SIEMENS

SIMATIC Ident

RFID-Systeme SIMATIC RF200 IO-Link

Betriebsanleitung

Einleitung	1
Beschreibung	2
Systemübersicht	3
RF200 IO-Link-System planen	4
Inbetriebnahme und Parametrierung	5
Reader	6
Diagnose	7
Technische Daten	8
Anschlusskabel	9
Bestelldaten	10
Anhang	A

Rechtliche Hinweise

Warnhinweiskonzept

Dieses Handbuch enthält Hinweise, die Sie zu Ihrer persönlichen Sicherheit sowie zur Vermeidung von Sachschäden beachten müssen. Die Hinweise zu Ihrer persönlichen Sicherheit sind durch ein Warndreieck hervorgehoben, Hinweise zu alleinigen Sachschäden stehen ohne Warndreieck. Je nach Gefährdungsstufe werden die Warnhinweise in abnehmender Reihenfolge wie folgt dargestellt.

/ GEFAHR

bedeutet, dass Tod oder schwere Körperverletzung eintreten **wird**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

WARNUNG

bedeutet, dass Tod oder schwere Körperverletzung eintreten **kann**, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

NVORSICHT

bedeutet, dass eine leichte Körperverletzung eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG

bedeutet, dass Sachschaden eintreten kann, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Beim Auftreten mehrerer Gefährdungsstufen wird immer der Warnhinweis zur jeweils höchsten Stufe verwendet. Wenn in einem Warnhinweis mit dem Warndreieck vor Personenschäden gewarnt wird, dann kann im selben Warnhinweis zusätzlich eine Warnung vor Sachschäden angefügt sein.

Qualifiziertes Personal

Das zu dieser Dokumentation zugehörige Produkt/System darf nur von für die jeweilige Aufgabenstellung qualifiziertem Personal gehandhabt werden unter Beachtung der für die jeweilige Aufgabenstellung zugehörigen Dokumentation, insbesondere der darin enthaltenen Sicherheits- und Warnhinweise. Qualifiziertes Personal ist auf Grund seiner Ausbildung und Erfahrung befähigt, im Umgang mit diesen Produkten/Systemen Risiken zu erkennen und mögliche Gefährdungen zu vermeiden.

Bestimmungsgemäßer Gebrauch von Siemens-Produkten

Beachten Sie Folgendes:

/ WARNUNG

Siemens-Produkte dürfen nur für die im Katalog und in der zugehörigen technischen Dokumentation vorgesehenen Einsatzfälle verwendet werden. Falls Fremdprodukte und -komponenten zum Einsatz kommen, müssen diese von Siemens empfohlen bzw. zugelassen sein. Der einwandfreie und sichere Betrieb der Produkte setzt sachgemäßen Transport, sachgemäße Lagerung, Aufstellung, Montage, Installation, Inbetriebnahme, Bedienung und Instandhaltung voraus. Die zulässigen Umgebungsbedingungen müssen eingehalten werden. Hinweise in den zugehörigen Dokumentationen müssen beachtet werden.

Marken

Alle mit dem Schutzrechtsvermerk ® gekennzeichneten Bezeichnungen sind eingetragene Marken der Siemens AG. Die übrigen Bezeichnungen in dieser Schrift können Marken sein, deren Benutzung durch Dritte für deren Zwecke die Rechte der Inhaber verletzen kann.

Haftungsausschluss

Wir haben den Inhalt der Druckschrift auf Übereinstimmung mit der beschriebenen Hard- und Software geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten.

Inhaltsverzeichnis

1	Einleitu	ng	5
2	Beschre	eibung	7
	2.1	Anwendungsbereich RF200 IO-Link-Reader	7
	2.2	IO-Link-Grundlagen	7
	2.3	Merkmale der RF200 IO-Link Reader	g
	2.4	Systemintegration	
3	System	übersicht	
	3.1	RFID-Komponenten und ihre Funktion	11
	3.2	Übersicht Transponder	13
4	RF200 I	IO-Link-System planen	15
	4.1	Grundlagen zur Einsatzplanung	15
	4.1.1	Auswahlkriterien für SIMATIC RF200-Komponenten	
	4.1.2	Übertragungsfenster und Schreib-/Leseabstand	
	4.1.3	Breite des Übertragungsfensters	
	4.1.4	Die zulässigen Bewegungsrichtungen des Transponders	
	4.1.5	Arbeiten im statischen und dynamischen Betrieb	
	4.1.6	Kommunikation zwischen IO-Link-Master, Reader und Transponder	
	4.1.7	Einfluss von Nebenfeldern	
	4.2	Felddaten von Transpondern und Readern	
	4.2.1	Felddaten	24
	4.2.2	Mindestabstände	26
	4.3	Einbaurichtlinien	27
	4.3.1	Übersicht	27
	4.3.2	Verringern von metallischen Einflüssen	
	4.3.3	Auswirkungen von Metall auf verschiedene Transponder und Reader	
	4.3.4	Beeinflussung des Übertragungsfensters durch Metall	
	4.3.4.1	RF210R IO-Link	
	4.3.4.2	RF220R IO-Link	
	4.3.4.3	RF260R IO-Link	
	4.4	Weiterführende Informationen	37
5	Inbetrie	bnahme und Parametrierung	39
	5.1	Projektierung	39
	5.2	Parametrierung des IO-Link-Systems	
	5.2.1	Das Port Configuration Tool (PCT)	
	5.2.2	Parametrierung mit PCT	45
	5.3	Die Betriebsarten der RF200 IO-Link-Reader	55
	5.3.1	SIO-Modus	
	5.3.2	IO-Link-Modus: UID-Erfassung	55

	5.3.3	IO-Link-Modus: Erfassung-Anwenderdaten	56
	5.4 5.4.1	ISDU-DatenverkehrIOL CALL	
	5.5	Anwendungsbeispiel	
6		r	
	6.1	Merkmale	63
	6.2	Pinbelegung RF200-Reader mit IO-Link-Schnittstelle	64
	6.3	Anzeigeelemente der RF200 IO-Link-Reader	65
	6.4	Mindestabstand zwischen mehreren Readern	66
	6.5	Maßbilder	68
7	Diagno	se	69
8	Technis	sche Daten	71
	8.1	Technische Daten der RF200 IO-Link-Reader	71
	8.2	FCC-Information	73
	8.3	cULus-Information	73
9	Anschlu	usskabel	75
10	Bestello	daten	77
Α	Anhang	g	79
	A.1 A.1.1 A.1.2	IO-Link-FehlercodesISDU-Return-FehlercodesEvent-Fehlercodes	79
	A.2	Übersicht der Servicedaten	82
	A.3	Zertifikate und Zulassungen	87
	A.4	Service & Support	89
	Index		91

Einleitung

Zweck dieses Systemhandbuchs

Die Informationen dieses Systemhandbuchs ermöglichen es Ihnen, IO-Link-Reader als IO-Devices in Betrieb zu nehmen.

