d'usine 130 °C)		
p0605	Température moteur Seuil de défaut (réglage d'usine : 145 °C) Réglage pour sonde KTY84. Le paramètre n'a aucune signification pour une sonde CTP.		
p0610	Surchauffe du moteur Réaction (réglage d'usine : 12) Détermine le comportement dès que la température du moteur atteint le seuil d'alarme p0604.		
	0 : Alarme (A07910), pas de défaut. 1 : Alarme (A07910) ; le variateur réduit la limite de courant et démarre la temporisation. Coupure avec défaut (F07011). 2 : Alarme (A07910) ; le variateur démarre la temporisation. Coupure avec défaut (F07011).		
	12: Comme 2 ; toutefois, le variateur prend en compte la dernière température de coupure lors du calcul de la température du moteur.		
p0640	Limite de courant (renseignée en A)		

De plus amples informations sur la surveillance de température du moteur figurent dans le diagramme fonctionnel 8016 du Manuel de listes.

6.6.3 Protection contre les surintensités

La régulation vectorielle veille à ce que le courant du moteur reste à l'intérieur des limites de couple réglées.

Lorsque vous utilisez la commande U/f, vous ne pouvez pas régler les limites de couple. La commande U/f empêche un courant moteur trop élevé en influant sur la fréquence de sortie et la tension du moteur (régulateur l-max).

Régulateur I-max

Conditions

Le couple du moteur doit diminuer en présence d'une vitesse plus faible, ce qui est le cas pour les ventilateurs, par exemple.

La charge ne doit pas entraîner le moteur de manière continue, p. ex. lors de l'abaissement de dispositifs de levage.

Fonction

Le régulateur I-max influe aussi bien sur la fréquence de sortie que sur la tension du moteur.

Lorsque le courant moteur atteint la valeur limite de courant lors de l'accélération, le régulateur l-max prolonge la phase d'accélération.

Lorsque la charge du moteur en fonctionnement stationnaire devient si grande que le courant du moteur atteint la valeur limite de courant, le régulateur l-max réduit aussi bien la vitesse que la tension du moteur jusqu'à ce que le courant moteur revienne dans la plage admissible.

Lorsque le courant moteur atteint la valeur limite de courant lors du freinage, le régulateur l-max prolonge la phase de freinage.

Réglages

Il n'est nécessaire de modifier le réglage d'usine du régulateur l-max que si l'entraînement tend à vibrer lorsqu'il atteint la limite de courant ou en cas de coupure du fait d'une surintensité.

Tableau 6-34 Paramètres du régulateur I-max

Paramètre	Description
p0305	Courant nominal du moteur
p0640	Limite de courant du moteur
p1340	Gain proportionnel du régulateur l-max pour la réduction de vitesse
p1341	Temps d'intégration du régulateur l-max pour la réduction de vitesse
r0056.13	Etat : Régulateur I-max actif
r1343	Sortie de vitesse du régulateur l_max Indique la valeur absolue à laquelle le régulateur l_max réduit la vitesse.

De plus amples informations sur cette fonction figurent dans le diagramme fonctionnel 6300 du Manuel de listes.

6.6.4 Limitation de la tension maximale du circuit intermédiaire

Comment le moteur est-il à l'origine de surtensions ?

Un moteur asynchrone fonctionne en génératrice lorsqu'il est entraîné par la charge raccordée. Une génératrice transforme l'énergie mécanique en énergie électrique. L'énergie électrique est réinjectée dans le variateur. Si le variateur ne peut pas transmettre l'énergie électrique, par exemple à une résistance de freinage, la tension du circuit intermédiaire Vdc augmente dans le variateur.

A partir d'une tension de circuit intermédiaire critique, le variateur ainsi que le moteur sont endommagés. Avant que des tensions trop dangereuses ne se produisent, le variateur coupe le moteur raccordé et génère le défaut "Surtension du circuit intermédiaire".

Protection du moteur et du variateur contre les surtensions

Dans la mesure où l'application le permet, la régulation Vdc_max empêche une tension de circuit intermédiaire trop élevée. La régulation Vdc_max augmente le temps de descente du moteur lors du freinage, de manière à ce que le moteur ne réinjecte dans le variateur que l'énergie compensée par les pertes dans le variateur.

La régulation Vdc_max est inappropriée pour les applications avec fonctionnement permanent du moteur en génératrice. C'est le cas p. ex. pour les engins de levage ou pour le freinage de masses importantes en rotation. Pour plus d'informations sur les méthodes de freinage du variateur, veuillez vous référer à la section Freinage électrique du moteur (Page 240).

Tableau 6-35 Paramètres du régulateur VDCmax

Paramètres pour la commande U/f	Paramètres pour la régulation vectorielle	Description	
p1280 = 1	p1240 = 1	Régulateur V DC ou surveillance V DC Configuration (réglage usine : 1) 1 : Débloquer le régulateur VDCmax	
r1282	r1242	Régulateur V _{DCmax} Niveau d'activation Affiche la valeur de la tension de circuit intermédiaire à partir de laquelle le régulateur V _{DCmax} entre en action	
p1283	p1243	Régulateur V _{DCmax} Facteur de dynamique (réglage usine : 100 %) Normalisation des paramètres du régulateur P1290, P1291 et P1292	
p1294	p1254	Régulateur V _{DCmax} Acquisition automatique Niveau activation (réglage usine p1294 : 0, réglage usine p1254 : 1) Active ou désactive la détection automatique des niveaux d'activation du régulateur V _{DCmax} . 0 : Acquisition automatique bloquée 1 : Acquisition automatique débloquée	
p0210	p0210	Tension de raccordement des appareils Si p1254 ou p1294 = 0, le variateur calcule les seuils d'intervention du régulateur V _{DCmax} à partir de ce paramètre.	
		Régler ce paramètre sur la valeur effective de la tension d'entrée.	

Des informations complémentaires sur cette fonction figurent dans les diagrammes fonctionnels 6320 et 6220 du Manuel de listes.

6.7 Fonctions spécifiques à l'application

Le variateur propose une série de fonctions que vous pouvez utiliser en fonction de votre application :

- Commutation d'unités (Page 234)
- Calcul de l'économie d'énergie (Page 238)
- Fonctions de freinage
 - Freinage électrique du moteur (Page 240)
 - Frein de maintien moteur (Page 249)
- Reprise au vol Mise en marche avec moteur tournant (Page 254)
- Redémarrage automatique (Page 256)
- Maintien cinétique (régulation Vdc-min) (Page 261)
- Régulateur technologique PID (Page 265)

6.7.1 Commutation d'unités

Description

La commutation des unités permet de convertir les paramètres et grandeurs de process en système d'unités adapté pour les besoins d'entrée ou de sortie : unités US, unités SI ou grandeurs relatives en %.

Indépendamment de ce choix, vous pouvez définir les unités des grandeurs de process ou sélectionner des pourcentages.

Vous avez en détails les possibilités suivantes :

- Changement de norme moteur (Page 235) CEI/NEMA
- Commutation du système d'unités (Page 236)
- Commutation des grandeurs de process pour régulateurs technologiques (Page 236)

La norme moteur, le système d'unités ainsi que les grandeurs de process sont uniquement modifiables hors ligne.

Restrictions concernant la commutation des unités

- Les valeurs de la plaque signalétique du variateur ou du moteur ne peuvent pas être représentées en pourcentage.
- Si vous changez d'unité à plusieurs reprises (p. ex. : pourcentage → unité physique 1 → unité physique 2 → pourcentage), il se peut que, du fait de l'erreur d'arrondi, la valeur initiale change au niveau de la décimale.
- Si vous avez sélectionné un pourcentage comme unité et si vous modifiez ensuite la valeur de référence, les pourcentages indiqués s'appliqueront à la nouvelle valeur de référence.

Exemple:

- Une vitesse fixe de 80 % correspond, pour une vitesse de référence de 1500 tr/min, à une vitesse de 1200 tr/min.
- Si la vitesse de référence passe à 3000 tr/min, la valeur de 80 % restera inchangée mais correspondra alors à 2400 tr/min.

Grandeurs de référence pour la commutation des unités

p2000 Fréquence/vitesse de référence

p2001 Tension de référence

p2002 Courant de référence

p2003 Couple de référence

r2004 Puissance de référence

6.7.1.1 Changement de norme moteur

Pour changer la norme moteur utilisez p0100, sachant que :

- p0100 = 0: IEC-Moteur, (50 Hz, unités SI)
- p0100 = 1: NEMA-Moteur (60 Hz, unités US)
- p0100 = 2: NEMA-Moteur (60 Hz, unités SI)

Le changement affecte les paramètres mentionnés ci-après.

Tableau 6-36 Grandeurs affectées par le changement de la norme moteur

Nº par.	Désignation	Unité pour p0100 =			
		0*)	1	2	
r0206	Power Module Puissance assignée	kW	HP	kW	
p0307	Puissance assignée du moteur	kW	HP	kW	
p0316	Constante de couple du moteur	Nm/A	lbf ft/A	Nm/A	
r0333	Couple assigné du moteur	Nm	lbf ft	Nm	
p0341	Moment d'inertie du moteur	kgm²	lb ft²	kgm²	
p0344	Masse du moteur (pour modèle thermique du moteur)	kg	Lb	kg	
r1969	Optim rég_vitesse Moment d'inertie déterminé	kgm²	lb ft ²	kgm²	

^{*)} Réglage d'usine

6.7 Fonctions spécifiques à l'application

6.7.1.2 Commutation du système d'unités

Le changement de système d'unités s'effectue avec p0505. Vous disposez des options suivantes :

- p0505 = 1 : Unités SI (réglage d'usine)
- p0505 = 2 : Unités SI ou %, par rapport aux unités SI
- p0505 = 3 : Unités US
- p0505 = 4 : Unités USI ou %, par rapport aux unités US

Remarque

Particularités

Les pourcentages de p0505 = 2 et p0505 = 4 sont identiques. Pour le calcul interne et pour la sortie de grandeurs physiques, il est cependant important de savoir si la conversion se rapporte à des unités SI ou US.

La règle suivante s'applique aux grandeurs pour lesquelles une représentation en % n'est pas possible : p0505 = 1 \triangleq p0505 = 2 und p0505 = 3 \triangleq p0505 = 4.

La règle suivante s'applique aux grandeurs dont les unités du système SI et du système US sont identiques mais qui peuvent être représentées en pourcentage : $p0505 = 1 \triangleq p0505 = 3$ et $p0505 = 2 \triangleq p0505 = 4$.

Paramètres affectés par le changement

Les paramètres affectés par le changement de système d'unités sont classés par groupes d'unités. Vous trouverez un récapitulatif des groupes d'unités et des unités possibles à la section "Groupes d'unités et choix de l'unité" du Manuel de listes.

6.7.1.3 Commutation des grandeurs de process pour régulateurs technologiques

Remarque

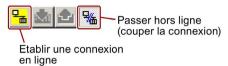
Nous vous conseillons d'harmoniser les unités et les valeurs de référence des régulateurs technologiques lors de la mise en service.

Modifier les grandeurs de référence ou les unités ultérieurement risque de fausser les calculs ou de se solder par un affichage erroné.

Commutation des grandeurs de process du régulateur technologique

Commutez les grandeurs de process du régulateur technologique p0595. Définissez la grandeur de référence des valeurs physiques dans p0596.

Les paramètres concernés par la commutation des unités du régulateur technologique appartiennent au groupe d'unités 9_1. Pour plus de détails, reportez-vous à la section "Groupe d'unités et choix de l'unité" du Manuel de listes.


6.7.1.4 Commutation d'unités avec STARTER

Condition

Pour pouvoir changer d'unité, il faut que le variateur soit en mode hors ligne.

STARTER signale que vous modifiez les réglages en ligne sur le variateur ou hors ligne sur le PC (Mode en ligne / Mode hors ligne).

Les boutons ci-contre de la barre de menus permettent de changer de mode.

Procédure

Pour commuter les unités avec STARTER, procédez comme suit :

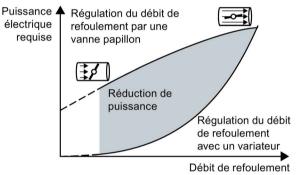
- 1. Sélectionnez Configuration
- 2. Pour commuter les unités passez dans l'onglet "Unité" du masque de configuration.
- 3. Commutation du système d'unités
- 4. Sélection des grandeurs de process du régulateur technologique
- 5. Adaptation au réseau d'alimentation

- 6. Sauvegardez vos réglages.
- 7. Passez en ligne.

Le variateur signale que les unités et grandeurs de process réglées hors ligne sont différentes de celles du variateur.

 Transférez les réglages sur le variateur.

Vous avez commuté les unités.


6.7.2 Calcul de l'économie d'énergie

Contexte

Les turbomachines qui régulent mécaniquement le débit de refoulement au moyen de vannes à coulisse ou de vannes papillon, fonctionnent à une vitesse constante en fonction de la fréquence du réseau. Plus le débit de refoulement est faible, plus le rendement de l'installation est mauvais. Le rendement de la machine est le plus mauvais lorsque les vannes à coulisse ou les vannes papillon sont complètement fermées. En outre, des effets indésirables peuvent se produire, p. ex. la formation de bulles de vapeur dans les liquides (cavitation) ou l'échauffement du fluide véhiculé.

Le variateur régule le débit de refoulement par la vitesse de la turbomachine. La turbomachine fonctionne ainsi avec un rendement optimal quel que soit le débit de refoulement et nécessite moins de puissance électrique à l'état de fonctionnement en charge partielle qu'avec la régulation par les vannes à coulisse et les vannes papillon.

Fonction

Le variateur calcule l'économie d'énergie à partir de la caractéristique de flux d'une régulation de refoulement mécanique et de la puissance électrique absorbée mesurée.

Le calcul est approprié par exemple pour les pompes centrifuges, les ventilateurs, les compresseurs radiaux ou axiaux.

Paramètre	Descrip	Description			
p3320 p3329	Caracte	éristique de flux			
p3329	Réglag Pour ré teur de Le c vari	(Vitesse, puissance) (1) (p3320, p3321) (2) (p3322, p3323) (3) (p3324, p3325) (4) (p3326, p3327) (5) (p3328, p3329) (e) d'usine de la caractéristique de flux (gler la caractéristique, vous avez besoin des données suivantes du constructa machine pour chaque point d'interpolation de vitesse: (débit de refoulement de la turbomachine correspondant aux 5 vitesses de ateur sélectionnées			
	tesse constante en fonction de la fréquence du réseau et de l'étrangle nique du débit de refoulement.				
r0039	Affichage de l'énergie [kWh] [0] Bilan énergétique				
		consommation d'énergie depuis la dernière réinitialisation			
	[1]	énergie absorbée depuis la dernière réinitialisation			
	[2]	énergie réinjectée depuis la dernière réinitialisation			
p0040		mmation d'énergie Réinitialiser l'affichage			
	Un fron	t montant $(0 \rightarrow 1)$ règle r0039[02] = 0, r0041 = 0 et r0042 = 0.			
r0041		mmation d'énergie économisée (kWh)			
	L'énergie économisée rapportée à 100 heures de fonctionnement.				
		oins de 100 heures de fonctionnement, le variateur extrapole l'économie jie réalisée pour 100 heures de fonctionnement.			
r0042	CO : Affichage de l'énergie du process [1 ≙ 1 Wh]				
	Pour l'affichage en tant que grandeur de process. Déblocage avec p0043.				
	[0]	Bilan énergétique			
		consommation d'énergie depuis la dernière réinitialisation			
	[1]	énergie absorbée depuis la dernière réinitialisation			
	[2]	énergie réinjectée depuis la dernière réinitialisation			
p0043	BI : Consommation d'énergie Débloquer l'affichage				
	Etat logique 1 : L'affichage de l'énergie du process dans r0042 est actif.				

6.7.3 Freinage électrique du moteur

Freinage par fonctionnement du moteur en génératrice

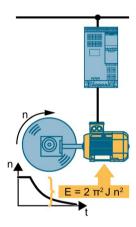
Lorsque le moteur freine électriquement la charge raccordée, il transforme alors l'énergie cinétique en énergie électrique. L'énergie de freinage E libérée en tant qu'énergie électrique lors du freinage de la charge est proportionnelle au moment d'inertie J du moteur et de la charge ainsi qu'au carré de la vitesse n. Le moteur tente de transférer l'énergie électrique au variateur.

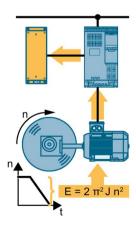
Principales caractéristiques des fonctions de freinage

Freinage par injection de courant continu

Le freinage par injection de courant continu empêche le moteur de transférer l'énergie de freinage au variateur. Le variateur injecte du courant continu dans le moteur et freine ainsi le moteur. Le moteur transforme l'énergie de freinage E de la charge en chaleur.

- Avantage : le moteur freine la charge sans que le variateur n'ait à traiter la puissance génératrice
- Inconvénients: fort échauffement du moteur; pas de comportement de freinage défini; pas de couple de freinage constant; pas de couple de freinage à l'arrêt; énergie de freinage E dissipée sous forme de chaleur; ne fonctionne pas en cas de coupure de réseau


Freinage combiné


Une variante du freinage par injection de courant continu. Le variateur freine le moteur avec un temps de descente défini et superpose un courant continu au courant de sortie.

Freinage dynamique

Le variateur transforme l'énergie électrique en chaleur à l'aide d'une résistance de freinage.

- Avantages: comportement de freinage défini; pas d'échauffement supplémentaire du moteur; couple de freinage constant
- Inconvénients: résistance de freinage requise; énergie de freinage E dissipée sous forme de chaleur

Méthode de freinage en fonction du cas d'application

Tableau 6-37 Quelle méthode de freinage s'approprie pour quelle application?

Exemples d'application	Méthode de freinage électrique
Pompes, ventilateurs, mélangeurs, compresseurs, extrudeuses	Non requis
Rectifieuses, convoyeurs à bande	Freinage par injection de CC, freinage combiné
Centrifugeuses, convoyeurs à bande verticaux, engins de levage, grues, enrouleurs	Freinage rhéostatique

6.7.3.1 Freinage par injection de courant continu

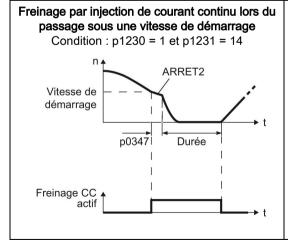
Le freinage par injection de courant continu est utilisé pour les applications sans réinjection d'énergie dans le réseau, le moteur étant freiné, plus rapidement qu'avec la rampe de descente, par application d'un courant continu indépendant de la charge.

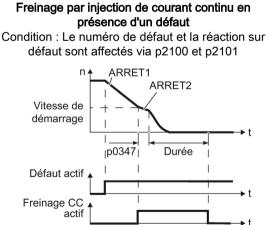
Les applications typiques pour freinage par injection de courant continu sont :

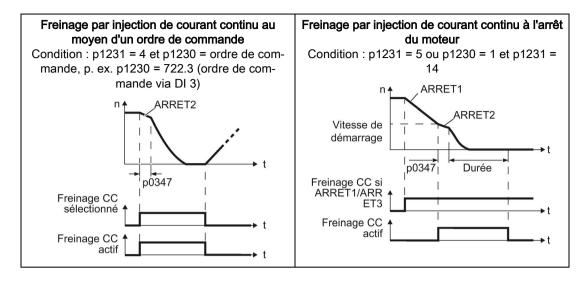
- Centrifugeuses
- Scies
- Rectifieuses
- Convoyeurs à bande

Fonction

IMPORTANT


Endommagement du moteur dû à la surchauffe


Si le moteur freine longtemps ou souvent avec le freinage par injection de courant continu, il peut surchauffer. Cela peut endommager le moteur.


- Surveillez la température du moteur.
- Si le moteur est trop chaud pendant le fonctionnement, vous devez sélectionner une autre méthode de freinage ou accorder au moteur davantage de temps pour refroidir.

Lors du freinage par injection de courant continu, le variateur émet un ordre ARRET2 interne durant le temps de désexcitation du moteur p0347 et applique ensuite un courant de freinage pendant toute la durée du freinage par injection de courant continu.

La fonction de freinage par injection de courant continu est seulement possible sur les moteurs asynchrones.

Freinage par injection de CC lors du passage sous une vitesse de démarrage

- 1. La vitesse du moteur a dépassé la vitesse de démarrage.
- 2. Le variateur active le freinage par injection de courant continu, dès que la vitesse du moteur tombe en dessous de la vitesse de démarrage.

Freinage par injection de courant continu en présence d'un défaut

- 1. Un défaut affecté à la réaction de freinage par injection de courant continu se produit.
- 2. Le moteur freine suivant la rampe de descente jusqu'à la vitesse de démarrage pour le freinage par injection de courant continu.
- 3. Le freinage par injection de courant continu commence.

Freinage par injection de courant continu suite à un ordre de commande

- 1. La commande de niveau supérieur donne l'ordre de freinage par injection de courant continu, p. ex. via DI3 : p1230 = 722.3.
- 2. Le freinage par injection de courant continu commence.

Si la commande de niveau supérieur retire l'ordre au cours du freinage par injection de courant continu, le variateur interrompt le freinage et le moteur accélère à sa consigne.

Freinage par injection de courant continu à l'arrêt du moteur

- 1. La commande de niveau supérieur arrête le moteur (ARRET1 ou ARRET3).
- 2. Le moteur freine suivant la rampe de descente jusqu'à la vitesse de démarrage pour le freinage par injection de courant continu.
- 3. Le freinage par injection de courant continu commence.

Réglages pour le freinage par injection de courant continu

Paramètre	Description		
p0347	Temps de désexcitation du moteur (calcul après la mise en service rapide)		
	Un temps d'excitation trop court pourra entraîner une coupure lors du freinage par injection de CC du fait de la surintensité.		
p1230	Freinage par injection de courant continu Activation (réglage d'usine : 0)		
	Source de signal pour l'activation du freinage par injection de courant continu		
	Etat logique 0 : inactif		
	Etat logique 1 : actif		
p1231	Configuration du freinage par injection de courant continu (réglage d'usine : 0)		
	O Pas de freinage par injection de courant continu Déblocage général du freinage par injection de CC Freinage par injection de CC pour ARRET1/ARRET3 Freinage par injection de CC en dessous de la vitesse de démarrage		
p1232	Freinage par injection de courant continu Courant de freinage (réglage d'usine : 0 A)		
p1233	Freinage par injection de courant continu Durée (réglage d'usine : 1 s)		
p1234	Freinage par injection de courant continu Vitesse de démarrage (réglage d'usine : 210 000 tr/min)		
r1239	Freinage par injection de CC Mot d'état		
	 .08 Freinage par injection de CC actif .10 Freinage par injection de CC prêt .11 Freinage par injection de CC sélectionné .12 Freinage par injection de CC Sélection bloquée en interne .13 Freinage par injection de CC pour ARRET1/ARRET3 		

Tableau 6- 38 Configuration du freinage par injection de courant continu en tant que réaction aux défauts

Paramètre	Description		
p2100	Réglage du numéro de défaut pour la réaction sur défaut (réglage d'usine : 0)		
	Renseignez le numéro de défaut pour lequel le freinage par injection de courant continu est actif, p. ex. : p2100[3] = 7860 (défaut externe 1).		
p2101 = 6	Réglage de la réaction sur défaut (réglage d'usine : 0)		
	Affectation de la réaction au défaut : p2101[3] = 6.		

Le défaut est affecté à un indice de p2100. Affectez le défaut et la réaction sur défaut au même indice de p2100 ou p2101.

Le Manuel de listes du variateur fournit, dans la liste "Défauts et alarmes" un récapitulatif des réactions possibles à chaque défaut. La mention "FREINCC" signifie que vous pouvez spécifier le freinage par injection de courant continu comme réaction à ce défaut.

6.7.3.2 Freinage combiné

Les applications typiques du freinage combiné sont les suivantes :

- Centrifugeuses
- Scies
- Rectifieuses
- Convoyeur horizontal

Dans ces applications, le moteur fonctionne normalement à vitesse constante et n'est freiné jusqu'à l'immobilisation qu'à des intervalles de temps espacés.

Fonctionnement

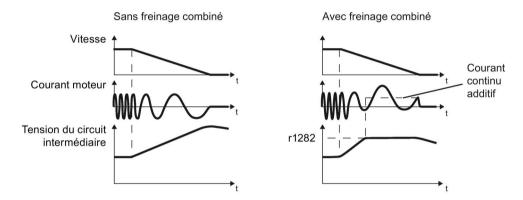


Figure 6-40 Freinage du moteur sans et avec freinage combiné actif

Le freinage combiné empêche l'élévation de la tension de circuit intermédiaire au-delà d'une valeur critique. Le variateur active le freinage combiné en fonction de la tension de circuit intermédiaire. A partir d'un certain seuil (r1282) de la tension du circuit intermédiaire, le variateur ajoute un courant continu au courant du moteur. Le courant continu freine le moteur et empêche une augmentation trop élevée de la tension du circuit intermédiaire.

Remarque

Le freinage combiné est seulement possible en association avec la commande U/f.

Le freinage combiné ne fonctionne pas dans les cas suivants :

- la fonction "reprise au vol" est active ;
- le freinage par injection de CC est actif;
- la régulation vectorielle est sélectionnée.

Réglage et déblocage du freinage combiné

Paramètre	Description		
p3856	Courant de freinage combiné (%)		
	Le courant de freinage combiné permet de définir l'intensité du courant continu qui est généré en sus lors de l'arrêt du moteur fonctionnant en mode commande U/f afin d'augmenter davantage l'effet de freinage.		
	p3856 = 0 Freinage combiné bloqué		
	p3856 = 1 à 250 Niveau de courant du courant continu de freinage en % du courant nominal du moteur (p0305)		
	Recommandation : p3856 < 100 % × (r0209 - r0331) / p0305 / 2		
r3859.0	Mot d'état Freinage combiné		
	r3859.0 = 1 : Le freinage combiné est actif		

IMPORTANT

Endommagement du moteur dû à la surchauffe lors du freinage combiné

Si le moteur freine trop longtemps ou trop souvent, il surchauffe. Cela peut endommager le moteur.

Surveillez la température du moteur. Si le moteur est trop chaud pendant le fonctionnement, vous devez sélectionner une autre méthode de freinage ou accorder au moteur davantage de temps pour refroidir.

6.7.3.3 Freinage dynamique

Les applications typiques pour le freinage dynamique sont :

- Convoyeur horizontal
- Convoyeurs verticaux et inclinés
- Engins de levage

Ces applications nécessitent un comportement dynamique du moteur à différentes vitesses ou avec une inversion de sens fréquente.

Fonctionnement

PRUDENCE

Brûlures en cas de contact avec une résistance de freinage chaude

Une résistance de freinage atteint des températures élevées pendant son fonctionnement. Tout contact avec celle-ci peut provoquer des brûlures.

• Ne touchez jamais une résistance de freinage pendant le fonctionnement.

Le variateur commande le hacheur de freinage en fonction de sa tension dans le circuit intermédiaire. La tension de circuit intermédiaire augmente dès que le variateur récupère la puissance génératrice lors du freinage du moteur. Le hacheur de freinage transforme cette puissance en chaleur dans la résistance de freinage. L'élévation de la tension de circuit intermédiaire au-delà de la valeur limite U_{Cl, max} est ainsi empêchée.

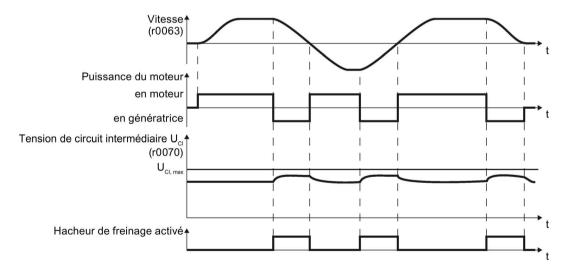
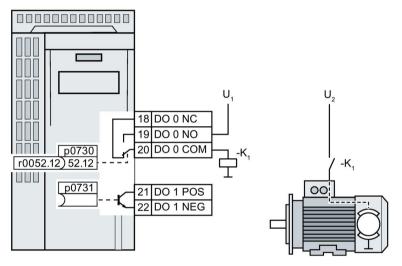


Figure 6-41 Représentation temporelle simplifiée du freinage dynamique

6.7 Fonctions spécifiques à l'application

Paramétrage du freinage dynamique

Paramètre	Description			
p0219	Puissance de freinage de la résistance de freinage (réglage d'usine : 0 kW) Réglez la puissance de freinage de la résistance de freinage.			
	Exemple : Dans votre application, le moteur freine toutes les 10 s. La résistance de freinage doit pouvoir recevoir la puissance de freinage de 1 kW pendant 2 s. Insta une résistance de freinage avec la puissance permanente 1 kW × 2 s / 10 s = 0,2 réglez la puissance de freinage maximale sur : p0219 = 1 (kW).			
	Pour les puissances de freinage faibles, le variateur allonge le temps de descente moteur en fonction des circonstances.			
	Quand p0219 > 0, le variateur désactive le régulateur Vdc_max.			
p0844	Pas de ralentisse	tissement naturel / ralentissement naturel (ARRET2) Source de signal 1		
	p0844 = 722.x	Surveiller la surchauffe de la résistance de freinage avec l'entrée TOR x du variateur.		


6.7.4 Frein de maintien moteur

Le frein à l'arrêt du moteur maintient le moteur arrêté en position. Si le réglage est correct, le moteur développe un couple de maintien avant que le variateur ne desserre le frein. Le variateur serre le frein à l'arrêt du moteur seulement lorsque le moteur est immobilisé.

Raccordement du frein à l'arrêt du moteur

Toutes les sorties TOR du variateur peuvent être utilisées pour la commande du frein à l'arrêt du moteur

Si la charge admissible de courant ou de tension de la sortie TOR est insuffisante, la commande du frein à l'arrêt du moteur doit se faire par l'intermédiaire d'un relais de couplage.

- U₁ Alimentation électrique du relais de couplage
- U₂ Tension d'alimentation du frein à l'arrêt du moteur

Figure 6-42 Raccordement du frein à l'arrêt du moteur via un relais de couplage K1 sur la sortie TOR DO°0 du variateur.

Pour définir la sortie TOR du variateur qui doit être utilisée pour commander le frein à l'arrêt du moteur, vous devez connecter la sortie TOR correspondante avec le signal de la commande de frein :

• Sortie TOR DO 0 : p0730 = 52.12

• Sortie TOR DO 1 : p0731 = 52.12

Fonctionnement après l'ordre ARRET1 et ARRET3

Le variateur commande le frein à l'arrêt du moteur comme suit :

- 1. Le variateur magnétise le moteur après l'ordre MARCHE (mise en marche du moteur).
- Après écoulement du temps de magnétisation (p0346), le variateur donne l'ordre de desserrer le frein.
- 3. Le variateur maintient le moteur à l'arrêt jusqu'à la fin du temps p1216. Le frein à l'arrêt du moteur doit avoir ouvert pendant ce temps.
- 4. Après écoulement du temps de desserrage du frein, le moteur accélère à la consigne de vitesse.
- 5. Après émission de l'ordre ARRET1 ou ARRET3, le moteur freine jusqu'à l'immobilisation.
- 6. Si la vitesse actuelle est inférieure à 20 tr/min, le variateur donne l'ordre de serrer le frein. Le moteur est immobile, mais il reste encore en marche.
- 7. Une fois le temps de serrage du frein p1217 écoulé, le variateur arrête le moteur. Le frein à l'arrêt du moteur doit être serré pendant ce temps.

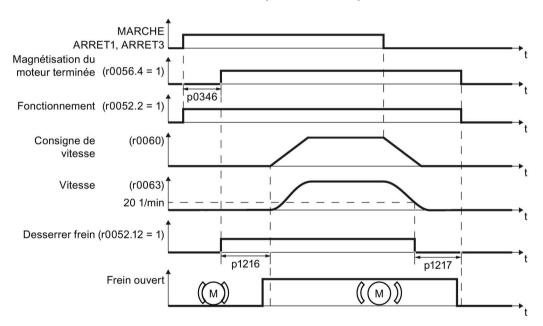
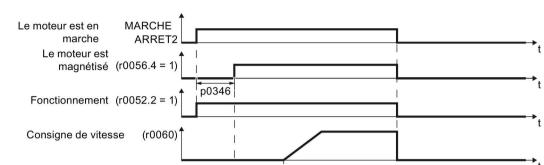



Figure 6-43 Commande du frein à l'arrêt du moteur au moment de la mise en marche et de l'arrêt du moteur.

Fonctionnement après un ordre ARRET2:

Desserrer frein (r0052.12 = 1)

Frein desserré

Figure 6-44 Commande du frein à l'arrêt du moteur après un ordre ARRET2

M

Après un ordre ARRET2, le variateur donne l'ordre de serrer le frein à l'arrêt du moteur immédiatement et indépendamment de la vitesse du moteur.

p1216

Mise en service du frein à l'arrêt du moteur

/!\DANGER

Danger de mort dû à des chutes de charges

En cas de réglage incorrect de la fonction "Frein à l'arrêt du moteur", il y a danger de mort dans les applications telles que les engins de levage, les grues ou les ascenseurs en raison du risque de chute de la charge.

- Pour la mise en service de la fonction "Frein à l'arrêt du moteur", sécurisez les charges dangereuses, en prenant p. ex. les mesures suivantes :
 - Abaissement de la charge jusqu'au sol
 - Délimitation de la zone dangereuse par des barrières

Condition

Le frein à l'arrêt du moteur est raccordé au variateur.

6.7 Fonctions spécifiques à l'application

Procédure

Pour mettre en service la fonction "Frein à l'arrêt du moteur", procédez comme suit :

- 1. Réglez p1215 = 1.
 - La fonction "frein à l'arrêt du moteur" est débloquée.
- 2. Contrôlez le temps de magnétisation p0346 ; celui-ci est affecté par défaut lors de la mise en service et il doit être supérieur à zéro.
- 3. Consultez les caractéristiques techniques du frein à l'arrêt du moteur pour obtenir les temps de desserrage et de serrage mécaniques.
 - Selon la taille du frein, les temps de desserrage du frein varient entre 25 ms et 500 ms.
 - Selon la taille du frein, les temps de serrage du frein varient entre 15 ms et 300 ms.
- 4. Réglez les paramètres suivants dans le variateur en fonction des temps de desserrage et de serrage mécaniques du frein à l'arrêt du moteur :
 - p1216 > temps de desserrage mécanique du frein à l'arrêt du moteur
 - p1217 > temps de serrage mécanique du frein à l'arrêt du moteur
- 5. Mettez le moteur en marche.
- Contrôlez le comportement d'accélération de l'entraînement immédiatement après la mise en marche du moteur :
 - Si le frein à l'arrêt du moteur est desserré trop tard, le variateur accélère le moteur par à-coups contre le frein à l'arrêt du moteur serré.
 - Augmentez p1216.
 - Si le moteur attend trop longtemps après le desserrage du frein à l'arrêt du moteur, diminuez p1216 avant qu'il n'accélère le moteur.
- 7. Si la charge décroche après la mise en marche du moteur, vous devez augmenter le couple du moteur lors du desserrage du frein à l'arrêt du moteur. Selon le type de régulation, vous devez régler les paramètres suivants :
 - Commande U/f (p1300 = 0 à 3) :
 Augmentez p1310 par petits incréments.
 Augmentez p1351 par petits incréments.
 - Régulation vectorielle (p1300 ≥ 20) :
 Augmentez p1475 par petits incréments.
- 8. Arrêtez le moteur.
- 9. Contrôlez le comportement de l'entraînement immédiatement après l'arrêt du moteur :
 - Si le frein à l'arrêt du moteur est serré trop tard, la charge décroche pendant un court instant avant le serrage du frein à l'arrêt du moteur.
 - Augmentez p1217.
 - Si le moteur attend trop longtemps après le serrage du frein à l'arrêt du moteur avant que le variateur n'arrête le moteur, diminuez p1217.
- Vous avez mis en service la fonction "frein à l'arrêt du moteur".

Tableau 6-39 Paramètres de la logique de commande du frein de maintien moteur

Paramètre	Description		
p1215 = 1	Déblocage du frein de maintien moteur 0 : Frein de maintien moteur serré (réglage usine) 3 : Frein de maintien moteur comme commande séquentielle, connexion via FCOM		
p1216	Frein de maintien moteur Temps de desserrage (réglage usine 0,1 s) p1216 > durée des relais de commande des freins + temps de purge du frein		
p1217	Frein de maintien moteur Temps de serrage (réglage usine 0,1 s) p1217 > durée des relais de commande des freins + temps de serrage du frein		
r0052.12	Ordre "Frein de maintien moteur desserré"		
p0730 = 52.12	Source de signal pour borne DO 0 Commande du frein de maintien moteur via la sortie TOR 0		
p0731 = 52.12	Source de signal pour borne DO 1 Commande du frein de maintien moteur via la sortie TOR 1		

Tableau 6-40 Réglages étendus

Paramètre	Description		
p0346	Temps de magnétisation (réglage usine 0 s) La magnétisation d'un moteur asynchrone est établie pendant ce temps. Le variateur calcule ce paramètre via p0340 = 1 ou 3.		
p0855	Desserrer obligatoirement le frein de maintien moteur (réglage usine 0)		
p0858	Serrer obligatoirement le frein de maintien moteur (réglage usine 0)		
p1351	Fréquence de démarrage Frein de maintien moteur (réglage usine 0 %) Réglage de la valeur de forçage de la fréquence à la sortie de la compensation de glissement lors du démarrage avec frein de maintien moteur. La compensation de glissement est activée automatiquement en réglant le paramètre p1351 > 0.		
p1352	Fréquence de démarrage pour frein de maintien moteur (réglage usine 1351) Réglage de la source de signal pour la valeur de forçage de la fréquence à la sortie de la compensation de glissement lors du démarrage avec frein de maintien moteur.		
p1475	Régulateur de vitesse de rotation Valeur de forçage du couple pour frein de maintien moteur (réglage usine 0) Réglage de la source de signal pour la valeur de forçage du couple lors du démarrage avec frein de maintien moteur.		

6.7.5 Reprise au vol - Mise en marche avec moteur tournant

Sans la fonction "Reprise au vol", si le moteur est mis en marche alors qu'il tourne encore, la probabilité d'un défaut du fait de la surintensité est très élevée (F30001 ou F07801). Exemples d'applications avec un moteur tournant de façon non intentionnelle immédiatement avant l'enclenchement :

- Le moteur tourne après une courte coupure du réseau.
- Un courant d'air entraîne une ailette de ventilateur.
- Une charge avec un moment d'inertie élevé entraîne le moteur.

