Pressure transmitter

SITRANS P, DS III Series with PROFIBUS PA

Operating Instructions · 09/2012

SITRANS

Answers for industry.

SIEMENS

SIEMENS

SITRANS

Pressure transmitter SITRANS P, Series DS III with PROFIBUS PA

Operating Instructions

7MF4.34

Introduction	1
Safety information	2
Description	3
Installing / mounting	4
Connecting up	5
Operation	6
Operator control functions via PROFIBUS	7
Functional safety	8
Configuration/project engineering	9
Commissioning	10
Repair and maintenance	11
Interrupts, error and system alarms	12
Technical data	13
Dimension drawings	14
Spare parts / accessories	15
Appendix	Α
List of abbreviations/ acronyms	В

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Table of contents

1	Introduc	ztion	9
	1.1	Purpose of this documentation	9
	1.2	Product information	9
	1.3	History	9
	1.4	Scope of the instructions	10
	1.5	Checking the consignment	10
	1.6	Transportation and storage	10
	1.7	Notes on warranty	11
2	Safety i	nformation	13
	2.1 2.1.1 2.1.2	Precondition for useLaws and directivesConformity with European directives	13
	2.2	Improper device modifications	14
	2.3	Requirements for special applications	14
	2.4	Use in hazardous areas	15
3	Descrip	tion	17
	3.1	System configuration	17
	3.2	Application	18
	3.3	Structure	20
	3.4	Structure of the label and approval plate	21
	3.5	Measuring point label layout	22
	3.6 3.6.1 3.6.2 3.6.3 3.6.3.1 3.6.3.2 3.6.3.3 3.6.3.4	Principle of operation Overview of mode of operation Operation of the electronics Principle of operation of the measuring cell Measuring cell for gauge pressure Measuring cell for differential pressure and flow rate Measuring cell for level Measuring cell for absolute pressure from the differential pressure series	
	3.6.3.5 3.6.3.6	Measuring cell for absolute pressure from the gauge pressure series Measuring cell for gauge pressure, front-flush membrane	
	3.6.3.7	Measuring cell for absolute pressure, front-flush membrane	
	3.7	Remote seal	30
	3.8	SIMATIC PDM	30
	3.9	PROFIBUS	31

	3.9.1 3.9.2	Bus topology	
	3.9.3	Properties	
4	Installin	ng / mounting	33
	4.1	Basic safety instructions	33
	4.1.1	Installation location requirements	
	4.1.2	Proper mounting	38
	4.1.2.1	Incorrect mounting	38
	4.2	Disassembly	39
	4.3	Installation (except level)	
	4.3.1	Installation mounting (except for level)	
	4.3.2	Installation (except level)	
	4.3.3	Fastening	41
	4.4	"Level" installation	
	4.4.1	Instructions for level installation	
	4.4.2	Installation for level	
	4.4.3	Connection of the negative pressure line	45
	4.5	"Remote seal" installation	47
	4.5.1	Remote seal installation	
	4.5.2	Installation of the remote seal with the capillary line	49
	4.6	Turing the measuring cell against housing	54
	4.7	Rotating the display	55
5	Connec	cting up	57
	5.1	Basic safety instructions	57
	5.1.1	Unsuitable cables and/or cable glands	57
	5.2	Connecting the device	60
	5.2.1	PROFIBUS assembly guidelines	
	5.3	Connecting the M12 connector	62
6	Operati	ion	65
	6.1	Overview of operation	65
	6.2	Basic safety instructions	66
	6.3	Information on operation	66
	6.4	Display	67
	6.4.1	Display elements	
	6.4.2	Units display	
	6.4.3	Error display	68
	6.4.4	Mode display	69
	6.4.5	Status display	69
	6.5	Local operation	70
	6.5.1	Control elements for local operation	
	6.5.2	Operation using buttons	73
	6.5.3	Setting/adjusting electrical damping	
	6.5.4	Calibrate zero point	74

	6.5.5	Locking of buttons and functions	
	6.5.6	Measured value display	
	6.5.7	Unit	
	6.5.8	Bus address	
	6.5.9	Device operation type	
	6.5.10	Position of the decimal point	
	6.5.11	Display of the zero-point adjustment	
	6.5.12 6.5.13	LO calibrationHI calibration	
-			
7	•	or control functions via PROFIBUS	
	7.1	Communications structure for PROFIBUS PA	
	7.1.1	Overview	
	7.1.2	Block model for collection and processing of measured values	
	7.1.3	Pressure transducer block	
	7.1.3.1 7.1.3.2	Pressure transducer block (transducer block 1)	
	7.1.3.2	Linearization type function group.	
	7.1.3.3 7.1.4	Units of the pressure transducer block	
	7.1. 4 7.1.5	Electronics temperature transducer block	
	7.1.5 7.1.6	Totalizer function block	
	7.2	Overview of operating functions	
	7.3	Measurement	
	7.4	Settings	
	7.4.1	Overview of settings	
	7.4.2	Settings	
	7.4.3	Pressure measurement	
	7.4.4	Level measurement	
	7.4.5	Flow measurement	
	7.4.6	Adjusting to a desired process value	
	7.5	Electrical damping	
	7.6	Key lock and write protection	110
	7.7	Warning and alarm limits	111
	7.8	Failure behavior	112
	7.8.1	Overview of failure behavior	112
	7.8.2	Output	113
	7.8.3	Totalizer output	113
	7.9	Diagnostics functions	113
	7.9.1	Operating hours counter	
	7.9.2	Calibration interval and service interval	
	7.9.3	Clearing warning	
	7.9.4	Clearing the alarm	
	7.9.5	Min/max indicator	
	7.10	Simulation	
	7.10	Overview of simulation	
	7.10.1	Simulating output	
	7.10.2	Simulating output	
	7.10.3	Simulating input	
	1.10.7		

	7.10.5	Simulating sensor and electronics temperature	119
	7.11	Calibrating the sensor	119
	7.12	Correcting for positional error	120
	7.13	Reset	121
	7.13.1	Resetting to delivery state	121
	7.13.2	Warm start/restart	
	7.13.3	Resetting the PROFIBUS address	122
8	Function	nal safety	123
	8.1	Safety-instrumented system	123
	8.2	Safety Integrity Level (SIL)	123
	8.3	Device-specific	125
	8.3.1	Safety function	125
	8.3.2	Settings	126
	8.3.3	Safety-related characteristics	127
	8.4	Maintenance/Checking	128
	8.5	Add-on parts	128
	8.5.1	Checking a device with add-on pneumatic block	129
	8.5.2	Checking a device with add-on remote seal	129
	8.6	PROFIsafe	129
	8.6.1	Introduction	129
	8.6.2	Technical advantages of PROFIsafe	129
	8.6.3	Further information	131
	8.6.4	Preconditions	
	8.6.5	PROFIsafe Configuration	
	8.6.5.1	Import EDD with SIMATIC PDM	
	8.6.5.2	Configure CPU with HW Config	
	8.6.5.3	Configure device with HW Config	
	8.6.5.4	Configure CFC	
	8.6.6	Write protection	
	8.6.6.1	Overview	
	8.6.6.2 8.6.7	Activate write protection using PIN in SIMATIC PDM	
	8.6.7.1	PROFIsafe Commissioning Activate and parameterize PROFIsafe with SIMATIC PDM	
	8.6.7.2	Commission PROFIsafe with SIMATIC PDM	
	8.6.7.3	Check write protection with SIMATIC PDM	
	8.6.7.4	Speeding up the commissioning process	
	8.6.7.5	Resetting the device	
	8.6.8	Quit PROFIsafe commissioning	
	8.6.8.1	Preparations for maintenance and service	
	8.6.8.2	Deactivate PROFIsafe commissioning in SIMATIC PDM	
	8.6.8.3	Disable write protection using PIN in SIMATIC PDM	
	8.6.9	Replacing a device	
	8.6.9.1	Making settings locally	
	8.6.9.2	Configuration with host system	151
9	Configu	ration/project engineering	153
	9.1	Cyclical data transfer	153

	9.2	Configuring	
	9.2.1	Overview of configuration	
	9.2.2 9.2.3	Configuration of user dataTransmission of user data over PROFIBUS	
	9.2.3	Status	
	9.2.5	Diagnosis	
	9.3	Acyclic data transfer	158
10	Commis	ssioning	161
	10.1	Basic safety instructions	161
	10.2	Introduction to commissioning	162
	10.3	Gauge pressure, absolute pressure from differential pressure series, and absolute pres	
	40.2.4	gauge pressure series	
	10.3.1 10.3.2	Commissioning for gases Commissioning with steam or liquid	
	10.4	Differential pressure and flow rate	
	10.4	Safety notes for commissioning with differential pressure and flow rate	
	10.4.2	Commissioning in gaseous environments	
	10.4.3	Commissioning for liquids	
	10.4.4	Commissioning with vapor	
11	Repair a	and maintenance	171
	11.1	Basic safety instructions	171
	11.2	Maintenance and repair work	
	11.2.1	Defining the maintenance interval	
	11.2.2 11.2.3	Checking the gasketsDisplay in case of a fault	
	11.2.4	Changing the measuring cell and application electronics	
	11.3	Cleaning	
	11.3.1	Servicing the remote seal measuring system	
	11.4	Return procedure	178
	11.5	Disposal	178
12	Interrup	ts, error and system alarms	181
	12.1	Overview of status codes	181
	12.2	Errors	184
13	Technic	eal data	187
	13.1	Overview of technical data	187
	13.2	Input point	188
	13.3	Output	195
	13.4	Measuring accuracy	195
	13.5	Operating conditions	201
	13.6	Construction	205

	13.7	Display, keyboard and auxiliary power	209
	13.8	Certificates and approvals	210
	13.9	PROFIBUS communication.	212
14	Dimens	ion drawings	215
	14.1	SITRANS P, DS III series for gauge pressure and absolute pressure from the gauge pressure series	
	14.2	SITRANS P, DS III series for differential pressure, flow rate and absolute pressure from the differential pressure series	
	14.3	SITRANS P, DS III series for level	220
	14.4 14.4.1 14.4.2 14.4.3 14.4.4 14.4.5	SITRANS P, DS III series (flush mounted) Note 3A and EHDG Connections as per EN and ASME F&B and pharma flange PMC Style Special connections	223 223 224 228
15	Spare parts / accessories		
	15.1	Order data	231
	15.2	Spare parts/accessories for SITRANS P, Series DS III	231
	15.3	Order data for SIMATIC PDM	233
	15.4	Ordering data for PROFIBUS accessories	233
Α	Append	lix	235
	A.1	Certificate	235
	A.2	Literature and standards	235
	A.3	Literature and catalogs	235
	A.4	Technical support	236
В	List of a	bbreviations/acronyms	239
	B.1	Pressure transmitter	239
	B.2	Functional safety	240
	Glossa	у	243
	Index		247

Introduction

1.1 Purpose of this documentation

These instructions contain all information required to commission and use the device. It is your responsibility to read the instructions carefully prior to installation and commissioning. In order to use the device correctly, first review its principle of operation.

The instructions are aimed at persons mechanically installing the device, connecting it electronically, configuring the parameters and commissioning it, as well as service and maintenance engineers.

1.2 Product information

The programming manual is an integral part of the CD, which is either supplied or can be ordered. The programming manual is also available on the Siemens homepage.

On the CD, you will also find the catalog extract with the ordering data, the Software Device Install for SIMATIC PDM for additional installation, and the required software.

See also

Product information on SITRANS P in the Internet (http://www.siemens.com/sitransp)

Catalog process instrumentation (http://www.siemens.com/processinstrumentation/catalogs)

1.3 History

This history establishes the correlation between the current documentation and the valid firmware of the device.

The documentation of this edition applies to the following firmware:

Edition	Firmware identifier nameplate	System integration	Installation path for PDM
09/2012	FW:300.01.08 FW:301.01.10	PDM V6.0 ¹⁾ + SP1	SITRANS P DSIII
	PROFIsafe FW:301.02.03 FW:301.02.04		

¹⁾ up to SP05 Hotfix 6

The most important changes in the documentation when compared with the respective previous edition are given in the following table.

1.6 Transportation and storage

Edition	Remark		
09/2012	All safety information has been revised.		
	The following chapters have also been changed:		
	 Chapter "Description > Principle of operation > Principle of operation of the measuring cell" 		
	"Connecting" chapter		
	"Functional safety" chapter		
	"Technical data" chapter		
	"Dimension drawing" chapter		

1.4 Scope of the instructions

Table 1-1 "7MF4.34" stands for:

Order number	SITRANS P, DS III series for
7MF4034	Gauge pressure
7MF4134	Gauge pressure, flush mounted diaphragm
7MF4234	Absolute pressure from the gauge pressure series
7MF4334	Absolute pressure from the differential pressure series
7MF4434	Differential pressure and flow rate, PN 32/160 (MAWP 464/2320 psi)
7MF4534	Differential pressure and flow rate, PN 420 (MAWP 6092 psi)
7MF4634	Level

1.5 Checking the consignment

- 1. Check the packaging and the device for visible damage caused by inappropriate handling during shipping.
- 2. Report any claims for damages immediately to the shipping company.
- 3. Retain damaged parts for clarification.
- 4. Check the scope of delivery by comparing the shipping documents with your order for correctness and completeness.

Using a damaged or incomplete device

Danger of explosion in hazardous areas.

Do not use any damaged or incomplete devices.

1.6 Transportation and storage

To guarantee sufficient protection during transport and storage, observe the following:

- Keep the original packaging for subsequent transportation.
- Devices/replacement parts should be returned in their original packaging.
- If the original packaging is no longer available, ensure that all shipments are properly
 packaged to provide sufficient protection during transport. Siemens cannot assume liability
 for any costs associated with transportation damages.

CAUTION

Insufficient protection during storage

The packaging only provides limited protection against moisture and infiltration.

Provide additional packaging as necessary.

Special conditions for storage and transportation of the device are listed in "Technical data" (Page 187).

1.7 Notes on warranty

The contents of this manual shall not become part of or modify any prior or existing agreement, commitment or legal relationship. The sales contract contains all obligations on the part of Siemens as well as the complete and solely applicable warranty conditions. Any statements regarding device versions described in the manual do not create new warranties or modify the existing warranty.

The content reflects the technical status at the time of publishing. Siemens reserves the right to make technical changes in the course of further development.

Safety information 2

2.1 Precondition for use

This device left the factory in good working condition. In order to maintain this status and to ensure safe operation of the device, observe these instructions and all the specifications relevant to safety.

Observe the information and symbols on the device. Do not remove any information or symbols from the device. Always keep the information and symbols in a completely legible state.

Symbol	Explanation
\triangle	Consult operating instructions

2.1.1 Laws and directives

Observe the test certification, provisions and laws applicable in your country during connection, assembly and operation. These include, for example:

- National Electrical Code (NEC NFPA 70) (USA)
- Canadian Electrical Code (CEC) (Canada)

Further provisions for hazardous area applications are for example:

- IEC 60079-14 (international)
- EN 60079-14 (EC)

2.1.2 Conformity with European directives

The CE mark on the device is a sign of conformity with the following European directives:

2.3 Requirements for special applications

Electromagnetic Directive of the European Parliament and of the Council on the Compatibility EMC approximation of the laws of the Member States relating to electromagnetic compatibility and repealing Directive 89/336/

EEC.

Atmosphère explosible

ATEX 94/9/EC Directive of the European Parliament and the Council on the approximation of the laws of the Member States concerning equipment and protective systems intended for use in potentially

explosive atmospheres.

Pressure Equipment Directive PED 97/23/EC Directive of the European Parliament and of the Council on the approximation of the laws of the Member States concerning

pressure equipment.

The standards applied can be found in the EC declaration of conformity for the device.

2.2 Improper device modifications

WARNING

Improper device modifications

Danger to personnel, system and environment can result from modifications to the device, particularly in hazardous areas.

Only carry out modifications that are described in the instructions for the device. Failure
to observe this requirement cancels the manufacturer's warranty and the product
approvals.

2.3 Requirements for special applications

Due to the large number of possible applications, each detail of the described device versions for each possible scenario during commissioning, operation, maintenance or operation in systems cannot be considered in the instructions. If you need additional information not covered by these instructions, contact your local Siemens office or company representative.

Note

Operation under special ambient conditions

We highly recommend that you contact your Siemens representative or our application department before you operate the device under special ambient conditions as can be encountered in nuclear power plants or when the device is used for research and development purposes.

2.4 Use in hazardous areas

Qualified personnel for hazardous area applications

Persons who install, assemble, commission, operate and service the device in a hazardous area must have the following specific qualifications:

- They are authorized, trained or instructed in operating and maintaining devices and systems
 according to the safety regulations for electrical circuits, high pressures, aggressive and
 hazardous media.
- They are authorized, trained, or instructed in carrying out work on electrical circuits for hazardous systems.
- They are trained or instructed in maintenance and use of appropriate safety equipment according to the pertinent safety regulations.

WARNING

Unsuitable device for the hazardous area

Danger of explosion.

 Only use equipment that is approved for use in the intended hazardous area and labelled accordingly.

See also

Technical data (Page 187)

WARNING

Loss of safety of device with type of protection "Intrinsic safety Ex i"

If the device has already been operated in non-intrinsically safe circuits or the electrical specifications have not been observed, the safety of the device is no longer ensured for use in hazardous areas. There is a danger of explosion.

- Connect the device with type of protection "Intrinsic safety" solely to an intrinsically safe circuit.
- Observe the specifications for the electrical data on the certificate and in Chapter "Technical data (Page 187)".

A

WARNING

Use of incorrect device parts in potentially explosive environments

Devices and their associated device parts are either approved for different types of protection or they do not have explosion protection. There is a danger of explosion if device parts (such as covers) are used for devices with explosion protection that are not expressly suited for this type of protection. If you do not adhere to these guidelines, the test certificates and the manufacturer warranty will become null and void.

- Use only device parts that have been approved for the respective type of protection in the
 potentially explosive environment. Covers that are not suited for the "explosion-proof" type
 of protection are identified as such by a notice label attached to the inside of the cover
 with "Not Ex d Not SIL".
- Do not swap device parts unless the manufacturer specifically ensures compatibility of these parts.

WARNING

Risk of explosion due to electrostatic charge

To prevent the build-up of an electrostatic charge in a hazardous area, the key cover must be closed during operation and the screws tightened.

The key cover may be opened temporarily at any time for the purposes of operating the transmitter, even during plant operation; the screws should then be tightened again.

NOTICE

Electrostatic-sensitive devices

The device contains electrostatic-sensitive devices (ESD). ESD can be destroyed by voltages far too low to be detected by humans. These voltages can occur if you simply touch a component part or the electrical connections of a module without being electrostatically discharged. The damage to a module caused by overvoltage cannot normally be detected immediately; it only becomes apparent after a longer period of operating time has elapsed.

Protective measures against the discharge of static electricity:

- Make sure that no power is applied.
- Before working with modules, make sure that you discharge static from your body, for example by touching a grounded object.
- Devices and tools used must be free of static charge.
- Hold modules only by their edges.
- Do not touch connector pins or conductor tracks on a module with the ESD notice.

Description

3.1 System configuration

Overview

The pressure transmitter can be used in a number of system configurations.

Use with the SIMATIC PCS 7 Automation System is described below.

System communication

The Operator Station of the SIMATIC PCS 7 process control system allows easy and safe control of the process by the operating personnel using OS Multi-Clients.

The Maintenance Station assists the maintenance engineer in guaranteeing high plant availability, securing this long-term using optimization measures, and implementing the maintenance measures using a minimum of personnel, materials, energy, costs etc.

The field devices are integrated over PROFIBUS PA with:

3.2 Application

- PA Link to the gateway between PROFIBUS PA and PROFIBUS DP
- Control system, e.g. SIMATIC PCS 7 Automation System, which communicates over PROFIBUS
- Engineering Station, SIMATIC PDM (Process Device Manager) which communicates over Industrial Ethernet

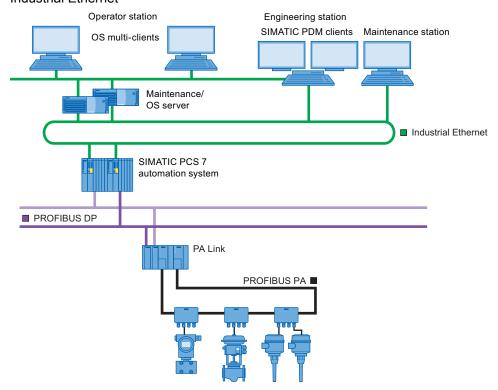


Figure 3-1 Possible system configuration

3.2 Application

Overview

Depending on the version, the transmitter measures corrosive, non-corrosive and toxic gases, vapors and liquids.

Depending on the device version, you can use the transmitter for the following types of measurement:

- Gauge pressure
- · Absolute pressure
- Differential pressure

With appropriate parameter settings and the necessary add-on parts (e.g. flow orifices and remote seals), the pressure transmitter can also be used for the following measurements:

- Level
- Volume
- Mass
- Volume flow
- Mass flow

The output signal is a process-based, digital PROFIBUS PA/ Foundation™ Fieldbus FF signal.

You can install the transmitter with the type of protection "Intrinsic safety" or "Flameproof enclosure" in hazardous areas. The devices have an EC-Type Examination Certificate, and comply with the corresponding harmonized European directives of the CENELEC.

The transmitter is available with various designs of remote seal for special applications. A special application, for example, is the measurement of highly viscous materials.

Gauge pressure

This version measures the gauge pressure of corrosive, non-corrosive and toxic gases, vapors and liquids.

The smallest measuring range is 1 bar g (14.5 psi g), the largest is 700 bar g (10153 psi g).

Absolute pressure

This version measures the absolute pressure of corrosive, non-corrosive and toxic gases, vapors and liquids.

There are two series: A "Differential pressure" series and a "Gauge pressure" series. The "Differential pressure" series features a high overload capacity.

The smallest measuring range of the "Differential pressure" series is 250 mbar a (3.63 psi a), the largest is 100 bar a (1450 psi a).

The smallest measuring range of the "Gauge pressure" series is 250 mbar a (3.63 psi a), the largest is 30 bar a (435 psi a).

Differential pressure and flow rate

This version measures corrosive, non-corrosive and toxic gases, vapors and liquids. You can use it for the following types of measurement:

- Differential pressure
- Gauge pressure, suitable for small positive or negative pressure value
- Together with a primary differential pressure device: flow $q \sim \sqrt{\Delta p}$

The smallest measuring range is 20 mbar (8.03 inH₂O), the largest is 30 bar (435 psi).

Level

This version with mounting flange measures the level of non-corrosive, corrosive and toxic liquids in open and closed containers. The smallest measuring range is 250 mbar (3.63 psi),

3.3 Structure

the largest is 5 bar (72.5 psi). The nominal diameter of the mounting flange is DN 80 or DN 100, or 3" or 4".

For the level measurement on open containers, the low-pressure side of the measuring cell remains open. This measurement is referred to as "Measurement against atmospheric pressure". For the measurement on closed containers, the low-pressure side is usually connected to the container. This balances the static pressure.

The parts wetted by the medium are made of various materials according to the corrosion resistance required.

3.3 Structure

Depending on a customer-specific order, the device comprises different parts.

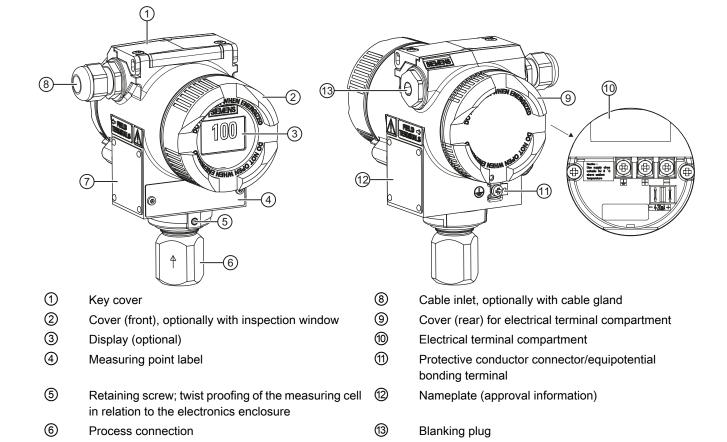


Figure 3-2 View of the transmitter: Left: Front right: Rear view

Nameplate (general information)

- The electronics enclosure is made of die cast aluminum or precision cast stainless steel.
- The housing has a removable circular cover at the front and the back.
- Depending on the device version, the front cover ② may be designed as an inspection window. You can read the measured values straight off the digital display through this inspection window.

(7)

- The cable inlet ® to the electrical terminal compartment is at the side; either the left or right-hand one can be used. The unused opening is closed with a blanking plug ®.
- The protective conductor terminal/equipotential bonding terminal (1) is located at the back of the enclosure.
- The electrical terminal compartment ⁽¹⁾ for the auxiliary power and shield is accessible when you remove the back cover ⁽⁹⁾.
- The measuring cell with a process connection (a) is located in the lower section of the enclosure. This measuring cell is secured against twisting by a retaining screw (b). Thanks to the modular structure of the transmitter, the measuring cell, the electronic unit or the network card can be replaced if required.
- On the upper face of the enclosure you can see crosshead screws which secure the key cover ①, under which there are 3 keys for local operation.

3.4 Structure of the label and approval plate

Structure of the label

The label which bears the Order No. and other important information such as design details or technical data is present on the side of the housing.

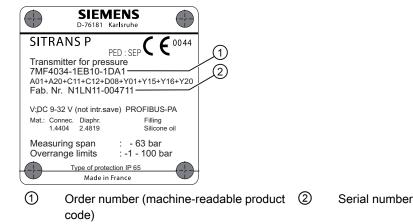


Figure 3-3 Example of a label

Structure of the approval plate

The approval plate is provided on the opposite side. The approval plate has information about the version of the hardware and firmware.

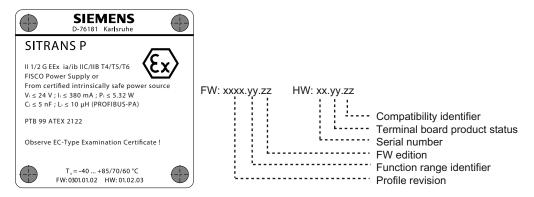


Figure 3-4 Example of an approval plate

3.5 Measuring point label layout

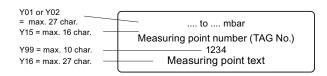
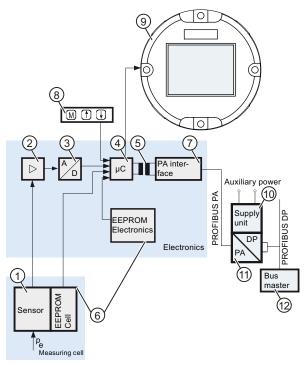


Figure 3-5 Example of measuring point label

3.6 Principle of operation


3.6.1 Overview of mode of operation

This chapter describes how the transmitter works.

First the electronics are described, and then the physical principle of the sensors which are used with the various device versions for the individual measurement types.

3.6.2 Operation of the electronics

Description

- Measuring cell sensor
- 2 Measuring amplifier
- 3 Analog-to-digital converter
- 4 Microcontroller
- ⑤ Electrical isolation
- 6 Each with an EEPROM in the measuring cell and in the electronics
- 7 PROFIBUS PA interface

- 8 Buttons (local operation)
- 9 Display
- Power supply
- ① DP/PA coupler or DP/PA link
- Bus master
- p_e Input variable

Figure 3-6 Principle of operation of the electronics with PA communication

Function

- The inlet pressure is converted into an electrical signal by the sensor ①.
- This signal is amplified by the measuring amplifier ② and digitized in an analog-to-digital converter ③.
- The digital signal is analyzed in a microcontroller ④ and corrected with regard to linearity and thermal characteristics.
- The signal is available at an electrically isolated PA interface ⑦ on the PROFIBUS PA.

3.6 Principle of operation

- The data specific to the measuring cell, the electronics data, and the parameterization data are stored in two EEPROMs ⑥. The first memory is linked with the measuring cell, the second with the electronics.
- The results with the status values and diagnostics data are transmitted cyclically over the PROFIBUS PA. Parameterization data and error messages are transmitted acyclically by SIMATIC PDM.

Operation

- The buttons ® can be used to call up individual functions, so-called modes.
- If you have a display (9), you can track the mode settings and other messages on it.

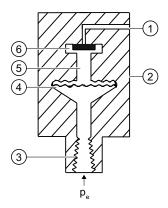
3.6.3 Principle of operation of the measuring cell

CAUTION

If the measurement signal fails because of sensor breakage, the seal diaphragm may also be destroyed. In the worst case scenario, the process medium leaks from the reference pressure opening in the devices used for gauge pressure with a measuring span of \leq 63 bar.

In the following sections, the process variable to be measured is called general inlet pressure.

Overview


The following modes of operation are described:

- Gauge pressure
- Absolute pressure
- Differential pressure and flow rate
- Level

The following process connections are available, for example:

- G1/2 B, 1/2-14 NPT
- Male thread: M20
- Flange connection in accordance with EN 61518
- Flush-mounted process connections

3.6.3.1 Measuring cell for gauge pressure

- Reference pressure opening
- ② Measuring cell
- ③ Process connection
- Seal diaphragm

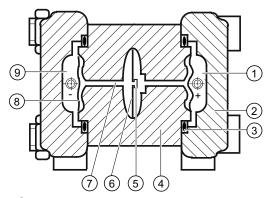

- 5 Filling liquid
- 6 Gauge pressure sensor
- p_e Inlet pressure

Figure 3-7 Function chart of measuring cell for gauge pressure

The inlet pressure (p_e) is transferred to the gauge pressure sensor 6 via the seal diaphragm 4 and the fill fluid 5, displacing its measuring diaphragm. The displacement changes the resistance of the four piezoresistors (bridge circuit) of the gauge pressure sensor. The change in the resistance causes a bridge output voltage proportional to the inlet pressure.

Transmitters with measuring span \leq 63 bar measure the inlet pressure against atmosphere, those with measuring spans \geq 160 bar against vacuum.

3.6.3.2 Measuring cell for differential pressure and flow rate

- Inlet pressure P₊
- 2 Pressure cap
- 3 O-ring
- 4 Measuring cell body
- ⑤ Differential pressure sensor

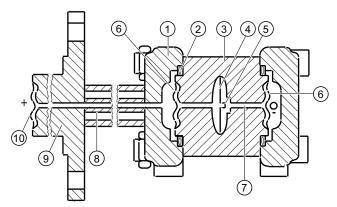

- 6 Overload diaphragm
- 7 Filling liquid
- 8 Seal diaphragm
- Inlet pressure P.

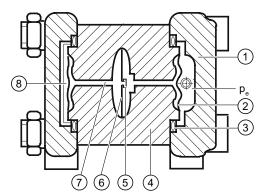
Figure 3-8 Function chart of the measuring cell for differential pressure and flow rate

3.6 Principle of operation

- Differential pressure is transmitted to the differential pressure sensor ⑤ through the seal diaphragms ⑧ and the filling liquid ⑦.
- When measuring limits are exceeded, the seal diaphragm ® is displaced until the seal diaphragm ② rests on the measuring cell body ④. The differential pressure sensor ⑤ is thus protected against overloading since no further deflection of the overload diaphragm ⑥ is possible.
- The seal diaphragm (a) is displaced by the differential pressure. The displacement changes the resistance of the four piezoresistors (bridge circuit) of the differential pressure sensor.
- The change in the resistance causes a bridge output voltage proportional to the differential pressure.

3.6.3.3 Measuring cell for level

- ① Pressure cap
- ② O-ring
- 3 Measuring cell body
- Overload diaphragm
- 5 Differential pressure sensor
- 6 Seal diaphragm on the measuring cell
- Filling liquid of the measuring cell
- 8 Capillary tube with the fill fluid of the mounting flange
- Flange with a tube
- 10 Seal diaphragm on the mounting flange


Figure 3-9 Function chart of the measuring cell for level

- The inlet pressure (hydrostatic pressure) works hydraulically on the measuring cell through the seal diaphragm

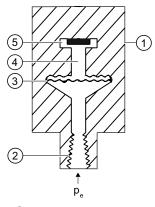
 on the mounting flange

 .
- Differential pressure at the measuring cell is transmitted to the differential pressure sensor
 through the seal diaphragms
 and the filling liquid
 .
- When measuring limits are exceeded, the overload diaphragm (a) is displaced until one of the seal diaphragms (b) or (c) rests on the measuring cell body (a). The seal diaphragms (b) thus protect the differential pressure sensor (5) from overload.
- The seal diaphragm (6) is displaced by the differential pressure. The displacement changes the resistance of the four doped piezoresistors in the bridge circuit.
- The change in the resistance causes a bridge output voltage proportional to the differential pressure.

3.6.3.4 Measuring cell for absolute pressure from the differential pressure series

- 1 Pressure cap
- 2 Seal diaphragm on the measuring cell
- 3 O-ring
- 4 Measuring cell body
- S Absolute pressure sensor

- 6 Overload diaphragm
- Measuring cell filling liquid
- 8 Reference pressure
- p_e Pressure input variable

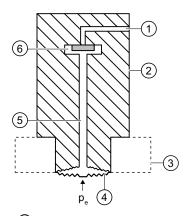

Figure 3-10 Function chart of measuring cell for absolute pressure

- Absolute pressure is transmitted to the absolute pressure sensor ⑤ through the seal diaphragm ② and the filling liquid ⑦.
- When measuring limits are exceeded, the overload diaphragm (a) is displaced until the seal diaphragm (a) rests on the measuring cell body (a). The seal diaphragm thus protects the absolute pressure sensor (b) from overload.
- The difference between the inlet pressure (p_e) and the reference pressure (a) on the
 negative side of the measuring cell displaces the seal diaphragm (a). The displacement
 changes the resistance of the four piezoresistors (bridge circuit) of the absolute pressure
 sensor.

3.6 Principle of operation

 The change in the resistance causes a bridge output voltage proportional to the absolute pressure.

3.6.3.5 Measuring cell for absolute pressure from the gauge pressure series


- Measuring cell
- ② Process connection
- 3 Seal diaphragm

- 4 Filling liquid
- 5 Absolute pressure sensor
- 6 Inlet pressure

Figure 3-11 Function chart of measuring cell for absolute pressure

The inlet pressure (p_e) is transferred to the absolute pressure sensor 5 via the seal diaphragm 3 and the fill fluid 4, displacing its measuring diaphragm. The displacement changes the resistance of the four piezoresistors (bridge circuit) of the absolute pressure sensor. The change in the resistance causes a bridge output voltage proportional to the inlet pressure.

3.6.3.6 Measuring cell for gauge pressure, front-flush membrane

- Reference pressure opening
- 2 Measuring cell
- ③ Process connection
- Seal diaphragm

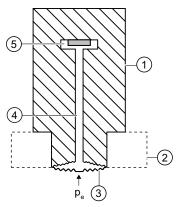

- 5 Filling liquid
- 6 Gauge pressure sensor
- p_e Inlet pressure

Figure 3-12 Function chart of the measuring cell for gauge pressure, flush mounted diaphragm

The inlet pressure (p_e) is transferred to the gauge pressure sensor 6 via the seal diaphragm 4 and the filling liquid 5, displacing its measuring diaphragm. The displacement changes the resistance of the four piezoresistors (bridge circuit) of the gauge pressure sensor. The change in the resistance causes a bridge output voltage proportional to the inlet pressure.

Transmitters with measuring span \leq 63 bar measure the inlet pressure against atmosphere, those with measuring spans \geq 160 bar against vacuum.

3.6.3.7 Measuring cell for absolute pressure, front-flush membrane

- Measuring cell
- ② Process connection
- 3 Seal diaphragm

- 4 Filling liquid
- S Absolute pressure sensor
- p_e Inlet pressure

Figure 3-13 Function chart of the measuring cell for absolute pressure, flush mounted diaphragm

The inlet pressure (p_e) is transferred to the absolute pressure sensor 5 via the seal diaphragm 3 and the filling liquid 4, and displaces its measuring diaphragm. The displacement changes the resistance of the four piezoresistors (bridge circuit) of the absolute pressure sensor. The change in the resistance causes a bridge output voltage proportional to the inlet pressure.

3.7 Remote seal

Product description

- A remote seal measuring system comprises the following elements:
 - Remote seal
 - Transmission line, e.g. capillary line
 - Measuring device

Note

Malfunction of the remote seal measuring system

If you separate the components of the remote seal measuring system, this results in malfunctioning of the system.

Do not separate the components under any circumstances.

- The measuring system based on a hydraulic principle is used to transfer pressure.
- The capillary line and the remote seal diaphragm are the most sensitive components in the remote seal measuring system. The material thickness of the remote seal diaphragm is only ~ 0.1 mm.
- The smallest of leakages in the transmission system leads to the loss of transmission fluid.
- The loss of transmission fluid results in inaccuracies in the measurement and failure of the measuring system.
- In order to avoid leaks and measuring errors, please observe the installation and maintenance instructions in addition to the safety notes.

3.8 SIMATIC PDM

SIMATIC PDM is a software package for configuring, parameter assignment, commissioning, diagnostics and maintenance of this device and other process devices.

SIMATIC PDM offers simple monitoring of process values, alarms, and device status information of the transmitter.

SIMATIC PDM allows the process device data to be:

- displayed
- set
- modified
- saved
- diagnosed
- checked for plausibility
- managed
- simulated

3.9 PROFIBUS

The Process Fieldbus (PROFIBUS) is an open communications system for automation technology and is specified in the international standard IEC 61158.

PROFIBUS Process Automation (PROFIBUS PA) is a variant of PROFIBUS Decentral Peripherals (PROFIBUS DP), which is widely used in process technology.

3.9.1 Transmission technology

PROFIBUS PA uses a special transmission technology, enabling it to fulfill the requirements of process automation and process technology. This transmission technology is defined in the international standard IEC 61158-2. The low transmission rate reduces the power loss in comparison to PROFIBUS DP, enabling an intrinsically safe technology for use in hazardous zones with explosive atmospheres. The PROFIBUS PA and PROFIBUS DP protocols are identical.

3.9.2 Bus topology

The bus topology is mainly able to be selected as desired. Therefore, line, star and tree structures, and mixed forms are possible. All types of field devices such as transmitters, actors, analysis devices, etc. can be connected to the PROFIBUS PA.