Erforderliche Grundkenntnisse

Zum Verständnis des Systemhandbuchs sind allgemeine Kenntnisse auf dem Gebiet der Automatisierungstechnik und Identifikationssysteme erforderlich.

Gültigkeitsbereich des Handbuchs

Das Systemhandbuch ist gültig für die IO-Link-Reader.

Einordnung in die Informationslandschaft

Zusätzlich zu diesem Systemhandbuch benötigen Sie die Betriebsanleitung zu dem eingesetzten IO-Link-Master.

Konventionen

Innerhalb dieser Dokumentation werden folgende Begriffe/Abkürzungen synonym verwendet:

- Reader, Lesegerät, SLG
- Tag, Transponder, Mobiler Datenspeicher, Datenträger, MDS

Marken

SIMATIC ® ist eine eingetragene Marke der Siemens AG.

♦IO-Link ist eine eingetragene Marke des IO-Link Konsortiums.

Wegweiser

Das vorliegende Systemhandbuch beschreibt Hardware und Programmierung der IO-Link-Reader. Sie besteht aus anleitenden Kapiteln und Kapiteln zum Nachschlagen (z. B. Technische Daten).

Das Systemhandbuch beinhaltet folgende Themen:

- Einführung IO-Link
- Anschließen des Readers
- Parametrieren des Readers
- Inbetriebnahme
- Diagnose
- Technische Daten
- Bestelldaten

Weiterführende Dokumente

Folgende Dokumente enthalten Informationen zu den IO-Link-Mastern ET 200S und ET 200eco und könnten für Sie relevante, weiterführende Informationen enthalten:

- Dezentrales Peripheriesystem ET 200S (http://support.automation.siemens.com/WW/view/de/1144348)
- Dezentrales Peripheriesystem S7-1200 (http://support.automation.siemens.com/WW/view/de/91696622)
- Dezentrale Peripherie ET 200eco PN (http://support.automation.siemens.com/WW/view/de/29999018)
- Dezentrale Peripherie ET 200 SP (http://support.automation.siemens.com/WW/view/de/67328527)

Recycling und Entsorgung

- Die RF200 IO-Link-Reader sind aufgrund ihrer schadstoffarmen Ausrüstung recyclingfähig.
- Für ein umweltverträgliches Recycling und die Entsorgung Ihres Altgeräts wenden Sie sich an einen zertifizierten Entsorgungsbetrieb für Elektronikschrott.

Beschreibung

2.1 Anwendungsbereich RF200 IO-Link-Reader

SIMATIC RF200 IO-Link ist ein induktives Identifikationssystem, kompatibel mit der Norm ISO 15693, das speziell für den Einsatz in der industriellen Produktion zur Steuerung und Optimierung des Materialflusses konzipiert wurde. Mit der Kommunikationsschnittstelle IO-Link, können Reader unterhalb der Feldbusebene eingesetzt werden.

SIMATIC RF200 IO-Link ist eine Alternative zu SIMATIC RF300 und stellt eine einfache und günstige Möglichkeit für RFID-Anwendungen dar.

2.2 IO-Link-Grundlagen

Die Systemkomponenten

IO-Link ist eine spezifizierte Punkt-zu-Punkt-Kommunikationsschnittstelle für den Sensor-/Aktor-Bereich und besteht aus folgenden Systemkomponenten:

- IO-Link-Master,
- IO-Link-Device (z. B. Sensoren, Aktoren, RFID-Reader),
- Ungeschirmtes 3-Leiter-Standardkabel.

Der Master / Die Port-Betriebsmodi

Ein Master hat einen oder mehrere Ports an denen jeweils nur ein Device angeschlossen werden kann.

Der Port kann grundsätzlich in zwei verschiedene Betriebsmodi eingestellt werden:

- SIO-Mode (Standard-Input-Output, Digitaler Eingangs-/Ausgangsbetrieb)
 In dieser Betriebsart kann das Device wie an einer digitalen Eingangsbaugruppe verwendet werden.
- IO-Link-Mode (SDCI: Single-Drop digital Communication Interface, Datenkommunikation)
 In dieser Betriebsart kommuniziert der Master mit dem Device und es können Prozessdaten und Servicedaten übertragen werden.

Die Kommunikationsarten

Bei der Kommunikation auf der IO-Link-Ebene wird zwischen folgenden Datenarten unterschieden:

- Zyklische Prozessdaten (Eingangs-/Ausgangsdaten)
 - Die Daten werden permanent mit einer vorher festgelegten Länge übertragen.
- Azyklische Service-Daten (Parameter, On-request-Daten)

Die zu schreibenden bzw. zu lesenden Daten werden nur auf Anforderung übertragen. Da im Kommunikationszyklus dafür ein fester Bereich reserviert ist, wird durch die azyklischen Datenübertragung die Übertagung der zyklischen Prozessdaten nicht beeinflusst.

Events (Errors, Warnings, Notifications)

Gleiche Funktionsweise wie bei den azyklischen Service-Daten, mit dem Unterschied, dass die Übertragung durch Ereignisse vom Device ausgelöst werden.

Die Datenarten

Während die zyklischen Prozessdaten über einen festen definierten Bereich ausgetauscht werden, müssen die azyklischen Service-Daten über einen Index bzw. Subindex selektiert und angesprochen werden. Die für den RF200 IO-Link-Reader verfügbaren Indices sind in Kapitel "Inbetriebnahme und Parametrierung (Seite 39)" dargestellt.

Zur Systemintegration steht für jeden Device-Typ eine IODD-Datei zur Verfügung, die folgende Informationen enthält:

- Darstellung der Kommunikationseigenschaften
- Darstellung zugänglicher Gerätedaten
- Identifikations-, Prozess- und Diagnosedaten
- Menüaufbau
- Textbeschreibungen in verschiedenen Sprachen
- Bild des Devices
- Logo des Herstellers

2.3 Merkmale der RF200 IO-Link Reader

Der IO-Link-Reader liest wahlweise die UID oder User-spezifische Daten eines Transponders aus und bildet diese in zyklisch aktualisierte Prozessdaten ab. Userspezifische Daten können auch geschrieben werden.

