SIEMENS

General Information About Block Description	1
Family: CONTROL	2
Family: @System	3
Internal block	4
Appendix	5

SIMATIC

Process Control System PCS 7 PCS 7 Basis Library V8.0

Function Manual

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the relevant information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by [®] are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG Industry Sector Postfach 48 48 90026 NÜRNBERG GERMANY Copyright © Siemens AG 2011. Technical data subject to change

Table of contents

1	Genera	I Information About Block Description	9
2	Family:	CONTROL	13
	2.1	FM_CO: Coordination of function blocks which read data records	13
	2.1.1	Description of FM_CO	13
	2.1.2	I/Os of FM_CO	16
3	Family:	@System	17
	3.1	CONEC: Monitoring the AS connection status	17
	3.1.1	Description of CONEC	17
	3.1.2	I/Os of CONEC	20
	3.1.3	Message texts and associated values of CONEC	21
	3.2	CPU_RT: Determination of the runtime of OBs	23
	3.2.1	Description of CPU_RT	23
	3.2.2	I/Os of CPU_RT	29
	3.3	DIAG_AB: Evaluation of statusword AB7000	31
	3.3.1	Description of DIAG_OB	31
	3.3.2	I/Os of DIAG_AB	33
	3.4	DPAY_V0: Monitoring DP/PA and Y-Link operating as V0 slave	34
	3.4.1	Description of DPAY_V0	34
	3.4.2	I/Os of DPAY_V0	39
	3.4.3	Message texts and associated values of DPAY_V0	41
	3.5	DPAY_V1: Enabling blocks downstream of a DP/PA and Y-Link operating as V1 slave	42
	3.5.1	Description of DPAY_V1	42
	3.5.2	I/Os of DPAY V1	45
	3.6 3.6.1 3.6.2	DPDIAGV0: Monitoring the status of ET 200S modules acting as DPV0 slaves after the Y link Description of DPDIAGV0 I/Os of DPDIAGV0	46 46 49
	3.7	DREP: Diagnostic Repeater in the DP master system	50
	3.7.1	Description of DREP	50
	3.7.2	I/Os of DREP	55
	3.7.3	Message texts and associated values of DREP	57
	3.8	DREP_L: Diagnostic Repeater downstream of a Y-Link	59
	3.8.1	Description of DREP_L	59
	3.8.2	I/Os of DREP_L	64
	3.8.3	Message texts and associated values of DREP_L	66
	3.9	FFD_CIF: Monitoring FF slaves in CIF mode	68
	3.9.1	Description of FFD_CIF	68
	3.9.2	I/Os of FFD_CIF	70
	3.9.3	Message texts and associated values of FFD_CIF	72

3.10	FFDP_L1: Monitoring FF slaves with maximum 32 values	73
3.10.1	Description of FFDP_L1	73
3.10.2	I/Os of FFDP_L1	75
3.11	FF_MOD32: Diagnostics of an FF slave (downstream from FF link DPV1)	77
3.11.1	Description of FF_MOD32	77
3.11.2	I/Os of FF_MOD32	79
3.11.3	Message texts and associated values of FF_MOD32	81
3.12	FM_CNT: Programming and controlling FM 350 modules	82
3.12.1	Description of FM_CNT	82
3.12.2	I/Os of FM_CNT	86
3.12.3	Message texts and associated values of FM_CNT	88
3.13	IMDRV_TS: Transferring time-stamped process-signal changes	89
3.13.1	Description of IMDRV_TS	89
3.13.2	I/Os of IMDRV_TS	94
3.13.3	Message texts of IMDRV_TS	96
3.14	MOD_1: Monitoring up to 16 channels on S7-300/400 SM modules without diagnostic capability	97
3.14.1	Description of MOD_1	97
3.14.2	I/Os of MOD_1/MOD_2	. 101
3.14.3	Message texts and associated values of MOD_1/MOD_2/MOD_3/MOD_64	. 103
3.15	MOD_2: Monitoring 32 channels on S7-300/400 SM modules without diagnostic capability	. 104
3.15.1	Description of MOD_2	. 104
3.15.2	I/Os of MOD_1/MOD_2	. 108
3.15.3	Message texts and associated values of MOD_1/MOD_2/MOD_3/MOD_64	. 110
3.16	MOD_3: Monitoring up to 16 channels on S7-200/300/400 SM modules without diagnostic capability	. 111
3.16.1	Description of MOD_3	. 111
3.16.2	I/Os of MOD_3	. 115
3.16.3	Message texts and associated values of MOD_1/MOD_2/MOD_3/MOD_64	. 117
3.17	MOD_4: Monitoring ET 200S modules downstream of a Y-Link	. 118
3.17.1	Description of MOD_4	. 118
3.17.2	I/Os of MOD_4	. 122
3.17.3	Message texts and associated values of MOD_4	. 124
3.18	MOD_64: Monitoring 64 channels on S7-300 SM modules without diagnostic capability	. 125
3.18.1	Description of MOD_64	. 125
3.18.2	I/Os of MOD_64	. 129
3.18.3	Message texts and associated values of MOD_1/MOD_2/MOD_3/MOD_64	. 131
3.19	MOD_CP: CP 341/441 diagnostics	. 132
3.19.1	Description of MOD_CP	. 132
3.19.2	I/Os of MOD_CP	. 136
3.19.3	Message texts and associated values of MOD_CP	. 138
3.20	MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions	. 139
3.20.1	Description of MOD_D1	. 139
3.20.2	I/Os of MOD_D1/MOD_D2	. 146
3.20.3	Message texts and associated values of MOD_D1	. 148

3.21	MOD_D2: Monitoring up to 32 channels of S7-300/400 SM modules with diagnostic	450
3.21.1	Description of MOD_D2	150
3.21.2	I/Os of MOD D1/MOD D2	156
3.21.3	Message texts and associated values of MOD_D2	158
3.22	MOD_D3: Monitoring of hybrid modules with diagnostic capability	161
3.22.1	Description of MOD_D3	161
3.22.2	I/Os of MOD_D3	169
3.22.3	Message texts and associated values of MOD_D3	171
3.23	MOD_DRV: Monitoring of drive blocks with diagnostics functions	173
3.23.1	Description of MOD_DRV	173
3.23.2	I/Os of MOD_DRV	1/5
3.23.3	Message texts and associated values of MOD_DRV	177
3.24	MOD_HA: Monitoring device-specific diagnostics of HART field devices	178
3.24.1	Description of MOD_HA	178
3.24.2	I/Os of MOD_HA	185
3.24.3	Message texts and associated values of MOD_HA	187
3.25	MOD_MS: Monitoring up to 16 channels on ET200S/X motor starter modules with	
0 0 T /	diagnostic functions	189
3.25.1		189
3.25.2 3.25.2	I/US OF MOD_MS	194
5.25.5		190
3.26	MOD_SWT: Monitoring of Switch blocks with diagnostics functions	198
3.26.1	Description of MOD_SW1	198
3.26.2	I/US OT MOD_SW1	200
3.20.3		202
3.27	MOD_PAL0: Diagnosing a DPV0 PA slave (via DP/PA coupler downstream of a DP/PA	202
3 27 1	MIK DEV I)	203 203
3 27 2	I/Os of MOD_PALO	206
3.27.3	Message texts and associated values of MOD_PAL0	208
2 20	MOD_BAX0: Diagnosting a DDV/0 BA clove (via DD/BA coupler with connection to a DD	
3.20	mod_PAX0. Diagnosing a DPV0 PA slave (via DP/PA coupler with connection to a DP master system)	210
3 28 1	Description of MOD_PAX0	210
3.28.2	I/Os of MOD_PAX0	213
3.28.3	Message texts and associated values of MOD_PAX0	215
3 29	OB BEGIN: CPU Diagnostics and AS Connection Diagnostics	217
3 29 1	Description of OB BEGIN	217 217
3.29.2	I/Os of OB BEGIN	
3.29.3	Message texts and associated values of OB_BEGIN	224
3 30	OB DIAG1: OB diagnostics for avoiding stoppages in DPV/1 master systems	228
3.30 1	Description of OB DIAG1	220
3.30.2	I/Os of OB DIAG1	232
3.30.3	Message texts and associated values of OB_DIAG1	234

3.31	OB_DIAGF: Monitoring of the FF link and coupler	235
3.31.1	Description of OB_DIAGF	235
3.31.2	I/Os of OB_DIAGF	237
3.31.3	Message texts and associated values of OB_DIAGF	239
3.32	OB_END: Reset stack pointer of OB_BEGIN	240
3.32.1	Description of OB_END	240
3.32.2	I/Os of OB_END	242
3.33 3.33.1 3.33.2	OR_32_TS: OR value status of two redundant time-stamped signal modules, max. 32 channels Description of OR_32_TS	243 243 245
3.34	OR_HA16C: OR value status of 2 redundant HART modules, max. 16 channels, module granular	247
3.34.1	Description of OR_HA16C	247
3.34.2	I/Os of OR_M_8C / OR_M_16C / OR_M_32C / OR_HA16C	250
3.34.3	Message texts and associated values of OR_HA16C	253
3.35	OR_M_16C: OR value status of 2 redundant signal modules, max. 16 channels, channel granular	256
3.35 1	Description of OR M_16	256
3.35.2	I/Os of OR_M_8C / OR_M_16C / OR_M_32C / OR_HA16C	257
3.35.3	Message texts and associated values of OR_M_16C	260
3.36 3.36.1	OR_M_32C: OR value status of 2 redundant signal modules, max. 32 channels, channel granular Description of OR_M_32C	263
3.36.2	I/Os of OR_M_8C / OR_M_16C / OR_M_32C / OR_HA16C	264
3.36.3	Message texts and associated values of OR_M_32C	267
3.37	OR_M_8C: OR value status of 2 redundant signal modules, max. 8 channels, channel	272
3.37.1	Description of OR M 8C	272
3.37.2	I/Os of OR_M_8C / OR_M_16C / OR_M_32C / OR_HA16C	275
3.37.3	Message texts and associated values of OR_M_8C	278
3.38 3.38.1	PADP_L0x: Monitoring DP/PA slaves Description of PADP_L00	280
3.38.2 3.38.3 3.38.4	I/Os of PADP_L00/PADP_L01/PADP_L02. Message texts and associated values of PADP_L00 Description of PADP_L01.	284 286 287
3.38.5	Message texts and associated values of PADP_L01	291
3.38.6	Description of PADP_L02	293
3.38.7	Message texts and associated values of PADP_L02	297
3.39	PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots	299
3.39.1	Description of PADP_L10	299
3.39.2 3.40	PDM_MS: Monitoring of the maintenance status	305 307
3.40.1	Description of PDM_MS	307
3.40.2	I/Os of PDM_MS	308
3.40.3	Message texts and associated values of PDM_MS	309

3.41 3.41.1	PO_UPDAT: Output Process Image	310
0.40		
3.42	PS: Power supply monitoring	311
3.42.1		311
3.42.2	I/US of PS	314
3.42.3	Message texts and associated values of PS	315
3.43	RACK: Rack monitoring	316
3.43.1	Description of RACK	316
3.43.2	I/Os of RACK	320
3.43.3	Message texts and associated values of RACK	322
3 44	RED E: Status processing of redundant E modules	323
3 44 1	Description of RED_F	
3 44 2	I/Os of RED_F	325
3.45	PROFINET blocks	326
3.45.1	OB_BEGIN_PN: CPU diagnostics	326
3.45.1.1	Description of OB_BEGIN_PN	326
3.45.1.2	I/Os of OB_BEGIN_PN	326
3.45.1.3	Message texts and associated values of OB_BEGIN_PN	328
3.45.2	SUBNET_PN: Reduction of acyclic OB processing times	332
3.45.2.1		33Z
3.45.2.2	I/US OF SUBINE I_PN	33∠ ^224
3.43.Z.3	RACK DN: Reak manitoring	334 226
3.45.3	Description of DACK DN	
3.45.3.1		336
3/533	Message texts and associated values of RACK_PN	
3 45 4	MOD_D8_PN: Monitoring S7-300 SM modules with up to 8 channels and with diagnostics	
0.10.1	functions	
3.45.4.1	Description of MOD_D8_PN	340
3.45.4.2	I/Os of MOD D8 PN/MOD D16 PN/MOD D24 PN	340
3.45.4.3	Message texts and associated values of MOD D8 PN/MOD D16 PN/MOD D24 PN	342
3.45.5	MOD D16 PN: Monitoring S7-300 SM modules with up to 16 channels and with	-
	diagnostics functions	346
3.45.5.1	Description of MOD_D16_PN	346
3.45.5.2	I/Os of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN	346
3.45.5.3	Message texts and associated values of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN	348
3.45.6	MOD_D24_PN: Monitoring S7-300 SM modules with up to 24 channels and with	
	diagnostics functions	352
3.45.6.1	Description of MOD_D24_PN	352
3.45.6.2	I/Os of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN	352
3.45.6.3	Message texts and associated values of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN	354
3.45.7	MOD_HA_PN: Monitoring Device-Specific Diagnostics of HART Field Devices	358
3.45.7.1	Description of MOD_HA_PN	358
3.45.7.2	I/Os of MOD_HA_PN	358
3.45.7.3	Message texts and associated values of MOD_HA_PN	360
3.45.8	MOD_CP_PN: Monitoring of serial communication modules	362
3.45.8.1		362
3.45.8.2	I/US OT MUD_UP_PN	362
3.45.8.3	wessage texts and associated values of MOD_CP_PN	364

	3.45.9	PADP_L10_PN: Monitoring PA slaves downstream of DPV0 with up to 16 slots	366
	3 45 9 2	Description of PADP_LT0_PN	300
	3.45.10	OB DIAG1 PN: OB diagnostics for avoiding stoppages in DPV1 master systems	368
	3.45.10	1 Description of OB_DIAG1_PN	368
	3.45.10	2 I/Os of OB_DIAG1_PN	368
	3.45.10	.3 Message texts and associated values of OB_DIAG1_PN	370
	3.45.11	DPAY_V1_PN: Enabling blocks downstream of a DP/PA and Y-link operating as a V1	274
	3 45 11	1 Description of DPAY V/1 PN	371
	3.45.11	2 I/Os of DPAY_V1_PN	371
	3 46	SUBNET: DP master system monitoring	373
	3.46.1	Description of SUBNET	373
	3.46.2	I/Os of SUBNET	377
	3.46.3	Message texts and associated values of SUBNET	379
4	Internal	block	381
	4.1	ChkREAL: Internal Block	381
	4.2	QC_CHNG: Internal block	381
5	Append	ix	383
	5.1	"Blocks - basic library" technical data	383
	5.2	MODE settings for FF devices	386
	5.3	MODE settings for SM modules	387
	5.4	OMODE settings for SM modules	396
	5.5	MODE settings for PA devices	397
	5.6	Error Information of Output Parameter MSG_STAT	398
	5.7	Addressing	399
	5.8	Message Classes	401
	5.9	Dependencies	402
	5.10	Status displays	403
	5.10.1	Maintenance Status of MS	403
	5.10.2	Status Display for Redundant Components [Asset]	406
	5.10.5		
	5.11	Text libraries	416
	5.11.1 5.11.2	Text Library for PADP 100 PADP 101 PADP 102	410
	5.11.3	Text Library for DREP. DREP L	416
	5.11.4	Text library for MOD_1, MOD_2, MOD_3, MOD_64, MOD_D2, MOD_CP	417
	5.11.5	Text Library for MOD_D1	419
	5.11.6	Text library for MOD_D3	421
	5.11.7 5 1 1 9	Lext Library for MOD_MS	424
	0.11.0		420
	maex		421

General Information About Block Description

The setup of the block description is always uniform and contains the following sections:

Header of the block description

Example: CTRL_PID: PID controller block

The header begins with the type name of the block (e.g., ""CTRL_PID"). This symbol name is entered in the symbol table and must be unique within the project. In addition to the type name, you will also see a keyword indicating the purpose or function of the block (e.g., "PID controller block").

Object name (type + number)

FB x

The object name for the block type is made up of the type of implementation (function block = FB, function = FC) and the block number = x.

Links for displaying block I/Os

Example:

CTRL_PID block I/Os

Click the "Block I/Os" link to display a list of block I/Os for the designated block.

Links for displaying the block icon and faceplate

If the block is intended for operator control and monitoring and a block icon and faceplate exist, the corresponding image and description can be displayed directly by clicking these links.

Example:

- CTRL_PID block icon
- CTRL_PID faceplate

Function

Here, you will find a brief description of the block function. You will find additional information about complex blocks in the "How it works" section.

How it works

Here, you will find more detailed information, for example about the function of specific inputs, operating modes or time sequences. You must be familiar with these relationships in order to use the block effectively.

Calling OBs

Here you will find information on the organization blocks (OBs), in which the described block must be installed. If the CFC is used, the block is automatically installed in the cyclic OB (cyclic interrupt) and in the OBs listed in the block's task list (for eample in restart OB100).

CFC generates the required OBs during compilation. If you use the blocks without CFC, you will have to program these OBs and call their instance within the blocks.

Error handling

The **ENO** Boolean block output indicates the error in the CFC chart. The value is equivalent to the **BIE** (binary result in STEP 7 STL, after completion of the block) or **OK** bit (in SCL notation) and indicates:

ENO = BIE = OK = 1 (TRUE) -> The result of the block is free of errors.

ENO = BIE = OK = 0 (FALSE) -> Invalid result or constraints (for example, input values and modes).

The FBs also return the inverted BIE at the **QERR** output of the instance DB.

QERR = NOT ENO

The error message is generated in two separate operations:

- The operating system detects a processing error (e.g. value overflow, system functions called return an error ID with BIE = 0).
 - This is a system function and is not specifically mentioned in the block description.
- The block algorithm checks for functional invalidity of values and operating modes. These error events are logged in the block description.

You can evaluate the error display, for example, to generate messages or use substitute values for invalid results. You will find more information about messages in the "Message blocks" section.

Startup characteristics

The different startup behaviors are as follows:

Initial start

The block is called for the first time from the OB in which it has been inserted. This is usually the OB that performs the standard, process-specific operations (for example, the cyclic interrupt OB).

The block adopts a status that conforms to its input parameters. These may be default values (additional information in "I/Os" section) or values you have already configured, for example, in CFC. The initial startup characteristics are not described separately unless the block does not conform to this rule.

• Startup

The block is executed once during CPU startup. The block is called in the startup OB (where it is additionally installed either automatically in the ES or manually in STEP 7). In this case, the startup characteristics are described.

Please note that the block outputs have default values and that these can take effect during the CPU startup with other blocks, if these are processed first.

The correct startup behavior of the blocks is the responsibility of the configuration engineer.

Time response

A block assigned this function must be installed in a cyclic interrupt OB. It calculates its time constants/parameters on the basis of its sampling time (the time which elapses between two consecutive cyclic operations).

In a CFC configuration on ES, the sampling time is also determined by the segmentation of the runtime group, which ensures that the block is not executed during every OB run.

This sampling time is entered at the I/Os, in the SAMPLE_T parameter.

When configuring with CFC, this occurs automatically once the block has been inserted in the OB and the runtime group. For this reason, this input is set to invisible in CFC.

During the STEP 7 configuration, you set the time response manually.

Time response is mentioned only if the block has been assigned this feature.

Message response

A block with message response reports various events to the higher level OS. Existing parameters required for the generation of messages are documented.

Blocks without message response can be expanded with additional message blocks. A reference to the message response is found in the description of the individual message blocks.

I/Os

The I/Os of the block represent its data interface. These I/Os can be used either to transfer data to the block or to fetch results from the block.

I/O (parameter)	Meaning	Data type	Default
U1	Addend 1	REAL	0

The "I/O" table lists all I/O parameters of the block type. You can access these lists using the engineering tools. They are in alphabetical order. Elements accessible only via the block algorithm (internal variables) are not listed.

The meaning of the columns is as follows:

• I/O

Name of the parameter, derived from the English, e.g. PV_IN = **P**rocess Variable **IN**put (process variable, controlled variable).

The SIMATIC naming conventions have been applied.

The block representation in CFC as supplied is as follows: I/O name in **bold** characters = I/O is visible, regular = I/O is invisible.

Meaning

Function (possibly also short description)

• Data type

S7 data type of the parameter (BOOL, REAL, etc.)

• Default (default value)

The value of the parameter before the block runs for the first time (unless changed in the configuration)

Family: CONTROL

2.1 FM_CO: Coordination of function blocks which read data records

2.1.1 Description of FM_CO

Object name (type + number)

FB 79

• FM_CO block I/Os (Page 16)

Function

The block coordinates the data record reading of the blocks

Block	Library	Module
FM_CNT	PCS 7 Basic Library	FM350-1, FM350-2
FMCS_PID	PCS 7 Library	FM355
FMT_PID	PCS 7 Library	FM355-2
REAS355P	PCS 7 Library	FM355, FM355-2
FmCont	PCS 7 APL	FM355
FmTemp	PCS 7 APL	FM355-2

The block is installed and the parameters interconnected by the driver generator.

Block	Configuration of the coordination number	Interconnections between FM_CO and the data record reading instance: FM_CO - DS reading instance
FM_CNT, FMCS_PID	CO_NO	EN_CO_x <-> EN_CO
FM_PID, READ355P	CO_NO	ENCOx_yy <-> ENCO
FmCont, FmTemp	CoordNo	EN_CO_x <-> EnCoord ENCOx_yy <-> EnCoNum

Where:

x = Sequence of data record reading blocks (0 to 7)

yy = Coordination number within a sequence (0 to 63)

It is possible to include data record reading blocks of other modules in the coordination.

Family: CONTROL

2.1 FM_CO: Coordination of function blocks which read data records

How it works

The FM_CO block can start a maximum of 8 block sequences.

The blocks connected to the output structure EN_COx check whether the current coordination number (EN_COx.CO_ACT) corresponds to their own coordination number (CO_NO/CoordNo). If this is the case, they read their data records from the module and reduce the coordination number EN_COx.CO_ACT by 1, so that the next block can read out its data records.

If the current coordination number of a sequence (EN_COx.CO_ACT) has a value less than 1, the FM_CO block determines the highest number assigned in sequence x based on its inputs ENCOx_yy. The data reading blocks supply the inputs ENCOx_yy with their respective coordination number via an interconnection. The highest coordination number is the number for which ENCOx_yy = yy still applies. The FM_CO module restarts the sequence in which it sets EN_COx.CO_ACT to this value.

This algorithm ensures that no more than one read data record operation ever takes place at any given time within the block sequence.

Calling OBs

The fastest cyclic interrupt OB of all OBs in which you have installed data reading block instances and OB100 as well.

Use in CFC

When using the CFC function "Generate Module Drivers", the block is automatically installed and the connections, such as those described under "Installation regulation" are made.

If you install, delete or move blocks of an existing block sequence in other OBs or runtime groups, the driver generator must be called.

Should the sequence not start up as expected (after CPU restart) or not continue to run (after downloading changes), you must set ACC_ID to 1.

Installation rules/capacity

One FM_CO is responsible for one DP master system and has 8 sequences with data record reading block instances that are coordinated in parallel. The first block sequence contains instances of the data recording reading blocks that relate to the DP slaves 1, 9, 17 and so on. The second block sequence contains instances of the data recording reading blocks that relate to the DP slaves 2, 10, 18 and so on. The same principle applies to the remainder of the eight block sequences.

Note

When an instance is added to a sequence by a data recording reading block, the sampling time of all instances in the sequence increases. If, for example, an instance from DP slave 9 is added to the sequence 1, then the sampling time of all instances of sequence 1 increases including the instances from DP slave 1.

2.1 FM_CO: Coordination of function blocks which read data records

Block Data record reading channels		Module
FM_CNT One instance of FM_CNT is required for each module. 4 channels are read with one data record read operation per cycle		FM350-1, FM350-2
FMCS_PID, FMT_PID, FmCont, FmTemp	The module has 4 controller channels. One channel is read with one data record read operation per cycle.	FM355, FM355-2
READ355P Certain process values of all 4 channels are read with one data record read operation per cycle.		FM355, FM355-2

A sequence may contain up to 63 data recording reading instances of the following blocks:

The FM_CO must always be installed before the first data record reading instance in the fastest cyclic interrupt OB. The output structure EN_COx for the DP slave is connected to the input structures EN_COx or EnCoord of all data record reading instances that communicate with the controller modules of rack x. The output ENCO or EnCoNum of each data record reading instance is connected to an input ENCOx_yy (yy corresponds to the coordination number CO_NO or CoordNo assigned to each data recording reading instance) of the FM_CO block.

The selection of the cyclic interrupt OB depends on the CPU load. Note that the CPU has no reserves for other "Read data record" jobs if operating with eight or more DP slaves because only eight jobs can be buffered per DP master system. Simply inserting a module would lead to an overflow. It is advisable to operate only up to six DP slaves on a DP master system. The remaining DP slaves must be distributed on other DP master systems with further FM_CO blocks.

When selecting the cyclic OB, remember that the new data will be available at the earliest after two cycles. Make sure that the maximum runtime of this OB does not have any negative impact on overall system runtime as a result of the number of blocks installed. If the data recording reading block instances to be processed exceed the runtime limit, group the DP slaves with the FM350/FM355 modules in fast and slow control loops.

Startup characteristics

EN_CO_x.CO_ACT = 1 is set at all outputs during startup (restart).

Time response

Not available

Message functionality

Not available

2.1 FM_CO: Coordination of function blocks which read data records

2.1.2 I/Os of FM_CO

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name in **bold** characters = I/O is visible; I/O name in regular characters = I/O is invisible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
ENCOx_yy	The coordination number yy is assigned in the rack x if the input has the value yy (x = $0 - 7$, yy = $1 - 64$)	BYTE	0

Output parameters

I/O (parameter)	Meaning	Data type	Default
EN_CO_x	Coordination number of the block that can read data records	STRUCT	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_ID	Restart all sequences	BOOL	1

Family: @System

3.1 CONEC: Monitoring the AS connection status

3.1.1 Description of CONEC

Object name (type + number)

FB 88

• CONEC Block I/Os (Page 20)

Area of application

The CONEC block monitors the status of AS connections, and reports the associated error events.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 100	Warm restart
--------	--------------

Use in CFC

With the "Generate module drivers" CFC function, the CONEC block is automatically installed in the OBs listed above.

Function and method of operation

The CONEC block generates messages which are output at ALARM_8P to WinCC (see "Message response"). For connection diagnostics, SFC 87 (C_DIAG) is called every 10 seconds in the cyclic interrupt OB (OB 32). Up to 128 connections are monitored.

Note

The messages "Failure or loss of redundancy connection ID" are generated by each CPU of the two connected AS except when the CPU of an AS fails (or both H-CPUs). The connection ID determines whether a message is output. If the connection ID >= 16#C00, **no** message is generated.

Generation of the maintenance status MS

If any connection in the CONEC block is detected as having failed, the "Maintenance alarm" maintenance status is output.

If any connection in the CONEC block is detected as a redundancy loss, the "Maintenance request" maintenance status is output.

If in the CONEC block the messages are disabled via the parameter EN_MSG, then the maintenance status "Unchecked / Unknown" will be output.

Error handling

Error handling for the block is limited to the evaluation of the error information of ALARM_8P. You will find more information in the

"Error Information of Output Parameter MSG_STAT" (Page 398) section.

Startup characteristics

The CONEC block initializes the messages of ALARM_8P.

If there is a CPU with SFC 87, connection diagnostics is initialized. After this, there is a wait time of approx. 1 minute in the cyclic interrupt OB before the connection diagnostics messages are generated.

Overload behavior

Not available

Time response

For additional information, refer to "Message response".

Message response

The block generates the following messages in the OBs listed below:

ОВ	Start Event	Message
OB 32	1 sec. cyclic interrupt or alternative cyclic interrupt OB	Failure connection ID: xx incoming/outgoing Loss of redundancy connection ID: xx entering/exiting state

If EN_MSG = FALSE, messaging is disabled.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of CONEC (Page 21)

Maintenance status of MS (Page 403)

3.1.2 I/Os of CONEC

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
EN_MSG	1 = Enable message	BOOL	1
EV_IDx	Message number for ALARM_8P_x	DWORD	0
	(x = 1 - 16, assigned by the ES)		
MS	Maintenance status	DWORD	0
SAMPLE_T	Sampling time OB in seconds	REAL	1.0

Output parameters

I/O (parameter)	Meaning	Data type	Default
MSGSTATx	STATUS output of ALARM_ $8P_x$ (x = 1 - 16)	WORD	0
O_MS	Maintenance status	DWORD	0
QMSGERx	Error output of ALARM_8P_x (x = $1 - 16$)	BOOL	0

Additional information

For additional information, refer to the following sections:

Message texts and associated values of CONEC (Page 21)

Maintenance status of MS (Page 403)

3.1.3 Message texts and associated values of CONEC

Assignment of message text and message class

Message block ALARM_8P	Message number	Default message text	Message class (Page 401)
EV_ID1 to EV_ID8	1	Failure connection ID: 16#@1%X@	S
	2	Failure connection ID: 16#@2%X@	S
	3	Failure connection ID: 16#@3%X@	S
	4	Failure connection ID: 16#@4%X@	S
	5	Failure connection ID: 16#@5%X@	S
	6	Failure connection ID: 16#@6%X@	S
	7	Failure connection ID: 16#@7%X@	S
	8	Failure connection ID: 16#@8%X@	S
EV_ID9 to EV_ID16	1	Loss of redundancy connection ID: 16#@1%X@	F
	2	Loss of redundancy connection ID: 16#@2%X@	F
	3	Loss of redundancy connection ID: 16#@3%X@	F
	4	Loss of redundancy connection ID: 16#@4%X@	F
	5	Loss of redundancy connection ID: 16#@5%X@	F
	6	Loss of redundancy connection ID: 16#@6%X@	F
	7	Loss of redundancy connection ID: 16#@7%X@	F
	8	Loss of redundancy connection ID: 16#@8%X@	F

Assignment of associated values

The process control messages are generated by ALARM_8P with EV_ID1 to EV_ID16 with 8 associated values. The table below shows how the associated values are assigned to the block parameters.

Message block ALARM_8P	Associated value	Block parameter	Data type
EV_ID1 EV_ID16	1	Connection_ID 1+x	WORD
	2	Connection_ID 2+x	WORD
	3	Connection_ID 3+x	WORD
	4	Connection_ID 4+x	WORD
	5	Connection_ID 5+x	WORD
	6	Connection_ID 6+x	WORD
	7	Connection_ID 7+x	WORD
	8	Connection_ID 8+x	WORD

x = 0 for EV_ID1, x = 8 for EV_ID2, x = 16 for EV_ID3 etc. to x = 56 for EV_ID8 x = 0 for EV_ID9, x = 8 for EV_ID10, x = 16 for EV_ID11 etc. to x = 56 for EV_ID16

Family: @System

3.2 CPU_RT: Determination of the runtime of OBs

3.2 CPU_RT: Determination of the runtime of OBs

3.2.1 Description of CPU_RT

Object name (type + number)

FB 128

• CPU_RT block I/Os (Page 29)

Area of application

The CPU_RT block is installed by the CFC in OB 100, OB 1, in all OB 3x as well as OB 8x, if this is used by the user program.

The CPU_RT determines the runtime of the individual OBs and their participation in the cycle time. If there is CPU overload (OB 80 cycle time exceeded), it instigates suitable actions selected by the user in limits to ensure operability of the AS.

This situation is designated as emergency operation and is made clearly visible by a process control message. Buffered start events (OB 3x still executing) are also detected and displayed. The loss of start events is reported as error.

Use in CFC

During compilation of the CFC, a chart is automatically created with the name @CPU_RT. The CPU_RT block is already included in it.

Note

Never attempt to insert the CPU_RT block in a different block because it is a system block.

3.2 CPU_RT: Determination of the runtime of OBs

Function and method of operation

At CPU restart and when downloading changes the slowest OB 3x is determined with SZL ID 822 (data records of all assigned alarms of an alarm class).

Note: The slowest cyclic OB 3x (slowest OB) must also have the lowest priority set so that a useful analysis is possible.

In OB-BEGIN, if there are implausible settings, a message EV_ID2 signal 3 "Priorities of cyclic OBs do not conform to PCS 7" is output and the maintenance status (MS is set to "Maintenance demand" = 16#0000005).

SFC78 is used to determine the OB runtimes. If it is not present, no warning limit will be output as a message.

Note

Older CPUs do not support SFC78. Use SSL112 to check whether SFC78 is available.

Note

The status of CPU_RT is reset when you download.

Behavior at higher CPU load

If the average value of all net runtimes (in % of OB 3x, OB 8x + OB 1) exceeds the value MAX_LIM, then in OB_BEGIN, the message EV_ID2- signal 1 "Net time consumption of all OBs exceeds max limit" is output.

The maintenance status MS is set to "Maintenance demand" = 16#00000005 in OB_BEGIN.

The message and MS are cleared with a value less than MAX_LIM – HYS.

Behavior in the event of OB request errors

If a programmable number of these OB 3x events has been exceeded or if an OB 1 event is detected without an OB 1 having been processed, the message EV_ID3 – Signal 2 "OB request: OB 3x still being processed" is output in OB_BEGIN. The number of OB 3x events can be set at the input "N_REG_ERR"; the default value = 4.

The maintenance status MS is set to "Uncertain maintenance demanded" = 16#00000006 in OB_BEGIN.

If an OB 1 is then run through again, the MS is reset and this process control message will be marked as "outgoing".

In the faceplate of OB_BEGIN, there is a display of the request error for each OB 3x. The first occurrence of a request error is be displayed. These displays can be reset with the reset key.

Family: @System

3.2 CPU_RT: Determination of the runtime of OBs

Behavior when the maximum cycle time is exceeded

If the maximum cycle time is exceeded, a message EV_ID3 – Signal 1 "Cycle time exceeded: @1d@ OB@2d@" is output.

The maintenance status MS is set to "Bad or maintenance alarm" = 16#00000007 in OB_BEGIN.

If an OB 1 is then run through again, the MS is reset and this process control message will be marked as "outgoing".

Behavior to prevent stop

If the cycle time is exceeded twice without an OB 1 being processed, this results in **Emergency Operation** with stop avoidance activated. The process control message EV_ID1 – Signal 3 "Emergency operation, cycl. OBs will be reduced" will be output.

The maintenance status MS is set to "Bad or maintenance alarm" = 16#00000007.

If the CPU resumes normal operation after the problem has been eliminated, the MS is reset and this process control message is marked as "outgoing".

Behavior during downloading

The status of CPU_RT is reset when you download.

Measures for avoiding stop

When the CPU is overloaded you can prevent the CPU from becoming inoperable by "load shedding". Load shedding is achieved by suspending the cyclic levels and is an emergency mode. The user can still exclude individual OBs for the first escalation stage, for example the level with the F drivers.

To avoid a CPU stop, CPU_RT takes the following measures in OB 80 when reaching a cycle overflow occurs:

- Cycle time monitoring is triggered with an SFC43 call, to prevent a CPU stop.
- A memory bit is set to detect the next immediate OB 80 call within an OB 1 call, so that, if necessary, measures can be initiated that prevent an overload of the AS.

In OB 80, the measures to prevent the overload are initiated and they reversed in the slowest OB.

Two escalation stages can be set:

1. Stage: None of the used OB 3x blocks will be processed for one cycle, unless they have been excluded by the user (OB3x_ATTN = FALSE).

2. Stage: Now all previously excluded OB 3x blocks will likewise not be processed for one cycle. If this does not have a steadying effect, whenever OB 3x blocks are executed their execution will be suspended again for one cycle.

3.2 CPU_RT: Determination of the runtime of OBs

Assign the parameters in CPU_RT for each OB 3x at the following inputs:

OB3x_ATTN = TRUE	The OB is included in the measures to prevent overload. Default is
	"TRUE".

The maximum number of SFC43 calls can be set at the input MAX_RTRG. If the maximum number x is exceeded, the CPU goes to stop.

The number x is reset when there is an OB 1 call again.

If you set MAX_RTRG = 0, then the function stop avoidance on overload function is deactivated.

If the measures are effective, in other words OB 1 is run through again, a calculation is made at that point to determine whether canceling the measures would again result in overload. If yes, the measures remain in effect. The measures are reduced step-by-step, when safe operation is possible again.

Reversal of the measures for stop avoidance

To initiate a reversal the percentage sum of the cyclic OBs calculated back to a lower reduction ratio, must be less than full CPU utilization.

Use the parameter MAX_VAL to set the value that corresponds to full CPU utilization. The value "95" is default.

The calculation is made according to the following formula:

((NET30PERint * (OB30_N_START+1) / OB30_N_START)+ (NET31PERint * (OB31_N_START+1) / OB31_N_START)+ (NET32PERint * (OB32_N_START+1) / OB32_N_START)+ (NET33PERint * (OB33_N_START+1) / OB33_N_START)+ (NET34PERint * (OB34_N_START+1) / OB34_N_START)+ (NET35PERint * (OB35_N_START+1) / OB35_N_START)+ (NET36PERint * (OB36_N_START+1) / OB36_N_START)+ (NET37PERint * (OB37_N_START+1) / OB37_N_START)+ (NET38PERint * (OB38_N_START+1) / OB38_N_START)+ NET01PER)< MAX_VAL

NETxxPERint is the percentage share of a cyclic OB in the total runtime as a mean value and

(OB30_N_START+1) is the current reduction factor of the OB.

The net percentage values are also mean values, because in case of reduction, averaging is a must.

For the calculation, a separate mean value generation was used that has a separate sample factor (SAMPLE_RE).

If the condition is satisfied, then after a number of cycles in the slowest OB (parameter "UndoCycle") the reduction factor is decremented by 1 for all OBs.

If the total sum of the OBs is still below MAX_VAL after this, then after a number of cycles in the slowest OB (UndoCycle), the factor will continue to be decremented until the used cyclic OBs have reached the reduction factor 1.

After this, for the OBs (OB3x_ATTN = FALSE) excluded by the user, the reduction ratio will be set to 0.

Finally. the reduction ratio will be set to 0 for all other cyclic OBs.

If no SFC78 is present, then the time at which reversal of the stop avoidance measures can be triggered cannot be calculated.

The reversal of reduction ratios is started when the slowest OB has again processed a number of cycles (UndoCycle).

The value of the UndoCycle in this case should not be too low, to avoid a frequent back and forth between stop avoidance measures and normal operation.

For the reduction ratio in the CFC, two parameters are available in the CPU_RT block for each cyclic OB:

OB3x_N_START	The start value for reduction ratio is specified by the input OB3x_N of CPU_RT and also in OB3x_N_CNT
OB3x_N_CNT	The counter is decremented in the CFC at each OB call. For OB3x_N_CNT <= 0 there is complete OB processing and OB3x_N_START will be re-entered in OB3x_N_CNT.

The CPU block is also called when reduction becomes necessary, so that in emergency operation an evaluation of the averaged cycle time is possible.

Utilization display with SFC78

When the block executes, the calling OB is determined. For every OB with the system function SFC78, it reads the net runtime, LAST_RTxx, and the gross runtime LAST_Etxx of the last completed OB processing. The absolute times are specified in milliseconds.

The mean value is generated for each OB (OB 3x and OB 8x) according to the formula

Mean value = mean value + (new value - mean value) / sample_AV

SAMPLE_AV is a parameter that is calculated separately for each OB 3x, OB 8x. If necessary, you can adapt the precision of the mean value with this parameter that is based on the number of measuring cycles, or on the influence of the new value on the mean value.

The default of SAMPLE_AV = 25 cycles, based on the slowest cyclic OB.

The actual sample factor for specific OBs is determined according to the following formula:

SampleOB3x = Sample * execution frequency of the slowest OB / execution frequency of OB3x

This ensures equally-weighted mean value generation over time for all cyclic OBs.

The sample factor for the total mean value of OB 1, and for OB 8x, is set to = sample, because the basis for these values is also the execution frequency of the slowest OB.

Use the reset button on the faceplate of OB_BEGIN to reset mean value generation.

After the reset, the divisor "Sample" of 1 per cycle is incremented by 1.

This means that with the reset, mean value generation is initially imprecise and it becomes more precise through the factor "sample". The influence of the new value on the mean value initially is significant and diminishes as the "sample" factor becomes greater.

3.2 CPU_RT: Determination of the runtime of OBs

By resetting the data, a fresh measuring cycle can be started at anytime.

The reset of all mean values takes place in OB 1. Mean value generation does not take place during this time.

Error handling

If the read-out of data from the cyclic OB fails for the CPU_RT block, then ERR_NUM = 1 is set and processing of the CPU_RT block is abandoned, because these data are the basic prerequisite for useful processing.

Startup characteristics

Calculations with SFC78 are restarted only after a number of cycles (RunUpCyc) after restart. The RunUpCyles are counted down in the slowest cyclic OB.

Time response

Not applicable.

Message response

The block reports via OB_BEGIN (Page 217)

Operator control and monitoring:

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostics screens have been generated, the faceplate can be called via the block icon of the AS.

- OB_BEGIN faceplate
- Asset Management block icons (for more information, refer to the "Process Control System PCS 7; Maintenance Station" manual)

If no asset management is used in the project, the "OB-BEGIN" block icon is used to display avoidance of stop.

Additional information

You will find more information on this subject in the following sections:

Message texts and associated values of OB_BEGIN (Page 224)

Maintenance status of MS (Page 403)

3.2 CPU_RT: Determination of the runtime of OBs

3.2.2 I/Os of CPU_RT

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O	Meaning	Туре	Default
DELTA_L	Flag for change compile	BOOL	1
HYS	Hysteresis of the max. total number	INT	5
MAX_LIM	Max. total number	REAL	75
MAX_RTRG	Max. number of calls (for SFC 43)	INT	50
MAX_VAL	Max. value for calculating the reset of reduction ratios	REAL	95
N_REQ_ERR	Number of OB 3x request errors	INT	4
OB3x_ATTN	(x = 0 - 8) OB 3x: 1 = participates in measures to prevent overloads	BOOL	1
RESET	Resets the mean values, minimum values, and maximum values	BOOL	1
RUNUPCYC	Number of start-up cycles	INT	5
SAMPLE_AV	Sample factor for mean value generation	INT	50
SAMPLE_RE	Sample factor for mean value generation internal	INT	50
UNDO_CYC	Counter in the slowest OB for emergency operation	INT	100

Output parameters

I/O	Meaning	Туре	Default
CPU RT DATA	System structure: Performance data	STRUCT	
DAT_PLAU	1 = slowest OB 3x has the lowest priority	BOOL	0
ERR_NUM	1 = occurrence of an error	INT	
EXC_FR3x	(x = 0 - 8) execution cycle (in ms) of the OB 3x	INT	0
GRO3xAV	(x = 0 - 8) gross mean value	REAL	0
GRO3xCUR	(x = 0 - 8) gross current value	REAL	0
GRO3xMAX	(x = 0 – 8) gross maximum value	REAL	0
GRO3xMIN	(x = 0 - 8) gross minimum value	REAL	0
GR03xPER	(x = 0 - 8) gross mean value (in %)	REAL	0
MAXCYCTI	Set scan cycle monitoring time	INT	0
N_OB1_CYC	Number of OB 1 calls during a cycle of the slowest OB	INT	0
NET01AV	Net mean value of OB 1 (in ms)	REAL	0
NET01CUR	Net current value of OB 1 (in ms)	REAL	0
NET01MAX	Net maximum value of OB 1 (in ms)	REAL	0

Family: @System

3.2 CPU_RT: Determination of the runtime of OBs

I/O	Meaning	Туре	Default
NET01MIN	Net minimum value of OB 1 (in ms)	REAL	0
NET01PER	Net mean value of OB 1 (in %)	REAL	0
NET3xAV	(x = 0 – 8) net mean value of OB 3x (in ms)	REAL	0
NET3xCUR	(x = 0 - 8) net current value of OB 3x (in ms)	REAL	0
NET3xMAX	(x = 0 - 8) net maximum value of OB 3x (in ms)	REAL	0
NET3xMIN	(x = 0 – 8) net minimum value of OB 3x (in ms)	DINT	0
NET3xPER	(x = 0 - 8) net mean value of OB 3x (in %)	REAL	0
NET8xAV	(x = 0 - 8) net mean value of OB 8x (in ms)	REAL	0
NET8xCUR	(x = 0 - 8) net current value of OB 8x (in ms)	REAL	0
NET8xMAX	(x = 0 - 8) net maximum value of OB 8x (in ms)	REAL	0
NET8xPER	(x = 0 – 8) net mean value of OB 8x (in %)	REAL	0
OB3x_N_CNT	(x = 0 - 8) decrementing counter for reduction ratio	INT	0
OB3x_N_START	(x = 0 - 8) start value for reduction ratio	INT	0
REQ01ERR	(x = 0 - 8) OB request errors since the last reset	BOOL	0
REQ3xERR	(x = 0 - 8) OB request errors	BOOL	0
SFC78_EX	1 = SFC 78 available in CPU	BOOL	0
SL_OB	Slowest OB 3x	BYTE	0
SL_OB_EXC_FR	Number of calls of the slowest OB 3x	INT	0
TOTALAV	Total average value of all OB 1, OB 3x, OB 8x (in %)	DINT	0
TOTALCUR	Total current value of all OB 1, OB 3x, OB 8x (in %)	DINT	0
TOTALMAX	Total maximum value of all OB 1, OB 3x, OB 8x (in %)	DINT	0
TOTALMIN	Total minimum value of all OB 1, OB 3x, OB 8x (in %)	DINT	0

?

I/O	Meaning	Туре	Default
IDLE_CYC	CPU utilization display	INT	0

Additional information

You will find more information on this subject in the following sections:

Message texts and associated values of OB_BEGIN (Page 224)

Family: @System

3.3 DIAG_AB: Evaluation of statusword AB7000

3.3 DIAG_AB: Evaluation of statusword AB7000

3.3.1 Description of DIAG_OB

Object name (type + number)

FB 414

• DIAG_AB Block I/Os (Page 33)

Area of application

The DIAG_AB block evaluates the status word of an AB7000 slave and acknowledges newly reported errors via the control word of the slave.

Calling OBs

The cyclic OB and OB 100.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is installed in the run sequence before the MOD_PAL0 or MOD_PAX0 block, both of which are also installed by the driver generator. The install is executed in the same cyclic OB as the associated signal processing blocks FF_A_xx.
- Parameters are assigned to the LADDR_C input with the address of the control word of the AB7000.
- Parameters are assigned to the input LADDR_S with the address control word of the AB7000.
- The OUT structure CPU_DIAG of the OB_BEGIN block is interconnected with the IN_OUT structures of the same name of DIAG_AB.
- The input mode of the DIAG_AB block is interconnected with the output OMODE_00 of the PADP_L10 or PADP_L01 block.
- The input PA_DIAG of the DIAG_AB block is interconnected with the output PA_DIAG of the PADP_L10 or PADP_L01 block.
- The output OMODE of the DIAG_AB block is interconnected with the input MODE_00 of the MOD_PAL0 or MOD_PAX0 block.
- The output ODIAG of the DIAG_AB block is interconnected with the input PA_DIAG of the MOD_PAL0 or MOD_PAX0 block.

3.3 DIAG_AB: Evaluation of statusword AB7000

Function and method of operation

The DIAG_AB block cyclically analyses the status word of the AB7000 slave,

If a Modbus device fails, or if there is a higher-level error at the MODE input, then the OMODE and PA_DIAG outputs are set to "Bad":

Parameters	Value	Description
OMODE	16#40000001	Higher level error
ODIAG	16#00400000	Due to process no valid values

After an error exiting state the outputs are set to the status "Good":

Parameters	Value	Description
OMODE	16#80000001	Valid value
ODIAG	PA_DIAG	Diagnostics information from PADP_L10 or PADP_L01 block

The outputs SR_CODE and SR_DATA show the last values of a status tab sent by the AB7000. The meaning of SR_DATA depends on SR_CODE:

SR_CODE	SR_DATA	Description
16#00	Number of re- transmissions	Reading or writing an FIM tab needed to be executed again due to an error
16#01	Address of the FIM	No connection to the FIM
16#03	Address of the FIM	The FIM has sent more data than expected
16#04	Address of the FIM	An error has occurred, no more data is available
16#13		No error if SR_DATA = 16#00; otherwise, failure of the FIM (with the address in SR_DATA)
16#1F		An error is no longer present

Error handling

The validity of input parameters is not checked.

Startup characteristics

Initialization of outputs OMODE with 16#80000001 ("valid value") and ODIAG with 16#00000000 ("no error")

Time response

Not available

Message response

Not available

Operator control and monitoring

Not available

3.3 DIAG_AB: Evaluation of statusword AB7000

3.3.2 I/Os of DIAG_AB

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: General Information About Block Description (Page 9).

Input parameters

Ι/Ο	Meaning	Туре	Default
LADDR_C	Logical address of the control word	INT	0
LADDR_S	Logical address of the control word	INT	0
MODE	Value status	DWORD	16#80 000 000
PA_DIAG	Diagnostic information	DWORD	0

Output parameters

Ι/Ο	Meaning	Туре	Default
ODIAG	Field devices diagnostics information	DWORD	0
OMODE	Value status of the slave	DWORD	0
SR_CODE	Code of the status tab	BYTE	0
SR_DATA	TA Data of the status tab		0

In-out parameters

I/O	Meaning	Туре	Default
CPU_DIAG	CPU diagnostics (system structure)	STRUCT	

3.4 DPAY_V0: Monitoring DP/PA and Y-Link operating as V0 slave

3.4 DPAY_V0: Monitoring DP/PA and Y-Link operating as V0 slave

3.4.1 Description of DPAY_V0

Object name (type + number)

FB 108

• DPAY_V0 Block I/Os (Page 39)

Area of application

Block DPAY_V0 monitors the status of a DP/PA or Y-Link as a V0 slave (IM 157) and reports the corresponding error events.

The DP/PA link operates as a PA master for the lower-level PA field devices and as a slave on the DP bus.

The Y-Link operates as a DP master for the lower-level DP field devices and as a slave on the higher-level DP bus.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program		
OB 70	/O redundancy error		
OB 72	CPU redundancy error		
OB 82	Diagnostic interrupt		
OB 85	Program execution error		
OB 86	Rack failure		
OB 100	Warm restart		

3.4 DPAY_V0: Monitoring DP/PA and Y-Link operating as V0 slave

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is integrated in the run sequence downstream from the SUBNET block and upstream from the PADP_L0x block.
- RACK_NO (rack/station number) is configured.
- SUBN_TYP (internal/external PROFIBUS interface) is set.
- SUBN1_ID (ID of the master systems) is set.
- SUBN2_ID (ID of the redundant master system) is set.
- DADDR (diagnostic address of the DP/PA or Y-Link) is set.
- DPPA_xx (slave xx address), 1st module (slot) address of slave xx in the link, number of slots of slave xx are set.
- The CPU_DIAG of the OB_BEGIN block and SUB_DIAG of the SUBNET block OUT structures are interconnected with the IN_OUT structures of the same name of DPAY_V0.
- In the case of PA or DP field devices, they are interconnected with PADP_L0x.

Function and method of operation

If redundancy losses and link failures occur, the DPAY_V0 block generates a control-system error message for the OS. The block also indicates error events at active links (SUBN1ERR, SUBN2ERR) and at the preferred channel (SUBN1ACT, SUBN2ACT) in the output status bar. The output structure RAC_DIAG contains the geographic address of the link as well as the group error information RACK_ERR. The corresponding link is not available if RACK_ERR = 1.

The block requires a PROFIBUS DP interface. This can either be integrated in the CPU or provided by means of an external DP interface (CP). PROFIBUS DP is converted to PROFIBUS PA by means of a SIMATIC DP/PA-Link.

The field devices of a link are always addressed at the higher-level DP bus via the DP address of IM 157.

The AS addresses the field devices via the link, i.e., indirectly. The topological structure of the PA bus is mapped in the flat structure of the slave interface. A maximum of 64 field devices can be operated downstream from a link. Each field device can use any number of virtual slots at the link, up to 223 maximum.

In order to enable the assignment of diagnostic data to the field devices, the block provides each field device a DPPA_xx input structure consisting of 3 bytes with the following contents:

- Byte (SLAV_NO) = node number (address) of the field device at the PA/DP master system of the LINK
- Byte (SLOT_NO) = 1st module address of the field device in the link
- Byte (SLAV_SL) = number of slots of the field device

The "Generate module drivers" CFC function fetches this data from HW Config.

3.4 DPAY_V0: Monitoring DP/PA and Y-Link operating as V0 slave

The start information is read from the CPU_DIAG I/O structure. This structure must be interconnected to the CPU_DIAG structure of the OB_BEGIN block (carried out by the CFC function "Generate module drivers").

The block generates a corresponding message (see "Message Response") on the basis of the startup information of calling OBs, if the current instance is affected.

When operating with redundant PROFIBUS DP interfaces, the block determines the currently active preferred channel (SUBN1ACT, SUBN2ACT) by evaluating the error events as well as via the diagnostic address DADDR of the link.

SFC 13 (DPNRM_DG, read diagnostic data consistently) reads the diagnostic data (OB 82). The reading process can take several cycles (OB 1). It is therefore possible in a few rare cases that the triggering diagnostic event cannot be recognized.

Diagnostic user data contains information about the status of the link, and of connected field devices. The structure DPPA_ST indicates the link status.

The status of a field device is entered in the structure DPA_M_xx. A field device can have a maximum of 32 slots (modules). Three block types are available, according to the number of slots on the field device:

- PADP_L00 (field device with max. 7 slots)
- PADP_L01 (field device with max. 16 slots)
- PADP_L02 (field device with max. 32 slots)

The structure DPA_M_xx is interconnected to the structure DPA_M and the output EN_Mx with EN of one of the PADP_Lxx blocks (carried out by the CFC function "Generate module drivers").

The DPA_M_xx structure consists of two DWORD value (S_01 for modules 1 to 16 and S_02 for modules 17 to 32) and one BOOL value (S_ERR = DP/PA field device faulty). Two bits of the DWORD are assigned to each slot of the DP/PA field device, whereby bit 0 and bit 1 belong to slot 1 (module 1) of the DP/PA field device, etc. These bits are defined as follows:

Status Bit 0	Status Bit 1	Meaning
0	0	Module x OK (valid user data)
0	1	Module x error (invalid user data)
1	0	Wrong module x (invalid user data)
1	1	No module x (invalid user data)

If the diagnostics alarm applies to the entire DP/PA field device, then DPA_M_xx.S_ERR = TRUE is set.

Note: If you want to change the SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs online, you must set input ACC_ID = TRUE. This verifies the Link states and updates output values.

Redundancy

The block supports redundant DP master systems in an H system (distributed I/Os only). The SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs of the SUBNET block are configured with the numbers of the redundant DP master systems. If the DP master systems are not redundant, the remaining input is set to 16#FF (default).
Error handling

Error handling for the block is limited to the evaluation of the error information of ALARM_8P. For more information on this, refer to the section:

Error information of the MSG_STAT output parameter (Page 398)" section.

Startup characteristics

The block initializes the messages of ALARM_8P. Availability of the link is verified. In H systems, determines the preferred channel of the link.

Overload behavior

The block counts OB 86 (no DP master system failure, see SUBNET block) and OB 82 calls. Both counters are reset in OB 1. If more than five OB 86 events or more than five OB 82 events in succession before the cycle control point is reached (OB 1), these events are discarded and the message ""DP-Link DP-Master:x Rack:y: Multiple failure" or the message "DP-Link Master:x Rack:y: Muktiple alarm (OB 82)" is output. 1 minute later the status of the link will be re-checked.

Time response

Not available

Message response

After its call by OB 70, OB 72, OB 85 or OB 86, the block analyzes the status of its assigned CPU, DP master and link. If the link loses redundancy or fails, the block outputs corresponding messages via ALARM_8P.

The block generally reports only the events generated in the link that it monitors. Redundancy loss and link failures which are caused by the failure of a DP masters or of a CPU, are initially neither signaled nor indicated at the outputs SUBN1ERR and SUBN2ERR.

The DELAY input is used to delay the output of error messages for higher-priority outgoing errors. This delay time is configurable. When the block recognizes an outgoing error at an interconnected DP master, it initially assumes that there is a faulty assigned DP slave in the link it monitors and sets the corresponding output SUBNxERR. The error status is not reset until the DP slave returns (in this case: OB 86, OB 70). The blocks delay error messages relevant to any slave failure states for a time in seconds as specified in DELAY, in order not to trigger the output of surge of messages from DP slaves which are not yet synchronized after the master has returned. An error message is only output to the OS when the DP slave has not reported its return before this delay time has expired.

Do not set the value of DELAY too high, since messages reporting faulty DP slaves or their removal during a master failure will be output too late to the OS after the DP master returns.

OB no.	Start Event	Message
OB 1	Cyclic processing	Repeat the update of ALARM_8P outputs/messages, if necessary
OB 70	Redundancy loss	Link redundancy loss/return
OB 85	Program execution error	Link failure going
OB 86	Rack failure	Link failure coming/going
OB 100	Restart	Initialization of ALARM_8P

The block generates the following messages in the OBs listed below:

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the sections:

Message texts and associated values of DPAY_V0 (Page 41)

Maintenance status of MS (Page 403)

3.4.2 I/Os of DPAY_V0

I/Os

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: General Information About Block Description (Page 9).

Input parameters

I/O (parameter)	Meaning	Data type	Default
DADDR	Diagnostic address of the DP slave	INT	0
DELAY	Interrupt delay (s)	INT	15
DPPA_xx	Information of the DP/PA slave (xx = 00 - 63)	STRUCT	
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack/station number	WORD	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
DPA_M_xx	Status of the DP/PA slave (xx = 00 - 63)	STRUCT	
DPPA_ST	DP/PA/Y-Link status	STRUCT	
EN_Mxx	1 = Enable modules (xx = 00 - 63)	BOOL	0
MSG_STAT	Message error information	WORD	0
O_MS	Maintenance status	DWORD	0
RAC_DIAG	Rack diagnostics	BOOL	0
SUBN1ACT	1 = Slave 1 is active	BOOL	0
SUBN1ERR	1 = Error in DP master system 1	BOOL	0
SUBN2ACT	1 = Slave 2 is active	BOOL	0
SUBN2ERR	1 = Error in DP master system 2	BOOL	0

Family: @System

3.4 DPAY_V0: Monitoring DP/PA and Y-Link operating as V0 slave

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG	CPU diagnostics (system structure)	STRUCT	
SUB_DIAG	OB startup information	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of DPAY_V0 (Page 41)

Maintenance status of MS (Page 403)

3.4.3 Message texts and associated values of DPAY_V0

Assignment of message text and message class

Message no.	Default message text	Message class
1	DP Link @1%d@/ @3%d@: Redundancy loss	S
2	DP Link @2%d@/ @3%d@: Redundancy loss	S
3	DP Link @1%d@/ @3%d@: Failure	S
4	DP Link @2%d@/ @3%d@: Failure	S
5	-	-
6	-	-
7	DP LINK @1%d@/ @3%d@: Multiple alarm (OB 82)	S
8	DP LINK @1%d@/ @3%d@: Multiple failure	S

Assignment of associated values

Associated value	Block parameter
1	ID of the primary DP master system (SUBN1_ID)
2	ID of the redundant DP master system (SUBN2_ID)
3	Rack/station number (RACK_NO)

See also

Message Classes (Page 401)

3.5 DPAY_V1: Enabling blocks downstream of a DP/PA and Y-Link operating as V1 slave

3.5 DPAY_V1: Enabling blocks downstream of a DP/PA and Y-Link operating as V1 slave

3.5.1 Description of DPAY_V1

Object name (type + number)

FB 115

• DPAY_V1 Block I/Os (Page 45)

Area of application

The DPAY_V1 block enables the field device-specific blocks downstream of the DP/PA or Y links.