Advantages include:

- Savings on installation costs
- More extensive diagnostics, leading to increased availability of installation sections
- Automatic management of installation documentation
- Installation optimization on the fly during operation

In an automation system, there are generally multiple PROFIBUS PA lines connected to fast PROFIBUS DP via coupler units. This is also connected to the process control system.

Both bus systems use the same protocol layer. This makes PROFIBUS PA a "communications-compatible" extension of the PROFIBUS DP into the field.

3.9 PROFIBUS

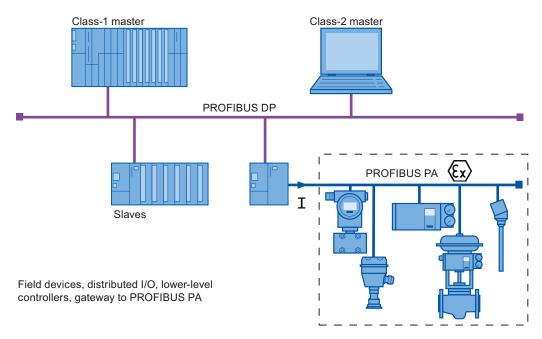


Figure 3-14 Functional principle of the PROFIBUS automation system

The figure shows a section of a typical PROFIBUS automation system. The control system consists of two masters with distributed tasks.

The class-1 master recognizes the control and regulation tasks. The class-2 master enables the operating and monitoring functions. Between the class-1 master and the field devices there is a periodic exchange of measurement and settings data. The status information from the field devices is transmitted parallel to this data, and evaluated in the class-1 master. Assignment of parameters for the field devices or the reading of additional device information is not performed during periodic operation.

Besides periodic operation, one or more class-2 masters can access the field devices asynchronously. Using this type of communication, additional information can be retrieved from the devices or settings sent to them.

3.9.3 Properties

PROFIBUS PA allows bidirectional communication between a bus master and field devices. At the same time, the shielded two-strand wiring provides auxiliary power to the two-wire field devices.

Installing / mounting

4.1 Basic safety instructions

WARNING

Wetted parts unsuitable for the process media

Danger of injury or damage to device.

Hot, toxic and corrosive media could be released if the process medium is unsuitable for the wetted parts.

• Ensure that the material of the device parts wetted by the process medium is suitable for the medium. Refer to the information in "Technical data" (Page 187).

WARNING

Incorrect material for the diaphragm in Zone 0

Danger of explosion in the hazardous area. In the case of operation with intrinsically safe supply units of category "ib" or devices of the flameproof enclosure version "Ex d" and simultaneous use in Zone 0, transmitter explosion protection depends on the tightness of the diaphragm.

• Ensure that the material used for the diaphragm is suitable for the process medium. Refer to the information in the section "Technical data (Page 187)".

WARNING

Unsuitable connecting parts

Danger of injury or poisoning.

In case of improper mounting hot, toxic and corrosive process media could be released at the connections.

• Ensure that connecting parts (such as flange gaskets and bolts) are suitable for connection and process media.

4.1 Basic safety instructions

Note

Material compatibility

Siemens can provide you with support concerning selection of sensor components wetted by process media. However, you are responsible for the selection of components. Siemens accepts no liability for faults or failures resulting from incompatible materials.

WARNING

Exceeded maximum permissible operating pressure

Danger of injury or poisoning.

The maximum permissible operating pressure depends on the device version. The device can be damaged if the operating pressure is exceeded. Hot, toxic and corrosive process media could be released.

 Make sure that the device is suitable for the maximum permissible operating pressure of your system. Refer to the information on the nameplate and/or in "Technical data (Page 187)".

WARNING

Exceeded maximum ambient or process media temperature

Danger of explosion in hazardous areas.

Device damage.

 Make sure that the maximum permissible ambient and process media temperatures of the device are not exceeded. Refer to the information in Chapter "Technical data (Page 187)".

WARNING

Open cable inlet or incorrect cable gland

Danger of explosion in hazardous areas.

Close the cable inlets for the electrical connections. Only use cable glands or plugs which
are approved for the relevant type of protection.

WARNING

Incorrect conduit system

Danger of explosion in hazardous areas as result of open cable inlet or incorrect conduit system.

 In the case of a conduit system, mount a spark barrier at a defined distance from the device input. Observe national regulations and the requirements stated in the relevant approvals.

See also

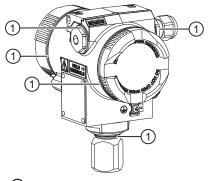
Technical data (Page 187)

WARNING

Incorrect mounting at Zone 0

Danger of explosion in hazardous areas.

- Ensure sufficient tightness at the process connection.
- Observe the standard IEC/EN 60079-14.



WARNING

Danger with "flameproof enclosure" protection

Danger of explosion in hazardous areas. An explosion may be caused by hot gas escaping from the flameproof enclosure if there is too little space between it and the fixed parts.

 Ensure that there is a space of at least 40 mm between the flameproof joint and the fixed parts.

1 Flameproof joint

4.1 Basic safety instructions

WARNING

Loss of explosion protection

Danger of explosion in hazardous areas if the device is open or not properly closed.

• Close the device as described in Chapter "PROFIBUS assembly guidelines (Page 60)".

WARNING

Use of incorrect device parts in potentially explosive environments

Devices and their associated device parts are either approved for different types of protection or they do not have explosion protection. There is a danger of explosion if device parts (such as covers) are used for devices with explosion protection that are not expressly suited for this type of protection. If you do not adhere to these guidelines, the test certificates and the manufacturer warranty will become null and void.

- Use only device parts that have been approved for the respective type of protection in the
 potentially explosive environment. Covers that are not suited for the "explosion-proof" type
 of protection are identified as such by a notice label attached to the inside of the cover
 with "Not Ex d Not SIL".
- Do not swap device parts unless the manufacturer specifically ensures compatibility of these parts.

CAUTION

Hot surfaces resulting from hot process media

Danger of burns resulting from surface temperatures above 70 °C (155 °F).

- Take appropriate protective measures, for example contact protection.
- Make sure that protective measures do not cause the maximum permissible ambient temperature to be exceeded. Refer to the information in Chapter "Technical data (Page 187)".

CAUTION

External stresses and loads

Damage to device by severe external stresses and loads (e.g. thermal expansion or pipe tension). Process media can be released.

Prevent severe external stresses and loads from acting on the device.

4.1.1 Installation location requirements

WARNING

Insufficient air supply

The device may overheat if there is an insufficient supply of air.

- Install the device so that there is sufficient air supply in the room.
- Observe the maximum permissible ambient temperature. Refer to the information in the section "Technical data (Page 187)".

CAUTION

Aggressive atmospheres

Damage to device through penetration of aggressive vapors.

• Ensure that the device is suitable for the application.

NOTICE

Direct sunlight

Increased measuring errors.

• Protect the device from direct sunlight.

Make sure that the maximum ambient temperature is not exceeded. Refer to the information in the section Technical data (Page 187).

4.1 Basic safety instructions

4.1.2 Proper mounting

4.1.2.1 Incorrect mounting

NOTICE

Incorrect mounting

The device can be damaged, destroyed, or its functionality impaired through improper mounting.

- Before installing ensure there is no visible damage to the device.
- Make sure that process connectors are clean, and suitable gaskets and glands are used.
- Mount the device using suitable tools. Refer to the information in Chapter "Technical data (Page 187)", for example installation torques requirements.

CAUTION

Loss of degree of protection

Damage to device if the enclosure is open or not properly closed. The degree of protection specified on the nameplate or in Chapter "Technical data (Page 187)" is no longer guaranteed.

• Make sure that the device is securely closed.

See also

PROFIBUS assembly guidelines (Page 60)

4.2 Disassembly

WARNING

Incorrect disassembly

The following dangers may result through incorrect disassembly:

- Injury through electric shock
- Danger through emerging media when connected to the process
- Danger of explosion in hazardous area

In order to disassemble correctly, observe the following:

- Before starting work, make sure that you have switched off all physical variables such as pressure, temperature, electricity etc. or that they have a harmless value.
- If the device contains dangerous media, it must be emptied prior to disassembly. Make sure that no environmentally hazardous media are released.
- Secure the remaining connections so that no damage can result if the process is started unintentionally.

4.3 Installation (except level)

4.3.1 Installation mounting (except for level)

Requirements

Note

Compare the desired operating data with the data on the nameplate.

Please also refer to the information on the remote seal if this is fitted.

Note

Protect the transmitter against:

- Direct heat radiation
- Rapid temperature fluctuations
- Heavy contamination
- Mechanical damage
- Direct sunlight

4.3 Installation (except level)

Note

The housing may only be opened for maintenance, local operation or to make electrical connections.

The installation location is to be as follows:

- Easily accessible
- · As close as possible to the measuring point
- Vibration-free
- Within the permitted ambient temperature values

Installation configuration

The transmitter may in principle be configured above or below the pressure tapping point. The recommended configuration depends on the medium.

Installation configuration for gases

Install the transmitter above the pressure tapping point.

Lay the pressure tubing with a constant gradient to the pressure tapping point, so that any condensate produced can drain in the main line and thereby avoid corruption of the measured values.

Installation configuration for vapor and liquid

Install the transmitter below the pressure tapping point.

Lay the pressure tubing with a constant gradient to the pressure tapping point so that any gas pockets can escape in the main line.

4.3.2 Installation (except level)

Note

Damage to measuring cell

When installing the process connection of the pressure transmitter, do not rotate the housing. Rotating the housing may damage the measuring cell.

To avoid damage to the device, tighten the threaded nuts of the measuring cell using a wrench.

Procedure

Attach the transmitter to the process connection with an appropriate tool.

4.3.3 Fastening

Fastening without the mounting bracket

You can fasten the transmitter directly on the process connection.

Fastening with the mounting bracket

You can fasten the mounting bracket as follows:

- On a wall or a mounting frame using two screws
- On a vertical or horizontal mounting tube (Ø 50 to 60 mm) using a tube bracket

Fasten the transmitter mounting bracket using the two screws provided.

Figure 4-1 Fastening the transmitter on the mounting bracket

4.3 Installation (except level)

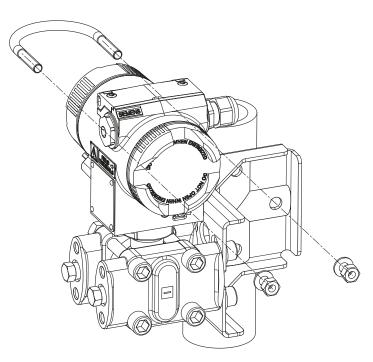


Figure 4-2 An example of fastening the transmitter on the mounting bracket in the case of differential pressure and horizontal differential pressure lines

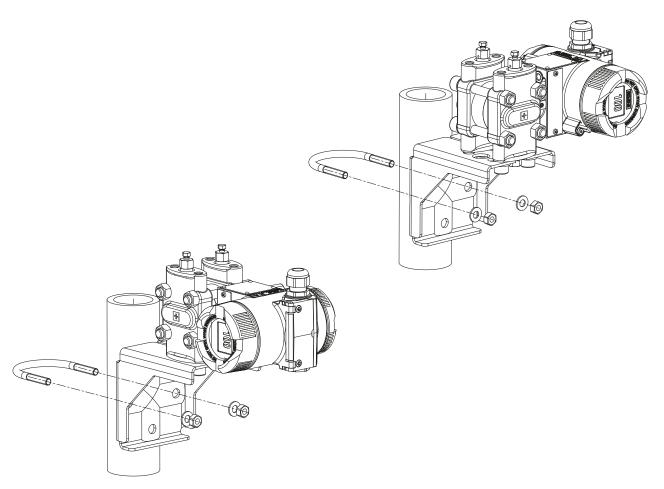


Figure 4-3 An example of fastening on the mounting bracket in the case of differential pressure and vertical differential pressure lines

4.4 "Level" installation

4.4.1 Instructions for level installation

Requirements

Note

Compare the desired operating data with the data on the nameplate.

Please also refer to the information on the remote seal if this is fitted.

4.4 "Level" installation

Note

Protect the transmitter from:

- Direct heat
- Rapid temperature changes
- Severe soiling
- Mechanical damage
- Direct sunlight

Note

Select the height of the mounting flange such that the pressure transmitter is always mounted below the lowest fill height to be measured.

The installation location is to be as follows:

- · Easily accessible
- The measuring point must be as close as possible
- Vibration-free
- Within the permitted ambient temperature values

4.4.2 Installation for level

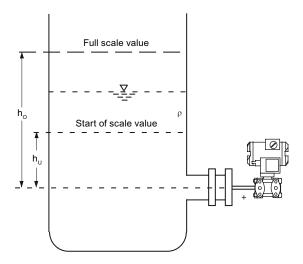
Note

Seals are required for the installation. The seals must be compatible with the medium to be measured.

Seals are not included in the delivery.

Procedure

To install the transmitter for level, proceed as follows:


- Attach the seal to the container's mating flange.
 Ensure that the seal is centrically positioned and that it does not restrict the movement of the flange's seal diaphragm in any way as otherwise the tightness of the process connection is not guaranteed.
- 2. Screw on the transmitter's flange.
- 3. Observe the installation position.

4.4.3 Connection of the negative pressure line

Assembly on an open container

A line is not required when taking measurements in an open container since the negative chamber is connected with the atmosphere.

Ensure that no dirt enters the open connection ports, for example by using connection screws with a 7MF4997-1CP bleed valve.

Formula:

Start of scale value: $p_{MA} = \rho \cdot g \cdot h_U$ Full-scale value: $p_{ME} = \rho \cdot g \cdot h_{O}$

Measurement assembly on an open container

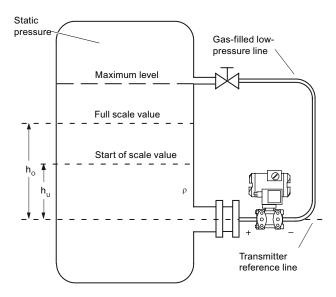
Lower filling level hυ h_0 Upper filling level

Pressure р

 Δp_{MA} Start of scale value

 Δp_{ME} Full-scale value

Density of the measured medium in the


container

Acceleration due to gravity g

4.4 "Level" installation

Assembly on a closed container

When taking measurements in a closed container without or with little condensate formation, the negative pressure line is not filled. Lay the line in such a way that pockets of condensate do not form. Install a condensation container if required.

Formula:


Start-of-scale value: $\Delta p_{MA} = \rho \cdot g \cdot h_{U}$ Full-scale value: $\Delta p_{ME} = \rho \cdot g \cdot h_{O}$

Measurement assembly on a closed container (no or little condensate separation)

$h_{\scriptscriptstyle U}$	Lower filling level	Δp_{MA}	Start of scale value
h_{O}	Upper filling level	Δp_{ME}	Full-scale value
p	Pressure	ρ	Density of the measured medium in the container
		g	Acceleration due to gravity

When taking measurements in a closed container with strong condensate formation, you must fill the negative pressure line (mostly with the condensate of the measured medium) and install a condensate pot. You can cut off the device using the dual pneumatic block 7MF9001-2.

4.5 "Remote seal" installation

Formula: Start-of-scale value:

 $\Delta p_{MA} = g \cdot (h_U \cdot \rho - h_V \cdot \rho')$

Full-scale value:

 $\Delta p_{MA} = g \cdot (h_O \cdot \rho - h_V \cdot \rho')$

Measurement assembly on a closed container (strong condensate formation)

h_U	Lower filling level	Δp_{MA}	Start of scale value
h_{O}	Upper filling level	Δp_{ME}	Full-scale value
h_V	Gland distance	ρ	Density of the measured medium in the container
p	Pressure	ρ'	Density of fluid in the negative pressure line corresponds to the prevailing temperature there
		g	Acceleration due to gravity

The process connection on the negative side is a female thread $^{1}/_{4}$ -18 NPT or an oval flange. Lay the line for the negative pressure using a seamless steel tube 12 mm x 1.5 mm.

4.5 "Remote seal" installation

4.5.1 Remote seal installation

General installation instructions

- Keep the measuring system in the factory packing until it is installed in order to protect it from mechanical damage.
- When removing from the factory packing and installing: ensure that damage to and mechanical deformations in the membrane are prevented.

4.5 "Remote seal" installation

- Never loosen the sealed filling screws on the remote seal and the measuring instrument.
- Do not cause damage to the remote separating membrane; scratches on the remote separating membrane, e.g. due to sharp-edged objects, are the main starting points for corrosion.
- Select suitable gaskets for sealing.
- Use a gasket having an adequately large inner diameter for flanging. Insert the gasket concentrically; contact with the membrane leads to deviations in measurements.
- When using gaskets made of soft materials or PTFE: follow the guidelines of the gasket manufacturer, especially regarding the tightening torque and setting cycles.
- At the time of installation, use suitable fastening components such as screws and nuts that are compliant with fitting and flange standards.
- Excessive tightening of screwed joints on the process connection may displace the zero point on the pressure transmitter.

Note

Commissioning

If a shut-off valve exists, open the shut-off valve slowly when commissioning in order to avoid pressure surges.

Note

Permissible ambient and operating temperatures

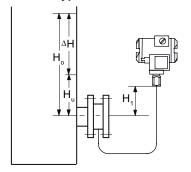
Install the pressure measuring device such that the permissible limits of ambient and measured medium temperatures are not overshot or undershot even with the consideration of the effect of convection and heat radiation.

- Note the effect of temperature on the measuring accuracy.
- When selecting the remote seals, ensure that fittings and flange components have adequate pressure-temperature resistance by selecting suitable materials and pressure ratings. The pressure rating specified on the remote seal applies to reference conditions according to IEC 60770.
- For the maximum permissible pressure at higher temperatures, please refer to the standard specified on the remote seal.

Using remote seals with pressure measuring device for hazardous areas:

- When using remote seals with pressure measuring device for hazardous areas, the
 permissible limits of ambient temperatures for the transmitter must not be exceeded. Hot
 surfaces on the cooling section (capillaries or cooling elements) are a possible source of
 ignition. Initiate suitable measures.
- When remote seals with a flame arrestor are used, the pressure measuring instrument determines the permissible ambient temperature. In the case of potentially explosive gaseous atmosphere, the temperature around the flame arrestor must not exceed +60 °C.

4.5.2 Installation of the remote seal with the capillary line


Notes

- Do not rest the measurement assembly on the capillary line.
- Do not bend capillary lines; risk of leakages and/or risk of considerable increase in the setting time of the measuring system.
- Owing to the risk of bending and breakages, pay attention to mechanical overloads at the joints such as capillary line-remote seal and capillary line-measuring device.
- Unwinding the excess capillary lines with a radius of at least 150 mm.
- Fasten the capillary line such that there are no vibrations.
- Permissible height differences:
 - When installing the pressure measuring device above the measuring point, keep the following in mind: the height difference of H_{1max.} for remote seal measuring systems with silicone, glycerin or paraffin oil filling. = 7 m must not be exceeded.
 - If halocarbon oil is used as the filling liquid, this maximum height difference is only H_{1max} = 4 m, see installation types A and B.

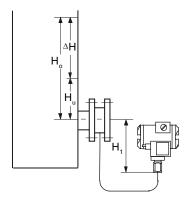
If negative overpressure is observed during measurements, reduce the permissible height difference accordingly.

Installation type for gauge pressure and level measurements (open containers)

Installation type A

Pressure transmitter above the measuring point

Installation type B


Start of scale value:

 $p_{MA} = \rho_{FL} * g * H_U + \rho_{oil} * g * H_1$

Full-scale value:

 $p_{ME} = \rho_{FL} * g * H_O + \rho_{oil} * g * H_1$

4.5 "Remote seal" installation

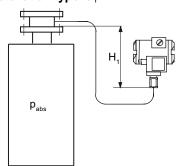
Start of scale value: $p_{MA} = \rho_{FL} * g * H_U - \rho_{oil} * g * H_1$

Full-scale value:

 $p_{ME} = \rho_{FL} * g * H_O - \rho_{oil} * g * H_1$

Pressure transmitter below the measuring point

 $H_1 \le 7$ m (23 ft); with halocarbon oil as the filling liquid, only $H_1 \le 4$ m(13.1 ft)


Key	
p_{MA}	Start of scale value
p_ME	Full-scale value
$ ho_{ t FL}$	Density of the process medium in the container
$ ho_{oil}$	Density of the filling oil in the capillary line of the remote seal
g	Acceleration due to gravity
H_{U}	Lower filling level
H_{O}	Upper filling level

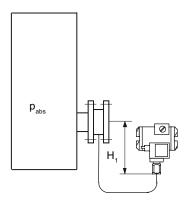
For absolute pressure measurements (vacuum), install the measuring device at least at the height of the remote seal or below it (see installation types C).

Installation types for absolute pressure measurements (closed containers)

Installation type C₁

Н₁

Start of scale value:


 $p_{MA} = p_{start} + \rho_{oil} * g * H_1$

Distance between the container flange and the pressure transmitter

Full-scale value:

 $p_{ME} = p_{end} + \rho_{oil} * g * H_1$

Installation type C₂

Pressure transmitter for absolute pressure always below the measuring point: $H_1 \ge 200 \text{ mm}$ (7.9 inch)

Key

p_{MA}	Start of scale value
p_ME	Full-scale value
p_{start}	Start of scale pressure

 p_{end} Full scale pressure

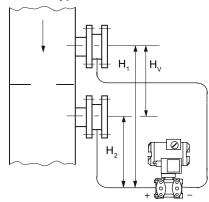
 $\rho_{\mbox{\tiny oil}}$ Density of the filling oil in the capillary line of the remote seal

g Acceleration due to gravity

H₁ Distance between the container flange and the pressure transmitter

Note

Effects of temperature


Keep the following instructions in mind in order to minimize keep the effects of temperature in remote seal measuring systems with the differential pressure measuring device:

Install the device such that the positive and negative sides are symmetrical as far as ambient effects, especially ambient temperatures, are concerned.

4.5 "Remote seal" installation

Installation type for differential pressure and flow rate measurements

Installation type D

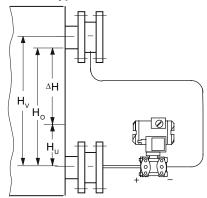
Start of scale value: $p_{MA} = p_{start} - \rho_{oil} * g * H_V$ Full-scale value: $p_{ME} = p_{end} - \rho_{oil} * g * H_V$

Key

p_{MA} Start of scale value
p_{ME} Full-scale value

Start of scale pressu

 $\begin{array}{ll} p_{\text{start}} & \text{Start of scale pressure} \\ p_{\text{end}} & \text{Full scale pressure} \end{array}$


 $\rho_{\mbox{\tiny oil}}$ Density of the filling oil in the capillary line of the remote seal

g Acceleration due to gravity

H_v Gland distance

Installation types for level measurements (closed containers)

Installation type E

Start of scale value:

$$p_{\text{MA}} = \rho_{\text{FL}} * g * H_{\text{U}} - \rho_{\text{oil}} * g * H_{\text{V}}$$

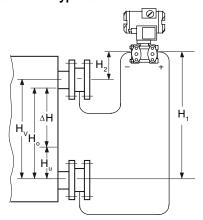
Full-scale value:

$$p_{\text{ME}} = \rho_{\text{FL}} * g * H_{\text{U}} - \rho_{\text{oil}} * g * H_{\text{V}}$$

4.5 "Remote seal" installation

Κ	е	۷

p_{MA}	Start of scale value
p_ME	Full-scale value


 ρ_{FL} Density of the process medium in the container

 $\rho_{\mbox{\tiny oil}}$ Density of the filling oil in the capillary line of the remote seal

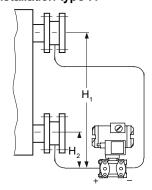
g Acceleration due to gravity

 $\begin{array}{ll} H_{\text{U}} & \quad \text{Lower filling level} \\ H_{\text{O}} & \quad \text{Upper filling level} \\ H_{\text{V}} & \quad \text{Gland distance} \end{array}$

Installation type G

 $H_1 \le 7$ m (23 ft), for halocarbon oil, however only H1 ≤ 4 m (13.1 ft)

Start of scale value:


$$p_{MA} = \rho_{FL} * g * H_U - \rho_{oil} * g * H_V$$

Full-scale value:

$$p_{ME} = \rho_{FL} * g * H_O - \rho_{oil} * g * H_V$$

Pressure transmitter for differential pressure above the upper measuring point, no vacuum

Installation type H

Start of scale value:

$$p_{MA} = \rho_{FL} * g * H_U - \rho_{oil} * g * H_V$$

Full-scale value:

$$p_{ME} = \rho_{FL} * g * H_O - \rho_{oil} * g * H_V$$

Below the lower measuring point

4.6 Turing the measuring cell against housing

Installation type J

 $H_2 \le 7$ m (23 ft); with halocarbon oil as the filling liquid, only $H_2 \le 4$ m(13.1 ft)

Start of scale value:

 $p_{MA} = \rho_{FL} * g * H_U - \rho_{oil} * g * H_V$

Full-scale value:

 $p_{ME} = \rho_{FL} * g * H_O - \rho_{oil} * g * H_V$

Between the measuring points, no vacuum

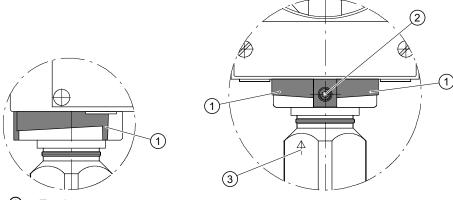
Key

p_{MA}	Start of scale value
p_{MF}	Full-scale value

 ρ_{FL} Density of the process medium in the container

 $\rho_{\mbox{\tiny oil}}$ Density of the filling oil in the capillary line of the remote seal

g Acceleration due to gravity


 $\begin{array}{ll} H_{\text{U}} & \text{Lower filling level} \\ H_{\text{O}} & \text{Upper filling level} \\ H_{\text{V}} & \text{Gland distance} \end{array}$

4.6 Turing the measuring cell against housing

Description

You can turn the measuring cell against the housing. Turning simplifies the transmitter operation in the case of an angled installation environment. The buttons and the current connection can thus also be operated for an external measuring device. The display also remains visible in enclosure covers with an inspection window.

Only limited turning is permissible! The turning range ① is marked at the foot of the electronic housing. An orientation mark ③ is provided at the throat of the measuring cell. This mark must remain in the marked section when turning.

- Turning range
- 2 Retaining screw
- ③ Orientation mark

Figure 4-4 Example: turning range of transmitters for pressure and absolute pressure from the gauge pressure series

The turning range for transmitters for differential pressure and flow rate, absolute pressure from the differential pressure series and level is identified in a similar manner.

Procedure

NOTICE

Follow the turning range, otherwise electrical connections of the measuring cell may get damaged.

- 1. Loosen the retaining screw ② (Allen screw 2.5 mm).
- 2. Turn the electronic housing against the measuring cell. Follow the marked turning range ① while doing so.
- 3. Tighten the retaining screw (torque: 3.4 to 3.6 Nm).

4.7 Rotating the display

You can rotate the display in the electronics enclosure. This makes it easier to read the display if the device is not being operated in a vertical position.

Procedure

- 1. Unscrew the cover of the electrical cable compartment. See section Structure (Page 20). An identification text "FIELD TERMINAL" is provided at the side of the housing.
- 2. Unscrew the display. Depending on the application position of the transmitter, you can reinstall it at four different positions. You can turn it by ±90° or ±180°.

4.7 Rotating the display

- 3. Screw the covers back on as far as they will go.
- 4. Secure the covers with the cover catch.

Connecting up

5.1 Basic safety instructions

5.1.1 Unsuitable cables and/or cable glands

WARNING

Unsuitable cables and/or cable glands

Danger of explosion in hazardous areas.

- Only use suitable cables and cable glands complying with the requirements specified in Chapter "Technical data (Page 187)".
- Tighten the cable glands in accordance with the torques specified in Chapter "Technical data (Page 187)".
- When replacing cable glands use only cable glands of the same type.
- After installation check that the cables are seated firmly.

WARNING

Hazardous contact voltage in versions with 4-conductor extension

Danger of electrocution in case of incorrect connection.

 For the electrical connection, refer to the information in Chapter "Technical data (Page 187)".

WARNING

Improper power supply

Danger of explosion in hazardous areas as result of incorrect power supply, e.g. using direct current instead of alternating current.

Connect the device in accordance with the specified power supply and signal circuits. The
relevant specifications can be found in the certificates, in Chapter "Technical data
(Page 187)" or on the nameplate.

5.1 Basic safety instructions

WARNING

Unsafe extra-low voltage

Danger of explosion in hazardous areas due to voltage flashover.

Connect the device to an extra-low voltage with safe isolation (SELV).

WARNING

Lack of equipotential bonding

Danger of explosion through compensating currents or ignition currents through lack of equipotential bonding.

• Ensure that the device is potentially equalized.

Exception: It may be permissible to omit connection of the equipotential bonding for devices with type of protection "Intrinsic safety Ex i".

WARNING

Unprotected cable ends

Danger of explosion through unprotected cable ends in hazardous areas.

Protect unused cable ends in accordance with IEC/EN 60079-14.

WARNING

Improper laying of shielded cables

Danger of explosion through compensating currents between hazardous area and the non-hazardous area.

- Only ground shielded cables that run into the hazardous area at one end.
- If grounding is required at both ends, use an equipotential bonding conductor.

WARNING

Connecting device in energized state

Danger of explosion in hazardous areas.

• Connect devices in hazardous areas only in a de-energized state.

Exceptions:

- Circuits of limited energy may also be connected in the energized state in hazardous areas.
- Exceptions for type of protection "Non-sparking nA" (Zone 2) are regulated in the relevant certificate

WARNING

Incorrect selection of type of protection

Danger of explosion in areas subject to explosion hazard.

This device is approved for several types of protection.

- 1. Decide in favor of one type of protection.
- 2. Connect the device in accordance with the selected type of protection.
- 3. In order to avoid incorrect use at a later point, make the types of protection that are not used permanently unrecognizable on the nameplate.

NOTICE

Ambient temperature too high

Damage to cable sheath.

 At an ambient temperature ≥ 60 °C (140 °F), use heat-resistant cables suitable for an ambient temperature at least 20 °C (68 °F) higher.

NOTICE

Incorrect measured values with incorrect grounding

The device must not be grounded via the "+" connection. It may otherwise malfunction and be permanently damaged.

• If necessary, ground the device using the "-" connection.

5.2 Connecting the device

Note

Electromagnetic compatibility (EMC)

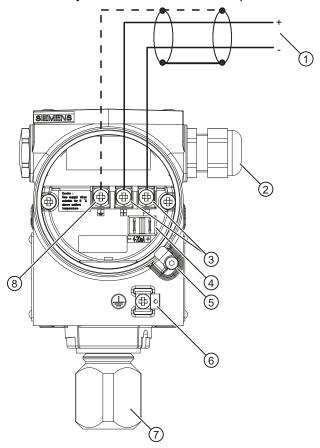
You can use this device in industrial environments, households and small businesses.

For metal housings there is an increased electromagnetic compatibility compared to high-frequency radiation. This protection can be increased by grounding the housing, see Chapter "PROFIBUS assembly guidelines (Page 60)".

5.2 Connecting the device

5.2.1 PROFIBUS assembly guidelines

Further information on PROFIBUS and PROFINET can be found on the Internet "PI PROFIBUS - PROFINET (http://www.profibus.com/home/)" > DOWNLOADS under "Installation guidelines".


Opening the device

1. Unscrew the cover of the electrical cable compartment. An identification text "FIELD TERMINAL" is provided at the side of the housing.

Procedure

- 1. Insert the connecting cable through the cable gland ②.
- 2. Connect the device to the plant with the protective conductor connection ⑥.

- 3. Connect the wires to the terminals "+" and "-" ③. The device is not polarity sensitive.
- 4. If necessary, ground the shield to the screw of the ground terminal [®]. The ground terminal is electrically connected to the external protective conductor connection.

- ① PROFIBUS PA/Foundation™ Fieldbus FF
- 2 Cable entry for auxiliary power/analog output
- 3 Connecting terminals
- 4 Test connector for direct current measuring device or connection for external display
- ⑤ Cover safety catch
- 6 Protective conductor connector/equipotential bonding terminal
- Process connection
- 8 Grounding terminal

Figure 5-1 Electrical connection, power supply

Closing the device

- 1. Screw the covers 4 7 back on as far as they will go.
- 2. Secure each cover with the cover catch 36.

5.3 Connecting the M12 connector

- 3. Close the key cover ①.
- 4. Tighten the screws in the key cover.
- 5. Check the tightness of the blanking plugs ⑤ and cable gland ② in accordance with the degree of protection.

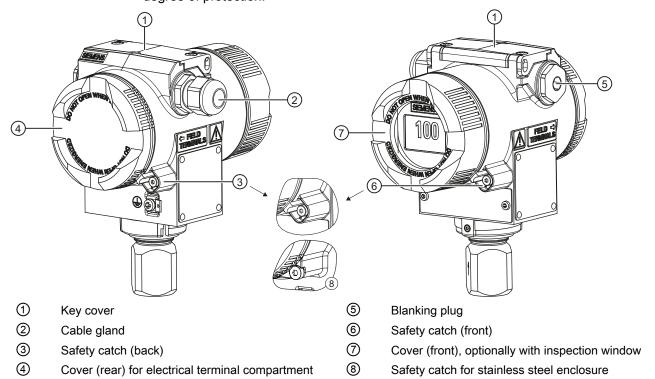


Figure 5-2 View of the transmitter: Left: Back right: Front view

See also

Structure (Page 20)

5.3 Connecting the M12 connector

Procedure

CAUTION

A conductive connection must not exist between the shield and the connector housing.

WARNING

The connector may only be used for Ex ia devices and non-Ex devices; otherwise the safety required for the approval is not guaranteed.

Note

Observe the protection class of the M12 connector when defining the protection class.

For devices in which a connector is already available on the housing, the connection is established using a cable jack.

- 1. Thread the parts of the cable jack as described by the connector manufacturer.
- 2. Strip approximately 18 mm of the bus cable ①.
- 3. Twist the shield.
- 4. Thread the shield in the insulating sleeve.
- 5. Draw 8 mm of shrink sleeve over the cable, wires and shield up to the reference edge ②.
- 6. Screw the cable ends and the shield in the pin insert.
- 7. Fix the parts of the cable jack as described by the connector manufacturer.

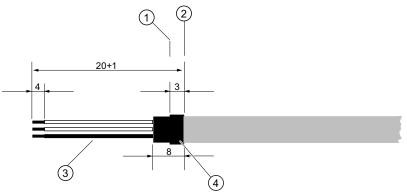
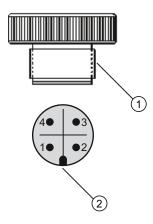
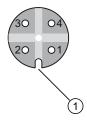



Figure 5-3 Preparing the connecting cable

- ① Reference edge for stripping
- 2 Reference edge for the dimension specifications for cable assembly
- Insulating sleeve over the shield
- 4 Shrink sleeve

5.3 Connecting the M12 connector


Pin assignment

Layout for M12 connector

- ① M12 x 1 thread
- ② Positioning catch
- 1 +
- 2 Not connected
- 3 -
- 4 Shield

Layout for M12 jack

- ① Positioning slot
- 1 +
- 2 Not connected
- 3 -
- 4 Shield

Middle jack contact not connected

Operation 6

6.1 Overview of operation

Introduction

The following description provides an overview of the operating functions which can be executed with the pressure transmitter and the safety information which is to be observed when doing so. You can operate the transmitter locally and over PROFIBUS. Local operation will be described first, and then the operating functions over PROFIBUS.

Chapter contents:

- Basic safety instructions (Page 66)
- Information on operation (Page 66)
- Display (Page 67)
- Local operation (Page 70)

Overview of operating functions

You can operate the basic settings of the pressure transmitter using the buttons on the device. The entire range of settings can be operated via PROFIBUS.

The following table describes the basic operating functions offered by a device with display.

Table 6-1 Operating functions

Function	With buttons	Over PROFIBUS
Electrical damping	Yes	Yes
Zero point calibration (position correction)	Yes	Yes
Key lock and write protection	Yes	Yes
Measured value display	Yes	Yes
Unit	Yes	Yes
Bus address	Yes	Yes
Device mode	Yes	Yes
Decimal point	Yes	Yes
Zero point drift	Yes	Yes
LO calibration	Yes	Yes
HI calibration	Yes	Yes
Customized characteristic curve	No	Yes
Diagnostics function	No	Yes
Measurement type	No	Yes

6.3 Information on operation

Further operating functions are accessible via PROFIBUS for special applications.

6.2 Basic safety instructions

Note

Incorrect reproduction of the process pressure

If you have changed the basic functions of the pressure transmitter, the display and the measurement output could be set such that the actual process pressure is not reproduced.

Therefore, check the basic parameters before commissioning.

6.3 Information on operation

The following rules apply to operation of the pressure transmitter:

 The device always increments numerical values in steps from the displayed digit of least significance.

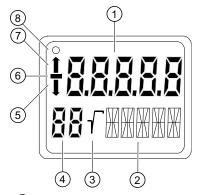
If you press the button longer, it increments the next displayed digit of higher significance. This procedure can be used for fast coarse setting over a wide numerical range. For the fine adjustment, release the $[\uparrow]$ or $[\downarrow]$ button again. Then press the button again.

Violations of the measured value limits are output on the display by f or .

- If you wish to operate the device using the buttons, the lock must be canceled.
- If you are operating the transmitter locally, write operations over PROFIBUS are rejected during this time.

It is possible to read data at any time, e.g. measured values.

Note


If you allow more than 2 minutes to pass following the pressing of a button, the setting is saved and the measured-value display is returned to automatically.

The operating instructions in the Chapter "Local operation (Page 70)" apply if the device has been delivered with a dummy cover.

6.4 Display

6.4.1 Display elements

Structure

- Measured value
- ② Unit/bar graph
- 3 Root display
- 4 Mode/button lock
- Figure 6-1 Display layout

- 5 Violation of lower limit
- 6 Symbol for measured value
- Violation of higher limit
- 8 Communication display

Description

The display is used for the local display of the measured value ① with:

- Unit ②
- Mode (4)
- Sign 6
- Statuses 5 and 7

The display ① outputs the measured value in a physical unit ② which can be selected by the customer.