Diese Daten können über den IO-Link-Master von einem PC oder einer SPS ausgelesen werden.

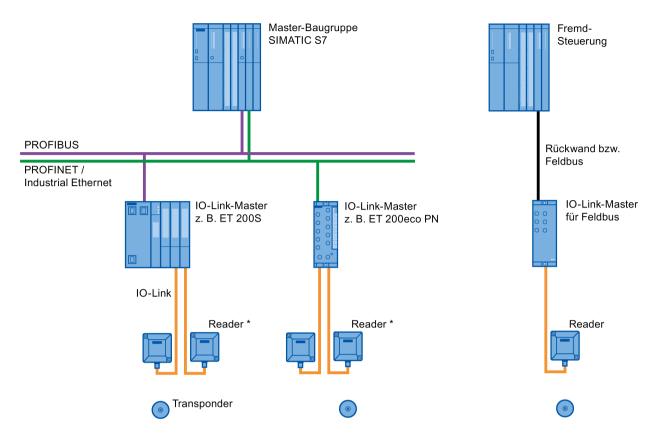
Der IO-Link-Reader verfügt über folgende Merkmale:

- Punkt-zu-Punkt Kommunikation, keine Adresseinstellung des IO-Link-Device nötig
- Unterstützt IO-Link nach Spezifikation V1.0
- IO-Link-Baudrate 38,4 KBd, Zykluszeit 12 ms
- Übertragung von Servicedaten parallel zu Prozessdaten
- SIO-Modus (Reader zeigt auf der Datenleitung (C/Q) die Anwesenheit eines Transponders an)
- IODD-Datei zur Unterstützung von Parametrierung, Diagnose und Datenzugriff.
- Systemintegration (STEP 7 (TIA Portal)) über Port Configuration Tool (PCT)
- Schutzart IP67
- RFID 13.56 MHz nach ISO 15693

2.4 Systemintegration

Die Reader sind IO-Link-Device-Baugruppen und für den Betrieb an einem IO-Link-Master bestimmt. Abhängig von der Kategorie des IO-Link-Masters ist dieser an verschiedene Steuerungen bzw. Feldbussystemen anschließbar.

Die Anzahl der an einen IO-Link-Master anschließbaren Devices bzw. Reader ist unterschiedlich und vom Master-Typ abhängig. Der Master-Typ sowie die Anzahl der verfügbaren IO-Link-Ports wirken sich auf die maximale Prozessdatenlänge des Masters aus.


Anbindung an die Steuerung

Bei den Readern RF210R, RF220R und RF260R erfolgt die Anbindung an die Steuerung über die IO-Link-Master von Siemens. Zur Zeit stehen Ihnen folgende IO-Link-Master von Siemens zur Verfügung:

- ET 200eco PN
- ET 200S mit 4SI IQ-Link-Master
- ET 200SP mit CM 4 x IO-Link SP
- S7 1200 mit SM 1278

oder über IO-Link-Master anderer Hersteller.

2.4 Systemintegration

^{* 1} bis 4 Reader je IO-Link-Master anschließbar

Bild 2-1 Konfigurationsbeispiel

Systemübersicht 3

3.1 RFID-Komponenten und ihre Funktion

RF200-Systemkomponenten

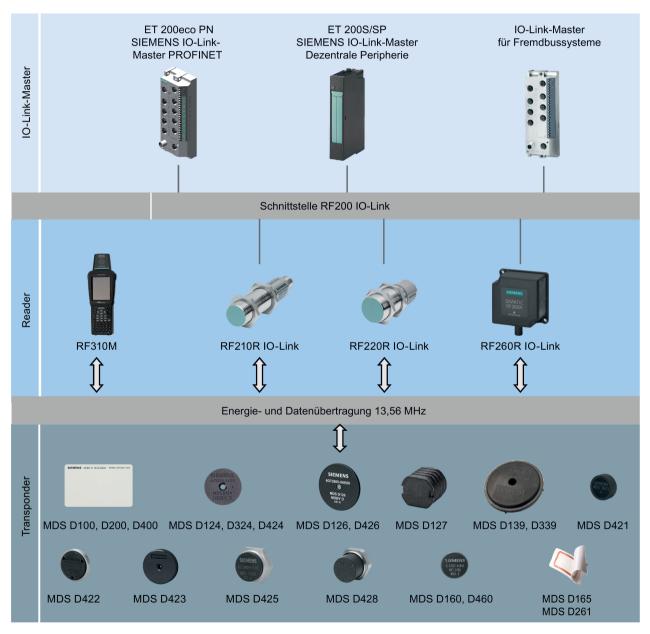


Bild 3-1 Systemübersicht RF200 IO-Link

3.1 RFID-Komponenten und ihre Funktion

Tabelle 3-1 Reader-Transponder-Kombinationsmöglichkeiten

Transponder / MDS	RF210R IO-Link	RF220R IO-Link	RF260R IO-Link
MDS D100		0	✓
MDS D124	✓	✓	✓
MDS D126		✓	✓
MDS D127	✓		
MDS D139 1)		0	✓
MDS D160 ²⁾	✓	✓	✓
MDS D165		0	✓
MDS D200		0	✓
MDS D261		0	✓
MDS D324	✓	✓	✓
MDS D339			✓
MDS D400		0	✓
MDS D421	✓	0	
MDS D422	✓	✓	0
MDS D423	✓	✓	✓
MDS D424	✓	✓	✓
MDS D425	✓	✓	
MDS D426		✓	✓
MDS D428	✓	✓	✓
MDS D460	✓	✓	✓

¹⁾ nur mit der Bestellnummer 6GT2600-0AA10

- √ Kombination möglich
- -- Kombination nicht möglich
- Kombination möglich, aber nicht empfohlen

Hinweis

Nähere Informationen zum mobilen Reader SIMATIC RF310M entnehmen Sie bitte der Betriebsanleitung SIMATIC RF310M

(http://support.automation.siemens.com/WW/view/de/83517565).