Fonctionnement

La fonction "Reprise au vol" comprend les étapes suivantes :

- 1. Après l'ordre de marche, le variateur injecte le courant de recherche dans le moteur et augmente la fréquence de sortie.
- 2. Lorsque la fréquence de sortie atteint la vitesse actuelle du moteur, le variateur attend l'écoulement du temps d'excitation du moteur.
- 3. Le variateur accélère le moteur jusqu'à la consigne de vitesse actuelle.

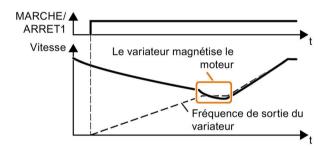


Figure 6-45 Mode d'action principal de la fonction "reprise au vol"

Réglage de la fonction "Reprise au vol"

Paramètre	Description				
p1200	Rep	Reprise au vol Mode de fonctionnement (réglage d'usine : 0)			
0		La reprise au vol est bloquée			
	1	La reprise au vol est débloquée, recherche du moteur dans les deux sens, démarrage dans le sens de la consigne			
	4	La reprise au vol est débloquée, recherche du moteur uniquement dans le sens de la consigne			

Pas de fonction "Reprise au vol" pour les entraınements multimoteurs

Lorsque le variateur entraîne simultanément plusieurs moteurs, vous ne devez pas débloquer la fonction "Reprise au vol".

Exception : un couplage mécanique permet d'assurer que tous les moteurs tournent toujours à la même vitesse.

Tableau 6-41 Réglages étendus

Paramètre	Description		
p0346	Temps d'excitation du moteur		
	Temps d'attente entre la mise en marche du moteur et le déblocage du générateur de rampe.		
p0347	Temps de désexcitation du moteur		
	Pendant le temps de désexcitation du moteur, le variateur empêche la remise en marche du moteur asynchrone après un ordre d'ARRET.		
	Lorsqu'un moteur à réluctance est utilisé, le variateur ignore le temps de désexcitation du moteur.		
p1201	Reprise au vol Déblocage Source de signal (réglage d'usine : 1)		
	Définit un ordre de commande, p. ex. une entrée TOR, qui débloque la fonction Reprise au vol.		
p1202	Reprise au vol Courant de recherche (réglage d'usine en fonction du Power Module)		
	Définit le courant de recherche par rapport au courant magnétisant (r0331) circulant dans le moteur pendant la reprise au vol.		
p1203	Reprise au vol Vitesse de recherche Facteur (réglage d'usine en fonction du Power Module)		
	La valeur influence la vitesse à laquelle la fréquence de sortie est modifiée pendant la reprise au vol. Une valeur trop élevée entraîne un temps de recherche plus long.		
	Réduire la vitesse de recherche si le variateur ne trouve pas le moteur (augmenter p1203).		

6.7.6 Redémarrage automatique

Le redémarrage automatique contient deux fonctions distinctes :

- Le variateur acquitte les défauts automatiquement.
- Le variateur redémarre automatiquement le moteur après apparition d'un défaut ou après une coupure du réseau.

Le variateur interprète les événements suivants comme coupure du réseau :

- Le variateur signale le défaut F30003 (sous-tension dans le circuit intermédiaire), parce que la tension de réseau du variateur a été temporairement coupée.
- La coupure de l'alimentation du variateur dure si longtemps que le variateur est arrêté.

/!\ATTENTION

Danger de mort dû au démarrage intempestif de sous-ensembles de la machine

Si la fonction "Redémarrage automatique" (p1210 > 1) est activée, le moteur redémarre automatiquement après une coupure du réseau. Les mouvements intempestifs de sous-ensembles de la machine peuvent provoquer des blessures graves et des dommages matériels.

 Empêchez tout accès involontaire aux zones dangereuses à l'intérieur de la machine.

Réglage du redémarrage automatique

Lorsque le moteur est susceptible de tourner encore un certain temps après la coupure du réseau ou après un défaut, il convient d'activer en outre la fonction "reprise au vol", voir Reprise au vol - Mise en marche avec moteur tournant (Page 254).

Avec le paramètre p1210, sélectionner le mode de redémarrage automatique qui convient à l'application.

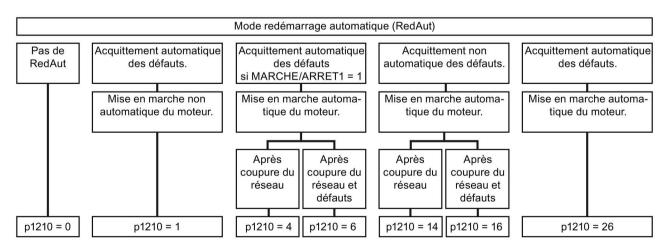
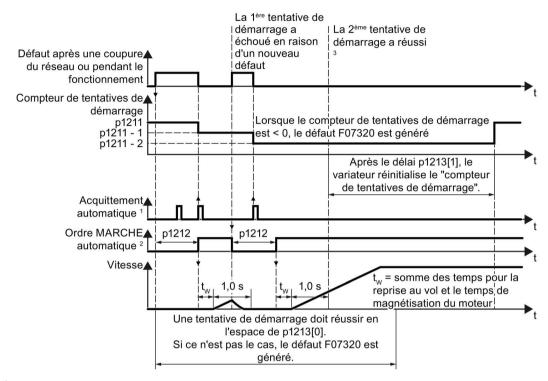



Figure 6-46 Modes de redémarrage automatique

Le mode d'action des autres paramètres est décrit dans la figure suivante et dans le tableau ci-dessous.

1) Le variateur acquitte automatiquement les défauts dans les conditions suivantes :

- p1210 = 1 ou 26 : toujours.
- p1210 = 4 ou 6 : si l'ordre est présent au niveau d'une entrée TOR ou via le bus de terrain à la mise en marche du moteur (MARCHE/ARRET1 = 1).
- p1210 = 14 ou 16 : jamais.

2) Le variateur tente de mettre en marche le moteur automatiquement dans les conditions suivantes :

- p1210 = 1 : jamais.
- p1210 = 4, 6, 14, 16 ou 26 : si l'ordre est présent au niveau d'une entrée TOR ou via le bus de terrain à la mise en marche du moteur (MARCHE/ARRET1 = 1).

Figure 6-47 Réponse temporelle du redémarrage automatique

³⁾ Si aucun défaut ne s'est produit pendant une seconde après la reprise au vol et la magnétisation (r0056.4 = 1), la tentative de démarrage était fructueuse.

Paramètres de réglage du redémarrage automatique

Paramètre	Signification					
p1210	Mode de redémarrage automatique (réglage d'usine : 0)					
	 Blocage du redémarrage automatique. 1: Acquittement de tous les défauts sans redémarrage. 4: Redémarrage après une coupure du réseau sans nouvelle tentative de redémarrage. 6: rage. 14: Redémarrage après défaut avec plusieurs tentatives de démarrage. 16: Redémarrage après une coupure du réseau après acquittement manuel. 26: Redémarrage après un défaut suivant un acquittement manuel. Acquittement de tous les défauts et redémarrage avec MARCHE/ARRET1 = 1. 					
p1211	Redémarrage automatique Tentatives de démarrage (réglage d'usine : 3)					
	Ce paramètre ne prend effet que pour les réglages p1210 = 4, 6, 14, 16, 26.					
	Le paramètre p1211 permet de définir le nombre maximal de tentatives de démarrage. Après chaque acquittement réussi, le variateur décrémente de 1 son compteur interne de tentatives de démarrage.					
	p1211 = 0 ou 1 : le variateur tente de démarrer une fois exactement. Après une tentative de démarrage infructueuse, le variateur signale le défaut F07320.					
	p1211 = n, n > 1 : le variateur tente de démarrer n fois. Lorsque la nième tentative de démarrage a été infructueuse, le variateur signale le défaut F07320.					
	Le variateur remet le compteur de tentatives de démarrage sur la valeur de p1211 lors- que l'une des conditions suivantes est remplie :					
	Après une tentative de démarrage réussie, le temps spécifié dans p1213[1] est écoulé.					
	Après le défaut F07320, arrêtez le moteur (ARRET1) et acquittez le défaut.					
	Modifier la valeur initiale p1211 ou le mode p1210.					
p1212	Redémarrage automatique Temps d'attente Tentative de démarrage (réglage d'usine : 1,0 s)					
	Ce paramètre ne prend effet que pour les réglages p1210 = 4, 6, 26.					
	Exemples de réglage de ce paramètre :					
	1. Après une coupure du réseau, il doit s'écouler un certain temps avant que le moteur puisse être mis en marche, par exemple parce que d'autres composants de la ma- chine ne sont pas prêts à fonctionner immédiatement. Dans ce cas, attribuer à p1212 une valeur supérieure à celle du temps au bout duquel toutes les causes de défaut sont supprimées.					
	2. En cours de fonctionnement, cela entraîne un défaut du variateur. Plus la valeur choisie pour p1212 est petite, plus le variateur tentera de redémarrer le moteur.					

Paramètre	Signification			
p1213[0]	Redémarrage automatique Délai de timeout pour redémarrage (réglage d'usine : 60 s)			
	Ce paramètre ne prend effet que pour les réglages p1210 = 4, 6, 14, 16, 26.			
	Cette surveillance limite le temps pendant lequel le variateur pourra tenter de redémar- rer le moteur automatiquement.			
	La surveillance démarre lorsqu'un défaut est détecté et prend fin lorsque la tentative de démarrage a réussi. Si le moteur n'a pas réussi à démarrer après écoulement du délai de timeout, le défaut F07320 est signalé.			
	Régler un délai de timeout supérieur à la somme des temps suivants :			
	+ p1212 + temps dont a besoin le variateur pour la reprise au vol du moteur. + temps de magnétisation du moteur (p0346) + 1 seconde			
	Désactiver la surveillance avec p1213 = 0.			
p1213[1]	Redémarrage automatique Délai de timeout pour réinitialisation du compteur de défauts (réglage d'usine : 0 s)			
	Ce paramètre ne prend effet que pour les réglages p1210 = 4, 6, 14, 16, 26.			
	Ce délai de timeout permet d'empêcher que les défauts ne réapparaissent à l'intérieur d'un laps de temps défini à chaque acquittement automatique.			
	La surveillance commence lors d'une tentative de démarrage réussie et prend fin après écoulement du délai de timeout.			
	Si, en l'espace du délai de timeout p1213[1], le variateur a réalisé plus de tentatives de démarrage réussies que défini dans p1211, il suspend le redémarrage automatique et signale le défaut F07320. Pour remettre en marche le moteur, vous devez acquitter le défaut et mettre en marche le variateur (MARCHE/ARRET1 = 1).			

De plus amples informations figurent dans la liste des paramètres du Manuel de listes.

6.7 Fonctions spécifiques à l'application

Réglages étendus

Pour inhiber le redémarrage automatique en présence de certains défauts, il convient de saisir les numéros de défauts correspondants dans p1206[0 ... 9].

Exemple : p1206[0] = 07331 ⇒ aucun redémarrage n'est effectué en présence du défaut F07331.

Cette inhibition du redémarrage automatique fonctionne uniquement avec le réglage p1210 = 6, 16 ou 26.

/ ATTENTION

Danger de mort dû à un ordre d'ARRET sans effet

Lorsque le variateur est uniquement commandé par l'interface de bus de terrain, le moteur redémarre avec le réglage p1210 = 6, 16, 26 même si la communication est interrompue. Une interruption de la communication signifie que la commande ne peut pas arrêter le moteur.

Saisissez le numéro de l'erreur de communication dans le paramètre p1206.
 Exemple :

Le numéro de défaut F01910 signifie : défaillance de la communication via PROFIBUS. Réglez p1206[n] = 1910 (n = 0 à 9).

6.7.7 Maintien cinétique (régulation Vdc-min)

Le maintien cinétique augmente la disponibilité de l'entraînement. Le maintien cinétique utilise l'énergie cinétique de la charge pour maintenir la tension lors de creux de tension ou de coupures de réseau. Pendant les creux de tension, le variateur maintient le moteur en état de marche aussi longtemps que possible. La durée de maintien maximale typique est d'une seconde.

Conditions

Les conditions suivantes s'appliquent pour une utilisation judicieuse de la fonction "maintien cinétique" :

- La machine entraînée possède une masse d'inertie suffisamment grande.
- L'application permet le freinage du moteur pendant une coupure du réseau.

Fonction

Lorsque la tension réseau est coupée, la tension du circuit intermédiaire dans le variateur diminue. A partir d'un seuil réglable, le maintien cinétique (régulation V_{DC min}) devient active. La régulation V_{DC min} force la charge à fonctionner quelque peu en génératrice. Le variateur couvre ainsi sa puissance dissipée et les pertes dans le moteur avec l'énergie cinétique de la charge. La vitesse de la charge diminue, mais la tension du circuit intermédiaire reste constante pendant le maintien cinétique. Après le retour de la tension réseau, le variateur passe immédiatement en mode normal.

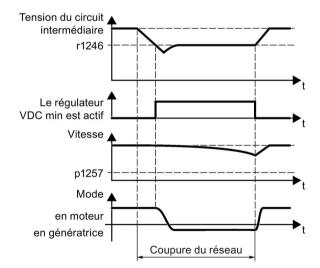


Figure 6-48 Principe de fonctionnement du maintien cinétique

6.7 Fonctions spécifiques à l'application

Paramètre	Description					
r0056.15	Мо	t d'état Réç	gulation			
	Etat log. 0		Le régulateur V _{DC min} n'est pas actif			
Etat log. 1 Le régulateur V _{DC min} est actif			Le régulateur V _{DC min} est actif (maintien cinétique)			
p0210	Ter	nsion de ra	ccordement des variateurs (réglage d'usine : 400 V)			
p1240	Ré	gulateur V□	oc Configuration (réglage d'usine : 1)			
	0	Bloquer le	e régulateur V _{DC}			
	1	Débloque	r régulateur V _{DC max}			
	2 Débloquer régulateur V _{DC min} (maintien cinétique)					
	3	Débloquer régulateurs V _{DC min} et V _{DC max}				
p1245	Ré	Régulateur V _{DC min} Niveau d'activation (maintien cinétique) (réglage d'usine : 76 %)				
r1246	Ré	Régulateur V _{DC min} Niveau d'activation[V]				
	r12	246 = p1245 × √2 × p0210				
p1247	Ré	Régulateur V _{DC min} Facteur de dynamique (réglage d'usine : 300 %)				
p1255	Ré	Régulateur V _{DC min} Seuil de temps (réglage d'usine : 0 s)				
	Durée maximale du maintien cinétique. Lorsque le maintien cinétique dure plus long- temps que la valeur de paramètre, le variateur signale le défaut F7406.					
	La	La valeur 0 désactive la surveillance.				
p1257	Ré	gulateur V□	oc min Seuil de vitesse (réglage d'usine : 50 tr/min)			
	Le variateur signale le défaut F7405 en cas de dépassement par le bas.					

6.7.8 Commande du contacteur réseau

La commande du contacteur réseau sert à activer ou désactiver la tension d'alimentation du variateur via une sortie TOR du variateur. Cela n'est possible qu'à condition de disposer d'une alimentation 24 V externe pour la CU du variateur.

Vous pouvez surveiller l'ouverture et la fermeture du contacteur réseau par le biais du contact de signalisation en retour du contacteur.

Cette fonction présente l'avantage de pouvoir enclencher la tension réseau du variateur peu de temps avant de devoir mettre en marche le moteur. Lorsque le moteur est arrêté, la tension réseau du variateur est à son tour coupée après un temps d'attente réglable.

Cela permet de réduire les pertes du variateur pendant les périodes où le moteur n'est pas en marche.

Activer la commande du contacteur réseau

Pour activer la commande du contacteur réseau, établissez le connexion entre la source de signal d'une sortie TOR du variateur (selon le variateur p0730 à p0741) et le signal de commande du contacteur réseau (r0863.1), par exemple : p0732 = 863.1.

Commande du contacteur réseau sans surveillance - Réglage d'usine :

Le réglage d'usine de la fonction est configuré pour un contacteur réseau sans contact de signalisation en retour. Le signal de retour est donc relié au signal de commande du contacteur réseau : p0860 = 863.1.

Lors d'un ARRET1, le contacteur réseau s'ouvre après une temporisation réglable dans p0867.

Commande du contacteur réseau avec surveillance :

Lorsque vous utilisez un contacteur réseau avec contact de signalisation en retour, activez la signalisation en retour en reliant le paramètre pour la signalisation en retour – p0860 – au signal inversé d'une entrée TOR : p0860 = 723.x.

Lorsque la surveillance est active, la signalisation F07300 est générée lors de l'activation ou de la désactivation si aucune signalisation en retour n'est reçu via r0723.x après l'écoulement du temps réglé dans p0861.

En plus pour les variateurs avec STO : commande séquentielle via p0869

Le paramètre p0869 permet de régler si, en présence d'un signal STO, le contacteur réseau s'ouvre immédiatement ou seulement après l'écoulement du temps réglé dans p0867.

6.7 Fonctions spécifiques à l'application

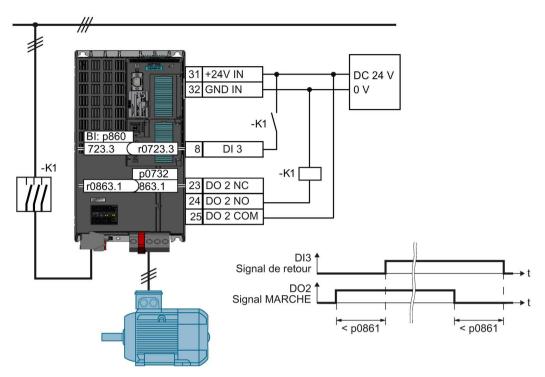


Figure 6-49 Commande du contacteur réseau avec surveillance

Paramètres de réglage de la commande du contacteur réseau

Paramètre	Signification			
p0860	Contacteur réseau Signal en retour			
	p0860 = 863.1 : aucune signalisation en retour			
	p0860 = 723.x : signalisation en retour via DIx			
p0861	Contacteur réseau Délai de timeout (réglage d'usine : 100 ms)			
	Lorsque la signalisation en retour est activée, le défaut F07300 est généré si aucune signalisation en retour n'est reçue via l'entrée TOR réglée après l'écoulement du temps réglé dans ce paramètre.			
r0863.1	Couplage entraînement Mot d'état/de commande			
	Bit d'activation de la commande du contacteur réseau : Affecter la valeur 863.1 à DO x			
	Exemple : commander le contacteur réseau via l'entrée TOR DO 2 : p0732 = 863.1			
p0867	Temps de maintien du contacteur réseau après ARRET1 (réglage d'usine : 50 ms)			
	Temps pendant lequel le contacteur réseau reste fermé après un ARRET1.			
p0869	Commande séquentielle Configuration			
	p0689 = 0 : avec STO, le contacteur réseau s'ouvre immédiatement			
	p0689 = 1 : avec STO, le contacteur réseau s'ouvre après écoulement du temps réglé dans p0867			

6.7.9 Régulateur technologique PID

6.7.9.1 Vue d'ensemble

Le régulateur technologique régule les grandeurs de process, telles que la pression, la température, le niveau de remplissage ou le débit.

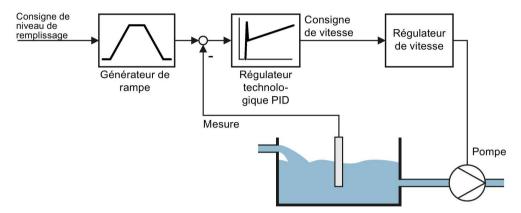
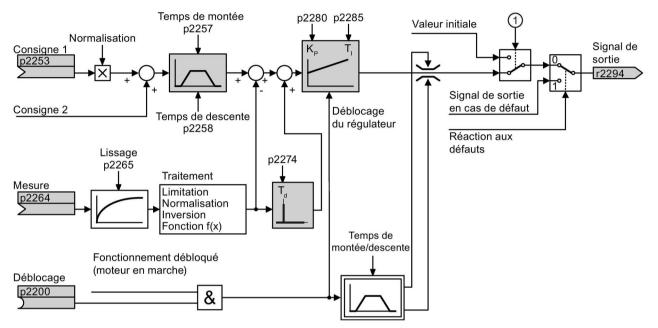



Figure 6-50 Exemple de régulateur technologique en tant que régulateur de niveau

6.7.9.2 Réglage du régulateur

Représentation simplifiée du régulateur technologique

Le régulateur technologique est réalisé en tant que régulateur PID (régulateur avec action proportionnelle, intégrale et différentielle).

- ① Le variateur utilise la valeur initiale lorsque les conditions suivantes sont satisfaites simultanément :
 - Le régulateur technologique fournit la valeur de consigne principale (p2251 = 0).
 - La sortie du générateur de rampe du régulateur technologique n'a pas encore atteint la valeur initiale.

Figure 6-51 Représentation simplifiée du régulateur technologique

Les réglages minimum requis sont marqués en gris dans le diagramme fonctionnel : connecter la consigne et la mesure aux signaux de votre choix, régler le générateur de rampe et les paramètres K_P, T_I et T_d du régulateur.

Vous trouverez des informations relatives aux thèmes suivants du régulateur PID sur Internet : FAQ (http://support.automation.siemens.com/WW/view/en/92556266)

- Transmission de la consigne : valeur analogique ou consigne fixe
- Canal de consigne : mise à l'échelle, générateur de rampe et filtre
- Canal de mesure : filtre, limitation et traitement de signal
- Régulateur PID : mode d'action de l'action D, blocage de l'action I et sens de régulation
- Déblocage, limitation de la sortie du régulateur et réaction aux défauts

Réglage du régulateur technologique

Paramètre	Remarque			
p2200	BI : Régulateur technologique Déblocage (réglage d'usine : 0)			
	Etat logique 1 : Le régulateur technologique est débloqué.			
r2294	CO : Régulateur technologique Signal de sortie			
	Pour connecter la consigne principale de vitesse à la sortie du régulateur technologique, réglez p1070 = 2294.			
p2253	CI : Régulateur technologique Consigne 1 (réglage d'usine : 0)			
	Consigne du régulateur technologique.			
	Exemple: p2253 = 2224 : Le variateur connecte la consigne fixe p2201 à la consigne du régulateur technologique. p2220 = 1 : La consigne fixe p2201 est sélectionnée.			
p2264	CI : Régulateur technologique Mesure (réglage d'usine : 0)			
	Mesure du régulateur technologique.			
p2257, p2258	Régulateur technologique Temps de montée et Temps de descente (réglage d'usine : 1 s)			
p2274	Régulateur technologique Dérivée Constante de temps Td (réglage d'usine : 0,0 s)			
	La dérivée améliore le comportement à la régulation (temps pour atteindre la valeur consigne) pour des grandeurs réglées très lentes, p. ex. une régulation de température.			
p2280	Régulateur technologique Gain proportionnel K P (réglage d'usine : 1,0)			
p2285	Régulateur technologique Temps d'intégration T _I (réglage d'usine : 30 s)			

Réglages étendus

Paramètre	Remarque			
Limitation de la sortie du régulateur technologique				
Avec le réglage d'usine, la sortie du régulateur technologique est limitée à ± la vitesse maximale. Le cas échéant, vous devez modifier cette limitation en fonction de votre application. Exemple : la sortie du régulateur technologique fournit la consigne de vitesse pour une pompe. Cette dernière ne doit fonctionner que dans le sens positif.				
p2297	CI : Régulateur technologique Limite maximale Source de signal (réglage d'usine : 1084)			
p2298	CI : Régulateur technologique Limite minimale Source de signal (réglage d'usine : 2292)			
p2291	CO : I	Régulateur technologique Limite maximale (réglage d'usine : 100 %)		
p2292	CO : I	Régulateur technologique Limite minimale (réglage d'usine : 0 %)		
Manipulation de	la mesi	ure du régulateur technologique		
p2267	Régul	ateur technologique Limite supérieure Mesure (réglage d'usine : 100 %)		
p2268	Régul	Régulateur technologique Limite inférieure Mesure (réglage d'usine : -100 %)		
p2269	Régul	ateur technologique Gain Mesure (réglage d'usine : 100 %)		
p2271	Régul	ateur technologique Mesure Inversion (Type de capteur)		
	0:	Sans inversion		
	1:	Inversion Signal de mesure		
	Si la mesure diminue avec une vitesse de moteur croissante, régler p2			
p2270	Régul	ateur technologique Mesure Fonction		
	0:	Sans fonction		
1 : √ 2 : x ²		\checkmark		
		x ²		
3: x ³				

De plus amples informations figurent dans les diagrammes fonctionnels 7950 et suivants du Manuel de listes.

Auto-optimisation du régulateur PID

Conditions

Le régulateur technologique PID doit être réglé tel qu'il le sera pendant le fonctionnement ultérieur :

- La mesure est connectée.
- Les mises à l'échelle, le filtre et le générateur de rampe sont réglés.
- Le régulateur technologique PID est débloqué (p2200 = état logique 1)

Procédure

Pour exécuter l'auto-optimisation du régulateur PID, procédez comme suit :

- 1. Réglez p2350 sur la valeur de votre choix.
- 2. Réglez l'offset p2355. Plus la réaction de la grandeur réglée est lente, plus la valeur de p2350 doit être grande.
- 3. Mettez le moteur en marche.

Le variateur signale l'alarme A07444.

4. Attendez que l'alarme A07444 disparaisse à nouveau.

Le variateur a recalculé les paramètres p2280, p2274 et p2285.

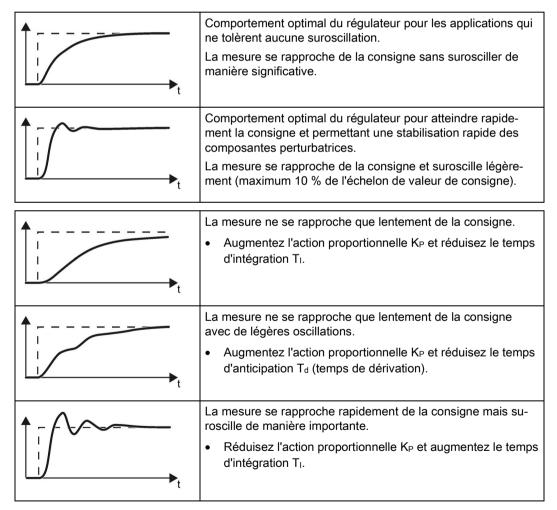
Lorsque le variateur signale le défaut F07445, augmentez la valeur de p2354 et répétez l'auto-optimisation.

- 5. Sauvegardez les valeurs calculées sous une forme non volatile, p. ex. avec le BOP-2 : OUTILS → RAM-ROM.
- Vous avez effectué l'auto-optimisation du régulateur PID.

6.7 Fonctions spécifiques à l'application

Paramètre	Rema	Remarque			
p2350	PID A	PID Autotune Enable (réglage d'usine : 0)			
	0:	Sans fonction			
	1:	Auto-optimisation selon la méthode "Ziegler Nichols". La grandeur réglée suit relativement vite la consigne après un changement de consigne en forme d'échelon mais avec une suroscillation.	↑ t		
	2:	Réglage plus rapide du régulateur en tant que réglage 1 avec suroscillation plus importante de la grandeur réglée.	↑ ↑ · · · · · · · · · · · · · · · · · ·		
	3:	Réglage plus lent du régulateur en tant que réglage 1. La suroscillation de la grandeur réglée est en grande partie évitée.	↑,		
	4:	L'auto-optimisation optimise seulement l'action P et l'action I du régulateur PID.	↑ t		
p2354	PID tuning timeout length (réglage d'usine : 240 s)				
		Temps maximum d'attente au cours duquel l'auto-optimisation doit avoir détecté une oscillation de la boucle de régulation.			
p2355	PID t	uning offset (réglage d'usine : 5 %)			
	Offset et écart pour l'auto-optimisation.				

6.7.9.3 Optimisation des régulateurs


Régler le régulateur technologique sans auto-optimisation (manuellement)

Procédure

Pour régler manuellement le régulateur technologique, procédez comme suit :

- 1. Réglez temporairement le temps de montée et le temps de descente du générateur de rampe (p2257 et p2258) sur zéro.
- 2. Spécifiez un échelon de valeur de consigne et observez la mesure correspondante, p. ex. à l'aide de la fonction Trace de STARTER. Plus la réaction du process à réguler est lente, plus la durée d'observation du comportement du régulateur est importante. Selon le cas, par exemple pour une régulation de température, vous devrez attendre plusieurs minutes avant de pouvoir évaluer le comportement du régulateur.

3. Réglez le temps de montée et de descente du générateur de rampe de nouveau sur la valeur d'origine.

Vous avez réglé manuellement le régulateur technologique.

6.8 Fonction de sécurité Safe Torque Off (STO)

6.8 Fonction de sécurité Safe Torque Off (STO)

Les présentes instructions de service décrivent la mise en service de la fonction de sécurité STO lorsqu'elle est commandée par une entrée TOR de sécurité.

Une description détaillée de toutes les fonctions de sécurité et de la commande via PROFIsafe figurent dans la description fonctionnelle Safety Integrated, voir section Manuels pour le variateur (Page 424).

6.8.1 Description de la fonction

Comment fonctionne la fonction de sécurité STO ?

Lorsque la fonction STO est active, le variateur empêche le démarrage involontaire des composants de la machine.

Tableau 6-42 Fonctionnement de STO

	Safe Torque Off (STO)	Fonctions standard du variateur liées à STO	
1.	Le variateur détecte la sélection de STO via une entrée de sécurité ou via la communication sûre PROFIsafe.		
2.	Le variateur empêche l'alimentation en énergie du moteur. Quand STO est actif, le moteur ne génère aucun couple.	Si vous utilisez un frein à l'arrêt du moteur, le variateur serre ce frein. Si vous utilisez un contacteur réseau, le variateur ouvre ce contacteur.	
3.	Le variateur signale "STO est actif" via une sortie de sécurité ou via la communication sûre PROFIsafe.		

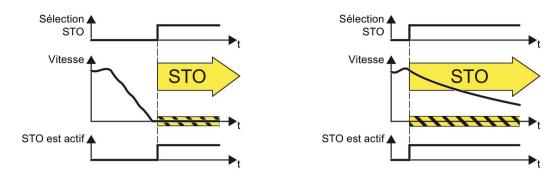


Figure 6-52 Fonctionnement de STO avec le moteur à l'arrêt et avec le moteur en rotation

Si le moteur tourne encore lors de la sélection de STO, le moteur ralentit jusqu'à l'arrêt.

La fonction de sécurité STO est normalisée

La fonction STO est définie dans la norme CEI/EN 61800-5-2 :

"[...] [Le variateur] ne délivre au moteur aucune énergie pouvant générer un couple (ou une force dans le cas d'un moteur linéaire)."

La fonction STO du variateur est conforme à la définition de la norme.

La différence entre coupure d'urgence et arrêt d'urgence

"Coupure d'urgence" et "arrêt d'urgence" sont des ordres qui visent à atténuer des risques différents dans la machine ou l'installation.

La fonction STO convient pour réaliser un arrêt d'urgence, mais pas une coupure d'urgence.

Risque :	Danger de choc électrique :	Danger de mouvement inattendu :
		1
Mesure pour atténuer le risque :	Coupure sûre Couper entièrement ou partiellement	Arrêt sûr et prévention sûre du redé- marrage
·	l'alimentation électrique de l'installa- tion.	Arrêter ou empêcher le mouvement source de danger.
Ordre :	Coupure d'urgence	Arrêt d'urgence
Solution classique :	Couper la tension électrique :	Couper l'alimentation électrique de l'entraînement :
	• • • • • • • • • • • • • • • • • • •	1
Solution avec la fonction de sécurité STO intégrée à l'entraînement :	STO ne convient pas pour la coupure sûre d'une tension électrique.	Sélectionner STO :
		Vous pouvez également couper l'alimentation du variateur. Toutefois, il n'est pas obligatoire de couper la tension pour atténuer les risques.

Exemples d'application pour la fonction STO

La fonction STO convient pour les applications dans lesquelles le moteur est déjà à l'arrêt ou s'arrête en peu de temps sans danger par friction. STO ne raccourcit pas la marche à vide des composants de la machine avec des masses d'inertie importantes.

Exemples	Solution possible
Lorsque le bouton d'arrêt d'urgence est actionné, un moteur immobilisé ne doit pas accélérer inopi- nément.	Connecter le bouton d'arrêt d'urgence à une entrée de sécurité du variateur.
	Sélectionner STO via l'entrée de sécurité.
Un bouton d'arrêt d'urgence central doit empêcher toute accélération inopinée de plusieurs moteurs à l'arrêt.	 Exploiter le bouton d'arrêt d'urgence dans une commande centralisée. Sélectionner STO via PROFIsafe.

6.8.2 Conditions requises pour l'utilisation de STO

La condition pour l'utilisation de la fonction de sécurité STO est que le constructeur de machines ait évalué le risque de la machine ou de l'installation, par ex. en conformité avec la norme EN ISO 1050, "Sécurité des machines – Directives pour l'évaluation des risques". Le résultat obtenu lors de cette évaluation des risques doit être que l'utilisation du variateur est admissible conformément à SIL 2 ou PL d.

6.8.3 Mise en service de STO

6.8.3.1 Outils de mise en service

Nous recommandons de mettre en service les fonctions de sécurité avec un outil PC.

Tableau 6-43 Outils PC de mise en service

Téléchargement	Numéro d'article	Informations supplémentaires
STARTER (http://support.automation.siemen s.com/WW/view/fr/10804985/130 000)	6SL3072-0AA00-0AG0	Vidéos de STARTER (http://www.automation.siemens.com/ mcms/mc-drives/en/low-voltage- inverter/sinamics- g120/videos/Pages/videos.aspx)
Startdrive (http://support.automation.siemen s.com/WW/view/en/68034568)	6SL3072-4CA02-1XG0	Didacticiel (http://support.automation.siemens.co m/WW/view/en/73598459)

6.8.3.2 Protection des réglages contre les modifications non autorisées

Les fonctions de sécurité sont protégées par mot de passe contre une modification par des personnes non autorisées.

Tableau 6-44 Paramètre

Nº	Description
p9761	Saisie du mot de passe (réglage d'usine : 0000 hex) Les mots de passe admissibles se situent dans la plage 1 à FFFF FFFF.
p9762	Nouveau mot de passe
p9763	Confirmation du mot de passe

6.8.3.3 Configuration de la fonction de sécurité

Marche à suivre avec STARTER

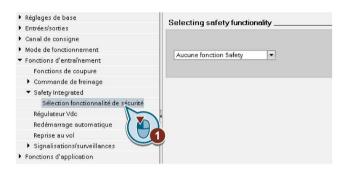
Pour configurer les fonctions de sécurité, procédez comme suit :

- 1. Passez en ligne.
- 2. Sélectionnez la fonction "Safety Integrated".
- 3. Sélectionnez "Modifier le paramétrage".

4. Sélectionnez "STO via borne" :

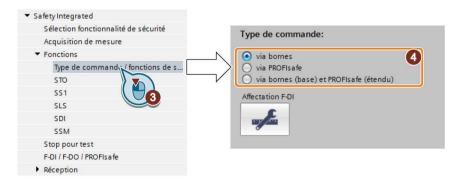
- Vous avez terminé les étapes suivantes de la mise en service :
 - Vous avez commencé la mise en service des fonctions de sécurité.
 - Vous avez sélectionné les fonctions de base avec commande via les bornes intégrées du variateur.

Les autres possibilités de sélection sont décrites dans la "Description fonctionnelle Safety Integrated". Voir aussi la section : Manuels pour le variateur (Page 424).


6.8.3.4 Configuration de la fonction de sécurité

Marche à suivre avec Startdrive

Pour configurer les fonctions de sécurité, procédez comme suit :


1. Sélectionnez "Sélection de la fonctionnalité de sécurité".

2. Débloquez les fonctions de sécurité :

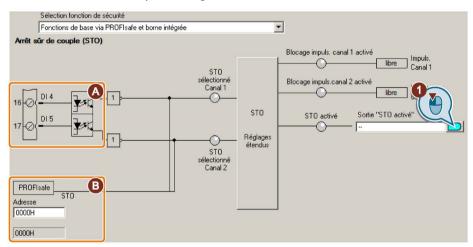
3. Sélectionnez la commande des fonctions de sécurité :

- 4. Définissez l'interface pour la commande des fonctions de sécurité.
- Vous avez configuré les fonctions de sécurité.

6.8 Fonction de sécurité Safe Torque Off (STO)

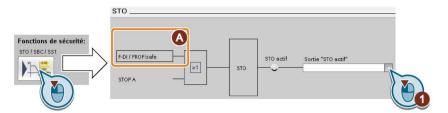
Paramètre	Description	
p0010 = 95.	Entraînement Mise en service Filtre des paramètres Safety Integrated Mise en service	
p9601	Déblocage des fonctions intégrées à l'entraînement (réglage d'usine : 0000 bin)	
		Fonctions débloquées :
	0 hex	Néant
	1 hex	Fonctions de base via les bornes intégrées
p9761	Saisie du mot de passe (réglage d'usine : 0000 hex) Les mots de passe admissibles se situent dans la plage 1 à FFFF FFFF.	
p9762	Nouveau mot de passe	
p9763	Confirmation du mot de passe	

6.8.3.5 Connexion du signal "STO actif"


Si vous avez besoin de la signalisation en retour "STO activé" du variateur dans votre commande de niveau supérieur, vous devez connecter le signal en conséquence.

Procédure avec STARTER et Startdrive

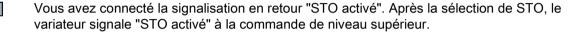
Pour connecter la signalisation en retour "STO activé", procédez comme suit :


1. Sélectionnez le bouton pour le signal de retour.

Le masque varie selon le choix de l'interface.

- (A) Bornes d'entrée
- (B) Interface PROFIsafe

Figure 6-53 Connexion de "STO actif" dans STARTER



Le masque varie selon le choix de l'interface.

(A) Type de commande

Figure 6-54 Connexion de "STO actif" dans Startdrive

2. Sélectionnez le signal qui convient à votre application.

Paramètre	Description
r9773.01	Etat logique 1 : STO est activé dans l'entraînement

6.8.3.6 Réglage du filtre pour les entrées de sécurité

Condition

Vous êtes passé en ligne avec STARTER ou Startdrive.