The *Violation of lower limit* ⑤ and *Violation of upper limit* ⑦ displays are also referred to as status since they have meanings dependent on the settings.

If the communication display ® blinks, this indicates an active communication.

6.4 Display

6.4.2 Units display

Description

The unit display comprises five 14-segment fields for representing the unit as a percentage value or physical unit. A bar graph showing the percentage measured value range from 0 to 100% can be displayed as an alternative to the unit. The bar graph function is disabled by default.

Display

Figure 6-2 Examples of measured-value display and bar graph

The following messages may appear as a ticker in the bottom line of the display.

Table 6-2 Message as ticker

Ticker	Meaning	
"DIAGNOSTIC WARNING"	Is always displayed if:	
	An event configured by the user is to be signaled with a warning. For example:	
	 Limit reached 	
	 Event counter for limit values exceeded 	
	 Calibration time expired 	
	The status of one of the device variables is "UNCERTAIN".	
"SIMULATION"	Is always displayed when the simulation of a pressure value or temperature value is active.	

6.4.3 Error display

Description

If hardware faults, software errors or diagnostic alarms occur in the transmitter, the message "Error" appears in the measured value display.

A status code indicating the type of error appears in the bottom line of the display. This diagnostic information is also available via PROFIBUS.

Error messages are displayed for about 10 seconds after the occurrence of the error.

Display



Figure 6-3 Example of error message

See also

Overview of status codes (Page 181)

6.4.4 Mode display

Description

The selected active mode is shown in the mode display.

Display

Figure 6-4 Example for mode display

In the example, a damping of 0.2 seconds was set in mode 4.

6.4.5 Status display

Description

The arrows of the status display have a different meaning depending on the mode setting. The table below shows the meanings of the arrows in the respective functions.

6.5 Local operation

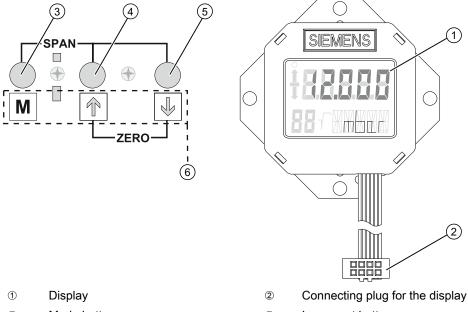
Meaning

Table 6-3 Meaning of the arrow displays

Function	Mode	Display	Display
Measured value display		Pressure exceeds the upper sensor limit.	Pressure falls below the lower sensor limit.
Adjusting damping	4	Exceeds the upper damping value	Falls below the lower damping value
LO calibration	19	_	Calibration span too low
HI calibration	20	Calibration span too high	_
Alarm		Upper alarm limit reached	Lower alarm limit reached
Warning		Upper warning limit reached	Lower warning limit reached

See also

Overview of status codes (Page 181)


6.5 Local operation

6.5.1 Control elements for local operation

Introduction

You operate the transmitter on site using the buttons. You can select and execute the functions described in the table using adjustable modes. Operation by buttons is not available for devices without display.

Control elements

- Mode button 3
- Decrement button

- 4 Increment button
- Button symbols (see cap)

Figure 6-5 Position of keys and display

Operating functions

Note

Zero point calibration

In the case of transmitters for absolute pressure, the start of scale value is vacuum!

The zero point calibration for transmitters which do not measure absolute pressure results in maladjustments.

Note

Locking of buttons and functions

Local operation is possible if you are in measuring mode and neither "L", "LA" nor "LL" is output in the mode display.

If operations are disabled, parameters can still be read. An error message is output if you try to change parameters.

Table 6-4 Operating functions using buttons

Function	Mode Button function			Display, explanations		
	[M]	[↑]	[↓]	[↑] and [↓]		
Measured value	Here you can select the modes.				you hav	rrent measured value is displayed as ve set it in the function "Measured-lisplay, mode 13".
Error display					Error	A fault exists.
Electrical damping	4	Increase damping	Decrease d damping	Set to 0	Time constant T ₆₃ in seconds Range of adjustment: 0.0 s to 100.0 s	
Zero point calibration (position correction)	7	Increase correctio n value	Decrease correction value	Apply	differer Evacua 0.1 ‰ d	ansmitter for gauge pressure, ntial pressure, flow or level. ate transmitter for absolute pressure (< of span).
Locking of buttons and functions	10	Change		Cancel 5 s *)	L	Locking of buttons and functions (hardware write protection); local operation disabled
					LC	Write blocking; local operation possible
					LA	Enabling of local operation
					LL	Combination of write blocking and no enabling of local operation
					*) Does not apply to "Safe (PROFIsafe) mode". In this case, refer to the information Chapter "PROFIsafe (Page 129)".	
Measured value display	13	Select from		-	Selection	on of various variables
Unit	14	Select fror measured display.		First value in each case from the physical unit table	Physical unit	
Bus address	15	Increase	Decrease			nddress on the PROFIBUS setween 0 and 126
Operating mode of device, see also Device operation type (Page 82)	16	Change			Selection of operating mode of device Profile-compatible 1 AI Profile-compatible with extensions Old SITRANS P/PA device Profile-compatible 1 AI, 1 TOT	
Decimal point	17	To left	To right		Positio	n of decimal point in display
Zero point adjustment	18				Display	of current measuring range
LO calibration	19	Increase value	Decrease value	Apply	Calibrate bottom point of characteristic	
HI calibration	20	Increase value	Decrease value	Apply	Calibra	te top point of characteristic

6.5.2 Operation using buttons

Introduction

This overview informs you about the most important safety notes to be observed when operating the pressure transmitter. Furthermore, the overview guides you in adjusting the operating functions on site.

Condition

The keyboard must have been unlocked in order to operate the device using the buttons.

Procedure

In the default setting, the device is in the measured value display.

To adjust the operating functions, proceed as follows:

- 1. Loosen both the screws of the keyboard cover and lift it upwards.
- 2. Keep pressing the [M] button until the desired mode is displayed.
- 3. Keep pressing the [↑] or [↓] button until the desired value is displayed.
- 4. Press the [M] button.

 Now you have saved the values and the device goes to the next mode.
- 5. Close the keyboard cover using the two screws.

Note

The setting is saved and the measured values are automatically displayed again if more than two minutes have passed after a button was pressed for the last time.

6.5.3 Setting/adjusting electrical damping

Difference between setting and adjusting

You can set or adjust the time constant of electrical damping using the buttons. Setting means that the time constant is automatically set to 0 seconds. Adjusting means that the time constant is adjusted between 0 and 100 seconds using the steps of 0.1 seconds. This electrical damping also has an effect on the built-in basic damping of the device.

Condition for "setting"

You are familiar with the correct operation of the transmitter and the associated safety notes.

Setting electrical damping

To set electrical damping to 0 seconds, proceed as follows:

- 1. Set mode 4.
- 2. Press the [↑] and [↓] buttons simultaneously.
- 3. Save with the [M] button.

Result

Electrical damping has been set to 0 seconds.

Condition for "adjusting"

The default setting of steps is an interval of 0.1 seconds. If you press the $[\uparrow]$ or $[\downarrow]$ button for a longer time, the step is increased.

Adjusting electrical damping

To adjust electrical damping, proceed as follows:

- 1. Set mode 4.
- 2. Adjust the desired damping.
- 3. Save with the [M] button.

Result

Electrical damping has been set to the desired time constant.

See also

Operation using buttons (Page 73)

Electrical damping (Page 110)

6.5.4 Calibrate zero point

Introduction

You can calibrate the zero point in mode 7. A zero point calibration is used to correct zero errors resulting from the mounting position of the transmitter. You must proceed differently depending on the device version.

Requirement

You are familiar with the correct operation of the transmitter and the associated safety notes.

Zero point calibration for gauge pressure transmitter

To calibrate the zero point, proceed as follows:

- 1. Pressurize the transmitter.
- 2. Set mode 7.
- 3. Press the $[\uparrow]$ und $[\downarrow]$ buttons simultaneously for 2 seconds.
- 4. Save with the [M] button.

Zero point calibration for absolute pressure transmitter

Note

You need a reference pressure known to you which lies within the measuring limits.

To calibrate the zero point, proceed as follows:

- 1. Create the reference pressure.
- 2. Set mode 7.
- 3. Set the reference pressure on the display.
- 4. Save with the [M] button.

6.5.5 Locking of buttons and functions

Introduction

In mode 10 you can lock the functions which are always possible using the buttons. An example of locking is the saving of stored parameter settings.

Requirement

Note

Check the measured value display to establish that this indicates the desired setting.

Activation of locking of buttons and functions

To lock the buttons, proceed as follows:

- 1. Set mode 10.
- 2. Activate the locking of buttons and functions.
- 3. Save with the [M] button.

"L" is output in the mode display.

Deactivate the locking of buttons and functions

To unlock the buttons, proceed as follows:

- 1. Set mode 10.
- 2. Press the [↑] und [↓] buttons simultaneously for 5 seconds.

Locking of the buttons and functions is now deactivated.

"- -" is output in the mode display.

See also

Key lock and write protection (Page 110)

6.5.6 Measured value display

Introduction

In mode 13, select a variable which represents the source of the measured value display. The variable is based on the measurement type set at the factory or over the bus. The measurement type cannot be set locally.

The measurement type options available can be set in SIMATIC PDM using the "transmitter type" parameter. Find the following values under this parameter:

- Pressure
- Flow, not relevant for relative and absolute pressure
- Level
- Volume

Procedure

To select the source for the measured value display, proceed as follows:

- 1. Set mode 13.
- 2. Select the variable.
- 3. Save with the [M] button.

Parameter

The following tables give the meaning of the variables, depending on the value of the "transmitter type" parameter. This allows you to select the units available in mode 14.

Table 6-5 Measurement type "Absolute pressure", "Differential pressure" and "Pressure"

Source of measured value display	Variable	Availat	ole unit
From analog input function block:			
[0] : Output :	OUT	(P)	Pressure
		(U)	User specific
From pressure transducer block:			
[1] : Secondary variable 1	SEC 1	(P)	Pressure
[2] : Measurement value (primary variable)	PRIM	(P)	Pressure
[3] : Sensor temperature	TMP S	(T)	Temperature
[4] : Electronics temperature	TMP E	(T)	Temperature
[7] : Raw pressure value	SENS	(P)	Pressure

Table 6-6 Measurement type "Flow"

Source of measured value display	Variable	Availabl	e unit
From analog input function block:			
[0] : Output	OUT	(L)	Level
		(U)	User specific
From pressure transducer block:			
[1] : Secondary variable 1	SEC 1	(P)	Pressure
[2] : Measurement value (primary variable)	PRIM	(L)	Level
[3] : Sensor temperature	TMP S	(T)	Temperature
[4] : Electronics temperature	TMP E	(T)	Temperature
[5] : Secondary variable 3:	SEC 3	(M)	Mass flow
[7] : Raw pressure value	SENS	(P)	Pressure
From totalizer function block:			
[6] : Totalizer output	TOTAL	(V)	Volume
		(ΣM) *)	Total mass flow
			Flow not relevant for relative and absolute pressure

^{*)} The option of selecting the physical unit is additionally determined by the channel setting (mass or volume) of the analog input and totalizer function blocks.

Table 6-7 Measurement type "Level (height)"

Source of measured value display	Variable	Available units	
From analog input function block:			
[0] : Output	OUT	(L)	Level
		(U)	User specific
From pressure transducer block:			
[1] : Secondary variable 1	SEC 1	(P)	Pressure
[2] : Measurement value (primary variable)	PRIM	(L)	Level
[3] : Sensor temperature	TMP S	(T)	Temperature
[4] : Electronics temperature	TMP E	(T)	Temperature

Table 6-8 Measurement type "Level (volume)"

Source of measured value display	Variable	Availal	ble units
From analog input function block:			
[0] : Output	OUT	(V)	Volume
		(U)	User specific
From pressure transducer block:			
[1] : Secondary variable 1	SEC 1	(P)	Pressure
[2] : Measurement value (primary variable)	PRIM	(V)	Volume
[3] : Sensor temperature	TMP S	(T)	Temperature
[4] : Electronics temperature	TMP E	(T)	Temperature

See also

Block model for collection and processing of measured values (Page 89)

Pressure transducer block (transducer block 1) (Page 92)

6.5.7 Unit

Introduction

In mode 14, set the physical unit in which the device's measured value display should be represented.

Requirement

You have already selected the desired source for the measured value display in mode 13.

Procedure

To adjust the physical unit, proceed as follows:

- Set mode 14.
 The physical unit used appears in the bottom line of the display.
- 2. Select a unit.
- 3. Save with the [M] button.

The following tables show the physical units available in each measurement type.

Units

Table 6-9 Unit for pressure (P)

Unit	Display	Unit	Display
Pa	Pa	g/cm²	G/cm2
MPa	MPa	kg/cm²	KGcm2
kPa	KPa	inH2O	INH2O
hPa	hPa	inH2O(4°C)	INH2O
bar	bar	mmH2O	mmH2O
mbar	mbar	mmH2O(4°C)	mmH2O
torr	Torr	ftH2O	FTH2O
atm	ATM	inHg	IN HG
psi	PSI	mmHg	mm HG

Table 6-10 Unit for volume (V)

Unit	Display	Unit	Display
m^3	m3	ft³	FT3
dm ³	dm3	yd ³	Yd3
cm ³	cm3	pint (US)	Pint
mm ³	mm3	quart (US)	Quart
I	L	US gallon	GAL
cl	cL	imp. gallon	ImGAL
ml	mL	bushel	BUSHL
hl	hL	barrel	bbl
in ³	IN3	barrel liquid	bblli

Table 6-11 Unit for volume flow (F)

Unit	Display	Unit	Display
m ³ / second	m3/S	ft ³ / hour	FT3/H
m ³ / minute	m3/M	ft ³ / day	FT3/D
m ³ / hour	m3/H	Gallons / second	Gal/S
m ³ / day	m3/D	Gallons / minute	Gal/M
Liters / second	L/S	Gallons / hour	Gal/H
Liters / minute	L/M	Gallons / day	Gal/D
Liters / hour	L/H	British barrel liquid / second	bbl/S
Liters / day	L/D	British barrel liquid / minute	bbl/M
Millions of liters / day	ml/D	British barrel liquid / hour	bbl/H
ft ³ / second	FT3/S	British barrel liquid / day	bbl/D
ft ³ / minute	FT3/M		

Table 6-12 Unit for mass flow (M)

Unit	Display	Unit	Display
g / s	G/S	Pound / s	P/S
g / min	G/MIN	Pound / min	lb/M
g / h	G/H	Pound / h	lb/H
g / d	G/D	Pound / d	lb/D
Kg/s	KG/S	Short tons / s	ST/S
Kg / min	KG/M	Short tons / min	ST/m
Kg / h	KG/H	Short tons / h	ST/h
Kg / d	KG/D	Short tons / d	ST/d
T/s	T/S	Long tons / s	LT/s
T / min	T/M	Long tons / m	LT/m
T / h	T/H	Long tons / h	LT/h
T/d	T/D	Long tons / d	LT/d

Table 6-13 Unit for level (L)

Unit	Display	Unit	Display
m	m	ft	FT
cm	cm	in	IN
mm	mm	yd	Yd

Table 6-14 Unit for mass (M)

Unit	Display	Unit	Display
kg	KG	lb	lb
g	G	STon	STon
t	Т	LTon	LTon
oz	OZ		

Table 6-15 Unit for temperature (T)

Unit	Display	Unit	Display
K	К	°F	°F
°C	°C	°R	°R

Table 6-16 Unit for user-specific (U)

Unit	Display
arbitrary	Max. 16 characters,
	If more than 5 characters, the display shows the unit as a ticker.
	The input of the characters to be displayed can only be performed through the PROFIBUS.
%	%

Note

The profile allows a much larger number of possible units. There is no limitation on some physical values special to the output of the analog input function block. For instance, if you have selected a unit with SIMATIC PDM which does not appear in the corresponding valid list, the current measurement value will be shown without a unit in the measured value display.

See also

Units of the pressure transducer block (Page 96)

6.5.8 Bus address

Introduction

The node address of the device on the PROFIBUS, the so-called bus address, is set in mode 15. The permissible range runs from 0 to 126.

Note

Do not change the bus address of the device while your system is running. The device will then no longer be visible from the application program.

Procedure

To change the bus address, proceed as follows:

- Set mode 15.
 The currently set bus address of the device appears in the measured value display.
- 2. Select the bus address within the permissible range.
- 3. Save with the [M] button.

6.5.9 Device operation type

Introduction

Set the device mode to mode 16.

The device mode [1] is preset on the pressure transmitter. Other device modes are only suitable if you have set another operation type through PROFIBUS.

Table 6-17 Device mode

Display	Meaning		
[0]	Profile-compliant:		
	Exchangeable for transmitters with PROFIBUS PA Profile 3.0, with analog input function block, without totalizer		
[1]	Delivery state		
	Profile-compatible with extensions:		
	Full functionality of the SITRANS P with:		
	Analog input function block		
	Totalizer		
[2]	Exchangeable for previous SITRANS P/PA device		
[128]	Profile-compliant:		
	Exchangeable for transmitter with PROFIBUS PA Profile 3.0 with:		
	Analog input function block		
	Totalizer.		

Procedure

To change the device mode, proceed as follows:

1. Set mode 16.

The current operation type "0", "1", "2" or "128" appears in the measured value display.

2. Select the device mode.

The local operation type must match the operation type in PROFIBUS.

3. Save with the [M] button.

Note

Each device operation type is assigned a particular device master data file (GSD file).

If the configuration of your PROFIBUS-PA strand does not correspond to the device mode selected, the device will not start periodic data exchange. Successful establishment of communication is identified by the indicator "o" at the top left of the display.

Note

If the device is exchanging period data, no change is possible to the device operating type.

Table 6-18 Device master data file

Display	File name	
[0]	pa_29700.gsd or pa_39700.gsd	
[1]	siem80A6.gsd	
[2]	sip1804B.gsd	
[128]	pa_29740.gsd or pa_39740.gsd	

See also

Errors (Page 184)

6.5.10 Position of the decimal point

Introduction

Set the position of the decimal point in mode 17. The device can display measured values with up to four decimal places.

Procedure

To move the decimal point, proceed as follows:

1. Set mode 17.

A mask appears in the display showing the current position of the decimal point.

2. Select the desired display format.

8.8888

88.888

888.88

8888.8

88888

3. Save with the [M] button.

Note

If you set the decimal point too far to the right, the resolution of the display may be too low. The display may show e.g. "0" instead of "0.43".

If you set the decimal point too far to the left, it can overflow. The display will then show the character sequence 9.9.9.9 and error code F_004 instead of the measured value.

See also

Errors (Page 184)

6.5.11 Display of the zero-point adjustment

Introduction

The zero-point adjustment is shown in mode 18. The zero point adjustment is carried out by the zero point calibration in mode 7 or by the calibration procedure in modes 19 and 20.

Procedure

To display the current zero-point adjustment, proceed as follows:

- 1. Set mode 18.
 - The current zero offset appears in the display.
- 2. Close with the [M] button.

6.5.12 LO calibration

Introduction

The slope of the characteristic is changed in mode 19. This rotates the characteristic around setting point HI.

This function replaces the zero-point calibration (mode 7) which is not permitted for absolute pressure transmitters.

The unit in which you want to calibrate is set using the following functions:

- In mode 13, set the source of the measured value display[7]: Raw pressure value, variable SENS.
- In mode 14, select the desired pressure unit.

Note

If you change this setting, the measurement range can be restricted to the point that the permissible sensor limits are violated even with small pressure changes.

Procedure

To calibrate LO, proceed as follows:

- 1. Set mode 19.
 - The display shows the value of the last calibration procedure, with the appropriate unit.
- 2. Create the reference pressure.
- 3. Press the [↑] or [↓] button.
 - The measured value display switches to the current pressure value. Using the $[\uparrow]$ and $[\downarrow]$ keys, you can enter the reference value starting from there.
- 4. Press the [↑] und [↓] buttons simultaneously for 2 seconds.
- 5. Save with the [M] button.

Result

If the calibration was successful, the current measurement value of the device will be displayed, and will correspond to the calibration value as long as the reference pressure is still applied.

If you switch to the measured value display without taking a sufficiently large calibration span into account, the pressure status "Bad" B_004 will be displayed.

The failure logic of the function block is activated. The output has the status "Unsure" U_0xx, depending on the setting.

If the two calibration points are too close together, status F_006 is displayed. The smallest calibration span depends on the nominal measurement range. Select either the higher reference pressure in mode 20, or the lower reference pressure in mode 19.

As long as mode 19 is active, you can repeat this procedure as often as necessary.

View LO calibration

To view the LO calibration, proceed as follows:

1. Set mode 19.

The display shows the value of the last calibration procedure, with the appropriate unit.

2. Leave the mode by pressing [M].

See also

Errors (Page 184)

Calibrating the sensor (Page 119)

6.5.13 HI calibration

Introduction

The slope of the characteristic is changed in mode 20. This rotates the characteristic around setting point LO.

The unit in which you want to calibrate is set using the following functions:

- In mode 13, set the source of the measured value display[7]: Raw pressure value, variable SENS.
- In mode 14, select the desired pressure unit.

Note

If you change this setting, the measurement range can be restricted to the point that the permissible sensor limits are violated even with small pressure changes.

Procedure

To calibrate HI, proceed as follows:

1. Set mode 20.

The display shows the value of the last calibration procedure, with the appropriate unit.

- 2. Create the reference pressure.
- 3. Press the $[\uparrow]$ or $[\downarrow]$ button.

The measured value display switches to the current pressure value. Using the $[\uparrow]$ and $[\downarrow]$ keys, you can enter the reference value starting from there.

- 4. Press the [↑] und [↓] buttons simultaneously for 2 seconds.
- 5. Save with the [M] button.

Result

If the calibration was successful, the current measurement value of the device will be displayed, and will correspond to the calibration value as long as the reference pressure is still applied.

If you switch to the measured value display without taking a sufficiently large calibration span into account, the pressure status "Bad" B_004 will be displayed.

The failure logic of the function block is activated. The output has the status "Unsure" U_0xx, depending on the setting.

If the two calibration points are too close together, status F_006 is displayed. The smallest calibration span depends on the nominal measurement range. Select either the higher reference pressure in mode 20, or the lower reference pressure in mode 19.

As long as mode 20 is active, you can repeat this procedure as often as necessary.

Viewing the HI calibration

To view the HI calibration, proceed as follows:

- 1. Set mode 20.

 The display shows the value of the last calibration procedure, with the appropriate unit.
- 2. Leave the mode by pressing [M].

See also

Errors (Page 184)

Calibrating the sensor (Page 119)

7.1 Communications structure for PROFIBUS PA

7.1.1 Overview

This chapter describes the processing method of the device-specific function blocks using a graphical block model which is resolved into its individual layers step by step. Knowledge of the physical block is assumed: This block is therefore not explained in this chapter.

7.1.2 Block model for collection and processing of measured values

The device functions are subdivided into blocks of different task areas. They can be parameterized during asynchronous data transmission.

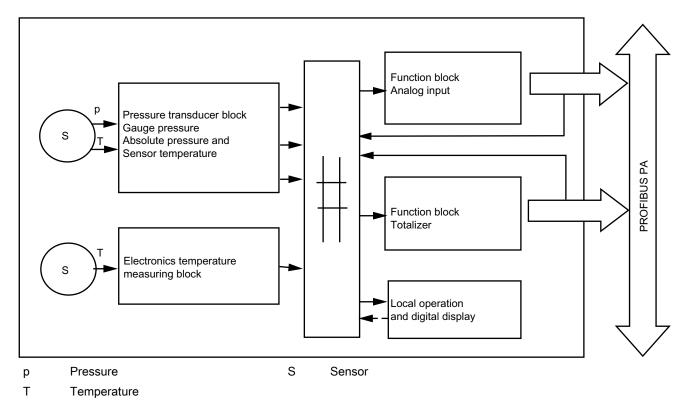


Figure 7-1 Block circuit diagram of collection and processing of measured values

7.1 Communications structure for PROFIBUS PA

Pressure transducer block

The transducer block for pressure handles the adaptation to the pressure sensor. Its output value is the linearized and temperature-compensated measurement result. When measuring levels and flow, the necessary recalculation of the measurement value is performed in the pressure transducer block. The output value is the linearized and temperature-compensated measurement result.

The pressure transducer block also processes the temperature measurement of the pressure sensor and monitors the pressure and temperature limits.

Example

In hydrostatic level measurement, the pressure transducer block converts the incoming pressure value into height or volume.

Electronics temperature transducer block

The electronics temperature transducer block executes the required temperature measurement functions and monitors the permissible temperature limits.

Analog input function block

The analog input function block further processes the selected measurement value and passes it on to the automation task.

Example

For a container full of water, you measure the volume. The analog input function block calculates the container volume [m³] in a user-specific volume unit [bottles]. The output of this block gives the measured value and the corresponding status on the PROFIBUS.

Totalizer function block

The totalizer function block totals the volumes or mass that flowed during flow measurement. Its function is very similar to that of a water meter.

The output of this block forwards the totalized values and the corresponding status information via PROFIBUS.

Local operation and display

The display shows the desired measured value with its physical unit. You can select different functions for local operation.

Connection between blocks via parameters

The output values of the transducer blocks for pressure and electronics temperature can be fed to the analog input and totalizer function blocks as input values for further processing. To do this, the parameter "Channel" must be correctly set in each function block.

Table 7-1 Connection between blocks

Transducer block	Output value (Parameters)	Usable in the analog input function block	Usable in the totalizer function block
Pressure	Temperature	Х	
	Secondary variable 1	Х	
	Secondary variable 2	Х	
	Measurement value (primary variable)	X	X
	Secondary variable 3	Х	Х
Electronics temperature	Electronics temperature	Х	

Parameters for measured value display

The values of the following parameters from the measurement and function blocks can be shown on the display. The parameter "Source for display" must be set appropriately.

Table 7-2 Visualization on the display

Block	Parameter	Can be shown on the display
Pressure transducer block	Temperature	X
	Secondary variable 1	X
	Secondary variable 2	
	Measurement value (primary variable)	X
	Secondary variable 3	X
	Raw pressure value	X
Electronics temperature transducer block	Electronics temperature	X
Analog input function block	Output	X
Totalizer function block	Totalizer output	X

See also

Measured value display (Page 76)

Cyclical data transfer (Page 153)

Acyclic data transfer (Page 158)

7.1.3 Pressure transducer block

7.1.3.1 Pressure transducer block (transducer block 1)

The following figure shows the signal flow of measurement values from the sensor cell through the pressure transducer block into the appropriate output values, e.g. temperature, measurement value (primary variable), etc. The parameters of the individual functions, e.g. measurement range, output range, etc. can be changed using acyclic access.

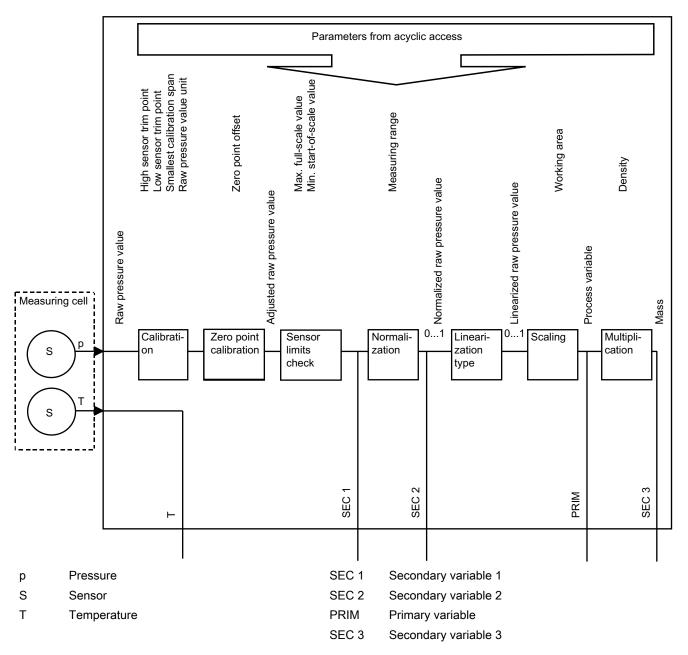


Figure 7-2 Function groups of the pressure transducer block

Functional principle

The **raw pressure value** first passes through a **calibration**. The resulting **cleaned-up pressure value** is checked for **sensor limits**. Any violation of the limits results in status "Bad" and a diagnostic error of "error collecting measured value". The cleaned-up pressure value is stored in **SEC 1**.

Then, it is subjected to a **normalization**, where the input signal is expressed in the range 0 to 10 (percentage/100). The **normalized pressure value** is stored in **SEC 2**.

Afterwards, depending on the measurement task, it is fed through one of four different linearization types. Scaling uses the preset working range (minimum and maximum values) to determine the normalized and linearized measured value (pressure, height, or volume) of the actual process variable. This is stored in PRIM.

By means of a **multiplication** with the **density** the volume is used to compute the **mass**. This is stored in **SEC 3**.

The temperature value of the pressure sensor is available in the "temperature" parameter.

See also

Acyclic data transfer (Page 158)

7.1.3.2 Linearization type function group

The normalized pressure is fed through the linearization algorithms for adjustment to the various process requirements, as shown in the following figure. The algorithm is switched using the "Characteristic curve type" parameter.

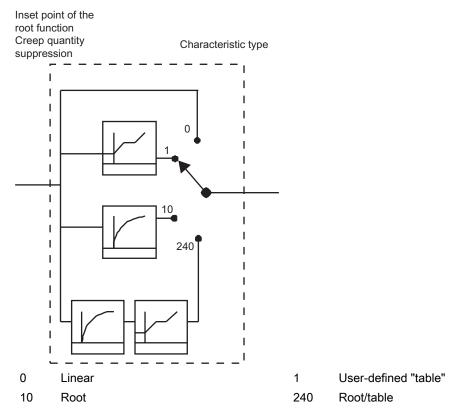
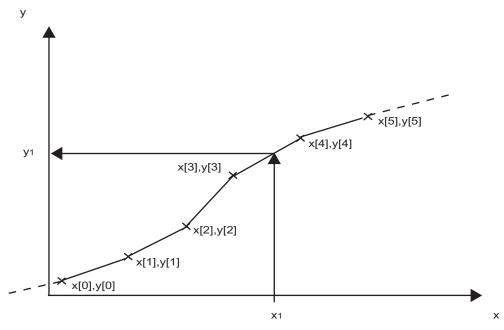


Figure 7-3 Linearization type function group

Table 7-3 Available linearization functions

Measurement task	Linearization symbol	Characterist ic curve type	Description
Pressure measurement	-	Linear	No linearization
Level: Height	-	Linear	No linearization
Level: Volume		User defined (table)	Linearization of container characteristics. The relationship between level and volume is described using a maximum of 31 nodes at arbitrary intervals.


Measurement task	Linearization symbol	Characterist ic curve type	Description
Flow: Mass/ volume flow without correction		Root extracted	Square root extraction of the input value for measurement using the orifice plate method. Additional parameters for the root function: Application point of the root function and creep quantity suppression.
Flow: Mass/ volume flow with correction		Root extracted and table	Square root extraction of the input value for measurement using the orifice plate method. With the orifice plate method, the accuracy is greatest when the operating point is at the design point. If there are deviations, the measurement deviation is also greater. For this reason, the measurement accuracy is corrected using a characteristic curve with 31 nodes.

To input a characteristic curve, select the characteristic curve type "user-defined (table)". Enter the "New number of nodes" which you will later want to enter.

The nodes must always be entered in pairs. For each point x[n] in the working range, a point y[n] is required.

The device checks which pair of nodes bracket the pressure (secondary variable 1) relative to the measurement range. To convert the pressure to the measured value (primary variable), the device interpolates on a line between the interpolation nodes.

7.1 Communications structure for PROFIBUS PA

- x Measurement range, here e.g. pressure (secondary variable 1)
- y Working range, here e.g. volume, measured value (primary variable)

Figure 7-4 Entry of a user-defined characteristic using nodes x(i), y(i)

The following table describes the vendor-specific parameters used with the flow measurement type and that supplement the root function.

Table 7-4 Vendor-specific parameters for flow measurement

Parameter	Description
Application point of the root function	This parameter specifies the flow point as a % at which the differential pressure is set in a linear relationship to the flow.
Creep volume suppression	This parameter specifies the flow point as a % below which the flow becomes 0.

7.1.3.3 Units of the pressure transducer block

In the pressure transducer block you have the option of setting units in four different places. Depending on the measurement type, units are allowed from the following measurement functions:

Table 7-5 Overview of available units

Variable	Measurement type				
	Pressure	Level	Volume	Volume flow	Mass flow
Raw pressure value	Р	Р	Р	Р	Р
Secondary variable 1	Р	Р	Р	Р	Р

Variable	Measureme	Measurement type				
	Pressure	Level	Volume	Volume flow	Mass flow	
Measurement value (primary variable)	Р	L	V	F	F	
Secondary variable 3					М	

 P
 Pressure
 F
 Volume flow

 L
 Level
 M
 Mass flow

 V
 Volume

For the measurement values (primary variables) you can also set the unit "%" for all measurement types.

Secondary variable 2 is a value normalized to one in all measurement types. The unit is fixed at "none".

See also

Unit (Page 78)

7.1.4 Electronics temperature transducer block

The electronics temperature transducer block is manufacturer-specific and not described in the profile. The transducer block is responsible for monitoring the internal temperature of the device electronics. The transducer block cannot change the pressure value, only its status.

The permissible limits correspond to those of the permissible ambient temperature. If a limit is violated, the status changes to "GOOD – Active Critical Alarm – High/Low-limit". The status of the cleaned-up pressure value in the pressure transducer block receives the status "UNCERTAIN – Value not accurate – high/low-limit". This procedure is accompanied by a PROFIBUS diagnostic message "Electronics temperature too high".

There are also peak indicators for maximum and minimum values available.

See also

Min/max indicator (Page 115)

Status (Page 155)

7.1.5 Analog input function block

The analog input function block is part of the standard functions of transmitters. The following figure shows the processing of the measured values up to the **output**.

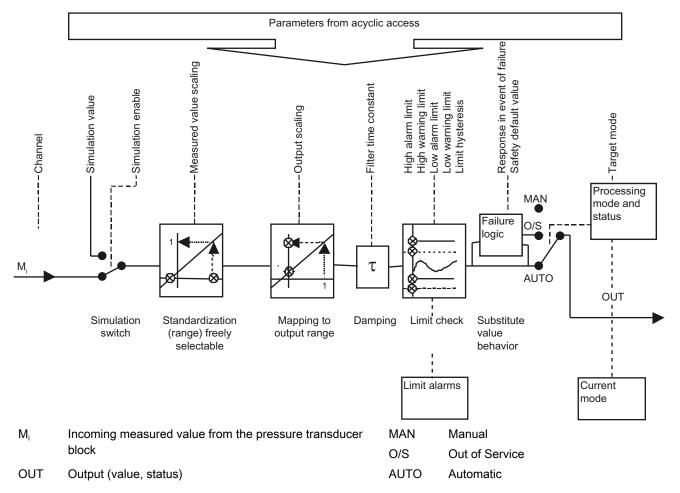


Figure 7-5 Function groups of the analog input function block

Functional principle

The incoming measurement value from the pressure transducer block - or a simulated value prescribed through the simulation switch - is subject to another normalization (measured value scaling) and a projection onto the output range through output scaling (application-specific measured value).

Afterwards, the signal is **filtered** (damping) and check for being within preset **limit values**. There is always an **upper and lower warning and alarm limit** available.

If the measured value has the status "Bad", the **shutdown logic** may output a **safety preset value**: This may be the last usable measured value or a preset substitute value.

Using the **target mode** selected in the **mode and status editor** you can choose between output of the automatically collected measured value (AUTO setting) or a manually preset simulation

value (MAN setting). If the function block is out of order (O/S setting) then the safety preset is always output.

The analog input function block handles the numerical value separately from the physical unit. You can set about 100 predefined units.

See also

Unit (Page 78)

7.1.6 Totalizer function block

The totalizer function block belongs to the standard functions of transmitters. The function block is used in flow measurement. The following figure shows the processing of the measured values through to the output values.

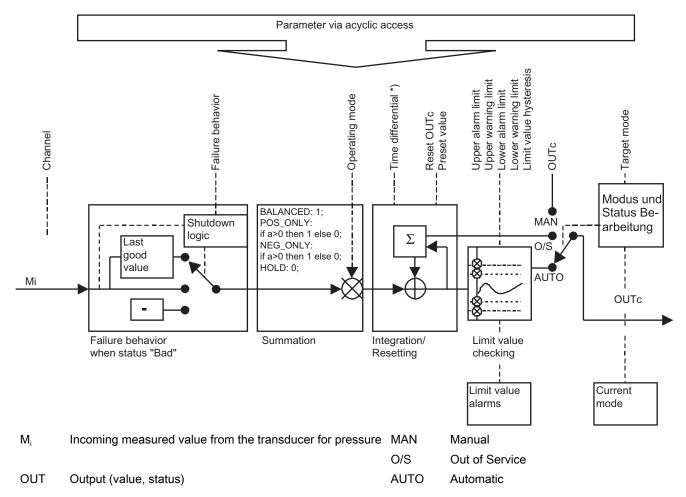


Figure 7-6 Function groups of the totalizer function block

7.3 Measurement

How it works

The function block processes the **measured values from the transducer for pressure**. If the status of the measured values is "bad", the setting of the **failure behavior** decides whether this value or the last "good" value is forwarded for totalizing.

The measured value now pass through the specified **summation direction**. The measured values are fed to a forward flow, reverse flow or net counting function.

The measured values are then **integrated** over time so that the flow can be calculated for a specified time segment. Adherence to the limit values is also checked. Here, it is also possible to **reset** the counted total to a preload value.

You can reset or initialize the totalizer function block not only with acyclic services. You can configure the totalizer function block so that you can reset or initialize it from the user program in cyclic data traffic.

In the **Mode and status processing**, select **Target mode**. Using the target mode, you can choose between output of the automatically acquired measured value (AUTO setting) or a manually set simulation value (MAN setting).

The possible units correspond to the volume and mass values of the transducer for pressure.