²⁾ nur mit der Bestellnummer 6GT2600-0AB10

3.2 Übersicht Transponder

Übersicht der heute von Siemens verfügbaren ISO-Transponder für RF200 und deren typische Anwendungsbereiche:

Transponder	Anwendungsbereich
MDS D100	Barcodeergänzung für Lager- und Distributionslogistik
MDS D124	Kleinlackieranlagen bis 180 °C
MDS D127	Identifizieren von kleinen metallischen Werkstücken, Werkstückträgern oder Behältern
MDS D126	Identifikation von Transporteinheiten
MDS D139	Lackierstraßen in der Automobilindustrie
MDS D160	Mietberufskleidung, Krankenhauskleidung
MDS D165	Smartlabel (Selbstklebeetikette) für elektronischen Barcodeersatz
MDS D200	Lager- und Distributionslogistik
MDS D261	Smartlabel (Selbstklebeetikette) für elektronischen Barcodeersatz
MDS D324	Montage- und Fertigungslinien
MDS D339	Lackierstraßen in der Automobilindustrie
MDS D422	Identifikation von metallischen Werkstückträgern, Werkstücken oder Behältern
MDS D421	Werkzeugcodierung nach DIN 69873
MDS D423	Metallische Werkstückträger und Behälter mit direkten Einbau des Transponders in Metall
MDS D424	Einsatz in Montage- und Fertigungslinien
MDS D425	Zur Anbringung an Motoren, Getrieben und Werkstückträgern
MDS D426	Identifikation von Transporteinheiten
MDS D428	Kompakter ISO-Transponder für automatische Schraubmontage
MDS D460	Montagelinien mit sehr kleinen Werkstückträgern

Siehe auch

Systemhandbuch RF200 (http://support.automation.siemens.com/WW/view/de/47189592)

3.2 Übersicht Transponder

RF200 IO-Link-System planen

4.1 Grundlagen zur Einsatzplanung

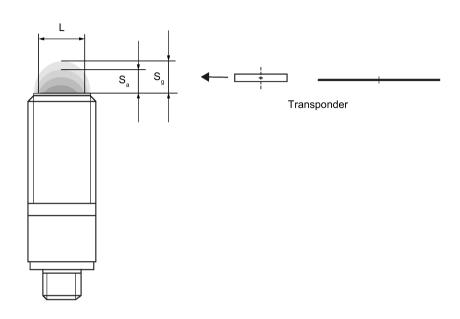
4.1.1 Auswahlkriterien für SIMATIC RF200-Komponenten

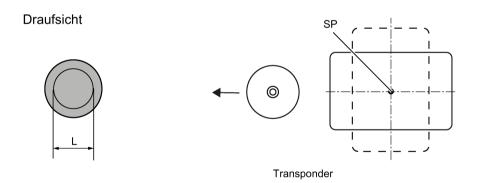
Beurteilen Sie Ihren Einsatzfall nach folgenden Kriterien, um die richtige Auswahl der SIMATIC RF200-Komponenten zu finden:

- statische oder dynamische Übertragung der Daten
- zu übertragende Datenmenge
- Umgebungsbedingungen wie Feuchtigkeit, Temperatur, chemische Einflüsse, etc.

4.1.2 Übertragungsfenster und Schreib-/Leseabstand

Der Reader erzeugt ein induktives Wechselfeld. Das Feld ist nahe am Reader am größten, allerdings ist der Leseabstand Abstand "Null" zwischen Reader und Transponder nicht empfehlenswert.

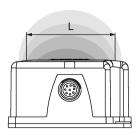

Die Größe des Feldes nimmt mit der Entfernung zum Reader stark ab. Die Verteilung des Feldes ist abhängig von Aufbau und Geometrie der Antennen im Reader und Transponder


Voraussetzung für die Funktion des Transponders ist eine Mindestfeldstärke am Transponder, die im Abstand S_g (Grenzabstand) vom Reader gerade noch erreicht wird.

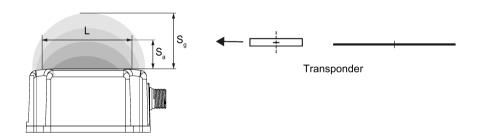
4.1 Grundlagen zur Einsatzplanung

Das folgende Bild zeigt das Übertragungsfenster der Readers SIMATIC RF210R und SIMATIC RF220R zwischen Transponder und Reader:

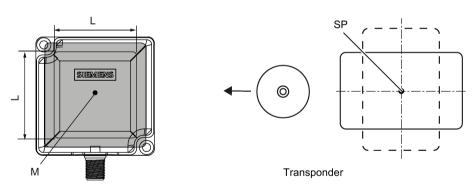
Seitenansicht


Übertragungsfenster

- Sa Arbeitsabstand zwischen Transponder und Reader
- S_g Grenzabstand (Grenzabstand ist der maximale lichte Abstand zwischen Reader-Oberseite und Transponder, bei dem die Übertragung unter normalen Bedingungen gerade noch funktioniert.)
- L Durchmesser eines Übertragungsfensters..
- SP Schnittpunkt der Symmetrieachse des Transponders.


Bild 4-1 Übertragungsfenster RF210R/RF220R

Das folgende Bild zeigt das Übertragungsfenster des Readers SIMATIC RF260R zwischen Transponder und Reader:


Frontansicht

Seitenansicht

Draufsicht

- Übertragungsfenster
- Sa Arbeitsabstand zwischen Transponder und Reader
- S_g Grenzabstand (Grenzabstand ist der maximale lichte Abstand zwischen Reader-Oberseite und Transponder, bei dem die Übertragung unter normalen Bedingungen gerade noch funktioniert.)
- L Länge eines Übertragungsfensters
- M Feldmittelpunkt

Bild 4-2 Übertragungsfenster RF260R

Der Transponder kann bearbeitet werden, sobald der Schnittpunkt (SP) des Transponders in den Bereich des Übertragungsfensters eintritt.

4.1 Grundlagen zur Einsatzplanung

Aus den obigen Zeichnungen ist ebenfalls ersichtlich, dass ein Arbeiten im Bereich zwischen S_a und S_g möglich ist. Die aktive Arbeitsfläche verringert sich mit zunehmendem Abstand und ist im Abstand S_g auf einen Punkt zusammengeschrumpft. Im Bereich zwischen S_a und S_g sollte daher nur im statischen Betrieb gearbeitet werden.

4.1.3 Breite des Übertragungsfensters

Bestimmung der Breite des Übertragungsfensters

Folgende Näherungsformel gilt für die praktische Anwendung:

B: Breite des Übertragungsfensters

L: Länge des Übertragungsfensters

Toleranz der Spurführung

Die Breite des Übertragungsfensters (B) ist besonders für die Toleranz einer mechanischen Spurführung wichtig. Bei Einhaltung von B ist die Formel für die Verweildauer uneingeschränkt gültig.