The DP/PA link acts as a PA master for the lower-level PA field devices, and as a slave on the DP bus.

The Y link acts as a DP master for the lower-level DP field devices, and as a slave on the higher-level DP bus.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 55	Status interrupt
OB 56	Update interrupt
OB 57	Vendor-specific interrupts
OB 70	I/O redundancy error
OB 72	CPU redundancy error
OB 82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

3.5 DPAY_V1: Enabling blocks downstream of a DP/PA and Y-Link operating as V1 slave

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is integrated in the run sequence after the OB_DIAG1 block.
- SUBN_1ID (ID of primary DP master system) is configured.
- SUBN_2ID (ID of secondary DP master system) is configured.
- RACK_NO (rack/station number) is configured.
- The OUT structure CPU_DIAG of the OB_BEGIN block is interconnected with the IN_OUT structures of the same name of DPAY_V1.
- The OUT structure CPU_OB_5X of the OB_BEGIN block is interconnected with the IN_OUT structures of the same name of DPAY_V1.
- EN_Mxx are interconnected with EN of OB_DIAG1 and PADP_L10 for each field device.

Function and method of operation

The start information is read from the CPU_DIAG I/O structure. The structure must be interconnected with the CPU_DIAG structure of OB_BEGIN (carried out by the CFC function "Generate module drivers"). The affected downstream blocks will be enabled according to the start information.

OB 5x characteristics

Enables the output for the affected field device.

Redundancy

The redundancy is evaluated in OB_DIAG1.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

The block initializes its outputs.

Overload behavior

OB_DIAG1 disables the block in response to an overload.

Time response

Not available

Family: @System

3.5 DPAY_V1: Enabling blocks downstream of a DP/PA and Y-Link operating as V1 slave

Message response

Not available

Operator control and monitoring

The block has no faceplate.

3.5 DPAY_V1: Enabling blocks downstream of a DP/PA and Y-Link operating as V1 slave

3.5.2 I/Os of DPAY V1

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
CPU_DIAG	CPU diagnostics (system structure)	STRUCT	
CPU_OB_5X	OB_5x startup information	STRUCT	
DPPA_xx	Information about the DP/PA slave (xx = 00 - 63)	STRUCT	
RACK_NO	Rack/station number	WORD	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
CPU_DIAG	CPU diagnostics (system structure)	STRUCT	
CPU_OB_5X	OB_5x startup information	STRUCT	
EN_Mxx	1 = Enable slave (xx = 00 - 63)	BOOL	0

3.6 DPDIAGV0: Monitoring the status of ET 200S modules acting as DPV0 slaves after the Y link

3.6 DPDIAGV0: Monitoring the status of ET 200S modules acting as DPV0 slaves after the Y link

3.6.1 Description of DPDIAGV0

Object name (type + number)

FB 117

• DPDIAGV0 Block I/Os (Page 49)

Area of application

The DPDIAGV0 block monitors the status of the modules of an ET 200S acting as a DPV0 slave (IM 151-1 High Feature) after a Y link.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

3.6 DPDIAGV0: Monitoring the status of ET 200S modules acting as DPV0 slaves after the Y link

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is integrated in the run sequence after the OB_DIAG1 block.
- The following inputs are configured:
 - SUBN_1ID (ID primary DP master system)
 - SUBN_2ID (ID secondary DP master system)
 - RACK_NO (rack/station number)
- The following I/Os are interconnected:
 - The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block with the DPDIAGV0-block IN_OUT structures of the same name
 - EN_Mxx with EN of the OB_DIAG1 block and the DPDIAGV0 block of each ET 200S
 - The DPA_M_xx outputs with the DPA_M input and EN_Mxx output with EN of a MOD_4 block.

Function and method of operation

In the event of a diagnostic interrupt, the DPDIAGV0 block analyzes the ID-specific diagnostic data, and the module status of an ET 200S in DPV0 mode after a Y link.

The upstream OB_DIAG1 block detects the failure/restart of an ET 200S.

The AS addresses the devices via the link, i.e., indirectly. The topological structure of the DP bus is mapped in the flat structure of the slave interface. There may be up to 64 devices downstream of a Link. Each device can be assigned any number of virtual slots (max. 223) of the link. To assign the diagnostic data of an ET 200S, the block uses the following inputs of data type BYTE with the meaning shown below:

- SUBN1_ID = Primary ID of the master system
- SUBN2_ID = Secondary ID of the master system
- RACK_NO = Station number (address) of the DP master system of the link
- PADP_ADR = Station number (address) of the ET 200S
- SLAVE _NO = 1st module address of the ET 200S in the link
- SLAVE_SL = Number of slots at the ET 200S

The "Generate module drivers" CFC function fetches this data from HW Config.

The useful diagnostic data contains information about the ET 200S status.

The status of an ET 200S module is entered in byte DPA_M_xx. An ET 200S can have up to 64 slots (modules).

3.6 DPDIAGVO: Monitoring the status of ET 200S modules acting as DPVO slaves after the Y link

Status Bit 2	Status Bit 1	Status Bit 0	Meaning
0	0	0	Module x OK (valid user data)
0	1	0	Module x error (invalid user data)
0	0	1	Wrong module x (invalid user data)
0	1	1	No module x (invalid user data)
1	x	x	ET 200S failure (invalid user data)

Bits 0 to 2 of DPA_M are defined as follows:

Note: If you want to change the SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs online, you must set input ACC_ID = TRUE. This verifies the Link states and updates output values.

Redundancy

Only non-redundant devices may be used downstream of a Y link.

Error handling

The validity of input parameters is not checked.

Startup characteristics

The system verifies that the ET 200S is available.

Overload behavior

The overload behavior takes place in the upstream OB_DIAG1 block.

Time response

Not available

Message response

Not available

Operator control and monitoring

The block has no faceplate.

3.6 DPDIAGV0: Monitoring the status of ET 200S modules acting as DPV0 slaves after the Y link

3.6.2 I/Os of DPDIAGV0

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DADDR	Diagnostic address of the Y-Link	INT	0
PADP_ADR	DP address ET 200S	BYTE	255
RACK_NO	Rack/station number	BYTE	0
SLAVE_NO	1. Slot number of the slave in the Y-link	BYTE	0
SLAVE_SL	Number of ET 200S slots	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
DPA_M_xx	Status of the DP/PA slave (xx = 00 - 63)	BYTE	0
EN_Mxx	1 = Enable modules (xx = 00 - 63)	BOOL	0
QRACKF	1 = ET 200S failure	BOOL	0
SUBNERR	1 = Y link failure	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG	PU_DIAG CPU diagnostics (system structure)		
RAC_DIAG	Rack diagnostics of the DP slave downstream of	STRUCT	
	Y link (system structure)		

3.7 DREP: Diagnostic Repeater in the DP master system

3.7.1 Description of DREP

Object name (type + number)

FB 113

• DREP block I/Os (Page 55)

Area of application

The DREP block evaluates the diagnostic data from a SIMATIC diagnostic repeater for PROFIBUS DP. This repeater must be connected to a DP master.

Calling OBs

OB 1	Cyclic processing
OB 82	Diagnostic interrupt
OB 86	Rack failure
OB 100	Warm restart (startup, message initialization)

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- Block OB_DIAG1 is installed in the run sequence upstream of the DREP block.
- The following addresses are configured:
 - The diagnostic address DADDR of the diagnostics repeater
 - The geographic address (SUBN_ID and PADP_ADR)
- The following I/Os are interconnected:
 - The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the OB_DIAG1 block with the IN_OUT structures of the same name of the DREP block.
 - The EN input with the output of an AND block.
 - The inputs of the AND block with the EN_SUBx outputs (x = number of the DP master system) of the OB_BEGIN block, with EN_Rxxx (xxx = rack/station number) of the SUBNET block and with EN_F of the OB_DIAG1 block.
 - EN_DIAG with the EN_DIAG output of the OB_DIAG1 block.

Function and method of operation

The diagnostics repeater is assigned the following tasks:

• Diagnostics function for two PROFIBUS segments (DP2 and DP3):

The diagnostics function returns the location and cause of line faults, such as a wire break or missing terminating resistors.

The error location is output, including a reference to the relevant nodes, e.g., "Short-circuit to shielding at signal line A, node 12 <-> 13".

Repeater function for three PROFIBUS segments (DP1, DP2, DP3):

The diagnostics repeater amplifies data signals on the bus and interconnects the relevant RS-485 segments.

Galvanic/electrical isolation of the PG interface from other bus segments:

Even if the system is operating at higher transmission rates, interference due to the removal or connection of PG cables is not to be expected at the other PROFIBUS DP segments.

The manual titled *Diagnostic Repeaters for PROFIBUS DP* contains information about the structure of line error states at the DP1, DP2 and DP3 segments and describes the PG interface.

Block DREP reports only the diagnostic events at segments DP2 and DP3 of the diagnostic repeater.

Events of the DP1 segment are reported as general "Cable disturbance" group error.

The PG interface is not evaluated and does not result in a message.

Failure and return of the diagnostics repeater are detected by the upstream OB_DIAG1 block, and are forwarded to the block to report "DR failure".

If an error occurs, an incoming "line error" group message is generated for each segment (DP2 or DP3) when a diagnostic repeater detects the error event (bits in the diagnostic message frame indicating the cause of error):

Bit	Description
A.0	1: The location and cause of the error cannot be identified (possibly electromagnetic interference)
A.1	CPU redundancy loss
A.2	1:
A.3	1: Further measurement circuits at the segment, the other diagnostic repeater is connected to its segment DP2
A.4	1: Further measurement circuits at the segment, the other diagnostic repeater is connected to its segment DP3
A.5	1:
A.6	1: Cause of error is not clearly identified
A.7	1: Critical message frame error rate
B.0	1:
B.1	1:
B.2	1:

Family: @System

3.7 DREP: Diagnostic Repeater in the DP master system

Bit	Description
B.3	1:
B.4	1:
B.5	1:
B.6	1:
B.7	1:
C.0	1: Segment automatically switched off due to continuous zero level on the line.
C.1	1: Segment automatically switched off due to constantly fluctuating line levels.
C.2	1:
C.3	1:
C.4	1: More than 32 nodes connected to the measurement segment.
C.5	1: The distance between the node and the diagnostic repeater exceeds the permitted line length.
C.6	1: The maximum permitted number of diagnostic repeaters connected in series has been exceeded.
C.7	1:

The outgoing message will be generated when all segment bits are equal to zero.

Call HW Config to analyze details of events output by the diagnostic repeater.

An appropriate incoming/outgoing message will be generated for each segment (DP2 or DP3) in response to the following events detected by a diagnostic repeater:

Bit	Description
A.0	1: -
A.1	1:-
A.2	1: -
A.3	1: -
A.4	1: -
A.5	1: -
A.6	1: -
A.7	1:
B.0	1: Wire break on signal line A.
B.1	1: Short-circuit to shield on signal line B.
B.2	1: -
B.3	1: Short-circuit to shield on signal line A.
B.4	1: Wire break on signal line B.
B.5	1: -
B.6	1: Wire break on signal line A and/or B, or the terminating resistor is missing.
B.7	1: Short-circuit between signal line A and/or B, or an additional terminating resistor has been installed.
C.0	1: -
C.1	1: -
C.2	1: -
C.3	1: -

Family: @System

3.7 DREP: Diagnostic Repeater in the DP master system

Bit	Description
C.4	1: -
C.5	1:
C.6	1: -
C.7	1: -

Events detected by the diagnostics repeater are acquired synchronously in OB 82. Diagnostic event data is fetched via SFB 54 in the OB_BEGIN block and written to the structure DINFO. The function always sets just one bit to indicate the cause of an evententering state. Bit C7 may also be set if the diagnostics repeater has detected further errors. In this case, all previously reported events will be queued. DREP generates a corresponding group error message via ALARM_8P. Flutter messages may occur, particularly in response to error causes A.0.1 and A.6.1. They are suppressed as follows:

After an outgoing message, a new outgoing message will be delayed by the time in [s] set at the DELAY parameter. If a further error is queued, the outgoing message will not be generated until this error has been reported outgoing.

Error handling

The block evaluates the error information from ALARM_8P, and writes it to the corresponding output parameters. You will find additional information in the "Error information of output parameter MSG_STAT (Page 398)" section.

The block reports a diagnostic error if an error occurs while reading the diagnostic data, or if any other fault corrupts diagnostic data.

Startup characteristics

ALARM_8P messages are initialized by the DREP block. This uses SFC13 (DPNRM_DG) to read the latest diagnostic information from the diagnostic repeater.

Overload behavior

The interconnected OB_DIAG1 locks the call of DREP for diagnostics if an overload has occurred.

Dynamic response:

Not available

Message response:

The multiple instances ALARM_8P are only called if a message is to be output by this instance. It is only at this point that previously acknowledged messages are updated by the corresponding ALARM block. If the connection to WinCC is down, each ALARM_8P instance can hold up to two message statuses of its event ID. (Usually two messages maximum). Flutter messages can be suppressed via the DELAY input.

The block generates the messages listed below:

OB no.	Start Event	Message
1	Cyclic processing	Call of ALARM_8P due to incomplete transfer or unacknowledged message
82	Diagnostic interrupt	Group message
100	Restart	Initialization of ALARM_8P

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the sections:

Message texts and associated values of DREP (Page 57)

Maintenance status of MS (Page 403)

3.7.2 I/Os of DREP

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Туре	Default
DADDR	Diagnostic address of the diagnostic repeater	INT	0
DELAY	Interrupt delay (s)	INT	2
EN_DIAG	1 = Queued diagnostic event	BOOL	0
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number	DWORD	0
MS	Maintenance status	DWORD	0
PADP_ADR	ADR DP/PA address of the diagnostic repeater		255
SUBN_ID	DP master system ID	BYTE	255

Output parameters

I/O (parameter)	Meaning	Туре	Default	Туре
DINFO	Diagnostic information from the diagnostic repeater	STRUCT		0
MSG_ACKx	Message acknowledgment	WORD	0	0
MSG_STATx	Message error information	WORD	0	0
O_MS	Maintenance status	DWORD	0	0
QDREPF	1 = Removed/faulty diagnostic repeater	BOOL	0	0
QERR	1 = program error	BOOL	1	0

In-out parameters

I/O (parameter)	Meaning	Туре	Default	Туре
ACC_MODE	1 = accept MODE settings	BOOL	0	10
CPU_DIAG	CPU diagnostics	STRUCT		10
RAC_DIAG	OB_DIAG1 diagnostics	STRUCT		10

Additional information

For additional information, refer to the sections: Message texts and associated values of DREP (Page 57) Maintenance status of MS (Page 403)

3.7.3 Message texts and associated values of DREP

Assignment of	message t	text and	message	class (Page	e 401)
					,

Message block ALARM_8P	Message no.	Default message text	Message class
EV_ID1	1	DR @1%d@/@2%d@/ Segment DP2: Line fault	S
	2	DR @1%d@/@2%d@/DP2: \rightarrow @5%d@.@6%d@m/wire break A /@3%d@ \leftrightarrow @4%d@	S
	3	DR @1%d@/@2%d@/DP2: \rightarrow @5%d@.@6%d@m/short A/@3%d@ \leftrightarrow @4%d@	S
	4	DR @1%d@/@2%d@/DP2: \rightarrow @5%d@.@6%d@m/wire break B/@3%d@ \leftrightarrow @4%d@	S
	5	DR @1%d@/@2%d@/DP2: \rightarrow @5%d@.@6%d@m/short B/@3%d@ \leftrightarrow @4%d@	S
	6	DR @1%d@/@2%d@/DP2: \rightarrow @5%d@.@6%d@m/wire break AB or terminating resistor missing/@3%d@ \leftrightarrow @4%d@	S
	7	DR @1%d@/@2%d@/DP2: \rightarrow @5%d@.@6%d@m/short AB or too many terminating resistors/@3%d@ \leftrightarrow @4%d@	S
	8	DR @1%d@/@2%d@/ segment DP1: Line fault	S
EV_ID2	1	DR @1%d@/@2%d@/ segment DP3: Line fault	S
	2	DR @1%d@/@2%d@/DP3: \rightarrow @5%d@.@6%d@m/wire break A /@3%d@ \leftrightarrow @4%d@	S
	3	DR @1%d@/@2%d@/DP3: → @5%d@.@6%d@m/short A/@3%d@ \leftrightarrow @4%d@	S
	4	DR @1%d@/@2%d@/DP3: \rightarrow @5%d@.@6%d@m/wire break B/@3%d@ \leftrightarrow @4%d@	S
	5	DR @1%d@/@2%d@/DP3: \rightarrow @5%d@.@6%d@m/short B/@3%d@ \leftrightarrow @4%d@	S
	6	DR @1%d@/@2%d@/DP3: \rightarrow @5%d@.@6%d@m/wire break AB or terminating resistor missing/@3%d@ \leftrightarrow @4%d@	S
	7	DR @1%d@/@2%d@/DP3: \rightarrow @5%d@.@6%d@m/short AB or too many terminating resistors/@3%d@ \leftrightarrow @4%d@	S
	8	DR @1%d@/@2%d@: @7W%t#DREP_TXT@	S

You will find the message texts and their text numbers in "Text library for DREP (Page 416)".

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameter	Meaning
EV_ID1	1	SUBN_ID	DP master system ID (byte)
	2	PADP_ADR	Address of diagnostic repeater (byte)
	3		Station x (segment DP2)
	4		Station y (segment DP2)
	5		Removal of diagnostic repeater (segment DP2)
	6		Removal of diagnostic repeater (segment DP2)
EV_ID2	1	SUBN_ID	DP master system ID (byte)
	2	PADP_ADR	Address of diagnostic repeater (byte)
	3		Station x (segment DP3)
	4		Station y (segment DP3)
	5		Removal of diagnostic repeater (segment DP3)
	6		Removal of diagnostic repeater (segment DP3)
	7		Text number (Message 1 - 2) of DREP_TXT

Family: @System

3.8 DREP_L: Diagnostic Repeater downstream of a Y-Link

3.8 DREP_L: Diagnostic Repeater downstream of a Y-Link

3.8.1 Description of DREP_L

Object name (type + number)

FB 125

• DREP_L Block I/Os (Page 64)

Area of application

The DREP_L block evaluates diagnostic data from a SIMATIC diagnostic repeater for PROFIBUS DP. The diagnostic repeater (after DPV0) must be connected downstream of a Y-Link (after DPV1).

Calling OBs

OB 1	Cyclic processing
OB 82	Diagnostic interrupt
OB 86	Rack failure
OB 100	Warm restart (startup, message initialization)

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The OB_DIAG1 block is integrated into the run sequence upstream of DREP_L.
- The following addresses are configured:
 - The diagnostic address of the DP/PA link (DADDR) is connected downstream of the diagnostic repeater
 - The geographical address (SUBN1_ID, SUBN2_ID, RACK_NO and PADP_ADR)
- The following I/Os are interconnected:
 - The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the OB_DIAG1 block with the DREP_L INOUT structures of the same name.
 - The EN input is interconnected with the output of an AND block. The inputs of the AND block with the EN_SUBx outputs (x = number of the DP master system) of the OB_BEGIN block, with EN_Rxxx (xxx = rack/station number) of the SUBNET block, and with EN_F of the OB_DIAG1 block.
 - EN_DIAG with the EN_DIAG output of the OB_DIAG1 block.

Function and method of operation

The diagnostics repeater is assigned the following tasks:

• Diagnostics function for two PROFIBUS segments (DP2 and DP3):

The diagnostics function returns the location and cause of line faults, such as a wire break or missing terminating resistors.

The error location is output, including a reference to the relevant nodes, e.g., "Short-circuit to shielding at signal line A, node 12 <-> 13".

• Repeater function for three PROFIBUS segments (DP1, DP2, DP3):

The diagnostics repeater amplifies data signals on the bus and interconnects the relevant RS-485 segments.

• Galvanic/electrical isolation of the PG interface from other bus segments:

Even if the system is operating at higher transmission rates, interference due to the removal or connection of PG cables is not to be expected at the other PROFIBUS DP segments.

The manual titled *Diagnostic Repeaters for PROFIBUS DP* contains information about the structure of line error states at the DP1, DP2 and DP3 segments and describes the PG interface.

Block DREP_L only reports diagnostic events at segments DP2 and DP3 of the diagnostic repeater.

Events of the DP1 segment are reported as general "Cable disturbance" group error.

The PG interface is not evaluated and does not result in a message.

Failure and return of the diagnostics repeater are detected by the upstream OB_DIAG1 block, and are forwarded to the block to report "DR failure".

If an error occurs, an incoming "line error" group message is generated for each segment (DP2 or DP3) when a diagnostic repeater detects the error event (bits in the diagnostic message frame indicating the cause of error):

Bit	Description
A.0	1: The location and cause of the error cannot be identified (possibly electromagnetic interference)
A.1	CPU redundancy loss
A.2	1:
A.3	1: Further measurement circuits at the segment, the other diagnostic repeater is connected to its segment DP2
A.4	1: Further measurement circuits at the segment, the other diagnostic repeater is connected to its segment DP3
A.5	1:
A.6	1: Cause of error is not clearly identified
A.7	1: Critical message frame error rate
B.0	1:
B.1	1:
B.2	1:

Family: @System

3.8 DREP_L: Diagnostic Repeater downstream of a Y-Link

Bit	Description
B.3	1:
B.4	1:
B.5	1:
B.6	1:
B.7	1:
C.0	1: Segment automatically switched off due to continuous zero level on the line.
C.1	1: Segment automatically switched off due to constantly fluctuating line levels.
C.2	1:
C.3	1:
C.4	1: More than 32 nodes connected to the measurement segment
C.5	1: The distance between the node and the diagnostic repeater exceeds the permitted line length
C.6	1: The maximum permitted number of diagnostic repeaters connected in series has been exceeded
C.7	1:

The outgoing message will be generated when all segment bits are equal to zero.

Call HW Config to analyze details of events output by the diagnostic repeater.

An appropriate incoming/outgoing message will be generated for each segment (DP2 or DP3) in response to the following events detected by a diagnostic repeater:

Bit	Description
A.0	1: -
A.1	1:-
A.2	1: -
A.3	1: -
A.4	1: -
A.5	1: -
A.6	1: -
A.7	1:
B.0	1: Wire break at signal line A
B.1	1: Short-circuit to shielding at signal line B
B.2	1: -
B.3	1: Short-circuit to shielding at signal line A
B.4	1: Wire break at signal line B
B.5	1: -
B.6	1: Wire break at signal line A and/or B, or the terminating resistor is missing
B.7	1: Short-circuit signal line A <-> B, or an additional terminating resistor has been installed
C.0	1: -
C.1	1: -
C.2	1: -
C.3	1: -

Bit	Description
C.4	1: -
C.5	1:
C.6	1: -
C.7	1: -

Events detected by the diagnostics repeater are acquired synchronously in OB 82. Diagnostic event data is fetched via SFB 54 in the OB_BEGIN block and written to the structure DINFO. The function always sets only one bit to indicate the cause of an incoming event. Bit C7 may also be set if the diagnostics repeater has detected further errors. In this case, all previously reported events will be queued. DREP_L generates a corresponding group error message via ALARM_8P. Flutter messages may occur, particularly in response to error causes A.0.1 and A.6.1. They are suppressed as follows:

After an outgoing message, a new outgoing message will be delayed by the time in [s] set at the DELAY parameter. If a further fault is queued, the outgoing message will not be generated until this fault is outgoing.

Error handling

The block evaluates the error information from ALARM_8P, and writes it to the corresponding output parameters.

You will find additional information in the "Error information of output parameter MSG_STATx (Page 398)" section.

The block reports a diagnostic error if an error occurs while reading the diagnostic data, or if any other fault corrupts diagnostic data.

Startup characteristics

ALARM_8P messages are initialized by the DREP_L block The current diagnostics information is read from the diagnostics repeater using SFB 52 (RDREC).

Overload behavior

In the event of an overload, the upstream OB_DIAG1 block prevents DREP_L being called for diagnostics.

Dynamic response:

Not available

Message response:

The multiple instances ALARM_8P are only called if a message is to be output by this instance. It is only at this point that previously acknowledged messages are updated by the corresponding ALARM block. If the connection to WinCC is down, each ALARM_8P instance can hold up to two message statuses of its event ID. Flutter messages can be suppressed via the DELAY input.

The block generates the messages listed below:

OB no.	Start Event	Message
1	Cyclic processing	Call of ALARM_8P due to incomplete transfer or unacknowledged message
82	Diagnostic interrupt	Group message
100	Restart	Initialization of ALARM_8P

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message Texts and associated values of DREP_L (Page 66)

Maintenance status of MS (Page 403)

3.8.2 I/Os of DREP_L

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Туре	De- fault
DADDR	Diagnostic address of the DP/PA link	INT	0
DELAY	Interrupt delay (s)	INT	2
EN_DIAG	1 = Queued diagnostic event	BOOL	0
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number	DWORD	0
MS	Maintenance status	DWORD	0
PADP_ADR	DP/PA address of the diagnostic repeater	BYTE	255
RACK_NO	Number of the rack	BYTE	255
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Туре	De- fault	Туре
DINFO	Diagnostic information from the diagnostic repeater	STRUCT		0
MSG_ACKx	Message acknowledgment	WORD	0	0
MSG_STATx	Message error information	WORD	0	0
O_MS	Maintenance status	DWORD	0	0
QDREPF	1 = Removed/faulty diagnostic repeater	BOOL	0	0
QERR	1 = program error	BOOL	1	0

In-out parameters

I/O (parameter)	Meaning	Туре	De- fault	Туре
ACC_MODE	1 = accept MODE settings	BOOL	0	10
CPU_DIAG	CPU diagnostics	STRUCT		10
RAC_DIAG	OB_DIAG1 diagnostics	STRUCT		10

Additional information

For additional information, refer to the following sections: Message texts and associated values of DREP_L (Page 66)

Maintenance status of MS (Page 403)

3.8.3 Message texts and associated values of DREP_L

Assignment of message text and message class

Message block ALARM_8P	Message no.	Default message text	Message class
EV_ID1	1	DR @1%d@/@2%d@/@3%d@/ Segment DP2: Line fault	S
	2	DR @1%d@/@2%d@/@3%d@/DP2: \rightarrow @6%d@.@7%d@m/wire break A/ @4%d@ \leftrightarrow @5%d@	S
	3	DR @1%d@/@2%d@/@3%d@/DP2: → @6%d@.@7%d@m/short A/@4%d@ \leftrightarrow @5%d@	S
	4	DR @1%d@/@2%d@/@3%d@/DP2: \rightarrow @6%d@.@7%d@m/wire break B/@4%d@ \leftrightarrow @5%d@	S
	5	DR @1%d@/@2%d@/@3%d@/DP2: \rightarrow @6%d@.@7%d@m/short B/@4%d@ \leftrightarrow @5%d@	S
	6	DR @1%d@/@2%d@/@3%d@/DP2: \rightarrow @6%d@.@7%d@m/wire break AB or terminating resistor missing/@4%d@ \leftrightarrow @5%d@	S
	7	DR @1%d@/@2%d@/@3%d@/DP2: \rightarrow @6%d@.@7%d@m/short AB or too many terminating resistors/@4%d@ \leftrightarrow @5%d@	S
	8	DR @1%d@/@2%d@/@3%d@/ Segment DP1: Line fault	S
EV_ID2	V_ID2 1 DR @1%d@/@2%d@/@3%d@/ Segment DP3: Line fault		S
	2	DR @1%d@/@2%d@/@3%d@/DP3: \rightarrow @6%d@.@7%d@m/wire break A/ @4%d@ \leftrightarrow @5%d@	S
	3	DR @1%d@/@2%d@/@3%d@/DP3: → @6%d@.@7%d@m/short A/@4%d@ \leftrightarrow @5%d@	S
	4	DR @1%d@/@2%d@/@3%d@/DP3: \rightarrow @6%d@.@7%d@m/wire break B/@4%d@ \leftrightarrow @5%d@	S
	5	DR @1%d@/@2%d@/@3%d@/DP3: $ ightarrow$ @6%d@.@7%d@m/short B/@4%d@ \leftrightarrow @5%d@	S
	6	DR @1%d@/@2%d@/@3%d@/DP3: \rightarrow @6%d@.@7%d@m/wire break AB or terminating resistor missing/@4%d@ \leftrightarrow @5%d@	S
	7	DR @1 $\%$ d@/@2%d@/@3%d@/DP3: \rightarrow @6%d@.@7%d@m/short AB or too many terminating resistors/@4%d@ \leftrightarrow @5%d@	S
	8	DR @1%d@/@2%d@/@3%d@: @8W%t#DREP_L_TXT@	S

You will find the message texts and their text numbers in "Text library for DREP_L (Page 416)".

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameter	Meaning
EV_ID1	1	SUBN_ID1	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADP_ADR	Address of diagnostic repeater (byte)
	4		Station x (segment DP2)
	5		Station y (segment DP2)
	6		Removal of diagnostic repeater (segment DP2)
	7		Removal of diagnostic repeater (segment DP2)
EV_ID2	1	SUBN_ID1	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADP_ADR	Address of diagnostic repeater (byte)
	4		Station x (segment DP3)
	5		Station y (segment DP3)
	6		Removal of diagnostic repeater (segment DP3)
	7		Removal of diagnostic repeater (segment DP3)

If SUBN_ID1 = 16#FF, SUBN_ID2 is used as associated value 1.

See also

Message Classes (Page 401)

3.9 FFD_CIF: Monitoring FF slaves in CIF mode

3.9.1 Description of FFD_CIF

Object name (type + number)

FB 145

• I/Os of FFD_CIF (Page 70)

Area of application and method of operation

The FFD_CIF blocks monitors the higher-level errors of a field device, such as failure/return. The block runs acyclically.

The block FFD_CIF is enabled to run by the higher-level DPAY_V1 block. Start and diagnostic information is read from the CPU_DIAG structure. The event to be evaluated is entered in the start information (CPU_DIAG) of OB_BEGIN. The block FFD_CIF checks the geographic address and SLOT_NO of the FF device to determine whether it is responsible for this event.

Byte 3 of the additional alarm information contains the slot number of the field device that triggered the diagnostic interrupt. The corresponding slot is enabled.

The parameter EN_MSG_D = 1 is still set here. This means that the AS asset faceplate for the FF device accesses this block; messages and maintenance state are generated here.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The FFD_CIF block is installed downstream from the DPAY_V1 block.
- The RACK_NO, DADDR, EN_MSG_D, SUBN1_ID, SUBN2_ID, SLOT_NO and FFDP_ADR inputs are configured.
- The EN input is interconnected with the output of an AND block. These block inputs are
 interconnected with the outputs EN_SUBx (x = number of the DP master system) of the
 OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block, with
 EN_Mx (x= number of the FF device) of the DPAY_V1 block and EN_F of the OB_DIAGF
 block.
- The CPU_DIAG OUT structure of the OB_BEGIN block and SUB_DIAG of the SUBNET block are interconnected with the IN_OUT structures of the FFD_CIF block.
- RAC_DIAG is interconnected with the OUT structure RAC_DIAG of OB_DIAGF block.
- DINFO is interconnected with the OUT structure DINFO of the OB_DIAGF block.
- The OUT structure FF_DIAG of OB_DIAGF is interconnected with the IN_OUT structure of the same name of FFD_CIF.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 72	CPU redundancy loss
OB 70	Redundancy loss
OB 82	Diagnostic interrupt
OB 83	Remove/insert module interrupt (failure/return of a field device)
OB 86	Rack failure
OB 100	Restart

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Message response

The DELAY input is used to delay the outputting of error messages for an outgoing, higherpriority error. For example, if the FFD_CIF block recognizes an outgoing error at a DP master connected to it, it initially assumes that there is a faulty assigned DP slave in the rack it monitors, and sets the corresponding output SUBNxERR. The error status is not reset until the DP slave returns (in this case: OB 86, OB 70). The FFD_CIF blocks suppress the potential slave failure states for DELAY seconds so as not to trigger a surge of messages from DP slaves which are not yet synchronized when the master returns. An error message is only output to the OS when the DP slave has not reported its return before this delay time has expired.

Note: Do not set the value of DELAY too high, otherwise DP slaves that were removed during the master failure or are defective will be signaled to the OS too late after the DP master returns.

3.9.2 I/Os of FFD_CIF

I/Os of FFD_CIF

The factory setting of the block display in CFC is identified in the "I/O" column.

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DADDR	Diagnostic address of the FF link	INT	0
DELAY	Interrupt delay (s) INT 15		15
DINFO	Diagnostic information	STRUCT	
EN_MSG	1 = enable interrupt	BOOL	1
EN_MSG_D	1 = Enable message "Device failure"	BOOL	1
EV_ID	Message number	DWORD	0
FFDP_ADR	FF slave address	BYTE	16#FF
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	16#FF
SLOT_NO	Slot number	BYTE	16#FF
SUBN1_ID	ID of the primary DP master system	BYTE	16#FF
SUBN2_ID	ID of the redundant DP master system	BYTE	16#FF
SUBN_TYP	1 = external DP interface	BOOL	0

Output parameters

I/O (parameter)	Meaning	Data type	Default
MSG_ACK	Message acknowledgment	WORD	0
MSG_STAT	Error message status	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE	Channel 0 mode	DWORD	0
QMODF	1 = module removed/defective	BOOL	0
QRACKF	1 = Slave failure/faulty	BOOL	0
RETURN_CODE	Return value of the function	INT	
SUBN1ACT	1 = Slave 1 is active	BOOL	0
SUBN2ACT	1 = Slave 2 is active	BOOL	0
SUBN1ERR	1 = Error in the primary DP master system	BOOL	0
SUBN2ERR	1 = Error in the redundant DP master system	BOOL	0
V1_MODE	1 = DPV1 mode of the DP master system	BOOL	0

Family: @System

3.9 FFD_CIF: Monitoring FF slaves in CIF mode

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
FF_DIAG	Diagnostics of the FF device	STRUCT	
RAC_DIAG	System structure RACK diagnostics	STRUCT	
SUB_DIAG	System structure: SUBNET diagnostics	STRUCT	

3.9.3 Message texts and associated values of FFD_CIF

Message texts and associated values of FFD_CIF

Assignment of message text and message class (Page 401)

Message block	Message no.	Default message text	Message class
EV_ID1 (ALARM_8P)	1	Device @1%d@/ @2%d@/@3%d@: bad, maintenance alarm	S
	2	Device @1%d@/ @2%d@/@3%d@: uncertain, maintenance request	F
	3	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 83)	S
	4	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 82)	S
	5	Device @1%d@/ @2%d@/@3%d@: good, maintenance required	М
	6		No message
	7	Device @1%d@/ @2%d@/@3%d@: Configuration error: Name does not match address	S
	8	Device @1%d@/ @2%d@/@3%d@: Failure	S

Assignment of Associated Values

Associated value	Block parameters	
1	DP master system ID (SUBN_ID)	
2	Rack/station number (RACK_NO)	
3	FF slave address (FFDP_ADR)	
3.10 FFDP_L1: Monitoring FF slaves with maximum 32 values

3.10 FFDP_L1: Monitoring FF slaves with maximum 32 values

3.10.1 Description of FFDP_L1

Object name (type + number)

FB 139

• I/Os of FFDP_L1 (Page 75)

Area of application and method of operation

The FFDP_L1 block monitors the higher-level errors of a field device, such as failure/return and runs acyclically.

The FFDP_L1 block is enabled to run by the higher-level DPAY_V1 block. The event to be evaluated is entered in the start information (CPU_DIAG) of OB_BEGIN. The FFDP_L1 block checks the geographic address and SLOT_NO of the FF device to determine whether it is responsible for this event.

Byte 3 of the additional alarm information contains the slot number of the field device that triggered the diagnostic interrupt. The corresponding slot is enabled.

If a higher-level error goes away the diagnostics is read per SFC 13 from FF link (the data are all located locally on the link and do not have to be retrieved by the FF device) and reported accordingly.

The FFDP_L1 block monitors

FF devices downstream from an FF link (DPV1 slave)

It generates the MODE (FF_MODE) and the value status for the signal processing blocks. The subordinate blocks FF_MOD32 are always enabled for processing and run cyclically. The information is relayed via the structure FF_DIAG to the FF_MOD32. This structure outputs the message.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 72	CPU redundancy loss
OB 70	Redundancy loss
OB 82	Diagnostic interrupt
OB 83	Remove/insert module interrupt (failure/return of a field device)
OB 85	Program execution error
OB 86	Rack failure
OB 100	Restart

3.10 FFDP_L1: Monitoring FF slaves with maximum 32 values

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The FFDP_L1 block is installed downstream from the DPAY_V1 block.
- The CPU_DIAG OUT structure of the OB_BEGIN block and SUB_DIAG of the SUBNET block are interconnected with the IN_OUT structures of the same name of block FFDP_L1.
- RAC_DIAG is interconnected with the OUT structure RAC_DIAG of OB_DIAGF block.
- The following will be configured:
 - Diagnostic address of the FF link DADDR
 - Geographical address (SUBN1_ID, SUBN2_ID, RACK_NO) of the FF device
 - SLOT_NO
 - FF address of the FF device (FFDP_ADR)
 - MODE_xy (mode of the FF device)
 - NUM_IODATA
- The EN input is interconnected with the output of an AND block. These block inputs are
 interconnected with the outputs EN_SUBx (x = number of the DP master system) of the
 OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block, with
 EN_Mx (x= number of the FF device) of the DPAY_V1 block and EN_F of the OB_DIAGF
 block.
- The QPERAF output is interconnected with the PERAF input of the FF_MOD32.
- The QMODF output is interconnected with the MODF input of the FF_MOD32.
- The FF_DIAG output is interconnected with the FF_DIAG input of the FF_MOD32.
- DINFO is interconnected with the OUT structure DINFO of the OB_DIAGF block.

Message response

The DELAY input is used to delay the outputting of error messages for an outgoing, higherpriority error. For example, if the FFDP_L1 block recognizes an outgoing error at a DP master connected with it, it initially assumes that there is a faulty assigned DP slave in the rack it monitors, and sets the corresponding output SUBNxERR. The error status is not reset until the DP slave returns (in this case: OB 86, OB 70). The FFDP_L1 blocks suppress the potential slave failure states for DELAY seconds so as not to trigger a surge of messages from DP slaves which are not yet synchronized when the master returns. An error message is only output to the OS when the DP slave has not reported its return before this delay time has expired.

Note: Do not set the value of DELAY too high, otherwise DP slaves that were removed during the master failure or are defective will be signaled to the OS too late after the DP master returns.

3.10 FFDP_L1: Monitoring FF slaves with maximum 32 values

3.10.2 I/Os of FFDP_L1

I/Os of FFDP_L1

The factory setting of the block display in CFC is identified in the "I/O" column.

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DADDR	Diagnostic address of the FF link	INT	0
DELAY	Interrupt delay (s)	INT	15
FFDP_ADR	Address of the FF device	BYTE	0
MODE	Device status	Device status WORD (
NUM_IODATA	Number of I/O data in the FF device	INT	0
RACK_NO	Number of the rack	BYTE	0
SLOT_NO	Number of the slot BYTE 0		0
SUBN_TYP	1 = external DP interface BOOL 0		0
SUBN1_ID	ID of the primary DP master system BYTE 16		16#FF
SUBN2_ID	ID of the redundant DP master system BYTE 16#		16#FF

Output parameters

I/O (parameter)	Meaning	Data type	Default
EN_D_Q	1 = Processing of the quality code	BOOL	0
FF_DIAG	FF device diagnostics	DWORD	0
OMODE	Operating mode slot	DWORD	0
QERR	1 = Error runtime	BOOL	1
QMODF	1 = Error/defect field device	BOOL	0
QPERAF	1 = Access error I/O BOOL		0
QRACKF	1 = Slave failure/faulty	BOOL	0
RAC_DIAG	System structure RACK diagnostics	STRUCT	
RETURN_CODE_O	Return value INT		0
SUBN1ACT	1 = Slave 1 is active BOOL		0
SUBN2ACT	1 = Slave 2 is active BOOL 0		0
SUBN1ERR	1 = Error in the primary DP master system	BOOL	0
SUBN2ERR	1 = Error in the redundant DP master system	BOOL	0
V1_MODE	DPV1 mode of the DP master system BOOL 0		0

3.10 FFDP_L1: Monitoring FF slaves with maximum 32 values

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	CPU diagnostics	STRUCT	
DINFO	Diagnostic information	STRUCT	
FF_DIAG_I	Diagnostics of the FF device STRUCT		
SUB_DIAG	System structure: SUBNET diagnostics STRUCT		

3.11 FF_MOD32: Diagnostics of an FF slave (downstream from FF link DPV1)

3.11 FF_MOD32: Diagnostics of an FF slave (downstream from FF link DPV1)

3.11.1 Description of FF_MOD32

Object name (type + number)

FB 124

• I/Os of FF_MOD32 (Page 79)

Area of application and method of operation

The block reports the maintenance status of an FF field device downstream from an FF link. For diagnostics in the Maintenance Station, all error sources will be linked with OR and the worst will be assigned to the MS output. The channel blocks (FbAnIn, FbAnOu, FbDiIn, FbDiOu) will be controlled by quality codes.

The block analyses cyclically all events that affect an FF device and reports the following events:

- Evaluation of the RAC_DIAG info (from FFDP_L1): Device failure
- Evaluation of the FF_DIAG info (from FFDP_L1): Diagnostics

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is integrated in the run sequence upstream of the FbAxXx, FbDxXx block.
- The SUBN1_ID, SUBN2_ID, RACK_NO, SLOT_NO, FFDP_ADR and NUM_IODATA inputs are configured.
- The block inputs are interconnected with the following outputs:
 - FF_DIAG with FF_DIAG output of the FFDP_L1 block
 - MODE_xy with OMODE_xy outputs of the FFDP_L1 block
 - MODF, PERAF with QMODF and QPERAF outputs of the FFDP_L1 block
 - RAC_DIAG with output structure RAC_DIAG of the OB_DIAGF block
 - QC_x input with icon of the FF field device
 - EN_D_Q with EN_DQ output of the FFDP_L1 block
- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

3.11 FF_MOD32: Diagnostics of an FF slave (downstream from FF link DPV1)

- The output parameter of OMODE_xy is interconnected with the following channel block at the OMODE_xy parameter.
- The OUT structure CPU_DIAG of the OB_BEGIN block is interconnected with the IN_OUT structures of the same name of the FFDP_L1 block.

Calling OBs

OB no.	Start Event	Message
OB 1	Cyclic program	
OB 100	Warm restart	The Alarm_8P is initialized at startup (OB 100)

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

3.11 FF_MOD32: Diagnostics of an FF slave (downstream from FF link DPV1)

3.11.2 I/Os of FF_MOD32

I/Os of FF_MOD32

The factory setting of the block display in CFC is identified in the "I/O" column.

I/O name **bold** = I/O visible; I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
EN_D_Q	1 = Processing of the quality code	BOOL	0
EN_MSG	1 = enable interrupt	BOOL	1
EV_ID1	Message number 1	DWORD	0
EV_ID2	Message number 2	DWORD	0
FFDP_ADR	Address of the FF device	BYTE	0
FF_DIAG	Diagnostics of the FF device	DWORD	
MODE_xx	Device mode (xx = IOData 0 - 31)	DWORD	0
MODF	1 = field device error/fault	BOOL	0
MS	Maintenance status	DWORD	0
NUM_IODATA	Number of I/O data in the FF device	INT	0
PERAF	1 = I/O access error	BOOL	0
QC_xx	Status of FF field device (x = channel 0 to 31)	BYTE	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBN1_ID	ID of the primary DP master system	BYTE	16#FF
SUBN2_ID	ID of the redundant DP master system	BYTE	16#FF

3.11 FF_MOD32: Diagnostics of an FF slave (downstream from FF link DPV1)

Output parameter

I/O (parameter)	Meaning	Data type	Default
B_QC	Quality code, bit-granular	STRUCT	
CH_ACTIVE	Channel active	DWORD	16#00000 000
DXCHG_xx	Bidirectional data exchange channel	DWORD	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
IODATA_EXIST	I/O data available	DWORD	0
IODATA_OK	I/O data OK	DWORD	0
MSGSTAT1	Message error - information 1	WORD	0
MSGSTAT2	Message error - information 2	WORD	0
MSG_ACK1	Message acknowledgment 1	WORD	0
OMODE_xx	Value status FF field device (xx = IOData 0 to 31)	DWORD	0
O_MS	Maintenance status	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = field device error/fault	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = Slave failure/faulty	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
CPU_DIAG	CPU diagnostics	STRUCT	
RAC_DIAG	System structure: SUBNET diagnostics	STRUCT	

3.11 FF_MOD32: Diagnostics of an FF slave (downstream from FF link DPV1)

3.11.3 Message texts and associated values of FF_MOD32

Message texts and associated values of FF_MOD32

Assignment of message text and message class (Page 401)

Message block	Message no.	Default message text	Message class
EV_ID1 (ALARM_8P)	1	Device @1%d@/ @2%d@/@3%d@: Bad, maintenance alarm	S
	2	Device @1%d@/ @2%d@/@3%d@: Uncertain, maintenance request	F
	3	Device @1%d@/ @2%d@/@3%d@: Good, maintenance required	Μ
	4	Device @1%d@/ @2%d@/@3%d@: Access error	S
	5		No message
	6	Device @1%d@/ @2%d@/@3%d@: Failure	S
	7	Device @1%d@/ @2%d@/@3%d@: Configuration error: Name does not match address	S
	8		No message
EV_ID2 (NOTIFY_8P)	1	Device @1%d@/ @2%d@/@3%d@: Good, assuming fail-safe position	SA
	2	Device @1%d@/ @2%d@/@3%d@: Good, configuration has been changed	SA
	3	Device @1%d@/ @2%d@/@3%d@: Uncertain, simulation	SA
	4	Device @1%d@/ @2%d@/@3%d@: Uncertain, process-related, no maintenance	SA
	5	Device @1%d@/ @2%d@/@3%d@: Bad, process-related, no maintenance	SA
	6	Device @1%d@/ @2%d@/@3%d@: Bad, local operation/functional check	SA
	7	Device @1%d@/ @2%d@/@3%d@: Bad, device passivated	SA
	8		No message

Assignment of Associated Values

Associated value	Block parameters	
1	DP master system ID (SUBN_ID)	
2	Rack/station number (RACK_NO)	
3	FF slave address (FFDP_ADR)	

3.12 FM_CNT: Programming and controlling FM 350 modules

3.12.1 Description of FM_CNT

Object name (type + number)

FB 126

• FM_CNT Block I/Os (Page 86)

Area of application

Block FM_CNT is used to configure and control FM 350-1 and FM 350-2 modules. It writes the counter levels, limits and comparison values of the FM 350-2 module.

Calling OBs

OB 100 and the cyclic OB (100 ms recommended) used for transmitting data.

Also note the assignments (Page 402) to the FM_CO block.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is installed in the cyclic OB upstream of the CH_CNT blocks.
- The block runtime group is installed in OB 100 downstream of MOD_D1.
- The LADDR, FM_MODE, RACK_NO, SUBN1_ID, SUBN2_ID, and SLOT_NO inputs are configured.
- The MODEx inputs are interconnected with the OMODEx outputs of the MOD_D1 block.
- The FM_DATA output structure is interconnected with the structure of the same name of the CH_CNT block.
- The OMODEx output is interconnected with the MODE input of the CH_CNT block.
- The OUT structure CPU_DIAG of OB_BEGIN is interconnected with the IN_OUT structure of the same name of FM_CNT.
- The EN_CO input structure is interconnected with the EN_CO_x output structure of the FM_CO block (x = number of the rack).
- The output ENCO is connected to the input ENCOx_yy of the FM_CO block (x = number of the rack, yy = coordination number).

Addressing

The logical base address of the module is entered in the LADDR I/O by the CFC driver generator.

Redundancy

Higher-level block MOD_D1 evaluates the redundancy of DP master systems operating in an H system. Redundancy for two FM 350-1 or FM 350-2 modules is not supported, and must be controlled by the user outside the block.

MODE Setting

Signal states of the MODE_xx input, or QMODE_xx output of the FM_CNT block are described under the MODE settings.

MODE_xx input parameters are available for up to 8 signal channels. Their default setting is "0" (no signal). For each signal channel xx, the operating mode of the FM 350 module must be set at the MODE_xx input (the CFC driver generator does this for you).

The module recognizes the following modes:

Term	Coding MODE	Description
Channel not used	16#0000	Channel of the FM 350 not used.
Continuous counting	16#xx01	The FM 350 counts continuously, starting with the current counter level when the internal gate opens.
One-time counting	16#xx02	The FM 350 counts from the start value to the end value when the internal gate opens.
Periodic counting	16#xx03	The FM 350 counts between the start value and the end value when the internal gate opens.
Frequency measurement	16#xx04	The FM 350 determines the frequency pulse sequence at the input.
Speed measurement	16#xx05	The FM 350 determines the speed of the device connected to the input.
Period duration measurement	16#xx06	The FM 350 determines the duration of the pulse sequence at the input.
Dosing	16#xx07	Four channels of the FM 350-2 are used for dosing.

The count and measured values can be recorded for the FM 350-2 module, either via the process image(fast update) or via "Read data record" (slower update). If the count and measured values of a channel in the process image are made available, they have to be in alignment in the process image. The following variants are possible.

Term	Coding MODE	Description
Count and measured value are not in the process image	16#Cxxx	Read count and measured values via data record
Only the count value is in the process image	16#8xxx	Read measured value via data record and count value in the process image
Only the measured value is in the process image	16#4xxx	Read count values via data record and measured value in the process image
Count and measured value are in the process image	16#0xxx	Read count and measured value in the process image
Data type DWORD count and measured value	16#x0xx	Count value before measured value, both of the data type DWORD
Data type WORD count value	16#x1xx	Count value of the the data type WORD before measured value of the data type DWORD
Data type WORD measured value	16#x2xx	Count value of the data type DWORD before measured value of the data type WORD
Data type WORD count and measured value	16#x3xx	Measured value before count value, both of the data type WORD
Data type DWORD count and measured value	16#x8xx	Measured value before count value, both of the data type DWORD
Data type WORD count value	16#x9xx	Measured value of the the data type DWORD before count value of the data type WORD
Data type WORD measured value	16#xAxx	Measured value of the the data type WORD before count value of the data type DWORD
Data type WORD count and measured value	16#xBxx	Count value before measured value, both of the data type WORD

MODE is formed by the linking the operating mode code, and the access type value. Example: Count and measured value in "Dosing" mode of the the data type DWORD is not in the process image MODE = 16#C007.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

Whenever the system or FM 350-1/FM 350-2 starts up, the block coordinates the restart with the module. The CMP_VALx parameters are then loaded into the FM 350.

ALARM_8P is initialized.

Overload behavior

Not available

Time response

Not available

Message response

The block reports operating and data errors for the FM 350-1 module, and data errors for FM 350-2 using ALARM_8P. The message function can be disabled by setting EN_MSG = FALSE. The MOD_D1 block reports diagnostic interrupts from the FM 350-1 or FM 350-2.

Operator control and monitoring

The block has no faceplate.

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

Additional information

You will find more information in:

Message texts and associated values of FM_CNT (Page 88)

3.12.2 I/Os of FM_CNT

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
CO_NO	Coordination number for data record reading	INT	0
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number	DWORD	0
FM_MODE	0 = FM 350-1, >0 = FM 350-2	BYTE	0
LADDR	Logical address FM 350	INT	0
MODEx	Mode channel (x = 0 to 7)	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
FM_DATA	Structure FM 350 data	STRUCT	
MSG_ACK	Message acknowledgment	WORD	0
MSG_STAT	Message error information	WORD	0
OMODEx	Mode channel (x = 0 to 7)	DWORD	0
QDATA_ERR	1 = Data error	BOOL	0
QDONE	1 = Write new data	BOOL	0
QDONE_RD	1 = New data read	BOOL	0
QMODF	1 = Error FM 350	BOOL	0
QPARF	1 = Module not programmed	BOOL	0
QRD_ERR	1 = Error when reading data	BOOL	0
QWR_ERR	1 = Error read data	BOOL	0
STATUS_RD	Read status of data record	DWORD	0
STATUS_WR	Write status of data record	DWORD	0

In-out parameters

I/O (parameter)	Meaning	Data type	De- fault
ACC_MODE	1 = accept MODE settings	BOOL	0
EN_CO	Current coordination number	STRUCT	
ENCO	Coordination number	BYTE	0
CPU_DIAG	CPU diagnostics (system structure)	STRUCT	

Additional information

Additional information is available in the section:

Message texts and associated values of FM_CNT (Page 88)

3.12.3 Message texts and associated values of FM_CNT

Message block ALARM_8P	Message no.	Default message text	Message class
EV_ID	1	FM 350 @1%d@/@2%d@/@3%d @data error number@4%d@	S
	2	FM 350 @1%d@/@2%d@/@3%d @data error number @5%d@	S
	3		No message
	4		No message
	5		No message
	6		No message
	7		No message
	8		No message

Assignment of message text and message class

Assignment of associated values

Message block ALARM_8P	Associat ed value	Block parameters	Meaning
EV_ID	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	SLOT_NO	Slot number (byte)
	4	DA_ERR_W	Data error number
	5	OT_ERR_B	Operator error number

See also

Message Classes (Page 401)

3.13 IMDRV_TS: Transferring time-stamped process-signal changes

3.13.1 Description of IMDRV_TS

Object name (type + number)

FB 129

• IMDRV_TS block I/Os (Page 94)

Area of application

The IMDRV_TS block transfers time-stamped process signal changes to the MSG_TS blocks, and messages from the interface module (IM) to the OS.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 40	Hardware interrupt
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The IMDRV_TS block is copied from the library and instantiated in a system chart. The block is installed in its runtime group after the RACK block runtime group in the above-mentioned OBs.
- OR_32_TS is always interconnected between MSG_TS and IMDRV_TS.
- The logical address LADDR is configured with the logical address of the IM (diagnostics address). If you operate the DP master system in DPV1 mode, the input address of the IM is entered.

- The RAC_DIAG structure of the RACK block is interconnected with the structure of the same name of the IMDRV_TS block.
- The S_CH_xxx and TINF_xxx inputs of the TRIG_INF structure are set.

Every signal that is time-stamped by the IM has a unique assignment identified by the slot of the module combined with the corresponding channel number. There are 128 inputs of the WORD data type for 128 signals. The slot number of the relevant digital input module is entered in the more significant byte and the channel number (signal of the digital input module) is entered into the less significant byte. The slot and channel number of the process signals are entered in the block inputs S_CH_xxx.

Example:

In HW Config, you have activated time-stamping for the digital signal of channel 10 of a digital input module that is inserted in slot 5 of an ET 200M. The number 16#050A is entered at the first available input S_CH_xxx of the IM_DRV_TS.

The information about the edge evaluation for the event entering state is stored in the TINF_xxx parameters of the TRIG_INF structure.

0 means: 0 -> 1 is event entering state 1 means: 1 -> 0 is event entering state.

Description of the functions

The IMDRV_TS block reads the messages from the message buffers (up to 15 data records, each with 20 messages) of an IM, and transfers them to a message block for time stamps (MSG_TS). The MSG_TS sends the messages via an ALARM_8P block whose time stamps for its 8 messages are entered in the 1st associated value in an ARRAY of BYTE.

How it works

- Hardware interrupt (OB 40): The IM generates a hardware interrupt if there are new messages. The time-stamp status, including the number of the IM data record to be fetched and the number of messages in the data record, are fetched from the start information of the process interrupt OB and stored for cyclic processing. The interrupt stack can hold up to 17 process interrupts. If this maximum is exceeded, all new information will be lost. The loss of information is indicated by the "Loss of message at IM (buffer overflow)" message.
- Cyclic processing: If any messages are queued in the stack, SFB 52 (RDREC, read data record) reads the relevant data record (message buffer). If there are several data records to be fetched, it will fetch the record that contains the oldest messages (oldest hardware interrupt). The block instance temporarily stores a maximum of 20 messages of a data record.

The IM can enter new messages in a data record once it has been read. If all data records are in use, the IM enters "Loss of message at IM (buffer overflow)" (incoming) as the last message in the message buffer. "Loss of message at IM (buffer overflow)" (outgoing) is then entered as the first message in the first free data record. Messages received within the interval between a buffer overflow and the enabling of a record will be lost.

The slot number/channel number of the stored messages are compared with the input parameters of the block for slot number/channel number (S_CH_xxx). If they match, the message is written to the corresponding output (TS_xxx).

Errors occurring during data exchange between the block and IM are reported by the ALARM_8P block (for example, an I/O access error).

Quality code for the time stamp TS_xxx.TS0/TS1

A quality code QC_TS is formed for the time stamp TS0/TS1, and entered in TS_xxx.

State	Quality code TS_xxx.QC_TS
Valid value	16#80
Invalid value (higher level error)	16#40
Time-of-day frame failure	
Stop the time stamp function	
Message loss on IM (buffer overflow)	
Loss of information with redundancy	
Invalid value	16##00

3.13 IMDRV_TS: Transferring time-stamped process-signal changes

Addressing

For general information, see also Addressing (Page 399)

The logical address of the IM obtained in HW Config (corresponds to the diagnostic address, or the input address of the IM for a DP master system in DPV1 mode) is entered at the driver's block input (LADDR) by the "Generate module driver" CFC function. Any change to the LADDR block input will initiate a single check of the logical address according to the startup characteristics of the block.

Process signals that require a time stamp and are detected via an IM must be configured accordingly in HW Config.

Error handling

I/O access error:

QPERAF The block could not access the IM. A data record could not be read.

Block processing error:

QERR A block execution error has occurred.

Module parameter assignment error:

QPARF Faulty block configuration: Incorrect logical basic address entered.

Parameter assignment error:

QBPARF Faulty block configuration: The slot/channel number of an IM message does not match any slot/channel number of the block input parameters.

Rack error:

QRACKF Failure of the rack containing the IM or IM failure.

IM Startup Characteristics

During startup/restart of the IM, the system will generate process interrupts once again for those records which were occupied prior to restart but had not been fetched.

The message "Startup data (incoming)" is entered as the first message of the first free data record. After restart, the system checks all monitored digital signals for changes, outputs a message if appropriate. It finally generates the message "Startup data (outgoing)".

IMDRV_TS driver block startup characteristics

Initializes the ALARM_8P blocks using the data stored prior to the CPU transition to STOP. During an initial startup, the signal state is set to "Zero".

During startup, the block verifies the existence of an IM at its logical address set in LADDR. If this does not exist, it sets the QPARF output to TRUE, and does not access any I/Os in its subsequent cycles. QPARF = FALSE and I/O access is enabled only after the correct module has been inserted, or the logical address has been set correctly. Stored process interrupt data which were not computed before the restart will be deleted.

Redundancy

Time stamping in H systems equipped with two IM units is redundant under the following conditions:

- Both IM units communicate via the communication (K) bus.
- No error has occurred during the update of the active and passive IM.

The SUBNET and RACK blocks report loss of redundancy (failure of an IM), separately from the IMDRV_TS block.

Time stamping is interrupted for the duration of the changeover between the active and passive IM. This period of interruption is indicated by the message "Redundant changeover" (incoming/outgoing state).