See also

Configuration of user data (Page 153)

Units of the pressure transducer block (Page 96)

7.2 Overview of operating functions

A PC software program like SIMATIC PDM is necessary for operation over PROFIBUS PA. How to do this is explained in the corresponding user manual and the online help. The full functionality of the pressure transmitter is available via PROFIBUS PA communication.

7.3 Measurement

In measurement mode, measurement values such as pressure, fill level or flow are available on the PROFIBUS-PA interface. PROFIBUS PA communication is signaled by the communication symbol "o" on the display.

See also

Display elements (Page 67)

7.4 Settings

7.4.1 Overview of settings

The transducer can handle numerous measurement tasks. You only have to make the following settings:

- Settings with a configuration tool, for example STEP 7 or HW Config: Here, you choose the desired configuration with which the cyclically transmitted user data will be structured.
- Settings with SIMATIC PDM: Here you set the parameters that also influence the cyclic user data.

See also

Configuration of user data (Page 153)

7.4.2 Settings

If you set a new device, select the measurement type, for example pressure or fill level. As a result, you will see the appropriate default parameter settings in the SIMATIC PDM user interface. The following sections will introduce only those which you will still have to set.

Procedure

To read out the settings, proceed as follows:

- Start the "Download to PG/PC" function.
 The current settings are downloaded to the device.
- 2. Check the current settings.
- 3. Change the necessary settings.
- 4. Load the parameter settings into the device.
- 5. Save the parameter settings offline.

7.4.3 Pressure measurement

Procedure

To select pressure measurement, proceed as follows:

- 1. Selection the target configuration "Output".
- 2. Create a device with the desired measurement type.
- 3. Start SIMATIC PDM.

 No special parameter settings are necessary.

7.4.4 Level measurement

Procedure

To set fill level measurement, proceed as follows:

- 1. Selection the target configuration "Output".
- 2. Create a device with measurement type "Fill level".

Depending on whether you want to measure a height, a volume, or a mass, set the following values.

Height measurement

To select height measurement, proceed as follows:

- Start SIMATIC PDM. Create an assignment between the pressure to be measured (measurement range) and the fill level to be recorded (working range), by setting these parameters:
- > Input
- > Transducer Block 1

Transmitter type: Level

> > Measuring range

Start value

Final value

> > Operating range

Unit: Unit of length [m, cm, mm, ft, in, yd]

Start value Final value

- Create an assignment between the measured level value and the output value by setting these parameters:
- > Output
- > Function Block 1 Analog Input

Channel: Measurement value (primary variable)

> > Measured value scaling

Start value: as in "working range"
Final value: as in "working range"

> > Output scaling

Unit: as in "working range"

Start value: as in "working range"

Final value: as in "working range"

You can also adjust the output to another process value. Assign the required unit to the parameters under the rubric output scaling. Assign the start and end values according to the measured value scaling.

Volume measurement

- Start SIMATIC PDM. Create an assignment between the pressure to be measured (measurement range) and the volume to be recorded (working range), by setting these parameters:
- > Input
- > > Transducer Block 1

Transmitter type: Volume

> > Measuring range

Start-of-scale value

Final value

> > Operating range

Unit: Unit of volume [m³, dm³, cm³, mm³, I ...]

Start-of-scale value

Final value

- If there is no linear relationship between level and volume in your container, you can also define a characteristic curve:
- > Input
- > Transducer Block 1

Transmitter type: Volume

> > Characteristic curve

Characteristic curve User-defined table

type:

> > Nodes

New number of max. 31

nodes:

x[n] measurement Pressure value

range:

y[n] working range: Corresponding volume value

- Create an assignment between the measured volume value and the output value by setting these parameters:
- > Output
- > Function Block 1 Analog Input

Channel: Measurement value (primary variable)

> > Measured value scaling

7.4 Settings

Start value: as in "working range"
Final value: as in "working range"

> > Output scaling

Unit: as in "working range"

Start value: as in "working range"

Final value: as in "working range"

You can also adjust the output to another process value. Assign the required unit to the parameters under the rubric output scaling. Assign the start and end values according to the measured value scaling.

Mass measurement

- Start SIMATIC PDM. The measurement of mass is calculated from the volume and density. Therefore create an assignment between the pressure to be measured (measuring range) and the volume to be recorded (working range) by setting the following parameters:
- > Input
- > > Transducer Block 1

Transmitter type: Volume

> > Measuring range

Start-of-scale value

Final value

> > Working area

Unit: Unit of volume [m³, dm³, cm³, mm³, I ...]

Start-of-scale value

Final value

- If there is no linear relationship between level and volume in your container, you can also define a characteristic curve:
- > Input
- > > Transducer Block 1

Transmitter type: Volume

> > Characteristic curve

Characteristic curve User-defined table

type:

> > Nodes

New number of max. 31

nodes:

x[n] measurement Pressure value

range:

y[n] working range: Corresponding volume value

• Create an assignment between the measured mass value and the output value by setting these parameters:

> Output

> Function Block 1 - Analog Input

Channel: Measurement value (primary variable)

> > Measured value scaling

Start value: as in "working range"
Final value: as in "working range"

> > Output scaling

Unit: Unit of mass [kg, g, t ...]

Start value: as "measured value scaling" * density
Final value: as "measured value scaling" * density

You can also adjust the output to another process value. Assign the required unit to the parameters under the rubric output scaling. Assign the start and final values according to the measured value scaling.

See also

Adjusting to a desired process value (Page 108)

7.4.5 Flow measurement

• Select the required configuration with the configuration tool:

Table 7-6 Desired configuration for flow measurement

Desired configuration	Measurement type
Output	Current flow/time
Totalizer output	Volume or mass that has flowed over a time segment
Output, totalizer output	Current flow/time,
	volume or mass that has flowed over a time segment,
	reset totalizer output (with SIMATIC PDM)
Output, totalizer output, reset totalizer output	Current flow/time,
	volume or mass that has flowed over a time
	segment,
	Dosing

7.4 Settings

Desired configuration	Measurement type
Output, reset totalizer output, mode	Current flow/time,
	volume or mass that has flowed over a time segment,
	Dosing,
	Controlling the mode of the totalizer from the user program: Net, forward flow, reverse flow, hold totalizer count
Totalizer output, reset totalizer output	Volume or mass that has flowed over a time segment,
	Dosing
Totalizer output, reset totalizer output, mode	Volume or mass that has flowed over a time segment,
	Dosing,
	Controlling the mode of the totalizer from the user program: Net, forward flow, reverse flow, hold totalizer count

- Create a device with measurement type "Flow".
- Start SIMATIC PDM. Create an assignment between the pressure to be measured (measurement range) and the volume or mass flow to be recorded (working range), by setting these parameters:
- > Input
- > > Transducer Block 1

Transmitter type: Flow

> > Measuring range

Start-of-scale value: 0

Final value

> > Working area

Unit: Volume unit/time unit [m3/s, m3/h, l/s, ...]

Mass unit/time unit [kg/s, t/min, ...]

Start-of-scale value 0

Final value

> > Characteristic curve

Characteristic curve Root extracted

type:

- To acquire the current flow, use "Function Block 1 Analog Input". Create an assignment between the measured flow value and the output value by setting these parameters:
- > Output
- > > Function Block 1 Analog Input

Channel: Measurement value (primary variable)

> > Measured value scaling

Start-of-scale value: as in "working range"
Final value: as in "working range"

> > Output scaling

Unit: as in "working range"

Start value: as in "working range"

Final value: as in "working range"

- To acquire an amount that has flowed (mass or volume), use the totalizer function block.
- > Output
- > Totalizer function block

Channel: Measurement value (primary variable)
Unit (totalizer)

- If your desired configuration does not include the mode settings (reset totalizer or mode), set the following parameters as well with SIMATIC PDM:
- > Output
- > Totalizer function block
- > > Operating mode

Operating mode: [Pos. and neg. values | only positive values]

Totalizer output: Count

Application point of the root function, creep quantity suppression

If you want to suppress the error that occurs at low flow quantities, you have two options that you can also combine:

- The application point of the root function determines the point below which the root function becomes linear.
- Creep quantity suppression sets the measured flow quantity to 0, when the value falls below the preset limit.

Enter the application point as a % of the operating range (volume flow).

7.4 Settings

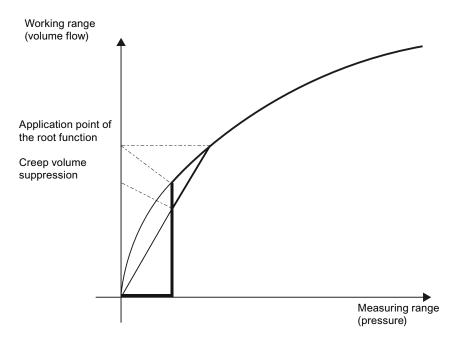


Figure 7-7 Application point of the root function and creep quantity suppression

Flow measurement correction

If you want to carry out a correction in your application (for example to take account of the flow coefficient α and the expansion coefficient ϵ), select:

- Characteristic curve type: Root extracted and characteristic curve
- Nodes: For a maximum of 31 nodes, enter an input value (measured volume flow) and an output value (corrected volume flow).

See also

Configuration of user data (Page 153)

7.4.6 Adjusting to a desired process value

The analog input function block has the purpose of mapping the measured value to the process value. In general, you want to direct the measured value straight to the bus: Then the input and output range is taken from the working range.

If the measured pressure or the fill level has an indirect but linear relation to the process value, however, assign the start and final values of the input range to start and final values for the output range. The following examples illustrate this:

Procedure

The procedure is shown by means of two concrete application examples.

Example 1

You want to assign the input range 1 to 4 Pa to the output range 0 to 100%.

- 1. Set measurement type "Pressure".
- 2. Set the following parameters:
- > Pressure transducer block

Unit for measured value Pa (primary variable):

> Analog input function block

Input starting value: 1.0
Input final value: 4.0
Output starting value: 0.0
Output final value: 100.0
Unit (output): %

Note

The display can only show a part of the ASCII character set in both upper and lower case. If you enter lower-case letters f, g, j, p, q, t, x, y, z in SIMATIC PDM in the parameter "Unit text (output)", they will only be shown in upper case. The German letters \ddot{a} , \ddot{o} , \ddot{u} , and \ddot{b} , as well as any ASCII characters with codes higher than 125, are displayed with a block symbol with all segments on. Thus try to avoid language-specific characters.

Example 2

You want to convert the input range 0 to 400 m³ to 200 l barrels. The output range, for instance, is 0 to 2000 barrels.

- 1. Set measurement type "Volume".
- 2. Set the following parameters:
- > Pressure transducer block

Unit for measured value m³ (primary variable):

> Analog input function block

Input for start-of-scale 0.0

value:

Input for final value: 400.0 Output for start-of-scale 0.0

value:

Output for final value: 2000.0 Unit (output): Text Unit text (output): Barrels

7.6 Key lock and write protection

See also

Level measurement (Page 102)

Pressure measurement (Page 101)

7.5 Electrical damping

You can set the time constant of electrical damping to a point within a range from 0 to 100 seconds. It always applies to the "Pressure" device variable (DV0) and thus to the measured values derived from it.

See also

Setting/adjusting electrical damping (Page 73)

7.6 Key lock and write protection

You can set operation blocks according to the following table.

Table 7-7 Keypad locks

Lock	Effect	Switching on/off	Display
Keypad and function block (hardware write protection)	Parameter changes with SIMATIC PDM and setting changes made locally are blocked. Independent of other operating locks.	Local Mode 10	L
Write block	Write block for parameterization using SIMATIC PDM. Local operation is possible. With PROFIsafe devices, password protection can be set for parameter modifications via bus. Refer to Write protection (Page 139).	SIMATIC PDM	LC
Local operation	If local operation is not enabled, no access is possible using the keypad. Regardless of the setting of this parameter, local operation is automatically enabled 30 seconds after loss of communication. After communication is restored, the "Local operation permitted" parameter is restored to its original setting in the device.	SIMATIC PDM	LA
Combination of write blocking and no enabling of local operation	Acts like an active keypad block. Changes to parameters (except for keypad block) are not possible either with local operation or using SIMATIC PDM.	SIMATIC PDM	LL

Blocks can also be combined:

Table 7-8 Combined blocks

Lock	Write block for parameter changes over the bus Release of local operation over SIMATIC PDM		Display
On	On or off	Released or blocked	L
Off	Off	Blocked	LA
Off	Off	Released	
Off	On	Blocked	LL
Off	On	Released	LC

See also

Locking of buttons and functions (Page 75)

7.7 Warning and alarm limits

The analog input function blocks each have high and low warning and alarm limits for the output. In order to avoid unstable display of warnings and alarms, specify a hysteresis.

In the analog input function blocks, set the following parameters according to process requirements:

- · Limit value hysteresis
- High warning limit
- · High alarm limit
- Low warning limit
- Low alarm limit

Status

If limits are violated, the output is accompanied by a status which you can evaluate in your application program:

Table 7-9 Limits and status displays

Status	Status	Violation
Display	Hex	
G_137	89	Low warning limit
G_138	8A	High warning limit
G_141	8D	Low alarm limit
G_142	8E	High alarm limit

7.8 Failure behavior

Example

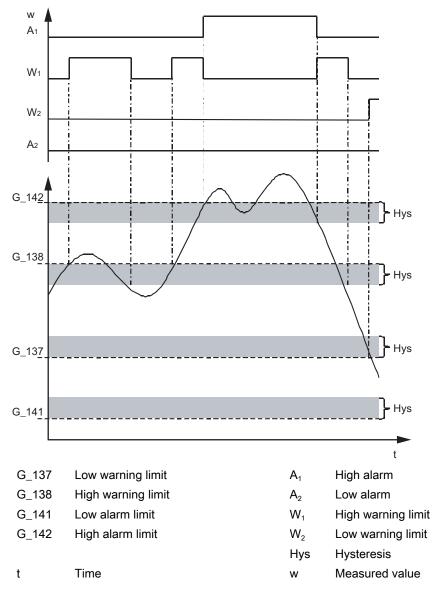


Figure 7-8 Warning and alarm limits

7.8 Failure behavior

7.8.1 Overview of failure behavior

If the transducer block fails, the analog input and totalizer function blocks can adopt a value preset by the user. If the output variables of the transducer block have the status "Bad" due

to an error, activate the failure behavior for the function blocks. The status "Unsure" then accompanies the output or the totalizer output.

7.8.2 Output

Set the failure behavior in the analog input function block:

Table 7-10 Failure behavior of the analog input function block

Failure behavior	Description	Status code
The output value is set to the replacement value.	The predefined safety preset value is output.	U_075
Saving of the last valid output value.	The last valid output value is output.	U_071
The incorrectly calculated measured value is on the output (shutdown logic turned off).	The bad output value is accompanied by the status assigned to it by the transducer block.	B_0xx

To narrow down the cause of failure after the shutdown logic engages, read the measured value (primary variables) or secondary variables including the status from SIMATIC PDM.

7.8.3 Totalizer output

Set the failure behavior in the totalizer function block:

Table 7-11 Failure behavior of the totalizer function block

Failure behavior	Description	Status code
Stop	Counting is stopped if there are input values with the "Bad" status.	
Safe operation	Counting continues with the last input value that had the "Good" status prior to the failure.	U_072
Operation	The bad measured value is accompanied by the status assigned to it by the transducer block.	B_0xx

7.9 Diagnostics functions

7.9.1 Operating hours counter

You can read out one operating hours counter for the electronics and one for the sensor. They are activated upon first commissioning of the transmitter.

7.9.2 Calibration interval and service interval

There are two timers in the transmitter:

- A timer for the calibration interval, which ensures regular calibration of the electronics.
- A timer for the service interval, which draws attention to any necessary service for the sensor cell and its connections.

The interval is selectable. The timers can monitor on two levels, first giving a warning, then an alarm.

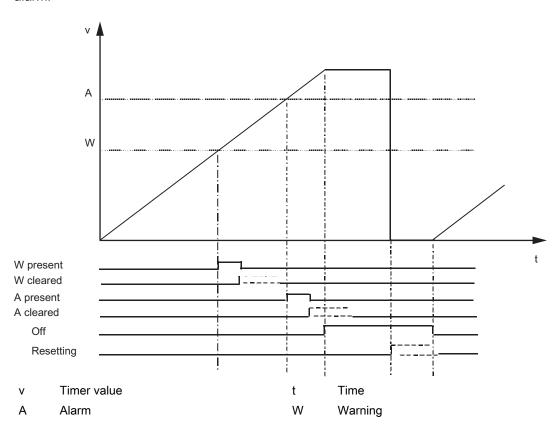


Figure 7-9 Calibration and service intervals

Procedure

To adjust the calibration and service interval, proceed as follows:

- 1. Set the parameter for warning/alarm.
- 2. Give the time interval after which a warning is output.
- 3. Give the additional time interval after which an alarm is output.

7.9.3 Clearing warning

As soon as the warning interval is past, the first monitoring level emits a warning. Measured values have the status "Good, Maintenance request". The "Maintenance request" diagnostics

alarm is also displayed. SIMATIC PDM can also display the status for calibration or service and the value of the timer.

Procedure

To clear a warning, proceed as follows:

- Clear the warning.
 The diagnostic message is deleted and the status set back to "Good".
- 2. Perform the calibration or service.
- 3. Reset the timer.

7.9.4 Clearing the alarm

If you don't perform calibration or service on time, the second monitoring level emits an alarm which again draws attention to the urgent need for service. Measured values are accompanied by the status "Unsure, value inexact" and the diagnostic message "Service required" is displayed.

Procedure

To clear an alarm, proceed as follows:

- Clear the alarm.
 The diagnostic message is deleted and the status set back to "Good".
- 2. Perform the calibration or service.
- 3. Reset the timer.

7.9.5 Min/max indicator

Description

The measuring transmitter provides three min/max indicator pairs, which you can use to monitor the three measured variables Pressure, Sensor temperature, and Electronics temperature for negative and positive peak values. For each measured value, a resettable min/max indicator saves the maximum and minimum peak values in long-term storage in the two

7.10 Simulation

non-volatile memories. Consequently, the values are available even after the device is restarted. The min/max indicators are also updated during a simulation.

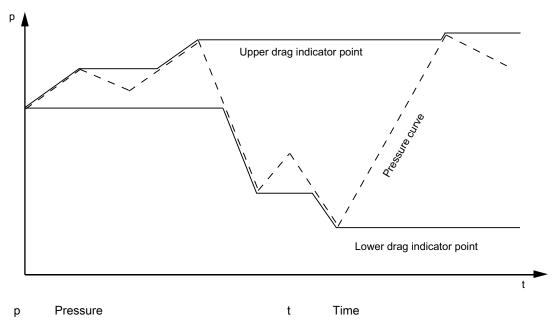


Figure 7-10 Basic representation of min/max indicators

See also

Simulating the pressure sensor (Page 118)

Simulating sensor and electronics temperature (Page 119)

7.10 Simulation

7.10.1 Overview of simulation

Simulation functions help you when commissioning parts of the system and the transmitter. You can generate process values without recording real measured values. The value range of simulated process values can be tested fully: This makes the simulation of errors possible.

From the output of the pressure transmitter, you can get ever closer to the sensor and check the measurement and function blocks.

The display indicates active simulation with an "Si" in the mode display.

7.10.2 Simulating output

By simulating the output, you can make process values available at the output of the pressure transmitter for cyclic data transmissions using acyclic write access. This allows you to test process value processing in the automation program.

Procedure

To simulate the output, make the following settings:

- 1. Select output simulation.
- 2. Set the target mode to manual (MAN).
- 3. Enter the desired output value, the quality, and the status.
- 4. Transmit the settings from the program into the transmitter.

The behavior of the output can be observed e.g. in SIMATIC PDM or using a variable table (VAT component).

To return to normal operation afterwards, set the target mode to AUTO.

7.10.3 Simulating input

By simulating the input, you can check the following functions:

- Adaptation of the measured value to the required process variable
- Monitoring of the process limits you have set
- Electric damping
- Failure behavior

Procedure

To simulate the input, make the following settings:

- 1. Select input simulation.
- 2. Set the target mode to AUTO.
- 3. Select the simulation mode "Released".
- 4. Enter the desired input value, the quality, and the status.
- 5. Transmit the settings from the program into the transmitter.

You can observe the behavior of the input in e.g. SIMATIC PDM.

To return to normal operation afterwards, you must turn off the simulation.

7.10.4 Simulating the pressure sensor

By simulating the pressure sensor as a fixed value or a parameterizable ramp, you can check the following functions:

- Calibration
- · Check the zero-point adjustment
- · Reaction to violation of sensor limits
- Linearization
- Projection onto the working range

You can make the simulation value dynamic with a parameterizable ramp. The simulation value then goes from a starting value (v_1) in a step function to a final value (v_2) , staying at each level for the given step interval (t_v) . At the final value, the direction reverses.

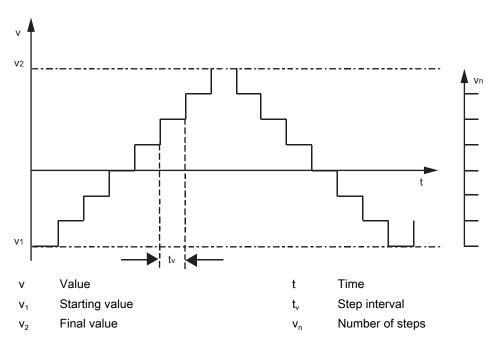


Figure 7-11 Parameterizable ramp

Procedure

To simulate the pressure sensor, make the following settings:

- 1. Select pressure sensor simulation.
- 2. Set the simulation mode and the parameters:
 - Simulation mode "Fixed" and parameter pressure value
 - Simulation mode "Ramp" and ramp parameters
- 3. Transmit the settings from the program into the transmitter.

The behavior of the measured value (primary variable), the secondary variables 1, 2, and 3, and of the output, can be observed in SIMATIC PDM.

To return to normal operation afterwards, you must turn off the simulation.

7.10.5 Simulating sensor and electronics temperature

By simulating the sensor and electronics temperature you can, for instance, check the influence of excessive temperature on the measurement results:

Procedure

To simulate the sensor and electronics temperature, make the following settings:

- 1. Select the simulation of sensor or of the electronics temperature.
- 2. Set the simulation mode and the parameters:
 - Simulation mode "Fixed" and parameter pressure value
 - Simulation mode "Ramp" and ramp parameters
- 3. Transmit the settings from the program into the transmitter.

The behavior of the measured value (primary variable), the secondary variables 1, 2, and 3, and of the output, can be observed in SIMATIC PDM.

To return to normal operation afterwards, you must turn off the simulation.

7.11 Calibrating the sensor

Sensor calibration enables you to calibrate the transmitter. Analogous to modes 19 and 20 for local operation, you can change the slope of the characteristic curve of the transmitter.

Using a lower and an upper calibration point, you can determine the course of the characteristic curve.

Change the slope of the characteristic to a minimum of 0.9 and a maximum of 1.1. Any larger variation from a slope of 1.0 will prevent the calibration point from being stored.

The lower calibration point must be far enough from the upper calibration point so that the smallest calibration span is included.

The smallest calibration span is displayed in the sensor calibration dialog and depends on the measurement range. If the calibration is smaller than the smallest span, the following status code accompanies the measured value:

"Bad, configuration error"

In this case, recalibration the lower or the upper calibration point with a sufficiently large calibration span.

7.12 Correcting for positional error

Calibrating the lower point

To calibrate the lower point, proceed as follows:

- 1. Call up the dialog "Sensor calibration".
- 2. Apply the reference pressure for the lower calibration point.
- 3. Enter the value of the reference pressure in the field "lower calibration point".
- 4. Click on "Transmit".

In the field "Pressure cleaned raw value", observe the effect of the calibration. In the "Lower calibration point" box, you can see whether the new calibration point was accepted.

Calibrating the upper point

To calibrate the upper point, proceed as follows:

- 1. Call up the dialog "Sensor calibration".
- 2. Switch to the "Upper calibration" tab.
- 3. Apply the reference pressure for the upper calibration point.
- 4. Enter the value of the reference pressure in the field "upper calibration point".
- 5. Click on "Transmit".

In the field "Pressure cleaned raw value", observe the effect of the calibration. In the "Upper calibration point" box, you can see whether the new calibration point was accepted.

After both points have been calibrated, the status of the measured value must be "Good". If the status "Bad, configuration error" is displayed, the calibration was smaller than the smallest calibration span. You must move the calibration points away from one another by moving one of the two calibration points.

See also

LO calibration (Page 85)

HI calibration (Page 86)

7.12 Correcting for positional error

External influences can affect the original zero point. External influences include:

- Installation position
- Ambient temperature
- Installation-caused preset pressures, for instance fluid columns in the pressure line to the transmitter

You can correct for these influences within the following limits.

Differential pressure -100 % to +100 % of the nominal measurement range

Pressure -100 %, but not more than -1 bar

up to +100 % of the nominal measurement range

Absolute pressure Correction for positional error not possible

Procedure

To correct for positional error, proceed as follows:

- 1. Call up the dialog "Correct for positional error".
- 2. Create a pressure calibration.
- 3. Click on "Transmit".

7.13 Reset

7.13.1 Resetting to delivery state

If the pressure transmitter is so maladjusted that it can no longer fulfill its measurement tasks, you can use this function to reset it to the factory settings. It resets all parameters to the factory settings, with a few exceptions.

The exceptions are:

- PROFIBUS address
- Device operation type
- Static version number
 - In Transducer Block 1
 - In the analog input function block

The reset is indicated by the diagnostic message "New start executed". The automation or control system reads the status "Unsure, initial value, value constant" until a measured value result is available.

See also

Resetting the PROFIBUS address (Page 122)

Device operation type (Page 82)

7.13.2 Warm start/restart

With a warm start, you cause the pressure transmitter to switch itself off and restart. This interrupts and then reestablishes communication.

7.13 Reset

You need this function, for example, if the PROFIBUS address is changed during running communication with a cyclical master.

This restart is indicated by the diagnostic message "Restart executed". The automation or control system reads the status "Unsure, initial value, value constant" until a measured value result is available.

7.13.3 Resetting the PROFIBUS address

If no other pressure sensor in your system has the preset address 126, you can add your transmitter to the PROFIBUS strand during running operation of the automation or control system. Then you must change the address of the newly connected unit to a different value.

If you remove the transmitter from the PROFIBUS chain, reset its address to 126. This allows you to include the transmitter in this or another system if necessary.

Functional safety

8.1 Safety-instrumented system

This chapter describes the functional safety in general and not specific to a device. The devices in the examples are selected as representative examples. The device-specific information follows in the next chapter.

Description

The combination of transmitter, automation system and final controlling element forms a safety-instrumented system that performs a safety function.

Functional principle of single-channel operation

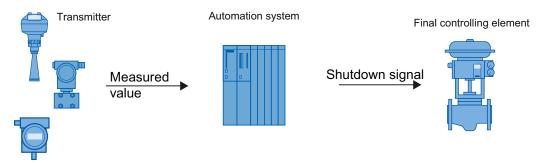


Figure 8-1 Safety-instrumented system for single-channel operation

The transmitter generates a process-related measured value that is transferred to the automation system. The automation system monitors this measured value. If the measured value exceeds the range of the high or low limit, the automation system generates a shutdown signal for the connected final controlling element, which switches the associated valve to the specified safety position.

8.2 Safety Integrity Level (SIL)

The international standard IEC 61508 defines four discrete Safety Integrity Levels (SIL) from SIL 1 to SIL 4. Every level corresponds to a probability range for the failure of a safety function.

Description

The following table shows the dependency of the SIL on the "average probability of dangerous failures of a safety function of the entire safety-instrumented system" (PFD_{AVG}) The table deals

8.2 Safety Integrity Level (SIL)

with "Low demand mode", i.e. the safety function is required a maximum of once per year on average.

Table 8-1 Safety Integrity Level

SIL	Interval
4	$10^{-5} \le PFD_{AVG} < 10^{-4}$
3	$10^{-4} \le PFD_{AVG} < 10^{-3}$
2	$10^{-3} \le PFD_{AVG} < 10^{-2}$
1	$10^{-2} \le PFD_{AVG} < 10^{-1}$

The "average probability of dangerous failures of the entire safety-instrumented system" (PFD_{AVG}) is normally split between the three sub-systems in the following figure.

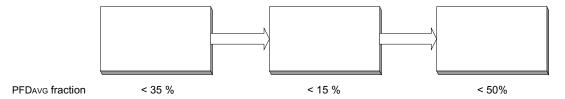


Figure 8-2 PFD distribution

The following table shows the achievable Safety Integrity Level (SIL) for the entire safety-instrumented system for type A/B subsystems depending on the safe failure fraction (SFF) and the hardware fault tolerance (HFT).

- Type A sub-systems include analog transmitters and shut-off valves without complex components, e.g. microprocessors (see also IEC 61508, Section 2).
- Type B subsystems include analog transmitters and shut-off valves with complex components, e.g. microprocessors (also see IEC 61508, Section 2).

SFF	HFT for type A sub-system			HFT for type B sub-system		
	0	1	2	0	1 (0) ¹⁾	2 (1) ¹⁾
< 60 %	SIL 1	SIL 2	SIL 3	Not permitted	SIL 1	SIL 2
60 to 90 %	SIL 2	SIL 3	SIL 4	SIL 1	SIL 2	SIL 3
90 to 99 %	SIL 3	SIL 4	SIL 4	SIL 2	SIL 3	SIL 4
> 99 %	SIL 3	SIL 4	SIL 4	SIL 3	SIL 4	SIL 4

Operational reliability in accordance with IEC 61511-1, Section 11.4.4

Operational reliability

According to IEC 61511-1, Section 11.4.4, the hardware fault tolerance (HFT) can be reduced by one (values in brackets) for transmitters and final controlling elements with complex components if the following conditions apply to the device:

- The device is proven in operation.
- The user can configure only the process-related parameters, e.g. control range, signal direction in case of a fault, limiting values, etc.

- The configuration level of the firmware is blocked against unauthorized operation.
- The function requires SIL of less than 4.

8.3 Device-specific

8.3.1 Safety function

The safety function of SITRANS P, Series DS III with PROFIsafe protocol (ordering option -Z C21) is based on the measurement of pressure.

The pressure is converted to a digital measured value and transmitted via PROFIsafe communication. Fault tolerance allowances must be made, because the measured value transferred to the automation system by the transmitter can deviate from the physical value. This fault tolerance is calculated as follows:

Fault tolerance (safety function) = \pm [application-specific measuring error + 2 % safety accuracy].

Safety accuracy: the maximum effect of an uncritical individual error on the measured value.

The measured value is transferred along with the "Validity" and "Quality" status information.

The diagnostics function will respond within 60 seconds in the worst-case scenario.

WARNING

Disregarding conditions for fulfilling the safety function

Disregard can result in a malfunction of the process plant or application, e.g. process pressure too high, maximum level exceeded

The mandatory settings and conditions are listed in chapters "Settings (Page 126)" and "Safety-related characteristics (Page 127)".

These conditions must be strictly observed in order to fulfill the safety function.

The subsystem is of type B. The detailed values and permissible hardware and firmware versions can be found in the "SIL Declaration of Conformity": Certificates (http://www.siemens.com/processinstrumentation/certificates).

The combination of sensor, automation system and final controlling element forms a safety-instrumented system that performs a safety function. The emphasis of this description is on the sensor. For information on requirements for the automation system or final controlling element, refer to the corresponding standards.

8.3 Device-specific

Single-channel operation

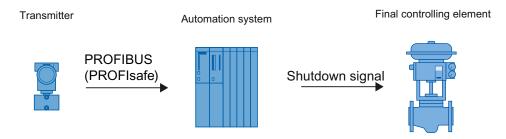


Figure 8-3 Safety-related system for pressure transmitters in single-channel operation

8.3.2 Settings

Introduction

Take the following measures when using the device for functional safety:

Procedure

- 1. Setting safety-relevant parameters
- 2. Checking the safety function
- 3. Enabling write protection

Setting safety-relevant parameters

Set the following parameters in SIMATIC PDM:

- Low warning limit
- High warning limit
- · Low alarm limit
- High alarm limit

For more information, refer to this chapter: Warning and alarm limits (Page 111).

Checking the safety function

Note

You should check the safety function while the device is mounted, if possible. If this is not possible, you can also check the safety function when the device is not mounted. Make sure that the transmitter is mounted in the same position for testing as it is in in the system.

Requirements

Key lock and write protection (Page 110) are canceled.

We recommend that:

- You check the status for warnings and alarms.
- You check the measured value limits.
- Simulate various measured values and statuses.
- Verify that the measuring tolerance is within the range of the application-specific measuring error for the safety function.
 - Check the zero point, e.g. in a pressure-less state, for gauge and differential pressure.
 - You check the zero point, e.g. with a defined pressure, for absolute pressure.

Enabling write protection

After parameterizing/commissioning:

- Enable write protection by entering the PIN in SIMATIC PDM. See chapter Activate write protection using PIN in SIMATIC PDM (Page 140).
 Operation via buttons and PROFIBUS communication is blocked.
- 2. Protect the keys from unintended change in the parameters, e.g. by lead-sealing.

8.3.3 Safety-related characteristics

The safety characteristics necessary for using the system are listed in the "SIL Declaration of Conformity". These values apply under the following conditions:

- SITRANS P, series DS III pressure transmitters are only used in applications with a low demand rate for the safety function (low demand mode).
- The safety-relevant parameters/settings were entered before the safety-instrumented operation via PROFIBUS communication. Check the safety-relevant parameters/settings by means of PDM; refer to chapter "Settings (Page 126)".
- The safety function test has been concluded successfully.
- The transmitters are protected from accidental and unauthorized changes/operation.
- Fault rates are calculated on the basis of a mean time to repair (MTTR) of eight hours (order option C21).
- You need only one SITRANS P, series DS III device for single-channel operation to SIL 2.
- Secure data transmission is only guaranteed when using a PROFIsafe master.

8.4 Maintenance/Checking

Interval

We recommend that the functioning of the pressure transmitters be checked at regular intervals of one year.

Checking the safety function

Check the safety function as detailed in the chapter Settings (Page 126).

Checking safety

You should regularly check the safety function of the entire safety circuit in accordance with IEC 61508/61511. The testing intervals are determined in calculations for each individual safety circuit in a system (PFD_{AVG}).

Electronics and measuring cell

The safety function of the transmitter is ensured only if you use the electronics, measuring cell, display and connection board delivered by the factory. These components cannot be replaced.

8.5 Add-on parts

This chapter contains safety information for add-on parts.

WARNING

Add-on parts unsuitable for process medium

Danger of injury or damage to device.

If the process medium is not suitable for the parts which come into contact with it, hot and/or toxic or corrosive substances could be released.

- Refer to the information in the chapter "Technical data (Page 187)".
- Make sure that the add-on parts are suitable for the corresponding application with regard to materials, temperature of process medium, and pressure.

8.5.1 Checking a device with add-on pneumatic block

Procedure

- 1. Check the connection between the transmitter and pneumatic block and between the pneumatic block and pipelines in the plant for leaks.
- 2. Observe the safety information and specifications in chapter Installing / mounting (Page 33).
- 3. Check the following valves for correct positioning and absence of leaks:
 - Process valves
 - Equalizer valve
 - Vent valves
 - Blowout valves or plugs
- 4. Observe the safety information and specifications in chapter Commissioning (Page 161).

8.5.2 Checking a device with add-on remote seal

Procedure

- 1. Check the connection between the transmitter and remote seal and between the remote seal and the plant for leaks.
- 2. Observe the safety information and specifications in chapter Installing / mounting (Page 33).

8.6 PROFIsafe

8.6.1 Introduction

The information in the following chapter only applies to PROFIsafe devices (ordering option - Z C21). All other chapters refer to both device versions, PROFIBUS and PROFIsafe.

PROFIsafe enables safe communication by detecting and reporting all communication errors. Data security is continuously monitored on the PROFIBUS in the process.

8.6.2 Technical advantages of PROFIsafe

The main advantage of PROFIsafe is that the PROFIBUS communication channel becomes secured by a protocol in a transparent way. Thus incorrect values cannot be transferred to the master without being discovered. The user does not need any special network components.

8.6 PROFIsafe

All the user needs is the standard network components of PROFIBUS. However, the CPU must be suitable for safety applications.

In the following example, you see that PROFIsafe and PROFIBUS devices can be operated simultaneously on a PROFIBUS network.

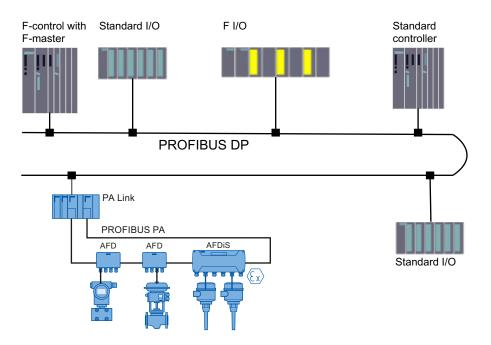


Figure 8-4 Example of PROFIsafe communication

See also

PI PROFIBUS - PROFINET (http://www.profibus.com/home/)

8.6.3 Further information

Standards

The PROFIsafe protocol was developed while taking the international standard IEC 61508 into account. The IEC 61508 governs the requirements for the functional safety of products and systems. The use of the IEC 61508 in the process industry is described in the application-specific standard IEC 61511.

Safety levels

The device meets the requirements of Safety Integrity Level 2 (SIL).

Note

You will find more information on safety engineering and installing PROFIsafe in the document "Safety Engineering in SIMATIC S7".

See also

General functional safety (http://www.siemens.com/safety)

Functional safety in process instrumentation (http://www.siemens.com/SIL)

Product information on SITRANS P in the Internet (http://www.siemens.com/sitransp)

8.6 PROFIsafe

8.6.4 Preconditions

CPU

The CPU must be capable of operating in fail-safe mode to be able to communicate with PROFIsafe devices.

These F-CPUs are contained in the catalog ST 70, SIMATIC S7.