Procédure avec STARTER et Startdrive

Pour régler le filtre d'entrée et la surveillance de simultanéité de l'entrée de sécurité, procédez comme suit :

1. Naviguez jusqu'aux réglages de filtre.

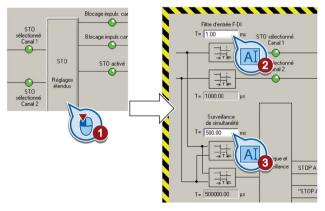


Figure 6-55 Filtre d'entrée et surveillance de simultanéité dans STARTER

6.8 Fonction de sécurité Safe Torque Off (STO)

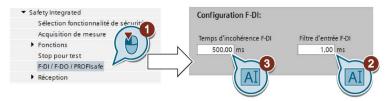


Figure 6-56 Filtre d'entrée et surveillance de simultanéité dans Startdrive

- 2. Réglez la temporisation antirebond pour le filtre d'entrée de la F-DI.
- 3. Réglez la discordance pour la surveillance de simultanéité.
- 4. Vaut seulement pour STARTER : Fermez le masque.
- Vous avez réglé le filtre d'entrée et la surveillance de simultanéité de l'entrée de sécurité.

Description du filtre de signaux

Le traitement du signal des entrées de sécurité s'effectue grâce à :

- Un temps de tolérance pour la surveillance de simultanéité.
- Un filtre pour la suppression des signaux de courte durée tels que les impulsions de test.

Temps de tolérance pour la surveillance de simultanéité

Le variateur contrôle si les signaux présents aux deux entrées prennent toujours le même état de signal (haut ou bas).

Sur les capteurs électromécaniques, p. ex. les boutons d'arrêt d'urgence ou les interrupteurs de porte, les deux contacts du capteur ne commutent jamais exactement en même temps et sont par conséquent incohérents pendant une courte durée (discordance). Une discordance durable indique un défaut dans le circuit de protection d'une entrée de sécurité, p. ex. une rupture de fil.

Le variateur tolère des discordances de courte durée en présence d'un réglage correspondant.

Le temps de tolérance n'allonge pas le temps de réponse du variateur. Le variateur sélectionne sa fonction de sécurité dès qu'un des deux signaux F-DI passe de l'état haut à l'état bas.

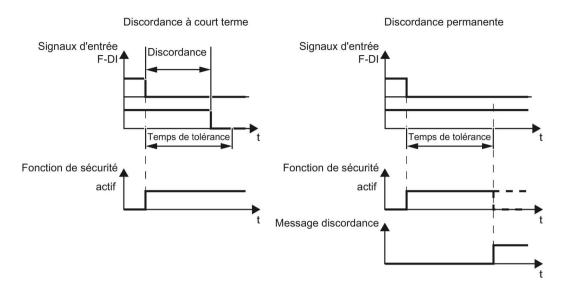


Figure 6-57 Tolérance par rapport à la discordance

Filtre pour la suppression des signaux de courte durée

Le variateur réagit normalement de manière immédiate aux changements de signaux au niveau de ses entrées de sécurité. Dans les cas suivants, cela n'est pas souhaitable :

- Si vous connectez une entrée de sécurité du variateur à un capteur électromécanique, des changements de signaux dus au rebondissement de contact peuvent se produire et le variateur réagit en conséquence.
- Certains modules de commande testent leurs sorties de sécurité avec des "tests de modèle de bits" (tests d'activation / de désactivation) afin de détecter les défauts provoqués par les courts-circuits ou les courts-circuits transversaux. Si une entrée de sécurité du variateur est connectée à une sortie de sécurité d'un module de commande, le variateur réagit à ces signaux de test.

Un changement de signal à l'intérieur d'un test de modèle de bits dure généralement :

- Test d'activation : 1 ms
- Test de désactivation : 4 ms

Si l'entrée de sécurité signale un trop grand nombre de changements de signaux pendant un temps défini, le variateur réagit par un défaut.

6.8 Fonction de sécurité Safe Torque Off (STO)

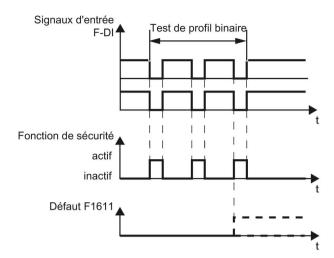


Figure 6-58 Réaction du variateur à un test de modèle de bits

Un filtre de signaux réglable dans le variateur supprime les changements de signaux de courte durée dus au test de modèle de bits ou aux rebondissements de contact.

Le filtre allonge le temps de réponse du variateur. Le variateur sélectionne sa fonction de sécurité seulement après écoulement de la temporisation antirebond.

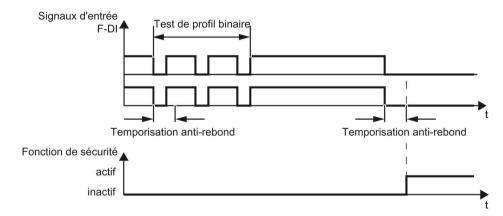


Figure 6-59 Filtre pour la suppression des changements de signaux de courte durée

Paramètre	Description
p9650	Temps de tolérance Commutation F-DI (réglage d'usine : 500 ms) Temps de tolérance pour la commutation de l'entrée TOR de sécurité pour les fonctions de base.
p9651	Temporisation anti-rebond STO (réglage d'usine : 1 ms) Temporisation anti-rebond de l'entrée TOR de sécurité pour les fonctions de base.

Temporisations anti-rebond pour fonctions standard et de sécurité

La temporisation anti-rebond p0724 pour entrées TOR "standard" n'a aucune influence sur les signaux des entrées de sécurité. Il en va de même inversement : La temporisation anti-rebond des F-DI n'a aucune influence sur les signaux des entrées "standard".

Si vous utilisez une entrée comme entrée standard, réglez la temporisation anti-rebond via le paramètre p0724 .

Si vous utilisez une entrée comme entrée de sécurité, réglez la temporisation anti-rebond comme décrit ci-dessus.

6.8.3.7 Réglage de la dynamisation forcée (stop pour test)

Condition

Vous êtes passé en ligne avec STARTER ou Startdrive.

Procédure avec STARTER et Startdrive

Pour régler la dynamisation forcée (stop pour test) des fonctions de base, procédez comme suit :

1. Sélectionnez le masque pour le réglage de la dynamisation forcée.

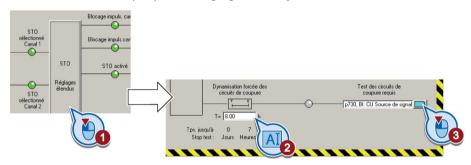


Figure 6-60 Régler la dynamisation forcée avec STARTER

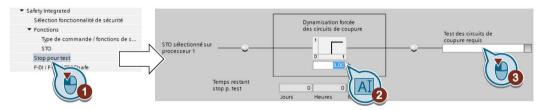


Figure 6-61 Régler la dynamisation forcée avec Startdrive

- 2. Réglez le délai de timeout sur une valeur appropriée pour votre application.
- 3. Avec ce signal, le variateur indique qu'une dynamisation forcée (un stop pour test) est requise.

Connectez cette signalisation au signal de votre choix du variateur.

- 4. Vaut seulement pour STARTER : Fermez le masque.
- Vous avez réglé la dynamisation forcée (stop pour test) des fonctions de base.

6.8 Fonction de sécurité Safe Torque Off (STO)

Description

La dynamisation forcée (stop pour test) des fonctions de base correspond à l'autotest du variateur. Le variateur contrôle ses circuits de commutation pour la désactivation du couple. Si vous utilisez le Safe Brake Relay, le variateur contrôle également les circuits de commutation de ce composant lors de la dynamisation forcée.

Vous démarrez la dynamisation forcée après chaque sélection de la fonction STO.

Le variateur surveille par le biais d'un bloc de temporisation si la dynamisation forcée est exécutée régulièrement.

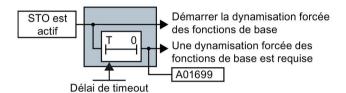


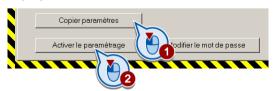
Figure 6-62 Démarrage et surveillance de la dynamisation forcée (stop pour test)

Paramètre	Description
p9659	Dynamisation forcée Horloge (réglage d'usine : 8 h) Délai de timeout pour la dynamisation forcée.
r9660	Dynamisation forcée Temps restant Affichage du temps restant jusqu'à l'exécution de la dynamisation et le test des circuits de coupure Safety Integrated.
r9773.31	Etat logique 1 : La dynamisation forcée est requise Signal pour la commande de niveau supérieur.

6.8.3.8 Activation des réglages et contrôle des entrées TOR

Activation des réglages

Condition

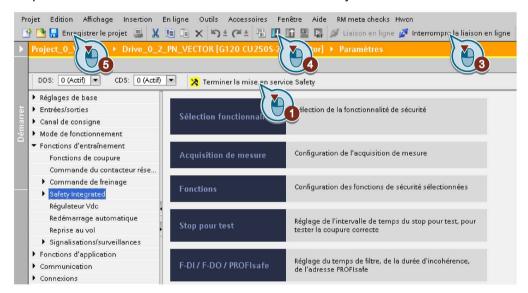

Vous êtes passé en ligne avec STARTER ou Startdrive.

Marche à suivre avec STARTER

Pour activer les réglages des fonctions de sécurité, procédez comme suit :

1. Sélectionnez le bouton "Copier paramètres" pour créer une image redondante de vos réglages dans le variateur.

2. Cliquez sur le bouton "Activer le paramétrage".


- 3. Si le mot de passe est celui du réglage d'usine, l'utilisateur est invité à changer le mot de passe.
 - Si vous spécifiez un mot de passe non autorisé, l'ancien mot de passe reste conservé.
- 4. Confirmer la demande de sauvegarde du paramétrage (copier RAM vers ROM).
- 5. Coupez la tension d'alimentation du variateur.
- 6. Attendez que toutes les LED du variateur soient éteintes.
- 7. Rétablissez la tension d'alimentation du variateur.
- Vos réglages sont à présent activés.

Marche à suivre avec Startdrive

Pour activer les réglages des fonctions de sécurité dans l'entraînement, procédez comme suit :

1. Cliquez sur le bouton "Terminer la mise en service Safety".

- 2. Confirmer la demande de sauvegarde du paramétrage (copier RAM vers ROM).
- 3. Interrompez la connexion en ligne.
- 4. Cliquez sur le bouton "Charger depuis l'appareil (logiciel)".
- 5. Enregistrez le projet.
- 6. Coupez la tension d'alimentation du variateur.
- 7. Attendez que toutes les LED du variateur soient éteintes.
- 8. Rétablissez la tension d'alimentation du variateur.
- Vos réglages sont à présent activés.

Paramètre	Description		
p9700 = D0 hex	Fonction copie SI (réglage d'usine : 0) Démarrer la fonction copie des paramètres SI.		
p9701 = DC hex	Confirmer la modification des données (réglage d'usine : 0) Confirmer la modification des paramètres SI Basic.		
p0010 = 0.	Entraînement Mise en service Filtre des paramètres 0 : Prêt		
p0971 = 1	Sauvegarder paramètres 1 : Sauvegarder l'objet entraînement (Copier de la RAM vers la ROM) Une fois que le variateur a sauvegardé les paramètres sous une forme non volatile, p0971 revient à 0.		

Contrôle de la connexion des entrées TOR

La connexion simultanée des entrées TOR avec une fonction de sécurité et une fonction "standard" peut entraîner un comportement inattendu de l'entraînement.

Si vous commandez des fonctions de sécurité dans le variateur via les entrées TOR, vous devez contrôler si ces entrées sont connectées à une fonction "standard".

Marche à suivre avec STARTER

Pour vérifier si les entrées de sécurité sont utilisées exclusivement pour les fonctions de sécurité, procédez comme suit :

- 1. Sélectionnez les entrées/sorties dans le navigateur de projet.
- 2. Sélectionnez le masque pour les entrées TOR.
- 3. Supprimez toutes les connexions des entrées TOR que vous utilisez comme entrée F-DI de sécurité :

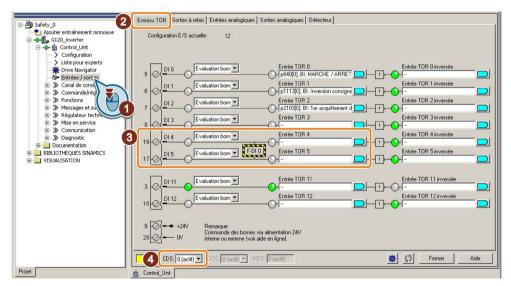
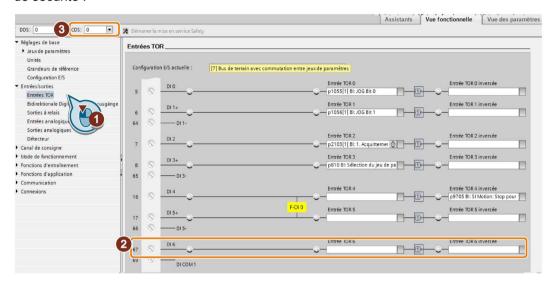


Figure 6-63 Suppression des connexions des entrées TOR DI 4 et DI 5

4. Si vous utilisez la commutation des jeux de paramètres de commande (Control Data Set, CDS), vous devez supprimer les connexions des entrées TOR pour tous les CDS.

Vous trouverez la description de la commutation CDS dans les instructions de service.


Vous vous êtes assuré que les entrées de sécurité commandent uniquement les fonctions de sécurité dans le variateur.

Marche à suivre avec Startdrive

Pour vérifier si les entrées de sécurité sont utilisées exclusivement pour les fonctions de sécurité, procédez comme suit :

- 1. Sélectionnez le masque pour les entrées TOR.
- 2. Supprimez toutes les connexions des entrées TOR que vous utilisez comme entrée F-DI de sécurité :

 Si vous utilisez la commutation des jeux de paramètres de commande (Control Data Set, CDS), vous devez supprimer les connexions des entrées TOR pour tous les CDS.

Vous trouverez la description de la commutation CDS dans les instructions de service.

Vous vous êtes assuré que les entrées de sécurité commandent uniquement les fonctions de sécurité dans le variateur.

6.8.3.9 Réception – achèvement de la mise en service

Qu'est-ce qu'une réception ?

Un constructeur de machines est responsable du fonctionnement correct de sa machine ou de son installation. Après la mise en service, le constructeur de machines doit donc vérifier ou faire vérifier par des personnes qualifiées les fonctions qui présentent un risque accru de dommages matériels ou personnels. Cette réception ou validation est aussi exigée par exemple dans la directive Machines européenne et se divise essentiellement en deux parties :

- Vérifier les fonctions et les sous-ensembles de machines ayant trait à la sécurité.
 - → Test de réception.
- Etablir un "procès-verbal de réception" permettant de consulter les résultats des vérifications.
 - → Documentation.

Les normes européennes harmonisées EN ISO 13849-1 et EN ISO 13849-2, par exemple, fournissent des informations sur la validation.

Test de réception de la machine ou de l'installation

Le test de réception vérifie si les fonctions de sécurité de la machine ou de l'installation fonctionnent correctement. La documentation des composants utilisés pour les fonctions de sécurité peut également contenir des consignes relatives aux vérifications requises.

La vérification des fonctions de sécurité comprend p. ex. les points suivants :

- Tous les dispositifs de sécurité (p. ex. surveillances de protecteur, barrières photoélectriques ou fins de course de sécurité) sont-ils raccordés et prêts à fonctionner?
- La commande de niveau supérieur réagit-elle de la manière attendue aux signalisations en retour du variateur relatives à la sécurité ?
- Les réglages du variateur conviennent-ils pour les fonctions de sécurité configurées dans la machine ?

Test de réception du variateur

Le test de réception global de la machine ou de l'installation inclut le test de réception du variateur.

Le test de réception du variateur vérifie si les fonctions de sécurité intégrées à l'entraînement sont réglées sur des valeurs adaptées à la fonction de sécurité configurée de la machine.

Des exemples pour le test de réception des fonctions de sécurité intégrées à l'entraînement figurent dans la section : Test de réception recommandé (Page 418).

Documentation du variateur

Pour le variateur, les éléments suivants doivent être documentés :

- Les résultats du test de réception.
- Les réglages des fonctions de sécurité intégrées à l'entraînement.

En cas de besoin, l'outil de mise en service STARTER journalise les réglages des fonctions de sécurité intégrées à l'entraînement. Voir aussi la section : Documents de réception (Page 290).

La documentation doit être contresignée.

Qui peut effectuer le test de réception du variateur ?

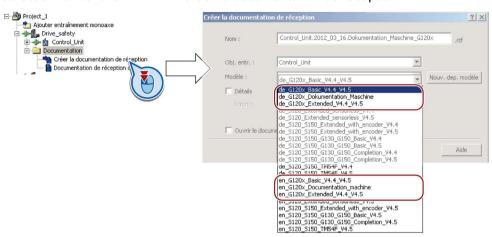
Sont dites "autorisées" à effectuer le test de réception du variateur les personnes désignées par le constructeur de machines comme étant capables d'effectuer en bonne et due forme la réception en raison de leur formation technique et de leurs connaissances des fonctions de sécurité.

Essai de réception réduit après extensions des fonctions

Une réception intégrale est uniquement nécessaire après la première mise en service. Une réception réduite est suffisante pour des extensions des fonctions de sécurité.

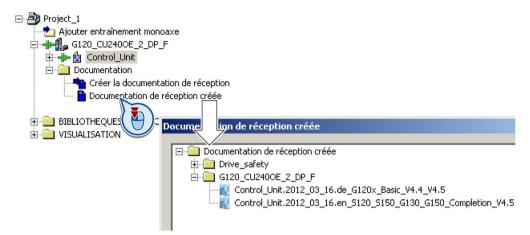
Intervention		Réception
	Test de réception	Documentation
Extension fonctionnelle de la ma- chine (entraînement supplémen-	Oui. Contrôlez uniquement les fonctions de sécuri- té du nouvel entraîne- ment.	Compléter la vue d'ensemble de la machine
taire).		Compléter les caractéristiques du variateur
		Compléter le tableau de fonctions
		Consigner les nouveaux totaux de contrôle
		Contresignature
Transmission du paramétrage du variateur à d'autres machines identiques par le biais d'une mise	Non. Contrôlez uniquement	Compléter la description de la ma- chine
en service de série.	la commande de toutes les fonctions de sécurité.	Contrôler les totaux de contrôleContrôler les versions de firmware

Documents de réception


STARTER met à votre disposition toute une série de documents qui donnent des recommandations pour la réception des fonctions de sécurité.

Procédure

Pour créer la documentation de réception de l'entraînement avec STARTER, procéder de la manière suivante :


1. Sélectionner dans STARTER "Créer la documentation de réception" :

STARTER contient des modèles en allemand et en anglais.

- 2. Sélectionner le modèle approprié et créez un procès-verbal pour chaque entraînement de votre machine ou installation :
 - Modèle pour la documentation de la machine :
 - de_G120x_Dokumentation_Maschine: modèle allemand.
 - en_G120x_Documentation_machine: modèle anglais.
 - Procès-verbal du paramétrage des fonctions de base à partir de la version V4.4 du firmware :
 - de_G120x_Basicc_V4.4...: procès-verbal allemand.
 - en G120x Basic V4.4...: procès-verbal anglais.

3. Chargez les procès-verbaux créés pour l'archivage et la documentation de la machine en vue d'un traitement ultérieur :

- 4. Archiver les procès-verbaux et la documentation de la machine.
- Vous avez créé les documents pour la réception des fonctions de sécurité.

Les procès-verbaux et la documentation machine figurent également à la section : Essai de réception de la fonction de sécurité (Page 418).

6.9 Commutation entre différents réglages

Dans certaines applications, le variateur doit pouvoir être utilisé avec différents réglages.

Exemple:

vous exploitez différents moteurs avec un variateur. Selon le moteur, le variateur devra utiliser les paramètres moteur correspondants et le générateur de rampe approprié.

Jeux de paramètres d'entraînement (Drive Data Set, DDS)

Vous pouvez paramétrer différemment certaines fonctions du variateur et activer le réglage voulu en fonction des besoins.

Les paramètres associés sont indexés (indice 0 ou 1). Les ordres de commande permettent de sélectionner l'un des deux indices et par conséquent l'un des deux réglages mémorisés.

Les réglages du variateur possédant le même indice sont appelés jeu de paramètres d'entraînement.

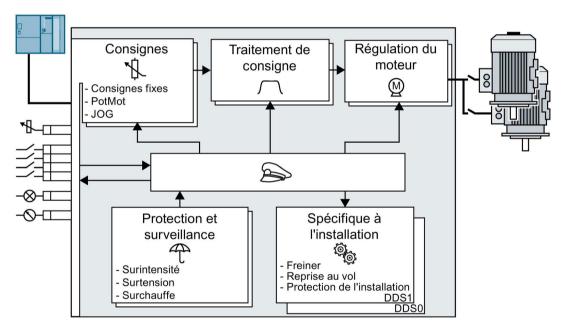


Figure 6-64 Commutation de jeu de paramètres d'entraînement sur le variateur

Le paramètre p0180 permet de définir le nombre de jeux de paramètres d'entraînement (1 ou 2).

Tableau 6-45 Sélection du nombre de jeux de paramètres d'entraînement

Paramètre	Description
p0010 = 15.	Mise en service de l'entraînement : Jeux de paramètres
p0180	Jeux de paramètres d'entraînement (DDS) Nombre (réglage d'usine : 1)
p0010 = 0.	Mise en service de l'entraînement : Prêt

Tableau 6-46 Paramètres pour la commutation des jeux de paramètres d'entraînement :

Paramètre	Description	
p0820	Sélection du jeu de paramètres d'entraînement DDS	
p0826	Commutation de moteur Numéro de moteur	
r0051	Affichage du numéro du jeu de paramètres d'entraînement actuellement actif	

Dans le Manuel de listes figure une vue d'ensemble de tous les paramètres qui font partie des jeux de paramètres d'entraînement et qui peuvent être commutés.

Remarque

Vous ne pouvez commuter les paramètres moteur des jeux de paramètres d'entraînement qu'à l'état "Prêt à fonctionner", le moteur étant arrêté. Le temps de commutation est d'environ 50 ms.

Si les paramètres moteur ne sont pas commutés avec les jeux de paramètres d'entraînement (c.-à-d. numéro de moteur identique dans p0826), les jeux de paramètres d'entraînement peuvent aussi être commutés pendant le fonctionnement.

Tableau 6-47 Paramètres pour la copie des jeux de paramètres d'entraînement

Paramètre	Description	
p0819[0]	Jeu de paramètres d'entraînement source	
p0819[1]	Jeu de paramètres d'entraînement cible	
p0819[2] = 1	Lancer l'opération de copie	

Des informations complémentaires figurent dans la liste des paramètres et dans le diagramme fonctionnel 8565 du Manuel de listes.

6.9 Commutation entre différents réglages

Sauvegarde des données et mise en service en série

7

Sauvegarde externe des données

Après la mise en service, les réglages sont enregistrés dans le variateur sous une forme non volatile.

Nous vous recommandons de sauvegarder en outre les paramétrages sur un support de mémoire externe au variateur. Sans sauvegarde, vos paramètres pourraient être perdus en cas de défaut du variateur (voir aussi Remplacement d'un variateur sans sauvegarde des données (Page 331)).

Il existe les supports de mémoire suivants pour vos paramètres :

- Carte mémoire
- PC/PG
- Pupitre opérateur

Remarque

Sauvegarde des données impossible via les pupitres opérateur en présence d'une connexion USB avec le PC / la PG

Si le variateur est relié à un PC / une PG via un câble USB, vous ne pouvez enregistrer aucune donnée sur la carte mémoire via un pupitre opérateur.

• Débranchez la connexion USB entre la PG / le PC et le variateur avant de sauvegarder des données sur la carte mémoire via un pupitre opérateur.

Exécuter la mise en service de série

Une mise en service en série est la mise en service de plusieurs entraînements identiques.

Condition

La Control Unit à laquelle les réglages sont transmis doit avoir le même numéro d'article que la Control Unit source, et une version de firmware identique ou supérieure.

Vue d'ensemble

Pour effectuer une mise en service de série, procédez comme suit :

- 1. Mettez en service le premier variateur.
- 2. Sauvegardez les réglages du premier variateur sur un support de mémoire externe.
- 3. Transférez les réglages du premier variateur du support de mémoire vers un autre variateur.

7.1 Enregistrement des réglages sur une carte mémoire

Quelle carte mémoire recommandons-nous ?

Les cartes mémoire recommandées figurent à la section : Etendue de livraison (Page 28).

Cartes mémoire d'autre fabricants

Le variateur ne prend en charge que des cartes mémoire d'une capacité maxi de 2 Go. Les cartes SDHC (SD High Capacity) et les cartes SDXC (SD Extended Capacity) ne sont pas autorisées

Pour pouvoir utiliser d'autres cartes mémoire SD ou MMC, il convient de formater la carte mémoire comme suit :

- MMC : format FAT 16
 - Insérez la carte dans un lecteur de cartes du PC.
 - Commande de formatage : format x : /fs :fat (x : désignation du lecteur de la carte mémoire sur votre PC)
- SD : Format FAT 16 ou FAT 32
 - Insérez la carte dans un lecteur de cartes du PC.
 - Commande formatage : format x: /fs:fat ou format x: /fs:fat32 (x : désignation du lecteur de la carte mémoire sur votre PC)

Fonctionnalité restreinte avec les cartes mémoire d'autres fabricants

Les fonctions suivantes ne sont pas possibles ou présentent des restrictions avec des cartes mémoire d'autres fabricants :

- L'affectation des licences des fonctions est uniquement possible avec une des cartes mémoire recommandées.
- La protection de savoir-faire est uniquement possible avec une des cartes mémoire recommandées.
- Les cartes mémoire d'autres fabricants ne prennent pas forcément en charge l'écriture ou la lecture des données par le variateur.

7.1.1 Sauvegarde du réglage sur la carte mémoire

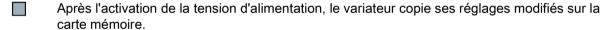
Nous recommandons d'insérer la carte mémoire avant la mise sous tension du variateur. Le variateur sauvegarde toujours ses réglages sur une carte insérée.

Il existe deux possibilités de sauvegarder le réglage du variateur sur une carte mémoire :

Sauvegarde automatique

Conditions

- Le variateur est hors tension.
- Aucun câble USB n'est enfiché dans le variateur.


Procédure

Pour sauvegarder automatiquement vos réglages, procédez comme suit :

- Insérez une carte mémoire vide dans le variateur.
- 2. Mettez le variateur sous tension.

Remarque

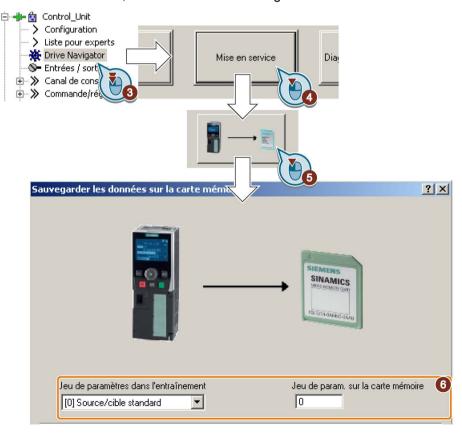
Si la carte mémoire n'est pas vide, le variateur applique les données contenues sur la carte mémoire. Vous écrasez ainsi les données dans le variateur.

 Utilisez exclusivement des cartes mémoire vides pour la première sauvegarde automatique de vos réglages.

Sauvegarde manuelle

Conditions

- · Le variateur est sous tension.
- Une carte mémoire est enfichée dans le variateur.



Marche à suivre avec STARTER

Pour sauvegarder les réglages sur une carte mémoire, procédez comme suit :

- 1. Passez en ligne.
- 2. Cliquez sur le bouton "Copier de la RAM vers la ROM" 1.
- 3. Dans votre entraînement, sélectionnez "Drive Navigator".

- 4. Cliquez sur le bouton "Mise en service".
- 5. Cliquez sur le bouton pour le transfert des réglages sur la carte mémoire.

- 6. Sélectionnez les réglages comme indiqué sur la figure et lancez la sauvegarde des données.
- 7. Attendez que STARTER signale la fin de la sauvegarde des données.
- 8. Fermez les masques.
- Vous avez sauvegardé les réglages du variateur sur la carte mémoire.

Marche à suivre avec Startdrive

Pour sauvegarder les réglages du variateur sur une carte mémoire, procédez comme suit :

- 1. Passez en ligne.
- 2. Sélectionnez "En ligne et diagnostic".

- 3. Sélectionnez "Sauvegarder / Réinitialiser".
- 4. Sauvegardez les réglages dans l'EEPROM du variateur.
- 5. Sélectionnez les réglages comme indiqué sur la figure.
- 6. Lancez la sauvegarde des données.
- 7. Attendez que Startdrive signale la fin de la sauvegarde des données.
- Vous avez sauvegardé les réglages du variateur sur une carte mémoire.

7.1 Enregistrement des réglages sur une carte mémoire

Marche à suivre avec le BOP 2

Pour sauvegarder les réglages sur une carte mémoire, procédez comme suit :

- 1. Si un câble USB est enfiché dans le variateur, retirez ce câble.
- 2. Accédez au menu "EXTRAS".
- 3. Sélectionnez dans le menu "EXTRAS" "TO CARD".

4. Réglez le numéro de votre sauvegarde de données. Vous pouvez sauvegarder 99 réglages différents sur la carte mémoire.

5. Démarrez le transfert de données avec OK.

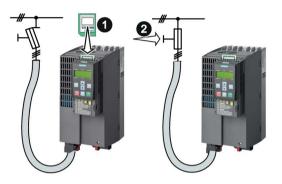
6. Attendez que le variateur ait sauvegardé les réglages sur la carte mémoire.

Vous avez sauvegardé les réglages du variateur sur la carte mémoire.

7.1.2 Transfert du réglage de la carte mémoire

Transfert automatique

Condition


Le variateur est hors tension.

Procédure

Pour transférer automatiquement vos réglages, procédez comme suit :

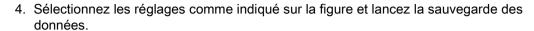
- 1. Insérez la carte mémoire dans le variateur.
- 2. Mettez ensuite le variateur sous tension.

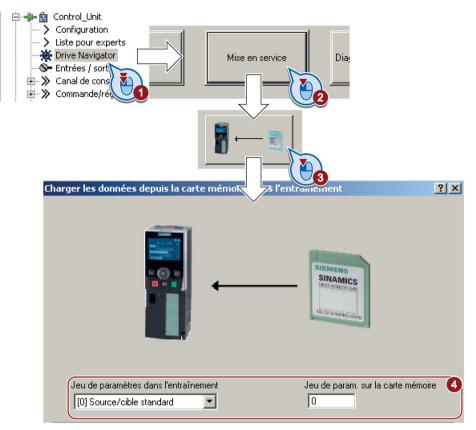
Si les données de paramétrage valides se trouvent sur la carte mémoire, le variateur les applique automatiquement.

Transfert manuel

Conditions

- Le variateur est sous tension.
- Une carte mémoire est enfichée dans le variateur.


Marche à suivre avec STARTER



Pour transférer les réglages d'une carte mémoire dans le variateur, procédez comme suit :

- 1. Passez en ligne et sélectionnez le "Drive Navigator" dans votre entraînement.
- 2. Cliquez sur le bouton "Mise en service".
- 3. Cliquez sur le bouton pour le transfert des données de la carte mémoire dans le variateur.

7.1 Enregistrement des réglages sur une carte mémoire

- 5. Attendez que STARTER signale la fin de la sauvegarde des données.
- 6. Fermez les masques.
- 7. Passez hors ligne.
- 8. Coupez la tension d'alimentation du variateur.
- 9. Attendez que toutes les LED du variateur soient éteintes.
- 10. Rétablissez la tension d'alimentation du variateur.

Vos réglages prennent effet après la mise sous tension.

Vous avez transféré vos réglages d'une carte mémoire dans le variateur.

Marche à suivre avec Startdrive

Pour transférer les réglages d'une carte mémoire dans le variateur, procédez comme suit :

- 1. Passez en ligne.
- 2. Sélectionnez "En ligne et diagnostic".
- 3. Sélectionnez "Sauvegarder / Réinitialiser".

- 4. Sélectionnez les réglages comme indiqué sur la figure.
- 5. Démarrez le transfert de données.
- 6. Attendez que Startdrive signale la fin du transfert de données.
- 7. Passez hors ligne.
- 8. Coupez la tension d'alimentation du variateur.
- 9. Attendez que toutes les LED du variateur soient éteintes.
- 10. Rétablissez la tension d'alimentation du variateur.

Vos réglages prennent effet après la mise sous tension.

Vous avez transféré vos réglages d'une carte mémoire dans le variateur.

7.1 Enregistrement des réglages sur une carte mémoire

Marche à suivre avec le BOP-2

Pour transférer les réglages d'une carte mémoire dans le variateur, procédez comme suit :

- I. Si un câble USB est enfiché dans le variateur, retirez ce câble.
- 2. Accédez au menu "EXTRAS".
- 3. Sélectionnez dans le menu "EXTRAS" "FROM CRD".
- 4. Réglez le numéro de votre sauvegarde de données. Vous pouvez sauvegarder 99 réglages différents sur la carte mémoire.
- 5. Démarrez le transfert de données avec OK.
- 6. Attendez que le variateur ait transféré les données de la carte mémoire.

EXTRAS

FROM CR

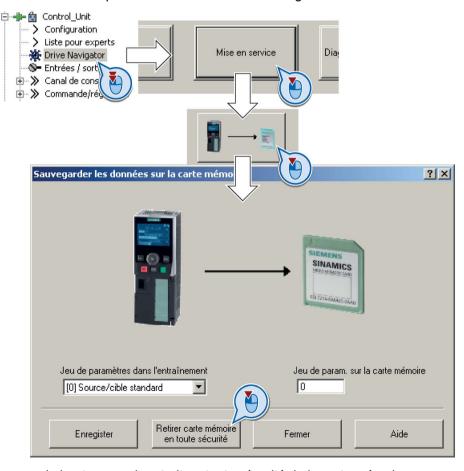
- 7. Coupez la tension d'alimentation du variateur.
- 8. Attendez que toutes les LED du variateur soient éteintes.
- 9. Rétablissez la tension d'alimentation du variateur.
- Vous avez transféré les réglages de la carte mémoire dans le variateur.

7.1.3 Retrait de la carte mémoire en toute sécurité

IMPORTANT

Perte de données en cas de manipulation non conforme de la carte mémoire

Si vous retirez la carte mémoire alors que le variateur est sous tension sans exécuter la fonction "Retrait en toute sécurité", vous risquez de détruire le système de fichiers qui se trouve sur la carte mémoire. Les données sur la carte mémoire seraient perdues. La carte mémoire ne serait de nouveau opérationnelle qu'après un formatage.

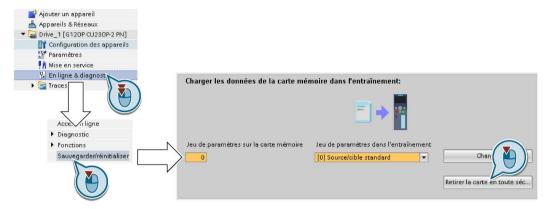

Retirez la carte mémoire uniquement à l'aide de la fonction "Retrait en toute sécurité".

Marche à suivre avec STARTER

Pour retirer la carte mémoire en toute sécurité, procédez comme suit :

- 1. Passez en ligne.
- 2. Sélectionnez les masques suivants dans le Drive Navigator :

- Cliquez sur le bouton pour le retrait en toute sécurité de la carte mémoire.
 STARTET signale si vous pouvez retirer ou non la carte mémoire du variateur.
- Vous avez retiré la carte mémoire du variateur en toute sécurité.


7.1 Enregistrement des réglages sur une carte mémoire

Marche à suivre avec Startdrive

Pour retirer la carte mémoire en toute sécurité, procédez comme suit :

1. Sélectionnez les masques suivants dans le Drive Navigator :

2. Cliquez sur le bouton pour le retrait en toute sécurité de la carte mémoire.

Startdrive signale si vous pouvez retirer ou non la carte mémoire du variateur.

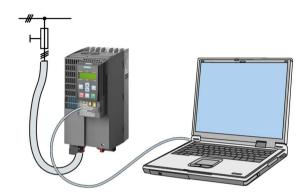
Vous avez retiré la carte mémoire du variateur en toute sécurité.

Marche à suivre avec le BOP-2

Pour retirer la carte mémoire en toute sécurité avec le BOP-2, procédez comme suit :

- Passez au paramètre p9400. Lorsqu'une carte mémoire est correctement insérée, p9400 = 1.
- 2. Réglez p9400 = 2.

- Le variateur règle p9400 = 3 ou p9400 = 100.
 - p9400 = 3 : vous pouvez retirer la carte mémoire du variateur.
 - p9400 = 100 : vous ne pouvez pas retirer la carte mémoire.
 Attendez quelques secondes et réglez une nouvelle fois p9400 = 2.
- 4. Retirez la carte mémoire. Après le retrait de la carte mémoire, p9400 = 0.
- Vous avez retiré la carte mémoire en toute sécurité avec le BOP-2.


7.2 Enregistrement des réglages sur un PC

Vous pouvez transférer les réglages du variateur dans une PG ou un PC ou au contraire reprendre les données de la PG / du PC dans le variateur.

Conditions

- Le variateur est mis sous tension.
- Vous avez installé l'un des outils de mise en service STARTER ou Startdrive sur votre PG/PC.

Vous trouverez de plus amples informations concernant les outils de mise en service à la section : Outils de mise en service du variateur (Page 33).

Variateur → PC/PG

Marche à suivre avec STARTER

Pour sauvegarder les réglages avec STARTER, procédez comme suit :

- 1. Passez en ligne : \mathbb{R} .
- 2. Cliquez sur le bouton "Charger le projet dans la PG" : 🔬.
- 3. Sauvegardez le projet : 🖫.
- 4. Attendez que STARTER signale la fin de la sauvegarde des données.
- 5. Passez hors ligne : 3
- Vous avez sauvegardé les réglages avec STARTER.

Marche à suivre avec Startdrive

Pour sauvegarder les réglages avec Startdrive, procédez comme suit :

- 1. Passez en ligne.
- 2. Sélectionnez "En ligne" > "Charger appareil dans PG/PC...".
- 3. Sauvegardez le projet avec "Projet" > "Enregistrer".
- 4. Attendez que Startdrive signale la fin de la sauvegarde des données.
- 5. Passez hors ligne.
- Vous avez sauvegardé les réglages avec Startdrive.

PC/PG → Variateur

La marche à suivre varie selon que les réglages des fonctions de sécurité ont été transférés ou non.