The active IM usually reports the current I/O status to the redundant IM. If this communication is disrupted, the message "Loss of information with redundancy" (entering state) is output. When the I/O statuses of the active and redundant IM are synchronized, the message "Loss of information with redundancy" (outgoing) is output.

Time response

Not available

Message response

The block signals system messages from the IM via the ALARM_8P block. The timestamped hardware interrupts are forwarded to the MSG_TS IM message block via OR_32_TS.

Operator control and monitoring:

The block does not have a faceplate.

Additional information

You will find more information in: Message texts of IMDRV_TS (Page 96)

3.13.2 I/Os of IMDRV_TS

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
EV_ID	Message number for ALARM_8P	DWORD	0
EV_ID_00	Message number 0 for ALARM_8P	DWORD	0
LADDR	Logic address IM	INT	0
S_CH_xxx	Slot/channel number (xxx = 000 - 127)	WORD	0
TRIG_INF	Edge evaluation:	STRUCT	
	0 = trigger 0 -> 1, 1 = trigger 1 -> 0		

Output parameters

I/O (parameter)	Meaning	Data type	Default
M_ACK_00	Message acknowledgment	WORD	0
Q_ERR_00	Message error	BOOL	0
QERR	1 = processing error block	BOOL	1
QPARF	1 = parameter assignment error module	BOOL	0
QBPARF	1 = parameter assignment error block	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack error	BOOL	0
QTS_NCON	1 = TS_xxx is not interconnected	BOOL	0
STAT_00	Status output	WORD	0

I/O (parameter)	Meaning	Data type	Default
TS_xxx	Time stamp (xxx = 000 – 127)	STRUCT	
	Bit 0: Message signal state (MsgSig)		
	Bit 1: Edge change information (TriInf)		
	Bit 2: Handshake (HdSh)		
	Byte 1:		
	Quality code of the time stamp (ST)		
	DWORD TS0:		
	Date/time stamp in ISP format (seconds)		
	DWORD TS1:		
	Date/time stamp in ISP format (fractions of seconds)		
TS_C_xxx	TS communication (xxx = 000 - 127)	BYTE	0
	Bit 0: Acknowledgment of transfer (HS)		
	Bit 1: Interconnection check (LI)		

In-out parameters

I/O (parameter)	Meaning	Data type	Default
RAC_DIAG	Rack status information	STRUCT	

Additional information

For additional information, refer to the sections:

Message texts of IMDRV_TS (Page 96)

3.13.3 Message texts of IMDRV_TS

Assignment of message text and message class

You will find more information in Message classes (Page 401)

Message block	Message no.	Default message text	Message class
EV_ID (ALARM_8P)			
	1	IM @1%d@@2%d@: Parameter assignment error Slot=@3%d@ Channel=@4%d@	S
	2	IM @1%d@@2%d@: I/O access error: Ret_Val@5%d@	S
	3	IM @1%d@@2%d@: Parameter assignment error LADDR	S
	4	IM @1%d@@2%d@: Output TS_xxx of S_CHxx: Slot=@3%d@ Channel=@4%d@ is not interconnected	S
	5	Reserve5	No message
	6	Reserve6	No message
	7	Reserve7	No message
	8	Reserve8	No message
EV_ID_00 (ALARM_8P)			
	1	IM @3%d@@4%d@: Startup data	S
	2	IM @3%d@@4%d@: Time-of-day frame failure	S
	3		No message
	4	IM @3%d@@4%d@: Time difference between the frame and the internal clock may cause inaccuracy	S
	5	IM @3%d@@4%d@: Stop the time stamp function	S
	6	IM @3%d@@4%d@: Message loss on IM (buffer overflow)	S
	7	IM @3%d@@4%d@: Redundant changeover	S
	8	IM @3%d@@4%d@: Loss of information with redundancy	S

3.14 MOD_1: Monitoring up to 16 channels on S7-300/400 SM modules without diagnostic capability

3.14 MOD_1: Monitoring up to 16 channels on S7-300/400 SM modules without diagnostic capability

3.14.1 Description of MOD_1

Object name (type + number)

FB 91

• MOD_1 block I/Os (Page 101)

Area of application

The MOD_1 block monitors up to 16 channels on S7-300/400 SM modules without diagnostic capability (no mixed modules). H systems support only the modules installed in switched racks.

The block can also be used to monitor the FM 350 counter module.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The MOD_1 block is installed in its runtime group downstream of the RACK block runtime group in the above-mentioned OBs.
- The MODE_xx inputs (mode of module channels xx) are configured.
- The logical base address of the LADDR module is configured.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the IN_OUT structures of the same name of MOD_1.
- The EN input is interconnected with the output of an AND block. Its inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block and EN_Mxx (xx = module number) of the RACK block.

3.14 MOD_1: Monitoring up to 16 channels on S7-300/400 SM modules without diagnostic capability

- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function

The MOD_1 block analyzes all events that affect a module and its channels acyclically. It generates a channel-specific MODE (Page 387) and value status for the signal processing blocks. ALARM_8P reports the events.

The block is enabled by the higher-level RACK block at runtime. The event to be evaluated can be found in the CPU_DIAG start information of the OB_DIAG block. There is a MODE_xx input for each signal channel of the module. The module channel configuration data created in HW Config is reported here. The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxxx):

- Events that are evaluated by the RACK block:
 - Rack failure (OB 86) (output parameter QRACKF = TRUE)
- Events that are evaluated by the MOD block:
 - Program execution error (OB 85) (output parameter QPERAF = TRUE)
 - Module removed (OB 83) (output parameter QMODF = TRUE)

"Module removed" and "I/O access error" events are reported to the OS by ALARM_8P. The diagnostics interrupt function distinguishes between module and channel errors, whereby each channel is assigned a message ID.

The system verifies during startup that the module is available (plugged in). The module status information that is read here is then available in the form of service output parameters (MOD_INF).

You will find additional information about faults in the *System Software for S7-300/400 System and Standard Functions* reference manual.

Redundancy

The higher-level RACK block monitors the redundancy of DP master systems operating in an H system.

3.14 MOD_1: Monitoring up to 16 channels on S7-300/400 SM modules without diagnostic capability

MODE setting

For additional information, refer to the section "MODE settings (Page 387)".

Note

If you make changes to the MODE_xx input configurations at runtime, they are not accepted at the outputs until you set the ACC_MODE input to 1.

OMODE Structure

You will find additional information in the "OMODE (Page 396)" section.

Valid channel display

The available channels on a module are displayed in the CH_EXIST output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel is 0, the channel is not available.

Output CH_OK displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel is 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Addressing

You will find additional information in the "Addressing (Page 399)" section.

Error handling

The plausibility of input parameters is not checked.

You will find additional information about error handling in the "Error information of output parameter MSG_STAT (Page 398)" section.

Service Information

To analyze faults, the module status information entered during startup is read via the MOD_INF structured output parameter. You will find additional information in the *System Software for S7-300/400 System and Standard Functions; System Status List, Module Status Information* reference manual.

Startup characteristics

After a restart/initial startup, the system verifies that the module is available under its logical base address. A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

3.14 MOD_1: Monitoring up to 16 channels on S7-300/400 SM modules without diagnostic capability

Time response

Not available

Message response

MOD_1 uses ALARM_8P to report module errors. The DELAY1 and DELAY2 inputs are used to delay the output of I/O access error messages. DELAY1 allows you to enter a time in seconds for which the block will wait for a higher-priority error (rack failure or removal/insertion) following a program execution error (OB 85) before it outputs the message. The message is output only under the condition that no higher-priority error is reported within this delay time. DELAY2 determines the number of seconds the block waits after the higher-priority error has been reported outgoing until it outputs the queued I/O access error as well. Both values are set to 2 seconds by default. The message function can be disabled by setting EN_MSG = FALSE.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the sections:

Message texts and associated values of MOD_1 (Page 103)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.14 MOD_1: Monitoring up to 16 channels on S7-300/400 SM modules without diagnostic capability

3.14.2 I/Os of MOD_1/MOD_2

The MOD_1 and MOD_2 block I/Os are identical with the exception of the number of MODE_xx and OMODE_xx. The number of monitored channels determines the corresponding number of I/O parameters (xx).

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Output parameters

I/O (parameter)	Meaning	Data type	De- fault	
DELAY1	Alarm delay 1 (s)	INT	2	
DELAY2	Alarm delay 2 (s)	INT	2	
EN_MSG	1 = enable message	BOOL	1	
EV_ID	Message number DWORD			
LADDR	Logic address of the module INT		0	
MODE_xx	Channel mode (xx = 00 - 15/00 - 31)	DWORD	0	
MS	Maintenance status	DWORD	0	
RACK_NO	Rack number	BYTE	0	
SLOT_NO	Slot number	BYTE	0	
SUBN_TYP	1 = external DP interface	BOOL	0	
SUBN1_ID	ID of the primary DP master system	BYTE	255	
SUBN2_ID	ID of the redundant DP master system	BYTE	255	

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
CH_ACTIVE	Channel active	DWORD	16#0 0000 000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0

3.14 MOD_1: Monitoring up to 16 channels on S7-300/400 SM modules without diagnostic capability

I/O (parameter)	Meaning	Data type	De- fault
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15)	DWORD	
	Bit = 0: Release for maintenance		
	Bit1 Byte0: Flutter suppression		
	Bit2 to Bit7 Byte0: Reserved		
	Byte 1: Reserved		
	Byte 2: Reserved		
	Byte 3: Fluttering time		
EXT_STAT	Release for maintenance - extended status	DWORD	0
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACK	Message acknowledgment	WORD	0
MSG_STAT	Message error information WORD		0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Channel mode (xx = 00 - 15/00 - 31)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack/station error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	De- fault
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections: Message texts and associated values of MOD_1/MOD_2 (Page 103) Maintenance status of MS (Page 403) 3.14 MOD_1: Monitoring up to 16 channels on S7-300/400 SM modules without diagnostic capability

3.14.3 Message texts and associated values of MOD_1/MOD_2/MOD_3/MOD_64

Assignment of message text and message class to the block parameters of MOD_1/MOD_2/MOD_3/MOD_64

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID	1		Module @1%d@/@2%d@/@3%d@: Removed	S
	2	QPERAF	Module @1%d@/@2%d@/@3%d@: Access error	S
	3	QMODF	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_n_TXT@ (n = 1, 2, 3 or 64)	S
	4	QMODF	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_n_TXT@ (n = 1, 2, 3 or 64)	S

Assignment of associated values to the block parameters of MOD_1/MOD_2/MOD_3

Message block ALARM_8P	Associate d value	Block parameters	Meaning
EV_ID	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4		Text number from MOD_n_TXT (n = 1, 2, 3 or 64) (Message 1)

You will find the message texts and their text numbers in the "Text library for MOD_1, MOD_2, MOD_3, MOD_64 (Page 417)" section.

See also

Message Classes (Page 401)

3.15 MOD_2: Monitoring 32 channels on S7-300/400 SM modules without diagnostic capability

3.15 MOD_2: Monitoring 32 channels on S7-300/400 SM modules without diagnostic capability

3.15.1 Description of MOD_2

Object name (type + number)

FB 92

MOD_2 block I/Os (Page 108)

Area of application

The MOD_2 block monitors 32 channels on S7-300/400 SM modules without diagnostic capability (no mixed modules). H systems support only the modules installed in switched racks.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The MOD_2 block is installed in its runtime group downstream of the RACK block runtime group in the above-mentioned OBs.
- The MODE_xx inputs (mode of module channels xx) are configured.
- The logical base address of the LADDR module is configured.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the IN_OUT structures of the same name of MOD_2.
- The EN input is interconnected with the output of an AND block. Its inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block and EN_Mxx (xx = module number) of the RACK block.

3.15 MOD_2: Monitoring 32 channels on S7-300/400 SM modules without diagnostic capability

- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function

Block MOD_2 analyzes all events affecting a module and its channels in non-cyclic mode. It generates a channel-specific MODE (Page 387) and value status for the signal processing blocks. ALARM_8P reports the events.

The block is enabled to run by the higher-level RACK block. The event to be evaluated can be found in the CPU_DIAG start information of the OB_DIAG block. There is a MODE_xx input for each signal channel of the module. The module channel configuration data created in HW Config is reported here. The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxx):

- Events that are evaluated by the RACK block:
 - Rack failure (OB 86) (output parameter QRACKF = TRUE)
- Events that are evaluated by the MOD block:
 - Program execution error (OB 85) (output parameter QPERAF = TRUE)
 - Module removed (OB 83) (output parameter QMODF = TRUE)

"Module removed" and "I/O access error" events are reported to the OS by ALARM_8P. The diagnostics interrupt function distinguishes between module and channel errors, whereby each channel is assigned a message ID.

The system verifies during startup that the module is available (plugged in). The module status information that is read here is then available in the form of service output parameters (MOD_INF).

You can find additional information about errors in the *System Software for S7-300/400; System and Standard Functions* reference manual.

Redundancy

The higher-level RACK block monitors the redundancy of DP master systems operating in an H system.

3.15 MOD_2: Monitoring 32 channels on S7-300/400 SM modules without diagnostic capability

MODE setting

You will find more information about this in the "MODE settings (Page 387)" section.

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find additional information in the "OMODE (Page 396)" section.

Valid channel display

The available channels on a module are displayed in the CH_EXIST output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel = 0, the channel is not available.

Output CH_OK displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel is 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Addressing

You will find additional information in the "Addressing (Page 399)" section.

Error handling

The plausibility of input parameters is not checked.

You will find additional information about error handling in the "Error information of output parameter MSG_STAT (Page 398)" section.

Service Information

To analyze faults, the module status information entered during startup is read via the MOD_INF structured output parameter. You will find more information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; System Status List, Module Status Information*.

Startup characteristics

After a restart/initial startup, the system verifies that the module is available under its logical base address. A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

3.15 MOD_2: Monitoring 32 channels on S7-300/400 SM modules without diagnostic capability

Time response

Not available

Message response

MOD_2 uses ALARM_8P to report module errors. The inputs DELAY1 and DELAY2 are used to delay the output of I/O access error messages. DELAY1 allows you to enter a time in seconds for which the block will wait for a higher-priority error (rack failure or removal/insertion) following a program execution error (OB 85) before it outputs the message. The message is output only under the condition that no higher-priority error is reported within this delay time. DELAY2 determines the number of seconds the block waits after the higher-priority error has been reported outgoing until it outputs the queued I/O access error as well. Both values are set to 2 seconds by default. The message function can be disabled by setting EN_MSG = FALSE.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the sections:

Message texts and associated values of MOD_2 (Page 110)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.15 MOD_2: Monitoring 32 channels on S7-300/400 SM modules without diagnostic capability

3.15.2 I/Os of MOD_1/MOD_2

The MOD_1 and MOD_2 block I/Os are identical with the exception of the number of MODE_xx and OMODE_xx. The number of monitored channels determines the corresponding number of I/O parameters (xx).

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Output parameters

I/O (parameter)	Meaning	Data type	De- fault	
DELAY1	Alarm delay 1 (s)	INT	2	
DELAY2	Alarm delay 2 (s)	INT	2	
EN_MSG	1 = enable message BOOL			
EV_ID	Message number	DWORD	0	
LADDR	Logic address of the module INT		0	
MODE_xx	Channel mode (xx = 00 - 15/00 - 31)	DWORD	0	
MS	Maintenance status	DWORD	0	
RACK_NO	Rack number	BYTE	0	
SLOT_NO	Slot number	BYTE	0	
SUBN_TYP	1 = external DP interface	BOOL	0	
SUBN1_ID	ID of the primary DP master system	BYTE	255	
SUBN2_ID	ID of the redundant DP master system	BYTE	255	

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
CH_ACTIVE	Channel active	DWORD	16#0 0000 000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
3.15 MOD_2: Monitoring 32 channels on S7-300/400 SM modules without diagnostic capability

I/O (parameter)	Meaning	Data type	De- fault			
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15)	DWORD				
	Bit = 0: Release for maintenance					
	Bit1 Byte0: Flutter suppression					
	Bit2 to Bit7 Byte0: Reserved					
	Byte 1: Reserved					
	Byte 2: Reserved					
	Byte 3: Fluttering time					
EXT_STAT	Release for maintenance - extended status	DWORD	0			
MOD_INF	System structure: Module parameter	STRUCT				
MSG_ACK	essage acknowledgment WORD					
MSG_STAT	lessage error information WORD					
O_MS	Maintenance status	Aaintenance status DWORD				
OMODE_xx	Channel mode (xx = 00 - 15/00 - 31)	Channel mode (xx = 00 - 15/00 - 31) DWORD				
QERR	= program error BOOL 1					
QMODF	1 = module removed/defective	BOOL	0			
QPERAF	1 = I/O access error	BOOL	0			
QRACKF	1 = rack/station error	= rack/station error BOOL 0				

In-out parameters

I/O (parameter)	Meaning	Data type	De- fault
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_1/MOD_2 (Page 110)

Maintenance status of MS (Page 403)

3.15 MOD_2: Monitoring 32 channels on S7-300/400 SM modules without diagnostic capability

3.15.3 Message texts and associated values of MOD_1/MOD_2/MOD_3/MOD_64

Assignment of message text and message class to the block parameters of MOD_1/MOD_2/MOD_3/MOD_64

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID	1		Module @1%d@/@2%d@/@3%d@: Removed	S
	2	QPERAF	Module @1%d@/@2%d@/@3%d@: Access error	S
	3	QMODF	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_n_TXT@ (n = 1, 2, 3 or 64)	S
	4	QMODF	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_n_TXT@ (n = 1, 2, 3 or 64)	S

Assignment of associated values to the block parameters of MOD_1/MOD_2/MOD_3

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4		Text number from MOD_n_TXT (n = 1, 2, 3 or 64) (Message 1)

You will find the message texts and their text numbers in the "Text library for MOD_1, MOD_2, MOD_3, MOD_64 (Page 417)" section.

See also

Message Classes (Page 401)

3.16 MOD_3: Monitoring up to 16 channels on S7-200/300/400 SM modules without diagnostic capability

3.16 MOD_3: Monitoring up to 16 channels on S7-200/300/400 SM modules without diagnostic capability

3.16.1 Description of MOD_3

Object name (type + number)

FB 95

• MOD_3 block I/Os (Page 115)

Area of application

The MOD_3 block monitors up to 16 channels on S7-300/400 SM mixed modules without diagnostic capability (I/O modules). H systems support only the modules installed in switched racks.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program	
OB 83	Insert/remove module interrupt	
OB 85	Program execution error	
OB 86	Rack failure	
OB 100	Warm restart	

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The MOD_3 block is installed in its runtime group downstream of the RACK block runtime group in the above-mentioned OBs.
- The MODE_xx inputs are configured.
- The logical addresses LADDR and LADDR1 are configured.
- The structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the MOD_3 structures of the same name.
- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

3.16 MOD_3: Monitoring up to 16 channels on S7-200/300/400 SM modules without diagnostic capability

Function

The MOD_3 block cyclically analyzes all events that affect a module. It generates a channelspecific MODE (Page 387) and value status for the signal processing blocks. ALARM_8P reports the events. The message function can be disabled.

The block is enabled to run by the higher-level RACK block. The diagnostic event is entered in the CPU_DIAG start information of the OB_BEGIN block.

There is a MODE_xx input for each signal channel of the module. The module channel configuration data created in HW Config is reported here. MODE_00 to MODE_15 inputs are available for encoding up to 16 input channels, and MODE_16 ... MODE_31 for encoding up to 16 output channels.

The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxxx):

- Events that are evaluated by the RACK block:
 - Rack failure (OB 86) (output parameter QRACKF = TRUE)
 - Program execution error (OB 85) (output parameter QRACKF = TRUE)
- Events that are evaluated by the MOD block:
 - I/O access error (OB 85) (output parameter QPERAF = TRUE)
 - Module removed (OB 83) (output parameter QMODF = TRUE)

"Module removed" and "I/O access error" events are reported to the OS by ALARM_8P. The diagnostics interrupt function distinguishes between module and channel errors, whereby each channel is assigned a message ID.

The system verifies during startup that the module is available (plugged in). The module status information read here makes this data available in the form of service output parameters (MOD_INF).

You will find additional information about faults in the *System Software for S7-300/400 System and Standard Functions* reference manual.

Redundancy

Block MOD_3 supports segment redundancy of H systems operating with distributed I/Os. If you want to use this function, you must configure the SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs of the SUBNET block with the numbers of the redundant segments. If there is no segment redundancy, the remaining input must be set to the (default) value 16#FF.

3.16 MOD_3: Monitoring up to 16 channels on S7-200/300/400 SM modules without diagnostic capability

MODE setting

You will find more information about this in the "MODE settings (Page 387)" section.

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find additional information in the "OMODE (Page 396)" section.

Valid channel display

The available channels on a module are displayed in the CH_EXIST output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel = 0, the channel is not available.

Output CH_OK displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel is 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Addressing

You will find additional information about this in the "Addressing (Page 399)" section.

Error handling

The plausibility of input parameters is not checked.

You will find additional information about error handling in the "Error information of output parameter MSG_STAT (Page 398)" section.

Service Information

To analyze faults, the module status information entered during startup is read via the MOD_INF structured output parameter. You will find more information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; System Status List, Module Status Information.*

Startup characteristics

After a restart/initial startup, the system verifies that the module is available under its logical base address. A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

3.16 MOD_3: Monitoring up to 16 channels on S7-200/300/400 SM modules without diagnostic capability

Time response

Not available

Message response

Block MOD_3 uses ALARM_8P to report module errors. The inputs DELAY1 and DELAY2 are used to delay the output of I/O access error messages. DELAY1 allows you to enter a time in seconds for which the block will wait for a higher-priority error (rack failure or removal/insertion) following a program execution error (OB 85) before it outputs the message. DELAY2 determines the number of seconds the block waits after the higher-priority error has been reported outgoing until it outputs the queued I/O access error as well. Both values are set to 2 seconds by default. The message function can be disabled by setting EN_MSG = FALSE.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the sections:

Message texts and associated values of MOD_3 (Page 117)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.16 MOD_3: Monitoring up to 16 channels on S7-200/300/400 SM modules without diagnostic capability

3.16.2 I/Os of MOD_3

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault	
DELAY1	Alarm delay 1 (s)	INT	2	
DELAY2	Alarm delay 2 (s)	INT	2	
EN_MSG	1 = enable message	BOOL	1	
EV_ID	Message number	DWORD	0	
LADDR	ogical address of the input channels INT			
LADDR1	Logical address of the output channels	INT	0	
MODE_xx	Channel xx mode	DWORD	0	
MS	Vaintenance status DWORD			
RACK_NO	Rack number BYTE			
SLOT_NO	Slot number BYTE			
SUBN_TYP	1 = external DP interface	BOOL	0	
SUBN1_ID	ID of the primary DP master system BYTE			
SUBN2_ID	D of the redundant DP master system BYTE 2			

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
CH_ACTIVE	Channel active	DWORD	16#0 0000 000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15) Bit = 0: Release for maintenance Bit1 Byte0: Flutter suppression Bit2 to Bit7 Byte0: Reserved Byte 1: Reserved Byte 2: Reserved Byte 3: Fluttering time	DWORD	0

3.16 MOD_3: Monitoring up to 16 channels on S7-200/300/400 SM modules without diagnostic capability

I/O (parameter)	Meaning Data type			
EXT_STAT	Release for maintenance - extended status	DWORD	0	
MOD_INF	System structure: Module parameter	STRUCT		
MSG_ACK	Message acknowledgment	WORD	0	
MSG_STAT	Message error information WORD			
O_MS	laintenance status DWORD			
OMODE_xx	Channel xx mode DWORD		0	
QERR	1 = program error BOOL		1	
QMODF	1 = module removed/defective BOOL		0	
QPERAF	1 = I/O access error BOOL		0	
QRACKF	1 = failure of the rack	BOOL	0	

In-out parameters

I/O (parameter)	Meaning	Data type	Def- ault
ACC_MODE	1 = Accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections: Message texts and associated values of MOD_3 (Page 117) Maintenance status of MS (Page 403) 3.16 MOD_3: Monitoring up to 16 channels on S7-200/300/400 SM modules without diagnostic capability

3.16.3 Message texts and associated values of MOD_1/MOD_2/MOD_3/MOD_64

Assignment of message text and message class to the block parameters of MOD_1/MOD_2/MOD_3/MOD_64

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID	1		Module @1%d@/@2%d@/@3%d@: Removed	S
	2	QPERAF	Module @1%d@/@2%d@/@3%d@: Access error	S
	3	QMODF	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_n_TXT@ (n = 1, 2, 3 or 64)	S
	4	QMODF	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_n_TXT@ (n = 1, 2, 3 or 64)	S

Assignment of associated values to the block parameters of MOD_1/MOD_2/MOD_3

Message block ALARM_8P	Associate d value	Block parameters	Meaning
EV_ID	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4		Text number from MOD_n_TXT (n = 1, 2, 3 or 64) (Message 1)

You will find the message texts and their text numbers in the "Text library for MOD_1, MOD_2, MOD_3, MOD_64 (Page 417)" section.

See also

Message Classes (Page 401)

3.17 MOD_4: Monitoring ET 200S modules downstream of a Y-Link

3.17.1 Description of MOD_4

Object name (type + number)

FB 119

• MOD_4 block I/Os (Page 122)

Area of application

Block MOD_4 monitors modules (up to 16 channels) of an ET 200S acting as a DPV0 slave (IM 151 High Feature) downstream of a Y link.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- Block MOD_4 is installed in its runtime group downstream of the OB_DIAG1 block, which is used for the ET 200S downstream of a Y link, in the above-mentioned OBs.
- The MODE_xx inputs (mode of module channels xx) are configured.
- The logical base address of the LADDR module is configured.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the OB_DIAG1 blocks (for DP slave downstream of a Y link, and an OB_DIAG1 for each Y link) are interconnected with the IN_OUT structures RAC_DIAG (DP slave) and RAC_DIAG_L (Y link) of MOD_4.
- The EN input is interconnected with the output of an AND block. whose inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block, EN_F of the OB_DIAG1 block for the Y link, EN_F of the OB_DIAG1 block for the ET 200S downstream of the Y link, and EN_Mxx (xx = module slot number in the ET 200S) of the DPDIAGV0 block.
- The DPA_M input is interconnected with the DPA_Mxx (xx= module slot number in the ET 200S) output of the DPDIAGV0 block.
- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function

Block MOD_4 analyzes all events related to an ET 200S module acyclically. It generates a channel-specific MODE (Page 387) and value status for the signal processing blocks. ALARM_8P reports events separately for each module.

The block enabled to run by the higher-level DPDIAGV0 block. The event to be evaluated is available at input DPA_M. Possible byte assignments:

- 0000000 = Module OK
- 0000001 = Module error
- 0000010 = Wrong module
- 0000011 = Module missing
- 00001xx = ET 200S failure; x = irrelevant

There is a MODE_xx input for each signal channel of the module. The module channel configuration data created in HW Config is reported here. The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This only occurs if the module status changes during startup, or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxxx):

- Events that are evaluated by the OB_DIAG1 block:
 - Rack failure (OB 86,OB 83) (output parameter QRACKF = TRUE)
- Events that are evaluated by the MOD block:
 - Module diagnostics (OB 82) (output parameter QMODF = TRUE)

ALARM_8P is used to report "Module error ", "Wrong module " or "Module missing " events to the OS.

Redundancy

You can not use redundant DP slaves downstream of a Y link.

MODE setting

You will find more information about this in the "MODE settings (Page 387)" section.

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find further information in the "OMODE (Page 396)" section.

Valid channel display

The available channels on a module are displayed in the CH_EXIST output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel = 0, the channel is not available.

Output CH_OK displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel is 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Addressing

You will find additional information about this in the "Addressing (Page 399)" section.

Error handling

The plausibility of input parameters is not checked. You will find further information about error handling in "Error information of output parameter MSG_STAT (Page 398)".

Startup characteristics

A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

Time response

Not available

Message response

MOD_4 uses ALARM_8P to report module errors. The message function can be disabled by setting EN_MSG = FALSE.

The block generates the maintenance status MS.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For further information, refer to the sections:

Message texts and associated values of MOD_4 (Page 124)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.17.2 I/Os of MOD_4

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
DPA_M	Module status	BYTE	0
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number	DWORD	1
LADDR	Logic address of the module	INT	0
MODE_xx	Mode channel (xx = 00 - 15)	DWORD	0
MS	Maintenance status	DWORD	0
PADP_ADR	DP address of ET 200S	BYTE	255
RACK_NO	Rack number (Y-Link)		0
SLOT_NO	Slot number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
CH_ACTIVE	Channel active	DWORD	16#0 0000 000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15)	DWORD	0
	Bit 0= Release for maintenance		
	Bits 1-31 = Reserve		
EXT_STAT	Release for maintenance - extended status	DWORD	0
MSG_ACK	Message acknowledgment	WORD	0
MSG_STAT	Message error information	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Mode channel (xx = 00 - 15)	DWORD	0
QERR	1 = program error	BOOL	1

3.17 MOD_4: Monitoring ET 200S modules downstream of a Y-Link

I/O (parameter)	Meaning		De- fault
QMODF	1 = module removed/defective	BOOL	0
QRACKF	1 = rack/station error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	De- fault
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics of the DP slave downstream of Y link	STRUCT	
RAC_DIAG_L	System structure: Rack diagnostics for the Y link	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_4 (Page 124)

Maintenance status of MS (Page 403)

3.17.3 Message texts and associated values of MOD_4

Assignment of message text and message class

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID	1	Module @1%d@/@2%d@/@3%d@/@4%d@: Error	S
	2	Module @1%d@/@2%d@/@3%d@/@4%d@: Wrong	S
	3	Module @1%d@/@2%d@/@3%d@/@4%d@: Missing	S

Assignment of associated values

Message block ALARM_8P	Associat ed value	Block parameter	Meaning
EV_ID	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte) (Y link)
	3	PADP_ADR	DP address of ET 200S
	4	SLOT_NO	Slot number (byte)

See also

Message Classes (Page 401)

3.18 MOD_64: Monitoring 64 channels on S7-300 SM modules without diagnostic capability

3.18 MOD_64: Monitoring 64 channels on S7-300 SM modules without diagnostic capability

3.18.1 Description of MOD_64

Object name (type + number)

FB 137

• MOD_64 block I/Os (Page 129)

Area of application

The MOD_64 block monitors 64 channels on S7-300 SM modules without diagnostic capability (no mixed modules). H systems support only the modules installed in switched racks.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program			
OB 83	nsert/remove module interrupt			
OB 85	Program execution error			
OB 86	Rack failure			
OB 100	Warm restart			

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The MOD_64 block is installed in its runtime group downstream of the RACK block runtime group in the above-mentioned OBs.
- The MODE_xx inputs (mode of module channels xx) are configured.
- The logical base address of the LADDR module is configured.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the IN_OUT structures of the same name of MOD_2.
- The EN input is interconnected with the output of an AND block. Its inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block and EN_Mxx (xx = module number) of the RACK block.

3.18 MOD_64: Monitoring 64 channels on S7-300 SM modules without diagnostic capability

- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function

The MOD_64 block analyzes all events that affect a module and its channels acyclically. It generates a channel-specific MODE (Page 387) and value status for the signal processing blocks. ALARM_8P reports the events.

The block is enabled to run by the higher-level RACK block. The event to be evaluated can be found in the CPU_DIAG start information of the OB_DIAG block. There is a MODE_xx input for each signal channel of the module. The module channel configuration data created in HW Config is reported here. The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxxx):

- Events that are evaluated by the RACK block:
 - Rack failure (OB 86) (output parameter QRACKF = TRUE)
- Events that are evaluated by the MOD block:
 - Program execution error (OB 85) (output parameter QPERAF = TRUE)
 - Module removed (OB 83) (output parameter QMODF = TRUE)

"Module removed" and "I/O access error" events are reported to the OS by ALARM_8P. The diagnostics interrupt function distinguishes between module and channel errors, whereby each channel is assigned a message ID.

The system verifies during startup that the module is available (plugged in). The module status information that is read here is then available in the form of service output parameters (MOD_INF).

You can find additional information about errors in the *System Software for S7-300/400; System and Standard Functions* reference manual.

Redundancy

The higher-level RACK block monitors the redundancy of DP master systems operating in an H system.

3.18 MOD_64: Monitoring 64 channels on S7-300 SM modules without diagnostic capability

MODE setting

You will find more information about this in the "MODE settings (Page 387)" section.

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find additional information in the "OMODE (Page 396)" section.

Valid channel display

The available channels on a module are displayed in the CH_EXIST or CH_EXIST_2 output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel = 0, the channel is not available.

Output CH_OK or CH_OK_2 displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel = 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Addressing

You will find additional information in the "Addressing (Page 399)" section.

Error handling

The plausibility of input parameters is not checked.

You will find additional information about error handling in the "Error information of output parameter MSG_STAT (Page 398)" section.

Service Information

To analyze faults, the module status information entered during startup is read via the MOD_INF structured output parameter. You will find more information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; System Status List, Module Status Information.*

Startup characteristics

After a restart/initial startup, the system verifies that the module is available under its logical base address. A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

3.18 MOD_64: Monitoring 64 channels on S7-300 SM modules without diagnostic capability

Time response

Not available

Message response

MOD_64 uses ALARM_8P to report module errors. The inputs DELAY1 and DELAY2 are used to delay the output of I/O access error messages. DELAY1 allows you to enter a time in seconds for which the block will wait for a higher-priority error (rack failure or removal/insertion) following a program execution error (OB 85) before it outputs the message. The message is output only under the condition that no higher-priority error is reported within this delay time. DELAY2 determines the number of seconds the block waits after the higher-priority error has been reported outgoing until it outputs the queued I/O access error as well. Both values are set to 2 seconds by default. The message function can be disabled by setting EN_MSG = FALSE.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_64 (Page 131)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.18 MOD_64: Monitoring 64 channels on S7-300 SM modules without diagnostic capability

3.18.2 I/Os of MOD_64

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DELAY1	Alarm delay 1 (s)	INT	2
DELAY2	Alarm delay 2 (s)	INT	2
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number	DWORD	0
LADDR	Logic address of the module	INT	0
MODE_xx	Mode channel (xx = 00 - 63)	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_ACTIVE	Channel active	DWORD	16#00 00000 0
CH_EXIST	Channel exists (0 to 31)	DWORD	0
CH_EXIST_2	Channel exists (32 to 63)	DWORD	0
CH_OK	Channel OK (0 to 31)	DWORD	0
CH_OK_2	Channel OK (32 to 63)	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 63) Bit 0= Release for maintenance Bits 1-31 = Reserve	DWORD	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
EXT_STAT_2	Release for maintenance - extended status 2	DWORD	0
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACK	Message acknowledgment	WORD	0

3.18 MOD_64: Monitoring 64 channels on S7-300 SM modules without diagnostic capability

I/O (parameter)	Meaning	Data type	Default
MSG_STAT	Message error information	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Mode channel (xx = 00 - 63)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack/station error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_64 (Page 131)

Maintenance status of MS (Page 403)

3.18 MOD_64: Monitoring 64 channels on S7-300 SM modules without diagnostic capability

3.18.3 Message texts and associated values of MOD_1/MOD_2/MOD_3/MOD_64

Assignment of message text and message class to the block parameters of MOD_1/MOD_2/MOD_3/MOD_64

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID	1		Module @1%d@/@2%d@/@3%d@: Removed	S
	2	QPERAF	Module @1%d@/@2%d@/@3%d@: Access error	S
	3	QMODF	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_n_TXT@ (n = 1, 2, 3 or 64)	S
	4	QMODF	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_n_TXT@ (n = 1, 2, 3 or 64)	S

Assignment of associated values to the block parameters of MOD_1/MOD_2/MOD_3

Message block ALARM_8P	Associate d value	Block parameters	Meaning
EV_ID	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO Rack/station number (byte)	
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4	Text number from MOD_n_TXT ($n = 1, 2, 3 \text{ or } 64$) (Message 1)	

You will find the message texts and their text numbers in the "Text library for MOD_1, MOD_2, MOD_3, MOD_64 (Page 417)" section.

See also

Message Classes (Page 401)

3.19 MOD_CP: CP 341/441 diagnostics

3.19.1 Description of MOD_CP

Object name (type + number)

FB 98

• MOD_CP block I/Os (Page 136)

Area of application

Block MOD_CP monitors a CP 341 or CP 441 serial communication module. H systems only support modules in switched racks.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The MOD_CP block is installed in its runtime group downstream of the RACK block runtime group in the above-mentioned OBs.
- The SUBN1_ID, SUBN2_ID, SUBN_TYP, RACK_NO, and SLOT_NO inputs are configured.
- The logical base address LADDR of the module is configured.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the IN_OUT structures of the same name of MOD_CP.
- The EN input is interconnected with the output of an AND block. Its inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block and EN_Mxx (xx = module number) of the RACK block.

Function and method of operation

Block MOD_CP analyzes all events that affect a module and its channels acyclically. and generates a value status for the serial communication blocks (such as RCV_341). ALARM_8P is used to report these events.

The higher-level RACK block enables the MOD_CP block to run. The event to be evaluated is stored in the CPU_DIAG start and diagnostic information of the OB_BEGIN block. An input (MODE_00) is assigned to the communication channel of the module. Input MODE_01 is reserved for the second CP 441 communication channel, which can be used to report the communication-channel configuration data from HW Config. The driver generator cannot access this data at present, so the SND_341 or RCV_341 block does not evaluate the data either. If user-specific blocks are used, the user can define codes at the MODE (Page 387) input for use in these user-specific blocks. The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output. This occurs only during startup or if you set ACC_MODE = TRUE. The current value status of the communication channel is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxxx):

- Events that are evaluated by the RACK block:
 - Rack failure (OB 86) (output parameter QRACKF = TRUE)
- Events that are evaluated by the MOD block:
 - Program execution error (OB 85) (output parameter QPERAF = TRUE)
 - Module removed (OB 83) (output parameter QMODF = TRUE)
 - Diagnostic interrupt (OB 82) Distinguishing between module errors and channel errors

The following events are module errors (QMODF = TRUE output parameter):

ALARM_8P is used to report "Module removed", "I/O access error" and "Diagnostic interrupt" events to WinCC.

It is only with the CP441 that the system distinguishes between module and channel errors in response to a diagnostic interrupt; two message IDs (parameter assignment error, line break) are assigned to each channel.

Redundancy

The higher-level RACK block monitors the redundancy of DP master systems operating in an H system.

Valid channel display

The existing channels on a module are displayed in the CH_EXIST output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel = 0, the channel is not available.

Output CH_OK displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel is 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

After a restart/initial startup, the system verifies that the module is available under its logical base address. A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

Overload behavior

The MOD_CP block counts the OB 82 calls. The counter is reset in OB1. If more than five OB 82 events occur in succession before the cycle control point is reached (OB 1), these events are rejected and the message "OB 82 DP master failure: x Rack: y Slot: z" is output.

Time response

Not available

Message response

MOD_CP uses ALARM_8P to report module errors. The inputs DELAY1 and DELAY2 are used to delay the output of I/O access error messages. DELAY1 allows you to enter a time in seconds for which the block will wait for a higher-priority error (rack failure or removal/insertion) following a program execution error (OB 85) before it outputs the message. The message is output only under the condition that no higher-priority error is reported within this delay time. DELAY2 determines the number of seconds the block waits after the higher-priority error has been reported outgoing until it outputs the queued I/O access error as well. Both values are set to 2 seconds by default. The message function can be disabled by setting EN_MSG = FALSE.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For further information, refer to the following sections:

Message texts and associated values of MOD_CP (Page 138)

Maintenance status of MS (Page 403)

3.19.2 I/Os of MOD_CP

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DELAY1	Alarm delay 1 (s)	INT	2
DELAY2	Alarm delay 2 (s)	INT	2
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number	DWORD	0
LADDR	Logic address of the module	INT	0
MODE_00	Channel 1 mode	WORD	0
MODE_01	Channel 2 mode (CP 441 only)	WORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DIAG_INF	System structure: Diagnostic information	STRUCT	
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACK	Message acknowledgment	WORD	0
MSG_STAT	Message error information	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_00	Value status/channel 1 mode	DWORD	0
OMODE_01	Value status/channel 2 mode (CP 441 only)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_CP (Page 138)

Maintenance status of MS (Page 403)

3.19.3 Message texts and associated values of MOD_CP

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID	1	QMODF	CP @1%d@/@2%d@/@3%d@: Removed	S
	2	QPERAF	CP @1%d@/@2%d@/@3%d@: Access error	S
	3		CP @1%d@/@2%d@/@3%d@: @4W%t#MOD_CP_TXT@	S
	4		CP @1%d@/@2%d@/@3%d@: Wrong parameter	S
	5		CP @1%d@/@2%d@/@3%d@: Wire break	S
	6		CP @1%d@/@2%d@/@3%d@/2: Wrong parameter	S
	7		CP @1%d@/@2%d@/@3%d@/2: Wire break	S
	8		CP @1%d@/@2%d@/@3%d@: Multiple diagnostic interrupt	S

Assignment of message text and message class

You will find the message texts and their text numbers in the "Text library for MOD_CP (Page 417)" section.

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	SLOT_NO	Slot number (byte)

SUBN_ID = SUBN1_ID. If SUBN1_ID = 16#FF, the associated value is substituted with SUBN2_ID.

See also

Message Classes (Page 401)

3.20 MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions

3.20 MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions

3.20.1 Description of MOD_D1

Object name (type + number)

FB 93

• MOD_D1 block I/Os (Page 146)

Area of application

The MOD_D1 block can monitor the following modules:

- Power modules
- ET200S counter modules
- FM350 counter modules
- up to 16 channels on S7-300/400 SM modules with diagnostic functions (no mixed modules)
- and the power supplies of an ET 200iSP in a redundant configuration.

H systems support only the modules installed in switched racks.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

3.20 MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The MOD_D1 block is installed in its runtime group downstream of the RACK block runtime group in the above-mentioned OBs.
- The MODE_xx (mode of the channels xx of the module), SUBN1_ID, SUBN2_ID, and SUBN_TYP inputs are configured.
- The logical base address LADDR of the module is configured.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the IN_OUT structures of the same name of MOD_D1.
- The EN input is interconnected with the output of an AND block. Its inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block and EN_Mxx (xx = module number) of the RACK block.
- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function and method of operation

Block MOD_D1 analyzes all events that affect a module and its channels acyclically. It generates a channel-specific MODE (Page 387) and value status for the signal processing blocks. ALARM_8P is used to report these events.

MOD_D1 monitors the redundant power supplies for ET 200iSP and reports the failure of a power supply via the slot number of the interface module. The maintenance status (MS) of the module shows, if the power supply fails "Maintenance: Requirement Moderate" an.

Block MOD_D1 is enabled by the higher-level RACK block at runtime. The event to be evaluated is stored in the CPU_DIAG start and diagnostic information of the OB_BEGIN block. There is a MODE_xx input for each signal channel of the module. The module channel configuration data created in HW Config is reported here. The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxx):

- Events that are evaluated by the RACK block:
 - Rack failure (OB 86) (output parameter QPERAF = TRUE)
- Events that are evaluated by the MOD block:
 - Program execution error (OB 85) (output parameter QPERAF = TRUE)
 - Module removed (OB 83) (output parameter QMODF = TRUE)
 - Diagnostic interrupt (OB 82) Distinguishing between module errors and channel errors

3.20 MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions

The following events are module errors (QMODF = TRUE output parameter):

- External auxiliary voltage missing
- Front connector missing
- Module not configured
- Wrong parameter in module
- Wrong/missing module
- Communication error at a CPU module
- Timeout (watchdog)
- Loss of internal power at a module
- Rack failure
- CPU failure
- EPROM error
- RAM error
- ADC/DAC error
- Fuse tripped
- Power supply 1: Error
- Power supply 2: Error

The following events are channel errors (value status "invalid value", OMODE_xx = 16#00xxxx):

- Configuration/parameter assignment error
- Common-mode errors (analog I/Os only)
- Short-circuit to P
- Short circuit to M
- Interruption at the output transistor
- Wire break
- Reference channel error (analog inputs only)
- Measuring range underflow (only analog inputs)
- Measuring range overflow (analog inputs only)
- Missing load voltage (only analog and digital outputs)
- Missing sensor power supply (digital outputs only)
- Fuse tripped (only digital outputs)
- Mass error (digital I/Os only)
- Excess temperature (only digital outputs)

3.20 MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions

ALARM_8P is used to report "Module removed", "I/O access error", and "Diagnostic interrupt" events to WinCC.

The diagnostics interrupt function distinguishes between module and channel errors, whereby each channel is assigned a message ID. Only one incoming/outgoing event can be reported for each channel. As long as an incoming message is queued at a channel, further messages on new events at this channel will be lost.

If the event is defined uniquely in the diagnostic information, the corresponding text will be entered in the message. If there are ambiguous entries, the text of the first set bit in the error byte of the diagnostic information will be displayed. When using modules assigned diagnostic functions and more than one error byte for diagnostic information, only the channel xx error text will be output if the error information is not displayed in the first error byte.

The system verifies during startup that the module is available (plugged in). The module status information that is read here is then available in the form of service output parameters (MOD_INF).

Detailed information about the errors is entered in the DIAG_INF output parameter of data type STRUCT. You will find more information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; Diagnostic Data, Byte 0 to Byte 8, Structure of Channel-Specific Diagnostic Data.*

Note

If you run a HART module in HART MODE (Page 387) =16#070C, any HART protocol errors/configuration changes will be masked by the MOD_D1 driver block, and will not be signaled as channel errors.

Redundancy

The higher-level RACK block monitors the redundancy of DP master systems operating in an H system.

MODE setting

You will find more information about this in the "MODE settings (Page 387)" section.

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find further information in the "OMODE (Page 396)" section.

3.20 MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions

Valid channel display

The available channels on a module are displayed in the CH_EXIST output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel = 0, the channel is not available.

Output CH_OK displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel is 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Addressing

You will find more information about this in "Addressing (Page 399)".

HART modules with read/write access to the process image are configured in the same way as input modules. The set I/O range must always be identical.

Example: SM332 AO 2x0/4..20mA HART 332-5TB00-0AB0:

Address input range	Address output range	LADDR
(HW Config)	(HW Config)	(decimal/hex)
544	544	544 / 16#0220

Error handling

The plausibility of input parameters is not checked. You will find further information about error handling in the "Error information of output parameter MSG_STAT (Page 398)" section.

Service Information

To analyze faults, the module status information entered during startup is read via the MOD_INF structured output parameter. You will find more information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; System Status List, Module Status Information*.

Following a diagnostic interrupt, you will also find detailed module diagnostic information in the MODDIAG0 to MODDIAG8 output parameters. You will find more information in the reference manual *System Software for S7-300/400 System and Standard Functions; Diagnostic Data, Byte 0 to Byte 8.*

The CHDIAG00 to CHDIAG15 output parameters contain detailed channel-status information. You will find more information in the reference manual *System Software for S7-300/400 System and Standard Functions; Structure of Channel-Specific Diagnostic Data.*

The system resets this diagnostic information after a diagnostic interrupt has been reported outgoing (no further channel or module errors are queued).

3.20 MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions

Startup characteristics

After a restart/initial startup, the system verifies that the module is available under its logical base address. A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

Overload behavior

The MOD D1 block counts the OB82 calls. The counter is reset in OB1. If more than two OB82 events occur in succession before the cycle control point is reached (OB1), these events are rejected, and the message "OB82 DP master failure: x Rack: y Slot: z" is output.

Time response

Not available

Message response

MOD D1 uses ALARM 8P 1 to report module errors. The function also calls ALARM 8P 2 and ALARM_8P_3 which are intended for channel errors. The DELAY1 and DELAY2 inputs are used to delay the output of I/O access error messages. DELAY1 allows you to enter a time in seconds for which the block will wait for a higher-priority error (rack failure or removal/insertion) following a program execution error (OB85) before it outputs the message. The message is output only under the condition that no higher-priority error is reported within this delay time. DELAY2 determines the number of seconds the block waits after the higher-priority error has been reported outgoing until it outputs the gueued I/O access error as well. Both values are set to 2 seconds by default.

The message function can be disabled by setting EN_MSG = FALSE.

Flutter suppression

The "Flutter suppression" function is used to delay the outgoing of a message by a configurable period.

The flutter time is entered at the channel block at the FlutTmIn parameter. The high byte of the DXCHG parameter of the channel blocks contains the flutter time.

Flutter suppression comes into effect when FlutEN = 1 or FlutTmIn > 0 is set at the channel block.

There is only one flutter message per module. The delay times and fault messages are channel-specific. The fault messages are extended by at least the delay time. Flutter exists if the fault messages "Outgoing" and then "Incoming" are present within the delay time.

The last fluttering channel and its set delay time deactivates the flutter message.
Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_D1 (Page 148)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.20.2 I/Os of MOD_D1/MOD_D2

The MOD_D1 and MOD_D2 block I/Os are identical, with the exception of the number of MODE_xx and OMODE_xx. The number of monitored channels determines the corresponding number of I/O parameters (xx).

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DELAY1	Alarm delay 1 (s)	INT	2
DELAY2	Alarm delay 2 (s)	INT	2
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number (x = 1 - 3)	DWORD	0
LADDR	Logic address of the module	INT	0
MODE_xx	Operating mode channel xx (xx = 00 - 15 / 00 - 31)	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_ACTIVE	Channel active	DWORD	16#000 00000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15)	DWORD	0
	Bit = 0: Release for maintenance		
	Bit1 Byte0: Flutter suppression		
	Bit2 to Bit7 Byte0: Reserved		
	Byte 1: Reserved		
	Byte 2: Reserved		
	Byte 3: Fluttering time		
DIAG_INF	System structure: Diagnostic information	STRUCT	0

3.20 MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions

I/O (parameter)	Meaning	Data type	Default
EXT_STAT	Release for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression	DWORD	16#000 00000
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACKx	Message acknowledgment (x = 1 - 3)	WORD	0
MSGSTATx	Message error information $(x = 1 - 3)$	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Channel mode (xx = 00 - 15/00 - 31)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_D1 (Page 148)

Message texts and associated values of MOD_D2 (Page 158)

Maintenance status of MS (Page 403)

3.20.3 Message texts and associated values of MOD_D1

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID1	1	QMODF	Module @1%d@/@2%d@/@3%d@: Removed	S
	2	QPERAF	Module @1%d@/@2%d@/@3%d@: Access error	S
	3	QMODF	Module @1%d@/@2%d@/@3%d@: @5W%t#MOD_D1_TXT@	S
	4		Module @1%d@/@2%d@/@3%d@: Multiple diagnostic interrupt	S
	5		Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_D1_TXT@	S
	6		Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_D1_TXT@	S
	7		Module @1%d@/@2%d@/@3%d@: @5W%t#MOD_D1_TXT@	F
	8		-	
EV_ID2	1	-	Module @1%d@/@2%d@/@3%d@: Error channel 00 @4W%t#MOD_D1_TXT@	S
	8	-	Module @1%d@/@2%d@/@3%d@: Error channel 07 @4W%t#MOD_D1_TXT@	S
EV_ID3	1	-	Module @1%d@/@2%d@/@3%d@: Error channel 08 @4W%t#MOD_D1_TXT@	S
	8	-	Module @1%d@/@2%d@/@3%d@: Error channel 15 @4W%t#MOD_D1_TXT@	S

You will find the message texts and their text numbers in "Text library for MOD_D1 (Page 419)".

3.20 MOD_D1: Monitoring up to 16 channels on S7-300/400 SM modules with diagnostic functions

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID1	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4		Text number (message 5) from MOD_D1_TXT
	5		Text number (message 3) from MOD_D1_TXT
EV_ID2	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4		Text number (messages 1 - 8) from MOD_D1_TXT
EV_ID3	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4		Text number (messages 1 - 8) from MOD_D1_TXT

See also

Message Classes (Page 401)

3.21 MOD_D2: Monitoring up to 32 channels of S7-300/400 SM modules with diagnostic functions

3.21.1 Description of MOD_D2

Object name (type + number)

FB 94

• MOD_D2 block I/Os (Page 156)

Area of application

Block MOD_D2 monitors up to 32 channels on S7-300/400 SM modules with diagnostic capability (no mixed modules). H systems support only the modules installed in switched racks.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The MOD_D2 block is installed in its runtime group downstream of the RACK block runtime group in the above-mentioned OBs.
- The MODE_xx (mode of the channels xx of the module), SUBN1_ID, SUBN2_ID, and SUBN_TYP inputs are configured.
- The logical base address LADDR of the module is configured.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the IN_OUT structures of the same name of MOD_D2.
- The EN input is interconnected with the output of an AND block. Its inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block and EN_Mxx (xx = module number) of the RACK block.

- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function and method of operation

Block MOD_D2 analyzes all events that affect a module and its channels acyclically. It generates a channel-specific MODE (Page 387) and value status for the signal processing blocks. ALARM_8P is used to report these events. The message function can be disabled.

The block is enabled by the higher-level RACK block at runtime. The event to be evaluated is stored in the CPU_DIAG start and diagnostic information of the OB_BEGIN block. There is a MODE_xx input for each signal channel of the module. The module channel configuration data created in HW Config is reported here. The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxxx):

- Events that are evaluated by the RACK block:
 - Rack failure (OB 86) (output parameter QRACKF = TRUE)
- Events that are evaluated by the MOD block:
 - Program execution error (OB 85) (output parameter QPERAF = TRUE)
 - Module removed (OB 83) (output parameter QMODF = TRUE)
 - Diagnostic interrupt (OB 82) Distinguishing between module errors and channel errors

The following events are module errors (QMODF = TRUE output parameter):

- External auxiliary voltage missing
- Front connector missing
- Module not configured
- Wrong parameter in module
- Wrong/missing module
- Communication error at a CPU module
- Timeout (watchdog)
- Loss of internal power at a module
- Rack failure
- CPU failure
- EPROM error
- RAM error

- ADC/DAC error
- Fuse tripped

The following events are channel errors (value status "invalid value", OMODE_xx = 16#00xxxx):

- Configuration/parameter assignment error
- Common-mode errors (analog I/Os only)
- Short-circuit to P
- Short circuit to M
- Interruption at the output transistor
- Wire break
- Reference channel error (analog inputs only)
- Measuring range underflow (only analog inputs)
- Measuring range overflow (analog inputs only)
- Missing load voltage (only analog and digital outputs)
- Missing sensor power supply (digital outputs only)
- Fuse tripped (only digital outputs)
- Mass error (digital I/Os only)
- Excess temperature (only digital outputs)

ALARM_8P is used to report "Module removed", "I/O access error", and "Diagnostic interrupt" events to WinCC.

The diagnostics interrupt function distinguishes between module and channel errors, whereby each channel is assigned a message ID. Only one incoming or outgoing event can be reported for each channel. As long as an incoming message is queued at a channel, further messages on new events at this channel will be lost.

If the event is defined uniquely in the diagnostic information, the corresponding text will be entered in the message. If ambiguous entries exist, the text of the first set bit in the error byte of the diagnostic information will be displayed. When using modules assigned diagnostic functions and more than one error byte for diagnostic information, only the channel xx error text will be output if the error information is not displayed in the first error byte.

The system verifies during startup that the module is available (plugged in). The module status information read here makes this data available in the form of service output parameters (MOD_INF).

Detailed information about the errors is entered in the DIAG_INF output parameter of data type STRUCT. You will find further information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; Diagnostic Data, Byte 0 to Byte 8, Structure of Channel-Specific Diagnostic Data.*

Redundancy

The block supports segment redundancy of CPU 417H for distributed I/Os. The SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs are configured with the numbers of the redundant segments. If there is no segment redundancy, the remaining input must be set to the (default) value 16#FF.

MODE setting

You will find more information about this in the "MODE settings (Page 387)" section.

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find further information in the "OMODE (Page 396)" section.

Valid channel display

The available channels on a module are displayed in the CH_EXIST output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel = 0, the channel is not available.

Output CH_OK displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel is 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Addressing

You will find additional information about this in the "Addressing (Page 399)".

Error handling

The plausibility of input parameters is not checked. You will find further information about error handling in "Error information of output parameter MSG_STAT (Page 398)".

3.21 MOD_D2: Monitoring up to 32 channels of S7-300/400 SM modules with diagnostic functions

Service Information

To analyze faults, the module status information entered during startup is read via the MOD_INF structured output parameter. You will find more information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; System Status List, Module Status Information*.

Following a diagnostic interrupt, you will also find detailed module diagnostic information in the MODDIAG0 to MODDIAG10 output parameters. You will find more information in the reference manual *System Software for S7-300/400 System and Standard Functions; Diagnostic Data, Byte 0 to Byte 10.*

The CHDIAG00 to CHDIAG31 output parameters contain detailed channel status information. You will find more information in the reference manual *System Software for S7-300/400 System and Standard Functions; Structure of Channel-Specific Diagnostic Data.*

The system resets this diagnostic information after a diagnostic interrupt has been reported outgoing (no further channel or module errors are queued).

Startup characteristics

After a restart/initial startup, the system verifies that the module is available under its logical base address. A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

Time response

Not available

Message response

MOD_D2 uses ALARM_8P_1 to report module errors. In addition, the error blocks ALARM_8P_2, ALARM_8P_3, ALARM_8P_4 and ALARM_8P_5 are called. The inputs DELAY1 and DELAY2 are used to delay the output of I/O access error messages. DELAY1 allows you to enter a time in seconds for which the block will wait for a higher-priority error (rack failure or removal/insertion) following a program execution error (OB 85) before it outputs the message. The message is output only under the condition that no higher-priority error is reported within this delay time. DELAY2 determines the number of seconds the block waits after the higher-priority error has been reported outgoing until it outputs the queued I/O access error as well. Both values are set to 2 seconds by default. The message function can be disabled by setting EN_MSG = FALSE.

Flutter suppression

The "Flutter suppression" function is used to delay the outgoing of a message by a configurable period.

The flutter time is entered at the channel block at the FlutTmIn parameter. The high byte of the DXCHG parameter of the channel blocks contains the flutter time.

Flutter suppression comes into effect when FlutEN = 1 or FlutTmIn > 0 is set at the channel block.

There is only one flutter message per module. The delay times and fault messages are channel-specific. The fault messages are extended by at least the delay time. Flutter exists if the fault messages "Outgoing" and then "Incoming" are present within the delay time.

The last fluttering channel and its set delay time deactivates the flutter message.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For further information, refer to the following sections:

Message texts and associated values of MOD_D2 (Page 158)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.21.2 I/Os of MOD_D1/MOD_D2

The MOD_D1 and MOD_D2 block I/Os are identical, with the exception of the number of MODE_xx and OMODE_xx. The number of monitored channels determines the corresponding number of I/O parameters (xx).