Electronic Device Description (EDD):

Operate your application in conjunction with the EDD and GSD of SITRANS P, series DSIII PA PROFIsafe in the following system environment:

- with EDD version 01.02.01-53 with GSD "SI0180A6.GSD revision 1.03"
 - PCS 7 V7.0 and F systems V5.2SP4 with library Failsafe Blocks (V1 2) or
 - PCS 7 V7.0 and F systems V6.0 with library Failsafe Blocks (V1_2) or
- EDD version 01.02.02 or higher with GSD "SI0180A6.GSD revision 1.04" with PCS 7 V7.0 SP1 and F systems V6.0 with library S7 F Systems Lib V1_3
- EDD version 01.02.03 or higher with GSD "SIEM8170.GSD revision 1.0" with PCS7 V7.1 SP3 and F systems V6.1 with libraryS7 F Systems Lib V1_4

Note

With this EDD, the "PROFIBUS Ident number" parameter can be set to manufacturer-specific (3.01), PROFIsafe V1/V2

PROFIsafe device

For safety reasons, the PROFIsafe device ships with default settings. This means PROFIsafe is deactivated. You activate PROFIsafe with the PROFIsafe commissioning.

Technical requirements for PROFIsafe:

- SIMATIC PDM HF1
- EDD from 01.02.01
- Firmware from 301.02.01

8.6.5 PROFIsafe Configuration

For safety reasons, the PROFIsafe device ships with default settings.

Requirement

Before you commission the PROFIsafe device, configure it, for example in STEP 7.

Process

Import EDD with SIMATIC PDM (Page 133)
Configure CPU with HW Config (Page 133)
Configure device with HW Config (Page 134)
Configure CFC (Page 137)

8.6.5.1 Import EDD with SIMATIC PDM

To import the EDD, click on "SIMATIC PDM" > "Manage Device Catalog".

8.6.5.2 Configure CPU with HW Config

The relevant settings for fail-safe of the CPU are located in the CPU-specific documentation.

Procedure

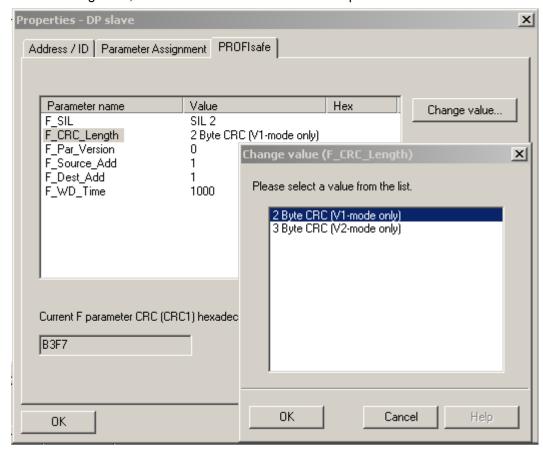
If your CPU is a SIMATIC CPU, proceed as follows:

- 1. Double click on the CPU.
- 2. You are now in the "Properties" dialog box on the "Protection" tab. Activate the following checkboxes:
 - Protection level "1"
 - "Removable with password"
 - "CPU contains safety program"

8.6.5.3 Configure device with HW Config

Procedure

- 1. You are in the "Catalog" view with the "standard" profile. Go to the device in the catalog:
 - "PROFIBUS-PA > Sensors > Pressure > SIEMENS > SITRANS P DSIII PROFIsafe" valid for firmware 0301.02.01 and 0301.02.02
 - "PROFIBUS-PA > Sensors > Pressure > SIEMENS > SITRANS P DSIII PROFIsafe V2" valid as of firmware 0301.02.03


Note

You will find the valid firmware version on the label and can then select the correct GSD file for your version.

- 2. Pull the following device onto "PA Master System" with Drag & Drop. The "Properties" dialog then opens.
- Set the PROFIBUS address.
 The device is displayed in HW Config with the default configurations.
- 4. Delete the default module of the device at Slot 1.
- 5. You are now in the "Catalog" view. For the PROFIsafe device, select the fail-safe-compliant configuration "F:Pressure\Level\Flow\Temp".
- 6. Drag the F-module to slot 1.
- 7. Open the "PROFIsafe" tab in the "Properties DP slave" dialog of the catalog.
- Check the PROFIsafe address, parameter "F_Dest_ADD".

You must set the PROFIsafe address, parameter "F_Dest_ADD" to the same value later using the PDM table in the device.

- 9. Valid as of firmware 0301.02.03: Select the PROFIsafe protocol version V1 or V2 with which the device will work.
 - crc length = 3, F-Par-Version = 1 → V2 PROFIsafe protocol
 - crc length = 2, F-Par-Version = 0 → V1 PROFIsafe protocol

- 10.Adapt the value of the "F_WD_Time" parameter to the number of PROFIBUS devices connected to the PROFIBUS-PA bus. The default value for this parameter is 1 second.
- 11. Close the "Properties DP slave" dialog of the catalog.
- 12. Click the "Save and compile" button.
- 13. Press the "Download to module" button.

8.6 PROFIsafe

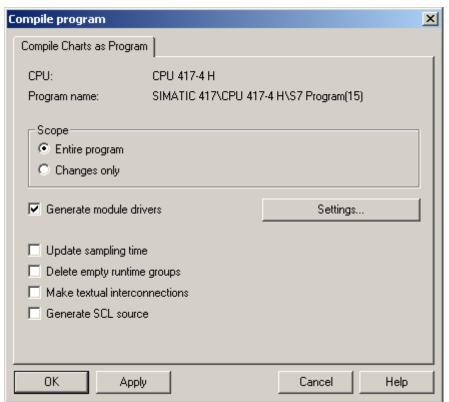
Note

F-CPUs for PROFIsafe V2 communication

With F-CPUs, if you set "F_Par_Version" to "1" for a device, a communications error occurs in the case of safety-oriented communication with the device because PROFIsafe V2 communication does not support this setting. One of the following diagnostic events will then be entered in the diagnostic buffer of the F-CPU:

- "F-I/O passivated": Cyclic redundancy check error/sequence number error.
- "F-I/O passivated": F-monitoring time for safety frame exceeded.

To make sure that PROFIsafe V2 communication works correctly, use only F-CPUs approved for this purpose.


8.6.5.4 Configure CFC

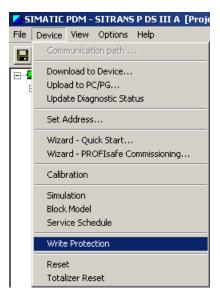
Procedure

- 1. You are in the "Catalog" window, "Libraries" tab.
- 2. Locate the block "F_PA_AI [FB356] in the "Failsafe Blocks" library.
- 3. Pull the block into the plan with Drag & Drop.
- 4. Set the parameter "Value", value type "Real" in the block "F_PA_AI" as follows:
 - Click this parameter with the right mouse button.
 - Select "Connect to Operand..." in the context menu.
 A selection list of transfer rates is displayed.
 - Connect the parameter value of the block "F_PA_AI" with the real value of the configured device.
- 5. Click the "Compile program" button.

8.6 PROFIsafe

6. Select the "Generate module drivers" check box.

7. Click the "OK" button.


The parameters are connected.

Note

Until PROFIsafe commissioning is completed, the device displays the error "B_60: Bad function check". This has no effect on the operation of the device. The error message lets you know that the device is not yet in "S4".

8.6.6 Write protection

8.6.6.1 Overview

Write protection

The following write-protection options are available:

Lock or unlock device

The dialog box shows the current write protection. If you have activated write protection with PIN, you can lock or unlock the device with the PIN here.

Default PIN: 2457

Change stored PIN

The dialog box shows the current write protection. In addition, you enter your desired PIN here.

Enter Super PIN

If you have forgotten your PIN, it is possible to deactivate the write protection by entering the super PIN. The device resets the PIN to the default value.

Super PIN: G73KMQ2W

See also

Activate write protection using PIN in SIMATIC PDM (Page 140)

Activate and parameterize PROFIsafe with SIMATIC PDM (Page 141)

Disable write protection using PIN in SIMATIC PDM (Page 149)

8.6 PROFIsafe

8.6.6.2 Activate write protection using PIN in SIMATIC PDM

Requirement

The device is in the PROFIsafe commissioning status "S1".

Procedure for creating user-defined PIN

- 1. In the "Device" menu, select the "Write protection" command.
- 2. Click the "Change PIN" button. An additional dialog opens.
- 3. Enter the desired PIN.
- Click "OK". The dialog closes.
- 5. Click the "ON" button.
- 6. Click the "Close" button.

Create default PIN

- 1. In the "Device" menu, select the "Write protection" command.
- 2. Click the "ON" button.

Result

The "Write protection" dialog is closed.

A user-defined PIN has been created for the write protection.

8.6.7 PROFIsafe Commissioning

Requirement

Before you commission the PROFIsafe device, configure it, for example in STEP 7.

Process

Activate and parameterize PROFIsafe with SIMATIC PDM (Page 141)

Commission PROFIsafe with SIMATIC PDM (Page 142)

Check write protection with SIMATIC PDM (Page 147)

8.6.7.1 Activate and parameterize PROFIsafe with SIMATIC PDM

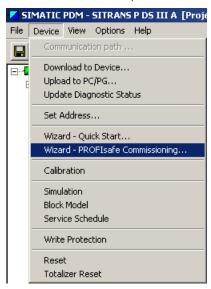
Procedure

- Click the "Upload to PC" button.
 SIMATIC PDM reads in the parameters from the device.
- 2. Under ">> PROFIsafe", set the "PROFIsafe activation" parameter to "Yes".
- 3. Set the "F_Dest_ADD" parameter so that it has the same value as in HW Config.
- 4. If you must change other parameters, then parameterize them.
- 5. Press the "Download to device" button.

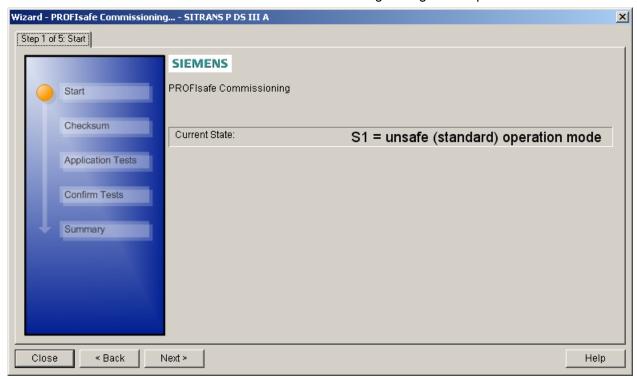
Result

The device has activated the PROFIsafe functionality. The relevant menus for PROFIsafe commissioning are active in SIMATIC PDM.

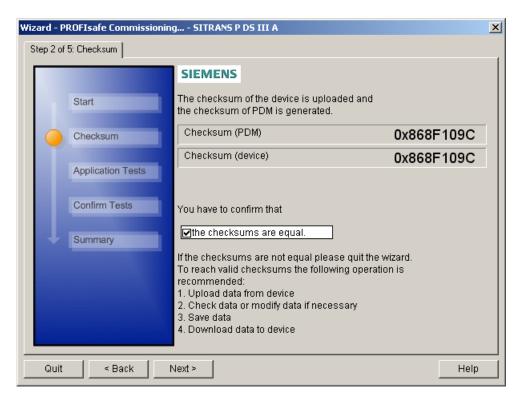
Note

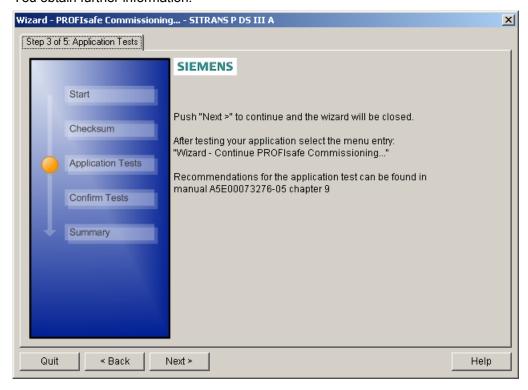

If you want to change the "F_Dest_ADD" parameter later, reset the device.

Resetting the device (Page 148)

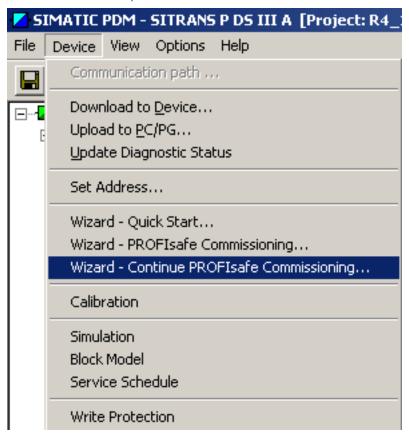

8.6.7.2 Commission PROFIsafe with SIMATIC PDM

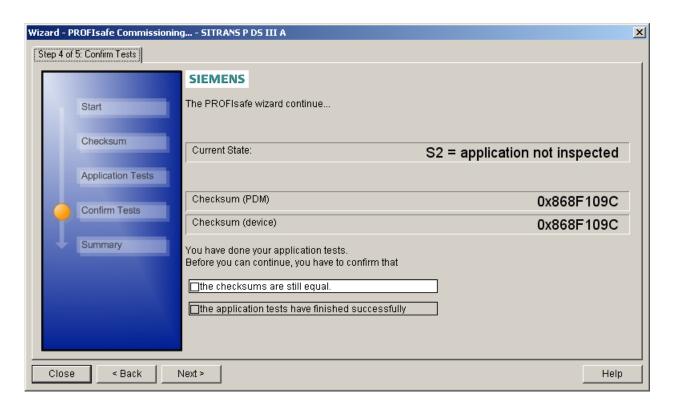
Start PROFIsafe commissioning


1. In the "Device" menu, select the "Wizard - PROFIsafe commissioning" command.


The "Wizard - PROFIsafe commissioning" dialog box is opened.

2. Click "Next".

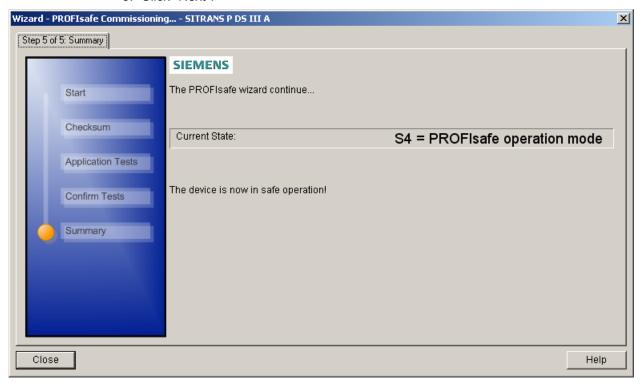

3. If the checksums are the same, select the checkbox. You obtain further information.


- 4. Click "Next".
- 5. Click "OK" to confirm the message that follows.

8.6 PROFIsafe

6. In the "Device" menu, select the "Wizard - continue PROFIsafe commissioning" command.

The "Wizard - PROFIsafe commissioning" dialog box is opened again.


The PROFIsafe Commissioning State shows the following: "S2 = application not checked".

If the checksums are still the same, select the checkboxes.
 The PROFIsafe commissioning status shows the following: "S3 = check finished".

8.6 PROFIsafe

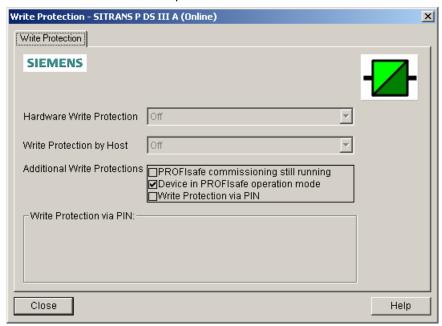
8. Click "Next".

The PROFIsafe commissioning status shows the following: "S4 = safe (PROFIsafe) mode"

9. Click the "Close" button.

Result

The "Wizard - PROFIsafe commissioning" dialog box is closed.


The PROFIsafe device is in "S4" and is write protected accordingly.

8.6.7.3 Check write protection with SIMATIC PDM

Procedure

To check the write protection in the PROFIsafe Commissioning State, e.g. "S4", proceed as follows:

- 1. In the "Device" menu, select the "Write protection" command.
- 2. Make sure that the second option checkbox is active.

Note

Local operation

The write protection in the PROFIsafe Commissioning State "S4" restricts local operation. The parameters that affect the local appearance of the display can be adjusted.

Note

SIMATIC PDM operation

The write protection in the PROFIsafe commissioning status "S4" allows the maintenance timer to be changed, for example for the calibrating interval of the electronics and for the servicing interval of the sensor.

Note

Additional write protection by HOST

The additional write protection by HOST is set in Continuous Function Chart (CFC) in the F_PA_AI function block, I_PAR_EN parameter.

8.6 PROFIsafe

Note

If you need a user-defined PIN write protection, you will find it in the appropriate chapter.

See also

Overview (Page 139)

Activate write protection using PIN in SIMATIC PDM (Page 140)

8.6.7.4 Speeding up the commissioning process

Parameter setting

During PROFIsafe commissioning you only have 60 seconds for confirmation between steps S3 and S4.

Proceed as follows to speed up commissioning of the device:

- 1. Insert the blocks from the library into the CFC and interconnect them. Show the properties of the "F_PA_AI" block.
- 2. Go to the folder "Connections" and change the preselection of the "IPAR_EN" connection from hidden to visible.
- 3. Close the "Properties" menu.

 The input "IPAR_EN" is now visible at the "F_PA_AI" block.
- 4. Assign this input with "1."
 Write protection of the host is now cancelled.
- 5. Now go to the PDM table of SITRANS P DSIII PA PROFIsafe
- 6. Set the "Service Diagnostics" parameter to locked under "Performance > Status/ Diagnostics add-on."
- 7. Save this setting before commissioning.
- 8. Once you have concluded commissioning, unlock the "Service Diagnostics" parameter once again to receive all diagnostics information of the device.

8.6.7.5 Resetting the device

The following procedure no longer belongs to standard commissioning. Take the following steps only when necessary.

Procedure

- 1. Select the "Master Reset" command in the "Device" menu. The "Master Reset ..." dialog opens.
- 2. Click the "Warm restart" button.

Note

Procedure when subsequently changing the F parameter

- 1. Carry out a change to an F parameter using HW Config or PDM.
- 2. Select the "Reset" command in the "Device" menu. The "Reset ..." dialog opens.
- Click the "Warm restart" button.
 As a result of the warm restart, the change to the F parameter is included in the cyclic communication procedure.

8.6.8 Quit PROFIsafe commissioning

8.6.8.1 Preparations for maintenance and service

Procedure

Before you perform maintenance on a PROFIsafe device, proceed as follows:

- 1. Deactivate "PROFIsafe Commissioning".
- 2. Disable the write protection.

8.6.8.2 Deactivate PROFIsafe commissioning in SIMATIC PDM

Procedure

- 1. In the "Device" menu, select the "Wizard PROFIsafe commissioning" command.
- 2. Click the "Change to insecure mode" button.
- 3. Click the "Close" button.

8.6.8.3 Disable write protection using PIN in SIMATIC PDM

Procedure

- 1. In the "Device" menu, select the "Write protection" command.
- 2. Click on the "OFF" button.
- 3. Enter the user-defined PIN, the default PIN, or the super PIN.

8.6 PROFIsafe

See also

Overview (Page 139)

8.6.9 Replacing a device

Replacing a PROFIsafe device with firmware <= 0301.02.02 or a PROFIBUS device with a PROFIsafe device with firmware 0301.02.03 or higher

When shipped, PROFIsafe is disabled on the replacement device.

Requirement

Import the PROFIsafe EDD as of version 01.02.03 to the device catalog of SIMATIC PDM.

Process

- 1. Replace the device.
- 2. Configure the device. You have two options:
 - Making settings locally
 - Host system

The EDD of the new device must be reassigned to that of the replaced PDM object. Making the reassignment in the "Process Devices - Network View" of the SIMATIC Manager.

8.6.9.1 Making settings locally

Procedure

- 1. Set mode 16.
- 2. Set the device mode [129] with the [↑] and [↓] keys.
- 3. Save with the [M] key.

Device modes

Display	Meaning				
[0]:	Profile-compliant: Can be replaced by transducers complying with PROFIBUS PA profile 3.0 with analog input function block (without totalizer) (only as standard device)				
[1]:	State as shipped Profile-compliant with expansions: Full range of functions of the SITRANS P, series DS III PROFIsafe with:				
	Analog input function block				
	Safe analog input				
	Totalizer				
	PROFIsafe communication in mode V1 or V2 possible				
[2]:	Can be replaced by the predecessor device SITRANS P, series DS III PA (only as standard device)				
[128]:	Profile-compliant: Can be replaced by transducers complying with PROFIBUS PA profile 3.0 with analog input function block (without totalizer) (only as standard device)				
	Analog input function block				
	Totalizer				
[129]:	 Can be replaced by SITRANS P, series DS III PROFIsafe with PROFIsafe communication only possible in V1 mode. 				
	• In this device mode, a SITRANS P, series DS III PA (standard device with Profibus profile 3.00 or 3.01) can be replaced by a SITRANS P, series DS III PROFIsafe (as of firmware version 0301.02.03).				

A specific Generic Station Description (GSD) file is assigned to each device mode:

Display	File name
[0]:	pa_29700.gsd or pa_39700.gsd
[1]:	siem8170.gsd
[2]:	sip1804B.gsd
[128]:	pa_29740.gsd or pa_39740.gsd
[129]:	SI0180A6.gsd or SIEM80A6.gsd or SI0280A6.gsd

8.6.9.2 Configuration with host system

Note

Generic Station Description (GSD)

The generic station description file in HW Config remains the same: SI0180A6.gsd.

Procedure

1. Using the EDD, change the "PROFIBUS Ident Number" parameter from manufacturer specific (3.01), PROFIsafe V1/V2 to manufacturer specific (3.01), PROFIsafe V1, if you want to operate your devices with PROFIsafe V1.

» » Device		
Manufacturer	Siemens	Initial val
Product designation	SITRANS P DS III	Initial val
Device Serial Num		Initial val
Software Revision	1	Initial val
Hardware Revision	1	Initial val
Profile Revision	3.01	Initial val
Static Revision No.	0	Initial val
PROFIBUS Ident Number	Manufacturer specific (3.01), PROFIsafe V1 ▼	Initial val
Installation Date	Profile specific, Al	Initial val
Sensor Type	Manufacturer specific (3.01), PROFIsafe V1.√2	Initial val
Sensor Serial Number	Manufacturer specific (2.x)	Initial val
Ordernumber	Profile specific + TOT	Initial val
Field Device Revision	Manufacturer specific (3.01), PROFIsafe V1	Initial val
HW Write Protection	Off	Initial val

Note

Write protection

Check whether or not write protection is disabled. If write protection is enabled, no further configuration is possible, If write protection is enabled, disable it.

2. Commission PROFIsafe as described in section PROFIsafe Commissioning (Page 140) .

Result

After downloading the data to the device, cyclic communication with the device is once again possible.

See also

Activate and parameterize PROFIsafe with SIMATIC PDM (Page 141)
Commission PROFIsafe with SIMATIC PDM (Page 142)

Configuration/project engineering

9

9.1 Cyclical data transfer

Cyclical data transmission is used to transfer data relevant for process automation between the control or automation system (class 1 master) and the transmitter.

Setting the PROFIBUS address

The PROFIBUS is set to 126 at the factory. You set it at the device or using a parameterization tool through the bus, e.g.:

- SIMATIC PDM
- HW Config.

The new address will take effect either after the first warm start or when the device is disconnected temporarily from the bus.

9.2 Configuring

9.2.1 Overview of configuration

General

Information on the input and output range as well as the consistency of cyclically transmitted data is defined in the device master data file (GSD file). Using the configuration packet, it is checked by the device and declared valid. During projection it must be determined which data will be transmitted in cyclical operation. This allows the optimization of the data quantity to be transmitted. In the Siemens control system, the GSD files of all the usual devices are already available, and they are also available on the Internet and can be imported later.

Reference

http://www.ad.siemens.de/csi_e/gsd

9.2.2 Configuration of user data

The user data which are provided through the PROFIBUS to the control system are based on the selected target configuration. User data is generated by the function blocks and assembled in the following order:

9.2 Configuring

Analog input function block

The *Analog input function block* provides the content of the "Output" parameter. The *Totalizer function block* provides the content of the "Totalizer output" parameter. You can select in the configuration which function block is used to generate the output data:

- Output
- Totalizer output

In the "Totalizer output" parameter you can insert the following additional functions:

- Reset totalizer output
- Operating mode

Using "Reset totalizer output" you can reset the integrator from the application program, and with "Operating mode" you can determine its function.

Note

For STEP 7, the configuration tool is HW Config.

For STEP 5, the configuration tool is COM_PROFIBUS.

User data

Table 9-1 User data dependent on the selected function block

Function block / parameter	Byte	User data, sent to master	User data, sent from master	Meaning, depending on parameter
Analog input/	1-4	Measured value		Pressure, height, volume, mass
output	5.	Status		flow, volume flow, sensor temperature, electronics temperature
Totalizer / totalizer	6-9	Measured value		Mass or volume
output	5	Status		

Table 9-2 User data, dependent on selected additional function in the totalizer output function block

Additional function	Byte	User data,	User data,	М	eaning
		sent to master	sent from master		
Reset totalizer	1		Reset totalizer	Totalizer reset function	
output			output	0	Normal operation of totalizer
					Integration running.
				1	Step integration and reset integrator back to 0.
				2	Stop integration and load integrator with preset value.

Additional function	Byte	User data,	User data,	Meaning
		sent to master	sent from master	
Operating mode	2		Operating mode	Operating mode of totalizer
				0 Net counter - count up and down.
				1 Ascending counter
				2 Descending counter
				3 Hold count.

See also

Analog input function block (Page 98)

Flow measurement (Page 105)

9.2.3 Transmission of user data over PROFIBUS

User data is continually updated via PROFIBUS cyclical data transmission.

Table 9-3 IEEE standard floating point representation of the measured value

Bits	7	6	5	4	3	2	1	0
Byte	VZ	E	E	E	E	E	E	E
1		27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹
Byte	E	E	М	М	М	М	М	М
2	20	2-1	2-2	2-3	2-4	2-5	2-6	2 -7
Byte	М	М	М	М	М	М	М	М
3	2-8	2-9	2-10	2-11	2-12	2-13	2-14	2 ⁻¹⁵
Byte	М	М	М	М	М	М	М	М
4	2-16	2-17	2-18	2 -19	2-20	2 -21	2-22	2-23

VZ Sign

0 positive

1 negative

M mantissa

E exponent

9.2.4 Status

The status provides information on:

- Usability of the measured value in the application program
- Device status, e.g. self-diagnosis or system diagnostic
- Additional process information, for instance process alarms

9.2 Configuring

The status code consists of one letter and a three-digit number. The letter stands for:

G Good

U Unsure

B Bad

Table 9-4 Example status code

Digital display	Hex	Configured measured value source	PDM display	Cause	Measure
G_141	8D	Electronics temperature, output	Good, lower alarm limit violated	Lower configured alarm limit violated.	Correct error through user program.
U_071	47	Output	Unsure, last usable value, value constant	Input condition "fail safe" is fulfilled, the parameterized safety setting is set to "keep last valid value".	Check the data measurement.
B_011	0B	Secondary variable 3	Bad, not connected, value constant	Variable is not calculated,	Correct the "transmitter type" setting.

See also

Overview of status codes (Page 181)

9.2.5 Diagnosis

Besides status information, the device can also actively send information about its own state. Diagnostics are important information which an automation system can use to initiate corrective measures.

To transmit diagnostic information, the standard mechanisms of the PROFIBUS DP are used and messages are actively sent to the class 1 master. PROFIBUS DP provides a protocol to transmit information to the class 1 master with a higher priority than the user data.

Messages

The content of the "Device state" parameter from the physical block is sent, along with information about whether a state change (event incoming/event sent) has occurred.

The diagnostic object consists of four bytes. For the pressure transmitter, only the first two bytes are relevant.

Table 9-5 Diagnostic messages

Byte	Bit	Meaning of "1"	Cause	Measure
Byte 0	0			
	1			
	2			
	3	Electronics temperature too high	The transmitter monitors the temperature of the transmitter electronics. If this exceeds 85 °C, this message will be generated.	Reduce the ambient temperature to the allowed range.
	4	Memory error	During operation, the memory of the cells and the electronics is continually checked for checksum errors and read/write errors. In case of error, this message is generated.	Replace the electronics and, if necessary, the sensor.
	5	Error recording measured value	In case of sensor failure or the violation of control limits (< -20% or > +20% of the nominal measurement range)	Have a service technician check the sensor.
	6			
	7			

9.3 Acyclic data transfer

Byte	Bit	Meaning of "1"	Cause	Measure
Byte 1	0			
	1			
	2			
	3	Restart executed (goes to "0" after 10 seconds)	Power was applied to the device, or a warm start was performed using SIMATIC PDM, or the internal watchdog triggered.	Check the wiring and the supply voltage.
	4	New start	The device was reset to the	
		Goes to "0" after 10 seconds	factory settings.	
	5	Service necessary	A calibration or service interval has run out.	Perform the calibration or service and clear the message and reset the messages using SIMATIC PDM.
	6			
	7	Ident number changed	You changed the parameter "PROFIBUS Ident Number" during cyclical operation. The device signals the change to the ident number and shows a shutdown warning. In case of a restart, the device will no longer participate in cyclical user data exchange unless the system configuration is changed.	Make a change to the configuration data (change the GSD file) so that it matches the ident number configured in the device.

Note

The device state can be simulated using SIMATIC PDM. This allows you to check the reaction of the automation system to an error.

9.3 Acyclic data transfer

Acyclic data transmission is used primarily for the transmission of parameters:

- During commissioning
- During service
- In batch processes
- To display additional measurement data which is not sent during cyclic user data transmission, e.g. raw pressure value

9.3 Acyclic data transfer

The data traffic between a class 2 master and the field device occurs over a so-called C2 connection. So that multiple class 2 masters can access the same transmitter at the same time, the device supports up to four C2 connections. However, you must ensure that the same data is not being written.

Commissioning 10

10.1 Basic safety instructions

Toxic gases and liquids

Danger of poisoning when the device is vented.

If toxic process media are measured, toxic gases and liquids can be released when the device is vented.

• Before venting ensure that there are no toxic gases and liquids in the device. Take the appropriate safety measures.

WARNING

Improper commissioning in hazardous areas

Device failure or danger of explosion in hazardous areas.

- Do not commission the device until it has been mounted completely and connected in accordance with the information in Chapter "Technical data (Page 187)".
- Before commissioning take the effect on other devices in the system into account.

M WARNING

Opening device in energized state

Danger of explosion in areas subject to explosion hazard.

- Only open the device in a de-energized state.
- Check prior to commissioning that the cover, cover locks, and cable inlets are assembled in accordance with the directives.

Exception: Devices having the type of protection "Intrinsic safety Ex i" may also be opened in energized state in hazardous areas.

10.2 Introduction to commissioning

Note

Hot surfaces

Hot process medium and high ambient temperatures lead to hot surfaces which can cause burns.

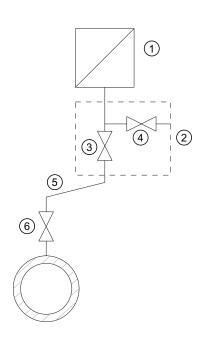
Take corresponding protective measures, for example wear protective gloves.

10.2 Introduction to commissioning

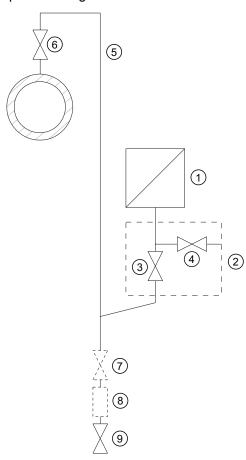
Following commissioning, the transmitter is immediately ready for use.

To obtain stable measured values, the transmitter needs to be allowed to warm up for five minutes or so after the power supply is switched on.

The operating data must correspond to the values specified on the nameplate. If you switch on the auxiliary power, the transmitter will operate.


The following commissioning cases are typical examples. Configurations different from those listed here may be meaningful depending on the system configuration.

10.3 Gauge pressure, absolute pressure from differential pressure series, and absolute pressure from gauge pressure series


10.3 Gauge pressure, absolute pressure from differential pressure series, and absolute pressure from gauge pressure series

10.3.1 Commissioning for gases

Usual arrangement

Special arrangement

Measuring gases above the pressure tapping Measuring gases below the pressure tapping point point

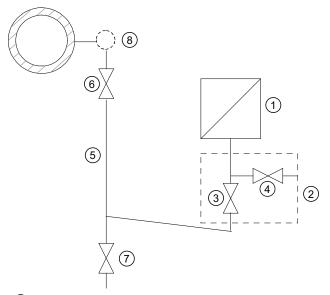
- 1 Pressure transmitter
- ⑤ Pressure line

② Shut-off module

- 6 Shut-off valve
- 3 Shut-off valve to process
- Shut-off valve (optional)
- 4 Shut-off valve for test connection or for 8
 - 8 Condensate vessel (optional)
 - bleed screw
 - 9 Drain valve

Condition

All valves are closed.


10.3 Gauge pressure, absolute pressure from differential pressure series, and absolute pressure from gauge pressure series

Procedure

To commission the transmitter for gases, proceed as follows:

- 1. Open the shut-off valve for the test connection 4.
- 2. Via the test connection of the shut-off fitting ②, apply the pressure corresponding to the start of scale value to the pressure transmitter ①.
- 3. Check the start of scale value.
- 4. If the start of scale value differs from the value desired, correct it.
- 5. Close the shut-off valve for the test connection 4.
- 6. Open the shut-off valve 6 at the pressure tapping point.
- 7. Open the shut-off valve for the process 3.

10.3.2 Commissioning with steam or liquid

- Pressure transmitter
- Shut-off fitting
- 3 Shut-off valve to process
- 4 Shut-off valve for test connection or for bleed screw
- (5) Pressure line
- 6 Shut-off valve
- Blow-out valve
- 8 Compensation vessel (steam only)

Figure 10-1 Measuring steam

Requirement

All valves are closed.

Procedure

To commission the transmitter for steam or liquid, proceed as follows:

- 1. Open the shut-off valve for the test connection 4.
- 2. Via the test connection of the shut-off module ②, apply the pressure corresponding to the start of scale value to the pressure transmitter ①.
- 3. Check the start of scale value.
- 4. If the start of scale value differs from the value desired, correct it.
- 5. Close the shut-off valve for the test connection 4.
- 6. Open the shut-off valve 6 at the pressure tapping point.
- 7. Open the shut-off valve for the process 3.

10.4 Differential pressure and flow rate

10.4.1 Safety notes for commissioning with differential pressure and flow rate

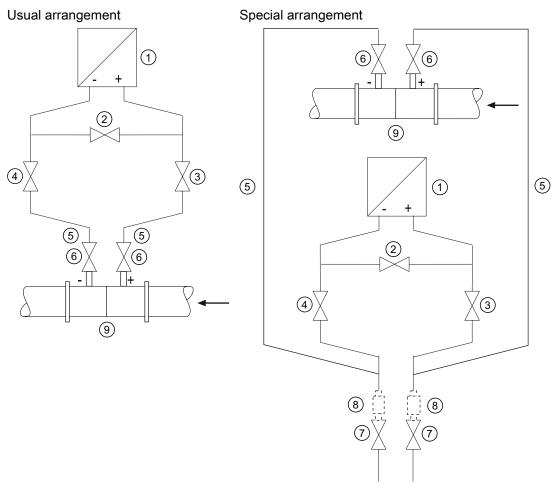
WARNING

Incorrect or improper operation

If the lock screws are missing or are not sufficiently tight, and/or if the valves are operated incorrectly or improperly, it could lead to serious physical injuries or considerable damage to property.

Measure

- Take care that the locking screw and/or the vent valve are screwed in and tightened.
- Ensure that the valves are operated correctly and properly.



WARNING

Hot mediums

In the case of hot mediums, the individual operational steps should be carried out one after the other. Otherwise, it could lead to excessive heating, thus causing damage to the valves and the transmitter.

10.4.2 Commissioning in gaseous environments

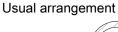
Transmitter **above** the differential pressure transducer

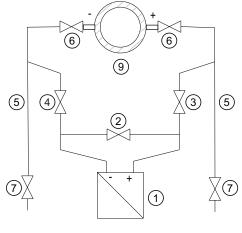
- Ssure transducer
- Pressure transmitter
 Stabilizing valve
- ③, ④ Differential pressure valves
- ⑤ Differential pressure lines

Transmitter **below** the differential pressure transducer

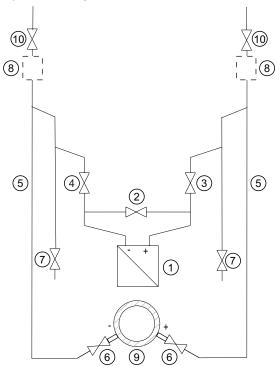
- 6 Shut-off valves
- Blowout valves
- 8 Condensation vessels (optional)
- 9 Differential pressure transducer

Requirement


All shut-off valves are closed.


Procedure

To commission the transmitter for gases, proceed as follows:


- 1. Open both the shut-off valves 6 at the pressure tapping point.
- 2. Open the stabilizing valve ②.
- 3. Open the differential pressure valve (③ or ④).
- 4. Check and if required correct the zero point when the start of scale value is 0 mbar.
- 5. Close the stabilizing valve ②.
- 6. Open the other differential pressure valve (3 or 4).

10.4.3 Commissioning for liquids

Special arrangement

Transmitter below the differential pressure Transmitter above the transducer

differential pressure transducer

- (1) Pressure transmitter
- 2 Stabilizing valve
- ③, ④ Differential pressure valves
- (5) Differential pressure lines
- (6) Shut-off valves

- (7)Drain valve
- 8 Gas collector vessels (optional)
- 9 Differential pressure transducer
- (10) Vent valves

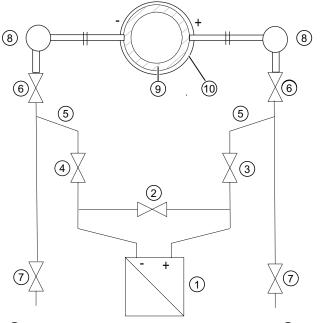
10.4 Differential pressure and flow rate

Requirement

All valves are closed.

Procedure

WARNING


The transmitter should not be depressurized if toxic substances are being used.