Procédure avec STARTER sans les fonctions de sécurité débloquées

Pour transférer les réglages de la PG sur le variateur avec STARTER, procédez comme suit :

- 1. Passez en ligne : \mathbb{R} .
- 2. Cliquez sur le bouton "Charger le projet dans le système cible" : 🕍.
- 3. Attendez que STARTER signale la fin de l'opération de chargement.
- 4. Pour enregistrer les données dans le variateur sous une forme non volatile, cliquez sur le bouton "Copier de la RAM vers la ROM" : •.
- 5. Passez hors ligne : 3.
- Vous avez transféré avec STARTER les réglages de la PG sur le variateur.

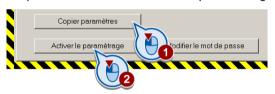
Procédure avec Startdrive sans les fonctions de sécurité débloquées

Pour transférer les réglages de la PG sur le variateur avec Startdrive, procédez comme suit :

- 1. Passez en ligne.
- 2. Dans le menu contextuel, sélectionnez "Charger dans l'appareil" > "Matériel et logiciel".
- 3. Attendez que Startdrive signale la fin de l'opération de chargement.
- 4. Passez hors ligne.
- 5. Confirmez la boîte de dialogue qui s'affiche en cliquant sur "Oui", afin d'enregistrer les données dans le variateur sous une forme non volatile (Copier de la RAM vers la ROM).
- Vous avez transféré les réglages de la PG sur le variateur avec Startdrive.

Procédure avec STARTER avec les fonctions de sécurité débloquées

Pour transférer les réglages de la PG sur le variateur et activer les fonctions de sécurité avec STARTER, procédez comme suit :


- 1. Passez en ligne : 🖳
- 2. Cliquez sur le bouton "Charger le projet dans le système cible" : 🕍.
- 3. Ouvrez le masque STARTER des fonctions de sécurité.

Vous avez transféré les réglages de la PG sur le variateur.

Pour activer les fonctions de sécurité, procédez comme suit :

- 1. Cliquez sur le bouton "Copier les paramètres".
- 2. Cliquez sur le bouton "Activer le paramétrage".

- 3. Pour enregistrer les données dans le variateur, cliquez sur le bouton "Copier de la RAM vers la ROM" : .
- 4. Passez hors ligne : 3.
- 5. Coupez la tension d'alimentation du variateur.
- 6. Attendez que toutes les LED du variateur soient éteintes.
- 7. Rétablissez la tension d'alimentation du variateur. Vos réglages ne prendront effet qu'après ce Reset par Power On.
- Vous avez transféré les réglages de la PG sur le variateur et activé les fonctions de sécurité avec STARTER.

Marche à suivre avec Startdrive

Pour transférer les réglages de la PG sur le variateur et activer les fonctions de sécurité avec Startdrive, procédez comme suit :

- 1. Enregistrez le projet.
- 2. Sélectionnez "Charger dans l'appareil".

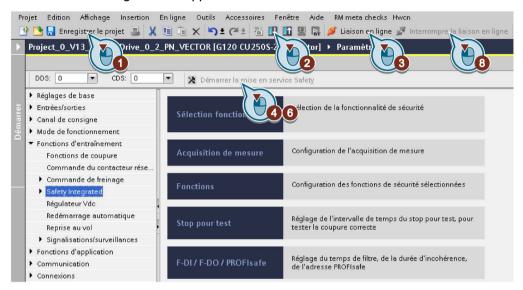


Figure 7-1 Activer les réglages dans Startdrive

- 3. Etablissez une connexion en ligne de Startdrive à l'entraînement.
- 4. Cliquez sur le bouton "Démarrer la mise en service Safety".
- 5. Entrez le mot de passe des fonctions de sécurité.
 - Si le mot de passe est celui du réglage d'usine, l'utilisateur est invité à changer le mot de passe.
 - Si vous spécifiez un mot de passe non autorisé, l'ancien mot de passe reste conservé.
- 6. Cliquez sur le bouton "Terminer la mise en service Safety".
- 7. Confirmer la demande de sauvegarde du paramétrage (copier RAM vers ROM).
- 8. Interrompez la connexion en ligne.
- 9. Coupez la tension d'alimentation du variateur.
- 10. Attendez que toutes les LED du variateur soient éteintes.
- 11. Rétablissez la tension d'alimentation du variateur.
- Vous avez transféré les réglages de la PG sur le variateur et activé les fonctions de sécurité avec Startdrive.

7.3 Enregistrement des réglages sur un pupitre opérateur

Vous pouvez transférer les réglages du variateur sur le Operator Panel BOP-2 ou au contraire enregistrer les données du BOP-2 dans le variateur.

Condition

Le variateur est mis sous tension.

Variateur → BOP-2

Procédure

Pour sauvegarder les réglages sur le BOP-2, procédez comme suit :

- 1. Accédez au menu "EXTRAS".
- 2. Sélectionnez dans le menu "EXTRAS" "TO BOP".

то во

EXTRAS

3. Démarrez le transfert de données avec OK.

4. Attendez que le variateur ait sauvegardé les réglages sur le BOP-2.

Vous avez sauvegardé les réglages sur le BOP-2.

7.3 Enregistrement des réglages sur un pupitre opérateur

BOP-2 → Variateur

Procédure

Pour transférer les réglages dans le variateur, procédez comme suit :

- 1. Accédez au menu "EXTRAS".
- 2. Sélectionnez dans le menu "EXTRAS" "FROM BOP".

3. Démarrez le transfert de données avec OK.

4. Attendez que le variateur ait écrit les réglages dans le variateur.

- 5. Coupez la tension d'alimentation du variateur.
- 6. Attendez que toutes les LED du variateur soient éteintes.
- Rétablissez la tension d'alimentation du variateur.
 Vos réglages prennent effet après la mise sous tension.
- Vous avez transféré les réglages dans le variateur.

7.4 Autres possibilités de sauvegarde des réglages

Outre le réglage standard, le variateur possède une mémoire interne pour l'enregistrement de trois autres réglages.

Outre le réglage standard du variateur, vous pouvez sauvegarder 99 autres réglages sur la carte mémoire.

Pour plus d'informations, visitez notre site Internet : Options de mémoire (http://support.automation.siemens.com/WW/view/en/43512514).

7.5 Protection en écriture et du savoir-faire

Le variateur offre la possibilité de protéger les réglages de configuration propres contre toute modification ou copie.

Il utilise pour ce faire les méthodes de protection en écriture et de protection de savoir-faire.

7.5.1 Protection en écriture

La protection en écriture empêche la modification involontaire des réglages dans le variateur. Lorsque vous utilisez un outil pour PC comme STARTER, la protection en écriture est effective uniquement en ligne. Le projet hors ligne n'est pas protégé en écriture.

La protection en écriture est valable pour toutes les interfaces utilisateur :

- Pupitres opérateur BOP-2 et IOP
- · Outil logiciel pour PC STARTER ou Startdrive
- Modifications des paramètres via un bus de terrain

La protection en écriture n'est pas protégée par un mot de passe.

Activation et désactivation de la protection en écriture

Marche à suivre avec STARTER

Pour activer ou désactiver la protection en écriture, procédez comme suit :

- 1. Passez en ligne.
- 2. Ouvrez le menu contextuel du variateur.
- 3. Activez ou désactivez la protection en écriture.
- Pour enregistrer les réglages sous une forme non volatile, cliquez sur le bouton "Copier de la RAM vers la ROM"

Vous avez activé ou désactivé la protection en écriture.

Paramètre			
r7760	Protection en écriture / Protection de savoir-faire Etat		
	.00	Protection en écriture active	
p7761	Protection en écriture (réglage d'usine : 0)		
	0:	Désactivation de la protection en écriture	
	1:	Activation de la protection en écriture	

Exceptions à la protection en écriture

Certaines fonctions sont exclues de la protection en écriture, telles que :

- Activation/désactivation de la protection en écriture
- Modification des niveaux d'accès (p0003)
- Enregistrement des paramètres (p0971)
- Retirer la carte mémoire de manière sûre (p9400)
- Rétablissement des réglages d'usine
- Reprise des réglages d'une sauvegarde de données externe, p. ex. upload d'une carte mémoire dans le variateur.

Les différents paramètres exclus de la protection en écriture figurent à la section "Paramètres pour la protection en écriture et la protection de savoir-faire" dans le Manuel de listes.

Remarque

Protection en écriture avec les systèmes de bus de terrain multimaître

Les systèmes de bus de terrain multimaître (p. ex. CAN, BACnet) permettent de modifier les paramètres même quand la protection en écriture est activée. Pour que la protection en écriture soit également effective lors de l'accès via ces bus de terrain, vous devez définir en outre p7762 = 1.

Ce réglage ne peut être effectué dans STARTER qu'au moyen de la liste pour experts.

7.5.2 Protection du savoir-faire

Protection de savoir-faire

La protection de savoir-faire permet de crypter son savoir-faire de configuration et de le protéger contre toute modification ou reproduction.

Les réglages du variateur sont protégés par un mot de passe.

En cas de perte du mot de passe, seul le réglage d'usine est encore possible.

La protection de savoir-faire active a les effets suivants :

- Tous les paramètres de réglage sont invisibles.
- Les paramètres ne peuvent être modifiés avec aucun outil de mise en service, p. ex. le pupitre opérateur ou STARTER.
- Le téléchargement des réglages du variateur avec Starter ou via une carte mémoire est impossible.
- L'utilisation de la fonction Trace dans STARTER est impossible.
- Suppression de l'historique des alarmes
- Les boîtes de dialogue STARTER sont bloquées. La liste pour experts de STARTER ne contient plus que les paramètres d'observation.

La prise en charge par le support technique lorsque la protection de savoir-faire est activée est seulement possible avec l'approbation du constructeur de machines.

Protection contre les copies

En association avec la protection contre les copies, les réglages du variateur sont couplés exclusivement à un équipement informatique unique défini de manière fixe.

La protection de savoir-faire avec protection contre les copies est possible uniquement avec la carte Siemens recommandée, voir aussi la section : Etendue de livraison (Page 28)

Liste d'exceptions

La protection de savoir-faire active permet de définir une liste d'exceptions contenant les paramètres auxquels le client peut accéder.

Lorsque vous retirez de la liste d'exceptions le paramètre relatif au mot de passe, la protection de savoir-faire ne peut plus être annulée que via le réglage d'usine.

Actions possibles même lorsque la protection de savoir-faire est activée

- Restauration des réglages d'usine
- Acquittement des messages
- Affichage des messages
- Affichage de l'historique des messages
- Lecture du tampon de diagnostic
- Commutation sur le tableau de commande (fonctionnalité complète du tableau de commande : prise de la maîtrise de commande, tous les boutons et paramètres de réglage)
- Upload (uniquement les paramètres accessibles malgré la protection de savoir-faire)

Les différents paramètres exclus de la protection de savoir-faire figurent à la section "Paramètres pour la protection en écriture et la protection de savoir-faire" dans le Manuel de listes

Mise en service du variateur avec protection de savoir-faire

Procédure - Vue d'ensemble

- 1. Mettez en service le variateur.
- 2. Créez la liste d'exceptions (Page 320)
- 3. Activez la protection de savoir-faire. (Page 318)
- 4. Sauvegardez les réglages dans le variateur avec la fonction Copier de la RAM vers la ROM avec ▶ ou via p0971 = 1.
- 5. Enregistrez le projet sur l'ordinateur / la PG avec . Enregistrez également les données complémentaires éventuelles en rapport avec le projet (type de machine, mot de passe, etc.) requises pour l'assistance du client final.

7.5.2.1 Paramétrages pour la protection de savoir-faire

Activation de la protection de savoir-faire

Conditions

- Vous êtes en ligne.
 - Si vous avez créé un projet hors ligne sur votre ordinateur, vous devez charger celui-ci dans le variateur et passer en ligne.
- Vous avez enfiché une carte Siemens recommandée. Voir aussi la section : Etendue de livraison (Page 28).

Procédure

Pour activer la protection de savoir-faire, procédez comme suit :

- 1. Sélectionnez le variateur dans le projet STARTER et sélectionnez "Protection de savoirfaire du groupe d'entraînement / Activer..." dans le menu contextuel (voir aussi Protection en écriture (Page 314)).
- 2. Entrez le mot de passe. Longueur du mot de passe : 1 ... 30 caractères.

Nous recommandons d'utiliser uniquement des caractères du jeu de caractères ASCII pour le mot de passe. Si vous utilisez de caractères quelconques pour le mot de passe, une modification des paramètres de langue de Windows après activation de la protection de savoir-faire pourra entraîner des défauts lors de la vérification ultérieure du mot de passe.

3. Sélectionnez "Copier de la RAM vers la ROM" dans ce masque. Vous enregistrez ainsi vos réglages de manière non volatile.

Sauvegarde des réglages sur la carte mémoire

Lorsque la protection de savoir-faire est activée, vous pouvez sauvegarder les réglages sur la carte mémoire via p0971.

Réglez pour ce faire p0971 = 1. Les données sont cryptées lors de l'écriture sur la carte mémoire. Après l'enregistrement, p0971 est remis à 0.

Désactivation de la protection de savoir-faire, suppression du mot de passe

Conditions

- Vous êtes passé en ligne avec STARTER.
- Vous avez enfiché une carte Siemens recommandée. Voir aussi la section : Etendue de livraison (Page 28).

Procédure

Pour désactiver la protection de savoir-faire, procédez comme suit :

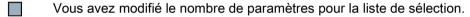
- Sélectionnez le variateur dans le projet STARTER et ouvrez la boîte de dialogue "Protection de savoirfaire du groupe d'entraînement / Désactiver..." à l'aide du bouton droit de la souris.
- 2. Sélectionnez l'option voulue.
 - Temporaire: la protection de savoir-faire est à nouveau active après mise hors tension et remise sous tension.

- Définitif: si vous sélectionnez "Copier de la RAM vers la ROM", le variateur supprime le mot de passe immédiatement. Si vous ne sélectionnez pas "Copier de la RAM vers la ROM", le variateur supprime le mot de passe à la prochaine mise hors tension.
- 3. Saisissez le mot de passe et quittez le masque en cliquant sur OK.
- Vous avez désactivé la protection de savoir-faire.

Changement de mot de passe

Sélectionnez le variateur dans le projet STARTER et ouvrez la boîte de dialogue "Protection de savoir-faire du groupe d'entraînement / Modifier le mot de passe..." à l'aide du menu contextuel.

7.5.2.2 Création d'une liste d'exception pour la protection de savoir-faire


En tant que constructeur de machines, la liste d'exceptions vous permet de fournir l'accès au client final à différents paramètres de réglage malgré la protection de savoir-faire. Vous définissez la liste d'exceptions via les paramètres p7763 et p7764 de la liste pour experts. Définissez dans p7763 le nombre de paramètres pour la liste de sélection. Dans p7764, affectez aux différents indices les numéros de paramètres de la liste de sélection.

Procédure

Pour modifier le nombre de paramètres pour la liste de sélection, procédez comme suit :

- 1. Enregistrez les réglages du variateur en effectuant un upload (sur l'ordinateur / la PG et passez hors ligne (%)
- 2. Réglez la valeur souhaitée pour p7763 sur l'ordinateur.
- 3. Enregistrez le projet.
- 4. Passez en ligne et chargez le projet dans le variateur (🕍)
- 5. Procédez à présent aux autres réglages dans p7764.

Réglage d'usine pour la liste d'exceptions :

- p7763 = 1 (la liste de sélection contient exactement un paramètre)
- p7764[0] = 7766 (numéro de paramètre pour la saisie du mot de passe)

Remarque

Blocage de l'accès au variateur en raison d'une liste d'exceptions incomplète

Si vous supprimez le paramètre p7766 de la liste d'exceptions, vous ne pouvez plus saisir de mot de passe et, par conséquent, vous ne pouvez plus désactiver la protection de savoir-faire.

Pour pouvoir accéder à nouveau au variateur, vous devez dans ce cas rétablir les réglages d'usine sur celui-ci.

Maintenance corrective

8.1 Remplacement des composants du variateur

8.1.1 Vue d'ensemble du remplacement de variateur

Remplacement autorisé

En cas de dysfonctionnement persistant du variateur, il est nécessaire de procéder à son remplacement.

Vous pouvez remplacer le variateur dans les cas suivants :

Remplacement :	Remplacement :	Remplacement :	Remplacement :
 même puissance même version de firmware 	 même puissance version de firmware su- périeure (FW V4.2 remplacé par FW V4.3 p. ex.) 	 même taille de construction puissance <i>supérieure</i> même version de firmware 	 même taille de construction puissance supérieure version de firmware supérieure (FW V4.2 remplacé par FW V4.3 p. ex.)
x kW Firmware A x kW Firmware A	x kW Firmware B B > A x kW Firmware A	y kW Firmware A y > x x kW Firmware A	y kW Firmware B y > x B > A x kW Firmware A
		Le variateur et le moteur doive de la puissance assignée du n	

Instructions de service, 07/2015, FW V4.7 SP3, A5E34263257D AC

8.1 Remplacement des composants du variateur

Après le remplacement, vous devez restaurer les réglages du variateur.

/!\ATTENTION

Risque de blessure lié à des mouvements incontrôlés de l'entraînement

Le remplacement d'un variateur par un autre de type différent peut entraîner des mouvements incontrôlés de l'entraînement.

• Dans tous les cas non admis selon le tableau ci-dessus, procédez à une nouvelle mise en service de l'entraînement après un remplacement de variateur.

Particularité de la communication via PROFINET : Remplacement d'appareils sans support amovible

Le variateur prend en charge la fonctionnalité PROFINET de remplacement d'appareils sans support amovible.

Condition

Dans votre commande de niveau supérieur, la topologie du système PROFINET IO est configurée avec les périphériques IO concernés.

Remplacement d'appareil

Le remplacement du variateur est possible sans avoir à enficher dans le variateur un support amovible (p. ex. une carte mémoire) avec le nom d'appareil enregistré ou sans avoir à réattribuer le nom d'appareil avec la PG.

Vous trouverez plus de détails concernant le remplacement d'appareils sans support amovible dans le manuel PROFINET Description du système (http://support.automation.siemens.com/WW/view/fr/19292127).

8.1.2 Remplacement d'un variateur avec fonction de sécurité activée

/!\DANGER

Danger en cas de contact avec les connexions sous tension du Power Module

Après la mise hors tension, jusqu'à 5 minutes peuvent être nécessaires pour que les condensateurs du variateur soient suffisamment déchargés et que la tension résiduelle ait atteint un niveau ne présentant aucun danger. Un contact avec des parties actives peut entraîner la mort ou de graves blessures.

• Vérifiez que les connexions du variateur ne sont pas sous tension avant d'effectuer tout travail d'installation.

IMPORTANT

Dommages matériels dus à la permutation des câbles moteur

Le fait de permuter les deux phases du câble moteur modifie son sens de rotation. Une rotation du moteur dans le sens inverse peut endommager la machine ou l'installation.

- Raccordez les trois phases des câbles moteur dans l'ordre correct.
- Après avoir remplacé le variateur, vérifiez le sens de rotation du moteur.

8.1 Remplacement des composants du variateur

Remplacement d'un variateur avec sauvegarde des données sur une carte mémoire

Marche à suivre

Pour remplacer le variateur, procédez comme suit :

- Mettez hors tension le variateur et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 2. Retirez les câbles de raccordement du variateur.
- 3. Retirez le variateur défectueux.
- 4. Installez le nouveau variateur.
- 5. Retirez la carte mémoire de l'ancien variateur et insérez-la dans le nouveau.
- 6. Connectez tous les câbles au variateur.
- 7. Remettez le variateur sous tension et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 8. Le variateur charge les paramètres à partir de la carte mémoire.
- 9. Une fois le chargement effectué, contrôlez si le variateur émet l'alarme A01028.
 - Alarme A01028 :

les paramètres chargés ne sont pas compatibles avec le variateur.

Désactivez l'alarme avec p0971 = 1 et procédez à nouveau à la mise en service de l'entraînement.

- Absence d'alarme A01028 :

Effectuez un essai de réception **réduit** ; voir la section Essai de réception réduit après un remplacement de composant et un changement de firmware (Page 345).

Vous avez remplacé le variateur et transféré les paramètres des fonctions de sécurité de la carte mémoire dans le nouveau variateur.

Remplacement d'un variateur avec sauvegarde des données dans STARTER

Exigence

Vous avez sauvegardé les paramètres actuels du variateur à remplacer sur un PC avec STARTER.

Marche à suivre

Pour remplacer le variateur, procédez comme suit :

- 1. Mettez hors tension le variateur et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 2. Retirez les câbles de raccordement du variateur.
- 3. Retirez le variateur défectueux.
- 4. Installez le nouveau variateur.
- 5. Connectez tous les câbles au variateur.
- 6. Remettez le variateur sous tension et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 7. Ouvrez le projet approprié pour l'entraînement dans STARTER.
- 8. Passez en ligne et transférez les paramètres du PC au variateur en appuyant sur le bouton ...
 - Le variateur signale des défauts après le download. Ignorez ces défauts compte tenu qu'ils seront automatiquement acquittés par les étapes suivantes.
- 9. Dans STARTER, sélectionnez le masque de saisie pour les fonctions de sécurité.
- 10. Sélectionnez le bouton "Modifier les paramètres".
- 11. Sélectionnez le bouton "Activer les paramètres".
- 12. Enregistrez vos paramètres (copier RAM vers ROM).
- 13. Mettez le variateur hors tension.
- 14. Attendez que toutes les LED du variateur s'éteignent.
- 15. Mettez à nouveau le variateur sous tension.
- 16. Effectuez un essai de réception **réduit** ; voir la section Essai de réception réduit après un remplacement de composant et un changement de firmware (Page 345).
- Vous avez remplacé le variateur et transféré les paramètres des fonctions de sécurité du PC au nouveau variateur.

Remplacement d'un variateur avec sauvegarde des données dans Startdrive

Exigence

Vous avez sauvegardé les paramètres actuels du variateur à remplacer sur un PC avec Startdrive.

Marche à suivre

Pour remplacer le variateur, procédez comme suit :

- Mettez hors tension le variateur et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 2. Retirez les câbles de raccordement du variateur.
- 3. Retirez le variateur défectueux.
- 4. Installez le nouveau variateur.
- 5. Connectez tous les câbles au variateur.
- 6. Remettez le variateur sous tension et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 7. Dans Startdrive, ouvrez le projet qui correspond à l'entraînement.
- 8. Sélectionnez "Charger dans l'appareil".
- 9. Etablissez une connexion en ligne entre Startdrive et l'entraînement.
 - Le variateur signale des défauts après le download. Ignorez ces défauts compte tenu qu'ils seront automatiquement acquittés par les étapes suivantes.
- 10. Actionnez le bouton "Démarrer la mise en service Safety".
- 11. Saisir le mot de passe pour les fonctions de sécurité.
- 12. Confirmez la demande de sauvegarde de vos paramètres (copier RAM vers ROM).
- 13. Désactivez la connexion en ligne.
- 14. Mettez le variateur hors tension.
- 15. Attendez que toutes les LED du variateur s'éteignent.
- 16. Mettez à nouveau le variateur sous tension.
- 17. Effectuez un essai de réception **réduit** ; voir la section Essai de réception réduit après un remplacement de composant et un changement de firmware (Page 345).

Vous avez remplacé le variateur et transféré les paramètres des fonctions de sécurité du PC au nouveau variateur.

Remplacement du variateur avec sauvegarde des données dans le pupitre opérateur (BOP-2 ou IOP)

Marche à suivre

Pour remplacer le variateur, procédez comme suit :

- 1. Mettez hors tension le variateur et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 2. Retirez les câbles de raccordement du variateur.
- 3. Retirez le variateur défectueux.
- 4. Installez le nouveau variateur.
- 5. Connectez tous les câbles au variateur.
- Remettez le variateur sous tension et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 7. Insérez le pupitre opérateur sur le variateur.
- 8. Transférez les paramètres du pupitre opérateur au variateur, p. ex. via le menu "EXTRAS" "FROM BOP" dans le BOP-2.
- 9. Attendez que le transfert soit terminé.
- 10. Une fois le chargement effectué, contrôlez si le variateur émet l'alarme A01028.
 - Alarme A01028 :
 - les paramètres chargés ne sont pas compatibles avec le variateur.
 - Désactivez l'alarme avec p0971 = 1 et procédez à nouveau à la mise en service de l'entraînement.
 - Absence d'alarme A01028 : passez à l'étape suivante.
- 11. Mettez le variateur hors tension.
- 12. Attendez que toutes les LED du variateur s'éteignent.
- 13. Mettez à nouveau le variateur sous tension.
 - Le variateur signale les défauts F01641, F01650, F01680 et F30680. Ignorez ces défauts compte tenu qu'ils seront automatiquement acquittés par les étapes suivantes.
- 14. Réglez p0010 sur 95.
- 15. Réglez p9761 sur le mot de passe de sécurité.
- 16. Réglez p9701 sur AC hex.
- 17.Réglez p0010 sur 0.
- 18. Sauvegardez les paramètres pour ne pas les perdre en cas de coupure de courant :
 - Pour BOP-2, dans le menu "EXTRAS" "RAM-ROM".
 - Pour IOP, dans le menu "SAVE RAM TO ROM"
- 19. Mettez le variateur hors tension.
- 20. Attendez que toutes les LED du variateur s'éteignent.

8.1 Remplacement des composants du variateur

- 21. Mettez à nouveau le variateur sous tension.
- 22. Effectuez un essai de réception **réduit** ; voir la section Essai de réception réduit après un remplacement de composant et un changement de firmware (Page 345).
- Vous avez remplacé le variateur et transféré les paramètres des fonctions de sécurité du pupitre opérateur dans le nouveau variateur.

8.1.3 Remplacement d'un variateur sans fonction de sécurité activée

Remplacement d'un variateur avec sauvegarde des données sur une carte mémoire

Marche à suivre

Pour remplacer le variateur, procédez comme suit :

1. Mettez hors tension le variateur et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.

/!\DANGER

Danger de mort dû au risque d'électrocution!

Après la mise hors tension, jusqu'à 5 minutes peuvent être nécessaires pour que les condensateurs du variateur soient déchargés de sorte que la tension résiduelle ne soit plus dangereuse.

- Avant de procéder à tout travail d'installation, vérifiez la tension aux connexions du variateur.
- 2. Retirez les câbles de connexion du variateur.
- 3. Retirez le variateur défectueux.
- 4. Installez le nouveau variateur.
- 5. Retirez la carte mémoire de l'ancien variateur et insérez-la dans le nouveau.
- 6. Connectez tous les câbles au variateur.

IMPORTANT

Dommages dus à la permutation des câbles moteur

Le fait de permuter les deux phases du câble moteur modifie le sens de rotation du moteur.

- Connectez les trois phases des câbles moteur dans l'ordre correct.
- Après avoir remplacé le Power Module, vérifiez le sens de rotation du moteur.
- 7. Remettez le variateur sous tension et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 8. Le variateur charge les paramètres à partir de la carte mémoire.
- 9. Une fois le chargement effectué, contrôlez si le variateur émet l'alarme A01028.
 - Alarme A01028 :

les paramètres chargés ne sont pas compatibles avec le variateur.

Désactivez l'alarme avec p0971 = 1 et procédez à nouveau à la mise en service de l'entraînement.

Absence d'alarme A01028 :

Le variateur a accepté les paramètres qui ont été chargés.

Vous avez terminé le remplacement du variateur.

Remplacement d'un variateur avec sauvegarde des données dans un PC

Marche à suivre

Pour remplacer le variateur, procédez comme suit :

 Mettez hors tension le variateur et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.

DANGER

Danger de mort dû au risque d'électrocution!

Après la mise hors tension, jusqu'à 5 minutes peuvent être nécessaires pour que les condensateurs du variateur soient déchargés de sorte que la tension résiduelle ne soit plus dangereuse.

- Avant de procéder à tout travail d'installation, vérifiez la tension aux connexions du variateur.
- 2. Retirez les câbles de connexion du variateur.
- 3. Retirez le variateur défectueux.
- 4. Installez le nouveau variateur.
- 5. Connectez tous les câbles au variateur.
- 6. Remettez le variateur sous tension et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 7. Ouvrez le projet qui correspond à l'entraînement dans STARTER.
- 8. Passez en ligne et transférez les paramètres du PC dans le variateur en appuyant sur le bouton ...
 - Le variateur signale des défauts après le download. Ignorez ces défauts compte tenu qu'ils seront automatiquement acquittés par les étapes suivantes.
- 9. Dans STARTER, sélectionnez le masque de saisie pour les fonctions de sécurité.
- 10. Sélectionnez le bouton "Modifier les paramètres".
- 11. Sélectionnez le bouton "Activer les paramètres".
- 12. Enregistrez vos paramètres (copier RAM vers ROM).
- Vous avez terminé le remplacement du variateur.

8.1.4 Remplacement d'un variateur sans sauvegarde des données

Si les paramètres n'ont pas été sauvegardés, vous devez procéder à une nouvelle mise en service de l'entraînement après le remplacement du variateur.

Marche à suivre

Pour remplacer le variateur, procédez comme suit :

- 1. Mettez hors tension le variateur et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 2. Retirez les câbles de connexion du variateur.
- 3. Retirez le variateur défectueux.
- 4. Installez le nouveau variateur.
- 5. Connectez tous les câbles au variateur.
- 6. Remettez le variateur sous tension et (le cas échéant) l'alimentation 24 V externe ou l'alimentation des sorties TOR du variateur.
- 7. Procédez à une nouvelle mise en service de l'entraînement.
- La mise en service du variateur est terminée.

8.1.5 Remplacement d'appareils avec la protection de savoir-faire active

Remplacement d'appareil avec protection de savoir-faire sans protection contre les copies

Avec la protection de savoir-faire sans protection contre les copies, il est possible de transférer les réglages du variateur sur un autre variateur au moyen d'une carte mémoire.

Voir aussi:

- Sauvegarde du réglage sur la carte mémoire (Page 297)
- Transfert du réglage de la carte mémoire (Page 301)

Remplacement d'appareil lorsque la protection de savoir-faire est activée avec protection contre les copies

La protection de savoir-faire avec protection contre les copies empêche la copie et la transmission des paramètres de variateur. Cette fonction est principalement utilisée par les constructeurs de machines.

Si la protection de savoir-faire avec protection contre les copies est activée, le variateur ne peut pas être remplacé tel que décrit dans "Vue d'ensemble du remplacement de variateur (Page 321)".

Pour permettre toutefois le remplacement, vous devez utiliser une carte mémoire Siemens et le constructeur de machines doit posséder un prototype de machine identique.

Le remplacement de l'appareil peut s'effectuer de deux manières :

Solution nº 1 : le constructeur de machines connaît seulement le numéro de série du nouveau variateur

- Le client final fournit les informations suivantes au constructeur de machines :
 - pour quelle machine le variateur doit-il être remplacé ?
 - quel est le numéro de série (r7758) du nouveau variateur ?
- Le constructeur de machines établit une connexion en ligne sur le prototype de machine :
 - désactive la protection de savoir-faire, voir Paramétrages pour la protection de savoirfaire (Page 318)
 - saisit le numéro de série du nouveau variateur dans p7759
 - saisit le numéro de série de la carte mémoire insérée en tant que numéro de série théorique dans p7769
 - active la protection de savoir-faire avec protection contre les copies (l'option "Copier la RAM vers la ROM" doit être activée), voir Paramétrages pour la protection de savoirfaire (Page 318)
 - écrit la configuration avec p0971 = 1 sur la carte mémoire
 - envoie la carte mémoire au client final
- Le client final insère la carte mémoire et met sous tension le variateur.

Lors du démarrage, le variateur contrôle les numéros de série de la carte et du variateur et passe à l'état "Prêt à l'enclenchement" s'ils concordent.

Si les numéros ne concordent pas, le variateur génère le défaut F13100 (absence de carte mémoire valide).

Solution nº 2 : le constructeur de machines connaît le numéro de série du nouveau variateur et le numéro de série de la carte mémoire

- Le client final fournit les informations suivantes au constructeur de machines ;
 - pour quelle machine le variateur doit-il être remplacé ?
 - quel est le numéro de série (r7758) du nouveau variateur ?
 - quel est le numéro de série de la carte mémoire ?
- Le constructeur de machines établit une connexion en ligne sur le prototype de machine :
 - désactive la protection de savoir-faire, voir Paramétrages pour la protection de savoirfaire (Page 318)
 - saisit le numéro de série du nouveau variateur dans p7759
 - saisit le numéro de série de la carte mémoire du client en tant que numéro de série théorique dans p7769
 - active la protection de savoir-faire avec protection contre les copies (l'option "Copier la RAM vers la ROM" doit être activée), voir Paramétrages pour la protection de savoirfaire (Page 318)
 - écrit la configuration avec p0971 = 1 sur la carte mémoire
 - copie le projet codé de la carte sur son PC
 - l'envoie p. ex. par e-mail au client final
- Le client final copie le projet sur la carte mémoire Siemens qui se trouve dans la machine, l'insère dans le variateur et met ce dernier sous tension.

Lors du démarrage, le variateur contrôle les numéros de série de la carte et du variateur et passe à l'état "Prêt à l'enclenchement" s'ils concordent.

Si les numéros ne concordent pas, le variateur génère le défaut F13100 (absence de carte mémoire valide).

8.1.6 Pièces de rechange

		Numéro d'article
5 jeux de bornes E/S, 1 kit de porte frontale et 1 plaque d'obturation pour le pupi	tre opérateur	6SL3200-0SK41-0AA0
Plaque de blindage avec accessoires de montage	Taille AA	6SL3266-1ER00-0KA0
	Taille A	6SL3266-1EA00-0KA0
	Taille B	6SL3266-1EB00-0KA0
	Taille C	6SL3266-1EC00-0KA0
1 jeu de connecteurs pour réseau, moteur et résistance de freinage	Taille AA, A	6SL3200-0ST05-0AA0
	Taille B	6SL3200-0ST06-0AA0
	Taille C	6SL3200-0ST07-0AA0
Unité de ventilation pour le radiateur sous forme de boîtier embrochable avec	Taille A	6SL3200-0SF12-0AA0
ventilateur intégré	Taille B	6SL3200-0SF13-0AA0
	Taille C	6SL3200-0SF14-0AA0
Ventileur supérieur consistant du capot supérieur avec ventilateur intégré	Taille AA	6SL3200-0SF38-0AA0
	Taille A	6SL3200-0SF40-0AA0
	Taille B	6SL3200-0SF41-0AA0
	Taille C	6SL3200-0SF42-0AA0

8.1.7 Remplacement de l'unité de ventilation du radiateur

Les variateurs des tailles A ... C sont dotés d'une unité de ventilation pour le radiateur. L'unité de ventilation pour le radiateur se trouve sur la face inférieure du variateur.

Dans quel cas l'unité de ventilation doit-elle être remplacée ?

Toute unité de ventilation défectueuse entraîne la surchauffe du variateur pendant le fonctionnement. Les signalisations suivantes, par ex., indiquent un défaut de l'unité de ventilation :

- A05002 (Surchauffe air d'arrivée)
- A05004 (Surchauffe redresseur)
- F30004 (Surchauffe radiateur)
- F30024 (Surchauffe modèle thermique)
- F30025 (Surchauffe semiconducteur)
- F30035 (Surchauffe air d'arrivée)
- F30037 (Surchauffe redresseur)

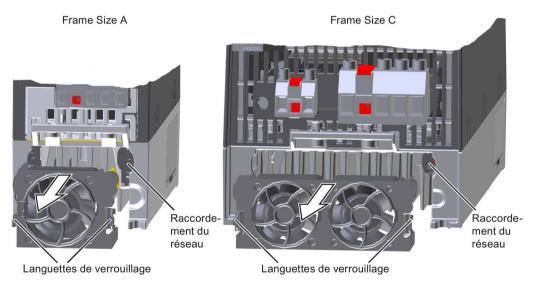


Figure 8-1 Démontage et montage de l'unité de ventilation du radiateur

8.1 Remplacement des composants du variateur

Démontage de l'unité de ventilation

Procédure

Pour démonter l'unité de ventilation, procédez comme suit :

1. Coupez la tension d'alimentation du variateur.

/!\DANGER

Danger de mort lié à des pièces sous tension

Tout contact avec des constituants sous tension peut entraîner la mort ou des blessures graves.

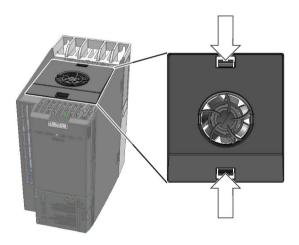
- Attendez la fin du temps de décharge qui est indiqué sur les étiquettes d'avertissement du variateur.
- 2. Retirez les câbles du réseau, du moteur et de la résistance de freinage.
- 3. Retirez la tôle de blindage.
- Avec les doigts, pressez latéralement sur la languette de verrouillage de l'unité de ventilation.
- 5. Retirez l'unité de ventilation du boîtier.
- L'unité de ventilation est à présent démontée.

Montage de l'unité de ventilation

Procédure

Pour monter l'unité de ventilation, procédez comme suit :

- 1. Orientez la connexion de l'alimentation de l'unité de ventilation en fonction de la position du connecteur du variateur.
- 2. Glissez l'unité de ventilation avec précaution dans le radiateur jusqu'à ce que l'unité de ventilation s'encliquette sur les languettes de verrouillage.
- Montez la tôle de blindage.
- 4. Reconnectez les câbles du réseau, du moteur et de la résistance de freinage.
- 5. Mettez le variateur sous tension.
- L'unité de ventilation est à présent montée.


8.1.8 Remplacement du ventilateur de toit

Les variateurs des tailles A ... C sont dotés d'un ventilateur de toit. Le ventilateur de toit se trouve sur la face supérieure du variateur.

Dans quel cas est-il nécessaire de remplacer le ventilateur de toit ?

Un ventilateur de toit défectueux entraîne la surchauffe du variateur pendant le fonctionnement. Les signalisations suivantes, par ex., indiquent un défaut du ventilateur de toit :

- A30034 (surchauffe au niveau interne)
- F30036 (surchauffe au niveau interne)
- A30049 (ventilateur interne défectueux)
- F30059 (ventilateur interne défectueux)

Retrait du ventilateur

Installation du ventilateur

Figure 8-2 Démontage et montage du ventilateur interne

8.1 Remplacement des composants du variateur

Démontage du ventilateur de toit

Procédure

Pour démonter le ventilateur de toit, procédez comme suit :

1. Coupez la tension d'alimentation du variateur.

/!\DANGER

Danger de mort lié à des pièces sous tension

Tout contact avec des constituants sous tension peut entraîner la mort ou des blessures graves.