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DELAY1	Alarm delay 1 (s)	INT	2
DELAY2	Alarm delay 2 (s)	INT	2
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number (x = 1 - 3)	DWORD	0
LADDR	Logic address of the module	INT	0
MODE_xx	Operating mode channel xx (xx = 00 - 15 / 00 - 31)	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_ACTIVE	Channel active	DWORD	16#000 00000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15)	DWORD	0
	Bit = 0: Release for maintenance		
	Bit1 Byte0: Flutter suppression		
	Bit2 to Bit7 Byte0: Reserved		
	Byte 1: Reserved		
	Byte 2: Reserved		
	Byte 3: Fluttering time		
DIAG_INF	System structure: Diagnostic information	STRUCT	0

3.21 MOD_D2: Monitoring up to 32 channels of S7-300/400 SM modules with diagnostic functions

I/O (parameter)	Meaning	Data type	Default
EXT_STAT	Release for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression	DWORD	16#000 00000
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACKx	Message acknowledgment (x = 1 - 3)	WORD	0
MSGSTATx	Message error information $(x = 1 - 3)$	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Channel mode (xx = 00 - 15/00 - 31)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections: Message texts and associated values of MOD_D1 (Page 148) Message texts and associated values of MOD_D2 (Page 158) Maintenance status of MS (Page 403)

See also

MODE settings for SM modules (Page 387) OMODE settings for SM modules (Page 396)

3.21.3 Message texts and associated values of MOD_D2

Assignment of message text and message class

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID1	1	QMODF	Module @1%d@/@2%d@/@3%d@: Removed	S
	2	QPERAF	Module @1%d@/@2%d@/@3%d@: Access error	S
	3	QMODF	Module @1%d@/@2%d@/@3%d@: @5W%t#MOD_D2_TXT@	S
	4	-	Module @1%d@/@2%d@/@3%d@: Multiple diagnostic interrupt	S
	5	-	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_D2_TXT@	S
	6		Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_D1_TXT@	S
	7	-		S
	8	-		S
EV_ID2	1	-	Module @1%d@/@2%d@/@3%d@: Error channel 00 @4W%t#MOD_D2_TXT@	S
	8	-	Module @1%d@/@2%d@/@3%d@: Error channel 07 @4W%t#MOD_D2_TXT@	S
EV_ID3	1	-	Module @1%d@/@2%d@/@3%d@: Error channel 08 @4W%t#MOD_D2_TXT@	S
	8	-	Module @1%d@/@2%d@/@3%d@: Error channel 15 @4W%t#MOD_D2_TXT@	S
EV_ID4	1	-	Module @1%d@/@2%d@/@3%d@: Error channel 16 @4W%t#MOD_D2_TXT@	S
	8	-	Module @1%d@/@2%d@/@3%d@: Error channel 23 @4W%t#MOD_D2_TXT@	S

3.21 MOD_D2: Monitoring up to 32 channels of S7-300/400 SM modules with diagnostic functions

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID5	1	-	Module @1%d@/@2%d@/@3%d@: Error channel 24 @4W%t#MOD_D2_TXT@	S
	8	-	Module @1%d@/@2%d@/@3%d@: Error channel 31 @4W%t#MOD_D2_TXT@	S

You will find the message texts and their text numbers in "Text library for MOD_D2 (Page 417)".

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID1	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4	-	Text number (messages 1 - 3) of MOD_D2_TXT
EV_ID2	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4	-	Text number (message 5) of MOD_D2_TXT
	5	-	Text number (message 3) of MOD_D2_TXT
EV_ID3	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4	-	Text number (messages 1 - 8) of MOD_D2_TXT
EV_ID4	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4	-	Text number (messages 1 - 8) of MOD_D2_TXT

3.21 MOD_D2: Monitoring up to 32 channels of S7-300/400 SM modules with diagnostic functions

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID5	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4	-	Text number (messages 1 - 8) of MOD_D2_TXT

See also

Message Classes (Page 401)

3.22 MOD_D3: Monitoring of hybrid modules with diagnostic capability

3.22 MOD_D3: Monitoring of hybrid modules with diagnostic capability

3.22.1 Description of MOD_D3

Object name (type + number)

FB 134

• MOD_D3 block I/Os (Page 169)

Area of application

Block MOD_D3 monitors a maximum of up to 16 channels on S7-300 SM modules with diagnostics functions. H systems support only the modules installed in switched racks.

MOD_D3 includes all the functionality of MOD_D1, plus additional functions for diagnostic evaluation of multiple channel types in a diagnostic data record. The block also fully supports 4-byte channel-specific diagnostics.

Note: MOD_D1 only evaluated 8 selected bits of the 4-byte channel-specific diagnosis.

The modules supported are the ET 200PRO modules: 6ES7 148 4FC00 0AB0 -> 8DI/4DO 6ES7 148 4FA00 0AB0 -> 8/16 DI

and the ET 200M HART modules: 6ES7 331-7TF01-0AB0 -> AI8 HART 6ES7 332-8TF01-0AB0 -> AO8 HART

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program		
OB 82	Diagnostic interrupt		
OB 83	Insert/remove module interrupt		
OB 85	Program execution error		
OB 86	Rack failure		
OB 100	Warm restart		

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The MOD_D3 block is installed in its runtime group downstream of the RACK-block runtime group in the above-mentioned OBs.
- The MODE_xx (mode of the channels xx of the module), SUBN1_ID, SUBN2_ID, and SUBN_TYP inputs are configured.
- The logical base address LADDR of the module is configured.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the IN_OUT structures of the same name of MOD_D3.
- The EN input is interconnected with the output of an AND block. Its inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block and EN_Mxx (xx = module number) of the RACK block.
- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function and method of operation

The MOD_D3 block analyzes all events affecting a module and its channels acyclically. It generates a channel-specific MODE (Page 387) and value status for the signal processing blocks. ALARM_8P is used to report these events.

Execution of the MOD_D3 block is enabled by the higher-level RACK block. The event to be evaluated is stored in the CPU_DIAG start and diagnostic information of the OB_BEGIN block. There is a MODE_xx input for each signal channel of the module. The module channel configuration data created in HW Config is reported here. The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxxx):

- Events that are evaluated by the RACK block:
 - Rack failure (OB 86) (output parameter QPERAF = TRUE)
- Events that are evaluated by the MOD block:
 - Program execution error (OB 85) (output parameter QPERAF = TRUE)
 - Module removed (OB 83) (output parameter QMODF = TRUE)
 - Diagnostic interrupt (OB 82) Distinguishing between module errors and channel errors

3.22 MOD_D3: Monitoring of hybrid modules with diagnostic capability

The following events are module errors (QMODF = TRUE output parameter):

- External auxiliary voltage missing
- Front connector missing
- Module not configured
- Wrong parameter in module
- Wrong/missing module
- Communication error at a CPU module
- Timeout (watchdog)
- Loss of internal power at a module
- Rack failure
- CPU failure
- EPROM error
- RAM error
- ADC/DAC error
- Fuse tripped
- Power supply 1: Error
- Power supply 2: Error

The following events are channel errors (value status "invalid value", OMODE_xx = 16#00xxxx):

- Configuration/parameter assignment error
- Common-mode errors (analog I/Os only)
- Short-circuit to P
- Short circuit to M
- Interruption at the output transistor
- Wire break
- Reference channel error (analog inputs only)
- Measuring range underflow (only analog inputs)
- Measuring range overflow (only analog inputs)
- Missing load voltage (only analog and digital outputs)
- Missing sensor power supply (digital outputs only)
- Fuse tripped (only digital outputs)
- Mass error (only digital I/Os)
- Excess temperature (only digital outputs)
- Undervoltage

- Overvoltage
- Overload
- Hardware interrupt
- Actuator warning
- Safety shutdown
- Ambiguous error
- Error 1 in actuator/sensor
- Error 2 in actuator/sensor
- Channel temporarily not available

ALARM_8P is used to report "Module removed", "I/O access error" and "Diagnostics interrupt" events to the OS.

The diagnostics interrupt function distinguishes between module and channel errors, whereby each channel is assigned a message ID. Only one incoming/outgoing event can be reported for each channel. As long as an incoming message is queued at a channel, further messages on new events at this channel will be lost.

If the event is defined uniquely in the diagnostic information, the corresponding text will be entered in the message. If ambiguous entries exist, the text of the first set bit in the error byte of the diagnostic information will be displayed. When using modules assigned diagnostic functions and more than one error byte for diagnostic information, only the channel xx error text will be output if the error information is not displayed in the first error byte.

The system verifies during startup that the module is available (plugged in). The module status information that is read here is then available in the form of service output parameters (MOD_INF).

Detailed information about the errors is entered in the DIAG_INF output parameter of data type STRUCT. You will find more information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; Diagnostic Data, Byte 0 to Byte 8, Structure of Channel-Specific Diagnostic Data.*

Note

Even if you run a HART module in HART MODE =16#070C, any HART protocol errors/configuration changes that may occur will be masked by the MOD_D3 block, and not signaled as channel errors.

Several channel types can occur in one diagnostic data record. If the "further channel types exist" bit is set, MOD_D3 runs through the entire diagnostic evaluation and handles reporting for each further channel type.

HART modules with the firmware update and the new additional channel type 16#66 for measured value calibration are also supported.

The new HART channel type 66 can also occur in the diagnostic data record as a further channel type.

The new diagnostic data ("channel being calibrated" and "channel temporarily not available") are considered as channel errors and output. The detailed texts are output via the system text library and a corresponding associated value.

Channel type 0x66: 1 byte channel diagnostics Bit0 channel being calibrated Bit1 channel temporarily not available

Firmware update

The firmware update for the listed HART modules is started by a diagnostic event "OB83 entering state" (remove module) followed directly by diagnostic event "OB83 exiting state" (insert module). With "OB83 exiting state", byte 2 bit 2 is set in data record 0 (1 = STOP mode).

Once the firmware is completed, there is a repeated diagnostic event "OB83 entering state" (remove module) followed directly by diagnostic event "OB83 exiting state" (insert module). With "OB83 exiting state", byte 2 bit 2 is reset in data record 0 (0 = RUN mode).

In MOD_D3, after an "OB83 exiting state" (module removed) the data record 0 (DS0) is always read extra in OB1 using SFC51 and SZL 00B1 to establish whether bit (1 = STOP mode) is set. If this is the case, this is always recognized as a firmware update and the module continues to be indicated as removed and not available. Only when there is an OB83 (module inserted) with the information in DS0 (0 = RUN mode), is the module indicated as being inserted and available again.

It is assumed that "Module change in run" is always set for the ET 200M head modules so that a firmware update of the HART module always calls an OB83. This means that a firmware update cannot trigger an OB86 diagnostic interrupt.

The "Generate module driver" function enters 16#0001 in the Feature01 parameter for both HART modules. This means that DS0 is read extra when there is an OB 83 exiting state only when Feature01 = 16#0001

The Feature parameters (FEATURE_01 .. FEATURE_10) are intended for future expansions of the MOD_D3 block and for parameter settings for special module situations.

Currently only FEATURE_01 is used as an ID for HART module with a firmware update in RUN.

Redundancy

The higher-level RACK block monitors the redundancy of DP master systems operating in an H system.

3.22 MOD_D3: Monitoring of hybrid modules with diagnostic capability

MODE Setting

You will find more information about this in the "MODE settings (Page 387)" section.

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find more information about this in the "OMODE settings (Page 396)" section.

Valid channel display

The available channels on a module are displayed in the CH_EXIST output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel = 0, the channel is not available.

Output CH_OK displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel is 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Addressing

You will find more information about this in "Addressing (Page 399)".

HART modules with read/write access to the process image are configured in the same way as input modules. The set I/O range must always be identical.

Example: SM 332 AO 2x0/4..20mA HART 332-5TB00-0AB0:

Address input range (HW Config)	Address output range (HW Config)	LADDR (decimal/hex)
544	544	544 / 16#0220

Error handling

The plausibility of input parameters is not checked.

You will find more information about error handling in "Error information of output parameter MSG_STAT" (Page 398).

Service Information

To analyze faults, the module status information entered during startup is read via the MOD_INF structured output parameter. You will find more information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; System Status List, Module Status Information*.

Following a diagnostic interrupt, you will also find detailed module diagnostic information in the MODDIAG0 to MODDIAG8 output parameters. You will find more information in the reference manual *System Software for S7-300/400 System and Standard Functions; Diagnostic Data, Byte 0 to Byte 8.*

The CHDIAG00 to CHDIAG15 output parameters contain detailed channel-status information. You will find more information in the reference manual *System Software for S7-300/400 System and Standard Functions; Structure of Channel-Specific Diagnostic Data.*

The system resets this diagnostic information after a diagnostic interrupt has been reported outgoing (no further channel or module errors are queued).

Startup characteristics

After a restart/initial startup, the system verifies that the module is available under its logical base address. A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx outputs.

Overload Behavior

The MOD_D3 block counts the OB82 calls. The counter is reset in OB1. If more than two OB82 events occur in succession before the cycle control point is reached (OB1), these events are rejected and the message "OB82 DP master failure: x Rack: y Slot: z" is output.

Time response

Not available

Message response

MOD_D3 uses ALARM_8P_1 to report module errors. The function also calls ALARM_8P_2 and ALARM_8P_3 which are intended for channel errors. The inputs DELAY1 and DELAY2 are used to delay the output of I/O access error messages. DELAY1 allows you to enter a time in seconds for which the block will wait for a higher-priority error (rack failure or removal/insertion) following a program execution error (OB 85) before it outputs the message. The message is output only under the condition that no higher-priority error is reported within this delay time. DELAY2 determines the number of seconds the block waits after the higher-priority error has been reported outgoing until it outputs the queued I/O access error as well. Both values are set to 2 seconds by default. The message function can be disabled by setting EN_MSG = FALSE.

3.22 MOD_D3: Monitoring of hybrid modules with diagnostic capability

Flutter suppression

The "Flutter suppression" function is used to delay the outgoing of a message by a configurable period.

The flutter time is entered at the channel block at the FlutTmIn parameter. The high byte of the DXCHG parameter of the channel blocks contains the flutter time.

Flutter suppression comes into effect when FlutEN = 1 or FlutTmIn > 0 is set at the channel block.

There is only one flutter message per module. The delay times and fault messages are channel-specific. The fault messages are extended by at least the delay time. Flutter exists if the fault messages "Outgoing" and then "Incoming" are present within the delay time.

The last fluttering channel and its set delay time deactivates the flutter message.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

You will find more information in:

Message texts and associated values of MOD_D3 (Page 171)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.22.2 I/Os of MOD_D3

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible; I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault	
DELAY1	Alarm delay 1 (s)	INT	2	
DELAY2	Alarm delay 2 (s)	INT	2	
EN_MSG	1 = enable message	BOOL	1	
EV_IDx	Message number (x = 1 - 3)	DWORD	0	
FEATURE_xx	Feature parameter (xx = 01 - 04)	WORD	0	
FEATURE_yy	Feature parameter (yy = 05 - 10)	DWORD	0	
LADDR	Logic input address of the module	INT	0	
LADDR1	Logical output address of the module (if output address is not the same as input address).	INT	0	
MODE_xx	Mode channel xx (xx = 00 - 15)	DWORD	0	
MS	Maintenance status	DWORD	0	
RACK_NO	Rack number	BYTE	0	
SLOT_NO	Slot number	BYTE	0	
SUBN_TYP	1 = external DP interface	BOOL	0	
SUBN1_ID	ID of the primary DP master system	BYTE	255	
SUBN2_ID	ID of the redundant DP master system BYTE			

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_ACTIVE	Channel active	DWORD	16#000 00000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DIAG_INF	System structure: Diagnostic information	STRUCT	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15) Bit = 0: Release for maintenance Bit1 Byte0: Flutter suppression Bit2 to Bit7 Byte0: Reserved Byte 1: Reserved Byte 2: Reserved Byte 3: Fluttering time	DWORD	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression	DWORD	16#000 00000
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACKx	Message acknowledgment (x = 1 - 3)	WORD	0
MSGSTATx	Message error information $(x = 1 - 3)$	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Mode channel (xx = 00 - 15)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default	
ACC_MODE	1 = accept MODE settings	BOOL	0	
CPU_DIAG	System structure: CPU diagnostics	STRUCT		
RAC_DIAG	System structure: Rack diagnostics STRUC			

Additional information

For additional information, refer to the following sections: Message texts and associated values of MOD_D3 (Page 171) Maintenance status of MS (Page 403)

3.22.3 Message texts and associated values of MOD_D3

Assianment	of message	e text and	message	class
/ 001911110110	. or mooouge		mooougo	01000

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID1	1	QMODF	Module @1%d@/@2%d@/@3%d@: Removed	S
	2	QPERAF	Module @1%d@/@2%d@/@3%d@: Access error	S
	3	QMODF	Module @1%d@/@2%d@/@3%d@: @5W%t#MOD_D3_TXT@	S
	4		Module @1%d@/@2%d@/@3%d@: Multiple diagnostic interrupt	S
	5		Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_D3_TXT@	S
	6		Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_D3_TXT@	S
	7		Module @1%d@/@2%d@/@3%d@: @5W%t#MOD_D3_TXT@	F
			-	
EV_ID2	1	-	Module @1%d@/@2%d@/@3%d@: Error channel 00 @4W%t#MOD_D3_TXT@	S
	8	-	Module @1%d@/@2%d@/@3%d@: Error channel 07 @4W%t#MOD_D3_TXT@	S
EV_ID3	1	-	Module @1%d@/@2%d@/@3%d@: Error channel 08 @4W%t#MOD_D3_TXT@	S
	8	-	Module @1%d@/@2%d@/@3%d@: Error channel 15 @4W%t#MOD_D3_TXT@	S

You will find the message texts and their text numbers in "Text library for MOD_D3" (Page 421).

Assignment of Associated Values

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID1	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4		Text number (message 5) of MOD_D3_TXT
	5		Text number (message 3) of MOD_D3_TXT
EV_ID2	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4		Text number (messages 1 - 8) from MOD_D3_TXT
EV_ID3	1	MOD_INF.SUBN_ID	DP master system ID (byte)
	2	MOD_INF.RACK_NO	Rack/station number (byte)
	3	MOD_INF.SLOT_NO	Slot number (byte)
	4		Text number (messages 1 - 8) from MOD_D3_TXT

See also

Message Classes (Page 401)

3.23 MOD_DRV: Monitoring of drive blocks with diagnostics functions

3.23.1 Description of MOD_DRV

Object name (type + number)

FB 148

• Block interfaces of MOD_DRV (Page 175)

Area of application

The MOD_DRV block creates a device-specific diagnostics function for blocks of the Drive type.

The following events are processed in the MOD_DRV and the status messages reported in WinCC:

SwitchType	Message text	Message class in WinCC	Maintenance State	Status (for each interconnectable output)
Telegram1/Tele	Ready to switch on	SA	00	16#80
gram20	Ready for operation	SA	00	16#80
(NAMUR off and on)	Error active	S	07	16#00
	Warning active	F	06	16#68
Telegram20 (NAMUR on)	Error in the controller/software	S	07	16#00
	Fault in the power supply network	S	07	16#00
	Overvoltage in the DC Link	S	07	16#00
	Fault in the power supply	S	07	16#00
	Temperature limiter converter	S	07	16#00
	Grounding fault	S	07	16#00
	Motor overload	S	07	16#00
	Error in the communication	S	07	16#00
	External safety shutdown	F	06	16#68
	Error in the speed measurement	S	07	16#00
	Error in the internal communication	S	07	16#00
	Fault in the infeed system	S	07	16#00
	Other fault or error	S	07	16#00

3.23 MOD_DRV: Monitoring of drive blocks with diagnostics functions

Calling OBs

The cyclic OB 1 and OB 100.

In addition, the block is installed in the cyclic interrupt OB OB3x in which the following signal processing driver block is installed.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- · The block is installed when the corresponding SlaveFamily 1 object exists
- Further interconnection takes place in the same way as for the existing MODPAL/X0 blocks of the PCS 7 Basis Library
- The corresponding inputs are read out of HW Config and configured.
- The block is interconnected with the corresponding Drive block through the DXCHG_00, OMODE_00 and O_MS parameters.

Startup characteristics

Initialization of the ALARM_8P blocks and of the NOTIFY_8P blocks.

Message response

The block reports errors using ALARM_8P and NOTIFY_8P.

The block generates the following messages in the OBs listed below:

OB no.	Start event	Message
1	Cyclic processing	Have the ALARM_8P/NOTIFY_8P outputs/messages updated, if necessary
100	Restart	Initialization of ALARM_8P

MODE behavior

The block is informed by the MODE input about which function block or device type is involved. A distinction is made between the device and type or profile respectively.

Only the Drive type is currently implemented. This has the mode XXXX0010.

3.23.2 I/Os of MOD_DRV

I/Os

The factory setting of the block display in CFC is identified in the "I/O" column.

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

Parameter	Description	Туре	Default
EN_MSG	1 = enable message	BOOL	1
EV_ID1	Message number 1	DWORD	16#00
EV_ID2	Message number 2	DWORD	16#00
MS	Maintenance status	DWORD	16#00
LINK_ADR	Link address	BYTE	0
PADP_ADR	Address of the PA field device	BYTE	16#00
SUBN1_ID	ID of the primary DP master system	BYTE	16#FF
SUBN2_ID	ID of the redundant DP master system	BYTE	16#FF

In-out parameters

Parameter	Description	Туре
CPU_DIAG	System structure: CPU diagnostics	Struct (see OB_BEGIN)
RAC_DIAG	System structure: RACK diagnostics	Struct (see OB_DIAG1)

Output parameters

Parameter	Description	Туре	Default				
CH_ACTIVE	Channel active	DWORD	16#00 00000 0				
DXCHG_00	Bidirectional data exchange channel DWORD						
EXT_STAT	Release for maintenance - extended status	DWORD	16#00				
Error	Error message is active	BOOL	0				
Namur1	Namur1 message is active	BOOL	0				
Namur2	Namur2 message is active	BOOL	0				
Namur3	Namur3 message is active	BOOL	0				
Namur4	Namur4 message is active	BOOL	0				
Namur5	Namur5 message is active	BOOL	0				
Namur6	Namur6 message is active	BOOL	0				
Namur7	Namur7 message is active	BOOL	0				
Namur8	Namur8 message is active	BOOL	0				
Namur9	Namur9 message is active	BOOL	0				
Namur10	Namur10 message is active	BOOL	0				
Namur11	Namur11 message is active	BOOL	0				
Namur12	Namur12 message is active	BOOL	0				
Namur13	Namur13 message is active	BOOL	0				
Namur14	Namur14 message is active	BOOL	0				
Namur15	Namur15 message is active	BOOL	0				
Namur16	Namur16 message is active	BOOL	0				
MSGSTAT1	Message error information 1	WORD	16#00				
MSGSTAT2	Message error information 2	WORD	16#00				
MSG_ACK1	Message acknowledgment 1	WORD	16#00				
MSG_ACK2	Message acknowledgment 2	WORD	16#00				
OMODE_00	Value status of the PA field device	DWORD	16#00				
O_MS	Maintenance status	DWORD	16#00				
QERR	1 = program error	BOOL	1				
QRACKF	1 = PA slave/DP master error	BOOL	0				
Warning	Warning message is active	BOOL	0				

3.23.3 Message texts and associated values of MOD_DRV

Messaging

Message block	Class	Event
EV_ID1:SIG1	AS process control message - fault	Device @1%d@/ @2%d@: Bad, maintenance alarm
EV_ID1:SIG2	AS process control message - fault	Device @1%d@/ @2%d@: Uncertain, maintenance demanded
EV_ID1:SIG3	AS process control message - fault	Device @1%d@/ @2%d@: Good, maintenance required
EV_ID1:SIG6	AS process control message - fault	Device @1%d@/ @2%d@: Failure
EV_ID2:SIG2	Status message - AS	Device @1%d@/ @2%d@: Good, configuration has been changed
EV_ID2:SIG3	Status message - AS	Device @1%d@/ @2%d@: Uncertain, simulation
EV_ID2:SIG6	Status message - AS	Device @1%d@/@2%d@: Bad, local operation/functional check
EV_ID2:SIG7	Status message - AS	Device @1%d@/ @2%d@: Bad, device passivated

All other messages are not assigned.

1. ALARM_8P

2. NOTIFY_8P

Assignment of associated values

Associated value	Block parameter
1	Subnet
2	Address

3.24 MOD_HA: Monitoring device-specific diagnostics of HART field devices

3.24 MOD_HA: Monitoring device-specific diagnostics of HART field devices

3.24.1 Description of MOD_HA

Object name (type + number)

FB 97

• MOD_HA block I/Os (Page 185)

Area of application

The MOD_HA module reports diagnostic events of an HART field device that is connected to a channel of an ET 200M HART module or ET 200iSP HART module. HART modules of ET 200iS are not supported. H systems support only the modules installed in switched racks.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

3.24 MOD_HA: Monitoring device-specific diagnostics of HART field devices

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is installed downstream of the diagnostic block that is responsible for the HART module.
- LADDR (logical base address of the HART module) is configured.
- The geographic addresses SUBN1_ID, SUBN2_ID, RACK_NO, SLOT_NO, and CHAN_NO (channel number of the HART module to which the HART field device is connected) are configured.
- The CPU_DIAG structures of the OB_BEGIN block are interconnected
- The EN input is interconnected with the output of an AND block.

The block inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block, and EN_Mxx (xx = module number) of the RACK block and MODE with OMODE_xx of the diagnostic block.

- The DXCHG output parameter is interconnected with the following channel block at the DataXchg parameter.
- The O_MS output parameter is interconnected with the following channel block at the MS parameter.

Function and method of operation

Block MOD_HA analyzes events relating to a HART field device acyclically. ALARM_8P is used to report these events. The message function can be disabled.

The block is enabled to run by the higher-level RACK block. By default, MOD_HA requires synchronous diagnostic data in OB 82 (additional alarm information with SFB 54 call by OB_BEGIN). With an ET 200iSP HART module, the channel type 16#65 is generated during diagnostics. Here, 2 bytes of diagnostics information are defined per channel of the module, and the block signals the statuses of the 2nd bit of the 1st and 2nd byte for the relevant HART field device.

Structure of byte 1 (ET 200iSP HART):

Bit	Meaning
0	Parameter assignment error (HART module)
1	HART communications error (HART module)
2	Readback error (HART module)
3	Short circuit (HART module)
4	Wire break (HART module)
5	No load voltage (HART module)
6	Overflow (HART module)
7	Underflow (HART module)

3.24 MOD_HA: Monitoring device-specific diagnostics of HART field devices

Structure of byte 2 (ET 200iSP HART):

Bit	Meaning
0	Primary variable outside limits (field device)
1	Secondary variable outside limits (field device)
2	Analog output saturated (field device)
3	Analog output current specified (field device)
4	More statuses available (field device)
5	Reserved for maintenance alarm (field device)
6	Reassignment the field device parameters
7	Malfunction of the field device

For an ET 200M with two-channel HART modules, channel type 16#61 or 16#63 is generated during diagnostics. Bit 5 in byte 8 for channel 0 and byte 9 for channel 1 in the additional alarm information means "HART channel error". If bit 5 = TRUE, the additional diagnostic data is read with SFB 52 (RDREC) as follows:

- with data record 128 for channel 0
- with data record 129 for channel 1

Diagnostic data records 128 (for channel 0) and 129 (for channel 1) have the same structure. and return detailed HART diagnostic information on the previous transfer. The table below shows the individual error messages/warnings.

Byte/Bit No.	7	6	5	4	3	2	1	0
0: general	1= Mod.	No. of (triggering) client,		Polling address (of HART transducer),				
	comm.	when module	e comm. no. =	=0	always 0 for r	nonodrop		
1: fault groups = group error	Channel fault (L+, DrBr)	HART channel fault	HART slave communi- cation	HART command error	device status <> 0 (e.g., configure- tion changed)	more status	Com- mand rejected	0 = Not used
then $ ightarrow$ bytes	-	2	8	8	9	-	-	-
2: HART cf = "communi- cation faults" Field device for module	HART access not possible	parity error in response	overrun error in response	framing error in response	wrong checksum in response	Wrong char timing	too many chars in respon- se	wrong telegram timing
3 to 6: time stamp	Broadcast system time: Milliseconds (10s and 100s), seconds, minutes, and hours in two-digit BCD code. If the timestamp function is not used: Content = 0							
7: HART/module	last HART or module command							
8: HART ce	1 0	"Communication error bits" of "slave", (first status byte) "Command response" list - no errors, but warnings						
9: HART ds	Device sta	atus bits (seco	nd status byt	e)				
Two HART status bytes are reserved in the HART protocol to display errors and warnings. These are entered in diagnostic data records 128 and 129 unchanged. The meaning of the HART status bytes is defined in the HART Standard.

- First HART status byte (meaning depends on bit 7):
 - Bit 7 = 1: Communication error during the transmission of a HART command to the field device
 - Bit 7 = 0: Only warnings that the field device sends in response to a command

Bit 7/Bit No.	7	6	5	4	3	2	1	0			
Either Bit 7 = 1: HART	1	parity error in command	overrun error in command	framing error in command	wrong checksum in command	Reserved = 0	too many characters in command	(un- defined)			
"communication error" from module to field device							overflow)				
or	0	The message	es in bits 0 - 6 a	are coded as ir	itegers:						
Bit 7 = 0:		0: No comma	nd-specific err	or							
HART		1: Undefined									
"response to a		2: Invalid sec	2: Invalid section								
command"		3: Transferred	3: Transferred parameter too large								
		4: Transferred	d parameter to	o small							
		5: Too few da	ita bytes receiv	ved							
		6: Device-spe	ecific command	d error (rarely ເ	ised)						
		7: In write-protected mode8-15: Various meanings (see code commands)									
		16: Restricted	access								
		28: Various m	neanings (see	code command	ds)						
		32: Device is	busy								
		64: Command	d not implemer	nted							

3.24 MOD_HA: Monitoring device-specific diagnostics of HART field device.	s
---	---

Code	Commands	Alternative meanings
8 *)	1,2,3,33,60,61,62,	"Update" error
	110,34,55,64,48	set to nearest possible value,
		"Update" being executed
9	35,65,36,37,43,52,45,46,67,68	Lower range limit too high,
		"applied process" too high,
		not in correct current mode
		(fixed at 4 mA or 20 mA)
10	6,35,65,36,37,43,52	Multidrop is not supported
		Lower range limit too low,
		"applied process" too low,
11	35,65,40,45,46,66,67,68,53	Upper range limit too high,
		In multidrop mode,
		bad transmitter variable code
12	35,65,53,66,67,68	Upper range limit too low,
		bad units code
13	35,65,69	Both range limits outside the limit value,
		bad transfer function code
14 *)	35,36,65,37	Span too limited,
		"pushed" upper range limit outside the limit
15	65,66,67,68,69	Faulty code for the number of the analog output
28	65	bad code for the range unit
		("range units code")

 Second HART status byte: Device status of the HART field device in the event of a communication error (otherwise, byte = 0)

Bit No.	7	6	5	4	3	2	1	0
HART device status:	Malfunction of the field device	Reassign- ment of parameters:	Cold restart	Further status available	Analog output current specified	Analog output saturated	Non-primary variable outside	Primary variable outside limits
"field device status"		"configure- tion changed (CC)"		"more status"	("fixed)"		limits	

Process control messages are generated when "communication errors" and HART field device errors (byte 9 <> 0) occur. Operating messages with acknowledgment are generated if bit 7 = 0 (byte 8) and the remaining bits <> 0. The last read data record 128 or 129 (depending on the channel number) is written to the output structure DIAG_H.

Bytes 8 and 9 are evaluated and event messages generated in OB1. You will find additional information in "Message texts and associated values of MOD_HA (Page 187)".

The MODE input is interconnected with the corresponding OMODE_xx output of the diagnostic block. The module channel configurations set in HW Config are reported at these locations. MODE (Page 387) is written to the low word of theOMODE (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If valid, OMODE = 16#80xxxxx. The diagnostic block contains the events that lead to a value status "invalid value due to higher-priority error" (OMODE = 16#40xxxxx), or to channel error (OMODE = 16#00xxxxx).

Redundancy

The higher-level RACK block evaluates the redundancy of DP master systems operating in an H system. Redundant HART field devices are not supported.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

A restart (OB 100) is reported via the LSB in byte 2 of the OMODE (Page 396) output.

ALARM_8P will be initialized.

Overload behavior

The MOD_HA block counts the OB 82 calls. The counter is reset in OB1. A diagnostic message will not be generated if more than five OB 82 events occur before the cycle control point is reached (OB 1). A "multiple diagnostic interrupt" message will not be generated, because the diagnostic block performs this action.

Time response

Not available

Message response

MOD_HA reports diagnostic information from a HART field device by means of ALARM_8P or NOTIFY_8P.

The message function can be disabled by setting EN_MSG = FALSE.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_HA (Page 187)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.24.2 I/Os of MOD_HA

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O	Meaning	Туре	De-
(parameter)			fault
CHAN_NO	Channel number	BYTE	0
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number	DWORD	0
LADDR	Logic address of the module	INT	0
MODE	Channel operating mode	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

1/0	Meaning	Туре	De-
(parameter)			fault
CH_ACTIVE	Channel active	DWORD	16#0 0000 000
DIAG_H	Diagnostic information of HART communication channel	STRUCT	
DXCHG	Bidirectional data exchange channel Bit 0 = Release for maintenance Bits 1-31 = Reserve	DWORD	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression	DWORD	16#0 0000 000
MSG_ACK	Message acknowledgment	WORD	0
MSGSTAT	Message error information	WORD	0
QERR	1 = program error	BOOL	1
O_MS	Maintenance status	DWORD	0
OMODE	Channel operating mode	DWORD	0

3.24 MOD_HA: Monitoring device-specific diagnostics of HART field devices

I/O	Meaning	Туре	De-
(parameter)			fault
QPERAF	1 = I/O access error	BOOL	0
QREC_ERR	1 = Read diagnostic data error	BOOL	0
QREC_VAL	1 = Read diagnostic data	BOOL	0
STATUS	Read diagnostics status	DWORD	0

In-out parameters

1/0	Meaning	Туре	De-
(parameter)			fault
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	CPU diagnostics	STRUCT	
DXCHG_IN	Bidirectional data exchange channel	DWORD	0

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_HA (Page 187)

Maintenance status of MS (Page 403)

3.24.3 Message texts and associated values of MOD_HA

Assignment of message text and message class

Message block	Message no.	Default message text	Message class
EV_ID (ALARM_8P)	1	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Communication errors	S
	2	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Errors	S
	3	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Secondary var. outside range	F
	4	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Primary var. outside range	F
	5	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Analog value specified	S
	6	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Analog value saturated	S
	7	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Maintenance alarm	S
	8	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Further status available	F
EV_ID1 (NOTIFY_8P)	1	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Reassignment of parameters	SA
	2	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Cold restart	SA
	3		No message
	4		No message
	5		No message
	6		No message
	7		No message
	8		No message

3.24 MOD_HA: Monitoring device-specific diagnostics of HART field devices

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameter	Meaning
EV_ID	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	SLOT_NO	Slot number (byte)
	4	CHAN_NO	Channel error text number
EV_ID1	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number
	3	SLOT_NO	
	4	CHAN_NO	

If SUBN1_ID = 16#FF, the associated value is substituted with SUBN2_ID.

See also

Message Classes (Page 401)

3.25 MOD_MS: Monitoring up to 16 channels on ET200S/X motor starter modules with diagnostic functions

3.25.1 Description of MOD_MS

Object name (type + number)

FB 96

• MOD_MS block I/Os (Page 194)

Area of application

The MOD_MS block the up to 16-channel motor starter modules with diagnostic capability (ET 200S). H systems support only the modules installed in switched racks.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The MOD_MS block is installed in its runtime group downstream of the RACK block runtime group in the above-mentioned OBs.
- The MODE_xx, SUBN1_ID, SUBN2_ID, and SUBN_TYP inputs are configured.
- The logical addresses LADDR and LADDR1 are configured.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the IN_OUT structures of the same name of MOD_MS.
- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function and method of operation

Block MOD_MS analyzes all events that affect a module and its channels acyclically. It generates a channel-specific MODE (Page 387) and value status for the signal processing blocks. ALARM_8P is used to report these events. The message function can be disabled.

The block is enabled to run by the higher-level RACK block. The event to be evaluated is stored in the CPU_DIAG start and diagnostic information of the OB_BEGIN block. There is a MODE_xx input for each signal channel of the module. The module channel configuration data created in HW Config is reported here. The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current channel value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxxx.

The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxxx):

- Events that are evaluated by the RACK block:
 - Rack failure (OB 86) (output parameter QRACKF = TRUE)
 - Program execution error (OB 85) (output parameter QRACKF = TRUE)
- Events that are evaluated by the MOD block:
 - Program execution error (OB 85) (output parameter QPERAF = TRUE)
 - Module removed (OB 83) (output parameter QMODF = TRUE)
 - Diagnostic interrupt (OB 82)

The following events in OB 82 will lead to a module error, and are indicated with 16#40xxxxxx ("higher-priority error") in OMODE. At the same time, output parameter QMODF = TRUE:

- Configuration/parameter assignment error
- Overload
- Short circuit
- Error
- Actuator OFF
- Wire break
- Safety-related shutdown
- High limit exceeded
- Low limit undershot
- Missing supply voltage
- Switching element overload
- External error

ALARM_8P is used to report "module removed", "I/O access error", and the above "OB 82 error" events to WinCC.

The system verifies during startup that the module is available (plugged in). The module status information that is read here is then available in the form of service output parameters (MOD_INF).

Detailed information about the errors is entered in the DIAG_INF output parameter of data type STRUCT.

You will find additional information in the "Service Information" section, and in the *System Software for S7-300/400 System and Standard Functions; Diagnostic Data, Byte 0 to Byte 8, Structure of Channel-Specific Diagnostic Data* reference manual.

Redundancy

The block supports segment redundancy of CPU 417H for distributed I/Os. To use this function, you must configure the SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs with the numbers of the redundant segments. If there is no segment redundancy, the remaining input must be set to the (default) value 16#FF.

MODE setting

You will find more information about this in the "MODE settings (Page 387)" section.

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find additional information in the "OMODE (Page 396)" section.

Valid channel display

The existing channels on a module are displayed in the CH_EXIST output by setting a bit in the DWORD, starting at bit 0, for every existing channel. If the bit assigned to a channel = 0, the channel is not available.

Output CH_OK displays the valid channels on a module by setting a bit to TRUE for every valid channel, where bit 0 is assigned to channel 0, etc. If the bit assigned to a channel is 0, the channel is faulty. If a module error occurs, all channels are disrupted.

Addressing

You will find additional information in the "Addressing (Page 399)" section.

Error handling

The plausibility of input parameters is not checked. You will find more information about this in "Error information of output parameter MSG_STAT (Page 398)".

3.25 MOD_MS: Monitoring up to 16 channels on ET200S/X motor starter modules with diagnostic functions

Service Information

To analyze faults, the module status information entered during startup is read via the MOD_INF structured output parameter. You will find more information about this in the reference manual *System Software for S7-300/400 System and Standard Functions; System Status List, Module Status Information*.

Following a diagnostic interrupt, you will also find detailed module diagnostic information in the MODDIAG0 to MODDIAG8 output parameters. You will find more information in the reference manual *System Software for S7-300/400 System and Standard Functions; Diagnostic Data, Byte 0 to Byte 10.*

The CHDIAG00 to CHDIAG15 output parameters contain detailed channel-status information. You will find more information in the reference manual *System Software for S7-300/400 System and Standard Functions; Structure of Channel-Specific Diagnostic Data.*

Of the motor starter module channels, only channel 0 is assigned the diagnostic function. The error code is stored in CHDIAG00 to CHDIAG03. You will find additional information about this in the *ET 200S, Motor Starter Safety Technology SIGUARD; Diagnostics and Monitoring via the User Program* reference manual.

The system resets this diagnostic information after a diagnostic interrupt has been reported outgoing (no further channel or module errors are queued).

Startup characteristics

After a restart/initial startup, the system verifies that the module is available under its logical base address. A restart (OB 100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

Time response

Not available

Message response

MOD_MS reports module and motor-starter errors by means of ALARM_8P_1 and ALARM_8P_2. The DELAY1 and DELAY2 inputs are used to delay the I/O access error message. DELAY1 allows you to enter a time in seconds for which the block will wait for a higher-priority error (rack failure or removal/insertion) following a program execution error (OB 85) before it outputs the message. DELAY2 determines the number of seconds the block waits after the higher-priority error has been reported outgoing until it outputs the queued I/O access error as well. Both values are set to 2 seconds by default.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_MS (Page 196)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.25.2 I/Os of MOD_MS

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DELAY1	Alarm delay 1 (s)	INT	2
DELAY2	Alarm delay 2 (s)	INT	2
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number x	DWORD	0
LADDR	Logical address of the input channels	INT	0
LADDR1	Logical address of the output channels	INT	0
MODE_xx	Mode channel xx (xx = 00 - 31)	WORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_ACTIVE	Channel active	DWORD	16#000000 00
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DIAG_INF	System structure: Diagnostic information	STRUCT	
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 31) Bit 0 = Release for maintenance Bit 1-31 = Reserve	DWORD	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACKx	Message acknowledgment x	WORD	0
MSGSTATx	Message error information x	WORD	0
O_MS	Maintenance status	DWORD	0

3.25 MOD_MS: Monitoring up to 16 channels on ET200S/X motor starter modules with diagnostic functions

I/O (parameter)	Meaning	Data type	Default
OMODE_xx	Mode channel xx (xx = 00 - 31)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = failure of the rack	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_MS (Page 196)

Maintenance status of MS (Page 403)

3.25.3 Message texts and associated values of MOD_MS

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID1	1	QMODF	Module @1%d@/@2%d@/@3%d@: Removed	S
	2	QPERAF	Module @1%d@/@2%d@/@3%d@: Access error	S
	3		Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_MS_TXT@	S
	4	-	Module @1%d@/@2%d@/@3%d@: Multiple diagnostic interrupt	S
	5	-	Module @1%d@/@2%d@/@3%d@: @4W%t#MOD_MS_TXT@	S
	6	-	Module @1%d@/@2%d@/@3%d@: Short-circuit	S
	7	-	Module @1%d@/@2%d@/@3%d@: Overload	S
	8	-	Module @1%d@/@2%d@/@3%d@: Error	S
EV_ID2	1		Module @1%d@/@2%d@/@3%d@: High limit exceeded	S
	2		Module @1%d@/@2%d@/@3%d@: Low limit undershot	S
	3		Module @1%d@/@2%d@/@3%d@: Parameter assignment error	S
	4	-	Module @1%d@/@2%d@/@3%d@: Actuator OFF	S
	5	-	Module @1%d@/@2%d@/@3%d@: Safety-related shutdown	S
	6	-	Module @1%d@/@2%d@/@3%d@: External error	S
	7	-	Module @1%d@/@2%d@/@3%d@: Switching element overload	S
	8	-	Module @1%d@/@2%d@/@3%d@: Missing supply voltage	S

You will find the message texts and their text numbers in "Text library for MOD_MS (Page 424)".

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameter	Meaning
EV_ID1	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	SLOT_NO	Slot number (byte)
	4	-	Text number (message 5) of MOD_MS_TXT
EV_ID2	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	SLOT_NO	Slot number (byte)

See also

Message Classes (Page 401)

3.26 MOD_SWT: Monitoring of Switch blocks with diagnostics functions

3.26.1 Description of MOD_SWT

Object name (type + number)

FB 149

• MOD_SWT block I/Os (Page 200)

Area of application

The MOD_SWT block creates the device-specific diagnostics function for blocks of the Switch type.

The following events are processed in the MOD_SWT and the status messages reported in WinCC:

SwitchType	Message	Message Class WinCC	MS	Status (for each interconnectable output)
FbSwtMMS	Run reverse	SA	00	16#80
	Off	SA	00	16#80
	Run forward	SA	00	16#80
	Overload warning	F	06	16#68
	Fault	S	07	16#00
	Warning	F	06	16#68

Calling OBs

The cyclic OB 1 and OB 100.

In addition, the block is installed in the cyclic interrupt OB OB3x in which the following signal processing driver block is installed.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is installed when the corresponding SlaveFamily 2 object exists
- Further interconnection takes place in the same way as for the existing MODPAL/X0 blocks of the PCS 7 Basis Library
- The corresponding inputs are read out of HW Config and configured.
- The block is interconnected with the corresponding Switch block through the DXCHG_00, OMODE_00 and O_MS parameters.

Startup characteristics

Initialization of the ALARM_8P blocks and of the NOTIFY_8P blocks.

Message response

The block reports errors using ALARM_8P and NOTIFY_8P.

The block generates the following messages in the OBs listed below:

OB no.	Start event	Message
1	Cyclic processing	Have the ALARM_8P/NOTIFY_8P outputs/messages updated, if necessary
100	Restart	Initialization of ALARM_8P

MODE behavior

The block is informed by the "MODE" input about which function block or device type is involved.

3.26.2 I/Os of MOD_SWT

I/Os

The factory setting of the block display in CFC is identified in the "I/O" column.

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Туре	Default
EN_MSG	1 = enable message	BOOL	1
EV_ID1	Message number 1	DWORD	16#00
EV_ID2	Message number 2	DWORD	16#00
MS	Maintenance status	DWORD	16#00
LINK_ADR	Link address	BYTE	0
PADP_ADR	Address of the PA field device	BYTE	16#00
SUBN1_ID	ID of the primary DP master system	BYTE	16#FF
SUBN2_ID	ID of the redundant DP master system	BYTE	16#FF

In-out parameters

I/O (parameter)	Meaning	Туре
CPU_DIAG	System structure: CPU diagnostics	Struct (see OB_BEGIN)
RAC_DIAG	System structure: RACK diagnostics	Struct (see OB_DIAG1)

Output parameters

I/O (parameter)	Meaning	Туре	Default
CH_ACTIVE	Channel active	DWORD	16#000 00000
DXCHG_00	Bidirectional data exchange channel	DWORD	16#00
EXT_STAT	Release for maintenance - extended status	DWORD	16#00
Error	Error message is active	BOOL	0
MSGSTAT1	Message error information 1	WORD	16#00
MSGSTAT2	Message error information 2	WORD	16#00
MSG_ACK1	Message acknowledgment 1	WORD	16#00
MSG_ACK2	Message acknowledgment 2	WORD	16#00
OMODE_00	Value status of the PA field device	DWORD	16#00
O_MS	Maintenance status	DWORD	16#00
Overload	Overload message is active	BOOL	0
QERR	1 = program error	BOOL	1
QRACKF	1 = PA slave/DP master error	BOOL	0
Warning	Warning message is active	BOOL	0

3.26.3 Message texts and associated values of MOD_SWT

Messaging

Message block	Class	Event
EV_ID1:SIG1	AS process control message - fault	Device @1%d@/ @2%d@: Bad,
		maintenance alarm
EV_ID1:SIG2	AS process control message - fault	Device @1%d@/ @2%d@: Uncertain, maintenance demanded
EV_ID1:SIG3	AS process control message - fault	Device @1%d@/ @2%d@: Good, maintenance required
EV_ID1:SIG6	AS process control message - fault	Device @1%d@/ @2%d@: Failure
EV_ID2:SIG2	Status message - AS	Device @1%d@/ @2%d@: Good, configuration has been changed
EV_ID2:SIG3	Status message - AS	Device @1%d@/ @2%d@: Uncertain, simulation
EV_ID2:SIG6	Status message - AS	Device @1%d@/@2%d@: Bad, local operation/functional check
EV_ID2:SIG7	Status message - AS	Device @1%d@/ @2%d@: Bad, device passivated

All other messages are not assigned.

1. ALARM_8P

2. NOTIFY_8P

Assignment of associated values

Associated value	Block parameter
1	Subnet
2	Address

3.27 MOD_PAL0: Diagnosing a DPV0 PA slave (via DP/PA coupler downstream of a DP/PA link DPV1)

3.27 MOD_PAL0: Diagnosing a DPV0 PA slave (via DP/PA coupler downstream of a DP/PA link DPV1)

3.27.1 Description of MOD_PAL0

Object name (type + number)

FB 99

• MOD_PAL0 block I/Os (Page 206)

Area of application

Block MOD_PAL0 reports the maintenance status of a PA field device that is used as a DPV0 slave downstream of a DP/PA link DPV1. The PA field devices must conform to the PROFIBUS V3.0 profile.

Calling OBs

The cyclic OB and OB 100.

In addition, the block is installed in the cyclic interrupt OB OB3x in which the following signal processing driver block is installed.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is integrated in the run sequence upstream of block PA_x
- The SUBN1_ID, SUBN2_ID, RACK_NO, SLOT_NO, PADP_ADR, PROF_V30 inputs are configured.
- The block inputs are interconnected with the following outputs:
 - Output PA_DIAG of block PADP_L10
 - OMODEx outputs of block PADP_L10
 - QMODF and QPERAF outputs of block PADP_L10
 - with output structure RAC_DIAG of block OB_DIAG1
 - input QC_x with PA field device icon

- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Note

The CFC function "Generate module drivers" can only be used if the PA field device belongs to slave family 12.

Function and method of operation

Block MOD_PAL0 analyzes all events that affect the status of a PA field-device slot cyclically. With modular PA field devices, the statuses of the slots are combined to form one status. The acyclic diagnostic events of a PA field device are acquired by the PADP_L10 block. It then stores them in the PA_DIAG parameter. The PA field-device status and the diagnostic information are evaluated, and entered in the MS parameter.

For more information on this, refer to the section: "PA field device status and diagnostic information (Page 413)".

The statuses are generated with ALARM_8P for messages requiring acknowledgment, and with NOTIFY_8P for those not requiring acknowledgment. The message function can be disabled.

Input PROF_V30 must be set to zero if the PA field device used does not conform to profile 3.0 (this is done by the "Generate module drivers" CFC function).

For a diagnostic event, the block reports "Device xx: uncertain diagnosis".

The failure of a PA field device is identified in the upstream block OB_DIAG1, and is reported via the RAC_DIAG structure. A message "Device xx: Failure" is also generated.

Redundancy

The higher-level block evaluates the redundancy of DP master systems operating in an H system.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

Initialization of ALARM_8P and NOTIFY_8P.

Time response

Not available

Message response

The block reports by means of ALARM_8P and NOTIFY_8P.

The block generates the following messages in the OBs listed below:

OB no.	Start Event	Message
x	Cyclic processing	Have the ALARM_8P/NOTIFY_8P outputs/messages updated, if necessary
100	Restart	Initialization of ALARM_8P

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values for MOD_PAL0 (Page 208)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.27.2 I/Os of MOD_PAL0

I/Os

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Туре	Default
EN_DIAG	1 = Queued diagnostic event	BOOL	0
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number x	DWORD	0
MODE_xx	Value status PA field device (xx = channel 16 to 31)	DWORD	0
MODF	1 = PA slave error	BOOL	0
MS	Maintenance status	DWORD	0
NUM_CHN	Number of channels of the PA device	INT	0
PA_DIAG	PA field device diagnostic information	DWORD	0
PADP_ADR	PADP_ADR Address of the PA field device		0
PERAF	1 = I/O access error	BOOL	0
PROF_V30	1 = PA slave profile V3.0	BOOL	0
QC_xx	Status of PA field device (xx = channel 16 to 31)	BYTE	0
RACK_NO	Number of the DP link	BYTE	0
SLOT_NO	Slot number of the PA field device in the DP link	BYTE	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O	Meaning	Туре	Default
B_QC	Bit-granular Σ status (channel 0 to 31) of the PA field device	STRUCT	
CH_ACTIVE	Channel active	DWORD	16#000 00000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DXCHG_xx EXT_STAT	Bidirectional data exchange channel (xx = 00 - 15)Bit = 0: Release for maintenanceBit1 Byte0: Flutter suppressionBit2 to Bit7 Byte0: ReservedByte 1: ReservedByte 2: ReservedByte 3: Fluttering timeRelease for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression	DWORD	16#000 00000
MSG_ACKx	Message acknowledgment x	WORD	0
MSGSTATx	Message error information x	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Operating mode slot (xx = Slot 16 to 31)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = PA slave error	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = PA slave/DP master error	BOOL	0

In-out parameters

I/O	Meaning	Туре	Default
RAC_DIAG	System structure: RACK diagnostics	STRUCT	0

Additional information

For additional information, refer to the following sections:

Message texts and associated values for MOD_PAL0 (Page 208)

Maintenance status of MS (Page 403)

PA field device status and diagnostic information (Page 413)

3.27.3 Message texts and associated values of MOD_PAL0

Assignment of message text and message class

Message block	Message no.	Default message text	Message class
EV_ID1 (ALARM_8P)	1	Device @1%d@/ @2%d@/@3%d@: Bad, maintenance alarm	S
	2	Device @1%d@/ @2%d@/@3%d@: Uncertain, maintenance request	F
	3	Device @1%d@/ @2%d@/@3%d@: Good, maintenance required	М
	4	Device @1%d@/ @2%d@/@3%d@: Access error	S
	5	Device @1%d@/ @2%d@/@3%d@: Uncertain diagnostics	S
	6	Device @1%d@/ @2%d@/@3%d@: Failure	S
	7		No message
	8		No message
EV_ID2 (NOTIFY_8P)	1	Device @1%d@/ @2%d@/@3%d@: Good, changes to fail-safe position	SA
	2	Device @1%d@/ @2%d@/@3%d@: Good, configuration has been changed	SA
	3	Device @1%d@/ @2%d@/@3%d@: Uncertain, simulation	SA
	4	Device @1%d@/ @2%d@/@3%d@: Uncertain, due to process, no maintenance	SA
	5	Device @1%d@/ @2%d@/@3%d@: Bad, process-related, no maintenance	SA
	6	Device @1%d@/ @2%d@/@3%d@: Bad, local operation/functional check	SA
	7	Device @1%d@/ @2%d@/@3%d@: Bad, device passivated	SA
	8	Device @1%d@/ @2%d@/@3%d@: @4W%t#MOD_PAL0_TXT@	SA

Assignment of associated values

Message block	Associated value	Block parameter	Meaning
EV_ID1 (ALARM_8P)	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADPADR	PA field device address (byte)
EV_ID2 (NOTIFY_8P)	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADPADR	PA field device address (byte)
	4		Text number MOD_PAL0

If the PA field device is connected downstream from an inactive DP/PA-Link V1and SUBN1_ID = 16#FF, the associated variable is substituted by SUBN2_ID.

You will find the message texts and their text numbers in "Text library for MOD_PAL0 (Page 416)".

See also

Message Classes (Page 401)

3.28 MOD_PAX0: Diagnosing a DPV0 PA slave (via DP/PA coupler with connection to a DP master system)

3.28 MOD_PAX0: Diagnosing a DPV0 PA slave (via DP/PA coupler with connection to a DP master system)

3.28.1 Description of MOD_PAX0

Object name (type + number)

FB 112

• MOD_PAX0 block I/Os (Page 213)

Area of application

Block MOD_PAX0 reports the maintenance status of a PA field device that is used as a DPV0 slave in a DP master system. The PA field devices must conform to the PROFIBUS V3.0 profile.

Calling OBs

The cyclic OB and OB 100.

In addition, the block is installed in the cyclic interrupt OB OB3x in which the following signal processing driver block is installed.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is integrated in the run sequence upstream of the PA_x block.
- The inputs SUBN1_ID, SUBN2_ID, PADP_ADR and PROF_V30 have parameters assigned.
- The inputs are interconnected with the following outputs:
 - Output PA_DIAG of block PADP_L10
 - OMODEx outputs of block PADP_L10
 - QMODF and QPERAF outputs of block PADP_L10
 - with output structure RAC_DIAG of block OB_DIAG1
- Input QC_x is interconnected with the PA field device status icon.
- Output OMODExx is interconnected with the MODE input of the PA_x block.
- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

3.28 MOD_PAX0: Diagnosing a DPV0 PA slave (via DP/PA coupler with connection to a DP master system)

Note

The CFC function "Generate module drivers" can only be used if the PA field device belongs to slave family 12.

Function and method of operation

Block MOD_PAX0 analyzes all events relating to the status of a PA field device slot cyclically. With modular PA field devices, the statuses of the slots are combined to form one status. The acyclic diagnostic events of a PA field device are acquired by the PADP_L10 block. It then stores them in the PA_DIAG parameter. The PA field-device status and the diagnostic information are evaluated, and entered in the MS parameter.

You will find more information in the "PA field device status and diagnostic information (Page 413)" section.

Input PROF_V30 must be set to zero if the PA field device used does not conform to profile 3.0 (this is done by the "Generate module drivers" CFC function).

In the event of a diagnostic event, the block reports "PA field device diagnostics".

There is an input (MODE_xx (Page 387)) for each slot (module) on the PA field device that is used to read in configuration settings made for the PA field device slots (module) in HW Config.

The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current slot value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxxx. The following events lead to the value status "Invalid value due to higher-priority error" (OMODE_xx = 16#40xxxxx):

MODE setting for PA profiles

You will find more information in "PA_MODE settings (Page 397)".

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find additional information in the "OMODE (Page 396)" section.

Redundancy

The higher-level block evaluates the redundancy of DP master systems operating in an H system.

3.28 MOD_PAX0: Diagnosing a DPV0 PA slave (via DP/PA coupler with connection to a DP master system)

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

Initialization of ALARM_8P and NOTIFY_8P

Time response

Not available

Message response

The block uses ALARM_8P and NOTIFY_8P

The block generates the following messages in the OBs listed below:

OB no.	Start Event	Message
x	Cyclic processing	Repeat the update of ALARM_8P outputs/messages, if necessary
100	Restart	Initialization of ALARM_8P

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values for MOD_PAX0 (Page 215)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.28 MOD_PAX0: Diagnosing a DPV0 PA slave (via DP/PA coupler with connection to a DP master system)

3.28.2 I/Os of MOD_PAX0

I/Os

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Туре	Default
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number x	DWORD	0
MODE_xx	Value status PA field device (xx = channel 16 to 31)	DWORD	0
MODF	1 = PA slave error	BOOL	0
MS	Maintenance status	DWORD	0
NUM_CHN	Number of channels of the PA device	INT	0
PA_DIAG	PA field device diagnostic information	DWORD	0
PADP_ADR	Address of the PA field device	BYTE	0
PERAF	1 = I/O access error	BOOL	0
PROF_V30	1 = PA slave profile V3.0	BOOL	0
QC_xx	Status of PA field device (xx = channel 16 to 31)	BYTE	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

3.28 MOD_PAX0: Diagnosing a DPV0 PA slave (via DP/PA coupler with connection to a DP master system)

Output parameters

I/O (parameter)	Meaning	Туре	Default
B_QC	Bit-granular Σ status (channel 0 to 31) of the PA field device	STRUCT	
CH_ACTIVE	Channel active	DWORD	16#00000 000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15) Bit = 0: Release for maintenance Bit1 Byte0: Flutter suppression Bit2 to Bit7 Byte0: Reserved Byte 1: Reserved	DWORD	0
	Byte 2: Reserved Byte 3: Fluttering time		
EXT_STAT	Release for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression	DWORD	16#00000 0000
MSG_ACKx	Message acknowledgment x	WORD	0
MSGSTATx	Message error information x	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Operating mode slot (xx = Slot 16 to 31)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = PA slave error	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = PA slave/DP master error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Туре	Default
RAC_DIAG	System structure: RACK diagnostics	STRUCT	0

Additional information

For additional information, refer to the following sections: Message texts and associated values for MOD_PAX0 (Page 215) Maintenance status of MS (Page 403)

PA field device status and diagnostic information (Page 413)

3.28 MOD_PAX0: Diagnosing a DPV0 PA slave (via DP/PA coupler with connection to a DP master system)

3.28.3 Message texts and associated values of MOD_PAX0

Assignment of message text and message class

Message block	Message no.	Block parameter	Default message text	Message class
EV_ID1 (ALARM_8P)	1	-	Device @1%d@/ @2%d@: Bad, maintenance alarm	S
	2	-	Device @1%d@/ @2%d@: Uncertain, maintenance request	F
	3	-	Device @1%d@/ @2%d@: Good, maintenance necessary	М
	4	-	Device @1%d@/ @2%d@: Access error	S
	5	-	Device @1%d@/ @2%d@: Undefined diagnostics	S
	6	-	Device @1%d@/ @2%d@: Failure	S
	7	-		No message
	8	-		No message
	4			C.A.
(NOTIFY_8P)		-	Good, changes to fail-safe position	SA
	2	-	Device @1%d@/ @2%d@: Good, configuration has been changed	SA
	3	-	Device @1%d@/ @2%d@: Uncertain, simulation	SA
	4	-	Device @1%d@/ @2%d@:Uncertain, due to process, no maintenance	SA
	5	-	Device @1%d@/ @2%d@:Bad, process-related, no maintenance	SA
	6	-	Device @1%d@/ @2%d@:Bad, local operation/functional check	SA
	7	-	Device @1%d@/ @2%d@: Bad, device passivated	SA
	8	-	Device @1%d@/ @2%d@:@3W%t#MOD_PAX0_TXT@	SA

3.28 MOD_PAX0: Diagnosing a DPV0 PA slave (via DP/PA coupler with connection to a DP master system)

Assignment of associated values

Message block	Associated value	Block parameter	Meaning
EV_ID1 (ALARM_8P)	1	SUBN_ID	DP master system ID (byte)
	2	PADPADR	PA field device address (byte)
EV_ID2 (NOTIFY_8P)	1	SUBN_ID	DP master system ID (byte)
	2	PADPADR	PA field device address (byte)
	3		Text number MOD_PAXL0

If SUBN1_ID = 16#FF, the associated value is substituted with SUBN2_ID.