To commission the transmitter with liquids, proceed as follows:

- 1. Open both the shut-off valves 6 at the pressure tapping point.
- 2. Open the stabilizing valve 2.
- 3. With **transmitters below the differential pressure transducer**, open both the drain valves one after the other ⑦ until the air-free liquid emerges.

 In the case of a **transmitter above the differential pressure transducer**, open both the vent valves one after the other ⑩ until the liquid emerges.
- 4. Close both drain valves ⑦ or vent valves ⑩.
- 5. Open the differential pressure valve ③ and the vent valve on the positive side of the transmitter ① slightly, until fluid escapes without bubbles.
- 6. Close the vent valve.
- 7. Open the vent valve on the negative side of the transmitter ① slightly, until fluid escapes without bubbles.
- 8. Close the differential pressure valve ③.
- 9. Open the differential pressure valve 4 until the liquid emerges and then close it.
- 10. Close the vent valve on the negative side of the transmitter ①.
- 11. Open the differential pressure valve ③ by rotating it in half a turn.
- 12. Check and if required correct the zero point when the start of scale value is 0 mbar.
- 13. Close the stabilizing valve 2.
- 14. Open the differential pressure valves (3 and 4) completely.

10.4.4 Commissioning with vapor

- Pressure transmitter
- Stabilizing valve
- ③, Differential pressure valves
- 4
- 5 Differential pressure lines
- 6 Shut-off valves

- ⑦ Drain valve
 - 8 Condensate pots
 - 9 Differential pressure transducer
- (10) Insulation

Figure 10-2 Measuring steam

Requirement

All valves are closed.

Procedure

NOTICE

The measuring result is error-free only if the differential pressure lines ⑤ have equally high condensate columns with the same temperature. The zero calibration must be repeated if required if these conditions are fulfilled. If the shut-off valves ⑥ and the differential pressure valves ③ are open at the same time and the stabilizing valve ② is opened, there is a possibility of the transmitter ① being damaged due to the streaming vapor.

To commission the transmitter for vapor, proceed as follows:

- 1. Open both the shut-off valves 6 at the pressure tapping point.
- 2. Open the stabilizing valve ②.

10.4 Differential pressure and flow rate

- 3. Wait till the vapor in the differential pressure lines ⑤ and in the condensate pots ⑧ condenses.
- 4. Open the differential pressure valve ③ and the vent valve on the positive side of the transmitter ① slightly, until condensate escapes without bubbles.
- 5. Close the vent valve.
- 6. Open the vent valve on the negative side of the transmitter ① slightly, until condensate escapes without bubbles.
- 7. Close the differential pressure valve ③.
- 8. Open the differential pressure valve ④ till the air-free condensate goes out and then close it.
- 9. Close the vent valve on the negative side ①.
- 10. Open the differential pressure valve ③ by rotating it in half a turn.
- 11. Check and if required correct the zero point when the start of scale value is 0 mbar.
- 12. Close the stabilizing valve ②.
- 13. Open the differential pressure valve ③ and ④ completely.
- 14. You can briefly open the blow-out valves ⑦ to clean the line. Close before steam starts to leak.

Repair and maintenance

11.1 Basic safety instructions

WARNING

Impermissible repair of explosion protected devices

Danger of explosion in areas subject to explosion hazard.

• Repair must be carried out by Siemens authorized personnel only.

WARNING

Impermissible accessories and spare parts

Danger of explosion in areas subject to explosion hazard.

- Only use original accessories or original spare parts.
- Observe all relevant installation and safety instructions described in the instructions for the device or enclosed with the accessory or spare part.

WARNING

Use of incorrect device parts in potentially explosive environments

Devices and their associated device parts are either approved for different types of protection or they do not have explosion protection. There is a danger of explosion if device parts (such as covers) are used for devices with explosion protection that are not expressly suited for this type of protection. If you do not adhere to these guidelines, the test certificates and the manufacturer warranty will become null and void.

- Use only device parts that have been approved for the respective type of protection in the
 potentially explosive environment. Covers that are not suited for the "explosion-proof" type
 of protection are identified as such by a notice label attached to the inside of the cover
 with "Not Ex d Not SIL".
- Do not swap device parts unless the manufacturer specifically ensures compatibility of these parts.

11.1 Basic safety instructions

WARNING

Maintenance during continued operation in a hazardous area

There is a danger of explosion when carrying out repairs and maintenance on the device in a hazardous area.

- Isolate the device from power.
- or -
- Ensure that the atmosphere is explosion-free (hot work permit).

WARNING

Commissioning and operation with pending error

If an error message appears, correct operation in the process is no longer guaranteed.

- Check the gravity of the error
- Correct the error
- If the error still exists:
 - Take the device out of operation.
 - Prevent renewed commissioning.

See also

Display in case of a fault (Page 175)

WARNING

Hot, toxic or corrosive process media

Danger of injury during maintenance work.

When working on the process connection, hot, toxic or corrosive process media could be released.

- As long as the device is under pressure, do not loosen process connections and do not remove any parts that are pressurized.
- Before opening or removing the device ensure that process media cannot be released.

lack

WARNING

Improper connection after maintenance

Danger of explosion in areas subject to explosion hazard.

- Connect the device correctly after maintenance.
- Close the device after maintenance work.

Refer to Chapter "Connecting up (Page 57)".

WARNING

Use of a computer in a hazardous area

If the interface to the computer is used in the hazardous area, there is a danger of explosion.

• Ensure that the atmosphere is explosion-free (hot work permit).

CAUTION

Releasing key lock

Improper modification of parameters could influence process safety.

 Make sure that only authorized personnel may cancel the key locking of devices for safetyrelated applications.

CAUTION

Hot surfaces

Danger of burns during maintenance work on parts having surface temperatures exceeding 70 °C (158 °F).

- Take corresponding protective measures, for example by wearing protective gloves.
- After carrying out maintenance, remount touch protection measures.

CAUTION

Hazardous voltage with open device in versions with 4-conductor extension

Danger of electrocution when the enclosure is opened or enclosure parts are removed.

- Disconnect the device before you open the enclosure or remove enclosure parts.
- Observe the special precautionary measures if maintenance is required while the device is live. Have maintenance work carried out by qualified personnel.

11.2 Maintenance and repair work

NOTICE

Electrostatic-sensitive devices

The device contains electrostatic-sensitive devices (ESD). ESD can be destroyed by voltages far too low to be detected by humans. These voltages can occur if you simply touch a component part or the electrical connections of a module without being electrostatically discharged. The damage to a module caused by overvoltage cannot normally be detected immediately; it only becomes apparent after a longer period of operating time has elapsed.

Protective measures against the discharge of static electricity:

- Make sure that no power is applied.
- Before working with modules, make sure that you discharge static from your body, for example by touching a grounded object.
- Devices and tools used must be free of static charge.
- Hold modules only by their edges.
- Do not touch connector pins or conductor tracks on a module with the ESD notice.

11.2 Maintenance and repair work

11.2.1 Defining the maintenance interval

WARNING

No maintenance interval has been defined

Device failure, device damage, and risk of injury.

- Define a maintenance interval for regular tests in line with device use and empirical values.
- The maintenance interval will vary from site to site depending on corrosion resistance.

11.2.2 Checking the gaskets

Inspect the seals at regular intervals

Note

Incorrect seal changes

Incorrect measured values will be displayed. Changing the seals in a process flange of a differential pressure measuring cell can alter the start-of-scale value.

 Changing seals in devices with differential pressure measuring cells may only be carried out by personnel authorized by Siemens.

Note

Using the wrong seals

Using the wrong seals with flush-mounted process connections can cause measuring errors and/or damage the diaphragm.

- Always use seals which comply with the process connection standards or are recommended by Siemens.
- 1. Clean the enclosure and seals.
- 2. Check the enclosure and seals for cracks and damage.
- 3. Grease the seals if necessary.
 - or -
- 4. Replace the seals.

11.2.3 Display in case of a fault

Check the start of scale value of the device from time to time.

Differentiate between the following in case of a fault:

- The internal self test has detected a fault, e.g. sensor break, hardware fault/Firmware fault.
 Displays:
 - Display: display "ERROR"
 - PROFIBUS: B_016: sensor error diagnostics in measured-value recording
- Grave hardware faults, the processor is not functioning. Displays:
 - Display: no defined display
 - PROFIBUS: slave not available

In case of defect, you can replace the electronic unit by following the warning notes and the provided instruction manual.

11.3 Cleaning

See also

Error display (Page 68)

11.2.4 Changing the measuring cell and application electronics

Related

Each of the individual components "Measuring cell" and "Electronics" has a non-volatile memory (EEPROM).

Measuring cell data (e.g.: measuring range, measuring cell material, oil filling) and application-specific electronics data (e.g.: downscaling, additional electrical damping) are located in the measuring cell EEPROM. Application-specific data is lost when the measuring cell is changed. Application-specific data is not lost when the application electronics is changed.

You can backup application-specific data before changing the measuring cell and reload it afterwards. Use an input device which supports the PROFIBUS protocol (e.g. PROFIBUS communicator, PC with PROFIBUS modem and PROFIBUS software or PC with PROFIBUS modem and PDM software). Factory settings will be used if application-specific data is not backed up before the measuring cell is changed.

Technical developments enable advanced functions to be implemented in the firmware of the measuring cell or application electronics. Further technical developments are indicated by modified firmware statuses (FW). The firmware status does not affect whether the modules can be replaced. However, the scope of functions is limited to the function of existing components.

If a combination of certain firmware versions of measuring cell and application electronics is not possible for technical reasons, the device will identify this problem and go into "Fault current" mode. This information is also provided over the PROFIBUS interface.

11.3 Cleaning

WARNING

Dust layers above 5 mm

Danger of explosion in hazardous areas. Device may overheat du to dust build up.

Remove any dust layers in excess of 5 mm.

NOTICE

Penetration of moisture into the device

Device damage.

 Make sure when carrying out cleaning and maintenance work that no moisture penetrates the inside of the device.

Cleaning the enclosure

- Clean the outside of the enclosure and the display window using a cloth moistened with water or a mild detergent.
- Do not use aggressive cleaning agents or solvents. Plastic components or painted surfaces could be damaged.

WARNING

Electrostatic charge

Danger of explosion in hazardous areas if electrostatic charges develop e.g. when cleaning plastic enclosures with a dry cloth.

• Prevent electrostatic charging in hazardous areas.

11.3.1 Servicing the remote seal measuring system

The remote seal measuring system usually does not need servicing.

If the mediums are contaminated, viscous or crystallized, it could be necessary to clean the diaphragm from time to time. Use only a soft brush and a suitable solvent to remove the deposits from the diaphragm. Do not use corrosive cleaning agents. Prevent the diaphragm from getting damaged due to sharp-edged tools.

NOTICE

Improper cleaning of diaphragm

Device damage. The diaphragm can be damaged.

Do not use sharp or hard objects to clean the diaphragm.

11.4 Return procedure

Enclose the bill of lading, return document and decontamination certificate in a clear plastic pouch and attach it firmly to the outside of the packaging.

Required forms

- Delivery note
- Return goods delivery note (http://www.siemens.com/processinstrumentation/returngoodsnote)

with the following information:

- Product (item description)
- Number of returned devices/replacement parts
- Reason for returning the item(s)
- Decontamination declaration (http://www.siemens.com/sc/declarationofdecontamination)
 With this declaration you warrant "that the device/replacement part has been carefully cleaned and is free of residues. The device/replacement part does not pose a hazard for humans and the environment."

If the returned device/replacement part has come into contact with poisonous, corrosive, flammable or water-contaminating substances, you must thoroughly clean and decontaminate the device/replacement part before returning it in order to ensure that all hollow areas are free from hazardous substances. Check the item after it has been cleaned. Any devices/replacement parts returned without a decontamination declaration will be cleaned at your expense before further processing.

The forms can be found on the Internet as well as in the documentation which comes with the device.

11.5 Disposal

Devices identified by this symbol may not be disposed of in the municipal waste disposal services under observance of the Directive 2002/96/EC on waste electronic and electrical equipment (WEEE).

They can be returned to the supplier within the EC or to a locally approved disposal service. Observe the specific regulations valid in your country.

11.5 Disposal

Note

Special disposal required

The device includes components that require special disposal.

• Dispose of the device properly and environmentally through a local waste disposal contractor.

12.1 Overview of status codes

Table 12-1 Status code

Display	Hex	configured measured value source	PDM display	Cause	Measure
	80	Electronics temperature		Normal operation	
		Sensor temperature, raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output,			
G_132	84	Electronics temperature,	Good,	A parameter relevant to	Note to the control
		sensor temperature, raw pressure value, secondary	update.event	the behavior of the slave was changed.	system.
		variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output		The display goes off after 10 sec.	
G_137	89	Output, totalizer output	Good,	Configured low	Correct error through
			warning limit exceeded	warning limit violated.	user program.
G_138	8A	Output, totalizer output	Good,	High configured	Correct error through
			warning limit exceeded	warning limit violated.	user program.
G_141	8D	Electronics temperature, output, totalizer output,	Good, alarm limit violated	Configured low alarm limit violated.	Correct error through user program.
G_142	8E	Electronics temperature, output, totalizer output	Good,	High configured alarm limit violated.	Correct error through user program.
0.464	A 4		alarm limit violated		
G_164	A4	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output,	Good, Service required	Service interval expired: Calibrate or service.	Service, calibration of the electronics, or service of the sensor cell is necessary.
U_071	47	Output	Unsure, Last usable value, value constant	Input condition "fail safe" is fulfilled, the parameterized safety setting is set to "keep last valid value".	Check the data measurement.

12.1 Overview of status codes

Display	Hex	configured measured value source	PDM display	Cause	Measure
U_072	48	Totalizer output	Unsure, Replacement value	Use of the totalizer block if the measured value status is "Bad" and the parameterized safety setting is "Safe operation". The summed value changes. Failure behavior = safe operation.	Check the data measurement.
U_075	4B	Output, totalizer output	Unsure, Replacement value, value constant	Value is not an automatic measurement value. A parameterizable, static replacement value or preset value is marked in this manner.	Check the data measurement.
U_079	4F	Output, totalizer output	Unsure, Initial value, value constant	An initial value is written to the device memory after startup.	Throw away the value in the application program.
U_080	50	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output,	Unsure, Value inexact	Impermissible operating parameter or service alarm.	Check the operating parameters, e.g. the permissible ambient temperature. Immediate service required.
U_081	51	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output,	Unsure, Value inexact, limit value violated	Low nominal range measurement limit violated (<0%).	Increase the pressure in the positive direction.
U_082	52	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output,	Unsure, Value inexact, limit value violated	High nominal range measurement limit violated (<100%).	Reduce the pressure.
B_000	00	Output (cyclical data only), totalizer output (cyclical data only)	Bad	Used if no other information is available. Device does not exist or cyclical connection is interrupted.	-

12.1 Overview of status codes

Display	Hex	configured measured value source	PDM display	Cause	Measure
B_004	04	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output,	Bad, Configuration error	Calibration span too small.	Repeat the calibration procedure with pressure values which are farther apart.
B_011	0B	Secondary variable 3	Bad, not connected, value constant	Variable is not calculated,	Correct the "transmitter type" setting.
B_012	0C	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output 2)	Bad, Device error	Device has an irreparable error	Replace the electronics.
B_015	OF	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output 2)	Bad, Device error, value constant	Device has an irreparable error	Replace the electronics.
B_016	10	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output 2)	Bad, Sensor error	Sensor indicates an error.	Have a service technician check the sensor.
B_017	11	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output 2)	Bad, Sensor error, limit value violated	Negative pressure too high. Low control limit violated (<-20% of nominal measurement range).	Increase the pressure in the positive direction.
B_018	12	Raw pressure value, secondary variable 1, secondary variable 2, measured value (primary variable), secondary variable 3, output, totalizer output 2)	Bad, Sensor error, limit value violated	Positive pressure too high. High control limit violated (>120% of nominal measurement range).	Reduce the pressure.

12.2 Errors

Display	Hex	configured measured value source	PDM display	Cause	Measure
B_031	1F	Output, totalizer output	Bad, Out of service, value constant	Function block was placed out of service with a target mode command. A parameterized safety value is output.	For normal operation, reset the target mode to AUTO.
B_060	3C	Output	Bad; configuration error	Device is not yet in safe state.	Complete PROFIsafe commissioning.

¹⁾ Only if the failure behavior of the analog input function block is set to "The incorrectly calculated measured value is on output".

See also

Error display (Page 68) Status display (Page 69)

Status (Page 155)

12.2 Errors

Errors and error correction

Errors	Cause	Measure
Measured value		
Measured value shows up on the display but is not displayed in the control system.	Mode 15	Check whether the bus address on the device matches the bus address in the control system. If it does not match, correct the bus address.
	Mode 16	Set "ident" in mode 16.

Table 12-2 Error message

Display	PDM display	Cause	Measure
F_001	-	Local operation blocked.	Remove write protection.
F_003	-	Changes to the bus address and device operating type are not possible, since the device is in communication with a class 1 master.	End communication with class 1 master.

²⁾ Only if the failure behavior of the totalizer function block has been set to "Operation".

12.2 Errors

Display	PDM display	Cause	Measure
F_004	-	Display overflow.	Check settings of physical unit and position of decimal point, and adjust to the current measured value.
F_005	-	Value is read-only.	-
F_006	-	Correction not successful.	Check calibration span and repeat procedure.
F_007	-	After zero-point calibration, measurements no longer possible in entire measurement range.	Check measurement range, decrease correction if necessary.
F_008	-	Local operation blocked by SIMATIC PDM.	Use SIMATIC PDM to set the "Local operation" parameter to "released".

See also

Status (Page 155)

Technical data 13

13.1 Overview of technical data

Introduction

The following overview of technical data provides you with a quick and easy access to relevant data and characteristic numbers.

Remember that the tables partially contain the data of the three communication types HART, PROFIBUS and Foundation Fieldbus. This data deviates in many cases. Therefore, adhere to the communication type used by you when using the technical data.

Contents of the chapter

- Input point (Page 188)
- Output (Page 195)
- Measuring accuracy (Page 195)
- Operating conditions (Page 201)
- Construction (Page 205)
- Display, keyboard and auxiliary power (Page 209)
- Certificates and approvals (Page 210)
- PROFIBUS communication (Page 212)

Gauge pressure input						
	HART			PROFIBUS PA	or Foundation	Fieldbus
Measured variable	Gauge pressur	re				
Span (continuously adjustable) or measuring range, max. operating pressure (in accordance	Measuring span	Maximum operating pressure MAWP (PS)	Maximum permissible test pressure	Measuring range	Maximum permissible operating pressure	Maximum test pressure
with 97/23/EC Pressure Equipment Directive) and max. test pressure (in accordance with	0.01 1 bar g (0.15 14.5 psi g)	4 bar g (58 psi g)	6 bar g (87 psi g)	1 bar g (14.5 psi g)	4 bar g (58 psi g)	6 bar g (87 psi g)
DIN 16086) (max. 120 bar for oxygen measurement)	0.04 4 bar g (0.58 58 psi g)	7 bar g (102 psi g)	10 bar g (145 psi g)	4 bar g (58 psi g)	7 bar g (102 psi g)	10 bar g (145 psi g)
	0.16 16 bar g (2.3 232 psi g)	21 bar g (305 psi g)	32 bar g (464 psi g)	16 bar g (232 psi g)	21 bar g (305 psi g)	32 bar g (464 psi g)
	0.63 63 bar g (9.1 914 psi g)	67 bar g (972 psi g)	100 bar g (1450 psi g)	63 bar g (914 psi g)	67 bar g (972 psi g)	100 bar g (1450 psi g)
	1.6 160 bar g (23 2321 psi g)	167 bar g (2422 psi g)	250 bar g (3626 psi g)	160 bar g (2321 psi g)	167 bar g (2422 psi g)	250 bar g (3626 psi g)
	4 400 bar g (58 5802 psi g)	400 bar g (5802 psi g)	600 bar g (8702 psi g)	400 bar g (5802 psi g)	400 bar g (5802 psi g)	600 bar g (8702 psi g)
	7,0 700 bar g (102 10153 psi g)	800 bar g (11603 psi g)	800 bar g (11603 psi g)	700 bar g (10153 psi g)	800 bar g (11603 psi g)	800 bar g (11603 psi g)
Lower measuring limit						
 Measuring cell with silicon oil filling 	30 mbar a (0.4	4 psi a)				
 Measuring cell with inert liquid 	30 mbar a (0.4	4 psi a)				
Upper measuring limit		span (max. 120 r oxygen measu		100% of max. measuring range (max. 120 bar g (1740 psi g) for oxygen measurement)		
Start-of-scale value	between the m	easuring limits (continuously ad	justable)		

	HART			PROFIBUS P	A or Foundation	Fieldbus
Measured variable	Gauge pressu	re				
Measuring span (continuously adjustable) or measuring range, max permissible operating	Span	Maximum operating pressure MAWP (PS)	Maximum test pressure	Measuring range	Maximum operating pressure	Maximum test pressure
pressure and max. permissible test pressure	0.01 1 bar g (0.15 14.5 psi g)	4 bar g (58 psi g)	6 bar g (87 psi g)	1 bar g (14.5 psi g)	4 bar g (58 psi g)	6 bar g (87 psi g)
	0.04 4 bar g (0.58 58 psi g)	7 bar g (102 psi g)	10 bar g (145 psi g)	4 bar g (58 psi g)	7 bar g (102 psi g)	10 bar g (145 psi g)
	0.16 16 bar g (2.3 232 psi g)	21 bar g (305 psi g)	32 bar g (464 psi g)	16 bar g (232 psi g)	21 bar g (305 psi g)	32 bar g (464 psi g)
	0.6 63 bar g (9.1 914 psi g)	67 bar g (972 psi g)	100 bar g (1450 psi g)	63 bar g (914 psi g)	67 bar g (972 psi g)	100 bar g (1450 psi g)
Lower measuring limit						
 Measuring cell with silicon oil filling 	100 mbar a (1	.45 psi a)				
Measuring cell with inert liquid	100 mbar a (1.45 psi a)					
Measuring cell with neobee	100 mbar a (1	3.05 psi a)				
Upper measuring limit	100% of maxir	num measuring	span	100 % of the max. measuring range		
Absolute pressure input, w	rith flush-mounte	ed diaphragm				
	HART			PROFIBUS P	A or Foundation	Fieldbus
Measured variable	Gauge pressu	re				
Span (continuously adjustable) or measuring range, max. operating pressure and max. test	Span	Maximum operating pressure MAWP (PS)	Maximum test pressure	Measuring range	Maximum operating pressure	Maximum test pressure
pressure	43 1300 mbar a (17 525 inH ₂ O)	2.6 bar a (37.7 psi a)	10 bar a (145 psi a)	1.3 bar a (18.9 psi a)	2.6 bar a (37.7 psi a)	10 bar a (145 psi a)
	160 5000 mbar a (2.32 72.5 psi a)	10 bar a (145 psi a)	30 bar a (435 psi a)	5 bar a (72.5 psi a)	10 bar a (145 psi a)	30 bar a (435 psi a)
	1 30 bar a (14.5 435 psi a)	45 bar a (653 psi a)	100 bar a (1450 psi a)	30 bar a (435 psi a)	45 bar a (653 psi a)	100 bar a (1450 psi a)
		the process corer from these va			n the process co	nnection, the om these values

Absolute pressure input, with flush-mounted diaphragm				
	HART	PROFIBUS PA or Foundation Fieldbus		
Lower measuring limit	0 bar a (0 psi a)			
Upper measuring limit	100% of maximum span	100 % of max. measuring range		

DS III input with PMC conr	nection					
	HART			PROFIBUS PA	or Foundation	Fieldbus
Measured variable	Gauge pressu	re				
Measuring span (continuously adjustable) or measuring range, max permissible operating pressure and max. permissible test pressure	Span	Maximum operating pressure MAWP (PS)	Maximum test pressure	Measuring range	Maximum permissible operating pressure	Maximum permissible test pressure
	0.01 1 bar g (0.15 14.5 psi g) ¹⁾	4 bar g (58 psi g)	6 bar g (87 psi g)	1 bar g (14.5 psi g) ¹⁾	4 bar g (58 psi g)	6 bar g (87 psi g)
	0.04 4 bar g (0.58 58 psi g)	7 bar g (102 psi g)	10 bar g (145 psi g)	4 bar g (58 psi g)	7 bar g (102 psi g)	10 bar g (145 psi g)
	0.16 16 bar g (2.3 232 psi g)	21 bar g (305 psi g)	32 bar g (464 psi g)	16 bar g (232 psi g)	21 bar g (305 psi g)	32 bar g (464 psi g)
Lower measuring limit						
 Measuring cell with silicon oil filling ²⁾ 	100 mbar a (1.45 psi a)					
 Measuring cell with inert liquid ²⁾ 	100 mbar a (1	45 psi a)				
Measuring cell with neobee ²⁾	100 mbar a (1	3.05 psi a)				
Upper measuring limit	100% of maxir	num span		100 % of max.	measuring rang	ge

^{1) 1} bar g (14.5 psi g) only in PMC-Style Standard, not in Minibolt

²⁾ For PMC-Style Minibolt, the measuring span should not be less than 500 mbar

Absolute pressure input (fr	om the gauge p	ressure series)				
	HART			PROFIBUS P	A or Foundation	Fieldbus
Measured variable	Absolute press	sure				
Measuring span (continuously adjustable) or measuring range, max permissible operating	Span	Maximum operating pressure MAWP (PS)	Maximum test pressure	Measuring range	Maximum operating pressure	Maximum test pressure
pressure (as per 97/23/ EC pressure device guideline) and max. permissible test pressure	8.3 250 mbar a (3 100 inH ₂ O)	1.5 bar a (21.8 psi a)	6 bar a (87 psi a)	250 mbar a (100 inH ₂ O)	1.5 bar a (21.8 psi a)	6 bar a (87 psi a)
(as per DIN 16086)	43 1300 mbar a (17 525 inH ₂ O)	2.6 bar a (37.7 psi a)	10 bar a (145 psi a)	1.3 bar a (18.9 psi a)	2.6 bar a (37.7 psi a)	10 bar a (145 psi a)
	160 5000 mbar a (2.32 72.5 psi a)	10 bar a (145 psi a)	30 bar a (435 psi a)	5 bar a (72.5 psi a)	10 bar a (145 psi a)	30 bar a (435 psi a)
	1 30 bar a (14.5 435 psi a)	45 bar a (653 psi a)	100 bar a (1450 psi a)	30 bar a (435 psi a)	45 bar a (653 psi a)	100 bar a (1450 psi a)
Lower measuring limit						
Measuring cell with silicon oil filling	0 mbar a (0 ps	si a)				
 Measuring cell with inert liquid 						
for process temperature -20°C < $\vartheta \le 60$ °C (-4°F < $\vartheta \le +140$ °F)	30 mbar a (0.4	14 psi a)				
for process temperature 60°C < ∜ ≤ 100°C (max. 85°C for measuring cell 30 bar) (140°F < ∜ ≤ 212°F (max. 185°F for measuring cell 435 psi))		0 mbar a • (ϑ - ୧ .29 psi a • (ϑ - ՜				
Upper measuring limit		span (max. 120 r oxygen measi			measuring rang or oxygen meas	e (max. 120 bar g urement)
Start-of-scale value	between the m	neasuring limits	(continuously ad	justable)		

Absolute pressure input (fr	om the differential pres	sure series)		
	HART		PROFIBUS PA or Fo	oundation Fieldbus
Measured variable	Absolute pressure			
Measuring span (continuously adjustable) or measuring range and	Span	Maximum operating pressure MAWP (PS)	Measuring range	Maximum operating pressure
max permissible operating pressure (as per 97/23/EC pressure	8.3 250 mbar a (3 100 inH ₂ O)	32 bar a (464 psi a)	250 mbar a (100 inH₂O)	32 bar a (464 psi a)
device guideline)	43 1300 mbar a (17 525 inH ₂ O)	32 bar a (464 psi a)	1300 mbar a (525 in H_2O)	32 bar a (464 psi a)
	160 5000 bar a (2.32 72.5 psi a)	32 bar a (464 psi a)	5 bar a (72.5 psi a)	32 bar a (464 psi a)
	1 30 bar a (14.5 435 psi a)	160 bar a (2320 psi a)	30 bar a (435 psi a)	160 bar a (2320 psi a)
	5.3 100 bar a (76.9 1450 psi a)	160 bar a (2320 psi a)	100 bar a (1450 psi a)	160 bar a (2320 psi a)
Lower measuring limit				
 Measuring cell with silicon oil filling 	0 mbar a (0 psi a)			
 Measuring cell with inert liquid 				
for process temperature -20°C < $\vartheta \le 60$ °C (-4°F < ϑ $\le +140$ °F)	30 mbar a (0.44 psi a)		
for process temperature $60^{\circ}\text{C} < \vartheta$ $\leq 100^{\circ}\text{C}$ (max. 85°C for measuring cell 30 bar) ($140^{\circ}\text{F} < \vartheta$ $\leq 212^{\circ}\text{F}$ (max. 185°F for measuring cell 435 psi))	30 mbar a + 20 mbar (0.44 psi a + 0.29 psi			
Upper measuring limit	100% of max. span (n (1740 psi g) for oxyge		100% of max. measu (1740 psi g) for oxyg	ring range (max. 120 bar g en measurement)
Start of scale value	between the measurir	ng limits (continuously ad	justable)	

	HART		PROFIBUS PA or F	oundation Fieldbus
Measured variable	Differential pressure a	nd flow rate		
Measuring span (continuously adjustable)	Span	Maximum operating pressure MAWP (PS)	Measuring range	Maximum permissible operating pressure
or measuring range and max permissible	1 20 mbar (0.4015 8.031 inH ₂ O)	32 bar (464 psi)	20 mbar (8.031 inH ₂ O)	32 bar a (464 psi)
operating pressure (as per 97/23/EC pressure device guideline)	1 60 mbar (0.4015 24.09 inH ₂ O)	160 bar (2320 psi)	60 mbar (24.09 inH ₂ O)	160 bar (2320 psi)
,	2.5 250 mbar (1.004 100.4 inH ₂ O)		250 mbar (100.4 inH ₂ O)	
	6 600 mbar (2.409 240.9 inH ₂ O)		600 mbar (240.9 inH ₂ O)	_
	16 1600 mbar (6.424 642.4 inH ₂ O)		1600 mbar (642.4 inH ₂ O)	_
	50 5000 mbar (20.08 2008 inH ₂ O)		5 bar (2008 inH ₂ O)	_
	0.3 30 bar (4.35 435 psi)		30 bar (435 psi)	
	2.5 250 mbar (1.004 100.4 inH₂O)	420 bar (6091 psi)	250 mbar (100.4 inH ₂ O)	420 bar (6091 psi)
	6 600 mbar (2.409 240.9 inH ₂ O)		600 mbar (240.9 inH ₂ O)	_
	16 1600 mbar (6.424 642.4 inH ₂ O)		1600 mbar (642.4 inH ₂ O)	_
	50 5000 mbar (20.08 2008 inH ₂ O)		5 bar (2008 inH₂O)	
	0.3 30 bar (4.35 435 psi)	-	30 bar (435 psi)	
Lower measuring limit				
 Measuring cell with silicon oil filling 	-100% of max. measu (-33 % for 30 bar (435	ring range psi) measuring cell) or 3	30 mbar a (0.44 psi a)

	HART		PROFIBUS PA or F	Foundation Fieldbus	
for process temperature of -20°C $<\vartheta \le 60$ °C (-4°F $<\vartheta$ $\le +140$ °F)	-100% of max. measuring range (-33 % for 30 bar (435 psi) measuring cell) or 30 mbar a (0.44 psi a)				
for process temperature 60°C < ϑ ≤ 100°C (max. 85°C for measuring cell 30 bar) (140°F < ϑ ≤ 212°F (max. 185°F for measuring cell 435 psi))	• 30 mbar a + 20 n	easuring range (-33% for nbar a • (ϑ - 60 °C)/°C ϑ psi a • (ϑ - 108 °F)/°F)	30 bar (435 psi) mea	suring cell)	
Upper measuring limit	100% of max. span ((1740 psi g) for oxyg		100% of max. meas (1740 psi g) for oxy	suring range (max. 120 bar g gen measurement)	
Start of scale value	between the measur	ing limits (continuously ad	ljustable)		
Level input Measured variable	HART Level		PROFIBUS PA or F	Foundation Fieldbus	
Measuring span (continuously adjustable)	Span	Maximum operating pressure MAWP (PS)	Measuring range	Maximum permissible operating pressure	
or measuring range and max permissible operating pressure (as	25 250 mbar (10 100 inH ₂ O)	see the mounting flange	250 mbar (100 inH₂O)	see the mounting flange	
per 97/23/EC pressure device guideline)	25 600 mbar (10 240 inH ₂ O)	_	600 mbar (240 inH ₂ O)	_	
,	53 1600 mbar (21 640 inH ₂ O)	_	1600 mbar (640 inH ₂ O)	_	
	160 5000 mbar (2.32 72.5 psi)		5 bar (72.5 psi)		
Lower measuring limit					
 Measuring cell with silicon oil filling 	-100% of the max. measuring range or 30 mbar a (0.44 psi a) depending on the mounting flang				
Measuring cell with	-100% of the max. measuring range or 30 mbar a (0.44 psi a) depending on the mounting flang				

100 % of max. measuring range

Upper measuring limit

Start of scale value

100% of maximum span

between the measuring limits continuously adjustable

13.3 Output

Output			
	HART	PROFIBUS PA or Foundation Fieldbus	
Output signal	4 20 mA	Digital PROFIBUS-PA or Foundation Fieldbus signal	
 Lower limit (continuously adjustable) 	3.55 mA, set to 3.84 mA in the factory	_	
 Upper limit (continuously adjustable) 	23 mA, set to 20.5 mA or optionally 22.0 mA in the factory	_	
 Ripple (without HART communication) 	$I_{SS} \le 0.5 \%$ of the max. output current	_	
adjustable time constants damping coefficient	0 100 s, continuously adjustable	0 100 s, continuously adjustable	
Adjustable time constants (T63) with local operation	0 100 s, in steps of 0.1 s Factory-set to 2 s	0 100 s, in steps of 0.1 s Factory-set to 2 s	
Current transmitter	3.55 23 mA	-	
Failure signal	3.55 23 mA	-	
Load	Resistor R [Ω]	_	
Without HART communication	$R = \frac{U_{H} - 10,5 \text{ V}}{23 \text{ mA}}$	-	
	U _H Power supply in V		
With HART communication		_	
HART communicator (Handheld)	R =230 1100 Ω	_	
SIMATIC PDM	R =230 500 Ω	_	
Characteristic curve	Linearly increasing or linearly decreasing		
	 Linear increase or decrease or squa DS III differential pressure and flow 	are root extracting increasing (only for rate)	
Bus physics	_	IEC 61158-2	
Polarity-independent	_	Yes	

Measuring accuracy (as per EN 60770-1) gauge pressure					
	HART	PROFIBUS PA or Foundation Fieldbus			
Reference conditions	Rising characteristic curve				
	 Start of scale value 0 bar 				
	 Seal diaphragm: stainless steel 				
	 Measuring cell with silicon oil filling 				
	 Room temperature 25°C (77°F) 				
	 Measuring span ratio r r = maximum measuring span or set measuring span 	_			

Measuring accuracy (as per EN 6077	0-1) gauge pressure	
	HART	PROFIBUS PA or Foundation Fieldbus
Measurement deviation with cut-off point setting, including hysteresis and repeatability.		
Linear characteristic curve		≤ 0,075 %
• r≤10	≤ (0.0029 • r + 0.071) %	_
• 10 < r ≤ 30	≤ (0.0045 • r + 0.071) %	_
• 30 < r ≤ 100	≤ (0.005 • r + 0.05) %	-
Repeatability	Included in the measuring deviation	
Hysteresis	Included in the measurement deviation	
Settling time T ₆₃ without electrical damping	approx. 0.2 s	
Long-term drift at ±30°C (±54°F)		In 5 years ≤ 0.25 %
1- to 4-bar measuring cell	In 5 years ≤ (0.25 • r) %	
16- to 400-bar measuring cell	In 5 years ≤ (0.125 • r) %	
700-bar measuring cell	In 5 years ≤ (0.25 • r) %	
Ambient temperature influence	As percentage	
• at -10 +60 °C (14 140 °F)	≤ (0.08 • r + 0.1) %	≤ 0,3 %
• at -4010°C and +60 +85 °C (-40 14°F and 140 185°F)	≤ (0.1 • r + 0.15) % per 10 K	≤ 0.25 % per 10 K
Influence of mounting position	≤ 0.05 mbar g (0.000725 psi g) per 10° in correction via zero offset	nclination
Power supply influence	In percent per change in voltage 0.005 % per 1 V	-
Measuring value resolution	-	3 • 10 ⁻⁵ of the rated measuring range
Gauge pressure measuring accuracy,	, with flush mounted diaphragm	
	HART	PROFIBUS PA or Foundation Fieldbus
Reference conditions	Rising characteristic curve	
	Start of scale value 0 bar	
	Seal diaphragm: stainless steel	
	Measuring cell with silicon oil filling	
	 Room temperature 25°C (77°F) 	
	Measuring span ratio r r = maximum measuring span or set measuring span	-
Measurement deviation with limit setting, including hysteresis and repeatability.		