- Attendez la fin du temps de décharge qui est indiqué sur les étiquettes d'avertissement du variateur.
- 2. A l'aide d'un tournevis, appuyez sur les languettes de verrouillage du ventilateur de toit.
- 3. Retirez le ventilateur de toit du variateur.
- Le ventilateur de toit est à présent démonté.

Monter le ventilateur de toit

Procédure

Pour monter le ventilateur de toit, procédez comme suit :

- 1. Orientez la connexion de l'alimentation du ventilateur de toit en fonction de la position du connecteur du variateur.
- 2. Glissez le ventilateur de toit avec précaution dans le variateur jusqu'à ce que le ventilateur de toit s'encliquette dans le boîtier du variateur.
- 3. Mettez le variateur sous tension.
- Le ventilateur de toit est à présent monté.

8.2 Mise à niveau du firmware et restauration d'une version antérieure

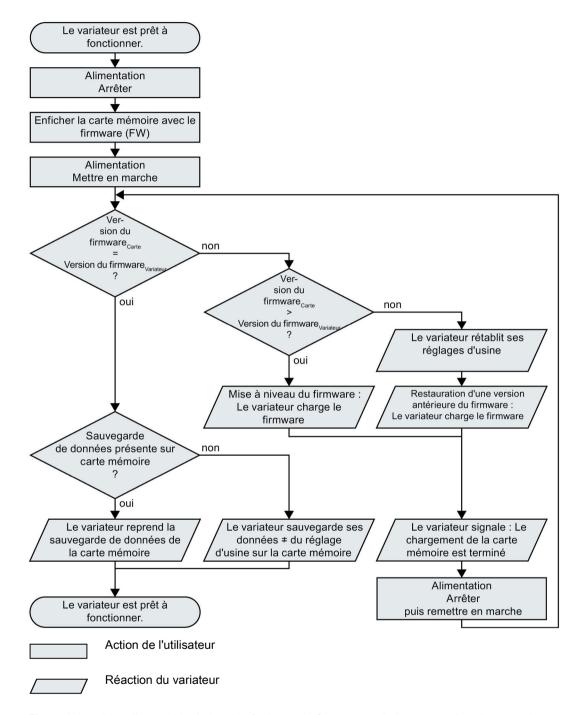


Figure 8-3 Vue d'ensemble de la mise à niveau du firmware et de la restauration d'une version antérieure du firmware

Pour plus d'informations, visitez notre site Internet : Téléchargement (https://support.industry.siemens.com/cs/ww/en/view/67364620)

8.2.1 Mise à niveau du firmware

Pour une mise à niveau du firmware, remplacez le firmware du variateur par une version plus récente. Mettez à jour le firmware vers une version plus récente seulement si vous avez besoin des fonctions étendues de la nouvelle version.

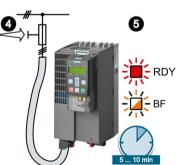
Condition

- La version de firmware de votre variateur est au moins V4.5.
- Le variateur et la carte mémoire possèdent des versions de firmware différentes.

Procédure

Pour mettre à niveau le firmware du variateur vers une version plus récente, procédez comme suit :

- 1. Coupez la tension d'alimentation du variateur.
- Attendez que toutes les LED du variateur soient éteintes.


 Insérez la carte avec le firmware approprié dans l'emplacement du variateur jusqu'à ce que celle-ci s'encliquette.

- 4. Rétablissez la tension d'alimentation du variateur.
- 5. Le variateur transfère le firmware de la carte mémoire dans sa mémoire.

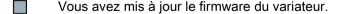
Le transfert dure environ 5 à 10 minutes.

Pendant le transfert, la LED RDY s'allume en rouge de manière continue sur le variateur. La LED BF clignote en orange à une fréquence variable.

6. Après la fin du transfert, les LED RDY et BF clignotent lentement en rouge (0,5 Hz).

Défaillance de l'alimentation pendant le transfert

En cas de défaillance de l'alimentation pendant le transfert, le firmware du variateur n'est pas complet.


- Recommencez à l'étape 1 de la procédure.
- € RDY
- 7. Coupez la tension d'alimentation du variateur.
- 8. Attendez que toutes les LED du variateur soient éteintes.

Décidez de retirer ou non la carte mémoire du variateur :

- Vous laissez la carte mémoire enfichée :
 - ⇒ Si la carte mémoire ne contient pas encore de sauvegarde de données avec les réglages du variateur, le variateur écrit ses réglages sur la carte mémoire à l'étape 9.
 - ⇒ Si la carte mémoire contient déjà une sauvegarde de données, le variateur reprend les réglages de la carte mémoire à l'étape 9.
- Vous retirez la carte mémoire : ⇒ le variateur conserve ses réglages.
- 9. Rétablissez la tension d'alimentation du variateur.
- Si la mise à niveau du firmware s'est déroulée correctement, le variateur le signale au bout de quelques secondes par l'allumage en vert de la LED RDY.

Si la carte mémoire est encore enfichée, l'un des deux cas suivants s'est présenté en fonction du contenu préalable de la carte mémoire :

- La carte mémoire contenait une sauvegarde de données : ⇒ le variateur a repris les réglages de la carte mémoire.
- Il n'y avait aucune sauvegarde de données sur la carte mémoire : ⇒ le variateur a écrit ses réglages sur la carte mémoire.

8.2.2 Restauration d'une version antérieure du firmware

Lorsque vous restaurez une version antérieure du firmware, vous remplacez le firmware du variateur par une version plus ancienne. Ne mettez à jour le firmware avec une version antérieure que si vous avez besoin du même firmware dans tous les variateurs après un remplacement de variateur.

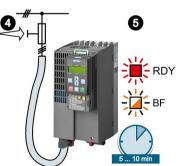
Condition

- La version de firmware de votre variateur est au moins V4.6.
- Le variateur et la carte mémoire possèdent des versions de firmware différentes.
- Vous avez sauvegardé vos réglages sur une carte mémoire, un pupitre opérateur ou un PC.

Procédure

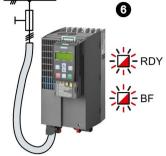
Pour restaurer une version antérieure du firmware du variateur, procédez comme suit :

- 1. Coupez la tension d'alimentation du variateur.
- Attendez que toutes les LED du variateur soient éteintes.


 Insérez la carte avec le firmware approprié dans l'emplacement du variateur jusqu'à ce que celle-ci s'encliquette.

- 4. Rétablissez la tension d'alimentation du variateur.
- Le variateur transfère le firmware de la carte mémoire dans sa mémoire.

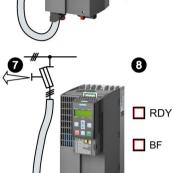
Le transfert dure environ 5 à 10 minutes.


Pendant le transfert, la LED RDY s'allume en rouge de manière continue sur le variateur. La LED BF clignote en orange à une fréquence variable.

6. Après la fin du transfert, les LED RDY et BF clignotent lentement en rouge (0,5 Hz).

Défaillance de l'alimentation pendant le transfert En cas de défaillance de l'alimentation pendant le transfert, le firmware du variateur n'est pas complet.

• Recommencez à l'étape 1 de cette procédure.


- 7. Coupez la tension d'alimentation du variateur.
- 8. Attendez que toutes les LED du variateur soient éteintes.

Décidez de retirer ou non la carte mémoire du variateur :

- La carte mémoire contenait une sauvegarde de données : ⇒ le variateur a repris les réglages de la carte mémoire.
- Il n'y avait aucune sauvegarde de données sur la carte mémoire : ⇒ le variateur contient le réglage d'usine.
- 9. Rétablissez la tension d'alimentation du variateur.
- Si la restauration d'une version antérieure du firmware s'est déroulée correctement, le variateur le signale au bout de quelques secondes par l'allumage en vert de la LED RDY.

Si la carte mémoire est encore enfichée, l'un des deux cas suivants s'est présenté en fonction du contenu préalable de la carte mémoire :

- La carte mémoire contenait une sauvegarde de données : ⇒ le variateur a repris les réglages de la carte mémoire.
- Il n'y avait aucune sauvegarde de données sur la carte mémoire : ⇒ le variateur contient le réglage d'usine.

11è Si la carte mémoire ne contenait pas de sauvegarde de données avec les réglages du me variateur, vous devez transférer vos réglages dans le variateur à partir d'une autre sauvegarde de données.

Voir aussi la section : Sauvegarde des données et mise en service en série (Page 295).

Vous avez remplacé le firmware du variateur par une version plus ancienne.

8.2.3 Correction d'une mise à niveau ou de la restauration d'une version antérieure du firmware qui a échoué

Comment le variateur signale-t-il l'échec d'une mise à niveau ou de la restauration d'une version antérieure ?

Le variateur signale l'échec d'une mise à niveau supérieur ou de la restauration d'une version antérieure du firmware par le clignotement rapide de la LED RDY et l'allumage en feu fixe de la LED BF.

Correction d'une mise à niveau ou de la restauration d'une version antérieure qui a échoué

Pour corriger une mise à niveau supérieur ou la restauration d'une version antérieure du firmware qui a échoué, vous pouvez vérifier ce qui suit :

- La version de firmware de votre variateur remplit-elle les conditions ?
 - Au moins V4.5 pour une mise à niveau.
 - Au moins V4.6 pour la restauration d'une version antérieure.
- Avez-vous correctement inséré la carte ?
- La carte contient-elle le bon firmware ?
- Répétez la procédure correspondante.

8.3 Essai de réception réduit après un remplacement de composant et un changement de firmware

Une réception réduite des fonctions de sécurité est requise après le remplacement d'un composant ou une mise à jour de firmware.

Intervention	Réception réduite		
	Test de réception	Documentation	
Remplacement du variateur par un type identique	Non. Contrôlez uniquement le sens de rotation du moteur.	 Compléter les paramètres du variateur Consigner les nouveaux totaux de contrôle Contresignature Ajout de la version du matériel dans les caractéristiques du variateur 	
Remplacement du moteur par un autre avec le même nombre de paires de pôles		Aucune modification.	
Remplacement du réducteur par un autre avec le même rapport de transmission			
Remplacement d'une périphérie relative à la sécurité (p. ex. interrupteur d'arrêt d'urgence).	Non. Contrôlez uniquement la commande des fonctions de sécurité influencées par les composants remplacés.	Aucune modification.	
Mise à jour du firmware du varia- teur	Non.	 Ajouter la version du firmware dans les caractéristiques du variateur Consigner les nouveaux to- taux de contrôle 	
		Contresignature.	

8.4 Si le variateur ne réagit plus

Si le variateur ne réagit plus

Par exemple, le chargement d'un fichier incorrect à partir de la carte mémoire peut mettre le variateur dans un état dans lequel il n'est plus en mesure de réagir aux ordres du pupitre opérateur ou de la commande de niveau supérieur. Dans ce cas, vous devez rétablir les réglages d'usine du variateur et procéder à une nouvelle mise en service. Cet état du variateur se manifeste de deux manières différentes :

Cas 1

- Le moteur est arrêté.
- Il est impossible de communiquer avec le variateur que ce soit au moyen du pupitre opérateur ou d'autres interfaces.
- Les LED scintillent et le variateur n'a pas encore démarré au bout de 3 minutes.

Procédure

Pour rétablir les réglages d'usine sur le variateur, procédez comme suit :

- 1. Si une carte mémoire est insérée dans le variateur, retirez-la.
- 2. Coupez la tension d'alimentation du variateur.
- 3. Attendez que toutes les LED du variateur soient éteintes. Rétablissez ensuite la tension d'alimentation du variateur.
- 4. Répétez les étapes 2 et 3 jusqu'à ce que le variateur signale le défaut F01018.
- 5. Réglez p0971 = 1.
- 6. Coupez la tension d'alimentation du variateur.
- 7. Attendez que toutes les LED du variateur soient éteintes. Rétablissez ensuite la tension d'alimentation du variateur.

Le variateur démarre à présent avec les réglages d'usine.

8. Effectuez une nouvelle mise en service du variateur.

Vous avez rétabli les réglages d'usine du variateur.

Cas 2

- Le moteur est arrêté.
- Il est impossible de communiquer avec le variateur que ce soit au moyen du pupitre opérateur ou d'autres interfaces.
- Les LED clignotent et s'éteignent ce processus se répète sans cesse.

Procédure

Pour rétablir les réglages d'usine sur le variateur, procédez comme suit :

- 1. Si une carte mémoire est insérée dans le variateur, retirez-la.
- 2. Coupez la tension d'alimentation du variateur.
- Attendez que toutes les LED du variateur soient éteintes. Rétablissez ensuite la tension d'alimentation du variateur.
- 4. Attendez que les LED se mettent à clignoter en orange.
- 5. Répétez les étapes 2 et 3 jusqu'à ce que le variateur signale le défaut F01018.
- 6. Réglez à présent p0971 = 1.
- 7. Coupez la tension d'alimentation du variateur.
- 8. Attendez que toutes les LED du variateur soient éteintes. Rétablissez ensuite la tension d'alimentation du variateur.
 - Le variateur démarre à présent avec les réglages d'usine.
- 9. Effectuez une nouvelle mise en service du variateur.
- Vous avez rétabli les réglages d'usine du variateur.

8.4 Si le variateur ne réagit plus

Alarmes, défauts et messages système

9

Le variateur offre les types de diagnostic suivants :

• LED

La LED en face avant du variateur vous renseigne sur les principaux états du variateur.

• Alarmes et défauts

Le variateur signale les alarmes et les défauts via

- le bus de terrain
- le bornier en présence du réglage correspondant
- un pupitre opérateur raccordé ou
- STARTER

Les alarmes et défauts possèdent un numéro univoque.

• Données d'identification & de maintenance (I&M)

Sur demande, le variateur envoie des données à la commande de niveau supérieur via PROFIBUS ou PROFINET :

- Données spécifiques au variateur
- Données spécifiques à l'installation

9.1 Etats de fonctionnement signalisés par LED

Après établissement de la tension d'alimentation, la LED RDY (Ready) s'allume momentanément en orange. Dès que la LED RDY passe au rouge ou au vert, les LED indiquent l'état du variateur.

Etat des signaux de la LED

Elle informe par les états "allumée" et "éteinte" mais aussi par deux fréquences de clignotement :

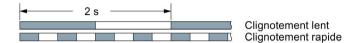


Tableau 9-1 Diagnostic du variateur

LED		Signification
RDY	BF	
VERTE - allumée	Sans objet	Il n'y a actuellement pas de défaut
VERTE - lente		Mise en service ou rétablissement du réglage d'usine
ROUGE - allumée	JAUNE - fréquence variable	Mise à jour du firmware en cours
ROUGE - lente	ROUGE - lente	Le variateur attend la mise hors puis sous tension après la mise à jour du firmware
ROUGE - rapide	Sans objet	Présence d'un défaut
ROUGE - rapide	ROUGE - rapide	Carte mémoire incorrecte ou échec de la mise à jour du firmware

Tableau 9-2 Diagnostic des fonctions de sécurité

LED SAFE	Signification
JAUNE - allumée	Une ou plusieurs fonctions de sécurité sont débloquées, mais pas actives.
JAUNE - lentement	Une ou plusieurs fonctions de sécurité sont actives, aucune erreur des fonctions de sécurité n'est en suspens.
JAUNE - rapidement	Le variateur a détecté une erreur des fonctions de sécurité et enclen- ché une réaction d'ARRET.

Tableau 9-3 Diagnostic de la communication via PROFINET

LED LNK	Explication
VERTE - allumée	La communication via PROFINET est normale.
VERTE - lente	L'initialisation de l'appareil est active.
désactivée	Pas de communication via PROFINET.

Tableau 9-4 Diagnostic de la communication via RS485

LED		Signification
BF	RDY	
Eteinte	Sans objet	L'échange de données entre le variateur et la commande est actif
ROUGE - lente	ROUGE - lente	Le variateur attend la mise hors puis sous tension après la mise à jour du firmware
	Tous les autres états	Le bus est actif, mais le variateur ne reçoit aucune don- née process
ROUGE - rapide	ROUGE - rapide	Paramétrage incorrect, carte mémoire incorrecte ou échec de la mise à jour du firmware
	Tous les autres états	Absence de liaison avec le bus
JAUNE - fréquence variable	ROUGE - allumée	Mise à jour du firmware en cours

Communication via Modbus ou USS:

Lorsque la surveillance du bus de terrain est désactivée avec p2040 = 0, la LED BF reste éteinte quel que soit l'état de la communication.

Tableau 9-5 Diagnostic de la communication via PROFIBUS DP

LED		Signification
BF	RDY	
VERTE - allumée	Sans objet	L'échange de données entre le variateur et la commande est actif
Eteinte		L'interface PROFIBUS n'est pas utilisée
ROUGE - lente	ROUGE - lente	Le variateur attend la mise hors puis sous tension après la mise à jour du firmware
	Tous les autres états	Erreur de bus - erreur de configuration
ROUGE - rapide	ROUGE - rapide	Carte mémoire incorrecte ou échec de la mise à jour du firmware
	Tous les autres états	Erreur de bus - Absence d'échange de données - Le variateur recherche la vitesse de transmission - Absence de liaison
JAUNE - fréquence variable	ROUGE - allumée	Mise à jour du firmware en cours

Indications de la LED BF pour CANopen

Elle informe par les états "allumée" et "éteinte" mais aussi par trois fréquences de clignotement :

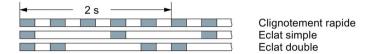


Tableau 9-6 Diagnostic de la communication via CANopen

LED		Signification
BF	RDY	
VERTE - allumée	Sans objet	L'échange de données entre le variateur et la commande est actif ("Operational")
VERTE - rapide		Etat du bus "Pre-Operational"
VERTE - flash simple		Etat du bus "Stopped"
ROUGE - allumée		Aucun bus présent
ROUGE - flash simple		Alarme – limite atteinte
ROUGE - flash double		Evénement d'erreur dans la commande (Error Control Event)
ROUGE - lente	ROUGE - lente	Le variateur attend la mise hors puis sous tension après la mise à jour du firmware
ROUGE - rapide	ROUGE - rapide	Carte mémoire incorrecte ou échec de la mise à jour du firmware
JAUNE - fréquence variable	ROUGE - allumée	Mise à jour du firmware en cours

9.2 Alarmes

Les alarmes présentent les propriétés suivantes :

- Elles n'ont aucun effet direct sur le variateur et disparaissent lorsque la cause est éliminée
- Elles ne doivent pas être acquittées
- Elles sont signalées comme suit
 - Affichage d'état via le bit 7 du mot d'état 1 (r0052)
 - sur le pupitre opérateur avec Axxxxx
 - via STARTER

Pour cerner la cause d'une alarme, il existe un code d'alarme univoque ainsi qu'une valeur d'alarme pour chaque alarme.

Mémoire tampon des alarmes

A chaque apparition d'une alarme, le variateur en enregistre le code et la valeur.

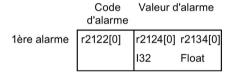


Figure 9-1 Enregistrement de la première alarme dans la mémoire tampon des alarmes

r2124 et r2134 contiennent la valeur d'alarme indispensable pour le diagnostic sous forme de nombre "à virgule fixe" ou "à virgule flottante".

Même si la cause de l'alarme est éliminée, l'alarme reste dans la mémoire tampon des alarmes.

Si une nouvelle alarme apparaît, celle-ci est également enregistrée. L'enregistrement de la première alarme est conservé. Les alarmes qui apparaissent sont comptabilisées dans p2111.

Figure 9-2 Enregistrement de la deuxième alarme dans la mémoire tampon des alarmes

9.2 Alarmes

La mémoire tampon des alarmes peut recevoir jusqu'à huit alarmes. Si une nouvelle alarme apparaît après la huitième, et qu'aucune des huit dernières n'a a encore été supprimée, l'avant-dernière alarme est écrasée.

	Code d'alarme	Valeur d'al	arme	
1ère alarme	r2122[0]	r2124[0] r2	134[0]	
2e alarme	[1]	[1]	[1]	
3e alarme	[2]	[2]	[2]	
4e alarme	[3]	[3]	[3]	
5e alarme	[4]	[4]	[4]	
6e alarme	[5]	[5]	[5]	
7e alarme	[6]	[6]	[6]	
dernière alarme	[7]	[7]	[7]	

Figure 9-3 Mémoire tampon des alarmes pleine

Vidage de la mémoire tampon des alarmes : historique des alarmes

L'historique des alarmes enregistre jusqu'à 56 alarmes.

L'historique des alarmes prend seulement en compte les alarmes supprimées de la mémoire tampon des alarmes. Lorsque la mémoire tampon des alarmes est pleine et qu'une nouvelle alarme apparaît, le variateur déplace toutes les alarmes supprimées de la mémoire tampon des alarmes dans l'historique des alarmes. Dans l'historique des alarmes, les alarmes sont triées dans le sens inverse de celui de la mémoire tampon des alarmes :

- la plus récente se trouve à l'indice 8
- l'avant-dernière se trouve dans l'indice 9
- etc.

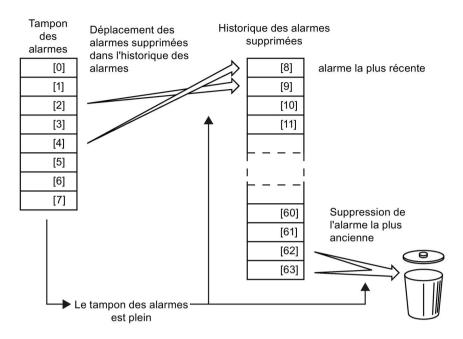


Figure 9-4 Déplacement des alarmes supprimées vers l'historique des alarmes

Les alarmes non encore supprimées restent dans la mémoire tampon des alarmes et sont retriées de manière à combler les lacunes entre les alarmes.

Lorsque l'historique des alarmes est plein jusqu'à l'indice 63, l'alarme la plus ancienne est supprimée de l'historique à chaque réception d'une nouvelle alarme.

Paramètres de la mémoire tampon des alarmes et de l'historique des alarmes

Tableau 9-7 Paramètres importants pour les alarmes

Paramètre	Description
r2122	Code d'alarme
	Affichage des numéros des alarmes apparues
r2124	Valeur d'alarme
	Affichage d'informations supplémentaires sur l'alarme apparue
p2111	Alarmes Compteur
	Nombre d'alarmes apparues après la dernière réinitialisation Lorsque p2111 = 0, toutes les alarmes passées de la mémoire tampon des alarmes [07] sont reprises dans l'historique des alarmes [863]
r2132	Code alarme actuel
	Affichage du code de l'alarme apparue en dernier
r2134	Valeur d'alarme pour valeurs de type Float
	Affichage d'informations complémentaires sur l'alarme apparue pour les valeurs Float

Paramètres avancés des alarmes

Tableau 9-8 Paramètres avancés des alarmes

Paramètre	Description
Jusqu'à 20 alarmes différentes peuvent être modifiées en un défaut ou les alarmes peuvent être inhibées :	
p2118	Régler le numéro de signalisation pour le type de signalisation
	Sélection des alarmes pour lesquelles le type de signalisation doit être modifié
p2119	Réglage du type de signalisation
	Réglage du type de signalisation pour l'alarme sélectionnée 1 : Défaut 2 : Alarme 3 : Pas de signalisation

Des détails figurent dans le diagramme fonctionnel 8075 et dans la description des paramètres du Manuel de listes.

9.3 Défauts

Un défaut indique une erreur fatale lors du fonctionnement du variateur.

Le variateur signale un défaut comme suit :

- Sur le pupitre opérateur par Fxxxxx
- Sur le variateur via la LED rouge RDY
- Dans le bit 3 du mot d'état 1 (r0052)
- Via STARTER

Pour effacer une signalisation de défaut, il convient d'éliminer la cause du défaut et d'acquitter celui-ci.

Chaque défaut a un code de défaut univoque ainsi qu'une valeur de défaut. Ces informations sont nécessaires pour déterminer la cause du défaut.

Tampon des défauts actuels

A chaque apparition d'un défaut, le variateur enregistre son code et sa valeur.

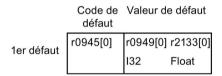


Figure 9-5 Enregistrement du premier défaut dans le tampon des défauts

r0949 et r2133 contiennent la valeur de défaut indispensable pour le diagnostic sous forme de nombre "à virgule fixe" ou "à virgule flottante".

Si un nouveau défaut apparaît avant que le premier ait été acquitté, celui-ci est également enregistré. L'enregistrement du premier défaut est conservé. Les incidents apparus sont comptabilisés dans p0952. Un incident peut contenir un ou plusieurs défauts.

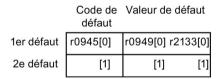


Figure 9-6 Enregistrement du deuxième défaut dans le tampon des défauts

Le tampon des défauts peut recevoir jusqu'à huit défauts actuels. Si un nouveau défaut apparaît après le huitième, l'avant-dernier est écrasé.

	Code de défaut	Valeur de dé	faut	
1er défaut	r0945[0]	r0949[0] r213	33[0]	
2e défaut	[1]	[1]	[1]	
3e défaut	[2]	[2]	[2]	
4e défaut	[3]	[3]	[3]	
5e défaut	[4]	[4]	[4]	
6e défaut	[5]	[5]	[5]	
7e défaut	[6]	[6]	[6]	
dernier défaut	[7]	[7]	[7]	

Figure 9-7 Tampon des défauts plein

Acquittement des défauts

Dans la plupart des cas, il y a plusieurs possibilités pour acquitter un défaut :

- Mettre le variateur hors puis à nouveau sous tension.
- Actionnement de la touche d'acquittement du pupitre opérateur
- Signal d'acquittement sur l'entrée TOR 2
- Signal d'acquittement dans le bit 7 du mot de commande 1 (r0054) pour les Control Units avec connexion de bus de terrain

Les défauts déclenchés par la surveillance interne au variateur du matériel et du firmware ne peuvent être acquittés que par arrêt et redémarrage. Des instructions concernant cette possibilité limitée d'acquittement des défauts figurent dans la liste des défauts du Manuel de listes.

Vidage du tampon des défauts : Historique des défauts

L'historique des défauts peut recevoir jusqu'à 56 défauts.

Tant qu'aucune des causes de défaut du tampon des défauts n'est supprimée, l'acquittement des défauts est sans effet. Lorsqu'au moins un des défauts du tampon des défauts est supprimé (la cause du défaut est éliminée) et que les défauts sont acquittés, il se produit ce qui suit :

- 1. Le variateur prend en compte tous les défauts du tampon des défauts dans les huit premiers emplacements mémoire de l'historique des défauts (indices 8 ... 15).
- 2. Le variateur efface les défauts supprimés du tampon des défauts.
- 3. Le variateur inscrit l'instant d'acquittement des défauts supprimés dans les paramètres r2136 et r2109 (heure de suppression du défaut).

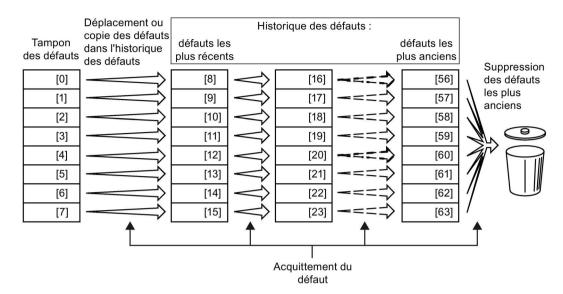


Figure 9-8 Historique des défauts après acquittement des défauts

Après l'acquittement, les défauts non supprimés restent aussi bien dans le tampon que dans l'historique des défauts.

Si moins de huit défauts ont été déplacés ou copiés dans l'historique des défauts, les emplacements mémoire avec les plus gros indices restent vides.

Le variateur déplace de huit indices les valeurs enregistrées jusqu'ici dans l'historique des défauts. Les défauts qui ont été enregistrés dans l'indice 56 ... 63 avant l'acquittement sont supprimés.

Suppression de l'historique des défauts

Pour effacer tous les défauts de l'historique, régler le paramètre p0952 sur zéro.

Paramètres du tampon des défauts et de l'historique des défauts

Tableau 9-9 Paramètres importants pour les défauts

Paramètre	Description	
r0945	Code de défaut	
	Affichage des numéros des défauts apparus	
r0949	Valeur de défaut	
	Affichage d'informations supplémentaires sur le défaut apparu	
p0952	Incidents Compteur	
	Nombre d'incidents survenus après le dernier acquittement. Le tampon des défauts est effacé avec p0952 = 0	
r2131	Code défaut actuel	
	Affichage du code du défaut le plus ancien encore actif	
r2133	Valeur de défaut pour valeurs de type Float	
	Affichage d'informations complémentaires sur le défaut apparu pour les valeurs Float	

Impossible de mettre en marche le moteur

Si le moteur ne peut pas être mis en marche, vérifier ce qui suit :

- Un défaut est-il présent ?
 Si oui, éliminer la cause du défaut et acquitter celui-ci.
- Est-ce que p0010 = 0 ?
 Si ce n'est pas le cas, le variateur se trouve encore dans un état de mise en service par exemple.
- Le variateur signale-t-il l'état "Prêt à l'enclenchement" (r0052.0 = 1) ?
- Des déblocages du variateur sont-ils absents (r0046) ?
- Les interfaces du variateur (p0015) sont-elles paramétrées correctement ? C'est à dire, comment le variateur obtient-il sa consigne et ses commandes ?

Paramètres avancés des défauts

Tableau 9- 10 Réglages étendus

Paramètre	Description
La réaction d	lu moteur sur défaut peut être modifiée pour un maximum de 20 codes de défaut diffé-
p2100	Régler le numéro de défaut pour la réaction sur défaut
	Sélection des défauts pour lesquels la réaction sur défaut doit être modifiée
p2101	Réglage de la réaction sur défaut
	Réglage de la réaction sur défaut pour le défaut sélectionné
Le type d'acc	quittement peut être modifié pour un maximum de 20 codes de défaut différents :
p2126	Régler le numéro de défaut pour le mode d'acquittement
	Sélection des défauts pour lesquels le type d'acquittement doit être modifié
p2127 Réglage du mode d'acquittement	
	Réglage du type d'acquittement pour le défaut sélectionné
	1 : Acquittement seulement par POWER ON 2 : Acquittement IMMEDIAT après la suppression de la cause du défaut
Jusqu'à 20 d	éfauts différents peuvent être modifiés dans une alarme ou les défauts peuvent être
p2118	Régler le numéro de signalisation pour le type de signalisation
	Sélection de la signalisation pour laquelle le type de signalisation doit être modifié
p2119	Réglage du type de signalisation
	Réglage du type de signalisation pour le défaut sélectionné
	1 : Défaut 2 : Alarme
	3 : Pas de signalisation

Des détails figurent dans le diagramme fonctionnel 8075 et dans la description des paramètres du Manuel de listes.

Axxxxx : Alarme Fyyyyy : Défaut

Tableau 9- 11 Principaux défauts et alarmes des fonctions de sécurité

Numéro	Cause	Remède	
F01600	STOP A déclenché	Sélectionner puis désélectionner STO	
F01650	Essai de réception requis	Exécuter le tes	t de réception et créer le procès-verbal de réception.
		Mettre ensuite	la CU hors puis à nouveau sous tension.
F01659	Tâche d'écriture de paramètre rejetée	Cause : Le variateur a dû être réinitialisé sur le réglage usine. Le rétablis- sement des fonctions de sécurité n'est toutefois pas autorisé compte tenu que les fonctions de sécurité sont actuellement débloquées.	
		Remède en util	lisant le pupitre opérateur :
		p0010 = 30	Réinitialisation paramètres
		p9761 = Saisir le mot de passe pour les fonctions de sécurité.	
		p0970 = 5 Démarrage de la réinitialisation des paramètres Safety Integrated.	
			Le variateur règle p0970 = 5 lorsqu'il a réinitialisé les paramètres.
		Réinitialisez ensuite une nouvelle fois le variateur sur le réglage usine.	
A01666	État logique 1 statique sur F-DI pour un acquittement sûr	Régler la F-DI sur l'état logique 0.	
A01698	Mode de mise en service pour fonctions de sécurité actif	Ce message disparaît après achèvement de la mise en service des fonctions SI.	
A01699	Test des chemins de coupure obligatoire	Le message disparaît à la prochaine désactivation de la fonction "STO" et le temps de surveillance est remis à zéro.	
F30600	STOP A déclenché	Sélectionner puis désélectionner STO	

Tableau 9- 12 Défauts uniquement acquittables par mise hors puis à nouveau sous tension du variateur

Numéro	Cause	Remède
F01000	Erreur logicielle dans la CU	Remplacer la CU.
F01001	Exception Floating Point	Mettre la CU hors puis à nouveau sous tension.
F01015	Erreur logicielle dans la CU	Mettre à niveau le firmware ou contacter l'assistance technique.
F01018	Démarrage annulé plusieurs fois	Après la génération de ce défaut, le variateur démarre avec les réglages d'usine.
		Remède : Enregistrer le réglage d'usine avec p0971=1. Mettre la CU hors puis à nouveau sous tension. Ensuite, effectuer une nouvelle mise en service le variateur.
F01040	Enregistrement des paramètres requis	Sauvegarder les paramètres (p0971) Mettre la CU hors puis à nouveau sous tension.
F01044	Echec du chargement des don- nées de la carte mémoire	Remplacer la carte mémoire ou la CU.
F01105	CU : mémoire insuffisante	Réduire le nombre de blocs de données.

Numéro	Cause	Remède
F01205	CU : dépassement de tranche de temps	Contacter l'assistance technique.
F01250	Erreur matérielle de la CU	Remplacer la CU.
F01512	Il y a eu une tentative de détermi- nation d'un facteur de conversion pour une normalisation non exis- tante	Créer la normalisation ou contrôler la valeur transférée.
F01662	Erreur matérielle de la CU	Mettre hors puis à nouveau sous tension la CU, mettre à niveau le firmware ou contacter l'assistance technique.
F30022	Power Module : surveillance UCE	Contrôler ou remplacer le Power Module.
F30052	Données de la partie puissance incorrectes	Remplacer le Power Module ou mettre à niveau le firmware de la CU.
F30053	Données FPGA erronées	Remplacer le Power Module.
F30662	Erreur matérielle de la CU	Mettre hors puis à nouveau sous tension la CU, mettre à niveau le firmware ou contacter l'assistance technique.
F30664	Démarrage de la CU annulé	Mettre hors puis à nouveau sous tension la CU, mettre à niveau le firmware ou contacter l'assistance technique.
F30850	Erreur logicielle dans le Power Module	Remplacer le Power Module ou contacter l'assistance technique.

Tableau 9- 13 Liste des alarmes et défauts essentiels

Numéro	Cause	Remède
F01018	Démarrage annulé plusieurs fois	Mettre le variateur hors puis à nouveau sous tension.
		Après ce défaut, le variateur démarre avec les réglages d'usine.
		Effectuer une nouvelle mise en service du variateur.
A01028	Erreur de configuration	Signification : Die Parametrierung auf der Speicherkarte wurde mit einer Baugruppe anderen Typs (Artikelnummer) erzeugt.
		Contrôler les paramètres du module et procéder, le cas échéant, à une nouvelle mise en service.
F01033	Commutation des unités : valeur du paramètre de référence non valide	Attribuer au paramètre de référence une valeur différente de 0,0 (p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004).
F01034	Commutation des unités : le calcul des valeurs de para- mètres a échoué après modif. val. de réf.	Sélectionner la valeur du paramètre de référence de manière que les paramètres concernés puissent être calculés en valeur relative (p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004).
F01122	Fréquence sur entrée détecteur trop élevée	Réduire la fréquence des impulsions à l'entrée du détecteur.
A01590	Intervalle de maintenance mo- teur écoulé	Effectuer la maintenance.
A01900	PROFIBUS: Télégramme de configuration incorrect	Signification : Un maître PROFIBUS tente de créer une connexion avec un télégramme de configuration incorrect.
		Vérifier la configuration du bus du côté maître et du côté esclave.

Numéro	Cause	Remède
A01910 F01910	Interface bus de terrain Consigne Timeout	L'alarme est générée si p2040 ≠ 0 ms et que l'une des causes suivantes est présente :
		la liaison avec le bus a été interrompue
		le maître MODBUS est désactivé
		erreur de communication (CRC, bit de parité, erreur logique)
		valeur trop faible pour le délai de timeout du bus de terrain (p2040)
A01920	PROFIBUS: Interruption Communication cyclique	Signification : La liaison cyclique avec le maître PROFIBUS est interrompue.
		Etablir la liaison PROFIBUS et activer le maître PROFIBUS avec le mode de fonctionnement cyclique.
F03505	Entrée analogique Rupture de fil	Vérifier si la liaison avec la source de signal a été interrompue.
		Contrôler la hauteur du signal appliqué. Le courant d'entrée mesuré par l'entrée analogique peut être lu dans r0752.
A03520	Défaut sonde thermométrique	Vérifier que la sonde est bien raccordée.
A05000 A05001 A05002 A05004 A05006	Surchauffe Power Module	Vérifier ce qui suit : - La température ambiante se situe-t-elle à l'intérieur des valeurs limites définies ? - Les conditions de charge et le cycle de charge sont-ils dimensionnés en conséquence ? - Le refroidissement est-il défaillant ?
F06310	Paramétrage incorrect de la tension de raccordement	Contrôler la tension de raccordement paramétrée et la modifier le cas échéant (p0210).
	(p0210)	Contrôler la tension réseau.
F07011	Surchauffe moteur	Diminuer la charge du moteur.
		Contrôler la température ambiante.
		Contrôler le câblage et le raccordement de la sonde.
A07012	Modèle moteur l2t Surchauffe	Contrôler et réduire le cas échéant la charge du moteur.
		Contrôler la température ambiante du moteur.
		Contrôler la constante de temps thermique p0611.
		Contrôler le seuil de défaut de surchauffe p0605.
A07015	Sonde thermométrique du mo-	Vérifier que la sonde est bien raccordée.
	teur Alarme	Contrôler le paramétrage (p0601).
F07016	Sonde de température moteur	Vérifier que la sonde est correctement raccordée.
	Défaut	Vérifier le paramétrage (p0601).
F07086 F07088	Commutation des unités : dépassement limite de paramètre	Vérifier les valeurs de paramètres adaptées et les corriger le cas échéant.
F07320	Redémarrage automatique an- nulé	Augmenter le nombre de tentatives de redémarrage (p1211). Le nombre actuel de tentatives de démarrage est affiché dans r1214.
		Augmenter le temps d'attente dans p1212 et/ou le délai de timeout dans p1213.
		Créer un ordre de MARCHE (p0840).
		Augmenter ou désactiver le délai de timeout de la partie puissance (p0857).
		Réduire le temps d'attente pour la remise à zéro du compteur de démar- rages p1213[1] pour que moins d'erreurs soient enregistrées pendant l'intervalle de temps.