You will find the message texts and their text numbers in the

"Text library for MOD_PAL0 (Page 416)" section.

See also

Message Classes (Page 401)
3.29 OB_BEGIN: CPU Diagnostics and AS Connection Diagnostics

3.29 OB_BEGIN: CPU Diagnostics and AS Connection Diagnostics

3.29.1 Description of OB_BEGIN

Object name (type + number)

FB100

• OB_BEGIN block I/Os (Page 222)

Area of application

Block OB_BEGIN is used for CPU diagnostics of the automation system (AS). By installing the block in CFC, the system creates all acyclic run sequences (OBs) in which the driver blocks of PCS 7 Advanced Process Library are executed.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic processing
OB 55	Status interrupt (only if a DP/PA slave is required)
OB 56	Update interrupt (only if a DP/PA slave is required)
OB 57	Vendor-specific alarm (only if a DP/PA slave is required)
OB 70	I/O redundancy error
OB 72	CPU redundancy error
OB 80	Timeout error
OB 81	Power supply error
OB 82	Diagnostic interrupt
OB 83	Remove/insert interrupt
OB 84	CPU hardware error (only for CPU with this function)
OB 85	Program execution error
OB 86	Rack failure
OB 88	Stop avoidance
OB 100	Restart
OB 121	Programming error
OB 122	I/O access error

Use in CFC

With the "Generate module drivers" CFC function, the OB_BEGIN block is automatically installed in the OBs listed above.

Function and method of operation

Block OB_BEGIN is used to report and display CPU events and statuses. It reads the start information of the tasks (OBs), diagnostic data of the I/O and enables the relevant blocks for processing on the basis of the start events.

OB_BEGIN reads the start information of SFC 6 (RD_SINFO) or SFB 54 (RALRM) to identify the OB in which it is currently running.

If this information is not available, the block reads the logical basic address from the start information and converts it into the geographic address. This is available at the relevant OBs of the output structure CPU_DIAG the lower-level blocks can also access. On the basis of the geographic address, OB_BEGIN enables the relevant SUBNET blocks for further evaluation of the start information.

In the case of a diagnostic event (OB 82), the diagnostic data are simultaneously written to the CPU_DIAG.OB82 structure along with the start information, using SFB54. Diagnostic (alarm) information of a length exceeding 59 bytes must contain the call of the relevant driver blocks.

In H systems, the current status of the two H CPUs is read from the system status list 71 (SSL71) in OB 100. A detailed description of the SSL71 appears in the reference manual titled *System Software for S7-300/400 System and Standard Functions*. The statuses of SSL_71.MASTER_0/1 and SSL_71.CPU_ERR_0/1 are updated in OB 72.

OB_BEGIN provides the diagnostic information of OB 55, OB 56 and OB 57 to the downstream blocks in its output structure CPU_OB_5X.

The block reports diagnostic events of an OB 88 block.

All OB 88 events are incoming events. OB 1 generates the relevant event message exiting state after a delay of approximately 10 seconds in order to allow the reporting of a new OB 88 event.

Error handling

Block OB_BEGIN evaluates error information from ALARM_8P and writes it to the relevant output parameters.

You will find additional information in the "Error information of output parameter MSG_STAT (Page 398)" section.

If the block installation sequence OB_BEGIN, xx blocks, ..., OB_END is not observed in an OB, the message "OB_END installation error, no OB 8x processing" will be output and QERR = TRUE set. In this case, the acyclic OBs do not evaluate the data. The downstream blocks will not be enabled.

Error information at output parameter STATUS of SFB 54 (RALRM) is handled as follows:

- The values 16#8096, 16#80A7, 16#80C0, 16#80C2, 16#80C3 or 16#80C4 at STATUS[2] and STATUS[3] indicate temporary errors. STATUS[3] of the corresponding OB will be set in the structure CPU_DIAG = 16#C4. Downstream blocks can read access the diagnostic data asynchronously.
- After any other error event, SFC 6 (RD_SINFO) reads the startup information once again and the message "OB_BEGIN diagnostic error RALRM STATUS = xxxxxxxx" is output. OB 1 generates the message exiting state once a delay of approximately 10 seconds has expired.

Startup characteristics

Block OB_BEGIN initializes the messages of ALARM_8P. In H systems (CPU_DIAG.H_MODE = TRUE), the current status of the two H CPUs is determined by reading SSL71 (see "Function and method of operation").

Overload Behavior

Messages exiting state associated with OB 121, OB 122 and OB 88 are generated subject to a delay of approx. 10 seconds. This on the one hand prevents blocking of the WinCC connection due to a high message transfer volume of these OBs. On the other hand, OB events may be due to the delay.

Time response

Not available

Message response

ALARM_8P multiple instances are only called if OB_BEGIN is to output a message. It is only at this point that previously acknowledged messages are updated by the corresponding ALARM block. If the connection to WinCC is down, each ALARM_8P can hold up to two message statuses of its event ID.

The CPU generates a programming error (OB 121) only as an incoming event. OB 1 resets the relevant message to status exiting state. In order to avoid an excessive number of programming error messages, these will not be reported as outgoing until a delay time of 10 seconds has expired. The same applies to I/O access errors (OB 122) and OB 88 events.

The block generates the following messages in the OBs listed below:

ОВ	Start Event	Message
OB 1	Cyclic processing	 Outgoing message with 10 s delay: Timeout (OB 80/OB 84)
		Program execution error (OB 80)
		Programming error (OB121)
		Write I/O access error (OB 122)
		Read I/O access error (OB 122)
		Error code B#16#71: Nested stack error (OB 88)
		Error code B#16#72: Master control relay stack error (OB 88)
		Error code B#16#73: Synchronous error nesting depth exceeded (OB 88)
		 Error code B#16#74: U stack nesting depth exceeded in priority class stack (OB 88)
		 Error code B#16#75: B stack nesting depth exceeded in priority class stack (OB 88)
		Error code B#16#76: Local data allocation error (OB 88)
		Error code B#16#78: Unknown opcode (OB 88)
		Error code B#16#7A: Code length error (OB 88)
OB72	CPU redundancy loss	CPU redundancy loss/return
OB 80	Timeout error	Incoming message on timeout:
		Cycle time exceeded
		OB request: OBxx is busy
		OB request: Overflow PRIOxx
		TOD interrupt xx expired
OB 84	CPU hardware error	Interface error entering/exiting state;
		Memory error detected and corrected by operating system.
		Accumulation of detected and corrected memory errors.
		Error in PC operating system.
		Performance of an H-Sync coupling impaired.
		Multiple-bit memory error detected and corrected.
OB 85	Program execution error	Incoming message on program-execution error:
		OBxx not loaded
		Access-error error xx:

3.29 OB_BEGIN: CPU Diagnostics and AS Connection Diagnostics

ОВ	Start Event	Message
OB 88	Stop avoidance	Incoming message on OB 88 events:
		Error code B#16#71: Nested stack error
		Error code B#16#72: Master control relay stack error
		Error code B#16#73: Nesting depth exceeded on synchronization errors
		 Error code B#16#74: U-stack nesting depth exceeded in the priority class stack
		 Error code B#16#75: B-stack nesting depth exceeded in the priority class stack
		Error code B#16#76: Local data allocation error
		Error code B#16#78: Unknown opcode
		Error code B#16#7A: Code length error
OB100	Restart	Initialization of ALARM_8P
OB121	Programming error	Programming error incoming
OB122	I/O access error	Read I/O access, incoming
		Write I/O access, entering state

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

• OB_BEGIN faceplate

If no asset management is used in the project, the "OB-BEGIN" block icon is used to display avoidance of stop.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of OB_BEGIN (Page 224)

Maintenance status of MS (Page 403)

3.29.2 I/Os of OB_BEGIN

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number ALARM_8P_x (x = 1 - 4, assigned by the ES)	DWORD	0
MS	Maintenance status	DWORD	0
SUB0IDxx	DP master system 1 IDxx (xx = 00 - 14)	BYTE	255
SUB1IDxx	DP master system 2 IDxx (xx = 00 - 14)	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
CPU_OB_4X	Start information OB 40 - OB 47	STRUCT	
CPU_OB_5X	Start information OB 55, OB 56, OB 57	STRUCT	
CPU_OB_6X	Start information OB 60 - OB 64	STRUCT	
CPUERR_0	1 = CPU error in rack 0 *)	BOOL	0
CPUERR_1	1 = CPU error in rack 1 *)	BOOL	0
EN_SUBx	Enable SUBNET x (x = 0 - 14)	BOOL	0
MASTER_0	1 = Master CPU in rack 0	BOOL	0
MASTER_1	1 = Master CPU in rack 1	BOOL	0
MSGSTATx	STATUS output of ALARM_ $8P_x$ (x = 1 -4)	WORD	0
O_MS	Maintenance status	DWORD	0
QERR	1 = processing error	BOOL	1
QMSGERx	Error output of ALARM_ $8P_x$ (x = 1 - 4)	BOOL	0
SZL_71	System structure: SZL71	STRUCT	

The structure of the CPU_DIAG is integrated as OUT in the OB_BEGIN block, and as IN_OUT in all other blocks with this I/O.

*) You will find additional information about CPU errors in the CPU Manual.

3.29 OB_BEGIN: CPU Diagnostics and AS Connection Diagnostics

Additional information

You will find more information in:

Message texts and associated values of OB_BEGIN (Page 224)

Maintenance status of MS (Page 403)

3.29.3 Message texts and associated values of OB_BEGIN

Assignment of message text and message class

Process control messages of ALARM_8P with EV_ID1 are assigned as follows:

Message block	Message number	OB no.	Default message text	Message class
EV_ID1	1	OB 85	OB @7%d@ not loaded	S
	2			No message
	3	OB 84	Interface error	S
	4	-	Error installing OB_BEGIN/OB_END: No OB@2%d@ processing of stack @1%d@	S
	5	OB 85	Program execution error: @7%d@: @10%2s@@8%d@/@9%d@	S
	6	OB 122	I/O read access error: @4%2s@@5%d@ Address: @6%d@	S
	7	OB 122	I/O write access error: @4%2s@@5%d@ Address: @6%d@	S
	8	OB 84	Performance of an H-Sync coupling impaired	S

Messages 1, 4, 5, 6, 7 and 8 are only incoming events. They are reset to "outgoing" status during the normal run sequence (OB 1) of the block.

Associated Values of ALARM_8P with EV_ID1

Process control messages are generated with six associated values at EV_ID1 via ALARM_8P. The table below shows how the associated values are assigned to the block parameters.

Message block ALARM_8P	Associated value	Block parameters	Data type
EV_ID1	1	CPU_DIAG.OB_S_NUM_CNT	BYTE
	2	TINFO_TOP_SI_NUM	BYTE
	3	OB 72_supp_info 1	WORD
	4	OB 122_BLK_TYP	WORD
	5	OB 122_BLK_NUM	WORD
	6	OB 122_MEM_ADDR	WORD
	7	OB 85_supp_info 1	WORD
	8	OB 85_HW_supp_info 2_3	WORD
	9	OB 85_LW_supp_info 2_3	WORD
	10	OB 85_DKZ2_3	WORD

Process control messages of ALARM_	P with EV_ID2 are assigned as follows:
------------------------------------	--

Message block ALARM_8P	Message number	OB no.	Default message text	Message class
EV_ID2	1	OB 80	Net consumption of all OBs exceeds max. limit	М
	2	OB 80	Emergency operation, cyclic OBs are used	S
	3	OB 80	Priorities of the cyclic OBs not PCS 7 conform	М
	4	OB 84	Memory error detected and corrected by operating system.	S
	5	OB 84	Accumulation of detected and corrected memory errors	S
	6	OB 84	Error in PC operating system	S
	7	OB 121	Programming error @1%d@: @2%2s@@5%d@ /@6%d@/@4%d@/@3%d@	S
	8	OB 84	Multiple-bit memory error detected and corrected	S

Messages 1 to 3 are generated in CPU_RT (Page 23) and forwarded to OB_BEGIN.

Messages 4, 5, 7 and 8 are only incoming events. They are reset to "outgoing" status during the normal run sequence (OB 1) of the block.

Message 7 is to be interpreted as follows, in accordance with the error code number before the colon:

OB 121_BLK_TYP/OB 121_BLK_NUM/OB 121_PRG_ADDR/OB 121_FLT_REG/OB 121_RE SERVED_1.

This is described in the reference manual titled *System Software for S7-300/400 System and Standard Functions*.

Example: 10.05.00 10:30:45 Programming error 35: FB44/1234/5/9

Associated Values of ALARM_8P with EV_ID2

Process control messages are generated with six associated values at EV_ID2 via ALARM_8P. The table below shows how the associated values are assigned to the block parameters.

Message block ALARM_8P	Associated value	Block parameters	Data type
EV_ID2	1	OB 121_SW_FLT	BYTE
	2	OB 121_BLK_TYP	WORD
	3	OB 121_RESERVED_1	BYTE
	4	OB 121_FLT_REG	WORD
	5	OB 121_BLK_NUM	WORD
	6	OB 121_PRG_ADDR	WORD

Message block ALARM_8P	Message number	OB no.	Default message text	Message class
EV_ID3	1	OB 80	Cycle time exceeded: @1%d@ms OB@2%d@	S
	2	OB 80	OB request: OB3x still being processed	F
	3	OB 80	TOD interrupt OB @3%d@ expired (TOD jump)	S
	4	OB 80	TOD interrupt OB @4%d@ expired (Stop/Run)	S
	5	OB 80	OB request: Overflow PRIO @5%d	S
	6	OB 80	Clocked interrupt timeout: OB@6%d@ PRIO @7%d@	S
	7	OB 80	Interrupt lost: OB@8%d@ PRIO @9%d@	S
	8	OB 80	CiR synchronization time: @10%d@ ms	S

Process control messages of ALARM_8P with EV_ID3 are assigned as follows:

Message 2 is generated in CPU_RT (Page 23) and forwarded to OB_BEGIN.

Messages 1 to 8 are only incoming events. They are reset to "outgoing" status during the normal run sequence (OB 1) of the block.

Associated Values of ALARM_8P with EV_ID3

Process control messages are generated with seven associated values at EV_ID3 via ALARM_8P. The table below shows how the associated values are assigned to the block parameters.

Message block ALARM_8P	Associated value	Block parameters	Data type
EV_ID3	1	Cycle time (OB 80_supp_info 1)	WORD
	2	Cause OB (OB 80_1st byte supp_info 2_3)	BYTE
	3	Cycle time (OB 80_supp_info 1)	WORD
	4	Cycle time (OB 80_supp_info 1)	WORD
	5	Priority class (OB 80_2nd byte supp_info 2_3)	BYTE
	6	Cause OB (OB 80_1st byte supp_info 2_3)	BYTE
	7	Priority class (OB 80_2nd byte supp_info 2_3)	BYTE
	8	Cause OB (OB 80_1st byte supp_info 2_3)	BYTE
	9	Priority class (OB 80_2nd byte supp_info 2_3)	BYTE
	10	Cycle time (OB 80_supp_info 1)	WORD

Process control messages for ALARM_8P with EV_ID4 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID_4	1	OB 88(@6W%t#OB_BEGIN_TXT@): OB@1%d@ PRIO@2%d@ @3%2s@@4%d@ /@5%d@	S
	2	OB_BEGIN: Diagnostics error RALRM STATUS = @7%8X@	S
	3		No message
	4		No message
	5		No message
	6		No message
	7		No message
	8		No message

Associated Values of ALARM_8P with EV_ID4

Message block ALARM_8P	Associated value	Meaning
EV_ID4	1	Cause OB (M_OB 88.FLT_OB)
	2	Priority class (M_OB 88.FLT_OB_PRIO)
	3	Block type (M_OB 88.BLK_TYP)
	4	Block number (M_OB 88.FLT_NUM)
	5	MC7 command causing error Relative address (M_OB 88.FLT_ADDR)
	6	Error number in OB_BEGIN_TXT (M_OB 88.T_OB 88)
	7	Status RALRM

You will find the message texts and their text numbers in "Text library for OB_BEGIN (Page 426)".

See also

Message Classes (Page 401)

3.30 OB_DIAG1: OB diagnostics for avoiding stoppages in DPV1 master systems

3.30.1 Description of OB_DIAG1

Object name (type + number)

FB 118

• OB_DIAG1 block I/Os (Page 232)

Area of application

Block OB_DIAG1 monitors the failure and recovery of DP or PA slaves (referred to as "slaves" below). The slaves can be connected to a DPV0 or DPV1 master system, or to a DPV1 DP/PA link (Y link). OB_DIAG1 blocks further evaluation if a slave is defective (frequent producer) to prevent the CPU stopping. It indicates the preferred channel of the active slave in an H system. The indicated preferred channel 1 (SUBN1ACT) is always TRUE, if the slave is downstream of a DP/PA link (Y link) and is active.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 70	I/O redundancy error
OB 72	CPU redundancy error
OB 82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart
OB 55	Status interrupt (only as required)
OB 56	Update interrupt (only as required)
OB 57	Manufacturer-specific alarms (only as required)

The driver generator only installs the block in OB 55, OB 56 and OB 57 if diagnostic messages are to be expected from these locations; consequently OB 5x are not entered in this block's task list.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- Block OB_DIAG1 is installed downstream of the SUBNET/DPAY_V1 block (when used downstream of a DP/PA or Y link).
- The RACK_NO, LADDR, DADDR, EN_MSG_D, SUBN1_ID, SUBN2_ID, and SUBN_TYP inputs are configured.
- The EN input is interconnected with the output of an AND block. The block inputs will be interconnected with output EN_SUBx (x = DP master system ID) of the OB_BEGIN block, and with output EN_Rxxx (xxx = rack/station number) of the SUBNET block.
- The CPU_DIAG OUT structure of the OB_BEGIN block and SUB_DIAG of the SUBNET block are interconnected with the IN_OUT structures of the same name of block OB_DIAG.
- RAC_DIAG_I is interconnected with its own RAC_DIAG OUT structure when used in a DP master system.
- RAC_DIAG_I is interconnected with the RAC_DIAG OUT structure of the DPAY_V1 block when used downstream of a Y link.

Function and method of operation

The DPA_LINK block input receives information on the operational status of the slave, in other words whether it is in use on a DP master system (DPA_LINK = FALSE) or downstream of a DP/PA link (Y link). If the slave is connected to a DP master system, a failure is reported in OB 86. If the slave is connected downstream of a DP/PA link (Y link), the failure is reported in OB 83.

The block counts the number of calls to an acyclic OB of a block instance before an OB 1 can be executed.

OB_DIAG1 indicates higher-level errors of the CPU, DP master/slave (QRACKF, SUBN1ERR, SUBN2ERR). It determines the preferred channel of connected DP slaves (SUBN1ACT, SUBN2ACT). The group error message QRACKF indicates failure of the DP master or slave. An active DP slave has lost redundancy if one of the output parameters SUBN1ERR or SUBN2ERR = FALSE.

Start and diagnostic information is read from the CPU_DIAG structure, which is interconnected with the CPU_DIAG structure of the OB_BEGIN block.

The block evaluates error events, and uses the diagnostic address DADDR of the slave (on the DP master system only) to determine the currently active preferred channel (SUBN1ACT, SUBN2ACT) of redundant PROFIBUS DP interface circuits.

The slaves downstream of a DP/PA link (Y link) are not always active. In this case, the diagnostic address DADDR is the diagnostic address of the link. The active preferred channel (SUBN1ACT, SUBN2ACT) is displayed here by the DP/PA link (Y link).

The DP master systems or DP/PA links (Y link) must be operated in DPV1 mode (V1-MODE = TRUE).

Failure and return of a DP slave are reported with ALARM_8P. The message function for all messages can be disabled with EN_MSG = FALSE.

The "Device failure" message can be disabled with EM_MSG_D = FALSE (see "Message Response").

Overload behavior

Block OB_DIAG1 counts the frequency of the calls to the acyclic OB 55, OB 56, OB 57, OB 82, and OB 86 blocks (except in the case of a DP master system failure, see SUBNET block). If the block is downstream of a DP/PA or Y link, the calls will be counted in OB 83, rather than in OB 86. The following section deals only with OB 86.

Each OB is assigned a counter that is checked for the condition > 5. If this condition is fulfilled, the block sets $EN_F = FALSE$ (disable function block). The counters are reset in OB 1. The output $EN_F = TRUE$ (enable function block) is set in all other OBs.

OB_DIAG1 reports failure of the blocks mentioned above in OB 1, OB 82 or OB 86, including the geographic address of the slave.

OB 55, OB 56, OB 57 and OB 82 are locked in the event of an overload, however, so the event is not evaluated in the downstream blocks. The outputs cannot correspond to the current slave status. If an OB is locked and no more slave events have been reported after a delay of around 1 minute, if it is OB 86 that is disabled, the slave status is checked, and the outputs are updated. It may take several cycles to update the slave status.

If it is OB 82 that is disabled, rather than OB 86, the EN_DIAG variable is set to TRUE after around 1 minute. The interconnected DP slave block can then fetch the current diagnostic data for the slave, and update its own data. The same applies to OB 55, OB 56, and OB 57.

The "outgoing" message about the fault is generated when the OB lock is canceled, and either a new event has occurred for this OB or the wait time has elapsed.

Redundancy

The block supports redundant DP master systems in an H system (distributed I/Os only). The SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs of the OB_DIAG1 block are configured with the numbers of the redundant DP master systems. If the DP master systems are not redundant, the remaining input is set to 16#FF (default).

Startup characteristics

The availability of the slave is checked. In H systems the preferred channel of the slave is determined (active slaves only).

Error handling

The block evaluates the error information from ALARM_8P, and writes it to the relevant output parameter.

You will find additional information in the "Error information of output parameter MSG_STAT (Page 398)" section.

Message response

The multiple instances ALARM_8P are only called if a message is to be output by this instance. It is only at this point that previously acknowledged messages are updated by the corresponding ALARM block. If the connection to WinCC is down, each ALARM_8P instance can hold up to two message statuses of its event ID. (and generally no more than two messages). The block generates the messages listed below:

OB no.	Start Event	Message
1	Cyclic processing	Call of ALARM_8P due to incomplete transfer or unacknowledged message
72	CPU redundancy loss	If no redundant diagnostic repeater is connected to this CPU, the "Slave" failure/return message is output.
70	Redundancy loss	If there is no redundant slave connected to this DP master system, message "Device" failure/return, otherwise message "Slave" redundancy loss/return
83	Removal/insertion	Message "Slave" failure/return
86	Rack failure	Message "Slave" failure/return
100	Restart	Initialization of ALARM_8P

If the diagnostic blocks (e.g., MOD_PAL0) of a device also report the failure of a device, the "Device failure" message can be disabled with EN_MSG_D = FALSE (this is done automatically by the driver generator).

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of OB_DIAG1 (Page 234)

Maintenance status of MS (Page 403)

3.30.2 I/Os of OB_DIAG1

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DADDR	Diagnostic address of the slave or DP/PA link	INT	0
DPA_LINK	Slave connection: 0 = DP master system 1 = Link	BOOL	0
EN_MSG	1 = enable message	BOOL	1
EN_MSG_D	1 = Enable message "Device failure"	BOOL	1
EV_ID	Message number	DWORD	0
LADDR	Logical basic address of the slave	INT	0
MS	Maintenance status	DWORD	0
PADP_ADR	Address of the PA/DP slave	BYTE	255
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number 0 of the slave at the DP/PA Link	BYTE	255
SUBN_TYP	1 = External DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
EN_DIAG	1 = Read diagnostics with SFC 13	BOOL	0
EN_F	1 = Enable function/function block	BOOL	0
MOD_INF	System structure: Module diagnostics	STRUCT	
MSG_ACK	Message acknowledgment	WORD	0
MSG_STAT	Message error information	WORD	0
O_MS	Maintenance status	DWORD	0
QRACKF	1 = Slave failure/faulty	BOOL	0
RAC_DIAG	System structure: RACK diagnostics	STRUCT	
SUBN1ACT	1 = Slave 1 is active	BOOL	0
SUBN1ERR	1 = Error in the primary DP master system	BOOL	0
SUBN2ACT	1 = Slave 2 is active	BOOL	0
SUBN2ERR	1 = Error in the redundant DP master system	BOOL	0
V1_MODE	1 = DPV1 mode of the DP master system	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_ID	1 = Accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
CPU_OB_5X	OB_5x start information	STRUCT	
RAC_DIAG_I	System structure: RACK diagnostics	STRUCT	
SUB_DIAG	System structure: SUBNET diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections: Message texts and associated values of OB_DIAG1 (Page 234) Maintenance status of MS (Page 403)

3.30.3 Message texts and associated values of OB_DIAG1

Assignment of message text and message class

Message No.	Default message text	Message class
1	DP slave @4%d@/ @2%d@: Redundancy loss	F
2	DP slave @1%d@/ @2%d@: Failure	S
3	DP slave @1%d@/ @2%d@/@3%d@ : Multiple failure	S
4	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 82)	S
5	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 55)	S
6	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 56)	S
7	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 57)	S
8	Device @1%d@/ @2%d@/@3%d@: Failure	S

Assignment of Associated Values

Associated value	Block parameters
1	ID of the primary DP master system (SUBN_ID)
2	Rack/station number (RACK_NO)
3	Slot number (SLOT_NO)
4	Subnet ID of the master in the event of redundancy loss (SUBN2_ID)

See also

Message Classes (Page 401)

3.31 OB_DIAGF: Monitoring of the FF link and coupler

3.31 OB_DIAGF: Monitoring of the FF link and coupler

3.31.1 Description of OB_DIAGF

Object name (type + number)

FB 146

• I/Os of OB_DIAGF (Page 237)

Area of application

The OB_DIAGF block monitors the FF link and coupler for

- Failure and return of FF link and coupler
- Redundancy loss
- diagnostic interrupts

and reports these events.

The OB_DIAGF block runs acyclically and is enabled to run by the higher-level SUBNET block.

Calling OBs

The block must be installed in the run sequence downstream from the SUBNET block in the following OBs (this is done automatically in the CFC):

OB no.	Start Event
1	Cyclic processing
72	CPU redundancy loss
70	Redundancy loss
82	Diagnostic interrupt
83	Removal/insertion
85	Program execution error
86	Module driver failure
100	Restart

3.31 OB_DIAGF: Monitoring of the FF link and coupler

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The OB_DIAGF block is installed downstream from the SUBNET block.
- The DADDR, SUBN1_ID, SUBN2_ID, RACK_NO, COUP_RED, and SLOT_NO inputs are assigned parameters.
- The EN input is interconnected with the output of an AND block. The block inputs will be interconnected with output EN_SUBx (x = DP master system ID) of the OB_BEGIN block and with output EN_Rxxx (xxx = rack/station number) of the SUBNET block.
- The CPU_DIAG OUT structure of the OB_BEGIN block and SUB_DIAG of the SUBNET block are interconnected with the IN_OUT structures of the same name of block OB_DIAGF.

Message response

The DELAY input is used to delay the outputting of error messages for an outgoing, higherpriority error. For example, if the OB_DIAGF block recognizes an outgoing error at a DP master connected with it, it initially assumes that there is a faulty assigned DP slave in the rack it monitors, and sets the corresponding output SUBNxERR. The error status is not reset until the DP slave returns (in this case: OB 86, OB 70). The OB_DIAGF blocks suppress the potential slave failure for DELAY seconds so as not to trigger a surge of messages from DP slaves which are not yet synchronized when the master returns. An error message is only output to the OS when the DP slave has not reported its return before this delay time has expired.

Note: Do not set the value of DELAY too high, otherwise DP slaves that were removed during the master failure or are defective will be signaled to the OS too late after the DP master returns.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

3.31 OB_DIAGF: Monitoring of the FF link and coupler

3.31.2 I/Os of OB_DIAGF

I/Os of OB_DIAGF

The factory setting of the block display in CFC is identified in the "I/O" column.

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

1/0	Meaning	Data type	Default
(parameter)			
COUP_RED	0 = No redundant structure	BYTE	16#FF
	1 = Coupler redundancy		
	2 = Ring redundancy		
DADDR	Diagnostic address of the FF link	INT	0
DELAY	Interrupt delay (s)	INT	15
EN_MSG	1 = enable message	BOOL	1
EV_ID1	Message number	DWORD	0
EV_ID2	Message number	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Number of the rack	BYTE	16#FF
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	16#FF
SUBN2_ID	ID of the redundant DP master system	BYTE	16#FF

3.31 OB_DIAGF: Monitoring of the FF link and coupler

Output parameters

I/O	Meaning	Data type	Default
(parameter)			
DINFO	Diagnostic information	STRUCT	
EN_F	1 = Enable function/function block	BOOL	0
FF_DIAG	Diagnostics of the FF device	STRUCT	
MSG_ACK	Message acknowledgment	WORD	0
MSG_STAT	Message error	WORD	0
O_MS	Maintenance status	DWORD	0
QRACKF	1 = Slave failure/faulty	BOOL	0
RAC_DIAG	RACK diagnostics	STRUCT	
RETURN_CODE_O	Return value	INT	0
SUBN1ACT	1 = Slave 1 is active	BOOL	0
SUBN2ACT	1 = Slave 2 is active	BOOL	0
SUBN1ERR	1 = Error in the primary DP master system	BOOL	0
SUBN2ERR	1 = Error in the redundant DP master system	BOOL	0
V1_MODE	1 = DPV1 mode of the DP master system active	BOOL	0

In-out parameters

I/O	Meaning	Data type	Default
(parameter)			
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
SUB_DIAG	System structure: SUBNET diagnostics	STRUCT	

3.31 OB_DIAGF: Monitoring of the FF link and coupler

3.31.3 Message texts and associated values of OB_DIAGF

Message texts and associated values of OB_DIAGF

Assignment of message text and message class (Page 401)

Message block ALARM_8P	Message No.	Default message text	Message class
EV_ID1	1	FF link @4%d@/@2%d@:Redundancy loss	F
	2	FF link @1%d@/@2%d@: Failure	S
	3	FF link @1%d@/@2%d@: Multiple failure	S
	4	FF link @1%d@/@2%d@: Multiple alarm (OB 82)	S
	5	Link @1%d@/@2%d@/2: Redundancy loss	F
	6	Link @1%d@/@2%d@/3: Redundancy loss	F
	7	FF-Link @1%d@/@2%d@/1:DIP switch has a different DP address setting than at "power on" of the IM/Redundant configuration, neighboring IM has a different DP address.	S
	8	FF link @1%d@/@2%d@/1: SDB_UUID does not match saved UUID	S
EV_ID2	EV_ID2 1 Link @1%d@/@2%d@/2: Failure		S
	2	Link @1%d@/@2%d@/2: Contrary to configuration: Coupler configuration does not match the determined configuration	S
	3	Link @1%d@/@2%d@/2: External connection, short circuit or wire break detected	S
	4	Link @1%d@/@2%d@/2: Loss of redundancy in the case of ring redundancy	F
	5	Link @1%d@/@2%d@/3: Failure	S
	6	Link @1%d@/@2%d@/3: Contrary to configuration: Coupler configuration does not match the determined configuration	S
	7	Link @1%d@/@2%d@/3: External connection, short circuit or wire break detected	S
	8	Link @1%d@/@2%d@/3: Loss of redundancy in the case of ring redundancy	F

Assignment of Associated Values

Associated value	Block parameters
1	DP master system ID (SUBN_ID)
2	Rack/station number (RACK_NO)

3.32 OB_END: Reset stack pointer of OB_BEGIN

3.32 OB_END: Reset stack pointer of OB_BEGIN

3.32.1 Description of OB_END

Object name (type + number)

FC 280

• OB_END block I/Os (Page 242)

Area of application

The OB_END block is used to reset the stack pointer of OB_BEGIN and OB_BEGIN_PN.

Calling OBs

The OB_END block is the final entry in the OB that contains an OB_BEGIN and/or an OB_BEGIN_PN block.

OB 1	Cyclic processing
OB 55	Status interrupt (only as required)
OB 56	Update interrupt (only as required)
OB 57	Manufacturer-specific alarms (only as required)
OB 70	I/O redundancy error
OB 72	CPU redundancy error
OB 80	Timeout error
OB 81	Power supply error
OB 82	Diagnostic interrupt
OB 83	Remove/insert interrupt
OB 84	CPU hardware error (only for CPU with this function)
OB 85	Program execution error
OB 86	Rack failure
OB 88	Stop avoidance
OB 100	Restart
OB 121	Programming error
OB 122	I/O access error

Use in CFC

When the CFC function "Generate module drivers" is used, OB_END is automatically installed in the above OBs of the run sequence.

3.32 OB_END: Reset stack pointer of OB_BEGIN

Function

The OB_END block decrements the stack pointer (NUM_CNT) of OB_BEGIN and OB_BEGIN_PN. In the event of an interruption, it enters the last interrupted OB number read from the CPU stack into the CPU_DIAG and CPU_DIAG_PN structure.

Error handling

Not available

Startup characteristics

Not available

Initial startup behavior

Not available

Time response

Not available

Message response

Not available

Operator control and monitoring

The block has no faceplate.

3.32 OB_END: Reset stack pointer of OB_BEGIN

3.32.2 I/Os of OB_END

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

In-out parameters

1/0	Meaning	Data type
(parameter)		
CPU_DIAG	System structure: CPU diagnostics	STRUCT
CPU_DIAG_PN	System structure: CPU diagnostics (PN)	STRUCT

3.33 OR_32_TS: OR value status of two redundant time-stamped signal modules, max. 32 channels

3.33 OR_32_TS: OR value status of two redundant time-stamped signal modules, max. 32 channels

3.33.1 Description of OR_32_TS

Object name (type + number)

FB 138

OR_32_TS block I/Os (Page 245)

Area of application

The OR_32_TS block forms the resulting time stamp from two redundant time-stamped signal modules.

Calling OBs

The block must be installed in OB 1.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The OR_32_TS block is installed in OB 1.
- The TS1_XX inputs are interconnected with the TS_XX output of IMDRV_TS that is responsible for the signal module with the lower address.
- The TS2_XX inputs are interconnected with the TS_XX output of IMDRV_TS that is
 responsible for the signal module with the higher address.
- The TS_XX outputs are interconnected with the inputs of the MSG_TS channel blocks or Pcs7InIT.

Function and method of operation

The OR_32_TS block forwards the time stamps of the channels of two redundant signal modules to the MSG_TS channel blocks or Pcs7InIT and acts like an OR function.

- If both channels are active, the time stamp of the signal module with the lower address is always used.
- If one channel is passivated, the time stamp of the redundant channel is forwarded.
- If both channels are passivated, the time stamp of the signal module with the lower address is entered.

3.33 OR_32_TS: OR value status of two redundant time-stamped signal modules, max. 32 channels

Redundancy

Redundancy of the modules in an H system is monitored in the higher-level RED_STATUS block.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

Not available

Message response

Not available

Operator control and monitoring

Not available

Additional information

You will find more information in Description of IMDRV_TS (Page 89)

3.33 OR_32_TS: OR value status of two redundant time-stamped signal modules, max. 32 channels

3.33.2 I/Os of OR_32_TS

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O	Meaning	Туре	Default
(parameter)			
CH_INF_H	Status of the channels of the 2nd module; information channel by channel	DWORD	0
	0 = passivated, 1 = operational		
CH_INF_L	Status of the channels of the 1st module; information channel by channel	DWORD	0
	0 = passivated, 1 = operational		
RED	1 = with redundant time stamp	BOOL	0
RED_STAT	Return value from RED_STATUS	INT	0
TS1_xx	Time stamp (xx = 00 - 31) from the module with the lower address	STRUCT	
	Byte 0:		
	Bit 0: Message signal state (MsgSig)		
	Bit 1: Edge change information (TriInf)		
	Bit 2: Handshake (HdSh)		
	Byte 1:		
	Quality code of the time stamp (ST)		
	DWORD TS0:		
	Date/time stamp in ISP format (seconds)		
	DWORD TS1:		
	Date/time stamp in ISP format (fractions of seconds)		
TS2_xx	Time stamp (xx = 00 - 31) from the module with the higher address	STRUCT	
	Byte 0:		
	Bit 0: Message signal state (MsgSig)		
	Bit 1: Edge change information (TriInf)		
	Bit 2: Handshake (HdSh)		
	Byte 1:		
	Quality code of the time stamp (ST)		
	DWORD TS0:		
	Date/time stamp in ISP format (seconds)		
	DWORD TS1:		
	Date/time stamp in ISP format (fractions of seconds)		

3.33 OR_32_TS: OR value status of two redundant time-stamped signal modules, max. 32 channels

I/O (parameter)	Meaning	Туре	Default
TS1_C_xx	TS communication (xx = 00 - 31) from the module with the lower address	BYTE	0
	Bit 0: Acknowledgment of transfer (HS)		
	Bit 1: Interconnection check (LI)		
TS2_C_xx	TS communication (xx = 00 - 31) from the module with the higher address	BYTE	0
	Bit 0: Acknowledgment of transfer (HS)		
	Bit 1: Interconnection check (LI)		

Output parameters

I/O	Meaning	Туре	Default
(parameter)			
CH_ALM	Channel failure Redundant pair	DWORD	0
CH_WRN	Channel redundancy loss	DWORD	0
QERR	1 = program error	BOOL	1
	(module status not available)		
TS_xx	Time stamp (xx = 00 - 31)	STRUCT	
	Byte 0:		
	Bit 0: Message signal state (MsgSig)		
	Bit 1: Edge change information (TriInf)		
	Bit 2: Handshake (HdSh)		
	Byte 1:		
	Quality code of the time stamp (ST)		
	DWORD TS0:		
	Date/time stamp in ISP format (seconds)		
	DWORD TS1:		
	Date/time stamp in ISP format (fractions of seconds)		
TS_C_xx	TS communication (xx = 00 - 31)	BYTE	0
	Bit 0: Acknowledgment of transfer (HS)		
	Bit 1: Interconnection check (LI)		

Additional information

For additional information, refer to the following sections:

• Maintenance Status of MS (Page 403)

3.34 OR_HA16C: OR value status of 2 redundant HART modules, max. 16 channels, module granular

3.34.1 Description of OR_HA16C

Object name (type + number)

FB 133

• OR_HA16C block I/Os (Page 250)

Area of application

The OR_HA16C block is used to create a value status from two redundant signal modules, and reports loss of redundancy for HART modules.

Calling OBs

The block must be installed in OB 100 and in the OB before the MOD_HA driver block that is responsible for the relevant module.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The OR_HA16C block is installed before its interconnected MOD_HA driver block in its OB.
- MODE1_xx inputs are interconnected with the OMODE_xx outputs of the MOD_x block in the primary module.
- MODE2_xx inputs are interconnected with the OMODE_xx outputs of the MOD_x block in the redundant module.
- The MOD_INF1 input structure is interconnected with the MOD_INF output structure of the MOD_x block in the primary module.
- The MOD_INF2 input structure is interconnected with the MOD_INF output structure of the MOD_x block in the redundant module.
- The ACTIV_H and ACTIV_L inputs are interconnected with the outputs of the same name of the RED_STATUS block in the redundant module.
- The OMODE_xx outputs are interconnected with the downstream MOD_HA.
- The OUT structure CPU_DIAG of the OB_BEGIN block is interconnected with the IN_OUT structures of the same name of the OR_HA_16C block.
- The inputs RACKF1 and RACKF2 are interconnected with the outputs QRACKF1 and QRACKF2 of MOD_x.

- The CH_INF_H and CH_INF_L inputs are interconnected with the outputs of the same name of the RED_STATUS block.
- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function and method of operation

The value status of a signal module and of a redundant signal module are ORed by the OR_HA16C block. Signal modules or signal channels set to passive mode by the system are regarded as invalid. The "At least one channel pair does not match", "Redundancy loss" and "Failure of the redundant I/O" events are reported by ALARM_8P. The message function can be disabled.

When module signals are processed in different OB 3x, in very few cases, a faulty signal value may be processed in one cycle by one of the channel blocks configured to process the module signals following a process-control malfunction affecting the module. This can be avoided by processing all channel blocks of a module in the OB3x that also processes the process image partition to which this module is assigned.

For a passivated block or passivated channel when setting the DEPASS input the depassivation can be triggered. For this the function RED_DEPA (FC 451) is called internally.

For OR_M_xxC / OR_HA16C blocks:

For channel-granular redundancy, in the event of one channel failing, "Loss of Redundancy Channel x" is reported. If both channels fail, "Redundancy pair failure channel x" is reported.

With OR_HA16C, the message "Redundancy pair failure HART variable 01" to "Redundancy pair failure HART variable 08" is output for HART signals 01 to 08. The message function can be disabled.

For all OR blocks

Depassivation can be triggered for a passivated block or channel by setting the DEPASS input. For this, the RED_DEPA function (FC 451) is called internally.

Redundancy

Redundancy of the modules is monitored in a higher-level RED_STATUS block (FB 453).

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

The OMODE_xx outputs are updated when the "Startup" bit is set. ALARM_8P will be initialized.

Time response

Not available

Message response

OR_HA16C uses ALARM_8P for reporting. The message function can be disabled by setting EN_MSG = FALSE.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Note: Online help and the manual "PCS 7 FACEPLATES" are only available if the "PCS 7 FACEPLATES" software package is installed.

Additional information

You will find more information in:

Message texts and associated values of OR_HA16C (Page 253)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.34.2 I/Os of OR_M_8C / OR_M_16C / OR_M_32C / OR_HA16C

The OR_M_8C and OR_M_16C / OR_HA16C / OR_M_32C block I/Os are identical, with the exception of the number of MODE1_xx and MODE2_xx and OMODE_xx.

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
ACTIV_H	1 = module with more significant address is active	BOOL	0
ACTIV_L	1 = module with less significant address is active	BOOL	0
CHAN_NUM	Number of channels -1	INT	7 (OR_M_8C) 15 (OR_M_16C) 31 (OR_M_32C) 15 (OR_HA16C)
CH_INF_H	Status of the channels on the 2nd module; info on a channel basis 0 = passivated, 1 = in service	DWORD	0
CH_INF_L	Status of the channels on the 1st module; info on a channel basis 0 = passivated, 1 = in service	DWORD	0
DEPASS	1 = depassivation	BOOL	0
DEPASS_EN	1 = enable depassivation	BOOL	1
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number (x = 1 – 3 / 1 – 5 / 1 - 9 / 1 - 5)	DWORD	0
MOD_STAT	Module status word from RED_STATUS	WORD	0
MODE1_xx	Channel mode (xx = $00 - 07 / 00 - 15 / 00 - 31$) on the primary module HART variable mode x (x = $1 - 8$) on the primary module	DWORD	0
MODE2_xx	Channel mode (xx = $00 - 07 / 00 - 15 / 00 - 31$) on the redundant module HART variable mode x (x = $1 - 8$) on the redundant module	DWORD	0
MS	Maintenance status	DWORD	0
RACKF1	1 = error rack 1	BOOL	0
RACKF2	1 = error rack 2	BOOL	0
RED_STAT	Value returned by the RED_STATUS block	INT	0

Output parameters

I/O (parameter)	Meaning	Data type	Default
	Channel active	DWORD	16#0000000
CH ALM	Channel failure Redundant pair	DWORD	0
 CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
CH_WRN	Channel redundancy loss	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 07 / 00 - 15 / 00 - 31 / 00 - 15) Bit 0= Release for maintenance Bit 1-31 = Reserve	DWORD	0
EXT_INFO	Supplemental info of RED_OUT	INT	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
MSG_ACKx	Message acknowledgment ALARM_8P_x (x = 1 - 3 / 1 - 5 / 1 - 9 / 1 - 5)	WORD	0
MSG_STATx	Message error information ALARM_8P_x (x = 1 - 3 / 1 - 5 / 1 - 9 / 1 - 5)	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Channel mode (xx = 00 – 07 / 00 – 15 / 00 - 31) mode HART variable x (x = 1 - 8)	DWORD	0
QDISCREP	1 = At least one channel pair does not match	BOOL	0
QERR	1 = program runtime error (cannot determine module status)	BOOL	1
QMODF1	1 = error module 1	BOOL	0
QMODF2	1 = error module 2	BOOL	0
QPASS	1 = at least one module is passivated	BOOL	0
RETURN_VAL	Error information from RED_OUT	INT	0

3.34 OR_HA16C: OR value status of 2 redundant HART modules, max. 16 channels, module granular

In-out parameters

I/O (parameter)	Meaning	Data type	Default
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
DXCHG1_xx	Bidirectional data exchange channel 1 xx = 00 to 07 (OR_M8C and OR_HA16C xx = 00 to 15 (OR_M16C) xx = 00 to 31 (OR_32C)	DWORD	0
DXCHG2_xx	Bidirectional data exchange channel 2 xx = 00 to 07 (OR_M8C and OR_HA16C xx = 00 to 15 (OR_M16C) xx = 00 to 31 (OR_32C)	DWORD	0
MOD_INF1	Module parameters module 1	STRUCT	
MOD_INF2	Module parameters module 2	STRUCT	

Additional information

For additional information, refer to the following sections:

Maintenance Status of MS (Page 403)

Message texts and associated values of OR_M_8C (Page 278)

Message texts and associated values of OR_M_16C (Page 260)

Message texts and associated values of OR_HA16C (Page 253)

Message texts and associated values of OR_M_32C (Page 267)

General Information About Block Description (Page 9)
3.34 OR_HA16C: OR value status of 2 redundant HART modules, max. 16 channels, module granular

3.34.3 Message texts and associated values of OR_HA16C

Assignment of message text and message classes

You will find more information in Message classes (Page 401)

Message block ALARM_8P	Message no.	Default message text	Message class
EV_ID1	1	Module @1%d@/@2%d@/@3%d@: Failure of module redundancy pair	S
	2	Module @1%d@/@2%d@/@3%d@: Module redundancy loss	F
	3	Module @1%d@/@2%d@/@3%d@: Cannot determine module status	S
	4	Module @1%d@/@2%d@/@3%d@: At least one channel pair does not match	М
EV_ID2	1	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 00	S
	2	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 01	S
	3	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 02	S
	4	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 03	S
	5	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 04	S
	6	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 05	S
	7	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 06	S
	8	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 07	S
EV_ID3 1		Module @1%d@/@2%d@/@3%d@: Redundancy pair failure HART variable 01	S
	2	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure HART variable 02	S
	3	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure HART variable 03	S
	4	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure HART variable 04	S
	5	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure HART variable 05	S
	6	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure HART variable 06	S
	7	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure HART variable 07	S
	8	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure HART variable 08	S

3.34 OR_HA16C: OR value status of 2 redundant HART modules, max. 16 channels, module granular

Message block ALARM_8P	Message no.	Default message text	Message class
EV_ID4	1	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 00	F
	2	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 01	F
	3	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 02	F
	4	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 03	F
	5	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 04	F
	6	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 05	F
	7	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 06	F
	8	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 07	F
EV_ID5	1	Module @1%d@/@2%d@/@3%d@: Redundancy loss HART variable 01	F
	2	Module @1%d@/@2%d@/@3%d@: Redundancy loss HART variable 02	F
	3	Module @1%d@/@2%d@/@3%d@: Redundancy loss HART variable 03	F
	4	Module @1%d@/@2%d@/@3%d@: Redundancy loss HART variable 04	F
	5	Module @1%d@/@2%d@/@3%d@: Redundancy loss HART variable 05	F
	6	Module @1%d@/@2%d@/@3%d@: Redundancy loss HART variable 06	F
	7	Module @1%d@/@2%d@/@3%d@: Redundancy loss HART variable 07	F
	8	Module @1%d@/@2%d@/@3%d@: Redundancy loss HART variable 08	F

3.34 OR_HA16C: OR value status of 2 redundant HART modules, max. 16 channels, module granular

Assignment of Associated Values

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID1 5	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	SLOT_NO	Slot number (byte)

Redundancy loss causes the geographic address of the failed module to be entered dynamically.

If both modules fail, the message text will always contain the geographic address of the primary module.

3.35 OR_M_16C: OR value status of 2 redundant signal modules, max. 16 channels, channel granular

3.35.1 Description of OR_M_16

Object name (type + number)

FB 84

• OR_M_16C block I/Os (Page 257)

The OR_M_16C block corresponds to OR_M_8C (Page 272), but with 16, rather than 8 channels.

Additional information

For further information, refer to the following sections:

Message texts and associated values of OR_M_16C (Page 260)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Maintenance release

3.35.2 I/Os of OR_M_8C / OR_M_16C / OR_M_32C / OR_HA16C

The OR_M_8C and OR_M_16C / OR_HA16C / OR_M_32C block I/Os are identical, with the exception of the number of MODE1_xx and MODE2_xx and OMODE_xx.

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
ACTIV_H	1 = module with more significant address is active	BOOL	0
ACTIV_L	1 = module with less significant address is active	BOOL	0
CHAN_NUM	Number of channels -1	INT	7 (OR_M_8C) 15 (OR_M_16C) 31 (OR_M_32C) 15 (OR_HA16C)
CH_INF_H	Status of the channels on the 2nd module; info on a channel basis 0 = passivated, 1 = in service	DWORD	0
CH_INF_L	Status of the channels on the 1st module; info on a channel basis 0 = passivated, 1 = in service	DWORD	0
DEPASS	1 = depassivation	BOOL	0
DEPASS_EN	1 = enable depassivation	BOOL	1
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number (x = 1 – 3 / 1 – 5 / 1 - 9 / 1 - 5)	DWORD	0
MOD_STAT	Module status word from RED_STATUS	WORD	0
MODE1_xx	Channel mode (xx = $00 - 07 / 00 - 15 / 00 - 31$) on the primary module HART variable mode x (x = $1 - 8$) on the primary module	DWORD	0
MODE2_xx	Channel mode (xx = $00 - 07 / 00 - 15 / 00 - 31$) on the redundant module HART variable mode x (x = $1 - 8$) on the redundant module	DWORD	0
MS	Maintenance status	DWORD	0
RACKF1	1 = error rack 1	BOOL	0
RACKF2	1 = error rack 2	BOOL	0
RED_STAT	Value returned by the RED_STATUS block	INT	0

3.35 OR_M_16C: OR value status of 2 redundant signal modules, max. 16 channels, channel granular

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_ACTIVE	Channel active	DWORD	16#0000000
CH_ALM	Channel failure Redundant pair	DWORD	0
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
CH_WRN	Channel redundancy loss	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 07 / 00 - 15 / 00 - 31 / 00 - 15) Bit 0= Release for maintenance Bit 1-31 = Reserve	DWORD	0
EXT_INFO	Supplemental info of RED_OUT	INT	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
MSG_ACKx	Message acknowledgment ALARM_8P_x (x = 1 - 3 / 1 - 5 / 1 - 9 / 1 - 5)	WORD	0
MSG_STATx	Message error information ALARM_8P_x (x = 1 - 3 / 1 - 5 / 1 - 9 / 1 - 5)	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Channel mode (xx = 00 – 07 / 00 – 15 / 00 - 31) mode HART variable x (x = 1 - 8)	DWORD	0
QDISCREP	1 = At least one channel pair does not match	BOOL	0
QERR	1 = program runtime error (cannot determine module status)	BOOL	1
QMODF1	1 = error module 1	BOOL	0
QMODF2	1 = error module 2	BOOL	0
QPASS	1 = at least one module is passivated	BOOL	0
RETURN_VAL	Error information from RED_OUT	INT	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
DXCHG1_xx	Bidirectional data exchange channel 1	DWORD	0
	xx = 00 to 07 (OR_M8C and OR_HA16C		
	xx = 00 to 15 (OR_M16C)		
	xx = 00 to 31 (OR_32C)		
DXCHG2_xx	Bidirectional data exchange channel 2	DWORD	0
	xx = 00 to 07 (OR_M8C and OR_HA16C		
	xx = 00 to 15 (OR_M16C)		
	xx = 00 to 31 (OR_32C)		
MOD_INF1	Module parameters module 1	STRUCT	
MOD_INF2	Module parameters module 2	STRUCT	

Additional information

For additional information, refer to the following sections:

Maintenance Status of MS (Page 403)

Message texts and associated values of OR_M_8C (Page 278)

Message texts and associated values of OR_M_16C (Page 260)

Message texts and associated values of OR_HA16C (Page 253)

Message texts and associated values of OR_M_32C (Page 267)

General Information About Block Description (Page 9)

3.35.3 Message texts and associated values of OR_M_16C

Assignment of message text and message class

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID1	1	Module @1%d@/@2%d@/@3%d@: Failure of module redundancy pair	S
	2	Module @1%d@/@2%d@/@3%d@: Module redundancy loss	F
	3	Module @1%d@/@2%d@/@3%d@: Cannot determine module status	S
	4	Module @1%d@/@2%d@/@3%d@: At least one channel pair does not match	М
EV_ID2	1	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 00	S
	2	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 01	S
	3	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 02	S
	4	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 03	S
	5	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 04	S
	6	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 05	S
	7	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 06	S
	8	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 07	S
EV_ID3	1	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 08	S
	2	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 09	S
	3	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 10	S
	4	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 11	S
	5	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 12	S
	6	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 13	S
	7	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 14	S
	8	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 15	S

3.35 OR_M_16C: OR value status of 2 redundant signal modules, max. 16 channels, channel granular

Message block ALARM_8P	olock Message Default message text P number		Message class
EV_ID4	1	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 00	F
	2	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 01	F
	3	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 02	F
	4	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 03	F
	5	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 04	F
	6	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 05	F
	7	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 06	F
	8	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 07	F
EV_ID5	1	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 08	F
	2	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 09	F
	3	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 10	F
	4	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 11	F
	5	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 12	F
	6	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 13	F
	7	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 14	F
	8	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 15	F

3.35 OR_M_16C: OR value status of 2 redundant signal modules, max. 16 channels, channel granular

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID1 5	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	SLOT_NO	Slot number (byte)

Redundancy loss causes the geographic address of the failed module to be entered dynamically.

If both modules fail, the message text will always contain the geographic address of the primary module.

See also

Message Classes (Page 401)

3.36 OR_M_32C: OR value status of 2 redundant signal modules, max. 32 channels, channel granular

3.36.1 Description of OR_M_32C

Object name (type + number)

FB85

• OR_M_32C block I/Os (Page 264)

Block OR_M_32C corresponds to the OR_M_8C (Page 272) block, but with 32 channels instead of 8.

Additional information

You will find more information in:

Message texts and associated values of OR_M_32C (Page 267)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.36.2 I/Os of OR_M_8C / OR_M_16C / OR_M_32C / OR_HA16C

The OR_M_8C and OR_M_16C / OR_HA16C / OR_M_32C block I/Os are identical, with the exception of the number of MODE1_xx and MODE2_xx and OMODE_xx.

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
ACTIV_H	1 = module with more significant address is active	BOOL	0
ACTIV_L	1 = module with less significant address is active	BOOL	0
CHAN_NUM	Number of channels -1	INT	7 (OR_M_8C) 15 (OR_M_16C) 31 (OR_M_32C) 15 (OR_HA16C)
CH_INF_H	Status of the channels on the 2nd module; info on a channel basis 0 = passivated, 1 = in service	DWORD	0
CH_INF_L	Status of the channels on the 1st module; info on a channel basis 0 = passivated, 1 = in service	DWORD	0
DEPASS	1 = depassivation	BOOL	0
DEPASS_EN	1 = enable depassivation	BOOL	1
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number (x = 1 – 3 / 1 – 5 / 1 - 9 / 1 - 5)	DWORD	0
MOD_STAT	Module status word from RED_STATUS	WORD	0
MODE1_xx	Channel mode (xx = $00 - 07 / 00 - 15 / 00 - 31$) on the primary module HART variable mode x (x = $1 - 8$) on the primary module	DWORD	0
MODE2_xx	Channel mode (xx = $00 - 07 / 00 - 15 / 00 - 31$) on the redundant module HART variable mode x (x = $1 - 8$) on the redundant module	DWORD	0
MS	Maintenance status	DWORD	0
RACKF1	1 = error rack 1	BOOL	0
RACKF2	1 = error rack 2	BOOL	0
RED_STAT	Value returned by the RED_STATUS block	INT	0

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_ACTIVE	Channel active	DWORD	16#0000000
CH_ALM	Channel failure Redundant pair	DWORD	0
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
CH_WRN	Channel redundancy loss	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 07 / 00 - 15 / 00 - 31 / 00 - 15) Bit 0= Release for maintenance Bit 1-31 = Reserve	DWORD	0
EXT_INFO	Supplemental info of RED_OUT	INT	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
MSG_ACKx	Message acknowledgment ALARM_8P_x (x = 1 - 3 / 1 - 5 / 1 - 9 / 1 - 5)	WORD	0
MSG_STATx	Message error information ALARM_8P_x (x = 1 - 3 / 1 - 5 / 1 - 9 / 1 - 5)	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Channel mode (xx = 00 – 07 / 00 – 15 / 00 - 31) mode HART variable x (x = 1 - 8)	DWORD	0
QDISCREP	1 = At least one channel pair does not match	BOOL	0
QERR	1 = program runtime error (cannot determine module status)	BOOL	1
QMODF1	1 = error module 1	BOOL	0
QMODF2	1 = error module 2	BOOL	0
QPASS	1 = at least one module is passivated	BOOL	0
RETURN_VAL	Error information from RED_OUT	INT	0

3.36 OR_M_32C: OR value status of 2 redundant signal modules, max. 32 channels, channel granular

In-out parameters

I/O (parameter)	Meaning	Data type	Default
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
DXCHG1_xx	Bidirectional data exchange channel 1 xx = 00 to 07 (OR_M8C and OR_HA16C xx = 00 to 15 (OR_M16C) xx = 00 to 31 (OR_32C)	DWORD	0
DXCHG2_xx	Bidirectional data exchange channel 2 xx = 00 to 07 (OR_M8C and OR_HA16C xx = 00 to 15 (OR_M16C) xx = 00 to 31 (OR_32C)	DWORD	0
MOD_INF1	Module parameters module 1	STRUCT	
MOD_INF2	Module parameters module 2	STRUCT	

Additional information

For additional information, refer to the following sections:

Maintenance Status of MS (Page 403)

Message texts and associated values of OR_M_8C (Page 278)

Message texts and associated values of OR_M_16C (Page 260)

Message texts and associated values of OR_HA16C (Page 253)

Message texts and associated values of OR_M_32C (Page 267)

General Information About Block Description (Page 9)

3.36.3 Message texts and associated values of OR_M_32C

Assignment of message text and message class

Message block ALARM_8P	Message no.	Default message text	Message class
EV_ID1	1	Module @1%d@/@2%d@/@3%d@: Failure of module redundancy pair	S
	2	Module @1%d@/@2%d@/@3%d@: Module redundancy loss	F
	3	Module @1%d@/@2%d@/@3%d@: Cannot determine module status	S
	4	Module @1%d@/@2%d@/@3%d@: At least one channel pair does not match	М
EV_ID2	1	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 00	S
	2	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 01	S
	3	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 02	S
	4	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 03	S
	5	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 04	S
	6	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 05	S
	7	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 06	S
	8	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 07	S
EV_ID3	1	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 08	S
	2	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 09	S
	3	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 10	S
	4	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 11	S
	5	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 12	S
	6	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 13	S
	7	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 14	S
	8	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 15	S

3.36 OR_M_32C: OR value status of 2 redundant signal modules, max. 32 channels, channel granular

Message block ALARM_8P	Message no.	Default message text	Message class
EV_ID4	1	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 16	S
	2	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 17	S
	3	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 18	S
	4	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 19	S
	5	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 20	S
	6	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 21	S
	7	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 22	S
	8	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 23	S
EV_ID5	1	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 24	S
	2	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 25	S
	3	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 26	S
	4	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 27	S
	5	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 28	S
	6	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 29	S
	7	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 30	S
	8	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 31	S

3.36 OR_M_32C: OR value status of 2 redundant signal modules, max. 32 channels, channel granular

Message block	Message	Default message text	Message class
ALARM_8P	no.		
EV_ID6	1	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 00	F
	2	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 01	F
	3	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 02	F
	4	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 03	F
	5	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 04	F
	6	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 05	F
	7	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 06	F
	8	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 07	F
EV_ID7	1	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 08	F
	2	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 09	F
	3	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 10	F
	4	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 11	F
	5	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 12	F
	6	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 13	F
	7	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 14	F
	8	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 15	F

3.36 OR_M_32C: OR value status of 2 redundant signal modules, max. 32 channels, channel granular

Message block ALARM_8P	Message no.	Default message text	Message class
EV_ID8	1	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 16	F
	2	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 17	F
	3	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 18	F
	4	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 19	F
	5	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 20	F
	6	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 21	F
	7	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 22	F
	8	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 23	F
EV_ID9	1	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 24	F
	2	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 25	F
	3	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 26	F
	4	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 27	F
	5	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 28	F
	6	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 29	F
	7	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 30	F
	8	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 31	F

Assignment of Associated Values

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID1 9	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	SLOT_NO	Slot number (byte)

Redundancy loss causes the geographic address of the failed module to be entered dynamically.