Gauge pressure measuring accuracy,	HART	PROFIBUS PA or Foundation Fieldbus
		PROFIBUS PA or Foundation Fieldbus
• r≤10	≤ (0.0029 • r + 0.071) %	-
• 10 < r ≤ 30	≤ (0.0045 • r + 0.071) %	_
• 30 < r ≤ 100	≤ (0.005 • r + 0.05) %	_
Settling time T ₆₃ without electrical damping	Approx. 0.2 s	
Long-term drift at ±30° C (±54° F)	In 5 years ≤ (0.25 • r) %	In 5 years ≤ 0.25%
Ambient temperature influence	In percent	
• At -10 +60 °C (14 140 °F)	≤ (0.1 • r + 0.2) %	≤ 0,3 %
• at -4010°C and +60 +85°C (-40 14°F and 140 185°F)	≤ (0.1 • r + 0.15) % per 10 K	≤ 0.25 % per 10 K
Process temperature influence	In pressure per temperature change	
Temperature difference between process temperature and ambient temperature	3 mbar per 10 K (0.04 psi per 10 K)	
Influence of mounting position	In pressure per change in angle 0.4 mbar (0.006 psi) per 10° inclination Correction via zero offset	
Power supply influence	In percent per change in voltage 0.005 % per 1 V	-
Measured value resolution	_	3 • 10 ⁻⁵ of the rated measuring range
Measuring accuracy (as per EN 60770	-1) DS III with PMC connection	
	HART	PROFIBUS PA or Foundation Fieldbus
Reference conditions	Rising characteristic curve	
	Start of scale value 0 bar	
	 Seal diaphragm: stainless steel 	
	 Measuring cell with silicon oil filling 	
	 Room temperature 25°C (77°F) 	
	 Measuring span ratio r r = maximum measuring span or set measuring span 	-
Measurement deviation with limit setting, including hysteresis and repeatability.		
Linear characteristic curve		≤ 0,075 %
• r≤10	≤ (0.0029 • r + 0.071) %	_
• 10 < r ≤ 30	≤ (0.0045 • r + 0.071) %	_
	≤ (0.005 • r + 0.05) %	_
• 30 < r ≤ 100 *)	, · · · · · · · · · · · · · · · · · · ·	
,	Included in the measurement deviation	
30 < r ≤ 100 *) Repeatability Hysteresis	Included in the measurement deviation Included in the measurement deviation	

Measuring accuracy (as per EN 60770-1) DS III with PMC connection				
	HART	PROFIBUS PA or Foundation Fieldbus		
Long-term drift at ±30° C (±54° F)	In 5 years ≤ (0.25 • r) %	In 5 years ≤ 0.25%		
Ambient temperature influence	In percent			
• At -10 +60 °C (14 140 °F)	≤ (0.08 • r + 0.1) %	≤ 0,3 %		
• at -4010°C and +60 +85°C (-40 14°F and 140 185°F)	≤ (0.1 • r + 0.15) % per 10 K	≤ 0.25 % per 10 K		
Process temperature influence	In pressure per temperature change			
Temperature difference between process temperature and ambient temperature	3 mbar per 10 K (0.04 psi per 10 K)			
Influence of mounting position	In pressure per change in angle ≤ 0.1 mbar g (0.00145 psi g) per 10° inc correction via zero offset	lination		
Power supply influence	In percent per change in voltage 0.005 % per 1 V	-		
Measured value resolution	-	3 • 10 ⁻⁵ of the rated measuring range		

^{*)} not for 4 bar PMC Minibolt

Absolute pressure measuring accura	cy (from gauge and differential pressure se	ries)
	HART	PROFIBUS PA or Foundation Fieldbus
Reference conditions	Rising characteristic curve	
	 Start of scale value 0 bar 	
	 Seal diaphragm: stainless steel 	
	 Measuring cell with silicon oil filling 	
	 Room temperature 25°C (77°F) 	
	 Measuring span ratio r r = maximum measuring span or set measuring span 	_
Measurement deviation with limit setting, including hysteresis and repeatability.		
Linear characteristic curve		≤ 0,1 %
• r≤10	≤ 0,1 %	_
• 10 < r ≤ 30	≤ 0,2 %	_
Settling time T ₆₃ without electrical damping	approx. 0.2 s	
Long-term drift at ±30°C (±54°F)	per year ≤ (0.1 • r) %	per year ≤ 0.1 %
Ambient temperature influence	In percent	
• At -10 +60 °C (14 140 °F)	≤ (0.1 • r + 0.2) %	≤ 0,3 %
• at -4010°C and +60 +85°C (-40 14°F and 140 185°F)	≤ (0.1 • r + 0.15) % per 10 K	≤ 0.25 % per 10 K

	HART	PROFIBUS PA or Foundation Fieldbus		
Influence of mounting position	In pressure per change of angle			
Ç.	 for absolute pressure (from the gauge pressure series): 0.05 mbar (0.000725 psi per 10° inclination 			
	 for absolute pressure (from the differe (0.001015 psi) per 10° inclination 	ential pressure series): 0.7 mbar		
	Correction via zero offset			
Power supply influence	In percent per change in voltage 0.005 % per 1 V	-		
Measured value resolution	_	3 • 10 ⁻⁵ of the rated measuring range		
Differential pressure and flow rate mea	asuring accuracy			
	HART	PROFIBUS PA or Foundation Fieldbus		
Reference conditions	 Rising characteristic curve Start of scale value 0 bar Seal diaphragm: stainless steel Measuring cell with silicon oil filling 			
	 Room temperature 25°C (77°F) Measuring span ratio r 	-		
Measurement deviation with limit	r = maximum measuring span or set measuring span			
setting, including hysteresis and repeatability.				
Linear characteristic curve		≤ 0,075		
• r≤10	≤ (0.0029 • r + 0.071) %	_		
• 10 < r ≤ 30	≤ (0.0045 • r + 0.071) %	_		
• 30 < r ≤ 100	≤ (0.005 • r + 0.05) %	_		
Square root extracting characteristic curve (flow rate > 50%)		≤ 0,1 %		
• r≤10	≤ 0,1 %			
• 10 < r ≤ 30	≤ 0,2 %	_		
square root extracting characteristic curve (flow rate 25 50%)		≤ 0,2 %		
• r≤10	≤ 0,2 %	_		
• 10 < r ≤ 30	≤ 0,4 %	-		
Settling time T ₆₃ without electrical damping	approx. 0.2 sapprox 0.3 s for measuring cell 20 and	d 60 mbar (0.29 and 0.87 psi)		
Long-term drift at ±30°C (±54°F)	≤ (0.25 • r) % per five years static pressure max. 70 bar g (1015 psi g)	≤ 0.25 % per five years static pressure max. 70 bar g (1015 psi g		
• 20 mbar (0.29 psi) measuring cell	≤ (0.2 • r) % per year	≤ 0.2 % per year		
• 250, 600, 1600 and 5000 mbar (0.29, 0.87, 2.32 and 7.25 psi)	≤ (0.125 • r) % every 5 years	≤ 0.125% every 5 years		

measuring cell

Differential pressure and flow rate mea	asuring accuracy	
	HART	PROFIBUS PA or Foundation Fieldbus
Effect of the ambient temperature (double values for measuring cell 20 mbar g (0.29 psi g))	As percentage	
• At -10 +60°C (14 140°F)	≤ (0.08 • r + 0.1) %	≤ 0,3 %
• At -4010°C and +60 +85°C (-40 14°F and 140 185°F)	≤ (0.1 • r + 0.15) % per 10 K	≤ 0.25 % per 10 K
Effect of static pressure		
At the start of scale value	≤ (0.1 • r) % per 70 bar (1015 psi)	≤ 0.1% per 70 bar (1015 psi)
Measuring cell 20 mbar (0.29 psi)	≤ (0.15 • r) % per 32 bar (464 psi)	≤ 0.15 % per 32 bar (464 psi)
On the measuring span	≤ 0.15 % per 70 bar (1015 psi)	-
Measuring cell 20 mbar (0.29 psi)		-
Influence of mounting position	In pressure per change of angle	
g position	≤ 0.7 mbar (0.001015 psi) per 10° inclinat	ion
	Correction via zero offset	
Power supply influence	In percent per change in voltage 0.005 % per 1 V	-
Measured value resolution	-	3 • 10 ⁻⁵ of the rated measuring range
Level measuring accuracy		
Level measuring accuracy	HART	PROFIBUS PA or Foundation Fieldbus
Defenses and little		PROFIBOS PA OFFOUNDATION FIEIDDUS
Reference conditions	Rising characteristic curveStart of scale value 0 bar	
	Seal diaphragm: stainless steel Magazing call with alliage all filling	
	 Measuring cell with silicon oil filling Room temperature 25°C (77°F) 	
	Measuring span ratio r r = maximum measuring span or set measuring span	_
Measurement deviation with limit setting, including hysteresis and repeatability.		
Linear characteristic curve		≤ 0,075
• r≤10	≤ 0,15 %	-
• 10 < r ≤ 30	≤ 0,3 %	_
• 30 < r ≤ 100	≤ (0.0075 • r + 0.075) %	_
Settling time T ₆₃ without electrical damping	approx. 0.2 s	
Long-term drift at ±30°C (±54°F)	≤ (0.25 • r) % per five years static pressure max. 70 bar g (1015 psi g)	≤ 0.25 % per five years static pressure max. 70 bar g (1015 psi g)
Ambient temperature influence	As percentage	
• At -10 +60°C (14 140°F) (0.4 instead of 0.2 at 10 < r ≤ 30)		

Level measuring accuracy		
	HART	PROFIBUS PA or Foundation Fieldbus
Measuring cell 250 mbar (3.63 psi)	≤ (0.5 • r + 0.2) %	≤ 0,7 %
Measuring cell 600 mbar (8.7 psi)	≤ (0.3 • r + 0.2) %	≤ 0,5 %
Measuring cell 1.6 and 5 bar (23.2 and 72.5 psi)	≤ (0.25 • r + 0.2) %	≤ 0,45 %
 At -4010°C and +60 +85°C (-40 14°F and 140 185°F) (double values for 10 < r ≤ 30) 		
Measuring cell 250 mbar (3.63 psi)	≤ (0.25 • r + 0.15) %/10 K (≤ (0.25 • r + 0.15) %/18°F)	≤ 0.4 %/10 K (≤ 0.4 %/18°F)
Measuring cell 600 mbar (8.7 psi)	≤ (0.15 • r + 0.15) %/10 K (≤ (0.15 • r + 0.15) %/18°F)	≤ 0.3 %/10 K (≤ 0.3 %/18°F)
Measuring cell 1.6 and 5 bar (23.2 and 72.5 psi)	≤ (0.12 • r + 0.15) %/10 K (≤ (0.12 • r + 0.15) %/18°F)	≤ 0.27 %/10 K (≤ 0.27 %/18°F)
Effect of static pressure		
At the start of scale value		
Measuring cell 250 mbar (0.29 psi)	≤ (0.3 • r) % per nominal pressure	≤ 0.3 % per nominal pressure
Measuring cell 600 mbar (8.7 psi)	≤ (0.15 • r) % per nominal pressure	≤ 0.15 % per nominal pressure
Measuring cell 1.6 and 5 bar (23.2 and 72.5 psi)	≤ (0.1 • r) % per nominal pressure	≤ 0.1 % per nominal pressure
On the measuring span	≤ (0.1 • r) % per nominal pressure	≤ 0.1 % per nominal pressure
offluence of mounting position depending on the fill fluid in the mounting flange		ing flange
Power supply influence	In percent per change in voltage 0.005 % per 1 V	
Measuring value resolution	_	3 • 10 ⁻⁵ of the rated measuring range

13.5 Operating conditions

Installation conditions		
Ambient conditions		
Ambient temperature		
Note	Observe the temperature class in hazardous areas.	
Measuring cell with silicon oil filling	-40 +85 °C (-40 +185 °F)	
Measuring cell with inert liquid	-20 +85 °C (-4 +185 °F)	
Display	-30 +85 °C (-22 +185 °F)	
Storage temperature	-50 +85 °C (-58 +185 °F)	
Climate class		
Condensation	Permitted	

13.5 Operating conditions

- D () " :	IDOS IDOS
 Degree of protection in accordance with EN 60529 	IP65, IP68
 Degree of protection in accordance with NEMA 250 	NEMA 4X
Electromagnetic Compatibility	
Interference emission and interference immunity	As per EN 61326 and NAMUR NE 21
Medium conditions	
 Process temperature 	
Measuring cell with silicon oil filling	-40 +100 °C (-40 +212 °F)
Measuring cell with inert liquid filling	-20 +100 °C (-4 +212 °F)
With extension to Zone 0	-20 +60 °C (-4 +140 °F)
Conditions of use for gauge pressure a	and absolute pressure with flush-mounted diaphragm
Installation conditions	
Ambient temperature	
Note	Observe the temperature class in explosive atmospheres.
Measuring cell with silicon oil filling	
Measuring cell with inert liquid filling	-20 +85 °C (-4 +185 °F)
 Measuring cell with Neobee (FDA- compliant) 	-10 +85 °C (14 185 °F)
Display	-30 +85 °C (-22 +185 °F)
Storage temperature	-50 +85 °C (-58 +185 °F) (for Neobee: -20 + 85 °C (-4 +185 °F)) (for high-temperature oil: -10 + 85 °C (14 185 °F))
Climate class	
Condensation	permitted
Degree of protection in accordance with EN 60 529	IP65, IP68
Degree of protection in accordance with NEMA 250	NEMA 4X
Electromagnetic compatibility	
Emitted interference and interference immunity	In accordance with EN 61326 and NAMUR NE 21
Process medium conditions	
Process medium temperature ¹⁾	
Measuring cell with silicon oil filling	-40 +150°C (-40 +302 °F) -40 +200°C (-40 +392 °F) with cooling extension
Measuring cell with inert liquid filling	-20 +100 °C (-4 +212 °F) -20 +200°C (-4 +392 °F) with cooling extension

Co	Conditions of use for gauge pressure and absolute pressure with flush-mounted diaphragm		
•	Measuring cell with Neobee (FDA-compliant)	-10 +150°C (14 302 °F) -10 +200°C (14 392 °F) with cooling extension	
•	Measuring cell with high- temperature oil filling	-10 +250 °C (14 482 °F) with cooling extension	

Observe the temperature limits in the process connection standards (e.g. DIN 32676 and DIN 11851) for the maximum process medium temperature for flush-mounted process connections.

Rated conditions DS III with PMC connection		
Installation conditions		
Ambient temperature		
Note	Observe the temperature class in hazardous areas.	
Measuring cell with silicon oil filling	-40 +85 °C (-40 +185 °F)	
Display	-30 +85 °C (-22 +185 °F)	
Storage temperature	-50 +85 °C (-58 +185 °F)	
Climate class		
Condensation	Permitted	
Degree of protection in accordance with EN 60529	IP65, IP68	
Degree of protection in accordance with NEMA 250	NEMA 4X	
Electromagnetic compatibility		
Emitted interference and interference immunity	In accordance with EN 61326 and NAMUR NE 21	
Process medium conditions		
Process medium temperature	-40 +100 °C (-40 +212 °F)	

Rated conditions for absolute pressure (from the differential pressure series), differential pressure and flow rate		
Installation conditions		
Installation instruction	any	
Ambient conditions		
Ambient temperature		
Note	Observe the temperature class in hazardous areas.	
Measuring cell with silicon oil filling	-40 +85 °C (-40 +185 °F)	
Measuring cell	• -40 +85°C (-40 +185 °F)	
30 bar (435 psi)	• for flow rate: -20 +85°C (-4 +185 °F)	
Measuring cell with inert liquid filling	-20 +85 °C (-4 +185 °F)	
Display	-30 +85 °C (-22 +185 °F)	
Storage temperature	-50 +85 °C (-58 +185 °F)	
Climate class		
Condensation	Permitted	

13.5 Operating conditions

Rated conditions for absolute pressu	re (from the differential pressure series), differential pressure and flow rate
Degree of protection in accordance with EN 60529	IP65, IP68
Degree of protection in accordance with NEMA 250	NEMA 4X
Electromagnetic compatibility	
Emitted interference and interference immunity	In accordance with EN 61326 and NAMUR NE 21
Process medium conditions	
Process medium temperature	
Measuring cell with silicon oil filling	-40 +100 °C (-40 +212 °F)
Measuring cell	• -40 +85 °C (-40 +185 °F)
30 bar (435 psi)	• With flow: -20 +85 °C (-4 +185 °F)
Measuring cell with inert liquid filling	-20 +100 °C (-4 +212 °F)
Measuring cell	• -40 +85 °C (-40 +185 °F)
30 bar (435 psi)	• With flow: -20 +85 °C (-4 +185 °F)
In conjunction with dust explosion protection	-20 +60°C (-4 +140°F)
Installation conditions	
	· · · · · · · · · · · · · · · · · · ·
Installation instruction Ambient conditions	specified through the flange
Ambient temperature	
Note	Observe the allocation of the max. permissible operating temperature to the max. permissible operating pressure of the relevant flange connection.
Measuring cell with silicon oil filling	-40 +85 °C (-40 +185 °F)
Display	-30 +85 °C (-22 +185 °F)
Storage temperature	-50 +85 °C (-58 +185 °F)
Climate class	
Condensation	Permitted
Degree of protection in accordance with EN 60529	IP65
Degree of protection in accordance with NEMA 250	NEMA 4X
Electromagnetic compatibility	
Emitted interference and interference immunity	In accordance with EN 61326 and NAMUR NE 21
Medium conditions	
Process temperature	
Measuring cell with silicon oil filling	 Plus side: see the mounting flange Minus side: -40 +100°C (-40 +212°F)

13.6 Construction

Weight	Approx. 1.5 kg (3.3 lb)	for aluminum enclosure	
Material			
Wetted parts materials			
Process connection	Stainless steel, mat. n	o. 1.4404/316L or Hastelloy	C4, mat. no. 2.4610
Oval flange	Stainless steel, mat. n	o. 1.4404/316L	
Seal diaphragm	Stainless steel, materi	al no. 1.4404/316L or Haste	lloy C276, material no. 2.4819
Non-wetted parts materials			
Electronics housing	Copper-free die ca mat. no. 1.4408	st aluminum GD-AlSi 12 or s	stainless steel precision casting,
	 Standard: Polyeste Option: 2 coats: Co 	er-based paint oat 1: epoxy-based; coat 2: p	polyurethane
	Stainless steel nan	neplate	
Mounting bracket	Steel or stainless steel		
Measuring cell filling	Silicone oil		
	Neobee M20		
	 Inert liquid 		
	(max. 120 bar g (2320	psi g) for oxygen measurem	nent)
Process connection	$\rm G^{1/}_{2}B$ connection pin in accordance with DIN EN 837-1; $^{1/}_{2}$ -14 NPT female thread or oval flange (PN 160 (MAWP 2320 psi g)) with M10 fastening screw thread in accordance with DIN 19213 or $^{7/}_{16}$ -20 UNF in accordance with EN 61518. Male thread M20 x 1.5 and $^{1/}_{2}$ -14 NPT.		
Electrical connection	Cable inlet using the fo	ollowing cable glands:	
	• Pg 13.5		
	 M20 x 1.5 and ½-14 NPT or Han 7D/Han 8D connector¹) 		
		: 6 to 12 mm; types of protectable cable gland for smaller	ction "nA" and "ic" (Zone 2): 8 to diameters
	 M12 connector 		
Torque for cable gland nut made of	Plastic	Metal	Stainless steel
	2.5 Nm (1.8 ft lb)	4.2 Nm (3.1 ft lb)	4.2 Nm (3.1 ft lb)

¹⁾ Han 8D is identical to Han 8U.

Cons	Construction for gauge pressure, with flush mounted diaphragm		
Weig	ht	Approx 1.5 13.5 kg (3.3 30 lb) with aluminum enclosure	
Mate	rial		
• W	etted parts materials		
F	Process connection	Stainless steel, mat. no. 1.4404/316L	
5	Seal diaphragm	Stainless steel, mat. no. 1.4404/316L	
• N	on-wetted parts materials		

13.6 Construction

Construction for gauge pressure, with	n flush mounted diaphrag	m	
Electronics housing	 Non-copper aluminum die casting GD-AlSi 12 or stainless steel precision casting, mat. no. 1.4408 		
	 Standard: Polyeste Option: 2 coats: Co 	er-based paint pat 1: epoxy-based; coat 2: p	olyurethane
	Stainless steel nan	neplate	
Mounting bracket	Steel or stainless steel		
Measuring cell filling	Silicone oil		
	 Neobee M20 		
	 Inert liquid 		
Process connection	Flanges as per EN and ASME		
	 F&B and Pharma flange, clamp and threaded connectors 		
	NEUMO BioConnect/BioControl		
	 PMC connections f 	for the paper industry	
Electrical connection	Cable inlet using the fo	ollowing cable glands:	
	• Pg 13.5		
	 M20x1.5 		
	• ½-14 NPT		
	Han 7D/Han 8D plug¹)		
	 M12 connector 		
Torque for cable gland nut made of	Plastic	Metal	Stainless steel
	2.5 Nm (1.8 ft lb)	4.2 Nm (3.1 ft lb)	4.2 Nm (3.1 ft lb)

¹⁾ Han 8D is identical to Han 8U.

DS III construction with PMC connection		
Weight	Approx. 1.5 kg (3.3 lb) for aluminum enclosure	
Material		
Wetted parts materials		
Gasket (standard)	PTFE flat gasket	
O-ring (minibolt)	FPM (Viton)	
	FFPM or NBR (optional)	
Seal diaphragm	Hastelloy C276, mat. No. 2.4819	
Non-wetted parts materials		
Electronics housing	 Non-copper aluminum die casting GD-AlSi 12 or stainless steel precision casting, mat. no. 1.4408 	
	Standard: Polyester-based paint	
	Option: 2 coats: Coat 1: epoxy-based; coat 2: polyurethane	
	Stainless steel nameplate	
Mounting bracket	Steel or stainless steel	
Measuring cell filling	Silicone oil	
	Inert liquid	
Process connection		

DS III construction with PMC connection					
Standard	Flush mounted				
	• 1 ¹ / ₂ "				
	 PMC Standard des 	ign			
Minibolt	Flush mounted				
	• 1"				
	PMC Minibolt designation	n			
Electrical connection	Cable inlet using the following cable glands:				
	• Pg 13.5				
	• M20 x 1.5				
	• ½-14 NPT				
	 Han 7D/Han 8D plu 	Jg ¹⁾			
	M12 connector				
Torque for cable gland nut made of	Plastic	Metal	Stainless steel		
	2.5 Nm (1.8 ft lb)	4.2 Nm (3.1 ft lb)	4.2 Nm (3.1 ft lb)		

¹⁾ Han 8D is identical to Han 8U.

Design for absolute pressure (from the	e differential pressure series), differential pressure and flow rate	
Weight	Approx. 4.5 kg (9.9 lb) for aluminum enclosure	
Material		
Wetted parts materials		
Seal diaphragm	Stainless steel, mat. no. 1.4404/316L, Hastelloy C276, mat. no. 2.4819, Monel, mat. no. 2.4360, tantalum or gold	
Pressure caps and locking screw	Stainless steel, mat. no. 1.4408 to PN 160, mat. no. 1.4571/316Ti for PN 420, Hastelloy C4, 2.4610 or Monel, mat. no. 2.4360	
O-ring	FPM (Viton) or optionally: PTFE, FEP, FEPM and NBR	
Non-wetted parts materials		
Electronics housing	 Non-copper aluminum die casting GD-AlSi 12 or stainless steel precision casting, mat. no. 1.4408 	
	 Standard: Polyester-based paint Option: 2 coats: Coat 1: epoxy-based; coat 2: polyurethane 	
	Stainless steel nameplate	
Pressure cap screws	Stainless steel	
Mounting bracket	Steel or stainless steel	
Measuring cell filling	Silicone oil	
	Neobee M20	
	Inert liquid	
	(max. 120 bar g (2320 psi g) for oxygen measurement)	
Process connection	1 / $_{4}$ -18 NPT female thread and flat connection with 7 / $_{16}$ -20 UNF fastening screw thread in accordance with EN 61518 or M10 fastening screw thread in accordance with DIN 19213 (M12 for PN 420 (MAWP 6092 psi))	

13.6 Construction

Design for absolute pressure (from the	differential pressure se	eries), differential pressure a	nd flow rate	
Electrical connection	Screw terminals			
	Cable inlet using the for	ollowing cable glands:		
	• Pg 13.5			
	• M20 x 1.5			
	• ½-14 NPT or Han	7D/Han 8D connector1)		
	M12 connector			
Torque for cable gland nut made of	Plastic	Metal	Stainless steel	
	2.5 Nm (1.8 ft lb)	4.2 Nm (3.1 ft lb)	4.2 Nm (3.1 ft lb)	
Han 8D is identical to Han 8U.				
Construction for level				
Weight				
 as per EN (pressure transmitter with mounting flange, without tube) 	approx 11 13 kg (24	4.2 28.7 lb)		
 as per ASME (pressure transmitter with mounting flange, without tube) 	approx 11 18 kg (2-	4.2 39.7 lb)		
Material				
Wetted parts materials				
Plus side				
Seal diaphragm on the mounting flange		elloy C276, mat. no. 2.4819,	mat. no. 2.4360, Hastelloy B2, Hastelloy C4, mat. no. 2.4610,	
Sealing surface	smooth as per EN 1092-1, form B1 or ASME B16.5 RF 125 250 AA for stainless steel 316L, EN 2092-1 form B2 or ASME B16.5 RFSF for the remaining materials			
Sealing material in the pressure caps			-	
for standard applications	Viton			
 for underpressure applications on the mounting flange 	Copper			
Minus side				
Seal diaphragm	Stainless steel, mat. n	o. 1.4404/316L		
Pressure caps and locking screws	Stainless steel, mat. n	o. 1.4408		
O-ring	FPM (Viton)			
Non-wetted parts materials	· · · · · · · · · · · · · · · · · · ·			
Electronics housing	Non-copper alumin mat. no. 1.4408	num die casting GD-AlSi 12 or	stainless steel precision casting	
	Standard: Polyeste Option: 2 coats: Co	er-based paint pat 1: epoxy-based; coat 2: p	polyurethane	
	Stainless steel nar			
Pressure cap screws	Stainless steel			
· · · · · · · · · · · · · · · · · · ·	Silicone oil			

Construction for level				
Mounting flange fill fluid	Silicon oil or a different design			
Process connection				
Plus side	Flange as per EN and	ASME		
Minus side	1 / $_{4}$ -18 NPT female thread and flat connection with M10 fastening screw thread in accordance with DIN 19213 (M12 for PN 420 (MAWP 6092 psi)) or 7 / $_{16}$ -20 UNF in accordance with EN 61518			
Electrical connection	Screw terminals			
	Cable inlet using the following cable glands:			
	• Pg 13.5			
	• M20 x 1.5			
	 ½-14 NPT or Han 7D/Han 8D connector¹) 			
	M12 connector			
Torque for nut with				
Cable gland made of plastic	2.5 Nm (1.8 ft lb)			
Cable gland made of metal	4.2 Nm (3.1 ft lb)			
Cable gland made of stainless steel	4.2 Nm (3.1 ft lb)			
Torque for cable gland nut made of	Plastic	Metal	Stainless steel	
	2.5 Nm (1.8 ft lb)	4.2 Nm (3.1 ft lb)	4.2 Nm (3.1 ft lb)	

¹⁾ Han 8D is identical to Han 8U.

13.7 Display, keyboard and auxiliary power

Display and user interface	
Keys	3 for on-site programming directly at the device
Display	With or without integrated display (optional)
	Cover with inspection window (optional)

Auxiliary power U _H				
	HART	PROFIBUS PA or Foundation Fieldbus		
Terminal voltage at transmitter	• DC 10.5 V 45 V	_		
	 In the case of intrinsically safe operation 10.5 V 30 V DC 			
Ripple	U _{ss} ≤ 0.2 V (47 125 Hz)	-		
Noise	$U_{eff} \le 1.2 \text{ V mV } (0.5 \text{ to } 10 \text{ kHz})$	-		
Auxiliary power	-	Bus-powered		
Separate supply voltage	-	Not necessary		
Bus voltage				
• Not 😥	-	9 32 V		
For intrinsically safe operation	-	9 24 V		
Current consumption				

13.8 Certificates and approvals

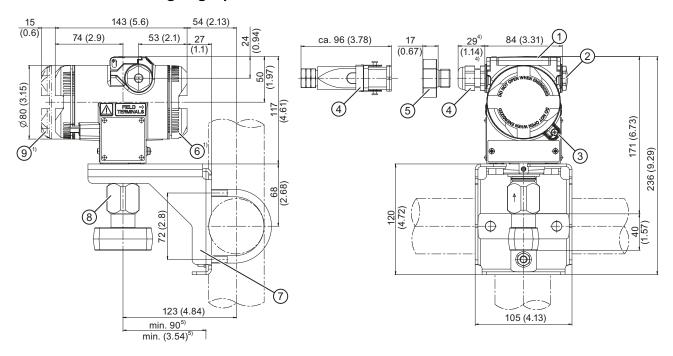
Auxiliary power U _H			
	HART	PROFIBUS PA or Foundation Fieldbus	
Max. basic current	_	12.5 mA	
Starting current ≤ basic current	_	Yes	
Max. current in event of fault	_	15.5 mA	
Error shut-down electronics (FDE) present	_	Yes	

13.8 Certificates and approvals

Certificates and approvals	HART	PROFIBUS PA or Foundation Fieldbus	
Classification according to Pressure Equipment Directive (PED 97/23/EC)	 for gases of Fluid Group 1 and liquids of Fluid Group 1; meets requiremen Article 3 Para. 3 (good engineering practice) 		
		ids of Fluid Group 1; fulfills the basic safety 1 (appendix 1); classified as category III, TÜV Nord	
Drinking water	In preparation		
Explosion protection			
Intrinsic safety "i"	PTB 11 ATEX 2011 X		
Marking	🔝 II 1/2G Ex ia/ib IIC T4/T5/T6 Ga/0	Gb	
Permissible ambient temperature	-40 +85 °C (-40 +185 °F) Temperature class T4 -40 +70 °C (-40 +158 °F) Temperature class T5 -40 +60 °C (-40 +140 °F) Temperature class T6		
Connection	To a certified intrinsically safe circuit with the max. values:	FISCO supply unit $U_0 = 17.5 \text{ V}, I_0 = 380 \text{ mA}, P_0 = 5.32 \text{ W}$	
	$U_i = 30 \text{ V}, I_i = 100 \text{ mA},$ $P_i = 750 \text{ mW}, R_i = 300 \Omega$	Linear barrier $U_0 = 24 \text{ V}, I_0 = 174 \text{ mA}, P_0 = 1 \text{ W}$	
Effective inner capacitance	C _i = 6 nF	C _i = 1.1 nF	
Effective inner inductance	L _i = 0.4 mH	L _i = 7 μH	
Flameproof enclosure encapsulation "d"	PTB 99 ATEX 1160		
Marking	🔝 II 1/2 Ex d IIC T4, T6 Ga/Gb		
Permissible ambient temperature	-40 +85 °C (-40 +185 °F) Temperature class T4 -40 +60 °C (-40 +140 °F) Temperature class T6		
Connection	To a circuit with the operating values: $U_H = 10.5 \dots 45 \text{ V DC}$	To a circuit with the operating values: $U_H = 9 \dots 32 \text{ V DC}$	
 Dust explosion protection for Zone 20 and 20/21 	PTB 01 ATEX 2055		

	HART	PROFIBUS PA or Foundation Fieldbus	
Marking	€ II 1 D IP65 T 120 °C, € II 1/2 D IP65 T 120 °C		
Permissible ambient temperature	-40 +85 °C (-40 +185 °F)		
max. surface temperature	120°C (248°F)		
Connection	To a certified intrinsically safe circuit with the max. values:	FISCO supply unit U ₀ = 17.5 V, I ₀ = 380 mA, P ₀ = 5.32 W	
	$U_i = 30 \text{ V}, I_i = 100 \text{ mA},$ $P_i = 750 \text{ mW}, R_i = 300 \Omega$	Linear barrier $U_0 = 24 \text{ V}, I_0 = 250 \text{ mA}, P_0 = 1.2 \text{ W}$	
Effective inner capacitance	C _i = 6 nF	C _i = 1.1 nF	
Effective inner inductance	L _i = 0.4 mH	L _i = 7 μH	
Dust explosion protection for Zone 22	PTB 01 ATEX 2055		
Marking	€ II 2 D IP65 T 120 °C		
Connection	To a circuit with the operating values: $U_H = 10.5 \dots 45 \text{ V DC}$; $P_{max} = 1.2 \text{ W}$	To a circuit with the operating values: $U_H = DC 9 \dots 32 V; P_{max} = 1.2 W$	
Type of protection "n" (Zone 2)	PTB 11 ATEX 2011 X		
Marking	(L) 2/3 G Ex nA T4/T5/T6 Gc 2/3 G Ex ic C T4/T5/T6 Gc		
Connection "nA"	U _n = 45 V	U _m = 32 V	
Connection "ic"	To a circuit with the operating values: U _i = 45 V	FISCO supply unit $U_0 = 17.5 \text{ V}, I_0 = 570 \text{ mA}$	
		Linear barrier $U_0 = 32 \text{ V}, I_0 = 132 \text{ mA}, P_0 = 1 \text{ W}$	
Effective inner capacitance	C _i = 6 nF	C _i = 1.1 nF	
Effective inner inductance	L _i = 0.4 mH	L _i = 7 μH	
Explosion protection in accordance with FM	Certificate of Compliance 3008490		
Designation (XP/DIP) or IS; NI; S	CL I, DIV 1, GP ABCD T4 T6; CL II, IIC T4 T6; CL I, DIV 2, GP ABCD T4	DIV 1, GP EFG; CL III; CL I, ZN 0/1 AEx T6; CL II, DIV 2, GP FG; CL III	
Permissible ambient temperature	T _a = T4: -40 +85 °C (-40 +185 °F) T _a = T5: -40 +70 °C (-40 +158 °F) T _a = T6: -40 +60 °C (-40 +140 °F)		
Entity parameters	As per "control drawing" A5E00072770A: $U_{i} = 30 \text{ V}, \ I_{i} = 100 \text{ mA}, \\ P_{i} = 750 \text{ mW}, \ R_{i} = 300 \ \Omega, \\ C_{i} = 6 \text{ nF}, \ L_{i} = 0.4 \text{ mH}$	As per "control drawing" A5E00072770A: $U_{max} = 17.5 \text{ V, } I_{max} = 380 \text{ mA,}$ $P_{max} = 5.32 \text{ W,}$ $C_{max} = 6 \text{ nF, } L_{max} = 0.4 \text{ mH}$	
Explosion protection as per CSA	Certificate of Compliance 1153651		
Designation (XP/DIP) or (IS)	CL I, DIV 1, GP ABCD T4 T6; CL II, DIV 1, GP EFG; CL III; Ex ia IIC T4 T6: CL I, DIV 2, GP ABCD T4 T6; CL II, DIV 2, GP FG; CL III		
Permissible ambient temperature	T _a = T4: -40 +85 °C (-40 +185 °F) T _a = T5: -40 +70 °C (-40 +158 °F) T _a = T6: -40 +60 °C (-40 +140 °F)		
Entity parameters	As per "control drawing" A5E00072770A: U_i = 30 V, I_i = 100 mA, P_i = 750 mW, R_i = 300 Ω , L_i = 0.4 mH, C_i = 6 nF		

13.9 PROFIBUS communication

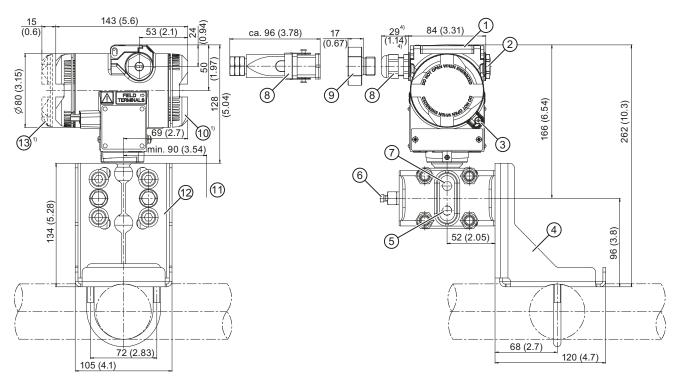

PROFIBUS PA communication		
Simultaneous communication with master Class 2	Max. 4	
Setting of address possible using	Configuration tool	
	Local operation	
	(standard setting is address 126)	
Cyclic user data		
Output byte	One measured value: 5 bytes	
	Two measured values: 10 bytes	
Input byte	 Totalizer mode: 0, 1 or 2 bytes 	
	Reset function because of injection: 1 byte	
	(totalizer mode and reset function because of	
Internal preprocessing	injection)	
Device profile	PROFIBUS PA Profile for Process Control	
Device profile	Devices Version 3.0, Class B	
Function blocks	2	
Analog input		
Adaptation to user-specific process variable	Yes, linearly rising or falling characteristic	
Adjustable electrical damping	0 100 s	
Simulation function	Output/input	
Failure response	Can be parameterized:	
·	Last good value	
	Substitute value	
	Faulty value	
Limit monitoring	Upper and lower warning and alarm limits	
Totalizer	Can be reset and preset	
	Selectable counting direction	
	Simulation function of totalizer output	
Failure response	Can be parameterized:	
·	Addition with last good value	
	Stop addition	
	Addition with faulty value	
Limit monitoring	Upper and lower warning and alarm limits	
Physical block	1	
Transducer blocks	2	
Transducer block "Pressure"		
Calibration by applying two pressures	Yes	
Monitoring of sensor limits	Yes	
Input of a container characteristic	With max. 30 interpolation points	
Characteristic curve	• Linear	
	Square-root	
	Not for gauge and absolute pressures	

13.9 PROFIBUS communication

PROFIBUS PA communication		
Low-flow cut-off and starting point of square-rooting	Parameterizable	
Not for gauge and absolute pressures		
Simulation function		
Pressure measurement	Constant value	
	Parameterizable ramp function	
Sensor temperature	Constant value	
	Parameterizable ramp function	
Transducer block "Electronics temperature"		
Simulation function		
Pressure measurement	Constant value	
	Parameterizable ramp function	
Electronics temperature	Constant value	
	Parameterizable ramp function	