Numéro	Cause	Remède
A07321	Redémarrage automatique actif	Signification : Le redémarrage automatique est actif. En cas de retour du réseau et/ou d'élimination des causes des défauts présents, l'entraînement est réenclenché automatiquement.
F07330	Courant de recherche mesuré trop faible	Augmenter le courant de recherche (p1202), contrôler le raccordement moteur.
A07400	Régulateur V _{DC_max} actif	Si l'intervention du régulateur n'est pas souhaitée :
		augmenter les temps de descente.
		 Désactiver le régulateur V_{DC_max} (p1240 = 0 pour régulation vectorielle, p1280 = 0 pour commande U/f).
A07409	Commande U/f Régulateur de limitation de courant actif	L'alarme disparaît automatiquement après la prise d'une des mesures suivantes :
		Augmenter la limite de courant (p0640).
		Réduire la charge.
		Ralentir les rampes de montée pour la vitesse de consigne.
F07426	Régulateur technologique Me-	Adapter les limites au niveau de signal (p2267, p2268).
	sure limitée	Vérifier la normalisation de la mesure (p2264).
F07801	Surintensité moteur	Vérifier les limites de courant (p0640).
		Commande U/f : vérifier le régulateur de limitation de courant (p1340 p1346).
		Augmenter la valeur de rampe de montée (p1120) ou diminuer la charge.
		Vérifier la présence éventuelle d'un court-circuit ou d'un défaut à la terre sur le moteur et les câbles de raccordement moteur.
		Vérifier le couplage en étoile/triangle du moteur ainsi que le paramétrage de la plaque signalétique.
		Vérifier la combinaison partie puissance / moteur.
		Sélectionner la fonction Reprise au vol (p1200) lors du couplage sur le moteur en rotation.
A07805	Entraînement : Partie puissance	Réduire la charge permanente.
	Surcharge I2t	Adapter le cycle de charge.
		Vérifier l'affectation des courants nominaux du moteur et de la partie puissance.
F07807	Court-circuit identifié	Contrôler la présence d'un court-circuit entre conducteurs au niveau de la connexion du variateur côté moteur.
		Exclure toute inversion des câbles de raccordement moteur et de rac- cordement au réseau.
A07850	Alarme externe 1	Le signal pour "Alarme externe 1" a été déclenché.
		Le paramètre p2112 définit la source de signal de l'alarme externe.
		Remède : éliminer les causes de cette alarme.
F07860	Défaut externe 1	Eliminer la cause externe de ce défaut.
F07900	Moteur bloqué	Vérifier le libre déplacement du moteur.
		Vérifier la limite de couple : r1538 pour le sens de rotation positif et r1539 pour le sens de rotation négatif.

Numéro	Cause	Remède	
F07901	Survitesse moteur	Activer la commande anticipatrice du régulateur de limitation de vitesse (p1401 bit 7 = 1).	
F07902	Moteur décroché	Vérifier si les paramètres moteur sont correctement réglés et effectuer une identification des paramètres moteur.	
		Vérifier les limites de courant (p0640, r0067, r0289). Si les limites de courant sont trop basses, l'entraînement ne peut pas être magnétisé.	
		Vérifier si les câbles de raccordement moteur sont défaits pendant le fonctionnement.	
A07903	Moteur Ecart de vitesse	Augmenter p2163 et/ou p2166.	
		Augmenter les limites de couple, de courant et de puissance.	
A07910	Surchauffe moteur	Contrôler la charge du moteur.	
		Contrôler la température ambiante du moteur.	
		Contrôler la sonde KTY84.	
A07920	Couple/vitesse trop faible	Ecart du couple par rapport à l'enveloppe couple/vitesse.	
A07921	Couple/vitesse trop élevé	Vérifier les câbles entre le moteur et la charge.	
A07922	Couple/vitesse hors tolérances	Adapter le paramétrage en fonction de la charge.	
F07923	Couple/vitesse trop faible	Vérifier les câbles entre le moteur et la charge.	
F07924	Couple/vitesse trop élevé	Adapter le paramétrage en fonction de la charge.	
A07927	Freinage par injection de courant continu actif	non requis	
A07980	Mesure en rotation activée	non requis	
A07981	Mesure en rotation Déblocages	Acquitter les défauts présents.	
	manquants	Etablir les déblocages manquants (voir r00002, r0046).	
A07991	Identification des paramètres moteur activée	Mettre en marche le moteur et identifier les paramètres moteur.	
F08501	Timeout consigne	Contrôler la liaison PROFINET.	
		Commuter le contrôleur à l'état RUN.	
		Si le défaut se répète, contrôler le délai de timeout réglé p2044.	
F08502	Délai de timeout pour signe de vie écoulé	Contrôler la liaison PROFINET.	
F08510	Données de configuration d'émission non valides	Contrôler la configuration PROFINET	
A08511	Données de configuration de réception non valides		
A08526	Pas de liaison cyclique	Activer le contrôleur avec le mode de fonctionnement cyclique.	
		 Contrôler les paramètres "Name of Station" et "IP of Station" (r61000, r61001). 	
A08565	Erreur de cohérence dans les	Vérifier les éléments suivants :	
	paramètres de réglage	 Valeur incorrecte pour l'adresse IP, le masque de sous-réseau ou la passerelle par défaut. 	
		Adresse IP ou nom de station en double sur le réseau.	
		Le nom de station contient des caractères non valides.	

Numéro	Cause	Remède
F08700	Communication incorrecte	Une erreur est apparue au niveau de la communication CAN. Vérifier les éléments suivants :
		Câble de bus.
		Vitesse de transmission (p8622).
		• Bit Timing (p8623).
		Maîtres
		Démarrer le contrôleur CAN avec p8608 = 1 après élimination manuelle de la cause de l'erreur.
F13100	Protection de savoir-faire : Dé- faut de la protection contre les copies	La protection de savoir-faire ainsi que la protection contre les copies sont actives pour la carte mémoire. Une erreur s'est produite lors du contrôle de la carte mémoire.
		Insérer une carte mémoire appropriée, mettre le variateur hors tension temporairement, puis le remettre sous tension (POWER ON).
		Désactiver la protection contre les copies (p7765).
F13101	Protection de savoir-faire : Protection contre les copies non activable	Insérer une carte mémoire valide.
F30001	Surintensité	Vérifier les éléments suivants :
		Paramètres moteur, effectuer une mise en service le cas échéant
		Type de couplage du moteur (Y / Δ)
		Mode U/f : affectation des courant nominaux du moteur et de la partie puissance
		Qualité du réseau
		Raccordement correct de l'inductance de commutation réseau
		Raccordement des câbles d'énergie
		Présence de court-circuit ou de défaut à la terre sur les câbles d'énergie
		Longueur des câbles d'énergie
		Phases du réseau
		Au cas où cela ne suffirait pas :
		Mode U/f : Augmenter la rampe d'accélération
		Réduire la charge
		Remplacer la partie puissance
F30002	Tension du circuit intermédiaire	Augmenter le temps de descente (p1121).
	Surtension	Régler les temps de lissage (p1130, p1136).
		Activer le régulateur de tension de circuit intermédiaire (p1240, p1280).
		Vérifier la tension réseau (p0210).
		Contrôler les phases du réseau.
F30003	Tension du circuit intermédiaire Sous-tension	Vérifier la tension réseau (p0210).
F30004	Surchauffe Variateur	Vérifier si le ventilateur du variateur fonctionne.
		Vérifier que la température ambiante se trouve dans la plage admissible.
		Contrôler si le moteur est en surcharge.
		Réduire la fréquence de découpage.

Numéro	Cause	Remède
F30005	Surcharge I2t Variateur	Contrôler les courants nominaux du moteur et du Power Module.
		Réduire la limite de courant p0640.
		Pour le fonctionnement avec caractéristique U/f : diminuer p1341.
F30011	Coupure de phase réseau	Contrôler les fusibles d'entrée du variateur.
		Contrôler les câbles d'alimentation du moteur.
F30015	Coupure de phase Câble d'ali-	Contrôler les câbles d'alimentation du moteur.
	mentation du moteur	Augmenter le temps de montée ou de descente (p1120).
F30021	Défaut à la terre	Vérifier le raccordement des câbles d'énergie.
		Contrôler le moteur.
		Contrôler le transformateur de courant.
		Vérifier les câbles et contacts du raccordement de frein (rupture de fil possible).
F30027	Précharge circuit intermédiaire	Vérifier la tension secteur.
	Surveillance temps	Contrôler le réglage de la tension réseau (p0210).
F30035	Surchauffe air d'arrivée	Vérifier si le ventilateur est en marche.
F30036	Surchauffe compartiment intérieur	Contrôler les filtres du ventilateur.
		Vérifier si la température ambiante se trouve dans la plage admissible.
F30037	Surchauffe redresseur	Voir F30035 et par ailleurs :
		Contrôler la charge du moteur.
		Contrôler les phases du réseau.
A30049	Ventilateur intérieur défectueux	Vérifier le ventilateur intérieur et le remplacer le cas échéant.
F30059	Ventilateur intérieur défectueux	Vérifier le ventilateur intérieur et le remplacer le cas échéant.
F30074	Erreur de communication entre Control Unit et Power Module	L'alimentation 24 V du variateur (bornes 31 et 32) a été brièvement interrompue.
		Vérifier l'alimentation et le câblage.
A30502	Surtension dans circuit intermé-	Contrôler la tension de raccordement des appareils (p0210).
	diaire	Contrôler le dimensionnement de l'inductance réseau.
A30920	Défaut sonde thermométrique	Vérifier que la sonde est bien raccordée.
A50001	Défaut de configuration PROFINET	Un contrôleur PROFINET tente de créer une connexion avec un télégramme de configuration incorrect. Vérifier si "Shared Device" est activé (p8929 = 2).
A50010	PROFINET Name of Station non valide	Corriger (p8920) et activer (p8925 = 2) le Name of Station.
A50020	PROFINET : Absence du deu- xième contrôleur	"Shared Device" est activé (p8929 = 2). Seule la liaison à un contrôleur PROFINET est toutefois disponible.

Pour de plus amples informations, consulter le Manuel de listes.

9.5 Données d'identification & de maintenance (I&M)

Données I&M

Le variateur prend en charge les données d'identification et de maintenance (I&M) suivantes.

Données I&M	Format	Signification	Paramètre cor- respondant	Exemple de contenu
I&M0	u8[64] PROFIBUS u8[54] PROFINET	Données spécifiques au varia- teur, lecture seule	-	Voir plus bas
I&M1	Visible String [32]	Repère d'installation	p8806[0 31]	"ak12- ne.bo2=fu1"
	Visible String [22]	Repère d'emplacement	p8806[32 53]	"sc2+or45"
I&M2	Visible String [16]	Date	p8807[0 15]	"2013-01-21 16:15"
I&M3	Visible String [54]	Commentaire ou remarque quel- conque	p8808[0 53]	-
I&M4	Octet String [54]	Signature de contrôle pour le suivi des modification pour Safety Integrated.	p8809[0 53]	Valeurs de r9781[0] et r9782[0]
		L'utilisateur peut modifier cette valeur.		
		Le paramètre p8805 = 0 réinitia- lise la signature de contrôle sur la valeur générée par la machine.		

Sur demande, le variateur transmet ses données I&M à une commande de niveau supérieur ou à un PC/PG sur lequel/laquelle STEP 7, STARTER ou TIA Portal est installé.

1&M0

Désignation	Format	Exemple de contenu	Valable pour PROFINET	Valable pour PROFIBUS
Manufacturer specific	u8[10]	00 00 hex		✓
MANUFACTURER_ID	u16	42d hex (=Siemens)	✓	✓
ORDER_ID	Visible String [20]	"6SL3246-0BA22- 1FA0"	>	✓
SERIAL_NUMBER	Visible String [16]	"T-R32015957"	√	✓
HARDWARE_REVISION	u16	0001 hex	✓	✓
SOFTWARE_REVISION	char, u8[3]	"V" 04.70.19	✓	✓
REVISION_COUNTER	u16	0000 hex	✓	✓
PROFILE_ID	u16	3A00 hex	√	✓
PROFILE_SPECIFIC_TYPE	u16	0000 hex	✓	✓
IM_VERSION	u8[2]	01.02	✓	1
IM_SUPPORTED	bit[16]	001E hex	✓	✓

Caractéristiques techniques 10

10.1 Caractéristiques techniques des entrées et des sorties

Caractéristique	Données
Alimentation 24 V	Il existe deux options pour l'alimentation 24 V :
	• Le variateur génère son alimentation 24 V à partir de la tension du réseau
	• Le variateur obtient son alimentation 24 V via les bornes 31 et 32 avec 20,4 V à 28,8 V CC.
	 Consommation typique : 0,5 A.
	 Il convient d'utiliser une alimentation avec TBTP, classe 2.
	Selon EN 61800-5-1 : TBTP (PELV) = Très basse tension de protection (Protective Extra Low Voltage)
	 Relier la tension nulle (0 V) de l'alimentation au conducteur de protection.
Tensions de sortie	• 24 V (100 mA max.)
	• 10 V ±0,5 V (10 mA max.)
Résolution de la consigne	e 0,01 Hz
Entrées TOR	6 entrées TOR, DI 0 DI 5, à séparation galvanique ;
	• Etat bas < 5 V, état haut > 11 V, tension d'entrée maximale 30 V, consommation 5,5 mA
	Temps de réponse : 5,5 ms ±1 ms
Entrée analogique (en-	Al 0, commutable :
trée différentielle, résolution 12 bits)	 0 V à 10 V ou -10 V à +10 V : Consommation typique : 0,1 A, tension maximale 35 V
tion 12 bits)	 0 mA à 20 mA : Tension maximale 10 V, courant maximal 80 mA
	Temps de réponse : 10 ms ±2 ms
	Si Al 0 est configurée comme entrée TOR supplémentaire :
	Tension maximale 35 V, état bas < 1,6 V, état haut > 4,0 V, temps de réponse 13 ms \pm 1 ms pour la temporisation antirebond p0724 = 0
Sorties TOR / sorties à	DO 0 : sortie de relais, 30 V CC / 0,5 A max. pour charge ohmique
relais	 DO 1 : sortie à transistor, 30 V CC / 0,5 A max. pour charge ohmique, protection contre l'inversion de polarité
	Cycle d'actualisation de toutes les DO : 2 ms
Sortie analogique	AO 0, commutable :
	– 0 V 10 V
	– 0 mA à 20 mA :
	 potentiel de référence : "GND", résolution 16 bits, cycle d'actualisation : 4 ms
Capteur de température	• CTP : surveillance de court-circuit 22 Ω , seuil de commutation 1650 Ω
	• KTY84
	Capteur avec contact sec

10.1 Caractéristiques techniques des entrées et des sorties

Caractéristique	Données
Entrée de sécurité	• Si la fonction de sécurité STO est débloquée, DI 4 et DI 5 forment une entrée de sécurité.
	Tension d'entrée max. 30 V, 5,5 mA
	Temps de réponse :
	 Si la temporisation antirebond p9651 > 0 : typiquement 5 ms + p9651, cas le plus défavorable 15 ms + p9651
	 Si la temporisation antirebond = 0 : typiquement 6 ms, cas le plus défavorable 16 ms
PFH (Probability of failure per hour)	Probabilité de défaillance des fonctions de sécurité : 5 × 10E-8
Interface USB	Mini-B

Remarque

Creux de tension de courte durée de l'alimentation 24 V externe (\leq 3 ms et \leq 95 % de la tension nominale)

Lorsque la tension réseau du variateur est coupée, le variateur réagit aux creux de tension de courte durée de l'alimentation 24 V externe avec le défaut F30074. Toutefois, la communication via bus de terrain reste établie dans ce cas.

10.2 High Overload et Low Overload

Surcharge admissible du variateur

Il existe différentes indications de puissance pour le variateur, "Low Overload" (LO) et "High Overload" (HO), en fonction de la charge attendue.

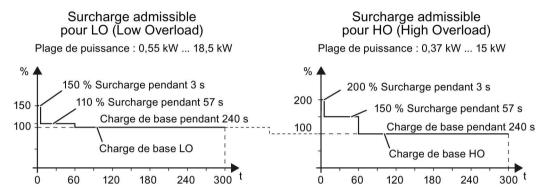


Figure 10-1 Cycles de charge "High Overload" et "Low Overload"

Capacité de surcharge du variateur

La capacité de surcharge est la capacité du variateur à fournir temporairement un courant supérieur au courant assigné lors des phases d'accélération. Deux cycles de charge typiques sont définis pour illustrer la capacité de surcharge : "Low Overload" et "High Overload".

Tableau 10- 1 Cycles de charge et applications typiques

Cycle de charge "Low Overload"	Cycle de charge "High Overload"
Le cycle de charge "Low Overload" présuppose une charge de base régulière peu exigeante en matière d'accélérations de courte durée. Applica- tions typiques pour le dimensionnement selon	Le cycle de charge "High Overload" permet des phases d'accélération dynamiques avec une charge de base réduite. Applications typiques pour le dimensionnement selon "High Overload" :
"Low Overload" : • Pompes, ventilateurs et compresseurs	Manutention horizontale et verticale (con- voyeurs à bande, convoyeurs à rouleaux,
Sablage à sec ou humide	convoyeurs à chaîne)
Broyeurs, mélangeurs, malaxeurs, concas-	Centrifugeuses
seurs, agitateurs	Escaliers/trottoirs roulants
Broches simples	Dispositifs de levage et d'abaissement
Fours rotatifs	Ascenseurs
Extrudeuses	Ponts roulants
	Téléphériques
	Transstockeurs

Définitions

• Charge de base

Charge constante entre les phases d'accélération de l'entraînement

	Low Overload	High Overload		
•	Courant d'entrée de charge de base LO Courant d'entrée admissible pour un cycle de charge selon "Low Overload"	•	Courant d'entrée de charge de base HO Courant d'entrée admissible pour un cycle de charge selon "High Overload"	
•	Courant de sortie de charge de base LO Courant de sortie admissible pour un cycle de charge selon "Low Overload"	•	Courant de sortie de charge de base HO Courant de sortie admissible pour un cycle de charge selon "High Overload"	
•	Puissance de charge de base LO Puissance assignée sur la base du courant de sortie de charge de base LO	•	Puissance de charge de base HO Puissance assignée sur la base du courant de sortie de charge de base HO	

Les indications de puissance et de courant dans les caractéristiques techniques sans autre spécification se rapportent toujours à un cycle de charge selon Low Overload.

Nous vous recommandons d'utiliser le logiciel de configuration "SIZER" pour sélectionner le variateur. Pour plus d'informations sur SIZER, visitez notre site Internet : Téléchargement SIZER (http://support.automation.siemens.com/WW/view/fr/10804987/130000).

10.3 Caractéristiques de puissance communes

Caractéristique	Données							
Tension réseau	3ph. 380 V 480	V + 10 % - 20 %		seau effectivement admissible dé- ude d'implantation.				
Tension de sortie	3ph. 0 V tension réseau × 0,95 (max.)							
Fréquence d'entrée	47 Hz 63 Hz	47 Hz 63 Hz						
Impédance minimale du câble U _K	1 %	1 %						
Facteur de puissance λ	0,70							
Fréquence de découpage	4 kHz							
		écoupage peut être page plus élevée ré		incréments de 2 kHz. Une fré- e sortie admissible.				
Longueur maximale du câble de raccordement moteur	Blindé : 50 m Non blindé : 100 n		ance de sortie ni ommutation de 4	options de sortie pour une fré- 4 kHz				
	Blindé : 150 m Non blindé : 225 n		eau < 440 V : ave e commutation d	ec inductance de sortie pour une le 4 kHz				
	Blindé : 100 m Non blindé : 150 n	Blindé : 100 m Non blindé : 150 m Tension réseau > 440 V : avec inductance de sortie pour une fréquence de commutation de 4 kHz						
	25 m (blindé)			e d'émission de perturbations CEM our une fréquence de commutation				
Modes de freinage possibles	Freinage par injection de CC, freinage combiné, freinage dynamique avec hacheur intégré							
Indice de protection	IP20, montage en	armoire						
Température ambiante	-10 °C +40 °C	Sans déclasseme	ent					
	-10 °C +50 °C	Variateur de taille	AA:	La puissance de sortie doit être				
	-10 °C +55 °C	Variateur de taille interface PROFIN		réduite, voir aussi la section : Déclassement en fonction de la				
	-10 °C +60 °C	Variateur de taille interface USS, M PROFIBUS.		 température et de la tension (Page 384) 				
Température de stockage	-40 °C +70 °C (-40 °F 158 °F)						
Humidité relative de l'air	Humidité relative d	de l'air < 95 % – sar	s condensation					
Altitude d'implantation	Jusqu'à 1000 m	La puissance de tion supérieures	sortie doit être re	éduite pour des altitudes d'implanta				
Chocs et vibrations	 Stockage longue durée dans l'emballage de transport selon la classe 1M2 conformément à la norme EN 60721-3-1 : 1997 							
	 Transport dans l'emballage de transport selon la classe 2M3 conformément à EN 60721-3-2: 1997 							
	 Vibration au cours du fonctionnement selon la classe 3M2 conformément à EN 60721-3-3: 1995 							
Courant de court-circuit assi- gné (SCCR)	40 kA							

10.4 Caractéristiques techniques dépendant de la puissance

Remarque

Les courants d'entrée spécifiés sont valables pour un réseau 400 V avec $U_k = 1 \%$ rapporté à la puissance du variateur. L'utilisation d'une inductance réseau réduit les courants de quelques pour cent.

Tableau 10- 2 Frame size AA, 3ph. 380 V \dots 480 V, +10 %, -20 %

N° d'article	sans filtre, IP20 avec filtre, IP20		6SL3210-1KE12-3U*2 6SL3210-1KE12-3A*2	
Valeurs pour charge assignée	/ faible surcharge			
Puissance assignée / LO		0,55 kW	0,75 kW	1,1 kW
Courant d'entrée assigné / LC)	2,3 A	2,9 A	4,1 A
Courant de sortie assigné / LO)	1,7 A	2,2 A	3,1 A
Valeurs pour surcharge élevé	e			
Puissance HO		0,37 kW	0,55 kW	0,75 kW
Courant d'entrée HO		1,9 A	2,5 A	3,2 A
Courant de sortie HO		1,3 A	1,7 A	2,2 A
Puissance dissipée avec filtre		0,041 kW	0,045 kW	0,054 kW
Puissance dissipée sans filtre		0,040 kW	0,044 kW	0,053 kW
Débit d'air de refroidissement	nécessaire	5 l/s	5 l/s	5 l/s
Poids sans filtre		1,2 kg	1,2 kg	1,2 kg
Poids avec filtre		1,4 kg	1,4 kg	1,4 kg

Tableau 10- 3 Frame size AA, 3ph. 380 V \dots 480 V, +10 %, -20 %

N° d'article	sans filtre, IP20 avec filtre, IP20	6SL3210-1KE14-3U*2 6SL3210-1KE14-3A*2	
Valeurs pour charge assignée Puissance assignée / LO Courant d'entrée assigné / L Courant de sortie assigné / L	0	1,5 kW 5,5 A 4,1 A	
Valeurs pour surcharge élev Puissance HO Courant d'entrée HO Courant de sortie HO		1,1 kW 4,5 A 3,1 A	
Puissance dissipée avec filtr Puissance dissipée sans filtr		0,073 kW 0,072 kW	
Débit d'air de refroidissemen	t nécessaire	5 l/s	
Poids sans filtre Poids avec filtre		1,2 kg 1,4 kg	

Tableau 10- 4Frame size A, 3ph. 380 V ... 480 V, +10 %, -20 %

N° d'article	sans filtre, IP20 avec filtre, IP20		6SL3210-1KE12-3UC1 6SL3210-1KE12-3AC1	
Valeurs pour charge assignée	e / faible surcharge			
Puissance assignée / LO		0,55 kW	0,75 kW	1,1 kW
Courant d'entrée assigné / LC)	2,3 A	2,9 A	4,1 A
Courant de sortie assigné / Lo	0	1,7 A	2,2 A	3,1 A
Valeurs pour surcharge élevé	e			
Puissance HO		0,37 kW	0,55 kW	0,75 kW
Courant d'entrée HO		1,9 A	2,5 A	3,2 A
Courant de sortie HO		1,3 A	1,7 A	2,2 A
Puissance dissipée avec filtre)	0,041 kW	0,045 kW	0,054 kW
Puissance dissipée sans filtre		0,040 kW	0,044 kW	0,053 kW
Débit d'air de refroidissement	nécessaire	5 l/s	5 l/s	5 l/s
Poids sans filtre		1,7 kg	1,7 kg	1,7 kg
Poids avec filtre		1,9 kg	1,9 kg	1,9 kg

Tableau 10- 5 Frame size A, 3ph. 380 V \dots 480 V, +10 %, -20 %

N° d'article	sans filtre, IP20 avec filtre, IP20		6SL3210-1KE15-8UC1 6SL3210-1KE15-8AC1	
Valeurs pour charge assigné	e / faible surcharge			
Puissance assignée / LO		1,5 kW	2,2 kW	
Courant d'entrée assigné / L0)	5,5 A	7,4 A	
Courant de sortie assigné / L	0	4,1 A	5,6 A	
Valeurs pour surcharge élevé	e			_
Puissance HO		1,1 kW	1,5 kW	
Courant d'entrée HO		4,5 A	6,0 A	
Courant de sortie HO		3,1 A	4,1 A	
Puissance dissipée avec filtre)	0,073 kW	0,091 kW	_
Puissance dissipée sans filtre)	0,072 kW	0,089 kW	
Débit d'air de refroidissement	nécessaire	5 l/s	5 l/s	
Poids sans filtre	_	1,7 kg	1,7 kg	
Poids avec filtre		1,9 kg	1,9 kg	

10.4 Caractéristiques techniques dépendant de la puissance

Tableau 10- 6 Frame size A, 3ph. 380 V ... 480 V, +10 %, -20 %

	sans filtre, IP20 avec filtre, IP20	6SL3210-1KE17-5U*1 6SL3210-1KE17-5A*1	6SL3210-1KE18-8U*1 6SL3210-1KE18-8A*1	
Valeurs pour charge assigné	e / faible surcharge			
Puissance assignée / LO		3,0 kW	4,0 kW	
Courant d'entrée assigné / L	0	9,5 A	11,4 A	
Courant de sortie assigné / L	.0	7,3 A	8,8 A	
Valeurs pour surcharge élev	ée			
Puissance HO		2,2 kW	3,0 kW	
Courant d'entrée HO		8,2 A	10,6 A	
Courant de sortie HO		5,6 A	7,3 A	
Puissance dissipée avec filtr	e	0,136 kW	0,146 kW	
Puissance dissipée sans filtr	е	0,132 kW	0,141 kW	
Débit d'air de refroidissemen	t nécessaire	5 l/s	5 l/s	
Poids sans filtre		1,7 kg	1,7 kg	
Poids avec filtre		1,9 kg	1,9 kg	

Tableau 10- 7 Frame size B, 3ph. 380 V ... 480 V, +10 %, -20 %

N° d'article	sans filtre, IP20 avec filtre, IP20	6SL3210-1KE21-3U*1 6SL3210-1KE21-3A*1	6SL3210- 1KE21-7U*1 6SL3210-1KE21-7A*1	
Valeurs pour charge assign	née / faible surcharge)		
Puissance assignée / LO		5,5 kW	7,5 kW	
Courant d'entrée assigné /	LO	16,5 A	21,5 A	
Courant de sortie assigné	/LO	12,5 A	16,5 A	
Valeurs pour surcharge éle	evée			_
Puissance HO		4,0 kW	5,5 kW	
Courant d'entrée HO		12,8 A	18,2 A	
Courant de sortie HO		8,8 A	12,5 A	
Puissance dissipée avec fi	ltre	0,177 kW	0,244 kW	_
Puissance dissipée sans fi	ltre	0,174 kW	0,24 kW	
Débit d'air de refroidisseme	ent nécessaire	9 l/s	9 l/s	
Poids sans filtre		2,3 kg	2,3 kg	
Poids avec filtre		2,5 kg	2,5 kg	

Tableau 10- 8 Frame size C, 3ph. 380 V ... 480 V, +10 %, -20 %

N° d'article	sans filtre, IP20 avec filtre, IP20	6SL3210-1KE22-6U*1 6SL3210-1KE22-6A*1	6SL3210-1KE23-2U*1 6SL3210-1KE23-2A*1	6SL3210-1KE23-8U*1 6SL3210-1KE23-8A*1
Valeurs pour charge as	signée / faible surcharge)		
Puissance assignée / Lo	0	11 kW	15 kW	18,5 kW
Courant d'entrée assign	né / LO	33,0 A	40,6 A	48,2 A
Courant de sortie assign	né / LO	25 A	31 A	37 A
Valeurs pour surcharge	élevée			
Puissance HO		7,5 kW	11 kW	15 kW
Courant d'entrée HO		24,1 A	36,4 A	45,2 A
Courant de sortie HO		16,5 A	25 A	31 A
Puissance dissipée ave	c filtre	0,349 kW	0,435 kW	0,503 kW
Puissance dissipée san	s filtre	0,344 kW	0,429 kW	0,493 kW
Débit d'air de refroidisse	ement nécessaire	18 l/s	18 l/s	18 l/s
Poids sans filtre		4,4 kg	4,4 kg	4,4 kg
Poids avec filtre		4,7 kg	4,7 kg	4,7 kg

10.5 Informations concernant la puissance dissipée à l'état de fonctionnement en charge partielle

10.5 Informations concernant la puissance dissipée à l'état de fonctionnement en charge partielle

Vous trouverez des informations concernant la puissance dissipée à l'état de fonctionnement en charge partielle sur Internet :

Fonctionnement en charge partielle (http://support.automation.siemens.com/WW/view/en/94059311)

10.6 Compatibilité électromagnétique des variateurs

La compatibilité électromagnétique se rapporte à la fois à l'immunité et à l'émission de perturbations d'un appareil.

Il convient de prendre en compte les types de perturbation suivants lors de l'évaluation de la compatibilité électromagnétique :

- Perturbations basse fréquence conduites (harmoniques)
- Perturbations haute fréquence conduites
- Perturbations basse fréquence dues au champ électromagnétique
- Perturbations haute fréquence dues au champ électromagnétique

Les valeurs limites autorisées sont définies dans la norme produit relative à la CEM EN 61800-3, dans les catégories de CEM C1 à C4.

Vous trouverez ci-après des définitions-clés s'y rapportant.

Classification du comportement de CEM

L'environnement et les catégories de CEM sont définis dans la norme produit relative à la CEM EN 61800-3 comme suit :

Environnements:

Premier environnement (systèmes publics)

Environnement qui inclut des locaux résidentiels et des établissements connectés directement à un réseau public d'alimentation basse tension sans l'utilisation d'un transformateur intermédiaire.

Exemple: maisons individuelles, appartements, locaux commerciaux ou bureaux sis dans des immeubles résidentiels.

Deuxième environnement (systèmes industriels)

Environnement qui inclut tous les autres établissements qui ne sont pas connectés directement à un réseau public d'alimentation basse tension.

Exemple : zones industrielles et zones techniques de bâtiments alimentés par un transformateur affecté à cet effet.

Catégories

Catégorie C4

Systèmes d'entraînement avec une tension assignée ≥ 1000 V, un courant de sortie LO ≥ 400 A ou en vue d'une utilisation dans des systèmes complexes du deuxième environnement

Les systèmes d'entraînement qui correspondent à la catégorie C4 peuvent seulement être installés dans le deuxième environnement.

Catégorie C3

Systèmes d'entraînement avec une tension assignée < 1000 V, destinés à une utilisation dans le deuxième environnement et pas dans le premier.

Les systèmes d'entraînement qui correspondent à la catégorie C3 peuvent seulement être installés dans le deuxième environnement.

Catégorie C2

Systèmes d'entraînement avec une tension assignée < 1000 V, qui ne sont ni des dispositifs enfichables ni des dispositifs mobiles et qui, lorsqu'ils sont utilisés dans le premier environnement, doivent être exclusivement installés et mis en service par un expert.

Les systèmes d'entraînement qui correspondent à la catégorie C2 peuvent seulement être utilisés dans le premier environnement s'ils sont installés par un expert, en observant des valeurs limites pour la compatibilité électromagnétique.

Catégorie C1

Systèmes d'entraînement avec une tension assignée < 1000 V, destinés à une utilisation dans le premier environnement.

Les systèmes d'entraînement qui correspondent à la catégorie C1 peuvent être installés dans le premier environnement sans restrictions.

Remarque

Expert

Un expert est une personne ou une organisation possédant l'expérience requise pour l'installation et/ou la mise en service de systèmes d'entraînement (Power Drive Systems - PDS), notamment les aspects concernant la CEM.

10.6.1 Affectation des variateurs aux catégories de CEM

Les variateurs ont été testés conformément à la norme de produit relative à la CEM EN 61800-3.

Vous trouverez la déclaration de conformité sur Internet à l'adresse : Déclaration de conformité (http://support.automation.siemens.com/WW/view/fr/58275445)

Conditions requises pour la compatibilité électromagnétique

Pour être en conformité avec la norme EN 61800-3, tous les entraînements doivent être installés conformément aux instructions du constructeur et aux directives de CEM. Voir aussi : Installation conforme aux exigences de CEM (Page 36).

Le variateur doit être installé de manière permanente en tenant compte des courants de fuite (> 3,5 mA).

Notamment, l'installation doit être effectuée par un expert qui possède l'expérience requise pour installer et/ou mettre en service des entraînements de puissance, y compris les aspects de CEM associés.

Deuxième environnement - catégorie C4

Les variateurs non filtrés correspondent à la catégorie C4.

Dans le deuxième environnement, catégorie C4, les mesures de CEM sont effectués sur la base d'un projet CEM appliqué au niveau du système. Voir aussi Installation conforme aux exigences de CEM (Page 36).

Deuxième environnement - catégorie C3

Immunité

En ce qui concerne leur immunité, les variateurs sont appropriés pour le deuxième environnement, catégorie C3.

Emission de perturbations radioélectriques pour les variateurs avec filtre

Les variateurs avec filtre intégré sont appropriés pour l'utilisation dans le deuxième environnement, catégorie C3.

Emission de perturbations radioélectriques pour les variateurs sans filtre

Si vous utilisez des variateurs sans filtre dans une installation industrielle, vous devez soit utiliser un filtre externe pour le variateur, soit installer les filtres correspondants au niveau du système (perturbations conduites haute fréquence).

S'ils sont installés de manière professionnelle en conformité avec les directives de CEM, les variateurs remplissent les conditions de la norme relative à la catégorie C3 (perturbations haute fréquence dues au champ électromagnétique).

Deuxième environnement - catégorie C2

Immunité

En ce qui concerne leur immunité, les variateurs sont appropriés pour le deuxième environnement.

Emission de perturbations

Pour que les variateurs soient conformes aux valeurs limites pour la catégorie C2 relative à l'émission de perturbations, les conditions suivantes doivent être remplies :

- Vous utilisez un variateur avec un filtre intégré, taille A ou B.
- La longueur du câble de connexion du moteur est inférieure à 25 m.
- La fréquence de découpage ne dépasse pas 4 kHz.
- Le courant est inférieur à la valeur du courant d'entrée LO (perturbation conduite haute fréquence), voir Caractéristiques techniques dépendant de la puissance (Page 374)
- Vous utilisez un câble moteur blindé à faible capacité (perturbations rayonnées haute fréquence)
- Si vous utilisez un variateur de taille B avec une interface PROFINET (nº de réf. 6SL3210-1KE21-*AF*), vous devez également utiliser une inductance réseau.

10.6 Compatibilité électromagnétique des variateurs

Premier environnement - catégorie C2

Pour pouvoir utiliser le variateur dans le premier environnement, vous devez respecter au cours de l'installation les valeurs limites des **perturbations basse fréquence conduites** (harmoniques) en plus des valeurs limites du "deuxième environnement - catégorie C2".

Un tableau illustrant les harmoniques typiques du Power Module figure au chapitre Harmoniques (Page 383).

Contactez votre opérateur système pour obtenir l'approbation d'une installation dans le premier environnement.

Premier environnement

Le variateur n'est pas prévu pour être utilisé dans le premier environnement.

10.6.2 Harmoniques

Tableau 10- 9 Courants harmoniques typiques en % par rapport au courant d'entrée LO pour U_K 1 %

Numéro d'harmonique	5ème	7ème	11ème	13ème	17ème	19ème	23ème	25ème
Valeur en %	54	39	11	5,5	5	3	2	2

10.6.3 Limites de CEM en Corée du Sud

이 기기는 업무용 $(A \ \ \Box)$ 전자파적합기기로서 판매자 또는 사용자는 이 점을 주의하시기 바라며, 가정외의 지역에서 사용하는 것을 목적으로 합니다.

For sellers or users, please keep in mind that this device is an A-grade electromagnetic wave device. This device is intended to be used in areas other than home.

Les limites de CEM à respecter pour la Corée du Sud correspondent aux limites de CEM de la norme produit pour les entraînements électriques de puissance à vitesse variable EN 61800-3 de catégorie C2 ou de la classe limite A, groupe 1 selon EN 55011. Des mesures complémentaires appropriées permettent de respecter les limites correspondant à la catégorie C2 ou à la classe de limite A, groupe 1. Des mesures complémentaires, telles que l'utilisation d'un filtre antiparasite supplémentaire (filtre CEM), peuvent se révéler nécessaires. En outre, les mesures permettant de monter l'installation conformément à la directive CEM sont décrites en détail dans ce manuel et dans le manuel de configuration Directive d'installation CEM.

Il est à noter qu'au final c'est l'étiquette figurant sur l'appareil qui est déterminante pour déclarer que la norme est respectée.

10.7 Déclassement en fonction de la température et de la tension

Déclassement en fonction de la température ambiante

Courant de charge de base de sortie admissible [%] Surcharge élevée (HO) et surcharge faible (LO)

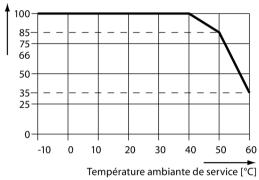


Figure 10-2 Déclassement en fonction de la température ambiante

Déclassement en fonction de la tension de service

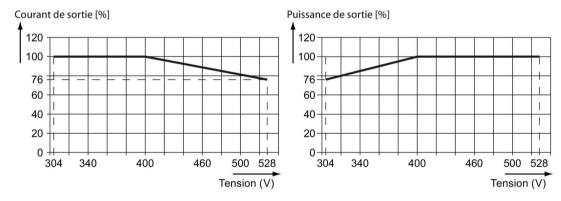
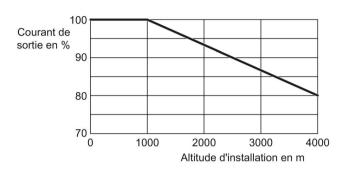



Figure 10-3 Déclassement de courant et de tension requis en fonction de la tension d'entrée

10.8 Réduction du courant en fonction de l'altitude d'implantation

Réduction de courant en fonction de l'altitude d'implantation

A partir de 1000 m d'altitude, le courant de sortie du variateur doit être réduit en raison de la capacité de refroidissement réduite de l'air.