4.1.4 Die zulässigen Bewegungsrichtungen des Transponders

Aktive Fläche und Bewegungsrichtung des Transponders

Transponder und Reader besitzen keine Polarisationsachse, d. h. der Transponder kann aus jeder Richtung kommen, eine beliebige Position möglichst parallel zum Reader einnehmen und das Übertragungsfenster überqueren. Das folgende Bild zeigt die aktive Fläche bei verschiedenen Bewegungsrichtungen des Transponders:

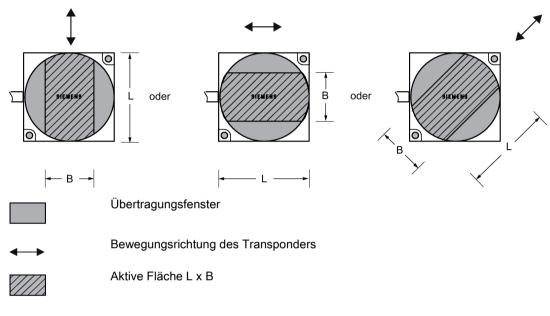


Bild 4-3 Aktive Flächen des Readers bei verschiedenen Bewegungsrichtungen des Transponders

4.1.5 Arbeiten im statischen und dynamischen Betrieb

Arbeiten im statischen Betrieb

Wird im statischen Betrieb gearbeitet, so kann der Transponder bis in den Bereich des Grenzabstandes (S_g) bearbeitet werden. Der Transponder muss dabei genau über dem Reader positioniert sein:

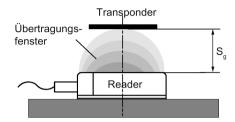


Bild 4-4 Arbeiten im statischen Betrieb

Im statischen Betrieb kann die Verweildauer tv (applikationsabhängig) beliebig lang sein. Die Verweildauer muss mindestens so lange sein, bis die Kommunikation mit dem Transponder abgeschlossen wurde.

Hinweis

Beachten Sie, dass bei metallischer Umgebung die Werte für den Grenzabstand reduziert sind.

Arbeiten im dynamischen Betrieb

Das Arbeiten im dynamischen Betrieb wird bei RF200 IO-Link nicht empfohlen.

Siehe auch

Felddaten von Transpondern und Readern (Seite 24)

4.1.6 Kommunikation zwischen IO-Link-Master, Reader und Transponder

Die Kommunikation zwischen IO-Link-Master, Reader und Transponder erfolgt asynchron über die IO-Link-Schnittstelle.

Berechnung der Kommunikationsdauer für störungsfreie Übertragung

die Kommunikationsdauer für störungsfreie Übertragung berechnet sich nach:

$$t_{K} = K + t_{Byte} \cdot n \qquad (n \ge 1)$$

Wird die Übertragung kurzzeitig durch äußere Störeinflüsse unterbrochen, so setzt der Reader den Befehl automatisch fort.

Berechnung der maximalen Anzahl der Nutzdaten

die maximale Anzahl der Nutzdaten berechnet sich nach:

$$n_{\max} = \frac{t_V - K}{t_{Byte}}$$

tk: Kommunikationszeit zwischen IO-Link-Master, Reader und Transponder

t_v: Verweildauer

n: Anzahl der Nutzdaten in Bytes

n_{max}: Max. Anzahl der Nutzdaten in Bytes im dynamischen Betrieb

t_{Byte}: Übertragungszeit für 1 Byte

K: Konstante; die Konstante ist eine systeminterne Zeit. Sie beinhaltet die Zeit zum Energieaufbau am Transponder und zur Befehlsübertragung

Zeitkonstanten K und t_{Byte}

Tabelle 4- 1 Typische Zeitkonstanten bei statischem Betrieb bei einem IO-Link-Zyklus von 3 ms (Datenhaltezeit = minimal / Ready-Verzögerung = daktiviert)

Lesen			
IO-Link im Modus "UID-Erfassung" "Anwenderdaten-Erfassung"			
"UID-Erfassung"		Anwenderdat	en-Enassung
K	t _{Byte}	K	t _{Byte}
[ms]	[ms]	[ms]	[ms]
90	0	0	40

Dabei muss berücksichtigt werden, dass immer 4 Byte - Blöcke gelesen werden.

4.1.7 Einfluss von Nebenfeldern

Nebenfelder im Bereich von 0 mm bis 30 % des Grenzabstandes (S_g) sind generell immer vorhanden.

Sie sollten jedoch für eine Projektierung nur in Ausnahmefällen herangezogen werden, da die Schreib-/Leseabstände nur sehr begrenzt sind. Genaue Angaben zu den Feldgeometrien der Nebenfelder können nicht gemacht werden, da die Werte sehr stark vom Arbeitsabstand und von der Anwendung abhängen. Beim Arbeiten muss berücksichtigt werden, dass beim Übergang vom Nebenfeld zum Hauptfeld vorübergehend die Anwesenheit des Transponders verlorengehen kann. Es empfiehlt sich deshalb, einen Abstand > 30 % von Sg zu wählen.

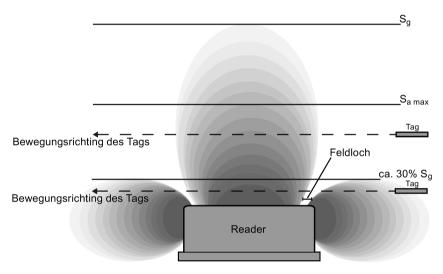


Bild 4-5 Durch Nebenfelder entstehendes Feldloch

Nebenfelder ohne Abschirmung

In der nachfolgenden Grafik sind typische Haupt- und Nebenfelder dargestellt, wenn keine Abschirmungsmaßnahmen getroffen sind.

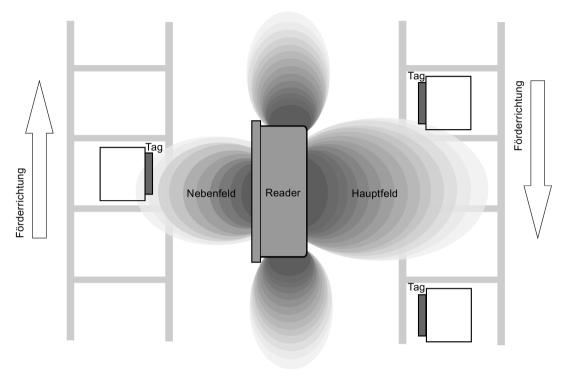


Bild 4-6 Nebenfeld ohne Abschirmung

Der Reader kann bei dieser Anordnung auch über das Nebenfeld Lesungen von Transpondern durchführen. Um unerwünschte Lesungen über das Nebenfeld zu verhindern, ist eine Abschirmung erforderlich, wie nachfolgend dargestellt und beschrieben.

Nebenfelder mit Abschirmung

In der nachfolgenden Grafik sind typische Haupt- und Nebenfelder dargestellt, allerdings mit einer Metallabschirmung.