If both modules fail, the message text will always contain the geographic address of the primary module.

See also

Message Classes (Page 401)

3.37 OR_M_8C: OR value status of 2 redundant signal modules, max. 8 channels, channel granular

3.37.1 Description of OR_M_8C

Object name (type + number)

FB 83

• OR_M_8C block I/Os (Page 275)

Area of application

The OR_M_8C block generates a channel-granular value status from two redundant signal modules.

Calling OBs

The block must be installed in OB 100 and in the fastest OB upstream of the CH_x block that is interconnected with OR_M_8C.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The OR_M_8C block is installed upstream in the OBs of the CH_x channel blocks that are interconnected with it.
- MODE1_x inputs are interconnected with the OMODE_xx outputs of the MOD_x block in the primary module.
- MODE2_x inputs are interconnected with the OMODE_xx outputs of the MOD_x block in the redundant module.
- The MOD_INF1 input structure is interconnected with the MOD_INF output structure of the MOD_x block in the primary module.
- The MOD_INF2 input structure is interconnected with the MOD_INF output structure of the MOD_x block in the redundant module.
- The ACTIV_H and ACTIV_L inputs are interconnected with the outputs of the same name of the RED_STATUS block in the redundant module.
- The OMODE_xx outputs are interconnected with the relevant CH_x channel blocks.
- The OUT structure CPU_DIAG of the OB_BEGIN block is interconnected with the IN_OUT structures of the same name of the OR_M_8C block.
- The RACKF1 and RACKF2 inputs are interconnected with the QRACKF1 and QRACKF2 outputs of MOD_xx.

- The CH_INF_H and CH_INF_L inputs are interconnected with the outputs of the same name of the RED_STATUS block.
- The output parameter of DXCHG_xx is interconnected with the following channel block at the DataXchg parameter.
- The output parameter of O_MS is interconnected with the following channel block at the MS parameter.

Function and method of operation

The value statuses of a signal module and of a redundant signal module are ORed by the OR_M_8C block. Signal modules or signal channels set to passive mode by the system are regarded as invalid. For redundant digital input modules, when a signal discrepancy occurs, no module or channel is set to passive after the discrepancy time has elapsed. The module or channel whose signal does not change is then set to passive. The "At least one channel pair does not match", "Redundancy loss" and "Failure of the redundant I/O" events are reported by ALARM_8P. The message function can be disabled.

Note: When module signals are processed in different OB 3x, in very few cases, a faulty signal value may be processed in one cycle by one of the channel blocks configured to process the module signals following a process-control malfunction affecting the module. This can be avoided by processing all channel blocks of a module in the OB 3x that also processes the process image partition to which this module is assigned.

For OR_M_Cxx blocks:

With channel-granular redundancy, "Loss of redundancy channel x" is reported if one channel fails. If both channels fail, "Redundancy pair failure channel x" is reported. The message function can be disabled.

For all OR blocks:

Depassivation can be triggered for a passivated block or channel by setting the DEPASS input. This is done by calling the RED_DEPA FC451 function internally.

Redundancy

Redundancy of the modules in an H system is monitored in the higher-level RED_STATUS block.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

The OMODE_xx (Page 396) outputs are updated when the "Startup" bit is set. ALARM_8P will be initialized.

3.37 OR_M_8C: OR value status of 2 redundant signal modules, max. 8 channels, channel granular

Message response

OR_M_8C uses ALARM_8P for reporting. The message function can be disabled by setting EN_MSG = FALSE.

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of OR_M_8C (Page 278)

Maintenance status of MS (Page 403)

You will find more information on this in PCS 7 Advanced Process Library > Basics of APL > General functions of the blocks > Operating, monitoring and reporting > Release for maintenance

3.37.2 I/Os of OR_M_8C / OR_M_16C / OR_M_32C / OR_HA16C

The OR_M_8C and OR_M_16C / OR_HA16C / OR_M_32C block I/Os are identical, with the exception of the number of MODE1_xx and MODE2_xx and OMODE_xx.

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
ACTIV_H	1 = module with more significant address is active	BOOL	0
ACTIV_L	1 = module with less significant address is active	BOOL	0
CHAN_NUM	Number of channels -1	INT	7 (OR_M_8C) 15 (OR_M_16C) 31 (OR_M_32C) 15 (OR_HA16C)
CH_INF_H	Status of the channels on the 2nd module; info on a channel basis 0 = passivated, 1 = in service	DWORD	0
CH_INF_L	Status of the channels on the 1st module; info on a channel basis 0 = passivated, 1 = in service	DWORD	0
DEPASS	1 = depassivation	BOOL	0
DEPASS_EN	1 = enable depassivation	BOOL	1
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number (x = 1 – 3 / 1 – 5 / 1 - 9 / 1 - 5)	DWORD	0
MOD_STAT	Module status word from RED_STATUS	WORD	0
MODE1_xx	Channel mode (xx = $00 - 07 / 00 - 15 / 00 - 31$) on the primary module HART variable mode x (x = $1 - 8$) on the primary module	DWORD	0
MODE2_xx	Channel mode (xx = $00 - 07 / 00 - 15 / 00 - 31$) on the redundant module HART variable mode x (x = $1 - 8$) on the redundant module	DWORD	0
MS	Maintenance status	DWORD	0
RACKF1	1 = error rack 1	BOOL	0
RACKF2	1 = error rack 2	BOOL	0
RED_STAT	Value returned by the RED_STATUS block	INT	0

3.37 OR_M_8C: OR value status of 2 redundant signal modules, max. 8 channels, channel granular

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_ACTIVE	Channel active	DWORD	16#0000000
CH_ALM	Channel failure Redundant pair	DWORD	0
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
CH_WRN	Channel redundancy loss	DWORD	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 07 / 00 - 15 / 00 - 31 / 00 - 15) Bit 0= Release for maintenance Bit 1-31 = Reserve	DWORD	0
EXT_INFO	Supplemental info of RED_OUT	INT	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
MSG_ACKx	Message acknowledgment ALARM_8P_x (x = 1 - 3 / 1 - 5 / 1 - 9 / 1 - 5)	WORD	0
MSG_STATx	Message error information ALARM_8P_x (x = 1 - 3 / 1 - 5 / 1 - 9 / 1 - 5)	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Channel mode (xx = 00 – 07 / 00 – 15 / 00 - 31) mode HART variable x (x = 1 - 8)	DWORD	0
QDISCREP	1 = At least one channel pair does not match	BOOL	0
QERR	1 = program runtime error (cannot determine module status)	BOOL	1
QMODF1	1 = error module 1	BOOL	0
QMODF2	1 = error module 2	BOOL	0
QPASS	1 = at least one module is passivated	BOOL	0
RETURN_VAL	Error information from RED_OUT	INT	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
DXCHG1_xx	Bidirectional data exchange channel 1 xx = 00 to 07 (OR_M8C and OR_HA16C xx = 00 to 15 (OR_M16C) xx = 00 to 31 (OR_32C)	DWORD	0
DXCHG2_xx	Bidirectional data exchange channel 2 $xx = 00 \text{ to } 07 \text{ (OR_M8C and OR_HA16C)}$ $xx = 00 \text{ to } 15 \text{ (OR_M16C)}$ $xx = 00 \text{ to } 31 \text{ (OR_32C)}$	DWORD	0
MOD_INF1	Module parameters module 1	STRUCT	
MOD_INF2	Module parameters module 2	STRUCT	

Additional information

For additional information, refer to the following sections:

Maintenance Status of MS (Page 403)

Message texts and associated values of OR_M_8C (Page 278)

Message texts and associated values of OR_M_16C (Page 260)

Message texts and associated values of OR_HA16C (Page 253)

Message texts and associated values of OR_M_32C (Page 267)

General Information About Block Description (Page 9)

3.37.3 Message texts and associated values of OR_M_8C

Assignment of message text and message class

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID1	1	Module @1%d@/@2%d@/@3%d@: Failure of module redundancy pair	S
	2	Module @1%d@/@2%d@/@3%d@: Module redundancy loss	F
	3	Module @1%d@/@2%d@/@3%d@: Cannot determine module status	S
	4	Module @1%d@/@2%d@/@3%d@: At least one channel pair does not match	М
EV_ID2	1	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 00	S
	2	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 01	S
	3	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 02	S
	4	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 03	S
	5	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 04	S
	6	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 05	S
	7	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 06	S
	8	Module @1%d@/@2%d@/@3%d@: Redundancy pair failure channel 07	S
EV_ID3	1	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 00	F
	2	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 01	F
	3	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 02	F
	4	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 03	F
	5	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 04	F
	6	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 05	F
	7	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 06	F
	8	Module @1%d@/@2%d@/@3%d@: Redundancy loss channel 07	F

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameters	Meaning
EV_ID1 / 2 / 3	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	SLOT_NO	Slot number (byte)

Redundancy loss causes the geographic address of the failed module to be entered dynamically.

If both modules fail, the message text will always contain the geographic address of the primary module.

See also

Message Classes (Page 401)

3.38 PADP_L0x: Monitoring DP/PA slaves

3.38.1 Description of PADP_L00

Object name (type + number)

FB 109

• PADP_L00 block I/Os (Page 284)

Area of application

Block PADP_L00 monitors DP/PA field devices operating as DPV0 or DPV1 slaves downstream of a DP/PA or Y-Link that is operated as a DPV0 slave. The PA field devices must conform to the PROFIBUS V3.0 profile. Individual blocks must be available for the diagnostic and signal processing functions of DP field devices. H systems support only the PA field devices at an active DP/PA-Link.

Calling OBs

The block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 82	Diagnostic interrupt
OB 85	Program execution error
OB 86	Rack failure
OB100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- Block PADP_L00 is integrated in the run sequence downstream of block DPAY_V0.
- Parameters are assigned to the MODE_xx input (mode of slot xx of a field device).
- The PADP_ADR input (DP/PA slave address downstream of a DP/PA or Y-Link) is configured.
- The input DPA_M is interconnected with the output DPA_M_xx of the block DPAY_V0.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the DPAY_V0 block are interconnected with the IN_OUT structures of the same name of PADP_L00.
- The QMODF and PA_DIAG outputs are interconnected with the MOD_PAL0 block.

Note

The CFC function "Generate module drivers" can only be used if the PA field device belongs to slave family 12.

Function and method of operation

Block PADP_L00 analyzes all events affecting a DP or PA field device and its slots acyclically. It generates the relevant DP_MODE or PA_MODE, depending on the slot, and the value status for the DP or PA signal processing blocks. The permitted PA_MODE (Page 397) is already defined for the PA signal processing blocks. while DP_MODE has to be defined individually for the blocks of the DP field devices. ALARM_8P is used to report these events. The message function can be disabled.

The higher-level DPAY_V0 block enables the block to run. The diagnostic is entered in the start information (CPU_DIAG) of the OB_BEGIN block.

The data is already evaluated by the link block (DPAY_V0) if diagnostics are required. The diagnostic information concerning the PA field device is stored in the DPA_M structure. The structure consists of two DWORD (S_01 for modules 1 to 16 and S_02 for modules 17 to 32) and one BOOL (S_ERR = DP/PA field device faulty) variables. Two bits of the DWORD are assigned to each slot of the DP/PA field device, whereby bit 0 and bit 1 belong to slot 1 of the DP/PA field device, etc. Slots 1 to 7 are evaluated. The bit states are defined as follows:

Status Bit 0	Status Bit 1	Meaning
0	0	Module x OK (valid user data)
0	1	Module x error (invalid user data)
1	0	Wrong module x (invalid user data)
1	1	No module x (invalid user data)

An input (MODE_xx) exists for each slot (module) of the DP/PA field device that is used to read in configuration settings made for the PA field device slots (module) in HW Config.

At DP field devices the user must enter his code manually at the MODE input.

The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current slot value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxx. The following events are evaluated by block DPAY_V0 and lead to the value status "Invalid value" due to a higher-level error (OMODE_xx = 16#40xxxxx):

•	Rack failure (OB 86)	(output parameter QRACKF = TRUE)
•	Diagnostic interrupt affecting an entire field device (OB 82)	(output parameter QMODF = TRUE if DPA_M.S_ERR = TRUE)
•	Diagnostic interrupt slot xx affecting a field device (OB 82):	(output parameter OMODE_xx = Module-(slot-)error-specific DPA_M)

In the event of a diagnostic interrupt, the block reports field-device-specifically to WinCC by means of ALARM_8P. We distinguish between the field device and its slots; each slot is assigned a message ID.

The "Device failure" message can be disabled with EM_MSG_D = FALSE.

Redundancy

Higher-level block DPAY_V0 evaluates the redundancy of DP master systems operating in an H system.

MODE Setting for PA Profiles

You can find additional information in "PA_MODE Settings (Page 397)".

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You can find additional information in "OMODE (Page 396)".

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

After a restart or an initial start the system verifies that the PA field device is available under its logical base address. A restart (OB100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

3.38 PADP_LOx: Monitoring DP/PA slaves

Time response

Not available

Message response

The block uses ALARM_8P to report field device errors and generates the following messages in the OBs listed below:

OB no.	Start Event	Message
OB 1	Cyclic processing	Repeat the update of ALARM_8P outputs/messages, if necessary
OB 82	Diagnostic interrupt	Device error incoming/outgoing Device module xx error incoming/outgoing Device module xx incorrect incoming/outgoing Device module xx missing incoming/outgoing
OB 100	Restart	Initialization of ALARM_8P

Operator control and monitoring

The block has no faceplate.

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

Additional information

For further information, refer to the following sections:

Message texts and associated values for PADP_L00 (Page 286)

3.38.2 I/Os of PADP_L00/PADP_L01/PADP_L02

I/Os

The I/Os of the PADP_L00, PADP_L01 and PADP_L02 blocks are identical save for the number of MODE_xx and OMODE_xx. The number of monitored slots determines the number of corresponding I/O parameters.

The default block view in the CFC is identified in the "I/O" column: I/O name in **bold** = I/O is visible, standard I/O name = I/O is not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
DPA_M	DP/PA field device diagnostic information	STRUCT	
EN_MSG	1 = enable message	BOOL	1
EN_MSG_D	1 = enable "Device failure" message	BOOL	1
EV_ID	Message number	DWORD	0
MODE_xx	Module mode (xx = 00 - 06 / 00 - 15 / 00 - 31)		0
PADP_ADR	DP_ADR DP/PA field device address		0

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
MSG_ACK	Message acknowledgment	WORD	0
MSGSTAT Message error information		WORD	0
OMODE_xx	MODE_xx Module mode (xx = 00 - 06 / 00 - 15 / 00 - 31)		0
PA_DIAG PA field device diagnostic information		DWORD	0
QERR 1 = program error		BOOL	1
QMODF 1 = module removed/defective		BOOL	0
QRACKF 1 = rack/station error		BOOL	0

In-out parameters

I/O (parameter)	Irrameter)		De- fault
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	CPU diagnostics	STRUCT	
RAC_DIAG	1 = DPV1 mode	STRUCT	

Additional information

For additional information, refer to the following sections: Message texts and associated values for PADP_L00 (Page 286) Message texts and associated values for PADP_L01 (Page 291)

Message texts and associated values for PADP_L02 (Page 297)

3.38.3 Message texts and associated values of PADP_L00

Assignment of message text and message class

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID	1	QMODF	Device @1%d@/ @2%d@/@3%d@: Failure	S
	2	-	Device @1%d@/ @2%d@/@3%d@: Module 00 @4W%t#PADP_L00_TXT@	S
	8	-	Device @1%d@/ @2%d@/@3%d@: Module 06 @10W%t#PADP_L00_TXT@	S

You will find the message texts and their text numbers in the

"Text library for PADP_L00 (Page 416)" section.

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameter	Meaning
EV_ID	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADP_ADR	DP/PA device address (byte)
	4 - 10	-	Text number (message 2 - 8) from PADP_L00_TXT

If the PA field device is connected downstream from an inactive DP/PA-Link V0and SUBN1_ID = 16#FF, the associated variable is substituted by SUBN2_ID.

See also

Message Classes (Page 401)

Family: @System 3.38 PADP_L0x: Monitoring DP/PA slaves

3.38.4 Description of PADP_L01

Object name (type + number)

FB 110

• PADP_L01 block I/Os (Page 284)

Area of application

The PADP_L01 monitors DP/PA field devices that are used as DPV0 or DPV1 slaves, downstream of a DP/PA or Y link that is used as a DPV0 slave. The PA field devices must conform to the PROFIBUS V3.0 profile. There must be individual blocks available for the diagnostics and signal processing for DP field devices. H systems support only the PA field devices at an active DP/PA-Link.

Calling OBs

The block must be installed in the run sequence in the following OBs (this is done automatically in the CC):

OB 1 Cyclic program	
OB 82 Diagnostic interrupt	
OB 85 Program execution error	
OB 86 Rack failure	
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The PADP_L01 block is integrated in the run sequence downstream of block DPAY_V0.
- Parameters are assigned to the MODE_xx input (mode of slot xx of a field device).
- The PADP_ADR input (DP/PA slave address downstream of the DP/PA link or Y link) is configured.
- The DPA_M input is interconnected with the DPA_M_xx output of the DPAY_V0 block.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the DPAY_V0 block are interconnected with the IN_OUT structures of the same name of PADP_L01.
- The outputs QMODF and PA_DIAG are interconnected with the MOD_PAL0 block.

Note

The CFC function "Generate module drivers" can only be used if the PA field device belongs to slave family 12.

Function and method of operation

Block PADP_L01 analyzes all events affecting a DP or PA field device and its slots acyclically. It generates the relevant DP_MODE or PA_MODE, depending on the slot, and the value status for the DP or PA signal processing blocks. The permitted PA_MODE (Page 397) is already defined for the PA signal processing blocks. The DP_MODE must be defined individually for the DP field device blocks. ALARM_8P is used to report these events. The message function can be disabled.

The higher-level DPAY_V0 block enables the block to run. The diagnostic event is entered in the start information (CPU_DIAG) of the OB_BEGIN block.

The data is already evaluated by the link block (DPAY_V0) if diagnostics are required. The diagnostic information concerning the PA field device is stored in the DPA_M structure. The structure consists of 2 DWORD (S_01 for module 1 to 16 and S_02 for module 17 to 32), and 1 BOOL (S_ERR = DP/PA field device faulty) variables. Two bits of the DWORD are assigned to each slot of the DP/PA field device, whereby bit 0 and bit 1 belong to slot 1 of the DP/PA field device, etc. Slots 1 to 16 are evaluated. They are defined as follows:

Status Bit 0	Status Bit 1	Meaning
0	0	Module x OK (valid user data)
0	1	Module x error (invalid user data)
1	0	Wrong module x (invalid user data)
1	1	No module x (invalid user data)

There is an input (MODE_xx (Page 387)) for each slot (module) on the DP/PA field device that is used to read in configuration settings made for the PA field device slots (module) in HW Config.

For DP field devices, the user must do his own encoding at the MODE input.

The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current slot value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxx. The following events are evaluated by block DPAY_V0 and lead to the value status "Invalid value" due to a higher-level error (OMODE_xx = 16#40xxxxx):

•	Rack failure (OB 86)	(Output parameter QRACKF = TRUE)
•	Diagnostic interrupt that affects entire field device (OB 82)	(Output parameter QMODF = TRUE, if DPA_M.S_ERR = TRUE)
•	Diagnostic interrupt slot xx that affects a field device (OB 82):	(Output parameter OMODE_xx = Module (slot) error-specific DPA_M)

The block reports a diagnostic interrupt to the OS for a specific field device using ALARM_8P. We distinguish between the field device and its slots; each slot is assigned a message ID.

The "Device failure" message can be disabled with EM_MSG_D = FALSE.
3.38 PADP_LOx: Monitoring DP/PA slaves

Redundancy

The higher-level block DPAY_V0 evaluates the redundancy of the DP master systems used in an H system.

MODE setting for PA profiles

You will find further information in "PA_MODE settings (Page 397)".

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE structure

You will find further information in the "OMODE (Page 396)" section.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

After a restart/initial startup, the system checks that the PA field device is available at its logical base address. A restart (OB100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

Time response

Not available

Message response

The block signals field device errors using ALARM_8P, and generates the following messages in the OBs listed below:

OB no.	Start Event	Message
OB 1	Cyclic processing	Repeat the update of ALARM_8P outputs/messages, if necessary
OB 82	Diagnostic interrupt	Device error incoming/outgoing Device module xx error incoming/outgoing Device module xx incorrect incoming/outgoing Device module xx missing incoming/outgoing
OB 100	Restart	Initialization of ALARM_8P

3.38 PADP_L0x: Monitoring DP/PA slaves

Operator control and monitoring

The block has no faceplate.

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

Additional information

For further information, refer to the following sections:

Message texts and associated values for PADP_L01 (Page 291)

3.38 PADP_L0x: Monitoring DP/PA slaves

3.38.5 Message texts and associated values of PADP_L01

Assignment of message text and message class

Message block ALARM_8P	Message number	Block parameter	Default message text	Message class
EV_ID1	EV_ID1 1 QMODF Device @1%d@/ @2%d@/@3%d@: Failure		S	
	2	-	Device @1%d@/ @2%d@/@3%d@: Module 07 @4W%t#PADP_L01_TXT@	S
	3	-	Device @1%d@/ @2%d@/@3%d@: Module 15 @5W%t#PADP_L01_TXT@	S
EV_ID2	EV_ID2 1 - Device @1%d@/ @2%d@/@3%d@: Module 00 @4W%t#PADP_L01_TXT@		S	
	7	-	Device @1%d@/ @2%d@/@3%d@: Module 06 @10W%t#PADP_L01_TXT@	S
EV_ID3	1	-	Device @1%d@/ @2%d@/@3%d@: Module 08 @4W%t#PADP_L01_TXT@	S
	7	-	Device @1%d@/ @2%d@/@3%d@: Module 14 @10W%t#PADP_L01_TXT@	S

You will find the message texts and their text numbers in the "Text library for PADP_L01 (Page 416)" section.

3.38 PADP_L0x: Monitoring DP/PA slaves

Assignment of associated values

Message block ALARM_8P	Associated value	Block parameter	Meaning	
EV_ID1	1	SUBN_ID	DP master system ID (byte)	
	2	RACK_NO	Rack/station number (byte)	
	3	PADP_ADR	DP/PA device address (byte)	
	4 - 5	-	Text number (message 2 - 3) from PADP_L01_TXT	
EV_ID2	1	SUBN_ID	DP master system ID (byte)	
	2	RACK_NO	Rack/station number (byte)	
	3	PADP_ADR	DP/PA device address (byte)	
	4 - 10	-	Text number (message 1 - 7) from PADP_L01_TXT	
EV_ID3	1	SUBN_ID	DP master system ID (byte)	
	2	RACK_NO	Rack/station number (byte)	
	3	PADP_ADR	DP/PA device address (byte)	
	4 - 10	-	Text number (message 1 - 7) from PADP_L01_TXT	

If the PA field device is connected downstream from an inactive DP/PA-Link V0and SUBN1_ID = 16#FF, the associated variable is substituted by SUBN2_ID.

See also

Message Classes (Page 401)

Family: @System 3.38 PADP_L0x: Monitoring DP/PA slaves

3.38.6 Description of PADP_L02

Object name (type + number)

FB 111

• PADP_L02 block I/Os (Page 284)

Area of application

The PADP_L02 monitors DP/PA field devices that are used as DPV0 or DPV1 slaves, downstream of a DP/PA or Y link that is used as a DPV0 slave. The PA field devices must conform to the PROFIBUS V3.0 profile. There must be individual blocks available for the diagnostics and signal processing for DP field devices. H systems support only the PA field devices at an active DP/PA-Link.

Calling OBs

The PADP_L02 block must be installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 82	Diagnostic interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The PADP_L02 block is integrated in the run sequence downstream of block DPAY_V0.
- Parameters are assigned to the MODE_xx input (mode of slot xx of a field device).
- The PADP_ADR input (DP/PA slave address downstream of the DP/PA link or Y link) is configured.
- The DPA_M input is interconnected with the DPA_M_xx output of the DPAY_V0 block.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the DPAY_V0 block are interconnected with the IN_OUT structures of the same name of PADP_L02.
- The QMODF and PA_DIAG outputs are interconnected with the MOD_PAL0 block.

3.38 PADP_LOx: Monitoring DP/PA slaves

Function and method of operation

Block PADP_L02 analyzes all events affecting a DP or PA field device and its slots acyclically. It generates the relevant DP_MODE or PA_MODE, depending on the slot, and the value status for the DP or PA signal processing blocks. The permitted PA_MODE (Page 397) is already defined for the PA signal processing blocks. The DP_MODE must be defined individually for the DP field device blocks. ALARM_8P is used to report these events. The message function can be disabled.

The higher-level DPAY_V0 block enables the block to run. The event to be evaluated is entered in the start information (CPU_DIAG) of OB_BEGIN.

The data is already evaluated by the link block (DPAY_V0) if diagnostics are required. The diagnostic information concerning the PA field device is stored in the DPA_M structure. The structure consists of 2 DWORD (S_01 for module 1 to 16 and S_02 for module 17 to 32), and 1 BOOL (S_ERR = DP/PA field device faulty) variables. Two bits of the DWORD are assigned to each slot of the DP/PA field device, whereby bit 0 and bit 1 belong to slot 1 of the DP/PA field device, etc. Slots 1 to 32 are evaluated. They are defined as follows:

Status Bit 0	Status Bit 1	Meaning
0	0	Module x OK (valid user data)
0	1	Module x error (invalid user data)
1	0	Wrong module x (invalid user data)
1	1	No module x (invalid user data)

There is an input (MODE_xx) for each slot (module) on the DP/PA field device that is used to read in configuration settings made for the PA field device slots (module) in HW Config.

For DP field devices, the user must do his own encoding at the MODE input.

The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current slot value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxxx. The following events are evaluated by block DPAY_V0 and lead to the value status "Invalid value" due to a higher-level error (OMODE_xx = 16#40xxxxx):

•	Rack failure (OB 86)	(Output parameter QRACKF = TRUE)
•	Diagnostic interrupt that affects entire field device (OB 82)	(Output parameter QMODF = TRUE, if DPA_M.S_ERR = TRUE)
•	Diagnostic interrupt slot xx that affects a field device (OB 82):	(Output parameter OMODE_xx = Module (slot) error-specific DPA_M)

The block reports a diagnostic interrupt to WinCC for a specific field device using ALARM_8P. We distinguish between the field device and its slots; each slot is assigned a message ID.

The "Device failure" message can be disabled with EM_MSG_D = FALSE.

3.38 PADP_LOx: Monitoring DP/PA slaves

Redundancy

The higher-level block DPAY_V0 evaluates the redundancy of the DP master systems used in an H system.

MODE setting for PA profiles

You will find further information in "PA_MODE settings (Page 397)".

Note

If you change the parameter settings for the MODE_xx inputs at runtime, these changes will not be accepted at the outputs until the ACC_MODE is set to 1.

OMODE Structure

You will find further information in the "OMODE (Page 396)" section.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

After a restart/initial startup, the system checks that the PA field device is available at its logical base address. A restart (OB100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

Time response

Not available

Message response

The block signals field device errors using ALARM_8P, and generates the following messages in the OBs listed below:

OB no.	Start Event	Message
OB 1	Cyclic processing	Repeat the update of ALARM_8P outputs/messages, if necessary
OB 82	Diagnostic interrupt	Device error incoming/outgoing Device module xx error incoming/outgoing Device module xx incorrect incoming/outgoing Device module xx missing incoming/outgoing
OB 100	Restart	Initialization of ALARM_8P

3.38 PADP_L0x: Monitoring DP/PA slaves

Operator control and monitoring

The block has no faceplate.

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

Additional information

For further information, refer to the following sections:

Message texts and associated values for PADP_L02 (Page 297)

3.38 PADP_LOx: Monitoring DP/PA slaves

3.38.7 Message texts and associated values of PADP_L02

Assignment of message text and message class

Message block	Message	Block	Default message text	Message
ALARM_8P	number	parameter		class
EV_ID1	1	QMODF	Device @1%d@/ @2%d@/@3%d@: Failure	S
	2	-	Device @1%d@/ @2%d@/@3%d@: Module 07 @4W%t#PADP_L02_TXT@	S
	3	-	Device @1%d@/ @2%d@/@3%d@: Module 15 @5W%t#PADP_L02_TXT@	S
	4	-	Device @1%d@/ @2%d@/@3%d@: Module 23 @6W%t#PADP_L02_TXT@	S
	5	-	Device @1%d@/ @2%d@/@3%d@: Module 31 @7W%t#PADP_L02_TXT@	S
EV_ID2	1	-	Device @1%d@/ @2%d@/@3%d@: Module 00 @4W%t#PADP_L02_TXT@	S
	7	-	Device @1%d@/ @2%d@/@3%d@: Module 06 @10W%t#PADP_L02_TXT@	S
EV_ID3	1	-	Device @1%d@/ @2%d@/@3%d@: Module 08 @4W%t#PADP_L02_TXT@	S
	7	-	Device @1%d@/ @2%d@/@3%d@: Module 14 @10W%t#PADP_L02_TXT@	S
EV_ID4	1	-	Device @1%d@/ @2%d@/@3%d@: Module 16 @4W%t#PADP_L02_TXT@	S
		-	Device @1%d@/ @2%d@/@3%d@: Module 22 @10W%t#PADP_L02_TXT@	S
EV_ID5	1	-	Device @1%d@/ @2%d@/@3%d@: Module 24 @4W%t#PADP_L02_TXT@	S
	7	-	Device @1%d@/ @2%d@/@3%d@: Module 30 @10W%t#PADP_L02_TXT@	S

You will find the message texts and their text numbers in "Text library for PADP_L02 (Page 416)".

3.38 PADP_L0x: Monitoring DP/PA slaves

Message block ALARM_8P	Associated value	Block parameter	Meaning
EV_ID1	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADP_ADR	DP/PA device address (byte)
	4 - 7	-	Text number (message 2 - 5) from PADP_L02_TXT
EV_ID2	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADP_ADR	DP/PA device address (byte)
	4 - 10	-	Text number (message 1 - 7) from PADP_L02_TXT
EV_ID3	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADP_ADR	DP/PA device address (byte)
	4 - 10	-	Text number (message 1 - 7) from PADP_L02_TXT
EV_ID4	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADP_ADR	DP/PA device address (byte)
	4 - 10	-	Text number (message 1 - 7) from PADP_L02_TXT
EV_ID5	1	SUBN_ID	DP master system ID (byte)
	2	RACK_NO	Rack/station number (byte)
	3	PADP_ADR	DP/PA device address (byte)
	4 - 10	-	Text number (message 1 - 7) from PADP L02 TXT

Assignment of associated values to the block parameters of PADP_L02

If the PA field device is connected downstream from an inactive DP/PA-Link V0and SUBN1_ID = 16#FF, the associated variable is substituted by SUBN2_ID.

See also

Message Classes (Page 401)

3.39 PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots

3.39 PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots

3.39.1 Description of PADP_L10

Object name (type + number)

FB 116

• PADP_L10 block I/Os (Page 305)

Area of application

Block PADP_L10 monitors DPV0 PA field devices with a maximum of 32 slots, which are operated as DPV0 slaves on a DP master system, either directly or via a DP/PA coupler. The DP/PA coupler is connected downstream of a DPV1 DP/PA link. The PA field devices must conform to the PROFIBUS V3.0 profile. H systems support only the PA field devices at an active DP/PA-Link.

Calling OBs

The block must be installed in the run sequence downstream from the OB_DIAG1 block in the following OBs (this is done automatically in the CFC):

OB 1	Cyclic program
OB 55	Status interrupt (only if a PA slave is required)
OB 56	Update interrupt (only if a PA slave is required)
OB 57	Vendor-specific interrupt (only if a PA slave is required)
OB 82	Diagnostic interrupt
OB 83	Remove/insert module interrupt (failure/return of a field device)
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

3.39 PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- Block OB_DIAG1 is installed in the run sequence upstream of PADP_L10.
- The following are configured, depending on whether the PA field device is connected directly to a DP master system or downstream of a DP/PA link:
 - the diagnostic address of the PA field device or of the DADDR DP/PA link
 - the geographic address (SUBN1_ID, SUBN2_ID, RACK_NO of the PA address of the PA field device or the DP/PA link)
 - SLOT_NO = 0 or the geographic address of the PA field device in the DP/PA link (SLOT0_NO = Slot 0 no. for the PA field device, SLOTS_NO = number of slots of the PA field device)
 - SLOTS_NO = number of slots of the PA field device
 - the PA address of the PA field device (PADP_ADR)
 - MODE_xx (mode of slot xx of a PA field device)
- The CPU_DIAG and CPU_OB_5X OUT structures of OB_BEGIN and RAC_DIAG of OB_DIAG1 are interconnected with the IN_OUT structures of the same name of PADP_L10.
- The EN input is interconnected with the output of an AND block. whose inputs are interconnected with the outputs EN_SUBx (x = number of the DP master system) of the OB_BEGIN block, EN_Rxxx (xxx = rack/station number) of the SUBNET block, EN_Mx (x= number of the PA device) of the DPAY_V1 block, and EN_F of the OB_DIAG1 block.
- EN_DIAG is interconnected with output EN_DIAG of OB_DIAG1.
- Output QPERAF is interconnected with input PERAF of MOD_PAX0 or MOD_PAL0.
- Output QMODF is interconnected with input MODF of MOD_PAX0 or MOD_PAL0.
- Output PA_DIAG is interconnected with input PA_DIAG of MOD_PAX0 or MOD_PAL0.

Note

The CFC function "Generate module drivers" can only be used if the PA field device belongs to slave family 12.

Description of the functions

Block PADP_L10 analyzes all events affecting a PA field device acyclically. It generates the slot-specific MODE (PA_MODE (Page 397)) and the value status for signal processing blocks. The permitted PA_MODE is defined for PA field devices.

If you are using modular PA field devices (DPV0), the next block (MOD_PAX0/MOD_PAL0) always reports the events in slot 0 of the PA field device in the DP/PA link. The affected MOD_PAX0/MOD_PAL0 block is enabled.

3.39 PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots

How it works

Block PADP_L10 is enabled to run by the higher-level OB_DIAG1 block. The event to be evaluated is entered in the start information (CPU_DIAG) of OB_BEGIN. Block PADP_L10 checks the geographic address and the number of slots (SLOT_NO) of the PA field device to determine whether it is responsible for this event.

For a diagnostic event (OB 82, OB 55, OB 56, OB 57), SFB 54 is used to synchronously read the data from OB_BEGIN.

If diagnostic data could not be read synchronously from OB_BEGIN or when requested by OB_DIAG1 (EN_DIAG = TRUE), SFB 52 (RDREC) is used to read the current diagnostic data asynchronously.

Byte 9 of the additional alarm information contains the slot number of the field device that triggered the diagnostic interrupt. The corresponding slot is enabled.

The following diagnostic data is interpreted as a higher-level error in the block:

Byte no.	DPV1 name	Bit no.	Value	Info
Byte 1 to 6			DDLM_SLAVE_DIAG	
Byte 7	Header	Bit 7	0	fixed
		Bit 6	0	fixed
		Bit 5 to bit 0	8 or optional	Length of diagnostic data
Byte 8	Status_Type	Bit 7	1	Status
		Bit 6 to bit 0	126	Highest vendor- specific status, will not be used in future
Byte 9	Slot_number		Slot number of the PB	The PB contains the diagnostic data.
Byte 10	Specifier	Bit 7 to bit 2	Reserved	depends on the content of
		Bit 1 to bit 0	1: status is displayed	diagnostic data
			2: status is not displayed	
Byte 11 to 14			Diagnostics	
optional Bytes 11 to 20				

Additional alarm information

With a DPV0 PA field device, the diagnostic data is always assigned to slot 0.

It is also possible to generate slot-specific diagnostics for DPV1 PA field devices. These have not yet been defined. With a DPV1 field device, only the field-device slot that triggered the diagnostics is enabled. Evaluation of the coding in the context of higher-level errors in the slot-specific OMODE_xx (Page 396) outputs is based solely on the diagnostic information at slot 0.

3.39 PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots

MODE setting for PA profiles (PA_MODE)

For more information, refer to the section: "MODE settings for PA devices (Page 397)".

The function writes MODE_xx to the low word of the OMODE_xx (Page 396) output parameter. This occurs only during startup or if you set ACC_MODE = TRUE. The current slot value status is written to the most significant byte. If the result is positive, the system sets OMODE_xx = 16#80xxxxx. The following events lead to the value status "invalid value due to higher-level error" (OMODE_xx = 16#40xxxxx):

- Rack failure (OB 86) (output parameter QRACKF = TRUE)
- Failure/return of a field device (OB 83)
- Slot-specific diagnostic interrupt (OB82)

Bytes 11 to 14 of the additional interrupt information are evaluated to form the slot-specific value status:

Byte	Bit	Mnemonics	Description	Display class
11	0	DIA_HW_ELECTR	Electronic hardware failure	R
	1	DIA HW MECH	Mechanical hardware failure	R
	2	DIA_TEMP_MOTOR	Excess motor temperature	R
	3	DIA TEMP ELECTR	Excess temperature at electronic circuit	R
	4	DIA MEM CHKSUM	Memory error	R
	5	DIA_MEASUREMENT	Measurement failure	R
	6	DIA NOT INIT	Device not initialized (no auto-calibration)	R
	7	DIA_INIT_ERR	Auto-calibration error	R
12	0	DIA ZERO ERR	Zero error (limit position)	R
	1	DIA_SUPPLY	No power supply (electr. pneum.)	R
	2 3 4 5 6 7	DIA CONV INVAL DIA_WARMSTART DIA COLDSTART DIA MAINTENANCE DIA_CHARACT IDENT NUMBER Violation	Invalid configuration Warm start executed Complete restart executed Maintenance required Invalid identifier = 1, if the ID number of the current cyclic data transfer and the value of the IDENT NUMBER parameter of the physical block are different	R A A R R R

3.39 PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots

Byte	Bit	Mnemonics	Description	Display class
13	0	DIA_MAINTENANCE_ALARM	Device error	R
	1	DIA_MAINTENANCE_DEMANDED	Maintenance requested	R
	2	DIA_FUNCTION_CHECK	Device is in function test or in simulation or is under local operator control (maintenance)	R
	3	DIA_INV_PRO_COND	The process conditions do not permit valid values to be returned. (Set if quality "Uncertain, process related, no maintenance" or "Bad, process related, no maintenance")	R
			Reserved for PNO, default 0	
	47	Reserved		
14	04	Reserved	Reserved for PNO use	
	5	PROFILE_SPECIFIC_EXTENSION _AVAILABLE	= 0: For devices with this profile	
	6	MANUFACTURER_SPECIFIC _EXTENSION_AVAILABLE	= 0: For devices with this profile	
	7	EXTENSION_AVAILABLE	 = 0: No further diagnostic information available = 1: Further diagnostic information available in DIAGNOSIS_EXTENSION 	

Display class R = incoming / outgoing events.

Display class A = incoming events that are reset by the field device after a few cycles. All events in byte 11 and the events of bit 0, 1 and 2 in byte 12 lead to the value status "Higher-level error" (OMODE_xx (Page 396) = 16#40xxxxx).

Bytes 11, 12, 13, and 14 are entered in bytes 0 to 3 of the PA_DIAG parameter to generate messages and MS in the MOD_PAX0/MOD_PAL0 block.

Special features of PA_AO and PA_DO field devices

With the field devices listed above, the PA profiles can be defined at two different slots. In this case, the driver generator will assign the mode code of the PA field device to the first slot and the mode code 16#8000 to the second at the corresponding MODE inputs of the block. The diagnostic information of the first and of the second slot are linked by a logical OR operation, which allows the generation of a uniform value status for the PA_x block.

Redundancy

The higher-level block evaluates the redundancy of DP master systems operating in an H system.

OMODE Structure

You will find additional information in the "OMODE (Page 396)" section.

3.39 PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots

Addressing

You will find additional information in the "Addressing (Page 399)" section.

Error handling

The plausibility of input parameters is not checked.

Startup characteristics

A restart (OB100) is reported via the LSB in byte 2 of the OMODE_xx (Page 396) outputs.

Time response

Not available

Message response

Not available

Operator control and monitoring

The block has no faceplate.

3.39 PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots

3.39.2 I/Os of PADP_L10

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O	Meaning	Туре	De- fault
DADDR	Diagnostic address of the PA field device or DP/PA link	INT	0
EN_DIAG	1 = Queued diagnostic event	BOOL	0
MODE_xx	Mode slot (xx = 16 - 31)	WORD	0
PADP_ADR	Address of the PA field device	BYTE	0
PROF_V30	1 = PA slave profile V3.0	BOOL	0
RACK_NO	Address of PA field device or rack number	BYTE	255
SLOT0_NO	Slot number 0 of the field device in the DP/PA or Y link, or 0 if there is no link	BYTE	0
SLOTS_NO	Number of slots of the field device	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

1/0	Meaning	Туре	De- fault
DINFO	Diagnostic status of the PA field device	STRUCT	
EN_M_xx	Enable slot (xx = 0 - 31)	BOOL	0
OMODE_xx	Mode slot (xx = 16 - 31)	DWORD	0
PA_DIAG	PA field device diagnostic information	DWORD	0
QERR	1 = program error	BOOL	0
QMODF	1 = field device error/fault	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = (Link) rack/station error	BOOL	0

3.39 PADP_L10: Monitoring PA slaves downstream of DPV0 with up to 16 slots

In-out parameters

I/O	Meaning	Туре	De- fault
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG	CPU diagnostics	STRUCT	
CPU_OB_5X	OB_5x startup information	STRUCT	
RAC_DIAG	PA field device or link diagnostics	STRUCT	

3.40 PDM_MS: Monitoring of the maintenance status

3.40 PDM_MS: Monitoring of the maintenance status

3.40.1 Description of PDM_MS

Object name (type + number)

FB 81

• I/Os of PDM_MS (Page 308)

How it works

The block reports the Maintenance State supplied by PDM via the Maintenance Station.

Additional information

You will find more detailed information in the section Message texts and associated values of PDM_MS (Page 309).

3.40 PDM_MS: Monitoring of the maintenance status

3.40.2 I/Os of PDM_MS

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: General Information About Block Description (Page 9).

Input parameters

I/O (parameter)	Meaning	Туре	Default
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number (x = 1, 2)	DWORD	0
MS	Maintenance status	DWORD	0
RUNUPCYC	Number of replacement run cycles	INT	3
CYCL_UPD	1 = Cyclic update active	BOOL	1

Output parameters

I/O (parameter)	Meaning	Туре	Default
MSGSTATx	Message error information $(x = 1, 2)$	WORD	0
O_MS	Maintenance status	DWORD	0
QERR	1 = program error	BOOL	1

Additional information

Additional information is available in the section:

Message texts and associated values of PDM_MS (Page 309)

3.40 PDM_MS: Monitoring of the maintenance status

3.40.3 Message texts and associated values of PDM_MS

Messaging

The statuses are generated with ALARM_8P for messages requiring acknowledgment, and with NOTIFY_8P for those not requiring acknowledgment. The message function can be disabled by setting EN_MSG = 0. In this case MS = 8 is set.

Assignment of message text and message class

The process control messages of ALARM_8P with ED_ID1 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID1	1	Bad, maintenance alarm	S
	2		No message
	3	Uncertain, maintenance request	F
	4	Good, maintenance required	М
	5	Bad, device out of service	S
	6		No message
	7		No message
	8		No message

The process control messages of ALARM_8P with ED-ID2 are assigned as follows:

Message block NOTIFY_8P	Message number	Default message text	Message class
EV_ID2	1	bad, passivated	SA
	2		No message
	3	Bad, local operation/functional check	SA
	4	uncertain, simulation	SA
	5	Configuration change	SA
	6		No message
	7		No message
	8		No message

Additional information

Additional information is available in the section: Message Classes (Page 401)

3.41 PO_UPDAT: Output Process Image

3.41 PO_UPDAT: Output Process Image

3.41.1 PO_UPDAT: Output Process Image

Object name (type + number)

FC 279

Area of application

The PO_UPDAT block safeguards the output module functions "Hold last value" and "Apply substitute value" when a CPU is restarted (OB 100).

Run Sequence

With the "Generate module drivers" CFC function, the PO_UPDAT block is automatically installed in OB 100 at the end.

Description of Functions

On a CPU restart (OB 100), the CH_DO and CH_AO blocks write the start values to the process image. The PO_UPDAT block sends all process images (partitions) to the modules at the end of OB 100 in order for these values to be active immediately when the CPU goes into RUN. Output PO_MAP indicates the process image partitions which have been updated or are used in the system (BIT0: Process image 0, BIT15: Process image partition 15).

3.42 PS: Power supply monitoring

3.42 PS: Power supply monitoring

3.42.1 Description of PS

Object name (type + number)

FB 89

• PS block I/Os (Page 314)

Area of application

The PS block monitors the status of a rack power supply, and reports the associated error events.

Calling OBs

The PS block must be installed in the run sequence of the following OBs:

OB 1	Cyclic program
OB 81	Power supply error
OB 83	Remove/insert interrupt
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The block is installed in the run sequence downstream of the RACK block.
- The SLOT_NO input (slot number of the power supply) is configured.
- The EN input is interconnected with the output of an AND block. Its inputs are interconnected with the output EN_SUBx of the OB_BEGIN block, the output EN_Rxxx of the SUBNET block and the output EN_Mxx of the RACK block.
- The OUT structures CPU_DIAG of the OB_BEGIN block and RAC_DIAG of the RACK block are interconnected with the IN_OUT structures of the same name of the PS block.

3.42 PS: Power supply monitoring

Function and method of operation

The PS block reports events of the power supply error OB 81 and OB 83 relating to the power supply module. The module is installed to supply power to the central rack, and to each expansion rack.

Note

Note the following:

- If a battery fails, the battery must always be replaced with the power supply turned on. Then press the "FMR" button. In all other situations, the block does not reset a reported error.
- For redundant power supply modules in a rack with a standard CPU, a corresponding message is sent for both power supply modules in the event of a battery error or power supply error. You can tell which module is affected by the "BATTF" LED that lights up.

Redundancy

In a redundant system, the block is also installed extra for the power supply of the redundant rack.

Error handling

The error handling of the block is limited to the evaluation of the error information of ALARM_8P. Refer to the section "Error information of output parameter MSG_STAT (Page 398)" for additional information on error handling.

Startup characteristics

The PS block initializes the messages of the ALARM_8P.

Overload behavior

Not available

Time response

You will find additional information in the "Message response" section.

Message response

After OB 81 or OB 83 is called, the block analyzes the status of the power supply of the rack assigned to it. It generates the "Backup battery failure", "Backup voltage failure" and "24 V supply failure" or "Module removed" or "Wrong or faulty module" messages with ALARM_8P. The message function can be disabled by setting EN_MSG = FALSE.

3.42 PS: Power supply monitoring

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of PS (Page 315)

Maintenance status of MS (Page 403)

3.42 PS: Power supply monitoring

3.42.2 I/Os of PS

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number	DWORD	0
MS	Maintenance status	DWORD	0
SLOT_NO	Slot number of the power supply	BYTE	0

Output parameters

I/O (parameter)	Meaning	Data type	Default
MSG_STAT	Message error information	WORD	0
O_MS	Maintenance status	DWORD	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
CPU_DIAG	CPU diagnostics (system structure)	STRUCT	
RAC_DIAG	System structure	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of PS (Page 315)

Maintenance status of MS (Page 403)

3.42.3 Message texts and associated values of PS

Assignment of message text and message class

Message No.	Default message text	Message class
1	@1%d@/ @2%d@/ @3%d@: Backup battery failure	Μ
2	@1%d@/ @2%d@/ @3%d@: Backup voltage failure	Μ
3	@1%d@/ @2%d@/ @3%d@: 24 V power supply failure	Μ
4	Module @1%d@/@2%d@/@3%d@: Removed	S
5	Module @1%d@/@2%d@/@3%d@: wrong or faulty	S
6		No message
7		No message
8		No message

Assignment of Associated Values

Associated value	Block parameters
1	DP master system ID of the rack of the power supply (RAC_DIAG.SUBN_ID)
2	Rack number of the power supply (RAC_DIAG.RACK_NO)
3	Slot number of the power supply (SLOT_NO)

See also

Message Classes (Page 401)

3.43 RACK: Rack monitoring

3.43.1 Description of RACK

Object name (type + number)

FB 107

• RACK block I/Os (Page 320)

Area of application

The RACK block monitors the status of a rack, and reports the associated error events.

Calling OBs

The block is installed in the run sequence in the following OBs:

OB 1	Cyclic program
OB 70	I/O redundancy error
OB 72	CPU redundancy error
OB 81	Power supply error
OB 82	Diagnostic interrupt
OB 83	Insert/remove module interrupt
OB 85	Program execution error
OB 86	Rack failure
OB 100	Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The RACK block is installed in the run sequence downstream of the SUBNET block.
- The RACK_NO, DADDR, SUBN1_ID, SUBN2_ID, and SUBN_TYP inputs are configured.
- The EN input is interconnected with the output of an AND block. whose inputs are interconnected to the EN_SUBx output of the OB BEGIN block, and to the EN_Rxxx output of the SUBNET block.
- The CPU_DIAG OUT structure of the OB_BEGIN block and SUB_DIAG of the SUBNET block are interconnected with the IN_OUT structures of the same name of the RACK block.

Function and method of operation

The RACK block generates a process control error message for the OS in the event of redundancy losses and rack/station failures. It also indicates internal errors of the rack/station (SUBN1ERR, SUBN2ERR), and of the preferred channel (SUBN1ACT, SUBN2ACT) if there are active DP slaves at its outputs. The output structure RAC_DIAG contains the geographic address of the rack, and the group error information RACK_ERR. If RACK_ERR = 1, the corresponding rack is not available.

The block is installed in the OBs listed above once at each station or local I/O device. The SUBNET block enables the runtime group that contains the RACK block. Start and diagnostic information is read from the CPU_DIAG IN_OUT structure, which is interconnected with the CPU_DIAG structure of the OB_BEGIN block. The RACK block has one enable output for each rack (station) slot.

The RACK block generates the number of a corresponding message (see "Message Response") on the basis of the start information of the calling OBs if the current block is affected.

The block evaluates error events, and uses the diagnostic address DADDR of the DP slave to determine the currently active preferred channel (SUBN1ACT, SUBN2ACT) of redundant PROFIBUS DP interface circuits.

Note: If you want to change the SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs online, you must set input ACC_ID = TRUE. to update the output values.

Redundancy

In H systems with distributed I/Os, the RACK block supports redundancy of the DP Master systems. If you want to use this function, you must configure the SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs of the RACK block with the numbers of the redundant DP master systems. If there is no redundancy, the remaining input must be set to the (default) value 16#FF.

Note

With redundant CPU racks, the two RACK blocks inserted in the system chart are only responsible for enabling lower-level block chains. Their maintenance status MS is therefore irrelevant. The "Good" and "Not redundant" state is always shown in the associated faceplate and block icon because the bits 0 to 16 of the MS are always "0" in this case.

Error handling

Error handling of the block is limited to evaluation of the error information of ALARM_8P.

You will find more information about this in "Error information of output parameter MSG_STAT (Page 398)".

3.43 RACK: Rack monitoring

Startup characteristics

The RACK block initializes ALARM_8P messages. It checks availability of the station and, in H systems, determines the preferred channel of the station.

The SUB_DIAG.V1_MODE structure (0 = compatibility mode, 1 = DPV1 mode) is transferred to the RAC_DIAG.V1_MODE structure.

Overload behavior

The RACK block counts the OB 86 calls (except in the case of a DP master system failure; see SUBNET block). The counter is reset in OB 1. If more than two OB 86 events occur in succession before the cycle control point (OB 1) is reached, these will be rejected and the message "Station...: Multiple failure" is output. When an OB 86 call is rejected, the rack (station) is registered as having failed.

Time response

See "Message Response"

Message response

After it is called by OB 70, OB 72, OB 85 or OB 86, the block analyzes the status of its assigned CPU, DP master and DP slave. If the rack (station) loses redundancy or fails, the block outputs the corresponding messages by broadcasting an ALARM_8P. The message function can be disabled by setting EN_MSG = FALSE.

The block generally reports only the events that were originally generated in the rack that it monitors. Redundancy loss and station failures which are caused by the failure of a DP master or CPU are initially neither signaled nor indicated at the SUBN1ERR and SUBN2ERR outputs.

The DELAY input is used to delay the outputting of error messages for an outgoing, higherpriority error. For example, if the RACK block recognizes an outgoing error at an interconnected DP master, it initially assumes that there is a faulty assigned DP slave in the rack it monitors, and sets the corresponding output SUBNxERR. The error status is not reset until the DP slave returns (in this case: OB 86, OB 70). The RACK blocks suppress the potential slave failure states for DELAY seconds so as not to trigger a surge of messages from DP slaves which are not yet synchronized when the master returns. An error message is only output to the OS when the DP slave has not reported its return before this delay time has expired.

Note: Do not set the value of DELAY too high, otherwise DP slaves that were removed during the master failure or are defective will be signaled to the OS too late after the DP master returns.

ОВ	Start event	Message
OB 1	Cyclic processing	Repeat the update of ALARM_8P outputs/messages, if necessary
OB 70	Redundancy loss	Station redundancy loss/return
OB 81	Power supply error	
OB 85	Program execution error	Station failure, incoming/outgoing
OB 86	Rack failure	Station failure, incoming/outgoing
OB 100	Restart	Initialization of ALARM_8P

The RACK block generates the following messages in the OBs listed below:

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of RACK (Page 322)

Maintenance status of MS (Page 403)

3.43.2 I/Os of RACK

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DADDR	Diagnostic address of the DP slave	INT	0
DELAY	Interrupt delay (s)	INT	15
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
EN_Mxx	1 = Enable module xx (xx = 0 - 63)	BOOL	0
MSG_STAT	Message error information	WORD	0
O_MS	Maintenance status	DWORD	0
RAC_DIAG	System structure	STRUCT	
SUBN1ACT	1 = Slave 1 is active	BOOL	0
SUBN1ERR	1 = Error in slave 1	BOOL	0
SUBN2ACT	1 = Slave 2 is active	BOOL	0
SUBN2ERR	1 = Error in slave 2	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG	CPU diagnostics (system structure)	STRUCT	
SUB_DIAG	OB_Start information	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of RACK (Page 322)

Maintenance status of MS (Page 403)

3.43 RACK: Rack monitoring

3.43.3 Message texts and associated values of RACK

Assignment of message text and message class

Message no.	Default message text	Message class
1	Station @1%d@/ @3%d@: Redundancy loss	F
2	Station @2%d@/ @3%d@: Redundancy loss	F
3	Station @1%d@/ @3%d@: Failure	S
4	Station @2%d@/ @3%d@: Failure	S
5		No message
6		No message
7		No message
8	Station @1%d@/ @3%d@: Multiple failure	S

Assignment of associated values

Associated value	Block parameters
1	ID of the primary DP master system (SUBN1_ID)
2	ID of the redundant DP master system (SUBN2_ID)
3	Rack/station number (RACK_NO)

See also

Message Classes (Page 401)

3.44 RED_F: Status processing of redundant F modules

3.44 RED_F: Status processing of redundant F modules

3.44.1 Description of RED_F

Object name (type + number)

FC 289

• RED_F block I/Os (Page 325)

Area of application

The RED_F block is used to set up redundant F modules in safety mode.

Calling OBs

The block must be installed in the same OB before the OR block. It is also installed in OB 100.

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- The RED_F block is installed before the OR block in its OB.
- MODE1_xx inputs are interconnected with the OMODE_xx outputs of the MOD_x block in the primary module.
- MODE2_xx inputs are interconnected with the OMODE_xx outputs of the MOD_x block in the redundant module.
- The RACKF1 input is interconnected with the QRACKF output of the MOD_x block of the primary module.
- The RACKF2 input is interconnected with the QRACKF output of the MOD_x block of the redundant module.
- The MS1 input is interconnected with the O_MS output of the MOD_x block of the primary module.
- The MS2 input is interconnected with the O_MS output of the MOD_x block of the redundant module.
- The ACTIV_H and ACTIV_L outputs are interconnected with the inputs with the same name in the OR block.
- The CH_INF_H and CH_INF_L outputs are interconnected with the inputs with the same name in the OR block.

3.44 RED_F: Status processing of redundant F modules

- The RETURN_VAL output is interconnected with the RED_STAT input of the OR block.
- The MODUL_STATUS_WORD output is interconnected with the MOD_STAT input of the OR block.