Réseaux admissibles en fonction de l'altitude d'implantation

- Altitude d'implantation jusqu'à 2000 m
 - Raccordement à tout réseau admissible pour le variateur.
- Altitude d'implantation de 2000 m à 4000 m
 - Raccordement uniquement à un réseau TN avec point neutre relié à la terre.
 - Les réseaux TN avec conducteur de ligne mis à la terre ne sont pas admissibles.
 - Le réseau TN avec point neutre relié à la terre peut être mis à disposition par un transformateur de séparation.
 - La tension phase à phase n'a pas besoin d'être réduite.

Remarque

Power Module 690 V

Pour les Power Modules 690 V, le réseau TN avec point neutre relié à la terre doit être établi via un transformateur de séparation.

10.9 Déclassement de courant en fonction de la fréquence de découpage

Rapport entre fréquence de découpage et déclassement du courant de charge de base de sortie

Tableau 10- 11 Déclassement de courant en fonction de la fréquence de découpage¹

Puissance assi-	Courant de	sortie assi	gné pour un	e fréquence	de découpa	age de	
gnée basée sur LO	4 kHz	6 kHz	8 kHz	10 kHz	12 kHz	14 kHz	16 kHz
0,55 kW	1,7 A	1,4 A	1,2 A	1,0 A	0,9 A	0,8 A	0,7 A
0,75 kW	2,2 A	1,9 A	1,5 A	1,3 A	1,1 A	1,0 A	0,9 A
1,1 kW	3,1 A	2,6 A	2,2 A	1,9 A	1,6 A	1,4 A	1,2 A
1,5 kW	4,1 A	3,5 A	2,9 A	2,5 A	2,1 A	1,8 A	1,6 A
2,2 kW	5,6 A	4,8 A	3,9 A	3,4 A	2,8 A	2,5 A	2,2 A
3,0 kW	7,3 A	6,2 A	5,1 A	4,4 A	3,7 A	3,3 A	2,9 A
4,0 kW	8,8 A	7,5 A	6,2 A	5,3 A	4,4 A	4,0 A	3,5 A
5,5 kW	12,5 A	10,6 A	8,8 A	7,5 A	6,3 A	5,6 A	5,0 A
7,5 kW	16,5 A	14,0 A	11,6 A	9,9 A	8,3 A	7,4 A	6,6 A
11,0 kW	25,0 A	21,3 A	17,5 A	15,0 A	12,5 A	11,3 A	10,0 A
15,0 kW	31,0 A	26,4 A	21,7 A	18,6 A	15,5 A	14,0 A	12,4 A
18,5 kW	37,0 A	31,5 A	25,9 A	22,2 A	18,5 A	16,7 A	14,8 A

¹La longueur admissible du câble moteur dépend du type de câble et de la fréquence de découpage sélectionnée.

10.10 Accessoires

10.10.1 Inductance réseau

Tableau 10- 12 Caractéristiques techniques des inductances réseau en tant que composant pour montage en semelle

Caractéristique	Approprié pour	les variateurs avec une puissa	nce assignée de
	0,55 kW	0,75 kW 1,5 kW	
	FS	AA	
N° d'article	6SE6400-3CC00-2AD3	6SE6400-3CC00-4AD3	
Nº d'article du variateur correspondant	6SL3210-1KE11-8 □ □ 2	6SL3210-1KE12-3 □ □ 2 6SL3210-1KE13-2 □ □ 2 6SL3210-1KE14-3 □ □ 2	
Inductance	2,5	mH	
Puissance dissipée à 50/60 Hz	25	5 W	
Indice de protection	IP	20	
Dimensions hors tout Largeur Hauteur Profondeur	200	mm mm mm	
Cotes de fixation Largeur Hauteur		mm mm	
Vis de fixation	4 × M4	(4 Nm)	
Poids	0,6 kg	0,8 kg	

10.10 Accessoires

Tableau 10- 13 Caractéristiques techniques des inductances réseau

Caractéristique	Approprié pour	les variateurs avec une puissar	nce assignée de
	0,55 kW 1,1 kW	1,5 kW 4,0 kW	5,5 kW 7,5 kW
	FSAA	, FSA	FSB
N° d'article	6SL3203-0CE13-2AA0	6SL3203-0CE21-0AA0	6SL3203-0CE21-8AA0
Nº d'article du variateur correspondant	6SL3210-1KE11-8	6SL3210-1KE14-3	6SL3210-1KE21-3 □ □ 1 6SL3210-1KE21-7 □ □ 1
Inductance	2,5 mH	2,5 mH	0,5 mH
Puissance dissipée à 50/60 Hz	25 W	40 W	55 W
Indice de protection	IP20	IP20	IP20
Dimensions hors tout Largeur Hauteur Profondeur	125 mm 120 mm 71 mm	125 mm 140 mm 71 mm	125 mm 145 mm 91 mm
Cotes de fixation Largeur Hauteur	100 mm 55 mm	100 mm 55 mm	100 mm 65 mm
Vis de fixation	4 × M5 (6 Nm)	4 × M5 (6 Nm)	4 × M5 (6 Nm)
Poids	1,1 kg	2,1 kg	2,95 kg

Tableau 10- 14 Caractéristiques techniques des inductances réseau

Caractéristique	Approprié pou	les variateurs avec une puissance assignée de
	11,0 kW à 18,5 kW	
	FSC	
N° d'article	6SL3203-0CE23-8AA0	
Nº d'article du variateur correspondant	6SL3210-1KE22-6	
Inductance	0,3 mH	
Puissance dissipée à 50/60 Hz	90 W	
Indice de protection	IP20	
Dimensions hors tout Largeur Hauteur Profondeur	190 mm 220 mm 91 mm	
Cotes de fixation Largeur Hauteur	170 mm 68 mm	
Vis de fixation	4 × M8 (10 Nm)	
Poids	7,8 kg	

10.10.2 Filtre réseau

Tableau 10- 15 Caractéristiques techniques des filtres réseau en tant que composant pour montage en semelle

Caractéristique	''' '	avec une puissance assignée le	
	0,55 kW	1,1 kW	
		SAA	
Classe de filtre selon EN 55011	Classe A	Classe B	
N° d'article	6SE6400-2FA00-6AD0	6SE6400-2FB00-6AD0	
Nº d'article du variateur correspondant	6SL3210-1K	Œ11-8 □ □ 2 Œ12-3 □ □ 2 Œ13-2 □ □ 2	
Puissance dissipée à 50/60 Hz	25	5 W	
Indice de protection	IP	20	
Dimensions hors tout Largeur Hauteur Profondeur	200	mm mm mm	
Cotes de fixation Largeur Hauteur		mm mm	
Vis de fixation	4 × M4	(4 Nm)	
Poids	0,5	5 kg	

10.10 Accessoires

10.10.3 Inductances de sortie

Conditions d'utilisation des inductances :

• Fréquence de sortie maximale admissible du variateur : 150 Hz

• Fréquence d'impulsion du variateur : 4 kHz

Tableau 10- 16 Caractéristiques techniques des inductances de sortie en tant que composants de base

Caractéristique	Convient pour les variateurs avec une puissance assignée de	
	0,55 kW à 1,5 kW	
	AA	
Nº d'article	6SE6400-3TC00-4AD2	
Nº d'article du variateur correspondant	6SL3210-1KE11-8	
Inductance	2,5 mH	
Puissance dissipée à 50/60 Hz	25 W	
Indice de protection	IP20	
Dimensions hors tout Largeur Hauteur Profondeur	76 mm 200 mm 110 mm	
Cotes de fixation Largeur Hauteur	56 mm 187 mm	
Vis de fixation	4 × M4 (4 Nm)	
Poids	0,8 kg	

Tableau 10- 17 Caractéristiques techniques des inductances de sortie

Caractéristique	Convient pour	les variateurs avec une puissan	ce assignée de
	0,55 kW à 2,2 kW	3,0 kW à 4,0 kW	5,5 kW à 7,5 kW
	AA, A	Α	В
Nº d'article	6SL3202-0AE16-1CA0	6SL3202-0AE18-8CA0	6SL3202-0AE21-8CA0
Nº d'article du variateur correspondant	6SL3210-1KE11-8	6SL3210-1KE17-5 🗆 🗆 1 6SL3210-1KE18-8 🗆 🗆 1	6SL3210-1KE21-3 □ □ 1 6SL3210-1KE21-7 □ □ 1
Inductance	2,5 mH	1,3 mH	0,54 mH
Puissance dissipée	90 W	80 W	80 W
Indice de protection	IP20	IP20	IP20
Dimensions hors tout Largeur Hauteur Profondeur	207 mm 175 mm 73 mm	207 mm 180 mm 73 mm	247 mm 215 mm 100 mm
Cotes de fixation Largeur Hauteur	166 mm 57 mm	166 mm 57 mm	225 mm 81 mm
Vis de fixation	4 × M4 (3 Nm)	4 × M4 (3 Nm)	4 × M5 (5 Nm)
Poids	3,4 kg	3,9 kg	10,1 kg

Tableau 10- 18 Caractéristiques techniques des inductances de sortie

Caractéristique	Convient pour	les variateurs avec une puissance assignée de
	11,0 kW à 18,5 kW	
	С	
Nº d'article	6SL3202-0AE23-8CA0	
Nº d'article du variateur correspondant	6SL3210-1KE22-6	
Inductance	0,26 mH	
Puissance dissipée à 50/60 Hz	110 W	
Indice de protection	IP20	
Dimensions hors tout Largeur Hauteur Profondeur	257 mm 235 mm 115 mm	
Cotes de fixation Largeur Hauteur	225 mm 85 mm	
Vis de fixation	4 × M5 (5 Nm)	
Poids	11,2 kg	

10.10 Accessoires

10.10.4 Filtre sinus

Conditions pour l'utilisation d'un filtre sinus :

• Fréquence de sortie maximale autorisée du variateur : 150 Hz

• Fréquence de découpage du variateur : 4 kHz

Tableau 10- 19 Caractéristiques techniques des filtres sinus en tant que composant pour montage en semelle

Caractéristique	Approprié pour les variateurs avec une puissance assignée de
	0,55 kW 1,1 kW
	FSAA
N° d'article	6SE6400-3TD00-4AD0
Nº d'article du variateur correspondant	6SL3210-1KE11-8
Puissance dissipée à 50/60 Hz	25 W
Indice de protection	IP20
Dimensions hors tout Largeur Hauteur Profondeur	76 mm 300 mm 110 mm
Cotes de fixation Largeur Hauteur	56 mm 287 mm
Vis de fixation	4 × M4 (4 Nm)
Poids	0,8 kg

10.10.5 Résistance de freinage

Tableau 10- 20 Caractéristiques techniques de la résistance de freinage en tant que composant pour montage en semelle

	T
Caractéristique	Approprié pour les variateurs avec une puissance assignée de
	0,55 kW 1,5 kW
	FSAA
N° d'article	6SE6400-4BD11-0AA0
Nº d'article du variateur correspondant	6SL3210-1KE11-8 6SL3210-1KE12-3 6SL3210-1KE13-2 6SL3210-1KE14-3 2
Résistance	390 Ω
Puissance d'impulsion P _{max} .	2,0 kW
Puissance assignée PDB	100 W
Thermocontact	Contact NF
Thermocontact, charge maximale	250 V CA / 2,5 A
Indice de protection	IP20
Dimensions hors tout Largeur Hauteur Profondeur	72 mm 230 mm 44 mm
Cotes de fixation Largeur Hauteur	56 mm 187 mm
Vis de fixation	4 × M4 (4 Nm)
Poids	1,0 kg

10.10 Accessoires

Tableau 10-21 Caractéristiques techniques des résistances de freinage

Caractéristique	Approprié pour	les variateurs avec une puissar	nce assignée de
	0,55 kW 1,5 kW	2,2 kW 4,0 kW	5,5 kW 7,5 kW
	FSAA, FSA	FSA	FSB
N° d'article	6SL3201-0BE14-3AA0	6SL3201-0BE21-0AA0	6SL3201-0BE21-8AA0
Nº d'article du variateur correspondant	6SL3210-1KE11-8	6SL3210-1KE15-8	6SL3210-1KE21-3 □ □ 1 6SL3210-1KE21-7 □ □ 1
Résistance	370 Ω	140 Ω	75 Ω
Puissance d'impulsion P _{max} .	1,5 kW	4 kW	7,5 kW
Puissance assignée PDB	75 W	200 W	375 W
Contact de température	Contact NF	Contact NF	Contact NF
Thermocontact, charge maximale	250 V CA / 2,5 A	250 V CA / 2,5 A	250 V CA / 2,5 A
Indice de protection	IP20	IP20	IP20
Dimensions hors tout Largeur Hauteur Profondeur	105 mm 295 mm 100 mm	105 mm 345 mm 100 mm	175 mm 345 mm 100 mm
Plan de perçage Largeur Hauteur	72 mm 266 mm	72 mm 316 mm	142 mm 316 mm
Vis de fixation	4 × M4 (3 Nm)	4 × M4 (3 Nm)	4 × M4 (3 Nm)
Poids	1,5 kg	1,8 kg	2,7 kg

Tableau 10- 22	Caractéristiques	techniques	des résistances	de freinage
Tableau 10- ZZ	Caracteristiques	icci ii iiques	uco resistantes	ue ireiriage

Caractéristique	Approprié pour	les variateurs avec une puissance assignée de
	11,0 kW à 18,5 kW	
	FSC	
N° d'article	6SL3201-0BE23-8AA0	
Nº d'article du variateur correspondant	6SL3210-1KE22-6	
Résistance	30 Ω	
Puissance d'impulsion P _{max} .	18,5 kW	
Puissance assignée PDB	925 W	
Contact de température	Contact NF	
Thermocontact, charge maximale	250 V CA / 2,5 A	
Indice de protection	IP20	
Dimensions hors tout Largeur Hauteur Profondeur	250 mm 490 mm 140 mm	
Plan de perçage Largeur Hauteur	217 mm 460 mm	
Vis de fixation	4 × M5 (6 Nm)	
Poids	6,2 kg	

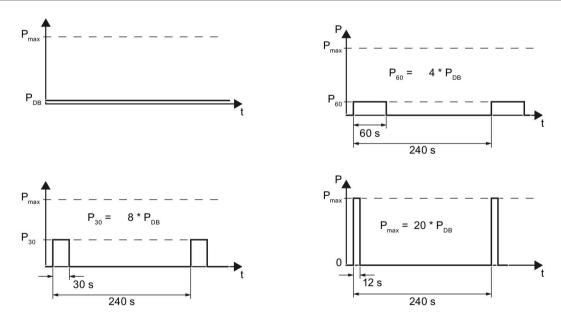


Figure 10-4 Puissance d'impulsion P_{max} et puissance assignée P_{DB} en fonction du facteur de marche

10.11 Normes

Dinasthan same Come has a tamalan
Directive européenne basse tension
La gamme de produits SINAMICS G120C est conforme à la directive basse tension 2006/95/CE. Les appareils sont certifiés en rapport avec leur conformité aux normes suivantes :
EN 61800-5-1 - Variateurs électroniques - Dispositions générales et variateurs alimentés par le réseau
EN 60204-1 - Sécurité des machines - équipement électrique des machines
Directive européenne Machines
La série de variateurs SINAMICS G120C n'entre pas dans le domaine d'application de la directive Machines. Cependant, les produits ont été entièrement évalués concernant leur respect des principales dispositions en matière de santé et de sécurité de cette directive pour un usage dans une application de machine typique. Une déclaration de réception est disponible sur demande.
Directive européenne relative à la compatibilité électromagnétique (CEM)
Lorsque le SINAMICS G120C est installé conformément aux recommandations stipulées dans le présent manuel, il est conforme à toutes les dispositions de la directive CEM telles que définies dans la norme produits CEM pour les entraînements électriques, EN 61800-3.
Underwriters Laboratories
L'appareil est conçu pour fournir un protection interne contre la surcharge du moteur selon UL508C.
Spécification pour la résistance aux chutes de tension des équipements de procédé à semiconducteurs
Les variateurs SINAMICS G120C répondent aux exigences de la norme SEMI F47-0706.
ISO 9001
Siemens AG met en œuvre un système de gestion de la qualité conforme aux exigences ISO 9001.

Il est possible de télécharger les certificats sur Internet à partir du lien suivant :

Normes (http://support.automation.siemens.com/WW/view/fr/22339653/134200)

Annexe

A.1 Nouvelles fonctions et fonctions étendues

Tableau A- 1 Nouvelles fonctions et modifications de fonctions dans le firmware 4.7 SP3

	Fonction				SINA	MICS				
				G120 G1					20D	
		G110M	G120C	CU230P-2	CU240B-2	CU240E-2	CU250S-2	CU240D-2	CU250D-2	ET 200pro FC-2
1	Prise en charge du Power Module PM240-2, tailles FSD et FSE	-	-	✓	✓	✓	✓	-	-	-
	Prise en charge de la fonction de base Safety Integrated Safe Torque Off (STO) via les bornes du Power Module PM240-2, tailles FSD et FSE	-	-	-	-	✓	✓	-	-	-
2	Prise en charge des Power Modules PM230 remaniés avec de nouveaux numéros d'article :	-	-	✓	✓	✓	-	-	-	-
	Degré de protection IP55 : 6SL3223-0DE G .									
	Degré de protection IP20 et Push Through : 6SL3211NE G .									
	Prise en charge de la fonction de base Safety Integrated Safe Torque Off (STO) avec le Power Module PM230 remanié	-	-	-	-	✓	-	-	-	-
3	Prise en charge du Power Module PM330 de taille HX	-	-	✓	-	-	-	-	-	-
4	Prise en charge des moteurs à réluctance 1FP1	-	-	✓	-	-	-	-	-	-
5	Prise en charge des moteurs synchrones sans codeur 1FK7	-	✓	-	✓	✓	✓	√ 1)	-	-
6	Prise en charge des motoréducteurs synchrones sans codeur 1FG1	-	✓	-	✓	✓	✓	✓	-	-
7	Classes d'applications SINAMICS "Standard Drive Control" et "Dynamic Drive Control" pour une mise en service simplifiée et une régulation de moteur encore plus robuste. Les classes d'applications SINAMICS sont seulement disponibles avec les variateurs suivants :	-	1	1	1	1	1	-	-	-
	 SINAMICS G120C SINAMICS G120 avec Power Modules PM240, PM240-2 et PM330 									
8	Estimateur de moment d'inertie avec commande anticipatrice de moment d'inertie pour optimiser le régulateur de vitesse pendant le fonctionnement	✓	1	-	✓	✓	1	✓	✓	✓
9	Caractéristique de couple de frottement avec enregistrement automatisé pour optimiser le régulateur de vitesse	✓	✓	-	✓	✓	✓	✓	✓	✓
10	Optimisation automatique du régulateur technologique	_	-	✓	✓	✓	_	-	-	-

A.1 Nouvelles fonctions et fonctions étendues

	Fonction				SINA	MICS				
					G120	1		G1:	20D	
		G110M	G120C	CU230P-2	CU240B-2	CU240E-2	CU250S-2	CU240D-2	CU250D-2	ET 200pro FC-2
11	Le signe de l'écart du régulateur pour le régulateur technolo- gique libre supplémentaire est commutable.	-	-	1	-	-	-	-	-	-
	Un nouveau paramètre détermine le signe de l'écart du régula- teur en fonction de l'application, par exemple pour les applica- tions de refroidissement ou de chauffage.									
12	Commande du contacteur réseau via la sortie TOR du variateur en vue de réaliser des économies d'énergie lorsque le moteur est arrêté	✓	✓	✓	✓	✓	✓	✓	✓	-
13	Reprise au vol rapide pour Power Module PM330 : La fonction "Reprise au vol" ne doit pas attendre le temps de démagnétisation du moteur et détecte la vitesse du moteur sans opération de recherche.	-	-	✓	-	-	-	-	-	-
14	 Extension de la surveillance de couple résistant avec les fonctions suivantes : Protection contre le blocage, la fuite et le fonctionnement à sec dans les applications de pompe Protection contre le blocage et la rupture de courroie dans 	-	√	√	√	✓	-	-	-	-
4.5	les applications de ventilateur									
15	Changement automatique de l'heure de l'horloge temps réel de l'heure d'été à l'heure d'hiver	-	-	✓	-	-	-	-	-	-
16	Nouveaux réglages ou réglages par défaut remaniés pour les interfaces : macros p0015 110, 112 et 120	-	-	✓	-	-	-	-	-	-
17	Extension des sondes thermométriques avec DIN-Ni1000 pour les entrées analogiques AI 2 et AI 3	-	-	✓	-	-	-	-	-	-
18	Communication via AS-Interface. Préréglage de la communication via AS-i : macros p0015 30, 31, 32 et 34	✓	-	-	-	-	-	-	-	-
19	Extension de la communication via Modbus : Bit de parité réglable, accès aux paramètres et aux entrées analogiques	-	-	✓	-	-	-	-	-	-
20	Extension de la communication via BACnet : Accès aux paramètres et aux entrées analogiques	-	-	✓	-	-	-	-	-	-
21	La LED de défaut de bus peut être désactivée pour la commu- nication via USS et Modbus	✓	1	✓	✓	✓	✓	-	-	-

¹⁾ Le fonctionnement avec un moteur synchrone sans codeur 1FK7 a déjà été validé avec le firmware V4.7 pour le SINAMICS G120D avec Control Unit CU240D-2.

Les renvois aux descriptions des nouvelles fonctions figurent dans l'avant-propos : Historique des modifications (Page 5).

Tableau A-2 Nouvelles fonctions et modifications de fonctions dans le firmware 4.7

	Fonction				SINA	MICS			
					G120			G1:	20D
		G110M	G120C	CU230P-2	CU240B-2	CU240E-2	CU250S-2	CU240D-2	CU250D-2
1	Prise en charge des blocs de données d'identification & de maintenance (I&M1 à 4)	✓	✓	✓	✓	✓	✓	1	1
2	Réduction de la fréquence de découpage en cas de consommation accrue du moteur	✓	✓	✓	✓	✓	✓	✓	✓
	Le variateur réduit temporairement la fréquence de découpage au démarrage du moteur en cas de besoin et augmente en même temps la limite de courant.								
3	Communication S7	✓	✓	✓	✓	✓	✓	✓	✓
	Echange de données direct entre le variateur et l'interface homme-machine (IHM)								
	Augmentation de la performance de communication avec les outils d'ingénierie et prise en charge du routage S7								
4	Les fonctions de base de Safety Integrated sont disponibles sans restriction dans tous les types de régulation avec les moteurs synchrones 1FK7 à excitation par aimants permanents sans capteur.	-	-	-	-	-	ı	✓	-
5	Sélection directe des moteurs synchrones 1FK7 à excitation par aimants permanents sans capteur à l'aide du numéro d'article par le numéro de code affecté	-	-	-	-	-	-	✓	-
	Aucune saisie des différents paramètres moteur n'est requise								
6	Entrée d'impulsions en tant que source de consigne	-	-	-	-	-	✓	-	-
	Le variateur calcule sa consigne de vitesse à partir d'une séquence d'impulsions à l'entrée TOR.								
7	Attribution dynamique d'adresses IP (DHCP) et noms de périphériques temporaires pour PROFINET	✓	✓	✓	-	✓	✓	✓	✓
8	PROFlenergy Profils esclave 2 et 3	✓	✓	✓	-	✓	✓	✓	✓
9	Comportement homogène lors du remplacement d'un composant	✓	✓	-	-	✓	✓	✓	✓
	 A la suite du remplacement d'un composant, un variateur avec Safety Integrated débloqué signale le type de composant rem- placé par un identifiant univoque. 								
10	Meilleure régulation de composante continue avec le PM230	-	-	✓	-	-	-	-	-
	Rendement optimisé pour les applications de pompes et de ventilateurs								
11	Arrondis avec BACnet et macros	-	-	✓	-	-	-	-	-

A.1 Nouvelles fonctions et fonctions étendues

Tableau A-3 Nouvelles fonctions et modifications de fonctions dans le firmware 4.6.6

	Fonction		SINAMICS					
				G1	20		G12	20D
		G120C	CU230P-2	CU240B-2	CU240E-2	CU250S-2	CU240D-2	CU250D-2
1	Prise en charge des nouveaux Power Module • PM330 IP20 GX	-	✓	-	-	-	-	-

Tableau A-4 Nouvelles fonctions et modifications de fonctions dans le firmware 4.6

	Fonction			s	INAMI	cs		
				G′	120		G1:	20D
		G120C	CU230P-2	CU240B-2	CU240E-2	CU250S-2	CU240D-2	CU250D-2
1	Prise en charge des nouveaux Power Module • PM240-2 IP20 tailles B à C • PM240-2 en montage traversant tailles B à C	-	1	1	1	1	-	-
2	Prise en charge des nouveaux Power Module • PM230 en montage traversant tailles D à F	-	✓	✓	✓	-	-	-
3	Valeurs par défaut des paramètres des moteurs 1LA/1LE par numéro de code • Dans la mise en service rapide avec pupitre opérateur, réglage des paramètres moteur à l'aide d'un numéro de code	✓	✓	✓	✓	✓	✓	✓
4	 Extension de la communication via CANopen CAN Velocity, ProfilTorque, canal SDO pour chaque axe, test du système avec CodeSys, suppression de l'alarme ErrorPassiv 	✓	1	-	-	✓	-	-
5	Extension de la communication via BACnet Objets Multistate-Value pour alarmes, objets Commandable AO, objets pour la configuration du régulateur PID	-	1	-	-	-	-	-
6	Communication via EtherNet/IP	✓	✓	-	✓	✓	✓	✓
7	 Bande de fréquence occultée pour entrée analogique Pour chaque entrée analogique, il est possible de définir une bande de fréquence occultée symétrique autour de la plage de 0 V. 	✓	✓	✓	✓	✓	✓	-
8	Modification de la commande du frein à l'arrêt du moteur	✓	-	✓	✓	✓	✓	-
9	Fonction de sécurité SBC (Safe Brake Control) • Commande sûre d'un frein à l'arrêt du moteur lorsque l'option "Safe Brake Module" est utilisée	-	-	-	-	✓	-	-
10	Fonction de sécurité SS1 (Safe Stop 1) sans surveillance de vitesse	-	-	-	-	✓	-	-
11	 Sélection simple des moteurs standard Sélection des moteurs 1LA et 1LE avec un pupitre opérateur via une liste avec des numéros de code 	✓	✓	✓	√	✓	✓	√
12	Mise à jour du firmware via la carte mémoire	✓	✓	✓	✓	✓	✓	✓
13	Safety Infochannel Sortie FCOM r9734.014 pour les bits d'état des fonctions de sécurité étendues	-	-	-	✓	✓	✓	√
14	Alarme de diagnostic pour PROFIBUS	✓	✓	✓	✓	✓	✓	✓

A.1 Nouvelles fonctions et fonctions étendues

Tableau A-5 Nouvelles fonctions et modifications de fonctions dans le firmware 4.5

	Fonction			SINAMICS			
			1	G120)	G12	20D
		G120C	CU230P-2	CU240B-2	CU240E-2	CU240D-2	CU250D-2
1	Prise en charge des nouveaux Power Modules : • PM230 IP20, tailles A à F • PM230 en montage traversant, tailles A à C	-	✓	✓	✓	-	-
2	Prise en charge des nouveaux Power Modules : • PM240-2 IP20, taille A • PM240-2 en montage traversant, taille A	-	✓	✓	✓	-	-
3	Nouvelles Control Units avec prise en charge de PROFINET	✓	✓	-	✓	✓	✓
4	Prise en charge du profil PROFlenergy	✓	✓	-	✓	✓	✓
5	Prise en charge de Shared Device via PROFINET	✓	✓	-	✓	✓	✓
6	Protection en écriture	✓	✓	✓	✓	✓	✓
7	Protection de savoir-faire	✓	✓	✓	✓	✓	✓
8	Complément d'un deuxième jeu de paramètres de commande (CDS0 → CDS0 à CDS1) (tous les autres variateurs disposent de quatre jeux de paramètres de commande)	>	-	ı	-	-	-
9	Régulation de position et positionneur simple	-	-	-	-	-	✓
10	Prise en charge d'un capteur HTL	-	-	-	-	✓	✓
11	Prise en charge d'un capteur SSI	-	-	-	-	-	✓
12	Sortie TOR de sécurité	-	-	-	-	✓	✓

A.2 Paramètres

Les paramètres constituent l'interface entre le firmware du variateur et l'outil de mise en service, un pupitre opérateur par exemple.

Paramètres de réglage

Les paramètres sont les vis de réglage avec lesquelles vous adaptez le variateur à votre application. En modifiant la valeur d'un paramètre de réglage, vous modifiez également le comportement du variateur.

Les paramètres de réglage sont précédés d'un "p", p1082 étant p. ex. le paramètre spécifiant la vitesse maximale du moteur.

Paramètres d'observation

Les paramètres d'observation permettent de lire les grandeurs de mesure internes du variateur et du moteur.

Le pupitre opérateur et STARTER affichent les paramètres d'observation précédés d'un "r", r0027 étant par ex. le paramètre du courant de sortie du variateur.

Paramètres fréquemment utilisés

Tableau A- 6 Passage en mode de mise en service ou restauration des réglages usine

Paramètre	Description
p0010	Paramètres de mise en service
	0 : Prêt (réglage usine)
	1 : Exécuter la mise en service rapide
	3 : Exécuter la mise en service du moteur
	5 : Applications technologiques et unités
	15 : Définir le nombre de jeux de paramètres
	30 : Réglage usine – Initier la restauration des réglages usine

Tableau A-7 Pour déterminer la version de firmware de la Control Unit

Paramètre	Description
r0018	La version de firmware s'affiche :

Tableau A-8 Pour sélectionner la source de commande et les sources de consigne

Paramètre	Description
p0015	Le paramètre p0015 permet de régler les configurations d'E/S prédéfinies. Pour plus d'informations, voir
	la section : Mise en service à l'aide d'un pupitre opérateur BOP-2 (Page 99).

A.2 Paramètres

Tableau A- 9 Pour paramétrer les temps de montée et de descente de la rampe

Paramètre	Description
p1080	Vitesse minimale 0,00 [tr/min] Réglage usine
p1082	Vitesse maximale 1500,000 [tr/min] Réglage usine
p1120	Temps de montée 10,00 [s]
p1121	Temps de descente 10,00 [s]

Tableau A- 10 Pour paramétrer le type de régulation

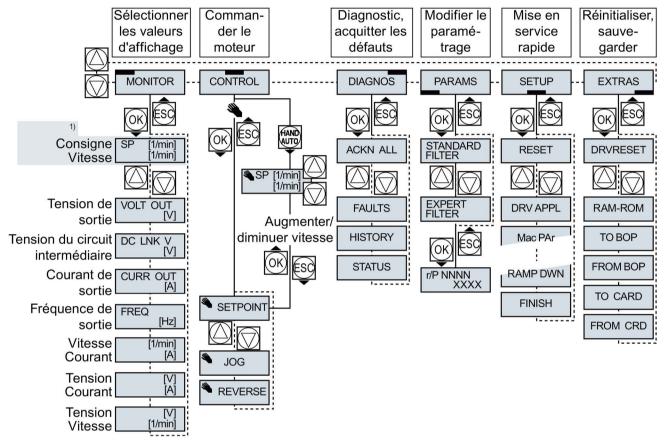

Paramètre	Description
p1300	0 : Commande U/f avec caractéristique linéaire 1 : Commande U/f avec caractéristique linéaire et FCC 2 : Commande U/f avec caractéristique parabolique 3 : Commande U/f avec caractéristique paramétrable 4 : Commande U/f avec caractéristique linéaire et ECO 5 : Commande U/f pour les variateurs nécessitant une fréquence précise (domaine du textile) 6 : Commande U/f pour les variateurs nécessitant une fréquence précise et FCC 7 : Commande U/f avec caractéristique parabolique et ECO
	19 : Commande U/F avec consigne de tension indépendante
	20 : Commande de vitesse (sans capteur)

Tableau A- 11Optimisation du comportement au démarrage de la commande U/f sous la forme d'un couple de décollage élevé et d'une surcharge de courte durée

Paramètre	Description
p1310	Surélévation de tension pour compensation des pertes ohmiques La surélévation de tension intervient de l'immobilisation à la vitesse assignée. Elle est à son maximum à la vitesse 0 et décroît de manière continue à mesure que la vitesse augmente.
	Valeur de la surélévation de tension à vitesse nulle en V : 1,732 × courant assigné du moteur (p0305) × résistance du stator (r0395) × p1310 / 100 %
p1311	Surélévation de tension lors de l'accélération La surélévation de tension intervient de l'immobilisation à la vitesse assignée. Elle est indépendante de la vitesse et s'élève en V à : 1,732 × courant assigné du moteur (p0305) × résistance du stator (p0350) × p1311 / 100 %
p1312	Surélévation de tension au démarrage Réglage d'une surélévation de tension supplémentaire au démarrage, mais uniquement pour la première phase d'accélération.

A.3 Utilisation du pupitre opérateur BOP-2

A.3.1 Structure de menu, symboles et touches

¹⁾ Affichage d'état après l'activation de la tension d'alimentation du variateur

Figure A-1 Menu du BOP-2

Figure A-2 Autres touches et symboles du BOP-2

Marche à suivre pour mettre en marche et arrêter le moteur via le pupitre opérateur :

1. Appuyez sur MANU AUTO

2. La maîtrise de commande du variateur par le BOP-2 est débloquée

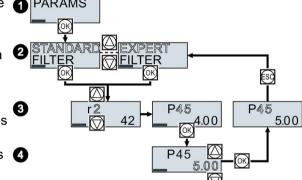
3. Mettre le moteur en marche

4. Arrêter le moteur

A.3.2 Modification des réglages avec le BOP-2

Modification des réglages avec le BOP-2

La modification des réglages du variateur s'effectue via la modification des valeurs des paramètres du variateur. Le variateur permet seulement la modification des paramètres d'écriture". Les paramètres d'écriture commencent par un "P", p. ex. P45.


La valeur d'un paramètre de lecture ne peut pas être modifiée. Les paramètres de lecture commencent par un "r", p. ex. : r2.

Procédure

Pour modifier un paramètre d'écriture avec le BOP-2, procéder comme suit :

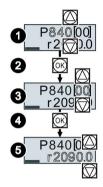
- Sélectionner le menu d'affichage et de modification des paramètres.
 Appuyer sur la touche OK.
- Sélectionner le filtre des paramètres à l'aide des touches fléchées.
 Appuyer sur la touche OK.
 - STANDARD : Le variateur affiche uniquement les paramètres les plus importants.
 - EXPERT : Le variateur affiche tous 4 les paramètres.

- 3. Sélectionner le numéro du paramètre d'écriture souhaité à l'aide des touches fléchées. Appuyer sur la touche OK.
- 4. Régler la valeur du paramètre d'écriture à l'aide des touches fléchées. Valider la valeur avec la touche OK.
- Vous avez modifié un paramètre d'écriture avec le BOP-2.

Le variateur enregistre toutes les modifications effectuées avec le BOP-2 sous une forme non volatile.

A.3.3 Modification des paramètres indexés

Modification des paramètres indexés


Pour les paramètres indexés, plusieurs valeurs de paramètres sont attribuées à un numéro de paramètre. Chacune des valeurs de paramètres a son propre indice.

Procédure

Pour modifier un paramètre indexé, procéder comme suit :

- 1. Sélectionner le numéro de paramètre.
- 2. Appuyer sur la touche OK.
- 3. Régler l'indice de paramètre.
- 4. Appuyer sur la touche OK.
- 5. Régler la valeur de paramètre pour l'indice sélectionné.

Vous avez modifié un paramètre indexé.

A.3.4 Saisie directe du numéro et de la valeur d'un paramètre

Sélection directe d'un numéro de paramètre

Le BOP-2 offre la possibilité de régler le numéro de paramètre chiffre par chiffre.

Condition

Le numéro de paramètre clignote sur l'affichage du BOP-2.

Procédure

Pour sélectionner directement le numéro de paramètre, procéder comme suit :

- 1. Appuyer sur la touche OK pendant plus de cinq secondes.
- 2. Modifier le numéro de paramètre chiffre par chiffre. Appuyer sur OK pour que le BOP-2 passe au chiffre suivant.
- 3. Lorsque tous les chiffres du numéro de paramètre ont été saisis, appuyer sur la touche OK.

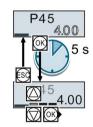
Vous avez saisi directement le numéro de paramètre.

Saisie directe de la valeur d'un paramètre

Le BOP-2 offre la possibilité de régler la valeur du paramètre chiffre par chiffre.

Condition

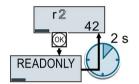
La valeur du paramètre clignote sur l'affichage du BOP-2.


Procédure

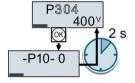
Pour sélectionner directement la valeur du paramètre, procéder comme suit :

- 1. Appuyer sur la touche OK pendant plus de cinq secondes.
- 2. Modifier la valeur du paramètre chiffre par chiffre.

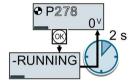
 Appuyer sur OK pour que le BOP-2 passe au chiffre suivant.
- 3. Lorsque tous les chiffres de la valeur du paramètre ont été saisis, appuyer sur la touche OK.



Vous avez saisi directement la valeur du paramètre.

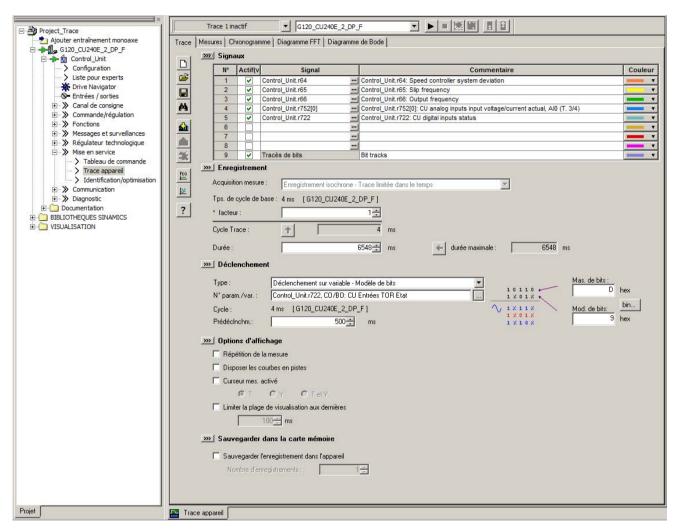

A.3.5 Impossible de modifier un paramètre

Dans quelles conditions la modification d'un paramètre est-elle impossible ?