Durch die Metallabschirmung wird verhindert, dass Transponder über das Nebenfeld des Readers erfasst werden können.

4.2 Felddaten von Transpondern und Readern

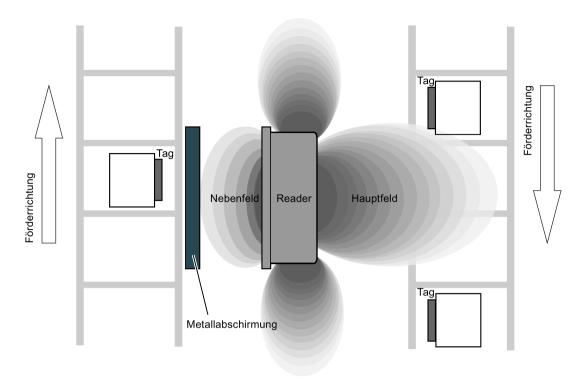


Bild 4-7 Nebenfeld mit Abschirmung

4.2 Felddaten von Transpondern und Readern

4.2.1 Felddaten

In den folgenden Tabellen sind die Grenzabstände (S_g) und Arbeitsabstände (S_a) sowie die Länge des Übertragungsfensters bei den jeweiligen Reader-Transponder-Kombinationen angegeben.

Tabelle 4-2 Felddaten SIMATIC RF210R IO-Link

	Länge des Übertragungs- fensters (L)	Arbeitsabstand (S _a)	Grenzabstand (S _g)
MDS D124	25	1 18	20
MDS D127 1)	5	0 2	2
MDS D160	20	1 10	12
MDS D324	20	1 8	9
MDS D421	5	0 3	4
MDS D422	8	1 9	10
MDS D423	20	2 10	12

	Länge des Übertragungs- fensters (L)	Arbeitsabstand (S₃)	Grenzabstand (S _g)
MDS D424	24	1 16	18
MDS D425	12	1 6	7
MDS D428	20	1 10	11
MDS D460	8	1 8	9

¹⁾ Der Transponder ist nur für den statischen Betrieb geeignet.

Alle Angaben in mm.

Tabelle 4-3 Felddaten SIMATIC RF220R IO-Link

	Länge des Übertragungs- fensters (L)	Arbeitsabstand (S₂)	Grenzabstand (S _g)
MDS D124	35	1 28	31
MDS D126	45	2 30	35
MDS D160	20	1 20	22
MDS D324	30	2 21	25
MDS D422	18	1 12	14
MDS D423	30	224	28
MDS D424	30	2 25	29
MDS D425	20	1 11	13
MDS D426	40	2 25	30
MDS D428	25	1 18	21
MDS D460	25	1 18	20

Alle Angaben in mm.

Tabelle 4-4 Felddaten SIMATIC RF260R IO-Link

	Länge des Übertragungs- fensters (L)	Arbeitsabstand (Sa)	Grenzabstand (S _g)
MDS D100	120	2 110	130
MDS D124	80	2 80	85
MDS D126	110	2 75	100
MDS D139	120	2 80	110
MDS D160	60	2 40	45
MDS D165	120	2 120	135
MDS D200	120	2 100	120
MDS D261	80	2 75	90
MDS D324	80	2 60	70
MDS D339	110	2 65	80
MDS D400	140	2 110	140

4.2 Felddaten von Transpondern und Readern

	Länge des Übertragungs- fensters (L)	Arbeitsabstand (S _a)	Grenzabstand (S _g)
MDS D423	55	2 40	45
MDS D424	80	2 60	70
MDS D426	75	2 70	85
MDS D428	50	2 40	45
MDS D460	50	2 40	45

Alle Angaben in mm.

4.2.2 Mindestabstände

Mindestabstand von Transponder zu Transponder

Die angegebenen Abstände beziehen sich auf eine metallfreie Umgebung. Bei metallischer Umgebung sind die angegebenen Mindest-Abstände mit dem Faktor 1,5 zu multiplizieren.

Tabelle 4-5 Mindestabstände Transponder

	RF210R	RF220R	RF260R
MDS D100			≥ 240
MDS D117	≥ 15		
MDS D124	≥ 25	≥ 40	≥ 180
MDS D126		≥ 50	≥ 180
MDS D127	≥ 15		
MDS D139			≥ 200
MDS D160	≥ 20	≥ 25	≥ 150
MDS D165			≥ 240
MDS D200			≥ 240
MDS D261			≥ 200
MDS D324	≥ 25	≥ 40	≥ 180
MDS D339			≥ 200
MDS D400			≥ 240
MDS D421	≥ 10		
MDS D422	≥ 15	≥ 20	
MDS D423			≥ 160
MDS D424	≥ 25	≥ 40	≥ 180
MDS D425	≥ 20	≥ 25	
MDS D426		≥ 50	≥ 180
MDS D428	≥ 25	≥ 25	≥ 150
MDS D460	≥ 20	≥ 25	≥ 150

Alle Werte in mm, bezogen auf den Arbeitsabstand (S_a) Reader zu Transponder und Transponder-Kante zu Transponder-Kante

Mindestabstand von Reader zu Reader

RF210R IO-Link	RF220R IO-Link	RF260R IO-Link
zu RF210R IO-Link	zu RF220R IO-Link	zu RF260R IO-Link
≥ 60 mm	≥ 100 mm	≥ 150 mm

Werte alle in mm

Hinweis

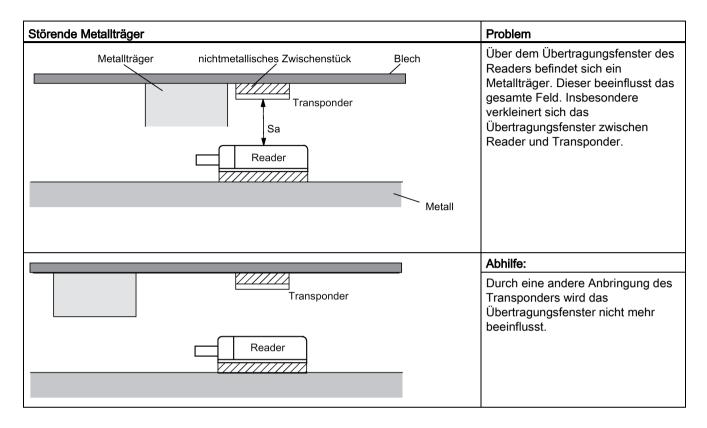
Beeinflussung induktiver Felder durch Unterschreitung der Reader-Mindestabstände

Bei Unterschreitung der in der Tabelle "Mindestabstand von Reader zu Reader" angegebenen Werte besteht die Gefahr der Beeinflussung der Funktion durch induktive Felder. Die Zeit für die Datenübertragung würde sich unberechenbar verlängern bzw. ein Befehl würde mit Fehler abgebrochen.