Function and method of operation

The RED_F block processes the status of all channels cyclically based on the outputs OMODE_xx or the MOD_x blocks and then forms the information on redundancy of the OR blocks.

Addressing

Not available

Error handling

Not available

Startup characteristics

Not available

Time response

Not available

Message response

Not available

Operator control and monitoring

The block has no faceplate.
3.44 RED_F: Status processing of redundant F modules

3.44.2 I/Os of RED_F

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name in **bold** characters = I/O is visible; I/O name in standard characters = I/O is hidden.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
MODE1_xx	Channel mode (xx = 00 – 31) on the primary module	DWORD	0
MODE2_xx	Channel mode (xx = 00 – 31) on the redundant module	DWORD	0
MS1	Maintenance status (MS) 1	BOOL	0
MS2	Maintenance status (MS) 2	BOOL	0
RACKF1	1 = error rack 1	BOOL	0
RACKF2	1 = error rack 2	BOOL	0

Output parameters

I/O (parameter)	Meaning	Data type	Default
ACTIV_H	1 = module with more significant address is active	BOOL	0
ACTIV_L	1 = module with less significant address is active	BOOL	0
CH_INF_H	1 = channel with more significant address is active	DWORD	0
CH_INF_L	1 = channel with less significant address is active	DWORD	0
MODUL_STATUS_WORD	Status information	WORD	0
RETURN_VAL	Error information	INT	0

Additional information

You will find more information in:

Maintenance status of MS (Page 403)

3.45.1 OB_BEGIN_PN: CPU diagnostics

3.45.1.1 Description of OB_BEGIN_PN

Object name (type + number)

FB 130

• I/Os of OB_BEGIN_PN (Page 326)

Area of application

Block OB_BEGIN_PN is used for CPU diagnostics of the automation system (AS). By installing the block in CFC, the system creates all acyclic run sequences (OBs) in which the driver blocks of PCS 7 Advanced Process Library are executed.

3.45.1.2 I/Os of OB_BEGIN_PN

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number ALARM_8P_x (x = 1 - 4, assigned by the ES)	DWORD	0
MS	Maintenance status	DWORD	0
SUB0IDxx	DP master system 1 IDxx (xx = 00 - 14)/PN IO system 1 (100-115)	BYTE	255
SUB1IDxx	DP master system 2 IDxx (xx = 00 - 14)/PN IO system 2 (100-115)	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
CPU_DIAG	System structure: CPU diagnostics	STRUCT	
CPU_DIAG_PN	System structure: CPU diagnostics (PN)		
CPU_OB_4X	Start information OB 40 - OB 47	STRUCT	
CPU_OB_5X	Start information OB 55, OB 56, OB 57	STRUCT	
CPU_OB_5X_PN	Start information OB 55, OB 56, OB 57	STRUCT	
CPU_OB_6X	Start information OB 60 - OB 64	STRUCT	
CPUERR_0	1 = CPU error in rack 0 *)	BOOL	0
CPUERR_1	1 = CPU error in rack 1 *)	BOOL	0
EN_SUBx	Enable SUBNET x (DP: x = 0 - 14/PN: x = 100-115))	BOOL	0
MASTER_0	1 = Master CPU in rack 0	BOOL	0
MASTER_1	1 = Master CPU in rack 1	BOOL	0
MSGSTATx	STATUS output of ALARM_8P_x (x = 1 - 5)	WORD	0
O_MS	Maintenance status	DWORD	0
QERR	1 = processing error	BOOL	1
QMSGERx	Error output of ALARM_8P_x (x = $1 - 5$)	BOOL	0
SZL_71	System structure: SZL71	STRUCT	

The structure of the CPU_DIAG is integrated as OUT in the OB_BEGIN block, and as IN_OUT in all other blocks with this I/O.

*) You will find additional information about CPU errors in the CPU Manual.

Additional information

For additional information, refer to the following sections:

Message texts and associated values of OB_BEGIN_PN (Page 328)

Maintenance Status of MS (Page 403)

3.45.1.3 Message texts and associated values of OB_BEGIN_PN

Assignment of message text and message class

Process control messages of ALARM_8P with EV_ID1 are assigned as follows:

Message block ALARM_8P	Message number	OB no.	Default message text	Message class
EV_ID1	1	OB 85	OB @7%d@ not loaded	S
	2			No message
	3	OB 84	Interface error	S
	4	-	Error installing OB_BEGIN_PN/OB_END: No OB@2%d@ processing of stack @1%d@	S
	5	OB 85	Program execution error: @7%d@: @10%2s@@8%d@/@9%d@	S
	6	OB 122	I/O read access error: @4%2s@@5%d@ Address: @6%d@	S
	7	OB 122	I/O write access error: @4%2s@@5%d@ Address: @6%d@	S
	8	OB 84	Performance of an H-Sync coupling impaired	S

Messages 1, 4, 5, 6, 7 and 8 are only incoming events. They are reset to "outgoing" status during the normal run sequence (OB 1) of the block.

Associated values of ALARM_8P with EV_ID1

Process control messages are generated with six associated values at EV_ID1 via ALARM_8P. The table below shows how the associated values are assigned to the block parameters.

Message block ALARM_8P	Associated value	Block parameter	Data type
EV_ID1	1	CPU_DIAG_PN.OB_S_NUM_CNT	BYTE
	2	TINFO_TOP_SI_NUM	BYTE
	3	OB 72_supp_info 1	WORD
	4	OB 122_BLK_TYP	WORD
	5	OB 122_BLK_NUM	WORD
	6	OB 122_MEM_ADDR	WORD
	7	OB 85_supp_info 1	WORD
	8	OB 85_HW_supp_info 2_3	WORD
	9	OB 85_LW_supp_info 2_3	WORD
	10	OB 85_DKZ2_3	WORD

Message block ALARM_8P	Message number	OB no.	Default message text	Message class
EV_ID2	1	OB 80	Net consumption of all OBs exceeds max. limit	Μ
	2	OB 80	Emergency operation, cyclic OBs are used	S
	3	OB 80	Priorities of the cyclic OBs not PCS 7 conform	Μ
	4	OB 84	Memory error detected and corrected by operating system.	S
	5	OB 84	Accumulation of detected and corrected memory errors	S
	6	OB 84	Error in PC operating system	S
	7	OB 121	Programming error @1%d@: @2%2s@@5%d@ /@6%d@/@4%d@/@3%d@	S
	8	OB 84	Multiple-bit memory error detected and corrected	S

The process control messages of ALARM_8P with EV_ID2 are assigned as follows:

Messages 1 to 3 are generated in CPU_RT and forwarded to OB_BEGIN_PN.

Messages 4, 5, 7 and 8 are only incoming events. They are reset to "outgoing" status during the normal run sequence (OB 1) of the block.

Message 7 is to be interpreted as follows, in accordance with the error code number before the colon:

OB 121_BLK_TYP/OB 121_BLK_NUM/OB 121_PRG_ADDR/OB 121_FLT_REG/OB 121_RE SERVED_1.

Associated values of ALARM_8P with EV_ID2

Process control messages are generated with six associated values at EV_ID2 via ALARM_8P. The table below shows how the associated values are assigned to the block parameters.

Message block ALARM_8P	Associated value	Block parameter	Data type
EV_ID2	1	OB 121_SW_FLT	BYTE
	2	OB 121_BLK_TYP	WORD
	3	OB 121_RESERVED_1	BYTE
	4	OB 121_FLT_REG	WORD
	5	OB 121_BLK_NUM	WORD
	6	OB 121_PRG_ADDR	WORD

Message block ALARM_8P	Message number	OB no.	Default message text	Message class
EV_ID3	1	OB 80	Cycle time exceeded: @1%d@ms OB@2%d@	S
	2	OB 80	OB request: OB3x still being processed	F
	3	OB 80	TOD interrupt OB @3%d@ expired (TOD jump)	S
	4	OB 80	TOD interrupt OB @4%d@ expired (Stop/Run)	S
	5	OB 80	OB request: Overflow PRIO @5%d	S
	6	OB 80	Clocked interrupt timeout: OB@6%d@ PRIO @7%d@	S
	7	OB 80	Interrupt lost: OB@8%d@ PRIO @9%d@	S
	8	OB 80	CiR synchronization time: @10%d@ ms	S

Process control messages of ALARM_8P with EV_ID3 are assigned as follows:

Message 2 is generated in CPU_RT (Page 23) and forwarded to OB_BEGIN.

Messages 1 to 8 are only incoming events. They are reset to "outgoing" status during the normal run sequence (OB 1) of the block.

Associated Values of ALARM_8P with EV_ID3

Process control messages are generated with seven associated values at EV_ID3 via ALARM_8P. The table below shows how the associated values are assigned to the block parameters.

Message block ALARM_8P	Associated value	Block parameter	Data type
EV_ID3	1	Cycle time (OB 80_supp_info 1)	WORD
	2	Cause OB (OB 80_1st byte supp_info 2_3)	BYTE
	3	Cycle time (OB 80_supp_info 1)	WORD
	4	Cycle time (OB 80_supp_info 1)	WORD
	5	Priority class (OB 80_2nd byte supp_info 2_3)	BYTE
	6	Cause OB (OB 80_1st byte supp_info 2_3)	BYTE
	7	Priority class (OB 80_2nd byte supp_info 2_3)	BYTE
	8	Cause OB (OB 80_1st byte supp_info 2_3)	BYTE
	9	Priority class (OB 80_2nd byte supp_info 2_3)	BYTE
	10	Cycle time (OB 80_supp_info 1)	WORD

Process control messages for ALARM_8P with EV_ID4 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID_4	1	OB 88(@6W%t#OB_BEGIN_PN_TXT@): OB@1%d@ PRIO@2%d@ @3%2s@@4%d@ /@5%d@	S
	2	OB_BEGIN_PN: Diagnostics error RALRM STATUS = @7%8X@	S
	3		No message
	4		No message
	5		No message
	6		No message
	7		No message
	8		No message

Associated values of ALARM_8P with EV_ID4

Message block ALARM_8P	Associated value	Meaning
EV_ID4	1	Cause OB (M_OB 88.FLT_OB)
	2	Priority class (M_OB 88.FLT_OB_PRIO)
	3	Block type (M_OB 88.BLK_TYP)
	4	Block number (M_OB 88.FLT_NUM)
	5	MC7 command causing error Relative address (M_OB 88.FLT_ADDR)
	6	Error number in OB_BEGIN_TXT (M_OB 88.T_OB 88)
	7	Status RALRM

For additional information, see chapter: Message Classes (Page 401).

3.45.2 SUBNET_PN: Reduction of acyclic OB processing times

3.45.2.1 Description of SUBNET_PN

Object name (type + number)

FB 82

• I/Os of SUBNET_PN (Page 332)

Area of application

The SUBNET_PN block is used to reduce acyclic OB processing times. Only the blocks that are actually affected can be called in the case of an acyclic event.

3.45.2.2 I/Os of SUBNET_PN

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

I/O (parameter)	Meaning	Data type	De- fault
DADDR	Diagnostic address of the PN IO device - primary subnet	INT	0
DADDR_1	Diagnostic address of the PN IO device redundant subnet	INT	0
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number ALARM_8P (assigned by the ES)	DWORD	0
EV_ID1	Message number ALARM_8P (assigned by the ES)	DWORD	0
MS	Maintenance status	DWORD	0
PNIO_ADR	Diagnostic address of PN IO interface - primary subnet	INT	0
PORT1_ADR	Diagnostic address of PORT1 - primary subnet	INT	0
PORT2_ADR	Diagnostic address of PORT2 - primary subnet	INT	0
PORT2_CONNECT	Port2 connection status - primary subnet	BYTE	0
PNIO_ADR_1	Diagnostic address of PN IO interface - redundant subnet	INT	0
PORT1_ADR_1	Diagnostic address of PORT1 – redundant subnet	INT	0
PORT1_CONNECT_1	Port1 connection status – redundant subnet	BYTE	0
PORT2_ADR_1	Diagnostic address of PORT2 – redundant subnet	INT	0
PORT2_CONNECT_1	Port2 connection status – redundant subnet	BYTE	0

Input parameters

Family: @System

3.45 PROFINET blocks

I/O (parameter)	Meaning	Data type	De- fault
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
EN_Rxxx	1 = Enable rack (xxx = 0 - 255)	BOOL	0
MASTER_0	1 = Master CPU in rack 0	BOOL	0
MASTER_1	1 = Master CPU in rack 1	BOOL	0
MSGSTATx	STATUS output of ALARM_8P_x (x = 1 - 2)	WORD	0
O_MS	Maintenance status	DWORD	0
QMSGERx	ERROR message of ALARM_8P_x (x = 1 - 2)	BOOL	0
SUB_DIAG	System structure: CPU diagnostics	STRUCT	
SUBN1ERR	1 = Error in DP master system 1	BOOL	0
SUBN2ERR	1 = Error in DP master system 2	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	De- fault
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG_PN	CPU diagnostics system structure	STRUCT	
CPU_OB_5X_PN	Start information OB 55, OB 56, OB 57	STRUCT	
SZL_71	System structure SZL71	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of SUBNET_PN (Page 334)

Maintenance Status of MS (Page 403)

3.45.2.3 Message texts and associated values of SUBNET_PN

Assignment of message text and message class

The process control messages of ALARM_8P with EV_ID are assigned as follows:

Message no.	Default message text	Message class
1	PN IO system @1%d@: Redundancy loss	F
2	PN IO system @2%d@: Redundancy loss	F
3	PN IO system @1%d@: Failure	S
4	PN IO system @2%d@: Failure	S
5	PN IO system @2%d@: Multiple failure	S
6	CPU loss of redundancy in rack @4%d@	F
7		No message
8		No message

Associated values of ALARM_8P with EV_ID

Associated value	Block parameter	Data type
1	ID of the primary PN IO system (SUBN1_ID)	BYTE
2	ID of the redundant PN IO system (SUBN2_ID)	BYTE
3	ID of the multiple failure PN IO system	BYTE
4	CPU rack number	BYTE

The process control messages of ALARM_8P with EV_ID1 are assigned as follows:

Message no.	Default message text	Message class
1	PN IO system @1%d@: Port1 error	F
2	PN IO system @1%d@: Port2 error	F
3	PN IO system @1%d@: Uncertain, maintenance demanded	F
4	PN IO system @1%d@: Good, maintenance required	Μ
5	PN IO system @2%d@: Port1 error	F
6	PN IO system @2%d@: Port2 error	F
7	PN IO system @2%d@: Uncertain, maintenance demanded	F
8	PN IO system @2%d@: Good, maintenance required	Μ

Associated value	Block parameter	Data type
1	ID of the primary PN IO system (SUBN1_ID)	BYTE
2	ID of the redundant PN IO system (SUBN2_ID)	BYTE
3	ID of the PN IO system	WORD

For additional information, see chapter: Message Classes (Page 401).

3.45.3 RACK_PN: Rack monitoring

3.45.3.1 Description of RACK_PN

Object name (type + number)

FB 90

• I/Os of RACK_PN (Page 336)

Area of application

The RACK_PN block monitors the status of a rack, and reports the associated error events.

Additional information

For additional information, refer to the following sections: Message texts and associated values of RACK_PN (Page 338) Maintenance Status of MS (Page 403)

3.45.3.2 I/Os of RACK_PN

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DADDR	Diagnostics address of the PN IO device	INT	0
DELAY	Interrupt delay (s)	INT	15
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number ALARM_8P (assigned by the ES)	DWORD	0
EV_ID1	Message number ALARM_8P (assigned by the ES)	DWORD	0
MS	Maintenance status	DWORD	0
PNIO_ADR	Diagnostics address of the PN-IO interface	INT	0
PORT1_ADR	Diagnostics address of PORT1	INT	0
PORT1_CONNECT	Port1 connection status	BYTE	0
PORT2_ADR	Diagnostics address of PORT2	INT	0
PORT2_CONNECT	Port2 connection status	BYTE	0
RACK_NO	Rack number	BYTE	0

Family: @System

3.45 PROFINET blocks

I/O (parameter)	Meaning	Data type	Default
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
EN_Mxx	1 = Enable rack xx (xx = 0 - 63)	BOOL	0
MSGSTATx	Status output of ALARM_8P_x (x = 1-2)	WORD	0
O_MS	Maintenance status	DWORD	0
QMSGERx	ERROR message of ALARM_ $8P_x$ (x = 1 - 2)	BOOL	0
RAC_DIAG	System structure	STRUCT	
SUBN1ACT	1 = Slave 1 is active	BOOL	0
SUBN1ERR	1 = Error in slave 1	BOOL	0
SUBN2ACT	1 = Slave 2 is active	BOOL	0
SUBN2ERR	1 = Error in slave 2	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG_PN	CPU diagnostics (system structure)	STRUCT	
SUB_DIAG	OB_Start information	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of RACK_PN (Page 338)

Maintenance Status of MS (Page 403)

3.45.3.3 Message texts and associated values of RACK_PN

Assignment of message text and message class

The process control messages of ALARM_8P with EV_ID are assigned as follows:

Message no.	Default message text	Message class
1	Station @1%d@/ @3%d@: Redundancy loss	F
2	Station @2%d@/ @3%d@: Redundancy loss	F
3	Station @1%d@/ @3%d@: Failure	S
4	Station @2%d@/ @3%d@: Failure	S
5		No message
6		No message
7		No message
8	Station @1%d@/ @3%d@: Multiple failure	S

Associated values of ALARM_8P with EV_ID

Associated value	Block parameter	Data type
1	ID of the primary PN IO system (SUBN1_ID)	BYTE
2	ID of the redundant PN IO system (SUBN2_ID)	BYTE
3	Rack/station number (RACK_NO)	BYTE

The process control messages of ALARM_8P with EV_ID1 are assigned as follows:

Message no.	Default message text	Message class
1	Station @4%d@/ @3%d@: Port1 error	F
2	Station @4%d@/ @3%d@: Port2 error	F
3	Station @4%d@ @3%d@: Uncertain, maintenance demanded	F
4	Station @4%d@/ @3%d@: Good, maintenance required	М
5		No message
6		No message
7		No message
8		No message

Associated value	Block parameter	Data type
1	ID of the primary PN IO system (SUBN1_ID)	BYTE
2	ID of the redundant PN IO system (SUBN2_ID)	BYTE
3	Rack/station number (RACK_NO)	BYTE
4	ID of the PN IO system	WORD

For additional information, see chapter: Message Classes (Page 401).

3.45.4 MOD_D8_PN: Monitoring S7-300 SM modules with up to 8 channels and with diagnostics functions

3.45.4.1 Description of MOD_D8_PN

Object name (type + number)

FB 197

• I/Os of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN (Page 340)

Area of application

Block MOD_D8_PN monitors S7-300 SM modules with a maximum of 8 channels and with diagnostics functions.

3.45.4.2 I/Os of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
CHAN_NUM	Number of channels	INT	0
DELAY1	Alarm delay 1 (s)	INT	2
DELAY2	Alarm delay 2 (s)	INT	2
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number ALARM_8P_x $(x = 1 - 2/1 - 3/1 - 4, assigned by the ES)$	DWORD	0
FEATURE_xx	Feature parameter (xx = 01 - 04)	WORD	0
FEATURE_yy	Feature parameter (yy = 05 - 10)	DWORD	0
LADDR	Logic input address of the module	INT	0
LADDR1	Logical output address of the module (if output address is not the same as input address).	INT	0
MODE_xx	Operating mode channel xx (xx = 00 - 07/00 - 15/00 - 23)	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0

Family: @System

3.45 PROFINET blocks

I/O (parameter)	Meaning	Data type	De- fault
SUBSL_NO	Subslot number	BYTE	0
SUBN_TYP	1 = external PN interface	BOOL	0
SUBN1_ID	PN IO system 1 ID (100 - 115)	BYTE	255
SUBN2_ID	PN IO system 2 ID (100 - 115)	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
CH_ACTIVE	Channel active	DWORD	16#0 0000 000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DIAG_INFx	System structure: Diagnostic information	STRUCT	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15)	DWORD	0
	Bit = 0: Release for maintenance		
	Bit1 Byte0: Flutter suppression		
	Bit2 to Bit7 Byte0: Reserved		
	Byte 1: Reserved		
	Byte 2: Reserved		
	Byte 3: Fluttering time		
EXT_STATx	Release for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression active	DWORD	16#0 0000 000
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACKx	Message acknowledgment (x = 1 - 2/1 - 3/1 - 4)	WORD	0
MSGSTATx	Message error information (x = $1 - 2/1 - 3/1 - 4$)	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Operating mode channel xx (xx = 00 - 07/00 - 15/00 - 23)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	De- fault
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG_PN	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN (Page 342)

Maintenance Status of MS (Page 403)

3.45.4.3 Message texts and associated values of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN

Assignment of message text and message class

Process control messages of ALARM_8P with EV_ID1 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID1	1	Module @1%d@/@2%d@/@3%d@/@6%d@: Removed	S
	2	Module @1%d@/@2%d@/@3%d@/@6%d@: Access error	S
	3	Module @1%d@/@2%d@/@3%d@/@6%d@: @5W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT@	S
	4	Module @1%d@/@2%d@/@3%d@/@6%d@: Multiple diagnostics interrupt	S
	5	Module @1%d@/@2%d@/@3%d@/@6%d@: @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@6%d@: @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@6%d@: @5W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT@	F
	8		No message

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number (message 5) of MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
5	Text number (message 3) of MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
6	Subslot number	BYTE

The process control messages of ALARM_8P with EV_ID2 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID2	1	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 00 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	2	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 01 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	3	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 02 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	4	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 03 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	5	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 04 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 05 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 06 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	8	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 07 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number from MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
5	Subslot number	BYTE

Process control messages of ALARM_8P with EV_ID3 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID3	1	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 08 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	2	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 09 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	F
	3	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 10 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	4	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 11 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	5	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 12 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 13 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 14 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	8	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 15 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S

Associated values of ALARM_8P with EV_ID3

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number from MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
5	Subslot number	BYTE

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID_4	1	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 16 @4W%t# MOD_D24_PN_TXT @	S
	2	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 17 @4W%t# MOD_D24_PN_TXT @	S
	3	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 18 @4W%t# MOD_D24_PN_TXT @	S
	4	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 19 @4W%t# MOD_D24_PN_TXT @	S
	5	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 20 @4W%t# MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 21 @4W%t# MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 22 @4W%t# MOD_D24_PN_TXT @	S
	8	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 23 @4W%t# MOD_D24_PN_TXT @	S

Process control messages for ALARM_8P with EV_ID4 are assigned as follows:

Associated values of ALARM_8P with EV_ID4

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number from MOD_D24_PN_TXT	BYTE
5	Subslot number	BYTE

For additional information, see chapter: Message Classes (Page 401).

3.45.5 MOD_D16_PN: Monitoring S7-300 SM modules with up to 16 channels and with diagnostics functions

3.45.5.1 Description of MOD_D16_PN

Object name (type + number)

FB 198

• I/Os of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN (Page 346)

Area of application

Block MOD_D16_PN monitors S7-300 SM modules with a maximum of 16 channels and with diagnostics functions.

3.45.5.2 I/Os of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
CHAN_NUM	Number of channels	INT	0
DELAY1	Alarm delay 1 (s)	INT	2
DELAY2	Alarm delay 2 (s)	INT	2
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number ALARM_8P_x (x = 1 - 2/1 - 3/1 - 4, assigned by the ES)	DWORD	0
FEATURE_xx	Feature parameter (xx = 01 - 04)	WORD	0
FEATURE_yy	Feature parameter (yy = 05 - 10)	DWORD	0
LADDR	Logic input address of the module	INT	0
LADDR1	Logical output address of the module (if output address is not the same as input address).	INT	0
MODE_xx	Operating mode channel xx (xx = 00 - 07/00 - 15/00 - 23)	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0

Family: @System

3.45 PROFINET blocks

I/O (parameter)	Meaning	Data type	De- fault
SUBSL_NO	Subslot number	BYTE	0
SUBN_TYP	1 = external PN interface	BOOL	0
SUBN1_ID	PN IO system 1 ID (100 - 115)	BYTE	255
SUBN2_ID	PN IO system 2 ID (100 - 115)	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
CH_ACTIVE	Channel active	DWORD	16#0 0000 000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DIAG_INFx	System structure: Diagnostic information	STRUCT	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15)	DWORD	0
	Bit = 0: Release for maintenance		
	Bit1 Byte0: Flutter suppression		
	Bit2 to Bit7 Byte0: Reserved		
	Byte 1: Reserved		
	Byte 2: Reserved		
	Byte 3: Fluttering time		
EXT_STATx	Release for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression active	DWORD	16#0 0000 000
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACKx	Message acknowledgment (x = 1 - 2/1 - 3/1 - 4)	WORD	0
MSGSTATx	Message error information (x = $1 - 2/1 - 3/1 - 4$)	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Operating mode channel xx (xx = 00 - 07/00 - 15/00 - 23)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	De- fault
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG_PN	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN (Page 348)

Maintenance Status of MS (Page 403)

3.45.5.3 Message texts and associated values of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN

Assignment of message text and message class

Process control messages of ALARM_8P with EV_ID1 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID1	1	Module @1%d@/@2%d@/@3%d@/@6%d@: Removed	S
	2	Module @1%d@/@2%d@/@3%d@/@6%d@: Access error	S
	3	Module @1%d@/@2%d@/@3%d@/@6%d@: @5W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT@	S
	4	Module @1%d@/@2%d@/@3%d@/@6%d@: Multiple diagnostics interrupt	S
	5	Module @1%d@/@2%d@/@3%d@/@6%d@: @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@6%d@: @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@6%d@: @5W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT@	F
	8		No message

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number (message 5) of MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
5	Text number (message 3) of MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
6	Subslot number	BYTE

The process control messages of ALARM_8P with EV_ID2 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID2	1	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 00 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	2	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 01 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	3	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 02 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	4	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 03 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	5	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 04 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 05 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 06 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	8	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 07 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number from MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
5	Subslot number	BYTE

Process control messages of ALARM_8P with EV_ID3 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID3	1	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 08 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	2	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 09 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	F
	3	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 10 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	4	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 11 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	5	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 12 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 13 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 14 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	8	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 15 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number from MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
5	Subslot number	BYTE

Process control messages for ALARM_8P with EV_ID4 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID_4	1	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 16 @4W%t# MOD_D24_PN_TXT @	S
	2	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 17 @4W%t# MOD_D24_PN_TXT @	S
	3	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 18 @4W%t# MOD_D24_PN_TXT @	S
	4	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 19 @4W%t# MOD_D24_PN_TXT @	S
	5	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 20 @4W%t# MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 21 @4W%t# MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 22 @4W%t# MOD_D24_PN_TXT @	S
	8	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 23 @4W%t# MOD_D24_PN_TXT @	S

Associated values of ALARM_8P with EV_ID4

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number from MOD_D24_PN_TXT	BYTE
5	Subslot number	BYTE

For additional information, see chapter: Message Classes (Page 401).

3.45.6 MOD_D24_PN: Monitoring S7-300 SM modules with up to 24 channels and with diagnostics functions

3.45.6.1 Description of MOD_D24_PN

Object name (type + number)

FB 199

• I/Os of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN (Page 352)

Area of application

Block MOD_D24_PN monitors S7-300 SM modules with a maximum of 24 channels and with diagnostics functions.

3.45.6.2 I/Os of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
CHAN_NUM	Number of channels	INT	0
DELAY1	Alarm delay 1 (s)	INT	2
DELAY2	Alarm delay 2 (s)	INT	2
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number ALARM_8P_x $(x = 1 - 2/1 - 3/1 - 4, assigned by the ES)$	DWORD	0
FEATURE_xx	Feature parameter (xx = 01 - 04)	WORD	0
FEATURE_yy	Feature parameter (yy = 05 - 10)	DWORD	0
LADDR	Logic input address of the module	INT	0
LADDR1	Logical output address of the module (if output address is not the same as input address).	INT	0
MODE_xx	Operating mode channel xx (xx = 00 - 07/00 - 15/00 - 23)	DWORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0

Family: @System

3.45 PROFINET blocks

I/O (parameter)	Meaning	Data type	De- fault
SUBSL_NO	Subslot number	BYTE	0
SUBN_TYP	1 = external PN interface	BOOL	0
SUBN1_ID	PN IO system 1 ID (100 - 115)	BYTE	255
SUBN2_ID	PN IO system 2 ID (100 - 115)	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
CH_ACTIVE	Channel active	DWORD	16#0 0000 000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DIAG_INFx	System structure: Diagnostic information	STRUCT	0
DXCHG_xx	Bidirectional data exchange channel (xx = 00 - 15)	DWORD	0
	Bit = 0: Release for maintenance		
	Bit1 Byte0: Flutter suppression		
	Bit2 to Bit7 Byte0: Reserved		
	Byte 1: Reserved		
	Byte 2: Reserved		
	Byte 3: Fluttering time		
EXT_STATx	Release for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression active	DWORD	16#0 0000 000
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACKx	Message acknowledgment (x = 1 - 2/1 - 3/1 - 4)	WORD	0
MSGSTATx	Message error information (x = $1 - 2/1 - 3/1 - 4$)	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_xx	Operating mode channel xx (xx = 00 - 07/00 - 15/00 - 23)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	De- fault
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG_PN	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN (Page 354)

Maintenance Status of MS (Page 403)

3.45.6.3 Message texts and associated values of MOD_D8_PN/MOD_D16_PN/MOD_D24_PN

Assignment of message text and message class

Process control messages of ALARM_8P with EV_ID1 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID1	1	Module @1%d@/@2%d@/@3%d@/@6%d@: Removed	S
	2	Module @1%d@/@2%d@/@3%d@/@6%d@: Access error	S
	3	Module @1%d@/@2%d@/@3%d@/@6%d@: @5W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT@	S
	4	Module @1%d@/@2%d@/@3%d@/@6%d@: Multiple diagnostics interrupt	S
	5	Module @1%d@/@2%d@/@3%d@/@6%d@: @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@6%d@: @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@6%d@: @5W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT@	F
	8		No message

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number (message 5) of MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
5	Text number (message 3) of MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
6	Subslot number	BYTE

The process control messages of ALARM_8P with EV_ID2 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID2	1	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 00 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	2	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 01 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	3	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 02 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	4	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 03 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	5	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 04 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 05 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 06 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	8	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 07 @4W%t# MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number from MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
5	Subslot number	BYTE

Process control messages of ALARM_8P with EV_ID3 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID3	1	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 08 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	2	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 09 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	F
	3	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 10 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	4	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 11 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	5	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 12 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 13 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 14 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S
	8	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 15 @4W%t# MOD_D16_PN_TXT /MOD_D24_PN_TXT @	S

Associated values of ALARM_8P with EV_ID3

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number from MOD_D8_PN_TXT /MOD_D16_PN_TXT /MOD_D24_PN_TXT	BYTE
5	Subslot number	BYTE

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID_4	1	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 16 @4W%t# MOD_D24_PN_TXT @	S
	2	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 17 @4W%t# MOD_D24_PN_TXT @	S
	3	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 18 @4W%t# MOD_D24_PN_TXT @	S
	4	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 19 @4W%t# MOD_D24_PN_TXT @	S
	5	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 20 @4W%t# MOD_D24_PN_TXT @	S
	6	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 21 @4W%t# MOD_D24_PN_TXT @	S
	7	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 22 @4W%t# MOD_D24_PN_TXT @	S
	8	Module @1%d@/@2%d@/@3%d@/@5%d@: Error channel 23 @4W%t# MOD_D24_PN_TXT @	S

Process control messages for ALARM_8P with EV_ID4 are assigned as follows:

Associated values of ALARM_8P with EV_ID4

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Text number from MOD_D24_PN_TXT	BYTE
5	Subslot number	BYTE

For additional information, see chapter: Message Classes (Page 401).

3.45.7 MOD_HA_PN: Monitoring Device-Specific Diagnostics of HART Field Devices

3.45.7.1 Description of MOD_HA_PN

Object name (type + number)

FB 200

• I/Os of MOD_HA_PN (Page 358)

Area of application

The MOD_HA_PN module reports diagnostic events of an HART field device that is connected to a channel of an ET 200M HART module. HART modules of ET 200iS are not supported. H systems support only the modules installed in switched racks.

3.45.7.2 I/Os of MOD_HA_PN

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O	Meaning	Туре	De-
(parameter)			fault
CHAN_NO	Channel number	BYTE	0
EN_MSG	1 = enable message	BOOL	1
EV_IDx	Message number ALARM_8P_x (x = 1 - 2, assigned by the ES)	DWORD	0
LADDR	Logic address of the module	INT	0
MODE	Channel operating mode	WORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	PN IO system 1 ID (100 - 115)	BYTE	255
SUBN2_ID	PN IO system 1 ID (100 - 115)	BYTE	255

Output parameters

I/O	Meaning	Туре	De-
(parameter)			tault
CH_ACTIVE	Channel active	DWORD	16#0 0000 000
DIAG_H	Diagnostic information of HART communication channel	STRUCT	
DXCHG	Bidirectional data exchange channel Bit 0 = Release for maintenance Bits 1-31 = Reserve	DWORD	0
EXT_STAT	Release for maintenance - extended status	DWORD	0
FS_ACTIVE	Flutter suppression	DWORD	16#0 0000 000
MSG_ACK	Message acknowledgment	WORD	0
MSGSTAT	Status output of ALARM_8P_x (x = 1-2)	WORD	0
QERR	1 = program error	BOOL	1
O_MS	Maintenance status	DWORD	0
OMODE	Channel operating mode	DWORD	0
QPERAF	1 = I/O access error	BOOL	0
QREC_ERR	1 = Read diagnostic data error	BOOL	0
QREC_VAL	1 = Read diagnostic data	BOOL	0
STATUS	Read diagnostics status	DWORD	0

In-out parameters

I/O (parameter)	Meaning	Туре	De- fault
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG_PN	CPU diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections:

Message texts and associated values of MOD_HA_PN (Page 360)

Maintenance Status of MS (Page 403)

3.45.7.3 Message texts and associated values of MOD_HA_PN

Assignment of message text and message class

Process control messages of ALARM_8P with EV_ID1 are assigned as follows:

Message block	Message no.	Default message text	Message class
EV_ID1 (ALARM_8P)	1	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Communication errors	S
	2	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Error	S
	3	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Secondary var. outside range	F
	4	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Primary var. outside range	F
	5	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Analog value specified	S
	6	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Analog value saturated	S
	7	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Maintenance alarm	S
	8	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Further status available	F

Associated values of ALARM_8P with EV_ID1

Associated value	Block parameter	Data type
1	ID of the PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Channel number	BYTE
The process control messages of ALARM_8P with EV_ID2 are assigned as follows:

Message block	Message no.	Default message text	Message class
EV_ID2 (ALARM_8P)	1	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Reassignment of parameters	SA
	2	HART field device@1%d@/@2%d@/@3%d@/@4%d@: Cold restart	SA
	3		No message
	4		No message
	7		No message
	8		No message

Associated values of ALARM_8P with EV_ID2

Associated value	Block parameter	Data type
1	ID of the primary PN IO system	BYTE
2	Rack/station number	BYTE
3	Slot number	BYTE
4	Channel number	BYTE

For additional information, see chapter: Message Classes (Page 401).

3.45.8 MOD_CP_PN: Monitoring of serial communication modules

3.45.8.1 Description of MOD_CP_PN

Object name (type + number)

FB 201

• I/Os of MOD_CP_PN (Page 362)

Area of application

The MOD_CP_PN block monitors a serial communication module CP 341 or CP 441.

3.45.8.2 I/Os of MOD_CP_PN

The factory setting of the block display in CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DELAY1	Alarm delay 1 (s)	INT	2
DELAY2	Alarm delay 2 (s)	INT	2
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number ALARM_8P (assigned by the ES)	DWORD	0
LADDR	Logic address of the module	INT	0
MODE_00	Channel 1 mode	WORD	0
MODE_01	Channel 2 mode (CP 441 only)	WORD	0
MS	Maintenance status	DWORD	0
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number	BYTE	0
SUBSL_NO	Subslot number	BYTE	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	PN IO system 1 ID (100 - 115)	BYTE	255
SUBN2_ID	PN IO system 2 ID (100 - 115)	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	Default
CH_ACTIVE	Channel active	DWORD	16#000 00000
CH_EXIST	Channel exists	DWORD	0
CH_OK	Channel OK	DWORD	0
DIAG_INF	System structure: Diagnostic information	STRUCT	
MOD_INF	System structure: Module parameter	STRUCT	
MSG_ACK	Message acknowledgment	WORD	0
MSG_STAT	Message error information	WORD	0
O_MS	Maintenance status	DWORD	0
OMODE_00	Value status/channel 1 mode	DWORD	0
OMODE_01	Value status/channel 2 mode (CP 441 only)	DWORD	0
QERR	1 = program error	BOOL	1
QMODF	1 = module removed/defective	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = rack error	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_MODE	1 = accept MODE settings	BOOL	0
CPU_DIAG_PN	System structure: CPU diagnostics	STRUCT	
RAC_DIAG	System structure: Rack diagnostics	STRUCT	

Additional information

For additional information, refer to the following sections: Message texts and associated values of MOD_CP_PN (Page 364) Maintenance Status of MS (Page 403) 3.45 PROFINET blocks

3.45.8.3 Message texts and associated values of MOD_CP_PN

Assignment of message text and message class

Process control messages of ALARM_8P with EV_ID1 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID1	1	CP @1%d@/@2%d@/@3%d@: Removed	S
	2	CP @1%d@/@2%d@/@3%d@: Access error	S
	3	CP @1%d@/@2%d@/@3%d@: @4W%t#MOD_CP_TXT@	S
	4	CP @1%d@/@2%d@/@3%d@: Wrong parameter	S
	5	CP @1%d@/@2%d@/@3%d@: Wire break	S
	6	CP @1%d@/@2%d@/@3%d@/2: Wrong parameter	S
	7	CP @1%d@/@2%d@/@3%d@/2: Wire break	S
	8	CP @1%d@/@2%d@/@3%d@: Multiple diagnostic interrupt	S

Associated values of ALARM_8P with EV_ID1

Associated value	Block parameter	Meaning
1	SUBN_ID	ID of the PN IO system (bytes)
2	RACK_NO	Rack/station number (byte)
3	SLOT_NO	Slot number (byte)

The process control messages of ALARM_8P with EV_ID2 are assigned as follows:

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID2	1	Module @1%d@: Uncertain, maintenance request	S
	2	Module @1%d@: Good, maintenance required	S
	3		No message
	4		No message
	5		No message
	6		No message
	7		No message
	8		No message

Associated values of ALARM_8P with EV_ID2

Associated value	Block parameter	Meaning
1	SUBN1_ID	ID of the primary PN IO system (bytes)
2	SUBN2_ID	ID of the redundant PN IO system (SUBN2_ID) (bytes)
3	SLOT_NO	Slot number (byte)

For additional information, see chapter: Message Classes (Page 401).

3.45.9 PADP_L10_PN: Monitoring PA slaves downstream of DPV0 with up to 16 slots

3.45.9.1 Description of PADP_L10_PN

Object name (type + number)

FB 203

• I/Os of PADP_L10_PN (Page 366)

Area of application

Block PADP_L10_PN monitors DPV0 PA field devices with a maximum of 16 slots which are operated as DPV0 slaves on a DP master system, either directly or via a DP/PA coupler. The DP/PA coupler is connected downstream of an IE/PB link. The PA field devices must conform to the PROFIBUS V3.0 profile.

3.45.9.2 I/Os of PADP_L10_PN

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O	Meaning	Туре	De- fault
DADDR	Diagnostic address of the PN IO device	INT	0
EN_DIAG	1 = Queued diagnostic event	BOOL	0
MODE_xx	Mode slot (xx = 00 - 31)	WORD	0
PADP_ADR	Address of the PA field device	BYTE	0
PROF_V30	1 = PA slave profile V3.0	BOOL	0
RACK_NO	Rack number	BYTE	255
SLOT0_NO	Slot number 0 of the slave at the IE/PB link	BYTE	0
SUBN_TYP	1 = external PN interface	BOOL	0
SUBN1_ID	PN IO system 1 ID (100 - 115)	BYTE	255
SUBN2_ID	PN IO system 2 ID (100 - 115)	BYTE	255

Output parameters

1/0	Meaning	Туре	De- fault
DINFO	Diagnostic status of the PA field device	STRUCT	
EN_M_xx	Enable slot (xx = 0 - 31)	BOOL	0
OMODE_xx	Mode slot (xx = 16 - 31)	DWORD	0
PA_DIAG	PA field device diagnostic information	DWORD	0
QERR	1 = program error	BOOL	0
QMODF	1 = field device error/fault	BOOL	0
QPERAF	1 = I/O access error	BOOL	0
QRACKF	1 = Slave failure/faulty	BOOL	0

In-out parameters

1/0	Meaning	Туре	De- fault
CC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG_PN	System structure: CPU diagnostics	STRUCT	
CPU_OB_5X	OB_5x startup information	STRUCT	
RAC_DIAG	System structure: RACK diagnostics	STRUCT	

3.45.10 OB_DIAG1_PN: OB diagnostics for avoiding stoppages in DPV1 master systems

3.45.10.1 Description of OB_DIAG1_PN

Object name (type + number)

FB 202

• I/Os of OB_DIAG1_PN (Page 368)

Area of application

Block OB_DIAG1_PN monitors the failure and recovery of DP or PA slaves. The slaves can be connected to an IE/PB. To prevent the CPU stopping, OB_DIAG1_PN blocks further evaluation if a slave is defective.

3.45.10.2 I/Os of OB_DIAG1_PN

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DADDR	IE/PB link diagnostic address	INT	0
DPA_LINK	Slave connection: 0 = PN-IO Master 1 = IE/PB link	BOOL	0
EN_MSG	1 = enable message	BOOL	1
EN_MSG_D	1 = Enable message "Device failure"	BOOL	1
EV_ID	Message number ALARM_8P (assigned by the ES)	DWORD	0
LADDR	Logical basic address of the slave	INT	0
MS	Maintenance status	DWORD	0
PADP_ADR	Diagnostic address of the PN IO device	BYTE	255
RACK_NO	Rack number	BYTE	0
SLOT_NO	Slot number of the slave at the IE/PB link	BYTE	255
SUBN_TYP	1 = external PN interface	BOOL	0
SUBN1_ID	PN IO system 1 ID (100 - 115)	BYTE	255
SUBN2_ID	PN IO system 2 ID (100 - 115)	BYTE	255

Family: @System 3.45 PROFINET blocks

Output parameters

I/O (parameter)	Meaning	Data type	Default
EN_F	1 = Enable function/function block	BOOL	0
MOD_INF	System structure: Module diagnostics	STRUCT	
MSG_ACK	Message acknowledgment	WORD	0
MSG_STATx	STATUS output of ALARM_8P_x (x = 1-2)	WORD	0
O_MS	Maintenance status	DWORD	0
QRACKF	1 = Slave failure/faulty	BOOL	0
RAC_DIAG	System structure: RACK diagnostics	STRUCT	
SUBN1ACT	1 = PN IO device 1 active	BOOL	0
SUBN1ERR	1 = Error in the PN IO device 1	BOOL	0
SUBN2ACT	1 = PN IO device 2 active	BOOL	0
SUBN2ERR	1 = Error in the PN IO device 2	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG_PN	System structure: CPU diagnostics	STRUCT	
CPU_OB_5X	OB_5x start information	STRUCT	
RAC_DIAG_I	System structure: RACK diagnostics	STRUCT	
SUB_DIAG	OB startup information	STRUCT	

3.45.10.3 Message texts and associated values of OB_DIAG1_PN

Message block ALARM_8P	Message number	Default message text	Message class
EV_ID1	1	PN IO device @1%d@/ @2%d@: Redundancy loss	F
	2	PN IO device @1%d@/ @2%d@: Failure	S
	3	PN IO device @1%d@/ @2%d@/@3%d@ : Multiple failure	S
	4	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 82)	S
	5	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 55)	S
	6	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 56)	S
	7	Device @1%d@/ @2%d@/@3%d@: Multiple alarm (OB 57)	S
	8	Device @1%d@/ @2%d@/@3%d@: Failure	S

Assignment of message text and message class

Assignment of Associated Values

Associated value	Block parameter	Data type
1	ID of the primary PN IO system (SUBN1_ID)	BYTE
2	Rack/station number (RACK_NO)	BYTE
3	Slot number (SLOT_NO)	BYTE

3.45.11 DPAY_V1_PN: Enabling blocks downstream of a DP/PA and Y-link operating as a V1 Slave

3.45.11.1 Description of DPAY_V1_PN

Object name (type + number)

FB 204

• I/Os of DPAY_V1_PN (Page 371)

Area of application

The DPAY_V1_PN block releases the field device-specific blocks downstream of the IE/PB link.

The IE/PB link operates as a PA master for the lower-level PA field devices and as a slave on the IE bus.

See also

General Information About Block Description (Page 9)

3.45.11.2 I/Os of DPAY_V1_PN

The factory setting of the block display in CFC is identified in the "I/O" column:

I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	Default
DPPA_00	Information about the DP/PA slave (xx = 00 - 63)	STRUCT	
RACK_NO	Rack number	BYTE	0
SUBN1_ID	PN IO system 1 ID (100 - 115)	BYTE	255
SUBN2_ID	PN IO system 2 ID (100 - 115)	BYTE	255

3.45 PROFINET blocks

Output parameters

I/O (parameter)	Meaning	Data type	Default
EN_Mxx	1 = Enable slave (xx = 00 - 63)	BOOL	0

In-out parameters

I/O (parameter)	Meaning	Data type	Default
CPU_DIAG_PN	System structure: CPU diagnostics	STRUCT	
CPU_OB_5X	OB_5x startup information	STRUCT	

Family: @System

3.46 SUBNET: DP master system monitoring

3.46 SUBNET: DP master system monitoring

3.46.1 Description of SUBNET

Object name (type + number)

FB 106

• SUBNET block I/Os (Page 377)

Area of application

The SUBNET block is used to shorten acyclic OB processing times. Only the blocks that are actually affected can be called in the case of an acyclic event.

Calling OBs

The SUBNET block must be installed in the run sequence in the following OBs:

Cyclic program
Status interrupt (only if a DP/PA slave is required)
Update interrupt (only if a DP/PA slave is required)
Vendor-specific alarm (only if a DP/PA slave is required)
I/O redundancy error
CPU redundancy error
Power supply error
Diagnostic interrupt
Insert/remove module interrupt
Program execution error
Rack failure
Warm restart

Use in CFC

The following actions are executed automatically with the "Generate module drivers" CFC function:

- Runtime groups with driver/system blocks are created and organized by rack.
- The SUBN1_ID, SUBN2_ID and SUBN_TYP inputs are configured.
- The EN_Rxxx outputs are interconnected with the relevant blocks (e.g., RACK).
- The IN_OUT structure CPU_DIAG is interconnected with the OUT structure of the OB_BEGIN block.
- The IN_OUT structure SZL_71 is interconnected with the OUT structure of the OB_BEGIN block.
- The OUT structure SUB_DIAG is interconnected with the IN_OUT structures of the affected blocks (such as RACK).

Function and method of operation

The SUBNET block monitors a DP master system, and enables the blocks (such as RACK) for processing the connected DP slaves (such as ET 200M). Corresponding messages are generated, and the SUBN1ERR and SUBN2ERR outputs are set if a DP master system fails or loses redundancy. The SUB_DIAG output structure contains the geographic address of the DP Master system (and of DP Master system 2 in H systems), as well as the group error information SUBN0_ERR (for DP master system 1) and SUBN1_ERR (for DP master system 2). If SUBN0_ERR = 1 or SUBN1_ERR = 1, the corresponding DP master system is **not** available.

The SUBNET block is installed in each connected DP master system or in the OBs listed above once for the local I/O devices. It is enabled by OB_BEGIN. Start and diagnostic information is read from the CPU_DIAG structure. It is interconnected with the CPU_DIAG structure of the OB_BEGIN. The SUBNET block is assigned one enable output for each connectable rack or DP Master system (for each expansion rack for central I/Os). It uses the start information of the calling OB to determine whether the reported event occurred at its DP master (or at the central I/O), and then sets the output for the affected rack or DP master system (EN_Rxxx).

If redundant DP master systems are used (for H CPUs only), a rack (such as ET 200M) is connected to the two DP masters, and is assigned the same station number at both. The SUBNET block has two input parameters (SUBNx_ID), and the type identifier SUBN_TYP for this function. If the integrated interface of the CPU module is the DP master, SUBN_TYP = FALSE, otherwise SUBN_TYP = TRUE.

The MASTER_0 and MASTER_1 outputs indicate which CPU is currently the master.

If a DP master fails, the system sets all EN_Rxxx = TRUE, and reports a redundancy loss or failure. The return of redundancy or the DP master is reported when a failed DP slave has reestablished the connection.

The status of the DP master system, the set SUBNx_ID and type identifier are saved in the output structure SUB_DIAG.

If a "power supply error" (OB 81) event occurs, the SUBNET block will enable only those RACK blocks that are expansion racks, which is indicated by SUBNx_ID = 0.

Note: If you want to change the SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs online, you must set input ACC_ID = TRUE. to update the output values.

Redundancy

The SUBNET block supports redundancy of DP master systems of the 414-H/417-H CPU if distributed I/Os are used. To use this function, you must configure the SUBN1_ID (connection to CPU 0) and SUBN2_ID (connection to CPU 1) inputs with the numbers of the redundant DP master systems. If there is no redundancy, the remaining input must be assigned the value 16#FF (default).

Error handling

Error handling for the block is limited to the evaluation of the error information of ALARM_8P. You will find additional information about error handling in "Error information of output parameter MSG_STAT (Page 398)".

Startup/initial startup behavior

The SUBNET block initializes the messages of ALARM_8P.

The operating mode of the DP Master system is checked, and entered in the SUB_DIAG.V1_MODE structure with SSL 0X90H (0 = compatibility mode, 1 = DPV1 mode). If DPV1 mode is active, the CPU_DIAG.MODE_V1 structure is also set to TRUE.

Overload behavior

The SUBNET block counts the OB 86 calls (failures only). The counter is reset in OB1. If more than two OB 86 failure events occur in succession before the cycle control point (OB1) is reached, these are rejected and a message "Failure OB 86 DP master system:x" is output. If an OB 86 call is rejected, the DP master system is registered as having failed.

Time response

Not available

Message response

After being called by an OB 86, OB 70 and OB 72, the block analyzes the status of its assigned DP master system, and generates the relevant messages for redundancy loss or DP master system failure by broadcasting an ALARM_8P. The message function can be disabled by setting EN_MSG = FALSE.

The SUBNET block generally reports only events triggered in the DP master system it monitors.

Exception: If a CPU fails in the H system, the following messages are generated:

- in a non-redundant DP master system: "DP master failure" message
- in a redundant DP master system: "DP master redundancy loss" message

Operator control and monitoring

Note: If you selected the "OCM possible" option in the block object properties in the CFC, the variables transferred to the OS are identified under "I/Os of ..." (OCM column, "+"). Default: Option not activated.

If asset management is used in the project and the diagnostic screens have been generated, the faceplate can be called via its block icon.

For more information, refer to the "Process Control System PCS 7; Maintenance Station" manual.

Additional information

For additional information, refer to the following sections:

Message Texts and associated values of SUBNET (Page 379)

Maintenance status of MS (Page 403)

3.46.2 I/Os of SUBNET

The factory setting of the block display in the CFC is identified in the "I/O" column: I/O name **bold** = I/O visible, I/O name normal = I/O not visible.

You will find explanations of and information on abbreviations in the section: "General Information About Block Description (Page 9)".

Input parameters

I/O (parameter)	Meaning	Data type	De- fault
EN_MSG	1 = enable message	BOOL	1
EV_ID	Message number	DWORD	0
MS	Maintenance status	DWORD	0
SUBN_TYP	1 = external DP interface	BOOL	0
SUBN1_ID	ID of the primary DP master system	BYTE	255
SUBN2_ID	ID of the redundant DP master system	BYTE	255

Output parameters

I/O (parameter)	Meaning	Data type	De- fault
EN_Rxxx	1 = Enable rack (xxx = 0 - 127)	BOOL	0
MASTER_0	1 = Master CPU in rack 0	BOOL	0
MASTER_1	1 = Master CPU in rack 1	BOOL	0
MSG_STAT	Message error information	WORD	0
O_MS	Maintenance status	DWORD	0
SUB_DIAG	System structure: CPU diagnostics	STRUCT	
SUBN1ERR	1 = Error in DP master system 1	BOOL	0
SUBN2ERR	1 = Error in DP master system 2	BOOL	0

Family: @System

3.46 SUBNET: DP master system monitoring

In-out parameters

I/O (parameter)	Meaning	Data type	De- fault
ACC_ID	1 = accept MODE settings	BOOL	0
CPU_DIAG	CPU diagnostics	STRUCT	
CPU_OB_5X	OB_5x startup information	STRUCT	
SZL_71	System structure SZL71	STRUCT	

Note

The maximum number of racks is determined by the address volume of PROFIBUS. All available CPUs can thus be used. The entire address volume is used by the CPU 417-4.

Additional information

For additional information, refer to the following sections: Message Texts and associated values of SUBNET (Page 379) Maintenance status of MS (Page 403)

3.46.3 Message texts and associated values of SUBNET

Assignment of message text and message class

Message no.	Default message text	Message class
1	DP master @1%d@: Redundancy loss	F
2	DP master @2%d@: Redundancy loss	F
3	DP master @1%d@: Failure	S
4	DP master @2%d@: Failure	S
5	DP master @2%d@: Multiple failure	S
6	CPU loss of redundancy in rack @4%d@	F

Assignment of associated values

Associated value	Block parameters
1	ID of the primary DP master system (SUBN1_ID)
2	ID of the redundant DP master system (SUBN2_ID)
3	Multiple failure, ID of DP master system

See also

Message Classes (Page 401)

Family: @System

3.46 SUBNET: DP master system monitoring

Internal block

4.1 ChkREAL: Internal Block

Object name (type + number)

FC260

This block is a system block and is only used internally. There is therefore no help available for it.

4.2 QC_CHNG: Internal block

Object name (type + number)

FB 135

This block is a system block and is only used internally. There is therefore no help available for it.

Internal block

4.2 QC_CHNG: Internal block

Appendix

5.1 "Blocks - basic library" technical data

Overview

The table below contains the technical data for the blocks. The table columns have the following meanings:

• Block type name

The symbolic identifier in the symbol table of the library for the relevant FB or FC. Must be unique within the project.

• Object name

Consists of the block type (FB, FC) and number.

• Typical execution time

CPU runtime for processing the corresponding block program under normal circumstances (for example, for a driver, this is the execution time in the cyclic interrupt OB (OB3x), without generation of a channel error message).

The table below shows the runtime of blocks in a 417-4 CPU. The block runtime on other CPUs depends on the CPU performance.

Block length in load/work memory

Memory requirements of the program code, once for each block type.

• Length of instance data in load/work memory

Memory requirement of an instance DB.

Temporary memory

The local-data memory required in a priority class when the block is called. This limit is CPU specific. When it is exceeded, you have to check the CPU configuration in the local-data memory and, if necessary, distribute it amongst the OBs to meet the actual requirements.

• Multiple instance block

The specified blocks are used by the block concerned, and must exist in the user program. They can be found in the same library.

5.1 "Blocks - basic library" technical data

Block (Type name)	FB/FC no.	Typical run time CPU 417-4 (μs)	Block length in load/work memory (bytes)	Length of the instance data in the load/work memory (bytes)	Temporary memory (bytes)	Multiple instance block
ChkREAL	FC 260					
CONEC	FB 88	98	10266 / 8642	1186 / 340	84	16 x SFB 35
CPU_RT	FB 128	67	31434 / 27370	2800 / 1784	86	
DIAG_AB	FB 414					
DPAY_V0	FB 108	159	1792 / 1202	542 / 70	22	
DPAY_V1	FB 115	155	11206 / 8506	3588 / 1388	136	SFB 35
DPDIAGV0	FB 117	115	3980 / 2184	1800 / 194	66	
DREP	FB 113	19	4202 / 3038	1296 / 366	124	
DREP_L	FB 125	20	6578 / 5358	1406 / 486	52	2 x SFB 35
FM_CNT	FB 126	36	1496 / 1060	546 / 140	10	
FM_CO	FB 79	18	3132 / 1780	1732 / 566	46	
IMDRV_TS	FB 129					
MOD_1	FB 91	91	13202/ 10498	5946 / 4060	116	16 x SFB 35
MOD_2	FB 92	91	4912 / 3862	1120 / 346	68	SFB 35
MOD_3	FB 95	91	4984 / 3868	1280 / 442	66	SFB 35
MOD_4	FB 119	16	4988 / 3872	1288 / 448	66	SFB 35
MOD_64	FB 137					SFB 35
MOD_CP	FB 98	104	3496 / 2540	1108 / 346	52	SFB 35
MOD_D1	FB 93	96	6850 / 5622	1186 / 340	80	SFB 35
MOD_D2	FB 94	97	12552 / 10752	1818 / 700	86	3 x SFB 35
MOD_D3	FB 134	103	13432 / 11442	3958 / 2164	90	3 x SFB 35
MOD_HA	FB 97	18	10836 / 8938	2440 / 1090	82	5 x SFB 35
MOD_MS	FB 96	99	5442 / 4282	1356 / 464	54	SFB 35
MOD_PAL0	FB 99	169	7758 / 6322	1814 / 740	84	2 x SFB 35
MOD_PAX0	FB 112	112	4470 / 3746	1006 / 490	50	2 x SFB 35 SFB 52
MODB_341	FB 80	594	4388 / 3666	1012 / 490	54	2 x SFB 35
OB_BEGIN	FB 100	158	3012 / 2268	1206 / 630	120	
OB_DIAG1	FB 118	23	10886 / 8924	1690 / 306	116	SFB 35 SFB 52
OB_END	FC 280	4	514 / 86	-/-	4	
OR_HA16C	FB 133	181	8492 / 6972	2362 / 1146	70	5 x SFB 35
OR_M_16	FB 81	181	3682 / 2736	1176 / 410	50	SFB 35
OR_M_16C	FB 84	183	8010 / 6516	2356 / 1146	70	SFB 35
OR_M_32	FB 82	268	3778 / 2736	1464 / 602	50	SFB 35
OR_M_32C	FB 85	374	12618 / 10436	3958 / 2164	70	9 x SFB 35
OR_M_8C	FB 83	94	5926 / 4730	1656 / 698	70	
PADP_L00	FB 109	15	3526 / 2690	904 / 262	40	SFB 35

Appendix

5.1 "Blocks - basic library" technical data

Block (Type name)	FB/FC no.	Typical run time CPU 417-4 (μs)	Block length in load/work memory (bytes)	Length of the instance data in the load/work memory (bytes)	Temporary memory (bytes)	Multiple instance block
PADP_L01	FB 110	19	4642 / 3600	1410 / 578	40	3 x SFB 35
PADP_L02	FB 111	23	6170 / 4890	201 / 954	40	5 x SFB 35
PADP_L10	FB 116	80	4998 / 3516	1460 / 228	56	SFB 52
PO_UPDAT	FC 279		328 / 256	- / -	10	
PS	FB 89	12	3062 / 2226	816 / 196	74	
QC_CHNG	FB 135					
RACK	FB 107	102	822 / 7484	1102 / 248	102	SFB 35
REC_BO	FB 208	69	3246 / 2356	992 / 128	2	SFB 13
REC_R	FB 210	69	1838 / 1332	956 / 476	2	SFB 13
RED_F	FC 289	41	5234 / 5020	-/-	24	
SEND_BO	FB 207	163	2298 / 1668	718 / 110	2	SFB 12
SEND_R	FB 209	195	4486 / 3886	908 / 478	2	SFB 12
SUBNET	FB 106	308	6800 / 4920	1736 / 234	112	SFB 35

5.2 MODE settings for FF devices

5.2 MODE settings for FF devices

MODE_xx input parameters are available for up to 32 values of a FF field device.