Dimension drawings

14.1 SITRANS P, DS III series for gauge pressure and absolute pressure from the gauge pressure series

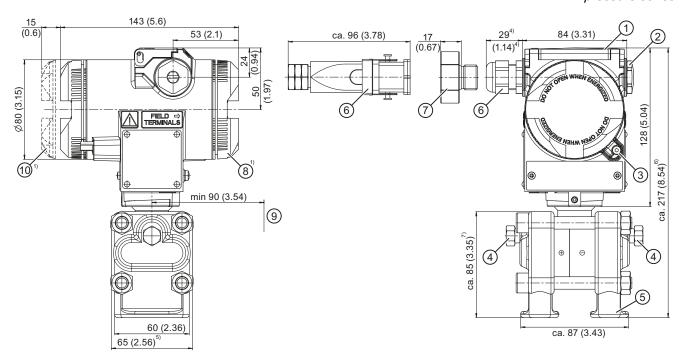

14.1 SITRANS P, DS III series for gauge pressure and absolute pressure from the gauge pressure series

- 1 Key cover
- ② Blanking plug
- 3 Cover catch (only for "flameproof enclosure" type of protection)
- 4 Electrical connection:
 - Threaded joint Pg 13.5 (adapter)²⁾³⁾,
 - Threaded joint M20 x 1.5³⁾
 - Threaded joint ¹/₂-14 NPT
 - Han 7D/Han 8D plug^{2) 3)}
 - M12 connector
- (5) Han 7D/Han 8D adapter
- 6 Connection side
- Mounting bracket (optional)
- 8 Process connection:
 - ¹/₂-14 NPT,
 - Connection pin G¹/₂A or
 - Oval flange
- Electronics side, display (longer for cover with inspection window)
- Take additional 20 mm (0.79 inches) thread length into account
- Not with "flameproof enclosure" type of protection
- Not for "FM + CSA [is + XP]" type of protection
- For Pg 13.5 with adapter approx 45 mm (1.77 inches)
- 5) Minimum distance for rotating

Figure 14-1 Pressure transmitter SITRANS P, DS III series for absolute pressure, from gauge pressure series, dimensions in mm (inches)

14.2 SITRANS P, DS III series for differential pressure, flow rate and absolute pressure from the differential pressure series

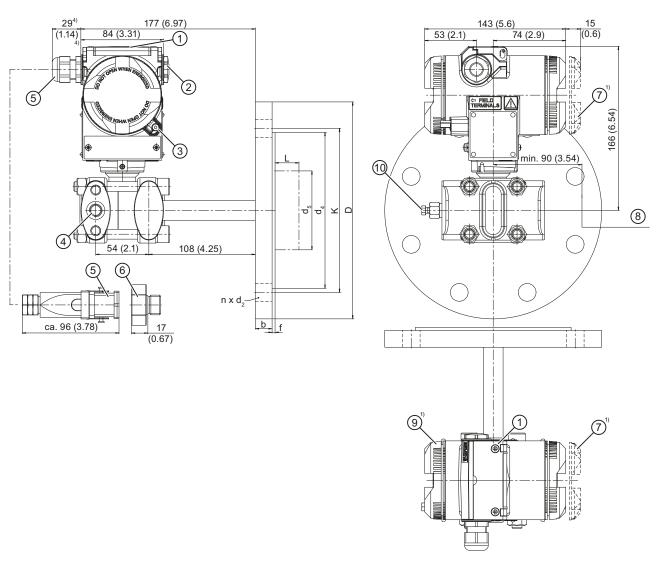
14.2 SITRANS P, DS III series for differential pressure, flow rate and absolute pressure from the differential pressure series



14.2 SITRANS P, DS III series for differential pressure, flow rate and absolute pressure from the differential pressure series

- 1 Key cover
- ② Blanking plug
- 3 Cover catch (only for "flameproof enclosure" type of protection)
- 4 Mounting bracket (optional)
- 5 Lateral ventilation for gas measurement (addition H02)
- 6 Sealing plug, with valve (optional)
- Tateral ventilation for liquid measurement
- 8 Electrical connection:
 - Pg 13.5 gland (adapter)²⁾³⁾
 - M20 x 1.5 gland³⁾
 - ¹/₂-14 NPT gland
 - Han 7D/Han 8D plug^{2) 3)}
 - M12 connector
- (9) Han 7D/Han 8D adapter
- Onnection side
- ① Space for enclosure rotation⁵⁾
- Process connection: 1/4-18 NPT (EN 61518)
- Electronics side, display (longer for cover with inspection window)
- Take an additional 20 mm (0.79 inches) thread length into account
- Not with "flameproof enclosure" type of protection
- Not for "FM + CSA [is + XP]" type of protection
- For Pg 13.5 with adapter, approx 45 mm (1.77 inches)
- ⁵⁾ 92 mm (3.62 inches) minimum distance for rotating the enclosure with display

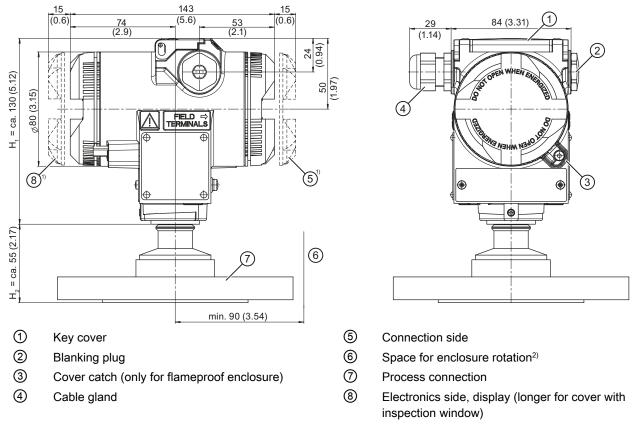
Figure 14-2 Pressure transmitter SITRANS P, DS III series for differential pressure and flow rate, dimensions in mm (inches)


14.2 SITRANS P, DS III series for differential pressure, flow rate and absolute pressure from the differential pressure series

- 1 Key cover
- ② Blanking plug
- 3 Cover catch (only for "flameproof enclosure" type of protection)
- 4 Sealing plug, with valve (optional)
- Process connection: 1/4-18 NPT (EN 61518)
- 6 Electrical connection:
 - Pg 13.5 gland (adapter)²⁾³⁾
 - M20 x 1.5 gland³⁾
 - 1/2-14 NPT gland
 - Han 7D/Han 8D plug^{2) 3)}
 - M12 connector
- 7 Han 7D/Han 8D adapter
- 8 Connection side
- Space for enclosure rotation⁸⁾
- (Inger for cover with inspection window)
- Take an additional 20 mm (0.79 inches) thread length into account
- Not with "flameproof enclosure" type of protection
- Not for "FM + CSA [is + XP]" type of protection
- For Pg 13.5 with adapter, approx 45 mm (1.77 inches)
- ⁵⁾ 74 mm (2.9 inch) for PN \geq 420 (MAWP \geq 6092 psi)
- 6) 219 mm (8.62 inches) for PN ≥ 420 (MAWP ≥ 6092 psi)
- ⁷⁾ 91 mm (3.6 inches) for PN ≥ 420 (MAWP ≥ 6092 psi)
- 92 mm (3.62 inches) minimum distance for rotating the enclosure with display

Figure 14-3 Pressure transmitter SITRANS P, DS III series for differential pressure and flow rate with caps for vertical differential pressure lines, dimensions in mm (inches)

14.3 SITRANS P, DS III series for level



14.3 SITRANS P, DS III series for level

- 1 Key cover
- ② Blanking plug
- 3 Cover catch (only for "flameproof enclosure" type of protection)
- 4 Process connection: Minus side 1/4-18 NPT (EN 61518)
- ⑤ Electrical connection:
 - Pg 13.5 gland (adapter)²⁾³⁾
 - M20 x 1.5 gland³⁾
 - 1/2-14 NPT gland
 - Han 7D/Han 8D plug^{2) 3)}
 - M12 connector
- 6 Han 7D/Han 8D adapter
- (Inger for cover with inspection window)
- Space for enclosure rotation⁵⁾
- Onnection side
- Sealing plug with valve (optional)
- Take an additional 20 mm (0.79 inches) thread length into account
- Not with "flameproof enclosure" type of protection
- Not for "FM + CSA [is + XP]" type of protection
- 4) For Pg 13.5 with adapter, approx 45 mm (1.77 inches)
- ⁵⁾ 92 mm (3.62 inches) minimum distance for rotating the enclosure with display

Figure 14-4 Pressure transmitter SITRANS P, DS III series for level, including mounting flange, dimensions in mm (inches)

14.4 SITRANS P, DS III series (flush mounted)

- Take additional 20 mm (approx.) thread length into account
- ²⁾ 92 mm (3.62 inches) minimum distance for rotating the enclosure with display

Figure 14-5 SITRANS P DS III (flush mounted)

The screen consists of a SITRANS P DS III with an example flange. On this screen, the height is divided into H_1 and H_2 .

- H₁ Height of the device up to a defined cut
- H₂ Height of the flange up to this defined cut

In the flange dimensions, only the height H₂ is specified.

14.4.1 Note 3A and EHDG

Note

Approvals

The references to the approvals for "EHEDG" and "3A" refer to the respective process connections and are not device-specific. Please refer to the technical data of the respective transmitter to see whether the desired certificate is available for your device/flange combination.

14.4.2 Connections as per EN and ASME

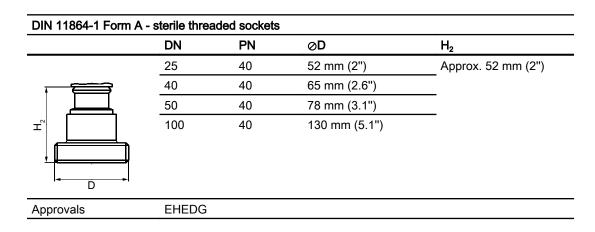
Flange as per EN

EN 1092-1				
	DN	PN	⊘D	H ₂
	25	40	115 mm (4.5")	Approx. 52 mm (2")
 	25	100	140 mm (5.5")	
	40	40	150 mm (5.9")	
<u>*</u>	40	100	170 mm (6.7")	
D	50	16	165 mm (6.5")	
	50	40	165 mm (6.5")	
	80	16	200 mm (7.9")	
	80	40	200 mm (7.9")	

Threaded connections

	DN	PN	⊘D	H_2
	3/4"	63	37 mm (1.5")	Approx. 45 mm (1.8")
	1"	63	48 mm (1.9")	Approx. 47 mm (1.9")
T D	2"	63	78 mm (3.1")	Approx. 52 mm (2")

14.4 SITRANS P, DS III series (flush mounted)


Flanges as per ASME

ASME B 16.5	ASME B 16.5				
	DN	CLASS	⊘D	H ₂	
	1"	150	110 mm (4.3")	Approx. 52 mm (2")	
 	1"	300	125 mm (4.9")		
	1½"	150	130 mm (5.1")		
D	1½"	300	155 mm (6.1")		
	2"	150	150 mm (5.9")		
	2"	300	165 mm (6.5")		
	3"	150	190 mm (7.5")		
	3"	300	210 mm (8.1")		
	4"	150	230 mm (9.1")		
	4"	300	255 mm (10.0")		

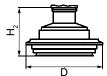
14.4.3 F&B and pharma flange

Connections as per DIN

DN	PN	⊘D	H_2
50	25	92 mm (3.6")	Approx. 52 mm (2")
80	25	127 mm (5.0")	

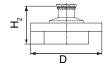
DIN 11864-2 Form A - sterile collar flange				
	DN	PN	⊘D	H ₂
	50	16	94 mm (3.7")	Approx. 52 mm (2")
	65	16	113 mm (4.4")	
	80	16	133 mm (5.2")	
D	100	16	159 mm (6.3")	
Approvals	EHEDG			,

	DN	PN	⊘D	H ₂
	50	16	94 mm (3.7")	Approx. 52 mm (2")
(((((((((((((((((((65	16	113 mm (4.4")	
	80	16	133 mm (5.2")	
D	100	16	159 mm (6.3")	
Approvals	EHEDG			


DIN 11864-3 Form A - sterile collar sockets DN PΝ ØD H_2 50 25 77.5 mm (3.1") Approx. 52 mm (2") 65 25 91 mm (3.6") 80 16 106 mm (4.2") 100 16 130 mm (5.1") Ď

Approvals	EHEDG			
Tri-Clamp as per	DIN 32676			
	DN	PN	⊘D	H ₂
	50	16	64 mm (2.5")	Approx. 52 mm (2")
- T	65	16	91 mm (3.6")	
]			

14.4 SITRANS P, DS III series (flush mounted)


Other connections

Varivent® connector				
	DN	PN	⊘D	H ₂
	40-125	40	84 mm (3.3")	Approx. 52 mm (2")

Approvals	EHEDG	
-----------	-------	--

Connection in accordance with DRD					
	DN	PN	⊘D	H ₂	
	65	40	105 mm (4.1")	Approx. 52 mm (2")	

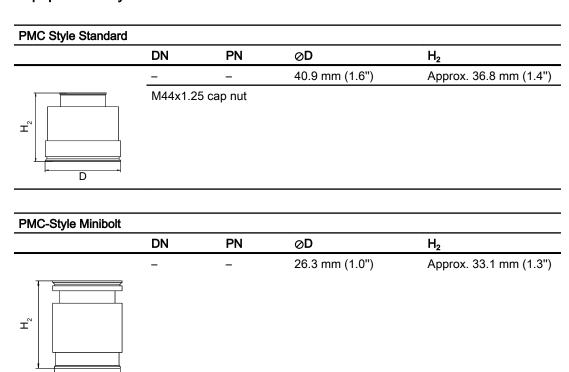
BioConnect[™] connectors

BioConnect [™] scre			- B	
	DN	PN	⊘D	H ₂
	50	16	82 mm (3.2")	Approx. 52 mm (2")
. ===	65	16	105 mm (4.1")	
	80	16	115 mm (4.5")	
	100	16	145 mm (5.7")	
	2"	16	82 mm (3.2")	
	2½"	16	105 mm (4.1")	
l ∢ Ď	3"	16	105 mm (4.1")	
	4"	16	145 mm (5.7")	
Approvals	EHEDG			

BioConnect™ flange connector				
	DN	PN	ØD	H ₂
	50	16	110 mm (4.3")	Approx. 52 mm (2")
+ ==	65	16	140 mm (5.5")	
I I	80	16	150 mm (5.9")	
	100	16	175 mm (6.9")	
l ∢ D	2"	16	100 mm (3.9")	
	21/2"	16	110 mm (4.3")	
	3"	16	140 mm (5.5")	
	4"	16	175 mm (6.9")	
Approvals	EHEDG			

BioConnect™ clamp connector				
	DN	PN	⊘D	H_2
	50	16	77.4 mm (3.0")	Approx. 52 mm (2")
. ====	65	10	90.9 mm (3.6")	
	80	10	106 mm (4.2")	
ı T	100	10	119 mm (4.7")	
	2"	16	64 mm (2.5")	
	2½"	16	77.4 mm (3.0")	
l₄l	3"	10	90.9 mm (3.6")	
	4"	10	119 mm (4.7")	
Approvals	EHEDG	· ·		

Connect S™ flange	DN	PN	⊘D	H ₂
	50	16		_
	50	10	125 mm (4.9")	Approx. 52 mm (2")
I D	65	10	145 mm (5.7")	
	80	10	155 mm (6.1")	
	100	10	180 mm (7.1")	
	2"	16	125 mm (4.9")	
	21/2"	10	135 mm (5.3")	
	3"	10	145 mm (5.7")	
	4"	10	180 mm (7.1")	
Approvals	EHEDG			

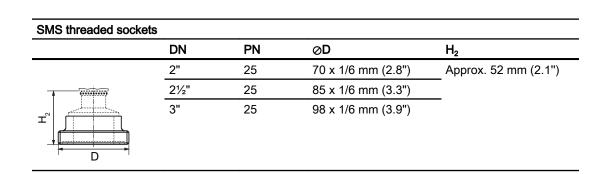

14.4 SITRANS P, DS III series (flush mounted)

Other connections

BioControl™ connector				
	DN	PN	⊘D	H ₂
	50	16	90 mm (3.5")	Approx. 52 mm (2")
	65	16	120 mm (4.7")	
Approvals	EHEDG			

14.4.4 PMC Style

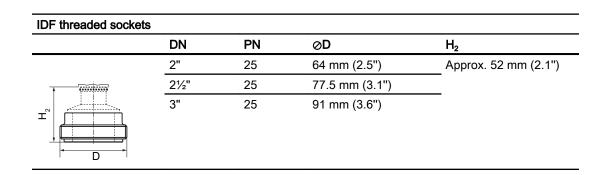
Connections for the paper industry


14.4.5 Special connections

Tank connection

TG52/50 and TG52/150				
	DN	PN	⊘D	H ₂
	TG52/50			
	43.5 mm	10	63 mm (2.5")	Approx. 63 mm (2.5")
	TG52/150			
I D	43.5 mm	10	63 mm (2.5")	Approx. 170 mm (6.7")

SMS connectors


SMS sockets with u				
	DN	PN	⊘D	H ₂
	2"	25	84 mm (3.3")	Approx. 52 mm (2.1")
*	21/2"	25	100 mm (3.9")	
H ^z	3"	25	114 mm (4.5")	

14.4 SITRANS P, DS III series (flush mounted)

IDF connectors

	DN	PN	⊘D	H ₂
	2"	25	77 mm (3.0")	Approx. 52 mm (2.1")
	21/2"	25	91 mm (3.6")	
	3"	25	106 mm (4.2")	

Spare parts / accessories

15

15.1 Order data

In order to ensure that the ordering data you are using is not outdated, the latest ordering data is always available on the Internet:

Catalog process instrumentation (http://www.siemens.com/processinstrumentation/catalogs)

Selection and order data	Order no.			
CD "sitrans p - pressure transmitters" with documentation in German/ English/French/Spanish/Italian, etc.	A5E00090345			
HART modem				
With serial interface RS232	7MF4997-1DA ^{1) D)}			
With USB interface	7MF4997-1DB ^{1) D)}			
Weld-in support for PMC connection				
For Series SITRANS P, Series DS III and SITRANS P300				
PMC Style Standard: Thread 1½"	7MF4997-2HA			
PMC-Style Minibolt: flush mounted 1"	7MF4997-2HB			
Gaskets for PMC connection, (1 set = 5 pieces)				
PTFE gasket for PMC Style Standard: Thread 1½"	7MF4997-2HC			
Viton gasket for PMC Style Minibolt: flush mounted 1"	7MF4997-2HD			
Weld-in adapter for PMC connection				
For connection of weld-in support delay during welding for:				
PMC Style Standard: Thread 1½"	7MF4997-2HE			
PMC-Style Minibolt: flush mounted 1"	7MF4997-2HF			

¹⁾ Available from stock

15.2 Spare parts/accessories for SITRANS P, Series DS III

Selection and order data	Order no.	
Mounting bracket and fastening parts		
For SITRANS P, Series DS III, DS III PA and DS III FF		
For gauge pressure transmitter (7MF403C.)		
For transmitter for absolute pressure (7MF423C.)		
Made of steel	7MF4997-1AB	
Made of stainless steel	7MF4997-1AH	

D) Subject to export regulations AL: N, ECCN, EAR99H

15.2 Spare parts/accessories for SITRANS P, Series DS III

Selection and order data	Order no.			
Mounting bracket and fastening parts				
For SITRANS P, Series DS III, DS III PA and DS III FF				
For gauge pressure transmitter (7MF403A.,B. andD.)				
For transmitter for absolute pressure (7MF423A.,B. andD.)				
Made of steel 7MF4997-1AC				
Made of stainless steel	7MF4997-1AJ			
Mounting bracket and fastening parts				
For SITRANS P, Series DS III, DS III PA and DS III FF				
Differential pressure transmitter with flange thread				
Made of steel				
For thread M10 (7MF433 and 7MF443)	7MF4997-1AD			
For thread M12 (7MF453)	7MF4997-1AE			
Made of stainless steel				
For thread M10 (7MF433 and 7MF443)	7MF4997-1AK			
For thread M12 (7MF453)	7MF4997-1AL			
Mounting bracket and fastening parts				
For SITRANS P, Series DS III, DS III PA and DS III FF				
Differential and absolute transmitter with flange thread 7/16-20 UNF				
(7MF433, 7MF443 and 7MF453)				
Made of steel	7MF4997-1AF			
Made of stainless steel	7MF4997-1AM			
Cover				
For SITRANS P, Series DS III, DS III PA and DS III FF				
Made of aluminum die casting, including gasket				
Without inspection window	7MF4997-1BB			
With inspection window	7MF4997-1BE			
Made of stainless steel, including gasket				
Without inspection window	7MF4997-1BC			
With inspection window	7MF4997-1BF			
Analog display				
• Scale 0 100%	7MF4997-1BN			
Customer-specific scale division as per the plain text specifications	7MF4997-1BP-Z Y20:			
Digital display				
For SITRANS P, Series DS III, DS III PA and DS III FF				
Including the fastening material	7MF4997-1BR			
Measuring point label				
• not labeled (five pieces)	7MF4997-1CA			
 labeled (one piece) Specifications as per Y01 or Y02, Y15 and Y16 (refer to SITRANS P transmitter) 	7MF4997-1CB-Z Y:			

Selection and order data	Order no.		
Fastening screws, 50 pieces for:	7MF4997-1CD		
Measuring point label			
Earthing and connecting terminals			
Digital display			
Locking screws, (1 set = 2 pieces) for pressure cap			
Made of stainless steel	7MF4997-1CG		
Made of Hastelloy	7MF4997-1CH		
Vent valves, complete (1 set = 2 pieces)			
Made of stainless steel	7MF4997-1CP		
Made of Hastelloy	7MF4997-1CQ		
Electronics			
For SITRANS P, Series DS III	7MF4997-1DK		
For SITRANS P, Series DS III PA	7MF4997-1DL		
For SITRANS P, Series DS III FF	7MF4997-1DM		
Network card			
For SITRANS P, Series DS III	7MF4997-1DN		
For SITRANS P, Series DS III PA and DS III FF	7MF4997-1DP		
Sealing rings for pressure caps made of			
FPM (Viton)	7MF4997-2DA		
PTFE (Teflon)	7MF4997-2DB		
FEP (with silicon core, suitable for food)	7MF4997-2DC		
FFPM (Kalrez, Compound 4079)	7MF4997-2DD		
NBR (Buna N)	7MF4997-2DE		

15.3 Order data for SIMATIC PDM

You can find ordering data in the Catalog FI 01 "Field devices for process automation in the Chapter "Communication and software > Software > SIMATIC PDM - Process Device Manager".

See also

Catalog process instrumentation (http://www.siemens.com/processinstrumentation/catalogs)

15.4 Ordering data for PROFIBUS accessories

In Catalog IK PI you can find further accessories required for communication with our devices and PROFIBUS.

See also

IK PI Catalog (http://www.automation.siemens.com/net/html_76/support/printkatalog.htm)

Appendix

A.1 Certificate

The certificates can be found on the enclosed CD and on the Internet under:

Certificates (http://www.siemens.com/processinstrumentation/certificates)

A.2 Literature and standards

No.	Standard	Description
/1/	IEC 61508	Functional safety of following systems:
	Section 1-7	Safety-instrumented
		Electrical
		Electronic
		Programmable
		Target group:
		Manufacturers and suppliers of equipment
/2/	IEC 61511	Functional safety - Safety systems for the process industry
	Section 1-3	Target group:
		Planners, constructors and users

A.3 Literature and catalogs

Table A-1

No.	Title	Publisher	Order no.
/1/	PNO guidelines PROFIBUS PA	PNO Technologiefabrik	2.091
		Haid-und-Neu-Str. 7 D-76131 Karlsruhe	
/2/	Catalog ST 70 SIMATIC Products for Totally Integrated Automation	Siemens AG	E86060-K4670-A111-B1
/3/	Catalog ST 70 NSIMATIC News Products for Totally Integrated Automation	Siemens AG	E86060-K4670-A151-A3

A.4 Technical support

No.	Title	Publisher	Order no.
/4/	Catalog ST 80 SIMATIC HMI operation and observation products	Siemens AG	E86060-K4680-A101-B4
/5/	Catalog IK PI Industrial Communication	Siemens AG	Internet address: IK PI Catalog (http://www.automation.siemens.com/net/html_76/support/printkatalog.htm) E86060-K6710-A101-B5

A.4 Technical support

Technical Support

You can contact Technical Support for all IA and DT products:

- Via the Internet using the Support Request: Support request (http://www.siemens.com/automation/support-request)
- E-mail (mailto:support.automation@siemens.com)
- **Phone:** +49 (0) 911 895 7 222
- Fax: +49 (0) 911 895 7 223

Further information about our technical support is available on the Internet at Technical Support (http://www.siemens.com/automation/csi/service)

Service & Support on the Internet

In addition to our documentation, we offer a comprehensive knowledge base on the Internet at:

Services & Support (http://www.siemens.com/automation/service&support)

There you will find:

- The latest product information, FAQs, downloads, tips and tricks.
- Our newsletter with the latest information about our products.
- A Knowledge Manager to find the right documents for you.
- Our bulletin board, where users and specialists share their knowledge worldwide.
- Your local contact partner for Industry Automation and Drives Technologies in our partner database.
- Information about field service, repairs, spare parts and lots more under "Services."

Additional Support

Please contact your local Siemens representative and offices if you have any questions about the products described in this manual and do not find the right answers.

Find your contact partner at:

Partner (http://www.automation.siemens.com/partner)

Documentation for various products and systems is available at:

Instructions and manuals (http://www.siemens.com/processinstrumentation/documentation)

See also

Product information on SITRANS P in the Internet (http://www.siemens.com/sitransp)

Process instrumentation catalog (http://www.siemens.com/processinstrumentation/catalogs)

List of abbreviations/acronyms

B

B.1 Pressure transmitter

List of abbreviations

Table B-1 Variables

Abbreviation	In full	Meaning
OUT	Output	
PRIM	Primary variable	
SEC	Secondary variable	
SENS	Raw pressure value	
TMP E	Electronics temperature	
TMP S	Sensor temperature	
TOTAL	Totalizer output	

Table B-2 Units

Abbreviation	in full	Meaning
bar a	bar absolute	Unit of pressure for absolute pressure
bar g	bar gauge	Unit of pressure for gauge pressure
lb	Pound (German: Pfund)	Unit of weight
psi a	psi absolute	Unit of pressure for absolute pressure
psi g	psi gauge	Unit of pressure for gauge pressure

Table B-3 Other abbreviations

Abbreviation	In full	Meaning
CLASS		Name for nominal pressure measured in psi
PED	Pressure equipment directive	
DN	Diameter Nominal	Nominal diameter measured in mm
DP	Decentralized peripherals	Protocol for the transmission of information between field device and automation system over the PROFIBUS.
FDE	Failure shutdown electronics	
FISCO	Fieldbus Intrinsic Safety Concept	
GSD	Device master data	
HART	Highway Addressable Remote Transducer	Standard protocol for the transmission of information between field device and automation system
F&B	Food and beverage industry	
PA	Process automation	Protocol for the transmission of information between field device and automation system over the PROFIBUS.
PDM	Process Device Manager	
PN	Pressure Nominal	Nominal pressure measured in bars

B.2 Functional safety

Abbreviation	In full	Meaning
PNO	PROFIBUS user organization	
PROFIBUS	Process Field Bus	Manufacturer-independent standard for the networking of field devices, e.g. PLC, drives, or sensors. PROFIBUS can be used with the protocols DP or PA.
SELV	Safety extra-low voltage	
	Safety extra-low-voltage	

B.2 Functional safety

Abbreviation	Full term in English	Meaning
CFC	Continuous Function Chart	Software package for graphical, technology-oriented configuration of automation tasks
FIT	Failure in Time	Frequency of failure
		Number of faults withing 109 hours
HFT	Hardware Fault Tolerance	Hardware fault tolerance:
		Capability of a function unit to continue executing a required function in the presence of faults or deviations.
MooN	"M out of N" voting	Classification and description of the safety-instrumented system in terms of redundancy and the selection procedures used.
		A safety-instrumented system or part that consists of "N" independent channels. The channels are connected to each other in such a way that "M" channels are in each case sufficient for the device to perform the safety instrumented function.
		Example: Pressure measurement: 1002 architecture. A safety- instrumented system decides that a specified pressure limit has been exceeded if one out of two pressure sensors reaches this limit. In a 1001 architecture, there is only one pressure sensor.
MTBF	Mean Time Between Failures	Average period between two failures
MTTR	Mean Time To Restoration	Average period between the occurrence of a fault in a device or system and restoration of functionality
PFD	Probability of Dangerous Failure on Demand	Probability of dangerous failures of a safety function on demand
PFD _{AVG}	Average Probability of Dangerous Failure on Demand	Average probability of dangerous failures of a safety function on demand
SFF	Safe Failure Fraction	Proportion of safe failures:
		Proportion of failures without the potential to bring the safety-instrumented system into a dangerous or non-permissible functional status.
SIL	Safety Integrity Level	The international standard IEC 61508 defines four discrete Safety Integrity Levels (SIL 1 to SIL 4). Each level corresponds to a range of probability for failure of a safety function. The higher the Safety Integrity Level of the safety-instrumented system, the lower the probability that it will not execute the required safety functions.

B.2 Functional safety

Abbreviation	Full term in English	Meaning
SIS	Safety Instrumented System	A safety-instrumented system (SIS) executes the safety functions that are required to achieve or maintain a safe status in a system. It consists of a sensor, logic unit/control system and final controlling element.
TI	Test Interval	Testing interval of the protective function

Glossary

Coupler

connects the DP and PA segments in PROFIBUS. It has a fixed transmission speed. The transmission speed is 45.45 kbps (DP) to 31.25 kbps (PA).

Dangerous failure

Failure with the potential to bring the safety-instrumented system into a dangerous or non-functional status.

Diameter nominal

The diameter nominal is specified according to DIN EN ISO 6708 by the term DN followed by a dimensionless number approximating the inner diameter in millimeters. According to DIN 2440 (medium-weight threaded pipe), a DN 50 pipe, for example, identifies a pipe with an outer diameter of 60.3 mm and a wall thickness of 3.65 mm (inner diameter therefore 53 mm).

EEPROM

EEPROM (Electrically Erasable Programmable Read-Only Memory) is a non-volatile, electronic memory chip.

EEPROM are often used when individual data bytes change over long intervals and need to be stored and retained if there is a network failure, for example configuration data or operating hours counters.

Fail-safe

The capability of a control to maintain the safe state of the controlled device, e.g. machine, process, or to bring the device to a safe state even when faults/failures occur.

Failure/Fault

Failure:

A resource is no longer capable of executing a required function.

Fault

Undesired state of a resource indicated by the incapability of executing a required function.

Fault

→ Failure/Fault

Fault tolerance

Fault tolerance N means that a device can execute the intended task even when N faults exist. The device fails to execute the intended function in case of N+1 faults.

Final controlling element

Converter that converts electrical signals into mechanical or other non-electrical variables.

Firmware

Firmware is a type of software that is embedded in a chip in electronic devices in contrast to software proper that is stored on hard disks or other media. Today, firmware is usually stored in a flash memory or EEPROM.

The firmware usually contains elementary functions for controlling the device or input and output routines.

Frequency shift keying

Frequency shift keying is a simple modulation method in which the digital values 0 and 1 are represented by two different frequencies.

Frequency shift keying (FSK)

→ Frequency shift keying

Function block

A named block consisting of one or more inputs, outputs, and included parameters.

Function blocks represent the basic automation functions executed by an application in a way as independent as possible from the details of I/O devices and the network. Each function block processes input parameters using a specified algorithm and a set of internally stored parameters. They produce output parameters which are available for use inside the same function block application or by other function block applications.

Generic Station Description

The generic station description (GSD) contains the information necessary for the control system to establish communication.

GSD

→ Generic Station Description

Link

is a coupler with a variable transmission speed. The transmission speed is a maximum of 12 Mbps (DP) to 31.25 kbps (PA).

Non-volatile memory

→ EEPROM

Risk

The combination of probability of a damage occurring and its magnitude.

Safety function

Defined function executed by a safety-instrumented system with the objective of achieving or maintaining a safe system status taking into account a defined dangerous occurrence.

Example:

Limit pressure monitoring

Safety Instrumented Function

→ SIF

Safety Integrity Level

→ S/L

Safety-instrumented system

A safety-instrumented system executes the safety functions that are required to achieve or maintain a safe status in a system. It consists of a sensor, logic unit/control system and final controlling element.

Example:

A safety-instrumented system is made up of a pressure transmitter, a limit signal sensor and a control valve.

Sensor

Converter that converts mechanical or other non-electrical variables into electrical signals.

SIF

A part/function of a safety-instrumented system that reduces the risk of a dangerous failure occurring.

SIL

The international standard IEC 61508 defines four discrete Safety Integrity Levels (SIL) from SIL 1 to SIL 4. Each level corresponds to the probability range for the failure of a safety function. The higher the SIL of the safety-instrumented system, the higher probability that the required safety function will work.

The achievable SIL is determined by the following safety characteristics:

- Average probability of dangerous failure of a safety function in case of demand (PFD_{AVG})
- Hardware fault tolerance (HFT)
- Safe failure fractions (SFF)

srli2

→ srlin2

srlin2

"srli2" or "srlin2" is a type of square root extracting characteristic curve for the output current. This characteristic curve type is proportional to the flow rate, linear in two levels up to the application point and has a pre-defined application point of 10%.

"srli2" or "srlin2" are synonymous and technically there is no difference between them. The abbreviation "srli2" is used in sections that refer to the on-site operation of the pressure transmitter. The reason for the abbreviation is that the pressure transmitter display is restricted to five characters. The abbreviation "srlin2" is used for HART operation.

Zero point shift

After the following functions, the measuring range will have changed:

- Zero point adjustment (mode 7)
- LO adjustment (mode 19)
- HI adjustment (mode 20)

If you have used one of these functions, the measuring range will have changed. This changed, remaining measuring range is called the zero point shift. The value indicated by the device in mode 18, is a positive pressure.

Index

3	ט
3A, 223	Damping, 98
,	Data consistency, 153
	data transmission
A	acyclic, 158
	cyclical, 153
Additional Support, 236	Data transmission
Address	Floating point representation, 155
PROFIBUS, 81	Decimal point, 83
Ambient temperature, 201, 202, 203, 204	Device
Influence, 196, 197, 198, 200	Electrostatic-sensitive, 16, 174
Appendix, 235	Device mode, 82, 150
Approval	Diagnostic information
3A, 223	Transmission, 156
EHEDG, 223	Diagnostic information, 68
Approval plate, 22	Diagnostic messages, 157
Arrow display, 70	Differential pressure, 19
AUTO, 99	Digital display, 91
	Direct sunlight, 37
В	Display
D	Error message, 184, 185
Bridge output voltage, 25, 26	Status code , 181, 182, 183, 184
Bus address, 81	Display of unit, 68
Buttons, 65	
	_
_	E
C	EDD, 133
C2 connection, 159	EHEDG, 223
Calibration	Electromagnetic compatibility, 202, 203, 204
HI, 86	Electronics, 128
LO, 85	Electrostatic-sensitive device (ESD), 16, 174
Sensor, 119	EMC, 202, 203, 204
Certificate, 235	Error message, 184
Certificates, 13	
Certification, 235	
Characteristics	F
Safety, 127	Filling liquid, 25, 26, 27
Checksum, 143	Final controlling element , 123
Configuration, 153	Firmware, 9
Connector	Flange, 26, 44
M12, 63	Flow, 19, 76
Control system, 123	Function block
Correct usage, (See improper device modifications)	Analog input, 98, 108
CPU, 132	Function chart, 28
Customer Support Hotline, 236	i unotion chart, 20

G	Measuring cell Differential pressure and flow rate, 25 Absolute pressure, 28
Generic Station Description, (See GSD) GMD file, 83	Gauge pressure, 25 Level, 26 Mode
GSD, 151	13, 76
GSD file Internet address, 153	14, 78
internet address, 155	15, 81
	16, 82
Н	17, 83
Hazardous area	18, 84 19, 85
Laws and directives, 13	20, 86
History, 9	Mounting bracket, 41
Hotline, 236	Mounting Bracket, 41
	MTTR, 127
I	
Improper device modifications, 14	0
Install	operation
Remote seal, 47	Local, 73
Installation, 40	Output scaling, 98, 102, 107
Internet, 236	
K	Р
	Pair of min/max pointer, 116
Keypad lock, 110	Parameter
	Transmitter type, 76
L	Parameters safety-relevant, 126
	PDM display
Label, 21	Error message, 184, 185
Level, 19	Status code, 181, 182, 183, 184
Limits Alarm, 111	Position correction, 74
Warning, 111	Process connection, 21
Load, 195	PROFIBUS, 31, 89
Locking of buttons, 75	Automation system, 32
,	Communication structure, 89
	DP, 31 Eigenschaft, 32
M	Functions, 100
M12 connector, 63	Operation, 100
Maintenance, 128	PA, 31
Master	Setting the address, 153
Class 2 master, 159	Topology, 31
Class-1 master, 32, 153	PROFIsafe, 130
Class-2 master, 32	
Measured value display, 73	0
Measured value display , 68 Measuring accuracy, 127	Q
inicasuming accuracy, 121	Qualified personnel, 15

D	for electronics temperature, 90, 97		
R	for pressure, 90		
Remote seal	Transmitter, 123		
Description, 30	Turning range, 54		
Install, 47			
Maintenance, 177	U		
Resetting	0		
Delivery state, 121	Unit		
Factory settings, 121	for level, 80		
Restart, 122	for mass, 81		
	for pressure, 79		
	for temperature, 81		
S	for user-specific, 81		
Safety	for volume, 79		
Checking, 128			
Safety function, 125			
Checking, 126, 128	V		
Safety Integrity Level, 131	Variable, 76		
safety-relevant	Vent valve, 168, 170		
Parameters, 126	vent valve, 100, 170		
Scaling			
Measured value, 98, 102, 107	W		
Scope of delivery, 10			
Service, 236	Warm start , 121		
Setting	Watchdog , 158		
Level measurement, 102	Write protection, 75, 127		
Volume measurement, 103			
Height measurement, 102	_		
Mass measurement, 104	Z		
Shut-off valve, 165, 166, 168, 169	Zero point adjustment, 84		
SIL, 131	Zero point calibration, 74, 85		
SIL 2, 123	, , , , , , , , , , , , , , , , , , , ,		
Simulation, 98, 116			
Single-channel operation, 123			
Software package			
S7-F, 132			
Stabilizing valve, 166, 167, 168, 169			
Status, 181			
Status, 155			
Status code, 181			
Status code, 156			
Status display , 69			
Structure, 20			
Support, 236			
_			
Т			
Tank connection, 229			

Transducer block

Test certificates, 13

www.siemens.com/processautomation

Siemens AG Industry Automation (IA) Sensors and Communication Process Instrmentation 76181 KARLSRUHE GERMANY Subject to change without prior notice A5E00053276-06 © Siemens AG 2012

www. siemens. com/process instrumentation