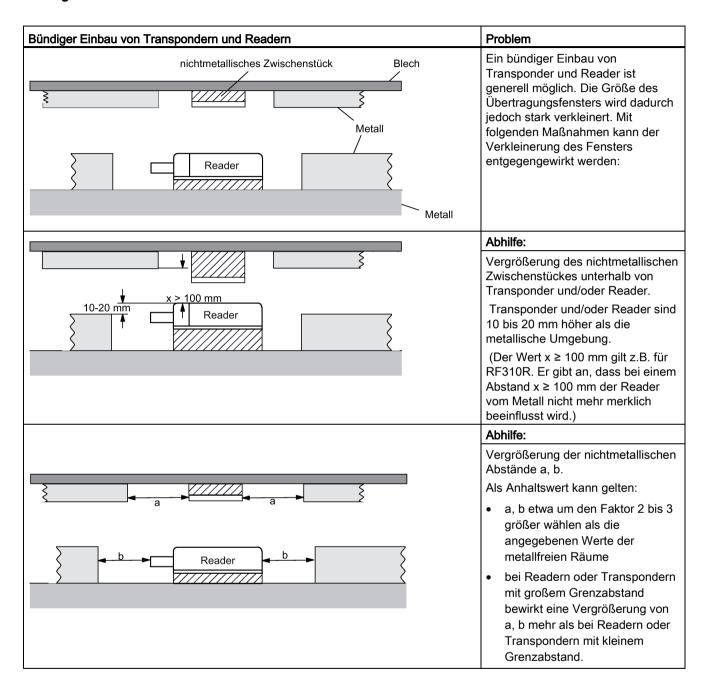
Die in Tabelle "Mindestabstand von Reader zu Reader" angegebenen Werte sind daher unbedingt einzuhalten

Kann der angegebene Mindestabstand aus konstruktiven Gründen nicht eingehalten werden, so kann über das Prozessabbild (PAA) das HF-Feld (Antenne) der Reader ein- bzw. ausgeschaltet werden.

4.3 Einbaurichtlinien

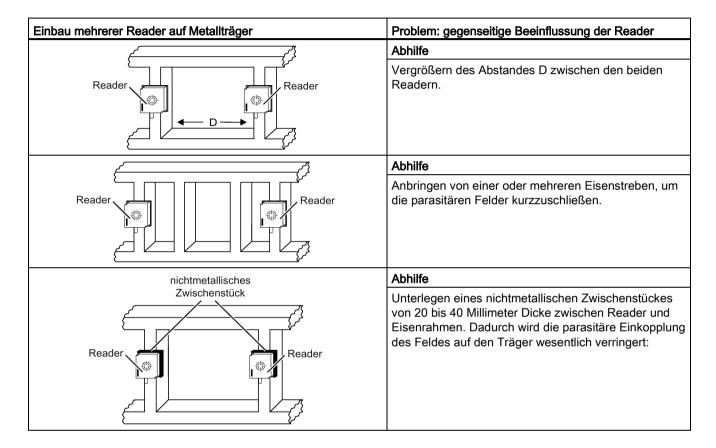

4.3.1 Übersicht

Transponder und Reader mit ihren Antennen sind induktiv arbeitende Geräte. Jede Art von Metall in der Nähe dieser Geräte beeinflusst deren Arbeitsweise. Damit die im Kapitel "Felddaten (Seite 24)" beschriebenen Werte ihre Gültigkeit behalten, sind bei der Projektierung und beim Einbau einige Punkte zu beachten:


- Mindestabstand zwischen zwei Readern bzw. deren Antennen
- Mindestabstand von zwei benachbarten Datenspeichern
- Metallfreier Raum bei bündigem Einbau von Readern oder deren Antennen und Transpondern in Metall
- Einbau mehrerer Reader oder deren Antennen auf Metallrahmen oder -träger

In den folgenden Kapiteln wird auf die Beeinflussung der Funktion des RFID-Systems eingegangen, wenn es in metallischer Umgebung montiert wird.

4.3.2 Verringern von metallischen Einflüssen



Bündiger Einbau

Einbau mehrerer Reader auf Metallrahmen oder -träger

Jeder Reader, welcher auf Metall montiert ist, koppelt einen Teil des Feldes auf den Metallträger. Beim Einhalten des Mindestabstandes D und der metallfreien Räume a, b ergeben sich normalerweise keine Beeinflussungen zueinander. Bei besonders ungünstiger Führung eines Eisenrahmens ist dennoch eine Beeinflussung möglich. Das hat verlängerte Datenübertragungszeiten bzw. sporadische Fehlermeldungen in der Anschaltung zur Folge.

4.3.3 Auswirkungen von Metall auf verschiedene Transponder und Reader

Montage auf Metall oder bündiger Einbau verschiedener Transponder und Reader

Bei der Montage der Transponder und Reader auf Metall und bündig in Metall sind bestimmte Bedingungen zu beachten. Nähere Informationen entnehmen Sie den Beschreibungen der einzelnen Transponder und Reader im jeweiligen Kapitel.

4.3.4 Beeinflussung des Übertragungsfensters durch Metall

Im Allgemeinen sind beim Einbau der RFID-Komponenten folgende Punkte zu beachten:

- Die Montage direkt auf Metall ist nur bei speziell dafür zugelassenen Transpondern erlaubt.
- Ein bündiger Einbau der Komponenten in Metall reduziert die Felddaten; in kritischen Anwendungen ist ein Test empfehlenswert.
- Wird im Übertragungsfenster gearbeitet, so ist darauf zu achten, dass keine Metallschiene (oder ähnliches) das Übertragungsfeld schneidet.
 Die Metallschiene würde die Felddaten beeinflussen.

In diesem Kapitel wird die Beeinflussung der Felddaten (S_g, S_a, L) durch Metall in Tabellenform dargestellt. Die Werte in den Tabellen beschreiben die Reduktion der Felddaten in %, bezogen auf Nichtmetall (100 % bedeutet keine Beeinflussung).

4.3.4.1 RF210R IO-Link

Der RF210R IO-Link kann bündig in Metall eingebaut werden. Beachten Sie eine mögliche Reduzierung der Felddaten.