Block	I/O (parameters) (cyclic data) permitted combinations and sequence	Input (I)/Output (O) (PLS view)	MODE 16#xxyy O=xx, I=yy
Analog input (FbAnIn)	OUT	1	16#0001
Analog output (FbAnOu)	SP	0	16#0100
Discrete input (FbDiln)	OUT_D	1	16#0002
Discrete output (FbDiOu)	SP_D	0	16#0400

5.3 MODE settings for SM modules

Measuring range coding of the analog input modules

Depending on the measuring-range coding of the analog input modules, the parameter MODE_xx (measuring-range coding) corresponding to the channel must be specified in accordance with the table. When thermocouples are used there are various options for combining the measuring type (coding A) with the measuring range (coding B). In this case, the MODE_xx parameter must be calculated according to the following formula and the result written to the MODE input as an INTEGER value: Measuring range coding = 256 * coding A + coding B

Please note: The table shows codes **A** and **B** in binary format, and as the result the measuring range coding as a hexadecimal number.

Measuring type	Coding (A)	Measuring range	Code (B)	MODE (256*A+B)
Deactivated				16#0000
Voltage	2#0001	± 25 mV	2#1010	16#010A
		± 50 mV	2#1011	16#010B
		± 80 mV	2#0001	16#0101
		± 250 mV	2#0010	16#0102
		± 500 mV	2#0011	16#0103
		± 1 V	2#0100	16#0104
		± 2.5 V	2#0101	16#0105
		± 5 V	2#0110	16#0106
		1 V to 5 V	2#0111	16#0107
		0 to 10 V	2#1000	16#0108
		± 10 V	2#1001	16#0109
		± 100 mV	2#1100	16#010C
4-wire measuring transducer	2#0010	±3.2 mA	2#0000	16#0200
		± 5 mA	2#0101	16#0205
		± 10 mA	2#0001	16#0201
		0 mA to 20 mA	2#0010	16#0202
		4 mA to 20 mA	2#0011	16#0203
		± 20 mA	2#0100	16#0204
HART interface	2#0111	4 to 20 mA (variant 0) OMODE settings for SM modules (Page 396)	2#1100	16#070C
2-wire measuring transducer	2#0011	0 mA to 20 mA ¹	2#0010	16#0302
		4 to 20 mA	2#0011	16#0303
		± 20 mA	2#0100	16#0304

Appendix

Measuring type	Coding (A)	Measuring range	Code (B)	MODE (256*A+B)
Resistor 4-wire connection	2#0100	48 Ω	2#0000	16#0400
		150 Ω	2#0010	16#0402
		300 Ω	2#0100	16#0404
		600 Ω	2#0110	16#0406
		1000 Ω	2#0111	16#040E
		3000 Ω	2#0111	16#0407
		6000 Ω	2#1000	16#0408
		PTC	2#1111	16#040F
Resistor 3-wire connection	2#0101	48 Ω	2#0000	16#0500
		150 Ω	2#0010	16#0502
		300 Ω	2#0100	16#0504
		600 Ω	2#0110	16#0506
		1000 Ω	2#0111	16#050E
		3000 Ω	2#0111	16#0507
		6000 Ω	2#1000	16#0508
		PTC	2#1111	16#050F
Resistor 2-wire connection	2#0110	48 Ω	2#0000	16#0600
		150 Ω	2#0010	16#0602
		300 Ω	2#0100	16#0604
		600 Ω	2#0110	16#0606
		1000 Ω	2#0111	16#060E
		3000 Ω	2#0111	16#0607
		6000 Ω	2#1000	16#0608
		PTC	2#1111	16#060F
Thermocouple + linear, 4-wire connection	2#1000	Pt 100 climate range	2#0000	16#0800
		Pt 200 climate range	2#0111	16#0807
		Pt 500 climate range	2#1000	16#0808
		Pt 1000 climate range	2#1001	16#0809
		Ni 100 climate range	2#0001	16#0801
		Ni 1000/LG-Ni 1000 climatic range	2#1010	16#080A
		Pt 100 standard range	2#0010	16#0802
		Pt 200 standard range	2#0011	16#0803
		Pt 500 standard range	2#0100	16#0804
		Pt 1000 standard range	2#0101	16#0805
		Ni 100 standard range	2#1011	16#080B
		Ni 1000/LG-Ni 1000 standard range	2#0110	16#0806
		Ni 120 standard range	2#1100	16#080C
		Ni 120 climate range	2#1101	16#080D
		Cu 10 climate range	2#1110	16#080E

Appendix

Measuring type	Coding (A)	Measuring range	Code (B)	MODE (256*A+B)
		Cu 10 standard range	2#1111	16#080F
		Ni 200 standard range	2#10000	16#0810
		Ni 200 climate range	2#10001	16#0811
		Ni 500 standard range	2#10010	16#0812
		Ni 500 climate range	2#10011	16#0813
		Pt 10 GOST climatic	2#10100	16#0814
		Pt 10 GOST standard (TC = 3910)	2#10101	16#0815
		Pt 50 GOST climatic	2#10110	16#0816
		Pt 50 GOST standard (TC = 3910)	2#10111	16#0817
		Pt 100 GOST climatic	2#11000	16#0818
		Pt 100 GOST standard (TC = 3910)	2#11001	16#0819
		Pt 500 GOST climatic	2#11010	16#081A
		Pt 500 GOST standard (TC = 3910)	2#11011	16#081B
		Cu 10 GOST climatic	2#11100	16#081C
		Cu 10 GOST standard (TC = 426)	2#11101	16#081D
		Cu 50 GOST climatic	2#11110	16#081E
		Cu 50 GOST standard (TC = 426)	2#11111	16#081F
		Cu 100 GOST climatic	2#100000	16#0820
		Cu 100 GOST standard (TC = 426)	2#100001	16#0821
		Ni 100 GOST climatic	2#100010	16#0822
		Ni 100 GOST standard	2#100011	16#0823
		Pt 10 GOST standard (TC = 3850)	2#1010101	16#0855
		Pt 50 GOST standard (TC = 3850)	2#1010111	16#0857
		Pt 100 GOST standard (TC = 3850)	2#1011001	16#0859
		Pt 500 GOST standard (TC = 3850)	2#1011011	16#085B
		Cu 10 GOST standard (TC = 428)	2#10011101	16#089D
		Cu 50 GOST standard (TC = 428)	2#10011111	16#089F
		Cu 100 GOST standard (TC = 428)	2#10100001	16#08A1

Appendix

Measuring type	Coding (A)	Measuring range	Code (B)	MODE (256*A+B)
Thermocouple + linear, 3-wire connection	2#1001	Pt 100 climate range	2#0000	16#0900
		Pt 200 climate range	2#0111	16#0907
		Pt 500 climate range	2#1000	16#0908
		Pt 1000 climate range	2#1001	16#0909
		Ni 100 climate range	2#0001	16#0901
		Ni 1000/LG-Ni 1000 climatic range	2#1010	16#090A
		Pt 100 standard range	2#0010	16#0902
		Pt 200 standard range	2#0011	16#0903
		Pt 500 standard range	2#0100	16#0904
		Pt 1000 standard range	2#0101	16#0905
		Ni 100 standard range	2#1011	16#090B
		Ni 1000/LG-Ni 1000 standard range	2#0110	16#0906
		Ni 120 standard range (variant 0)	2#1100	16#090C
		KTY83/110 (variant 1) OMODE settings for SM modules (Page 396)		
		Ni 120 climate range (variant 0) KTY84/130 (variant 1) OMODE settings for SM modules (Page 396)	2#1101	16#090D
		Cu10 climate range	2#1110	16#090E
		Cu10 standard range	2#1111	16#090F
		Ni 200 standard range	2#10000	16#0910
		Ni 200 climate range	2#10001	16#0911
		Ni 500 standard range	2#10010	16#0912
		Ni 500 climate range	2#10011	16#0913
		Pt 10 GOST climatic	2#10100	16#0914
		Pt 10 GOST standard (TC = 3910)	2#10101	16#0915
		Pt 50 GOST climatic	2#10110	16#0916
		Pt 50 GOST standard (TC = 3910)	2#10111	16#0917
		Pt 100 GOST climatic	2#11000	16#0918
		Pt 100 GOST standard (TC = 3910)	2#11001	16#0919
		Pt 500 GOST climatic	2#11010	16#091A
		Pt 500 GOST standard (TC = 3910)	2#11011	16#091B
		Cu 10 GOST climatic	2#11100	16#091C

Appendix

Measuring type	Coding (A)	Measuring range	Code (B)	MODE (256*A+B)
		Cu 10 GOST standard (TC = 426)	2#11101	16#091D
		Cu 50 GOST climatic	2#11110	16#091E
		Cu 50 GOST standard (TC = 426)	2#11111	16#091F
		Cu 100 GOST climatic	2#100000	16#0920
		Cu 100 GOST standard (TC = 426)	2#100001	16#0921
		Ni 100 GOST climatic	2#100010	16#0922
		Ni 100 GOST standard	2#100011	16#0923
		Pt 10 GOST standard (TC = 3850)	2#1010101	16#0955
		Pt 50 GOST standard (TC = 3850)	2#1010111	16#0957
		Pt 100 GOST standard (TC = 3850)	2#1011001	16#0959
		Pt 500 GOST standard (TC = 3850)	2#1011011	16#095B
		Cu 10 GOST standard (TC = 428)	2#10011101	16#099D
		Cu 50 GOST standard (TC = 428)	2#10011111	16#099F
		Cu 100 GOST standard (TC = 428)	2#10100001	16#09A1
Thermocouple + linear, 2-wire connection	2#1111	Pt 100 climate range	2#0000	16#0F00
		Pt 200 climate range	2#0111	16#0F07
		Pt 500 climate range	2#1000	16#0F08
		Pt 1000 climate range	2#1001	16#0F09
		Ni 100 climate range	2#0001	16#0F01
		Ni 1000/LG-Ni 1000 climatic range	2#1010	16#0F0A
		Pt 100 standard range	2#0010	16#0F02
		Pt 200 standard range	2#0011	16#0F03
		Pt 500 standard range	2#0100	16#0F04
		Pt 1000 standard range	2#0101	16#0F05
		Ni 100 standard range	2#1011	16#0F0B
		Ni 1000/LG-Ni 1000 standard range	2#0110	16#0F06
		Ni 120 standard range	2#1100	16#0F0C
		Ni 120 climate range	2#1101	16#0F0D
		Cu10 climate range	2#1110	16#0F0E
		Cu10 standard range	2#1111	16#0F0F
		Ni 200 standard range	2#10000	16#0F10

Appendix

Measuring type	Coding (A)	Measuring range	Code (B)	MODE (256*A+B)
		Ni 200 climate range	2#10001	16#0F11
		Ni 500 standard range	2#10010	16#0F12
		Ni 500 climate range	2#10011	16#0F13
Thermocouple, linear, reference temperature 0 °C / no reference point	2#1010	Type B [PtRh-PtRh]	2#0000	16#0A00
		Type N [NiCrSi-NiSi]	2#0001	16#0A01
		Type E [NiCr-CuNi]	2#0010	16#0A02
		Type R [PtRh-Pt]	2#0011	16#0A03
		Type S [PtRh-Pt]	2#0100	16#0A04
		Type J [Fe-CuNi IEC]	2#0101	16#0A05
		Type L [Fe-CuNi DIN]	2#0110	16#0A06
		Type T [Cu-CuNi IEC]	2#0111	16#0A07
		Type K [NiCr-Ni]	2#1000	16#0A08
		Type U [Cu-CuNi DIN]	2#1001	16#0A09
		Туре С	2#1010	16#0A0A
		Type TXK/XK(L)	2#1011	16#0A0B
Thermocouple, linear, reference temperature 50 °C	2#1011	Type B [PtRh-PtRh]	2#0000	16#0B00
		Type N [NiCrSi-NiSi]	2#0001	16#0B01
		Type E [NiCr-CuNi]	2#0010	16#0B02
		Type R [PtRh-Pt]	2#0011	16#0B03
		Type S [PtRh-Pt]	2#0100	16#0B04
		Type J [Fe-CuNi IEC]	2#0101	16#0B05
		Type L [Fe-CuNi DIN]	2#0110	16#0B06
		Type T [Cu-CuNi IEC]	2#0111	16#0B07
		Type K [NiCr-Ni]	2#1000	16#0B08
		Type U [Cu-CuNi DIN]	2#1001	16#0B09
		Туре С	2#1010	16#0B0A
		Type TXK/XK(L)	2#1011	16#0B0B
Themocouple, fix. ref. temp	2#1100	Type B [PtRh-PtRh]	2#0000	16#0C00
		Type N [NiCrSi-NiSi]	2#0001	16#0C01
		Type E [NiCr-CuNi]	2#0010	16#0C02
		Type R [PtRh-Pt]	2#0011	16#0C03
		Type S [PtRh-Pt]	2#0100	16#0C04
		Type J [Fe-CuNi IEC]	2#0101	16#0C05
		Type L [Fe-CuNi DIN]	2#0110	16#0C06
		Type T [Cu-CuNi IEC]	2#0111	16#0C07
		Type K [NiCr-Ni]	2#1000	16#0C08

Appendix

Measuring type	Coding (A)	Measuring range	Code (B)	MODE (256*A+B)
Thermocouple, linear, internal compensation / internal reference point	2#1101	Type B [PtRh-PtRh]	2#0000	16#0D00
		Type N [NiCrSi-NiSi]	2#0001	16#0D01
		Type E [NiCr-CuNi]	2#0010	16#0D02
		Type R [PtRh-Pt]	2#0011	16#0D03
		Type S [PtRh-Pt]	2#0100	16#0D04
		Type J [Fe-CuNi IEC]	2#0101	16#0D05
		Type L [Fe-CuNi DIN]	2#0110	16#0D06
		Type T [Cu-CuNi IEC]	2#0111	16#0D07
		Type K [NiCr-Ni]	2#1000	16#0D08
		Type U [Cu-CuNi DIN]	2#1001	16#0D09
		Type C	2#1010	16#0D0A
		Type TXK/XK(L)	2#1011	16#0D0B
Thermocouple, linear, external compensation / reference point RTD(0)	2#1110	Type B [PtRh-PtRh]	2#0000	16#0E00
		Type N [NiCrSi-NiSi]	2#0001	16#0E01
		Type E [NiCr-CuNi]	2#0010	16#0E02
		Type R [PtRh-Pt]	2#0011	16#0E03
		Type S [PtRh-Pt]	2#0100	16#0E04
		Type J [Fe-CuNi IEC]	2#0101	16#0E05
		Type L [Fe-CuNi DIN]	2#0110	16#0E06
		Type T [Cu-CuNi IEC]	2#0111	16#0E07
		Type K [NiCr-Ni]	2#1000	16#0E08
		Type U [Cu-CuNi DIN]	2#1001	16#0E09
		Туре С	2#1010	16#0E0A
		Type TXK/XK(L)	2#1011	16#0E0B
Themocouple, dyn. ref. temp	2#0111	Type B [PtRh-PtRh] (variant 1) OMODE settings for SM modules (Page 396)	2#0000	16#0700
		Type N [NiCrSi-NiSi] (variant 1) OMODE settings for SM modules (Page 396)	2#0001	16#0701
		Type E [NiCr-CuNi] (variant 1) OMODE settings for SM modules (Page 396)	2#0010	16#0702
		Type R [PtRh-Pt] (variant 1) OMODE settings for SM modules (Page 396)	2#0011	16#0703

Appendix

5.3 MODE settings for SM modules

Measuring type	Coding Measuring range (A)		Code (B)	MODE (256*A+B)
		Type S [PtRh-Pt] (variant 1) OMODE settings for SM modules (Page 396)	2#0100	16#0704
		Type J [Fe-CuNi IEC] (variant 1) OMODE settings for SM modules (Page 396)	2#0101	16#0705
		Type L [Fe-CuNi DIN] (variant 1) OMODE settings for SM modules (Page 396)	2#0110	16#0706
		Type T [Cu-CuNi IEC] (variant 1) OMODE settings for SM modules (Page 396)	2#0111	16#0707
		Type K [NiCr-Ni] (variant 1) OMODE settings for SM modules (Page 396)	2#1000	16#0708

¹: This measuring range is only supported by F channel blocks.

Effect of the temperature coefficients on the measuring range

- Setting TC = 3850 at GOST Standard Pt10, Pt50, Pt100, Pt500 sets Bit 7 in the measuring range byte (0x40)
- Setting TC = 428 at GOST Standard Cu10, Cu50, Cu100 sets Bit 8 in the measuring range byte (0x80)

Measuring range coding of the analog output modules

Depending on the measuring-range coding of the analog output modules, the parameter MODE_xx (measuring-range coding) corresponding to the channel must be specified in accordance with the table.

Measuring type	Measuring range	MODE
Voltage	± 5 V	16#0106
	1 to 5 V	16#0107
	0 to 10 V	16#0108
	± 10 V	16#0109
Current	0 mA to 20 mA	16#0202
	4 to 20 mA	16#0203
	± 20 mA	16#0204
HART interface	4 mA to 20 mA	16#070C

5.5 MODE Settings for Sin modul

Measuring-Range Coding of the Digital Input and Output Modules

With digital input modules and digital output modules, there is no measuring type and no measuring range: MODE = 16#FFFF (with DI) MODE = 16#FFFE (with DO)

Measuring range coding of the controller module

There is no measuring type and no measuring range for controller modules:

MODE = 16#FFFD

5.4 OMODE settings for SM modules

5.4 OMODE settings for SM modules

OMODE structure

The table below shows the structure and meaning of the outputs OMODE_xx of data type DWORD:

Byte 3:	16#80: Value status "valid value"	
	16#00: Value status "invalid value"	(Channel error)
	16#40: Value status "invalid value"	(Higher-level error)
Byte 2:	16#01: Restart (OB 100) has been carried out	
	16#02: Measuring-range overshoot	(Channel-error diagnostics)
	16#04: Measuring range low limit exceeded	(Channel-error diagnostics)
	16#xy: Variant identifier at multiple MODE_ assignment (see below)	
Byte 1, 0 (low word):	MODE (see above)	

Example:

16#80010203 = value status "valid value", restart has been carried out, current 4 mA to 20mA

Mode: 16#090C and variant

Variant	x	у	Measuring range
0	0	0,1,2,4	Ni 120 standard range
1	1	0,1,2,4	KTY84/110

Mode: 16#090D and variant

Variant	x	у	Measuring range
0	0	0,1,2,4	Ni 120 climate range
1	1	0,1,2,4	KTY84/130

Mode: 16#07 (Coding A) and variant

Variant	x	у	Measuring range
0	0	0,1,2,4	HART interface
1	1	0,1,2,4	Thermocouple, dynamic reference temperature
5.5 MODE settings for PA devices

MODE_xx input parameters are available for a maximum of 32 slots of a PA field device. Their initial value is zero (no read/write access). You must set the combination selected from the options of the PROFIBUS PA 3.0 profile at the MODE_xx input of each slot channel xx:

Block	I/O (parameters) (cyclic data)	Input (I)/Output (O)	MODE 16#xxyy, O=xx I=yy
	permissible combination and sequence	(PLS view)	
Analog input (PA_AI)	OUT	1	16#0001
Totalizer (PA_TOT)	TOTAL	1	16#000F
Totalizer (PA_TOT)	TOTAL SET_TOT	I 0	16#070F
Totalizer (PA_TOT)	TOTAL SET_TOT MODE_TOT	I O O	16#080F
Analog output (PA_AO)	SP	0	16#0100
Analog output (PA_AO)	SP READBACK POS_D	0 	16#0103
Analog output (PA_AO)	SP CHECK_BACK	0 I	16#0104
Analog output (PA_AO)	SP READBACK POS_D CHECK_BACK	0 	16#0105
Analog output (PA_AO)	RCAS_IN, RCAS_OUT	0 I	16#0206
Analog output (PA_AO)	RCAS_IN, RCAS_OUT, CHECK_BACK	0 	16#0207
Analog output (PA_AO)	SP RCAS_IN READBACK RCAS_OUT POS_D CHECK_BACK	0 0 1 1 1 1	16#0308
Discrete input (PA_DI)	OUT_D	1	16#0002
Discrete output (PA_DO)	SP_D	0	16#0400
Discrete output (PA_DO)	SP_D READBACK_D	0 I	16#0409
Discrete output (PA_DO)	SP_D CHECKBACK_D	0 I	16#040A
Discrete output (PA_DO)	SP_D READBACK_D CHECK_BACK_D	0 	16#040B
Discrete output (PA_DO)	RCAS_IN_D RCAS_OUT_D	0 I	16#050C

5.6 Error Information of Output Parameter MSG_STAT

Block	I/O (parameters) (cyclic data) permissible combination and sequence	Input (I)/Output (O) (PLS view)	MODE 16#xxyy, O=xx I=yy
Discrete output (PA_DO)	RCAS_IN_D RCAS_OUT_D CHECK_BACK_D	0 	16#050D
Discrete output (PA_DO)	SP_D RCAS_IN_D READBACK_D RCAS_OUT_D CHECK_BACK_D	0 0 1 1	16#060E

5.6 Error Information of Output Parameter MSG_STAT

The messages can be disabled by setting input EN_MSG = FALSE (output MSG_STAT(_x) remains unchanged).

Block ALARM8_P(_x) is called in the acyclic OBs and in OB1 if message suppression is not enabled. Error information of ALARM_8P(_x) - messages cannot be output - is indicated at output parameter $MSG_STAT(_x)$.

Details on the error information of output parameter MSG_STAT and on the acknowledgment word MSG_ACK(_x) of ALARM_8P are found in the Online Help of SF B35 (ALARM_8P).

5.7 Addressing

Rules

If you do not use the CFC function "Generate module drivers", you must set the logical basic address of the module created with HW Config at the LADDR input parameter. If input SUBN_TYP = FALSE, the RACK of the module is connected to an integrated DP interface (distributed I/O device interface) of the CPU module by means of a line. Otherwise, you must set SUBN_TYP = TRUE.

The following points are generally to be observed for all SM, PA and FF blocks:

 The basic address of modules equipped only with inputs, i.e., modules which only write data to the input range of the CPU process image, can be fetched directly from HW Config;

for example: The module SM 331 AI 8x12Bit 6ES7 331-7KF01-0AB0:

Address input range	Address output range	LADDR
(HW Config)	(HW Config)	(decimal/hex)
512	-	512 / 16#0200

 The MSB (most significant bit) must be set in the basic address fetched from HW Config for modules equipped only with outputs, which means modules which only read data from the output range of the CPU process image; for example, module SM 332 AO 4x12Bit 6ES7 332-5HD01-0AB0:

Address input range	Address output range	LADDR
(HW Config)	(HW Config)	(decimal/hex)
-	512	-32256 / 16#8200

 The basic address of the input range must be set at input LADDR and the basic address of the output range from HW Config must be set at input LADDR1 for mixed modules, which means modules that write data to the input range and read data from the output range of the CPU process image;
 for example, module SM 222 DVO \$224V/054 6ES7 222 18H81 0440;

for example, module SM 323 DI/O 8x24V/05A 6ES7 323-1BH81-0AA0:

Address input range	Address output range	LADDR	LADDR1
(HW Config)	(HW Config)	(decimal/hex)	(decimal/hex)
12	12	12 / 16# 000C	12 / 16# 000C

5.7 Addressing

- For FF devices which only write data to the input range of the CPU process image, the lowest input address should be fetched from HW Config.
- For FF devices which only write data to the output range of the CPU process image, the lowest output address from HW Config should be set.
- For FF devices which write the data in the input range of the CPU process image and read from the output range of the CPU process image, you must set the lowest address of the input/output range from HW Config at the DADDR input.

Address input range (HW Config)	Address output range (HW Config)	DADDR (decimal/hex)
512	-	512
	512	16896 (16384 + 512)/ 16#4200
512	516	512
512	512	512
516	512	16896 (16384 + 512) / 16#4200

5.8 Message Classes

Message classes

Message classes are used to group messages according to their cause. The following message classes are used in the SIMATIC process control system:

- Process messages triggered when process-specific monitoring values (for example, alarms, warnings, high/low tolerances, general process messages) are reached or exceeded.
- Process-control messages; output by the control system (system messages) or the I/O units (errors in the field), or for preventive maintenance.
- Requests for operator input which, in the case of certain operation sequences, draw the
 operator's attention to the necessity of an operator intervention (for example, request to
 acknowledge a stepping operation manually in order to enable transition) or operation
 logs.

Message class	Meaning	With acknowledgment
AH	Alarm high (High High Alarm)	Yes
AL	Alarm low (Low Low Alarm)	Yes
WH	Warning high (High Alarm)	Yes
WL	Warning low (Low Alarm)	Yes
ТН	Tolerance high (Tolerance High)	Yes
TL	Tolerance low (Tolerance Low)	Yes
F	AS process control message (error)	Yes
S	AS process control message (fault)	Yes
S*	OS process control message (fault)	Yes
М	Preventive maintenance (Maintenance)	Yes
PM	Process message (Process Message)	Yes
PM	Operating message	No
OR	Operator request (Operator Request)	No
OM *1)	Operator message (Operation Message)	No
SA	Status AS	No
SO	Status OS	No

Table of message classes and their meaning

*1) If the block is used for operation messages, the inputs I_1, ... have to be supplied with pulses. Assignment of the static value "1" would lead to multiple messages.

5.9 Dependencies

5.9 Dependencies

Dependency on the FM_CO block

The FM_CO block (PCS 7 Basic Library) coordinates the reading of data records for the FM_CNT, FMCS_PID, FMT_PID, and READ355P blocks. Therefore, when installing these blocks you must ensure that the driver generator installs FM_CO in the fastest cyclic-interrupt OB of one of the blocks named above. This OB must not run slower than 30 s or faster than 25 ms.

Notes on reading data records

In an ET 200M with n controller blocks, reading of data records is activated every n+1 cycles (ideally, when the installation sequence tallies with the interconnection).

This means that, in the worst case, a setpoint changed by means of a faceplate will only be viewed by the operator after n+1 cycles (e.g. this would amount to 17 s for OB 32 (1,000 ms) with 4 controller modules and 16 blocks).

The same applies for position feedback for the step controller. At the time of changeover (manual/auto), the manipulated variable LMN is set to an out-of-date value.

Changing the visualization time

You can reduce the visualization time as follows:

Install the controller blocks in a faster OB

or

• Distribute the controller modules over several ET 200 stations.

5.10 Status displays

5.10.1 Maintenance Status of MS

Layout of the maintenance status

The layout of the maintenance status MS (DWORD data type) is as follows:

Bit 0 to 7	Display of the MS
Bit 8 to 15	Display of the MS of the redundant partner
Bit 16	1 = Redundant partner available
Bit 17	0 = primary partner is master, 1 = redundant partner is master
Bit 18	PDM-MS worse than device status
Bit 19 to 21	Reserve
Bit 22	PDM has detected status change
Bit 23	Block takes part in the cyclical updating of PDM
Bit 24 to 27	OS operation
Bit 28 to 31	PDM-MS

The MS is copied 1:1 to the output O_MS.

Displayable Statuses

The maintenance status (MS) can display the following statuses, that are entered in Bit 0 to 7 or Bit 8 to 15 (for redundant partner):

Bit nu	mber							State	Symbol	Priority
7	6	5	4	3	2	1	0			0 = highest priority
0	0	0	0	0	0	0	0	Good		9
0	0	0	0	0	0	0	1	Passivated	[]	7
0	0	0	0	0	0	1	0	Out of service		6
0	0	0	0	0	0	1	1	At least one PV simulated	1	5

5.10 Status displays

Bit nu	mber							State	Symbol	Priority
7	6	5	4	3	2	1	0			0 = highest priority
0	0	0	0	0	1	0	0	Local operation/function test	2	4
0	0	0	0	0	1	0	1	Maintenance required	· * *	3
0	0	0	0	0	1	1	0	Maintenance request	S. S.	2
0	0	0	0	0	1	1	1	Maintenance alarm	J	1
0	0	0	0	1	0	0	0	Untested/unknown		0
0	0	0	0	1	0	0	1	Configuration changed	1	8

Note

If the maintenance status is "untested/unknown", all other dynamic displays in the faceplates for Asset Management are not relevant to this instance.

Maintenance Status of the Messages

The maintenance status is updated in the driver blocks by a message. The driver blocks generate a message with the following message classes:

Message class	EventState bit	Symbol
AS process control message (S) = fault	25	S
AS process control message (F) = error	24	F
Preventive maintenance (M) = Maintenance	23	м
Status AS (SA)	18	

Redundancy

In case of redundancy, several combinations of the displays are possible. See: Status display for redundant components [Asset] (Page 406) 5.10 Status displays

5.10.2 Status Display for Redundant Components [Asset]

Status display icons

Redundant component A and redundant component B form the status display (maintenance state) for redundant components. In the following table, the icons of the status display are listed that result from this rule (the bit numbers not listed in the table are always = 0).

Note

The status MS = 9, configuration changed, is for the redundant components and is therefore not listed here.

		Bit	num	ber				State			
11	10	9	8	3	2	1	0	Redundant component A	Redundant component B	Status display icon	
0	0	0	0	0	0	0	0	Good	Good	Good	
0	0	0	1	0	0	0	0	Good	Passivated	Good	
0	0	1	0	0	0	0	0	Good	Out of service	Maintenance request	
0	0	1	1	0	0	0	0	Good	At least 1 PV simulated	Good	\mathbf{Z}
0	1	0	0	0	0	0	0	Good	Local operation/ function test	Good	
0	1	0	1	0	0	0	0	Good	Maintenance required	Maintenance required	<u>م.</u>
0	1	1	0	0	0	0	0	Good	Maintenance request	Maintenance request	en la construction de la construcción de la constru
0	1	1	1	0	0	0	0	Good	Maintenance alarm	Maintenance request	en la construction de la construcción de la constru
1	0	0	0	0	0	0	0	Good	Untested/ unknown	Good	

PV = process value

Appendix 5.10 Status displays

	Bit number							State				
0	0	0	0	0	0	0	1	Passivated	Good	Good		
0	0	0	1	0	0	0	1	Passivated	Passivated	Passivated	5	
0	0	1	0	0	0	0	1	Passivated	Out of service	Out of service	C.	
0	0	1	1	0	0	0	1	Passivated	At least 1 PV simulated	At least 1 PV simulated	<u>.</u>	
0	1	0	0	0	0	0	1	Passivated	Local operation/ function test	Local operation/ function test	3	
0	1	0	1	0	0	0	1	Passivated	Maintenance required	Maintenance required		
0	1	1	0	0	0	0	1	Passivated	Maintenance request	Maintenance request	Solution	
0	1	1	1	0	0	0	1	Passivated	Maintenance alarm	Maintenance alarm	~	
1	0	0	0	0	0	0	1	Passivated	Untested/ unknown	Passivated	T	
0	0	0	0	0	0	1	0	Out of service	Good	Maintenance request	S S	
0	0	0	1	0	0	1	0	Out of service	Passivated	Out of service	L.	
0	0	1	0	0	0	1	0	Out of service	Out of service	Out of service	<u>(</u>	
0	0	1	1	0	0	1	0	Out of service	At least 1 PV simulated	At least 1 PV simulated	<u>.</u>	
0	1	0	0	0	0	1	0	Out of service	Local operation/ function test	Local operation/ function test	2	

5.10 Status displays

	Bit number							State				
0	1	0	1	0	0	1	0	Out of service	Maintenance required	Maintenance required		
0	1	1	0	0	0	1	0	Out of service	Maintenance request	Maintenance request	5	
0	1	1	1	0	0	1	0	Out of service	Maintenance alarm	Maintenance alarm	-	
1	0	0	0	0	0	1	0	Out of service	Untested/ unknown	Out of service	1-3	
0	0	0	0	0	0	1	1	At least 1 PV simulated	Good	Good		
0	0	0	1	0	0	1	1	At least 1 PV simulated	Passivated	At least 1 PV simulated	<u>1</u>	
0	0	1	0	0	0	1	1	At least 1 PV simulated	Out of service	At least 1 PV simulated	<u>1</u>	
0	0	1	1	0	0	1	1	At least 1 PV simulated	At least 1 PV simulated	At least 1 PV simulated	<u>1</u>	
0	1	0	0	0	0	1	1	At least 1 PV simulated	Local operation/ function test	Local operation/ function test	:	
0	1	0	1	0	0	1	1	At least 1 PV simulated	Maintenance required	Maintenance required	· ~ ~	
0	1	1	0	0	0	1	1	At least 1 PV simulated	Maintenance request	Maintenance request	: 	
0	1	1	1	0	0	1	1	At least 1 PV simulated	Maintenance alarm	Maintenance alarm	*	
1	0	0	0	0	0	1	1	At least 1 PV simulated	Untested/ unknown	At least 1 PV simulated	: <u>*</u>	
0	0	0	0	0	1	0	0	Local operation/ function test	Good	Good		

Appendix 5.10 Status displays

	Bit number							State				
0	0	0	1	0	1	0	0	Local operation/ function test	Passivated	Local operation/ function test	2	
0	0	1	0	0	1	0	0	Local operation/ function test	Out of service	Local operation/ function test	2	
0	0	1	1	0	1	0	0	Local operation/ function test	At least 1 PV simulated	Local operation/ function test	2	
0	1	0	0	0	1	0	0	Local operation/ function test	Local operation/ function test	Local operation/ function test	2	
0	1	0	1	0	1	0	0	Local operation/ function test	Maintenance required	Maintenance required	5	
0	1	1	0	0	1	0	0	Local operation/ function test	Maintenance request	Maintenance request	5	
0	1	1	1	0	1	0	0	Local operation/ function test	Maintenance alarm	Maintenance alarm	*	
1	0	0	0	0	1	0	0	Local operation/ function test	Untested/ unknown	Local operation/ function test	• <u></u>	
0	0	0	0	0	1	0	1	Maintenance required	Good	Maintenance required	·	
0	0	0	1	0	1	0	1	Maintenance required	Passivated	Maintenance required	:	
0	0	1	0	0	1	0	1	Maintenance required	Out of service	Maintenance required	5	
0	0	1	1	0	1	0	1	Maintenance required	At least 1 PV simulated	Maintenance required	5	
0	1	0	0	0	1	0	1	Maintenance required	Local operation/ function test	Maintenance required	5	
0	1	0	1	0	1	0	1	Maintenance required	Maintenance required	Maintenance required	5	

5.10 Status displays

	Bit number							State				
0	1	1	0	0	1	0	1	Maintenance required	Maintenance request	Maintenance request		
0	1	1	1	0	1	0	1	Maintenance required	Maintenance alarm	Maintenance alarm	*	
1	0	0	0	0	1	0	1	Maintenance required	Untested/ unknown	Maintenance required	· ~	
0	0	0	0	0	1	1	0	Maintenance request	Good	Maintenance request	•	
0	0	0	1	0	1	1	0	Maintenance request	Passivated	Maintenance request	: 	
0	0	1	0	0	1	1	0	Maintenance request	Out of service	Maintenance request	• • •	
0	0	1	1	0	1	1	0	Maintenance request	At least 1 PV simulated	Maintenance request	• • •	
0	1	0	0	0	1	1	0	Maintenance request	Local operation/ function test	Maintenance request	∽	
0	1	0	1	0	1	1	0	Maintenance request	Maintenance required	Maintenance request	• • •	
0	1	1	0	0	1	1	0	Maintenance request	Maintenance request	Maintenance request		
0	1	1	1	0	1	1	0	Maintenance request	Maintenance request	Maintenance alarm		
1	0	0	0	0	1	1	0	Maintenance request	Untested/ unknown	Maintenance request	•	
0	0	0	0	0	1	1	1	Maintenance alarm	Good	Maintenance request	• • • •	
0	0	0	1	0	1	1	1	Maintenance alarm	Passivated	Maintenance alarm	*	

Appendix 5.10 Status displays

	Bit number							State				
0	0	1	0	0	1	1	1	Maintenance alarm	Out of service	Maintenance alarm	~	
0	0	1	1	0	1	1	1	Maintenance alarm	At least 1 PV simulated	Maintenance alarm	1	
0	1	0	0	0	1	1	1	Maintenance alarm	Local operation/ function test	Maintenance alarm	.	
0	1	0	1	0	1	1	1	Maintenance alarm	Maintenance required	Maintenance alarm	.	
0	1	1	0	0	1	1	1	Maintenance alarm	Maintenance request	Maintenance alarm	*	
0	1	1	1	0	1	1	1	Maintenance alarm	Maintenance alarm	Maintenance alarm	*	
1	0	0	0	0	1	1	1	Maintenance alarm	Untested/ unknown	Maintenance alarm	.	
1	0	0	0	1	0	0	0	Lintostod/	Lintested/	Lintested/		
		Ū	0		0	U	0	unknown	unknown	unknown		
0	0	0	0	1	0	0	0	Untested/ unknown	Good	Good	Ν	
0	0	0	1	1	0	0	0	Untested/ unknown	Passivated	Passivated	T_	
0	0	1	0	1	0	0	0	Untested/ unknown	Out of service	Out of service	- Serie	
0	0	1	1	1	0	0	0	Untested/ unknown	At least 1 PV simulated	At least 1 PV simulated	:2	
0	1	0	0	1	0	0	0	Untested/ unknown	Local operation/ function test	Local operation/ function test	2	
0	1	0	1	1	0	0	0	Untested/ unknown	Maintenance required	Maintenance required		

5.10 Status displays

Bit number								State			
0	1	1	0	1	0	0	0	Untested/ unknown	Maintenance request	Maintenance request	e construction of the second s
0	1	1	1	1	0	0	0	Untested/ unknown	Maintenance alarm	Maintenance alarm	-

5.10.3 PA field device status and diagnostics information

PA-Field-Device Status

PA Status		Meaning of PA Status	Message	Coding MS
Limits (Bit 1	+ 0 irrelevant)			
Quality (bit 7 + 6)	Substatus (bits 5 – 2)		M = Message Q = Must be acknowledged	
10	0000	Good		0
10	0001	Good, configuration has been changed	М	0
10	0010	Good, active warning		0
10	0011	Good, active interrupt		0
10	0100	Good, unacknowledged configuration change		0
10	0101	Good, unacknowledged warning		0
10	0110	Good, unacknowledged interrupt		0
10	1000	Good, device switches to fail-safe position	Μ	0
10	1001	Good, maintenance required (more diagnostic data available)	Q	5
10	1010	Good, maintenance request pending (more diagnostic data available)	Q	6
10	1111	Good, self-test completed		0
01	0000	Uncertain, not specified	Q	6
01	0001	Uncertain, last valid value	Q	7
01	0010	Uncertain, substitute value	Q	7
01	0011	Uncertain, initial value		0
01	0100	Uncertain, measured value generation incorrect	Q	6
01	0101	Uncertain, value outside defined range	Q	6
01	0110	Uncertain, signal source uncertain	Q	6
01	0111	Uncertain, configuration error	Q	6
01	1000	Uncertain, measured value simulated	Q	3
01	1001	Uncertain, sensor calibration	Q	6
01	1010	Uncertain, maintenance request (more diagnostic data available)	Q	6
01	1100	Uncertain, simulation started	М	3
01	1101	Uncertain, simulation ended	М	0
01	1110	Uncertain, process-related, no maintenance	М	0
00	0000	Bad, not specified	Q	7
00	0001	Bad, configuration error	Q	7
00	0010	Bad, not connected	Q	7
00	0011	Bad, device error	Q	7
00	0100	Bad, sensor error	Q	7
00	0101	Bad, no connection - last valid value	Q	7

5.10 Status displays

PA Status Limits (Bit 1 + 0 irrelevant)		Meaning of PA Status	Message	Coding MS
00	0110	Bad, no connection - no valid value	Q	7
00	0111	Bad, device out of service	Q	2
00	1000	Bad, device out of service (no diagnostic data, passivated)	М	1
00	1001	Bad, maintenance alarm (more diagnostic data available)	Q	7
00	1010	Bad, process-related, no maintenance	М	0
00	1111	Bad, local operation/functional check	М	4

You will find additional information about status icons for the maintenance status (MS) in the "Maintenance status MS (Page 403)" section.

Diagnostic information

The structure of the **PA_DIAG** parameter is as follows:

Byte	Bit position	PROFIBUS - diagnostic significance	Message	MS
0	0	Electronic hardware failure	Q	7
	1	Mechanical hardware failure	Q	7
	2	Excess motor temperature	Q	6
	3	Excess temperature at electronic circuit	Q	6
	4	Memory error	Q	7
	5	Measurement failure	Q	7
	6	Device not initialized (no auto-calibration)	Q	0
	7	Auto-calibration error		7
1	0	Zero error (limit position)	Q	6
	1	No power supply (electr. pneum.)	Q	7
	2	Invalid configuration	Q	7
	3	Warm start executed	М	0
	4	Complete restart executed	М	0
	5	Maintenance required	Q	5
	6	Invalid identifier	Q	7
	7	Invalid ID number	Q	7

5.10 Status displays

Byte	Bit position	PROFIBUS - diagnostic significance	Message	MS
2	0	Device error	Q	7
	1	Maintenance requested	Q	5
	2	Device is in function test or in simulation or is under local operator control (maintenance)		0
	3	The process conditions do not allow the valid values to be returned; this is set when the quality is "uncertain, process-related, no maintenance" or "bad, process- related, no maintenance".		0
	4 - 7	Reserved for PNO, default 0		
3	0-4	Reserved for PNO use		
	5	= 0: for devices of the corresponding profile		
	6	= 0: for devices of the corresponding profile		
	7	= 0: no further information available		
		= 1: Further diagnostic information available in DIAGNOSIS EXTENSION		

5.11 Text libraries

5.11 Text libraries

5.11.1 Text Library for MOD_PAL0, MOD_PAX0

The following table lists the text-library message texts and their numbers for the blocks MOD_PAL0 (FB99) and MOD_PAX0 (FB112):

Text no.	Message text
1	Warm restart
2	Cold restart
3	PA field device diagnostics
4	Memory error

5.11.2 Text Library for PADP_L00, PADP_L01, PADP_L02

The following table lists the text-library message texts and their numbers for the blocks PADP_L00 (FB 109), PADP_L01 (FB 110), PADP_L02 (FB 111):

Text No.	Message Text
1	Module error
2	Wrong module
3	Module missing

5.11.3 Text Library for DREP, DREP_L

The following table lists the text-library message texts and their numbers for the blocks DREP (FB 113) and DREP_L (FB 125):

Text No.	Message Text
1	Failure
2	Diagnostics

5.11.4 Text library for MOD_1, MOD_2, MOD_3, MOD_64, MOD_D2, MOD_CP

The following table lists the message texts and their text numbers from the text library for the MOD_1 (FB 91) / MOD_2 (FB 92) / MOD_3 (FB 95) / MOD_64 (FB 137) / MOD_D2 (FB 94) / MOD_CP (FB 98) blocks :

Text No.	Message Text	Remark
1	Parameter assignment error	
2	Common mode error	
3	Short-circuit to P	
4	Short circuit to M	
5	Wire break	
6	Reference channel error	
7	Measuring range violation low	
8	Measuring range violation high	
9	Load voltage missing	
10	Chassis ground error	
11	Sensor supply missing	
12	Excess temperature	
13	Module OK	
14	Internal error	
15	External error	
16	External auxiliary voltage missing	
17	Front connector missing	
18	No configuration	
19	Wrong module parameters	
20	Wrong/missing user module	
21	Communication error	
22	Operating mode RUN/STOP	RUN: going STOP: coming
23	Timeout	
24	Failed module int. supply voltage	
25	Battery depleted	
26	Total backup failure	
27	CPU failure	
28	EPROM error	
29	RAM error	
30	ADC/DAC error	
31	Fuse tripped	
32	Process interrupt lost	
33	Removed	
34	Plugged	
35	Wrong module type plugged	
36	Faulty module inserted	

5.11 Text libraries

Text No.	Message Text	Remark
37	Module inserted (parameter error)	
38	Chatter error	
39	Changeover contact diagnostics	
40	CIR parameter assignment	
41	CIR parameter assignment not successful	

5.11.5 Text Library for MOD_D1

The following table lists the text-library message texts and their numbers for the block MOD_D1 (FB 93):

Text no.	Message text	Remark
1	Parameter assignment error	
2	Common mode error	
3	Short-circuit to P	
4	Short circuit to M	
5	Wire break	
6	Reference channel error	
7	Measuring range violation low	
8	Measuring range violation high	
9	Load voltage missing	
10	Chassis ground error	
11	Sensor supply missing	
12	Excess temperature	
13	Module OK	
14	Internal error	
15	External error	
16	External auxiliary voltage missing	
17	Front connector missing	
18	No configuration	
19	Wrong parameter in module	
20	Wrong/missing user module	
21	Communication error	
22	Operating mode RUN/STOP	RUN: going STOP: coming
23	Timeout	
24	Failed module int. supply voltage	
25	Battery depleted	
26	Total backup failure	
27	CPU failure	
28	EPROM error	
29	RAM error	
30	ADC/DAC error	
31	Fuse tripped	
32	Process interrupt lost	
33	Removed	
34	Plugged	
35	Wrong module type plugged	
36	Faulty module inserted	
37	Module inserted (parameter assignment error)	

5.11 Text libraries

Text no.	Message text	Remark
38	Chatter error	
39	Changeover contact diagnostics	
40	Sensor or load voltage loss	
41	Faulty fuse	
42	Al error hardware	
43	Al wire break	
44	AI below measuring range	
45	AI above measuring range	
46	AO wire break	
47	AO short-circuit	
48	CIR parameter assignment	
49	CIR parameter assignment not successful	
50	Signal A faulty	
51	Signal B faulty	
52	Signal N faulty	
53	Faulty value supplied to the channels	
54	Sensor supply 5.2 V/8.2 V faulty	
55	Sensor supply 24 V faulty	
56	Namur sensor signal line error	
57	Readback error	
58	Power supply 1: Error	
59	Power supply 2: Error	
60	Actuator OFF	
61	Discrepancy error	

5.11.6 Text library for MOD_D3

The following table lists the text library message texts and their numbers for the block MOD_D3 (FB134):

Text no.	Message text	Remark
1	Parameter assignment error	
2	Common mode error	
3	Short-circuit to P	
4	Short circuit to M	
5	Wire break	
6	Reference channel error	
7	Measuring range violation low	
8	Measuring range violation high	
9	Load voltage missing	
10	Chassis ground error	
11	Sensor supply missing	
12	Excess temperature	
13	Module OK	
14	Internal error	
15	External error	
16	External auxiliary voltage missing	
17	Front connector missing	
18	No configuration	
19	Wrong parameter in module	
20	Wrong/missing user module	
21	Communication error	
22	Operating mode RUN/STOP	RUN: going STOP: coming
23	Timeout	
24	Failed module int. supply voltage	
25	Battery depleted	
26	Total backup failure	
27	CPU failure	
28	EPROM error	
29	RAM error	
30	ADC/DAC error	
31	Fuse tripped	
32	Process interrupt lost	
33	Removed	
34	Plugged	
35	Wrong module type plugged	
36	Faulty module inserted	
37	Module inserted (parameter assignment error)	

5.11 Text libraries

Text no.	Message text	Remark
38	Chatter error	
39	Changeover contact diagnostics	
40	Sensor or load voltage loss	
41	Faulty fuse	
42	Al error hardware	
43	Al wire break	
44	Al below measuring range	
45	Al above measuring range	
46	AO wire break	
47	AO short-circuit	
48	CIR parameter assignment	
49	CIR parameter assignment not successful	
50	Signal A faulty	
51	Signal B faulty	
52	Signal N faulty	
53	Faulty value supplied to the channels	
54	Sensor supply 5.2 V/8.2 V faulty	
55	Sensor supply 24 V faulty	
56	Namur sensor signal line error	
57	Readback error	
58	Power supply 1: Error	
59	Power supply 2: Error	
60	Actuator OFF	
61	Undervoltage	
62	Overvoltage	
63	Overload	
64	Reserve	
65	Hardware interrupt	
66	Actuator warning	
67	Safety shutdown	
68	Ambiguous error	
69	Error 1 in actuator/sensor	
70	Error 2 in actuator/sensor	
71	Channel temporarily not available	
72	Channel is being calibrated	
73	Discrepancy error	
74	Overcurrent at output driver	
75	P-output driver defective	
76	Internal P short circuit	
77	External P short circuit/cross fault	
78	Internal error in the read circuit/test circuit	

Appendix 5.11 Text libraries

Text no.	Message text	Remark
79	Short circuit of the output to M or output driver defective	
80	Switching frequency exceeded	
81	PROFIsafe communications error	

5.11 Text libraries

5.11.7 Text Library for MOD_MS

The following table lists the text-library message texts and their numbers for the block MOD_MS (FB 96):

Text No.	Message Text	Remark
1	Parameter assignment error	
2	Common mode error	
3	Short-circuit to P	
4	Short circuit to M	
5	Wire break	
6	Reference channel error	
7	Measuring range violation low	
8	Measuring range violation high	
9	Load voltage missing	
10	Chassis ground error	
11	Sensor supply missing	
12	Excess temperature	
13	Module OK	
14	Internal error	
15	External error	
16	External auxiliary voltage missing	
17	Front connector missing	
18	No configuration	
19	Wrong module parameters	
20	Wrong/missing user module	
21	Communication error	
22	Operating mode RUN/STOP	RUN: going STOP: coming
23	Timeout	
24	Failed module int. supply voltage	
25	Battery depleted	
26	Total backup failure	
27	CPU failure	
28	EPROM error	
29	RAM error	
30	ADC/DAC error	
31	Fuse tripped	
32	Process interrupt lost	
33	Removed	
34	Plugged	
35	Wrong module type plugged	
36	Faulty module inserted	
37	Module inserted (parameter error)	

5.11 Text libraries

Text No.	Message Text	Remark	
38	Chatter error		
39	Changeover contact diagnostics		
40	Sensor or load voltage loss		
41	Faulty fuse		
42	Undervoltage		
43	Overvoltage		
44	Actuator warning		
45	Actuator OFF		
46	Safety-related shutdown		
47	Unknown error		
48	Short-circuit		
49	Error		
50	CIR parameter assignment		
51	CIR parameter assignment not successful		

5.11 Text libraries

5.11.8 Text Library for OB_BEGIN

The following table lists the text-library message texts and their numbers for the block OB_BEGIN (FB 100):

Text No.	Message Text	Remark
1	Nested stack error	Error code B#16#71:
2	Master control relay stack error	Error code B#16#72:
3	Max. nesting depth for synchronous errors exceeded	Error code B#16#73
4	U-stack nesting depth exceeded	Error code B#16#74
5	B-stack nesting depth exceeded	Error code B#16#75
6	Local data allocation error	Error code B#16#76
7	Unknown opcode	Error code B#16#78
8	Code length error	Error code B#16#7A

Index

Α

Addressing, 399

С

ChkREAL, 381 Description, 381 CONEC, 17, 20 Description, 17 I/Os, 20 Coordination of FMCS_PID/FMT_PID, 13 CPU_RT, 23, 29 Description, 23 I/Os, 29

D

Description OR 32 TS, 243 Description of, 17, 23, 42, 46, 50, 59, 82, 97, 104, 111, 118, 125, 132, 139, 150, 178, 189, 198, 203, 210, 228, 235, 240, 256, 272, 280, 287, 293, 299, 307, 310, 311, 316, 332, 336, 373 ChkREAL, 381 CONEC, 17 **CPU RT, 23** DIAG AB, 31 DPAY V0, 34 DPAY_V1, 42 DPDIAGV0, 46 **DREP**, 50 **DREP L, 59** FM_CNT, 82 FM_CO, 13 IMDRV_TS, 89 MOD_1, 97 MOD_2, 104 MOD_3, 111 MOD 4, 118 MOD 64, 125 MOD_CP, 132 MOD_D1, 139, 161 MOD D2, 150

MOD_MS, 189 MOD_PAL0, 203 MOD PAX0, 210 OB_BEGIN, 217 OB_BEGIN_PN, 326 OB_DIAG1, 228, 235 **OB END, 240** OR_HA16C, 247 OR_M_16C, 256 OR M 32C, 263 OR_M_8C, 272 PADP_L00, 280 PADP_L01, 287 PADP_L02, 293 PADP_L10, 299 PO_UPDAT, 310 PS, 311 QC CHNG, 381 RACK, 316, 336 RED_F, 323 SUBNET, 373 SUBNET_PN, 332 Description of MOD_DRV, 173 Description of:MOD_SWT, 198 Description of:PDM_MS, 307 DIAG_AB Description, 31 I/Os, 33 **DPAY V1, 45** I/Os, 45 DPAY V1_PN, 371 I/Os, 371 DPAY_V0, 39 Description, 34 I/Os, 39 DPAY_V1, 42 Description, 42 DPDIAGV0, 46, 49 Description, 46 I/Os, 49 DREP, 50, 55 Description, 50 I/Os, 55 DREP_L, 59, 64 Description, 59 I/Os, 64

MOD_HA, 178

Е

Error Information of Output Parameter MSG_STAT, 398

F

FM_CNT, 82, 86 Description, 82 I/Os, 86 FM_CO Description, 13 I/Os, 16

G

General information about the block description, 9

I

I/Os of, 20, 29, 39, 45, 49, 55, 64, 86, 101, 108, 115, 122, 129, 136, 146, 156, 175, 185, 194, 200, 206, 213, 222, 232, 242, 284, 305, 314, 320, 326, 332, 336, 358, 362, 366, 368, 371, 377 CPU_RT, 29 DIAG AB, 33 DPAY V1, 45 DPAY V1_PN, 371 DPAY_V0, 39 DPDIAGV0, 49 **DREP**, 55 **DREP L, 64 FM CNT, 86** FM CO, 16 IMDRV_TS, 94 MOD_1, 101, 108 MOD_2, 101, 108 MOD_3, 115 MOD_4, 122 MOD 64, 129 MOD CP, 136 MOD_CP_PN, 362 MOD_D1, 146, 156 MOD_D2, 146, 156 MOD_D3, 169 MOD_HA, 185 MOD_HA_PN, 358 MOD_MS, 194 MOD_PAL0, 206 MOD_PAX0, 213 OB BEGIN, 222

OB BEGIN PN, 326 OB_DIAG1, 232 OB_DIAG1_PN, 368 OB_END, 242 OR 32 TS, 245 OR_HA16C, 250, 257, 264, 275 OR_M_16C, 250, 257, 264, 275 OR_M_32C, 250, 257, 264, 275 OR_M_8C, 250, 257, 264, 275 PADP_L00/L01/L02, 284 PADP_L10, 305 PADP L10 PN, 366 PS, 314 **RACK**, 320 RACK_PN, 336 RED_F, 325 SUBNET, 377 SUBNET_PN, 332 I/Os of:MOD_DRV, 175 I/Os of:MOD SWT, 200 IMDRV_TS Description, 89 I/Os, 94 Message texts, 96

Μ

Maintenance Status of MS, 403 Message classes, 401 Message texts of IMDRV_TS, 96 MOD_1, 97, 101, 108, 417 Description, 97 I/Os, 101, 108 Text library, 417 MOD_2, 101, 104, 108, 417 Description, 104 I/Os, 101, 108 Text library, 417 MOD_3, 111, 115, 417 Description, 111 I/Os, 115 Text library, 417 MOD_4, 118, 122 Description, 118 I/Os, 122 MOD_64, 125, 129, 417 Description, 125 I/Os, 129 Text library, 417 MOD_CP, 132, 136, 417 Description, 132

I/Os, 136 Text library, 417 MOD_CP_PN, 362 I/Os, 362 MOD_D1, 139, 146, 156, 419 Description, 139 I/Os, 146, 156 Text library, 419 MOD_D2, 146, 150, 156, 417 Description, 150 I/Os, 146, 156 Text library, 417 MOD D3 Description, 161 I/Os, 169 Text library, 421 MOD_DRV, 173, 175 MOD_DRV:I/Os, 175 MOD_HA, 178, 185 Description, 178 I/Os, 185 MOD_HA_PN, 358 I/Os, 358 MOD_MS, 189, 194, 424 Description, 189 I/Os, 194 Text library, 424 MOD_PAL0, 203, 206, 416 Description, 203 I/Os, 206 Text library, 416 MOD_PAX0, 210, 213, 416 Description, 210 I/Os, 213 Text library, 416 MOD_SWT, 198, 200 MOD_SWT:Description, 198 MOD_SWT:I/Os, 200 MODE, 387 MODE settings for PA devices, 397 MODE Settings for SM Modules, 387 MSG STAT, 398

0

OB_BEGIN, 222, 426 Description, 217 I/Os, 222 Text library, 426 OB_BEGIN_PN, 326 Description, 326 I/Os, 326

PCS 7 Basis Library V8.0 Function Manual, 11/2011, A5E03710244-01 OB DIAG1, 228, 232, 235, 368 Description, 228, 235 I/Os, 232 OB_DIAG1_PN I/Os, 368 OB_END, 240, 242 Description, 240 I/Os, 242 OMODE settings for SM modules, 396 OR_32_TS Description, 243 I/Os, 245 OR HA16C Description, 247 I/Os, 250, 257, 264, 275 OR_M_16C, 256 Description, 256 I/Os, 250, 257, 264, 275 OR_M_32C Description, 263 I/Os, 250, 257, 264, 275 OR_M_8C, 272 Description, 272 I/Os, 250, 257, 264, 275

Ρ

PA field device status and diagnostics information, 413 PA MODE Settings, 397 PADP_L00, 280, 416 Description, 280 Text library, 416 PADP_L00/L01/L02, 284 I/Os, 284 PADP_L01, 287, 416 Description, 287 Text library, 416 PADP_L02, 293, 416 Description, 293 Text library, 416 PADP_L10, 299, 305, 366 Description, 299 I/Os, 305 PADP_L10_PN I/Os, 366 PDM MS, 307 PDM MS:Description, 307 PO_UPDAT, 310 Description, 310 PS, 311, 314

Description, 311

I/Os, 314

Q

QC_CHNG, 381 Description, 381

R

RACK, 316, 320, 336 Description, 316, 336 I/Os, 320 RACK_PN, 336 I/Os, 336 RED_F Description, 323 I/Os, 325

S

Status display for redundant components [asset], 406 SUBNET, 373, 377 Description, 373 I/Os, 377 SUBNET_PN, 332 Description, 332 I/Os, 332

Т

Technical specifications Blocks in the basic library, 383 Text library for, 416, 417, 419, 424, 426 **DREP**, 416 DREP_L, 416 MOD_1, 417 MOD_2, 417 MOD_3, 417 MOD 64, 417 MOD_CP, 417 MOD_D1, 419 MOD_D2, 417 MOD_D3, 421 MOD_MS, 424 MOD_PAL0, 416 MOD_PAX0, 416 OB_BEGIN, 426 PADP_L00, 416 PADP_L01, 416 PADP_L02, 416

Х

XE * MERGEFORMAT, 403