Le variateur affiche la raison pour laquelle la modification d'un paramètre n'est pas autorisée à un moment donné :

Vous avez tenté de modifier un paramètre de lecture.

Passer à la mise en service rapide pour régler ce paramètre.


Mettre le moteur hors tension pour régler ce paramètre.

Pour chaque paramètre, le Manuel de listes donne des informations sur l'état de fonctionnement dans lequel ce paramètre peut être modifié.

A.4 La fonction Trace d'appareil dans STARTER

Description

La fonction Trace d'appareil représente la courbe temporelle des signaux du variateur.

Signaux

Vous pouvez connecter jusqu'à huit signaux via <u>a</u> à l'aide de deux réglages indépendants l'un de l'autre.

Enregistrement

Vous pouvez lancer une mesure aussi souvent que vous le souhaitez. Tant que vous ne quittez pas STARTER, les résultats sont conservés dans l'onglet "Mesures" avec la date et l'heure. Vous pouvez enregistrer les mesures au format *.trc au moment de quitter STARTER ou dans l'onglet "Mesures".

Si vous avez besoin de plus de deux réglages pour effectuer vos mesures, vous pouvez enregistrer les différents réglages dans le projet ou les exporter au format *.clg pour les charger ou les importer en cas de besoin.

Vous pouvez enregistrer les différents bits d'un paramètre (r0722.1 p. ex.) en affectant le bit voulu via "tracé de bit" (▶).

La fonction mathématique (<u>|||</u>) vous permet de définir une courbe représentant p. ex. la différence entre consigne de vitesse et mesure de vitesse.

La fonction Trace d'appareil affiche les "bits individuels" ou les "fonctions mathématiques" en tant que n° de signal 9.

Temps de cycle et durée d'enregistrement

La fonction Trace d'appareil enregistre les données en fonction d'un cycle de base lié à la CU. La durée d'enregistrement maximale dépend du nombre de signaux enregistrés et du cycle Trace.

Pour augmenter la durée d'enregistrement, vous devez procéder comme suit :

- 1. Multipliez le cycle Trace par un facteur entier.
- 2. Validez la durée maximale affichée avec +.

Vous pouvez sinon définir aussi une durée de mesure et demander via <u>↑</u> à STARTER de calculer le cycle Trace.

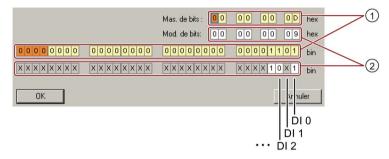
Déclencheur (condition de démarrage de la fonction Trace d'appareil)

La fonction Trace d'appareil démarre dès que vous appuyez sur le bouton ▶ (démarrer Trace).

Le bouton **■** permet de définir d'autres conditions de démarrage de la fonction Trace d'appareil.

La période préalable au déclenchement définit dans quel laps de temps la fonction Trace d'appareil représente les signaux avant la condition de déclenchement. Ceci permet d'enregistrer également la condition de déclenchement.

A.4 La fonction Trace d'appareil dans STARTER


Exemple de modèle de bits des entrées TOR comme déclencheur

Vous devez définir pour le déclencheur le modèle et la valeur du paramètre binaire. Pour ce faire, procédez comme suit :

Utilisez **■** pour sélectionner "Déclenchement sur variable – modèle de bits"

Utilisez pour sélectionner le paramètre binaire

Utilisez bin... pour ouvrir le masque de définition des bits et de leur valeur pour la condition de déclenchement

- Sélectionnez les bits du déclencheur de la fonction Trace, ligne supérieure au format hex, ligne inférieure au format binaire
- Sélectionnez les valeurs du déclencheur de la fonction Trace, ligne supérieure au format hex, ligne inférieure au format binaire

Figure A-3 Déclencheur en tant que modèle de bits de r0722 (état des entrées TOR)

Dans l'exemple, la fonction Trace démarre lorsque les entrées TOR DI 0 et DI 3 sont à l'état haut et l'entrée TOR DI 2 à l'état bas. L'état des autres entrées TOR est sans signification pour la condition de déclenchement.

Vous pouvez en outre définir une alarme ou un défaut comme condition de démarrage.

Options d'affichage

Cette zone vous sert à définir le type de représentation de résultats.

- Répétition de la mesure
 Permet de superposer des mesures effectuées à différents moments.
- Disposer les courbes en pistes
 Permet de spécifier que la fonction Trace d'appareil représente toutes les valeurs de
 mesure avec un axe des abscisses commun ou chaque valeur de mesure avec son
 propre axe des abscisses.
- Curseur de mesure activé
 Permet d'examiner avec plus de détail les intervalles de mesure.

Sauvegarder dans l'appareil (carte mémoire)

Spécifiez dans cette zone si la fonction Trace d'appareil enregistre plusieurs mesures l'une après l'autre sur une carte mémoire enfichée dans le répertoire /USER/SINAMICS/DATA/TRACE.

Afficher les mesure sauvegardées sur la carte mémoire

Procédure

Pour afficher les mesures sauvegardées sur la carte mémoire, procédez comme suit :

- 1. Insérez la carte mémoire dans un lecteur de cartes.
- 2. Dans la fonction Trace d'appareil, sélectionnez l'onglet "Mesures".
- 3. Ouvrez les fichiers ACX lus avec le bouton "Ouvrir les mesures".
- STARTER affiche les mesures sauvegardées sur la carte mémoire.

A.5 Connexion des signaux dans le variateur

Les fonctions suivantes sont réalisées dans le variateur :

- Fonctions de commande et de régulation
- Fonctions de communication
- Fonctions de diagnostic et de conduite

Chaque fonction est constituée d'un ou de plusieurs blocs interconnectés.

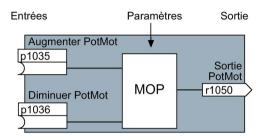


Figure A-4 Exemple de bloc : potentiomètre motorisé (PotMot)

La plupart des blocs peuvent être adaptés à votre application au moyen de paramètres.

L'interconnexion de signaux à l'intérieur d'un bloc n'est pas modifiable. L'interconnexion entre les blocs est toutefois modifiable en connectant les entrées d'un bloc aux sorties correspondantes d'un autre bloc.

Contrairement à la technique de commutation électrique, l'interconnexion de signaux des blocs ne s'effectue pas par câbles mais par logiciel.

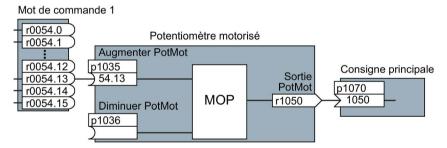


Figure A-5 Exemple : interconnexion des signaux de deux blocs pour l'entrée TOR 0

Binecteurs et connecteurs

Les connecteurs et les binecteurs servent à l'échange de signaux entre les différents blocs :

- Les connecteurs servent à la connexion de signaux "analogiques" (par ex. vitesse de sortie PotMot).
- Les binecteurs servent à la connexion de signaux "TOR" (par ex. ordre 'Déblocage PotMot augmenter')

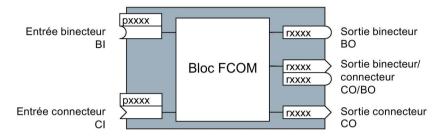


Figure A-6 Symbole pour les entrées et sorties de binecteur et de connecteur

Les sorties de binecteur/connecteur (CO/BO) sont des paramètres qui regroupent plusieurs sorties de binecteur en un seul mot (par ex. r0052 CO/BO : Mot d'état 1). Chaque bit d'un mot représente un signal TOR (binaire). Ce regroupement réduit le nombre de paramètres et simplifie le paramétrage.

Les sorties de binecteur ou de connecteur (CO, BO ou CO/BO) peuvent être utilisées plusieurs fois.

Quand devez-vous interconnecter les signaux dans le variateur ?

Si vous modifiez l'interconnexion des signaux dans le variateur, vous pouvez adapter ce dernier aux exigences les plus diverses. Il ne s'agit pas toujours de fonctions hautement complexes.

Exemple 1 : Affecter une autre signification à une entrée TOR.

Exemple 2 : Commuter la consigne de vitesse de la vitesse fixe à l'entrée analogique.

A quoi faut-il veiller lors de la modification de l'interconnexion des signaux?

Procédez avec soin avec les interconnexions de signaux internes. Il convient de bien noter ce qui est modifié car une analyse ultérieure est assez fastidieuse.

Le logiciel de mise en service STARTER propose les signaux en texte clair et simplifie leur interconnexion.

Où trouver des informations supplémentaires ?

- Pour des interconnexions de signaux simples, par ex. affecter une autre signification aux entrées TOR, le présent manuel est suffisant.
- Pour les interconnexions de signaux qui dépassent ce cadre, la liste des paramètres du Manuel de listes est suffisante.
- Pour des interconnexions de signaux exhaustives, les diagrammes fonctionnels du Manuel de listes fournissent la vue d'ensemble nécessaire.

A.5 Connexion des signaux dans le variateur

Principe de connexion de blocs FCOM au moyen de la technique FCOM

Une interconnexion entre deux blocs FCOM est constituée d'un connecteur ou d'un binecteur et d'un paramètre FCOM. L'interconnexion s'effectue toujours du point de vue de l'entrée d'un bloc FCOM donné. Cela signifie que la sortie d'un bloc connecté en amont doit être affectée à l'entrée d'un bloc connecté en aval. L'affectation s'effectue par la saisie du numéro du connecteur/binecteur à partir duquel les signaux d'entrée requis sont lus dans un paramètre FCOM.

Cette logique d'interconnexion soulève la question suivante : d'où vient le signal ?

Exemple

La technique FCOM doit être utilisée pour l'adaptation de la fonction des entrées et des sorties. Des exemples sont fournis à la section Adaptation du réglage par défaut du bornier (Page 138).

A.6 Raccordement d'une entrée de sécurité

Les exemples sont conformes à PL d selon EN 13849-1 et à SIL2 selon CEI61508 dans le cas où tous les composants sont montés à l'intérieur d'une armoire.

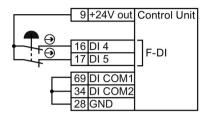


Figure A-7 Connexion d'un capteur, par ex. bouton-poussoir d'arrêt d'urgence ou interrupteur de position finale

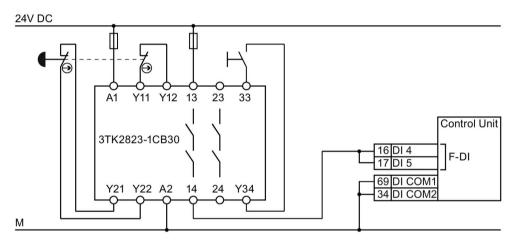


Figure A-8 Connexion d'un bloc logique de sécurité, par ex. SIRIUS 3TK28

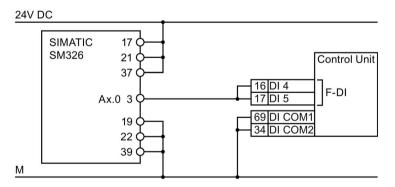


Figure A-9 Connexion d'un module d'émission TOR de sécurité, par ex. SIMATIC module d'émission TOR de sécurité

D'autres connexions possibles et connexions dans des armoires séparées sont indiquées dans la description fonctionnelle Safety Integrated, voir section : Informations complémentaires sur le variateur (Page 424).

A.7 Essai de réception de la fonction de sécurité

A.7.1 Test de réception recommandé

Les descriptions qui suivent sont des recommandations destinées à expliciter le principe de la réception. Il est possible de ne pas suivre ces recommandations lorsque les vérifications ci-après sont effectuées après la mise en service :

- Affectation correcte des interfaces de chaque variateur aux fonctions de sécurité :
 - Entrées de sécurité
 - Adresses PROFIsafe
- Paramétrage correct de la fonction de sécurité STO.

Remarque

Le test de réception doit être réalisé aux vitesses et accélérations maximales possibles afin de déterminer les distances de freinage et temps d'arrêt maximum prévisibles.

Remarque

Alarmes non critiques

Les alarmes suivantes sont générées après chaque démarrage du système et ne sont pas critiques pour la réception :

- A01697
- A01796

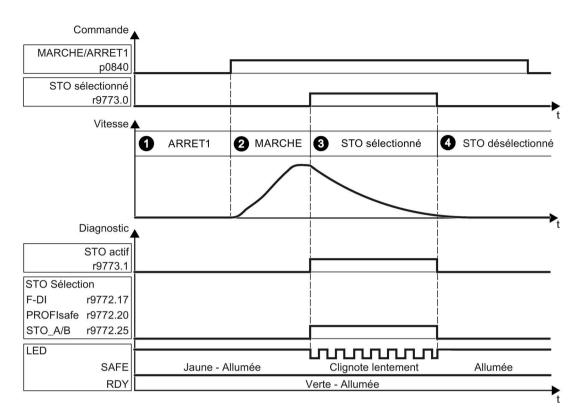


Figure A-10 Test de réception pour STO (fonctions de base)

Marche à suivre

Pour exécuter le test de réception de la fonction STO en tant que partie des fonctions de base, procéder de la manière suivante :

			Etat	
1.	Le var	iateur est prêt à fonctionner.		
	Le variateur ne signale aucun défaut ni alarme des fonctions de sécurité (r0945[07], r2122[07]).			
	• STO est inactif (r9773.1 = 0).			
2.	2. Mettre le moteur en marche			
	2.1.	Indiquer une consigne de vitesse ≠ 0.		
	2.2.	Mettre le moteur en marche (ordre MARCHE)		
	2.3.	Vérifier si le moteur souhaité fonctionne.		

A.7 Essai de réception de la fonction de sécurité

			Etat			
3.	Sélect	tionner STO				
	3.1.	Activer STO pendant le fonctionnement du moteur				
		Tester chaque commande configurée, p. ex. via entrées TOR et via PROFIsafe.				
	3.2.	Vérifiez les éléments suivants :				
	Lors de commande via PROFIsafe Lors de commande via les entrées F-DI sûres Lors de commande via les bornes ST STO_B sur le Module PM24					
		• Le variateur signale : "STO Sélection via PROFIsafe" (r9772.20 = 1) • Le variateur signale : "STO Sélection via borne" (r9772.17 = 1) • Le variateur signale : "STO Sélection via borne sur Power Module" (r9772.25 = 1)				
	 Le moteur ralentit naturellement si aucun frein mécanique n'est disponible. Un frein mécanique freine le moteur et le maintient ensuite à l'arrêt. Le variateur ne signale aucun défaut ni alarme des fonctions de sécurité (r0945[07], r2122[07]). 					
		Le variateur signale : "STO est sélectionné" (r9773.0 = 1). "STO est actif" (r9773.1 = 1).				
١.	Désac	activer STO				
	4.1.	Désactivez STO.				
	4.2.	Vérifiez les éléments suivants :				
		• STO est inactif (r9773.1 = 0).				
		Le variateur ne signale aucun défaut ni alarme des fonctions de sécurité (r0945[07], r2122[07]).				

Le test de réception de la fonction STO est terminé.

A.7.2 Documentation de la machine

Description de la machine ou de l'installation

Désignation		
Туре		
Numéro de série		
Constructeur		
Client final		
Synoptique de la machine ou	de l'installation :	
	•••	
	•••	

Caractéristiques du variateur

Tableau A- 12Version matérielle des variateurs de sécurité

Désignation de l'entraînement	Numéro d'article et version matérielle des variateurs	

Tableau des fonctions

Tableau A- 13Fonctions de sécurité actives en fonction du mode de fonctionnement et du dispositif de sécurité

Mode de fonc- tionnement	Dispositif de sécurité	Entraînement	Fonction de sécurité sélectionnée	Contrôlé
Exemple :	•	•		•
Mode automa-	Protecteur fermé	Convoyeur à bande		
tique	Protecteur ouvert	Convoyeur à bande	STO	
	Touche d'arrêt d'urgence activée	Convoyeur à bande	STO	

A.7 Essai de réception de la fonction de sécurité

Procès-verbaux de test de réception

Nom de fichier des procès-verbaux de test de réception				

Sauvegarde des données

Données	Support de mémoire			Lieu de sauvegarde
	Type d'archivage	Désignation	Date	
Procès-verbaux de test de réception				
Programme AP				
Schémas électriques				

Contresignatures

Technicien de mise en service

Confirmation de l'exécution correcte des tests et contrôles énumérés ci-dessus.

Date	Nom	Société/Dépt.	Signature

Constructeur de machines

Confirmation de l'exactitude du paramétrage consigné ci-dessus.

Date	Nom	Société/Dépt.	Signature

A.7.3 Procès-verbal du paramétrage des fonctions de base, firmware V4.4 à V4.7 SP2

Entraînement = <pDO-NAME_v>

Tableau A- 14Version de firmware

Nom	Numéro	Valeur
Version de firmware de la Control Unit	r18	<r18_v></r18_v>
SI Version Fonctions de sécurité intégrées à l'entraînement (processeur 1)	r9770	<r9770_v></r9770_v>

Tableau A- 15Temps de cycle de surveillance

Nom	Numéro	Valeur
SI Temps de cycle de surveillance (processeur 1)	r9780	<r9780_v></r9780_v>

Tableau A- 16Sommes de contrôle

Nom	Numéro	Valeur
SI Identifiant de module Control Unit	r9670	<r9670_v></r9670_v>
SI Identifiant de module Power Module	r9672	<r9672_v></r9672_v>
SI Total de contrôle prescrit Paramètres SI (processeur 1)	p9799	<p9799_v></p9799_v>
SI Total de contrôle prescrit Paramètres SI (processeur 2)	p9899	<p9899_v></p9899_v>

Tableau A- 17Réglages de la fonction de sécurité

Nom			Valeur
SI Déblocage des fonctions intégrées à l'entraîr	SI Déblocage des fonctions intégrées à l'entraînement		<p9601_v></p9601_v>
Seulement pour la Control Unit CU250S-2	SI Déblocage commande sûre de frein	p9602	<p9602_v></p9602_v>
SI Adresse PROFIsafe		p9610	<p9610_v></p9610_v>
Commutation F-DI Temps de discordance		p9650	<p9650_v></p9650_v>
SI Temporisation antirebond STO		p9651	<p9651_v></p9651_v>
Seulement pour la Control Unit CU250S-2 SI Safe Stop 1 Temporisation		p9652	<p9652_v></p9652_v>
SI Dynamisation forcée Horloge		p9659	<p9659_v></p9659_v>
SI Dynamisation forcée STO via les bornes du PM Temps		p9661	<p9661_v></p9661_v>

Tableau A- 18Livre de bord Safety Integrated.

Nom	Numéro	Valeur
SI Contrôle des modifications Total de contrôle	r9781[0]	<r9781[0]_v></r9781[0]_v>
SI Contrôle des modifications Total de contrôle	r9781[1]	<r9781[1]_v></r9781[1]_v>
SI Contrôle des modifications Horodatage	r9782[0]	<r9782[0]_v></r9782[0]_v>
SI Contrôle des modifications Horodatage	r9782[1]	<r9782[1]_v></r9782[1]_v>

A.8 Informations complémentaires sur le variateur

A.8.1 Manuels pour le variateur

Tableau A- 19Manuels pour le variateur

Niveau de détail de l'information	Manuel	Contenu	Langues disponibles	Téléchargement ou numéro d'article
++	Notice de service SINAMICS G120C	Installation et mise en service du variateur.	anglais, alle- mand, italien,	Téléchargement (http://support.automation.sie
+++	Instructions de service	(ce manuel)	français, espagnol, chinois	mens.com/WW/view/fr/48213 081/133300) SINAMICS Manual Collection
+++	Description fonctionnelle Safety Integrated pour les variateurs SINAMICS G110M, G120, G120C, G120D et SIMATIC ET 200pro FC-2	Configuration de PROFIsafe. Installation, mise en service et utilisation des fonctions de sécurité du variateur.	anglais, alle- mand, chinois	Documentation sur DVD, numéro d'article 6SL3097-4CA00-0YG0
+++	Description fonctionnelle Bus de terrain pour les variateurs SINAMICS G120, G120C et G120D	Configuration des bus de terrain.		
+++	Manuel de listes SINAMICS G120C	Liste exhaustive des para- mètres, alarmes et défauts. Diagrammes fonctionnels graphiques.	anglais, alle- mand, chinois	
+	Instructions d'installation des inductances et des résistances de freinage	Installation des composants	anglais	
+++	Instructions de service des pupitres opérateur BOP-2 et IOP	Utilisation des pupitres opéra- teur, installation du kit de montage sur porte pour l'IOP.	anglais, alle- mand	

A.8.2 Aide à la configuration

Tableau A- 20Aide à la configuration et au choix du variateur

Manuel ou outil	Contenu	Langues disponibles	Téléchargement ou numéro d'article
Catalogue D 31	Références de commande et informations techniques des variateurs SINAMICS G	allemand, anglais, fran- çais, espa- gnol, italien	Tout savoir sur SINAMICS G120C (www.siemens.com/sinamics-g120c)
Catalogue en ligne (Industry Mall)	Références de commande et informations techniques de tous les produits SIEMENS	anglais, alle- mand	
SIZER	Le logiciel de configuration gé- nérique pour les entraînements de la famille d'appareils SINAMICS, MICROMASTER et DYNAVERT T, départs-moteur et automates SINUMERIK, SIMOTION et SIMATIC Techno- logy	anglais, alle- mand, italien, français	SIZER se trouve sur un DVD (numéro d'article : 6SL3070-0AA00-0AG0) et sur Internet : Téléchargement de SIZER (http://support.automation.siemens.com/W W/view/fr/10804987/130000)

A.8 Informations complémentaires sur le variateur

A.8.3 Support produit

Vous trouverez de plus amples informations sur le produit et bien plus sur Internet à l'adresse : Support produit (http://www.siemens.com/automation/service&support).

En plus de notre offre de documentation, vous trouverez sur ce site la totalité de notre savoir-faire en ligne. Dans le détail :

- des informations produit de dernière heure, FAQ (foire aux questions), téléchargements.
- notre lettre d'information (newsletter) vous informe en continu sur l'actualité de vos produits.
- Knowledge Manager recherche pour vous les documents qui vous intéressent.
- un forum permet aux utilisateurs et spécialistes du monde entier d'échanger leurs expériences.
- votre interlocuteur Automatisation & Drives sur place dans notre base de données des contacts, sous le mot-clé "Contact & Partenaire".
- des informations sur le service après-vente, les réparations, les pièces de rechange et bien d'autres sont mise à votre disposition dans la rubrique "Services".

Index

A	С
Affectation multiple	Câble USB, 33
Entrées TOR, 286	Canal de paramètres, 164
Affectation par défaut, 74	IND, 166
Affichage de l'économie d'énergie, 238	Capacité de surcharge, 371
Agitateur, 100, 109, 118, 124	Capteur (électromécanique), 417
Aide à la configuration, 425	Capteur électromécanique, 417
Alarme, 349, 353	Caractéristique
Alimentation, 369	autres, 206
Altitude d'implantation, 385	Linéaire, 206, 207
Application	Parabolique, 206, 207
Ecriture et lecture cycliques de paramètres via	Quadratique, 206, 207
PROFIBUS, 168	Caractéristique 87 Hz, 68, 68
Arrêt rapide, 136	Caractéristique linéaire, 206, 207
Arrêter	Caractéristique parabolique, 206, 207
Moteur, 136	Caractéristique quadratique, 206, 207
Ordre ARRET1, 136	Caractéristique U/f, 203
Ordre ARRET2, 136	Cartes mémoire, 30
Ordre ARRET3, 136	Catalogue, 425
Ascenseur, 251	Catégorie C1, 380
Assistance technique, 426	Catégorie C2, 380
Auto-optimisation, 269	Catégorie C3, 380
Autotest, 283	Catégorie C4, 379
,	CDS (Control Data Set), 183, 287, 287
	CEM, 36
В	Centrifugeuse, 100, 109, 118, 124, 242, 245
Danda da fránciana accultás 447 400	Charge de base, 372
Bande de fréquence occultée, 147, 193	Circuits de coupure, 283
BF (Bus Fault), 350, 350, 351, 351	Classification du comportement de CEM, 379
Binecteurs, 415	Client final, 421
Bloc, 414	Code d'alarme, 353
Bloc de données 47 (DS), 172	Code de défaut, 357
Bloc FCOM, 414	Cohérence, 280
Bloc logique de sécurité, 417 Blocage d'enclenchement, 137, 162, 174, 178	Commande à deux fils, 151, 151
BOP-2	Commande à trois fils, 151, 151
	Commande anticipatrice, 221
Menu, 405 Symboles, 405	Commande du moteur, 151
•	Commande du variateur, 135
Bornes de commande, 74 Bornier, 85, 138	Commande séquentielle, 136
	Commande U/f, 404
Réglage usine, 74 Bouton d'arrêt d'urgence, 275	Communication
Broche, 100, 109, 118, 124	Acyclique, 172
Broyeur, 100, 109, 118, 124	Communication acyclique, 172
Dioyoui, 100, 103, 110, 124	Communication inter-esclave, 172
	Commutateur DIP
	Entrée analogique, 144

Commutation des unités, 234 Commutation du jeu de paramètres, 287, 287 Compensation du glissement, 203 Comportement au démarrage Optimisation, 208, 209 Compresseur, 100, 109, 118, 124 Concasseur, 100, 109, 118, 124 Conducteur de protection, 61 Conducteur neutre, 61 Connecteurs, 415 Connexion des signaux, 414 Constructeur, 421 Contacteur réseau, 272	Deuxième environnement, 379 DI (Digital Input), 141 Directive européenne basse tension, 396 Directive européenne Machines, 396 Directive européenne relative à la compatibilité électromagnétique (CEM), 396 Discordance, 280 Filtres, 280 Temps de tolérance, 280 Distance minimale Au-dessus, 44 Côte à côte, 44 Devant, 44
Contresignatures, 422 Convoyeur à bande, 100, 109, 118, 124, 242 Convoyeur à chaîne, 100, 109, 118, 124 Convoyeur à rouleaux, 100, 109, 118, 124 Convoyeur horizontal, 227, 245, 247 Convoyeur incliné, 247 Convoyeur vertical, 247 Copier	En dessous, 44 Distances, 57 Download, 301 Drive Data Set, DDS, 292 Drive ES Basic, 33 Durée d'établissement, 100, 109, 119, 124 Dynamisation forcée, 283 Régler, 284
Mise en service de série, 289 Copier les paramètres (mise en service de série), 289 Couplage en étoile (Y), 68 Couplage en triangle (Δ), 68, 96 Couple de décollage, 404 Couple de serrage, 45 Coupure du réseau, 256 Courant de démarrage, 204 Courant de sortie de charge de base, 372 Courant d'entrée de charge de base, 372 Creux de commutation, 30 Creux de tension, 261	E EN 61800-5-2, 273 Engin de levage, 247, 251 Entrée analogique, 74 Fonction, 146, 146, 150 Entrée de courant, 144 Entrée de sécurité, 141 Entrée de tension, 144 Entrée TOR, 74, 151 Entrées TOR Affectation multiple, 286
D Déblocage des impulsions, 161, 174, 178 Déclassement Altitude d'implantation, 385 Fréquence de découpage, 386 Plage de température, 384 Tension, 384	Erreur de bus, 351 Estimateur de moment d'inertie, 218 Etats des signaux, 350 Extension fonctionnelle, 289 Extrudeuse, 100, 109, 118, 124, 227
Déclassement de courant, 386 Déclassement en fonction de la fréquence de découpage, 386 Défaut, 349, 357 Acquitter, 357, 358 Défluxage, 68 Descente, 404 Description de la machine, 421 Description de l'installation, 421 Dessins cotés, 44, 48, 52, 55, 58	FCC, 203 F-DI (Fail-safe Digital Input), 141 FFC (Flux Current Control), 206 Filtres Discordance, 280 Rebondissement de contact, 281 Test d'activation / de désactivation, 281 Firmware Mise à jour, 345

Fonction de sécurité, 135	Inductance réseau, 30
Fonction JOG, 157	Dessins cotés, 48, 52
Fonction Trace, 411	Industry Mall, 425
Fonctionnement, 137	Installation conforme à cUL, 67
Fonctionnement en charge partielle, 378	Installation conforme à UL, 67
Fonctionnement en génératrice, 240	Installations de distribution d'énergie, 61
Fonctions	Instructions de service, 424
BOP-2, 405	Interface USB, 114
Technologiques, 135	Interfaces de bus de terrain, 70
Vue d'ensemble, 135	Interrupteur à bilame, 228
Fonctions de base, 141	Inversion, 193
Fonctions de freinage, 240	Inversion du sens de marche, 151
Fonctions de protection, 135	ISO 9001, 396
Fonctions étendues, 141	
Formatage, 296	1
Four rotatif, 100, 109, 118, 124	J
Frein à l'arrêt du moteur, 249, 250, 251, 251, 272	Jeu de paramètres de commande, 183
Freinage combiné, 245, 246	Jeux de paramètres d'entraînement, 292
Freinage dynamique, 247	, , , , , , , , , , , , , , , , , , ,
Freinage par injection de courant	
continu, 243, 243, 243, 244	K
Fréquence de découpage, 226, 227, 386	167.1
	Kit de montage sur porte, 33
G	
Générateur de rampe, 193	L
Grandeurs de process du régulateur	LED
technologique, 236	BF, 350, 350, 351, 351
Grue, 251	LNK, 350
GSDML (Generic Station Description Markup	RDY, 350, 350
Language), 90	SAFE, 350
Language), 90	LED (Light Emitting Diode), 349
	Licence, 296
Н	Lissage, 199
	Lissage ARRET3, 199
Hacheur de freinage, 247	Liste de contrôle
Harmoniques, 30, 383	PROFIBUS, 92
High Overload, 371	PROFINET, 89
Historique des alarmes, 354	LNK (PROFINET Link), 350
Historique des défauts, 358	Logiciel de mise en service STARTER, 275
	Longueur de câble maximale
	PROFIBUS, 92
l	PROFINET, 90
Identification de la position des pôles, 224	Low Overload, 371
IDMot (identification des paramètres moteur), 105, 110	Low Overload, 37 1
Incident, 357	
IND (Indice de page), 166	M
Indice de page, 166	
Indice de page, 100 Indice de paramètre, 166	Maintien cinétique, 261
Inductance de sortie, 30	Malaxeur, 100, 109, 118, 124
Dessins cotés, 55	Manual Collection, 424
_ = ===================================	Manuel de listes 121

Manuels	EN 61800-3, 379, 380, 396
Accessoires pour variateur, 424	EN 61800-5-1, 396
Description fonctionnelle Safety Integrated, 424	ISO 9001, 396
Téléchargement, 424	SEMI F47-0706, 396
Vue d'ensemble, 424	Numéro de paramètre, 166, 408
Manutention, 122	Numéro de série, 421
Marche à suivre, 23, 23	
Masque de base (fonctions de base), 278, 279	
Mélangeur, 100, 109, 118, 124	0
Mémoire tampon des alarmes, 353	Optimisation du régulateur de vitesse, 213
Menu	Ordre OFF1, 151
BOP-2, 405	Ordre ON, 151
Pupitre opérateur, 405	Outil PC STARTER, 275
Méthode de freinage, 240, 241	Oddi i O OTAKTEK, 270
Mettre en marche	
Moteur, 136	P
Ordre MARCHE, 136	
Mise à jour	Paramètres de réglage, 403
Firmware, 345	Paramètres d'observation, 403
Mise à niveau du firmware, 340	Paramètres moteur, 96
Mise en marche du moteur avec le BOP-2, 405	Identifier, 105, 110, 213
Mise en route, 424	Mesurer, 105, 110
Mise en service	PC Connection Kit, 33
Accessoires, 33	Plan de perçage, 45, 48, 52, 55, 58
Guide, 95	Pompe, 100, 109, 118, 122, 124
Mise en service de série, 289, 295	Position des pôles, 224
MMC (carte mémoire), 296	Potentiomètre motorisé, 188
Mode automatique, 183	PotMot (potentiomètre motorisé), 188
Mode de fonctionnement, 421	Power Module
Mode manuel, 183	Dessins cotés, 44
Module d'émission TOR de sécurité, 417	Précision de couple, 100, 109, 119, 124
Montage, 35, 35, 43	Premier environnement, 379
Montée, 404	Prêt à enclencher, 137
Mot de commande	Prêt à fonctionner, 137
Mot de commande 1, 161, 174, 178	Procès-verbal de réception, 288
Mot de passe, 276	PROFIBUS, 92
Mot d'état	Programme AP, 422
Mot d'état 1, 163, 175, 179	Protection contre les surtensions, 30
Moteur synchrone 1FK7 sans capteur, 31, 220	Protection de savoir-faire, 296, 316
Motoréducteur synchrone 1FG1 sans capteur, 31	Protection en écriture, 314, 314
	Puissance de charge de base, 372 Pupitre opérateur
N	BOP-2, 33, 405
IN .	IOP, 33
Normalisation	Kit de montage sur porte, 33
Entrée analogique, 145	Menu, 405
Sortie analogique, 148	Portable, 33
Norme du moteur, 235	r ortable, oo
Normes, 396	
2006/95/CE, 396	Q
EN 60204-1, 396	
EN 61800-3, 379, 380, 396	Questions, 426
EN 61800-3, 379, 380, 396	

K	Schema electrique, 422
RDY (Ready), 350, 350	Scie, 242, 245
Rebondissement de contact, 281	SD (carte mémoire), 296
Réception, 288	Formatage, 296
Complète, 288	MMC, 296
Réduite, 289, 345	Sens de rotation, 193, 193
Rectifieuse, 242, 245	Signalisations d'état, 135
Redémarrage automatique, 256	Signaux cohérents, 280
Réglages d'usine, 128	Signaux de test, 281
Rétablissement des, 128, 129, 130, 132	SIZER, 425
Régulateur de courant maximal, 231	Sonde CTP, 228
Régulateur I-max, 231	Sonde de température moteur, 230
Régulateur PID, 266	Sonde KTY84, 228
Régulateur technologique, 236, 265	Sonde thermométrique, 74
Régulateur VDC min, 261	Sonde thermométrique du moteur, 74
Régulation de débit, 265	Sortie analogique, 74
Régulation de niveau, 265	Fonction, 149
Régulation de pression, 265	Sortie TOR, 74
Régulation de vitesse, 211	Fonction, 143
Régulation du courant d'excitation, 203	Source de commande, 135
Régulation du moteur, 135	Sélection, 403
Régulation vectorielle, 213	Source de consigne, 135
sans capteur, 211	Sélection de, 186, 187, 188
Réinitialisation	Sous-indice, 166
Paramètre, 128	Startdrive, 307
Paramètres, 129, 130, 132	STARTER, 33, 113, 275, 307
Remplacement	Téléchargement, 33, 33
Control Unit, 345	STO (Safe Torque Off), 272, 272
Matériel, 345	Sélectionner, 272
Moteur, 345	Test de réception, 419
Power Module, 345	STW1 (mot de commande 1), 161, 174, 178
Réducteur, 345	Support, 426
Reprise au vol, 254	Support de mémoire, 295
Réseau IT, 61	Suppression des impulsions, 161, 174, 178
Réseau TN, 61	Surcharge, 231, 404
Réseau TT, 61	Surélévation de tension, 203, 204, 208, 209, 404
Reset par Power On, 131	Surtension, 232, 232
Résistance de freinage, 30, 247	Surtension du circuit intermédiaire, 232
Dessins cotés, 58	Surveillance de court-circuit, 229
Distances, 57	Surveillance de la température, 225
Montage, 57	Surveillance de rupture de fil, 145, 229
Restauration d'une version antérieure du firmware, 342	Surveillance I2t, 225
Rotation antihoraire, 151	Symboles, 23
Rotation horaire, 151	Système d'unités, 236
Rupture de fil, 280	Systèmes industriels, 379
Nupture de III, 200	Systèmes publiques, 379
_	
S	Т
SAFE, 350	Tableau des fonctions 404
Safe Brake Relay, 284	Tableau des fonctions, 421
Sauvegarde des données, 295, 301, 307, 311, 422	Tampon des défauts, 357 Téléchargement, 308, 311

Température ambiante, 384 Temps de descente, 98, 199, 404 Normalisation, 201 Temps de descente ARRET3, 199 Temps de montée, 98, 199, 404 Normalisation, 201 Tension de service, 384 Tension du circuit intermédiaire, 232 Terminaison de bus, 70 Test d'activation / de désactivation, 281 Test de modèle de bits, 281 Test de réception, 288 Portée du test. 289. 345 STO (fonctions de base), 419 Thermocontacts, 228 Tôle de blindage, 44 Traitement des consignes, 135, 193 Transfert des données, 301, 307, 311 Type de régulation, 404 Type de réseau d'alimentation, 61 Types de paramètres, 403

U

Underwriters Laboratories, 396 Upload, 297, 307, 311 Utilisation conforme, 27

٧

Valeur d'alarme, 353 Valeur de défaut, 357 Valeur du paramètre, 408 Variateur Mise à jour, 345 Ne réagit pas, 346 Ventilateur, 100, 109, 118, 122, 124, 226 Version Firmware, 421 Fonction de sécurité, 421 Matériel, 421 Version de firmware, 397, 399, 400, 401, 403, 421 Vitesse Limiter, 193 Modifier avec le BOP-2, 405 Vitesse maximale, 98, 193, 404 Vitesse minimale, 98, 193, 196, 404 Vue d'ensemble Chapitre, 24 Manuels, 424 Vue d'ensemble des états, 136

Vue d'ensemble des fonctions, 135

Ζ

Ziegler Nichols, 270 ZSW1 (mot d'état 1), 163, 175, 179

Pour plus d'informations...

Variateur SINAMICS:

www.siemens.com/sinamics

Safety Integrated:

www.siemens.com/safety-integrated

PROFINET:

www.siemens.com/profinet

Siemens AG Digital Factory Motion Control Postfach 3180 91050 ERLANGEN ALLEMAGNE Sous réserve de modifications © Siemens AG 2011-2015

> Pour plus d'informations sur SINAMICS G120C, scanner le code QR.