In der folgenden Tabelle sehen Sie verschiedene Anordnungen des Readers ohne oder mit metallischer Umgebung:

Fall	Abbildung	Beschreibung
a)		Reader metallfrei
b)		Reader auf Metall, Abstand zu Metall ≥ 12 mm

4.3 Einbaurichtlinien

Fall	Abbildung	Beschreibung
c)		Reader in Metall, bündig mit M18-Mutter
d)	a	Reader in Metall, umlaufend

Um eine Beeinflussung der Felddaten zu vermeiden, sollte in Fall d der Abstand a \geq 10 mm sein.

Tabelle 4-6 Reduktion der Felddaten durch Metall, Reichweite in %: Transponder und RF210R

Transponder		Reader ohne direkten Metalleinfluss	Reader bündig eingebaut in Metall
		(Fall a, b und d)	(Fall c)
MDS D124 1)	metallfrei	100	82
	auf Metall, Abstand 15 mm	90	90
	bündig eingebaut in Metall; Abstand umlaufend 15 mm	85	80
MDS D127	bündig eingebaut in Metall; Abstand umlaufend 0 mm	100	75
MDS D160 1)	metallfrei	100	95
	auf Metall, Abstand 10 mm	100	95
MDS D324 1)	metallfrei	100	90
	auf Metall, Abstand 15 mm	90	90
	bündig eingebaut in Metall; Abstand umlaufend 25 mm	80	90
MDS D421	metallfrei	100	90
	bündig eingebaut in Metall; Abstand umlaufend 0 mm	75	50
MDS D422	metallfrei	100	80
	bündig eingebaut in Metall; Abstand umlaufend 0 mm	90	40
MDS D423	metallfrei	100	90

Transponder		Reader ohne direkten Metalleinfluss (Fall a, b und d)	Reader bündig eingebaut in Metall (Fall c)
	auf Metall, Abstand 0 mm	1802)	1302)
	bündig eingebaut in Metall; Abstand umlaufend 0 mm	95	85
MDS D424 1)	metallfrei	100	60
	auf Metall, Abstand 15 mm	95	75
	bündig eingebaut in Metall; Abstand umlaufend 25 mm	80	70
MDS D425	metallfrei	100	85
	auf Metall, Abstand 0 mm	100	85
MDS D428	metallfrei	100	90
	auf Metall, Abstand 0 mm	100	80
MDS D460 1)	metallfrei	100	90
	auf Metall, Abstand 25 mm	100	90

Die Montage des Transponders auf oder in Metall ist nur in Verbindung mit dem zugehörigen Abstandshalter, bzw. entsprechendem Abstand zu dem Metall möglich.

4.3.4.2 RF220R IO-Link

Der RF220R IO-Link kann bündig in Metall eingebaut werden. Beachten Sie eine mögliche Reduzierung der Felddaten.

In der folgenden Tabelle sehen Sie verschiedene Anordnungen des Readers ohne oder mit metallischer Umgebung:

Fall	Abbildung	Beschreibung
a)		Reader metallfrei
b)		Reader auf Metall, Abstand zu Metall ≥ 12 mm

Werte von > 100 %, bezogen auf metallfreie Umgebung, können dann auftreten, wenn Transonder speziell für die Montage in/auf metallischen Umgebungen entwickelt wurden.

4.3 Einbaurichtlinien

Fall	Abbildung	Beschreibung
c)		Reader in Metall, bündig mit M30-Mutter
d)	ţa	Reader in Metall, umlaufend

Um eine Beeinflussung der Felddaten zu vermeiden, sollte in Fall d der Abstand a \geq 15 mm sein.

Tabelle 4-7 Reduktion der Felddaten durch Metall, Reichweite in %: Transponder und RF220R

Transponder		Reader ohne direkten Metalleinfluss	Reader bündig eingebaut in Metall
		(Fall a, b und d)	(Fall c)
MDS D124 1)	metallfrei	100	94
	auf Metall, Abstand 15 mm	97	89
	Tag bündig eingebaut in Metall; Abstand umlaufend 15 mm	86	83
MDS D126 1)	metallfrei	100	75
	auf Metall, Abstand 25 mm	85	70
	bündig eingebaut in Metall; Abstand umlaufend 50 mm	80	65
MDS D160 1)	metallfrei	100	89
	auf Metall, Abstand 10 mm	100	89
MDS D324 1)	metallfrei	100	90
	auf Metall, Abstand 15 mm	97	86
	bündig eingebaut in Metall; Abstand umlaufend 25 mm	93	86
MDS D422	metallfrei	100	90
	bündig eingebaut in Metall; Abstand umlaufend 0 mm	85	85
MDS D423	metallfrei	100	90
	auf Metall, Abstand 0 mm	150 ²⁾	85

Transponder		Reader ohne direkten Metalleinfluss	Reader bündig eingebaut in Metall
		(Fall a, b und d)	(Fall c)
	bündig eingebaut in Metall; Abstand umlaufend 0 mm	80	75
MDS D424 1)	metallfrei	100	93
	auf Metall, Abstand 15 mm	96	89
	bündig eingebaut in Metall; Abstand umlaufend 25 mm	86	82
MDS D425	metallfrei	100	90
	auf Metall aufgeschraubt	100	75
	bündig eingebaut in Metall; Abstand umlaufend 25 mm	95	75
MDS D426 1)	metallfrei	100	90
	auf Metall, Abstand 25 mm	90	75
	bündig eingebaut in Metall; Abstand umlaufend 50 mm	80	70
MDS D428	metallfrei	100	94
	auf Metall, Abstand 0 mm	100	94
MDS D460 1)	metallfrei	100	92
	auf Metall, Abstand 0 mm	100	92

Die Montage des Transponders auf oder in Metall ist nur in Verbindung mit dem zugehörigen Abstandshalter, bzw. entsprechendem Abstand zu dem Metall möglich.

4.3.4.3 RF260R IO-Link

Der RF260R IO-Link kann bündig in Metall eingebaut werden. Beachten Sie eine mögliche Reduzierung der Felddaten.

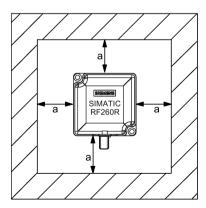


Bild 4-8 Metallfreier Raum RF260R

²⁾ Werte von > 100 %, bezogen auf metallfreie Umgebung, können dann auftreten, wenn Transonder speziell für die Montage in/auf metallischen Umgebungen entwickelt wurden.

4.3 Einbaurichtlinien

Um eine Beeinflussung der Felddaten zu vermeiden, sollte der Abstand a ≥ 20 mm sein.

Tabelle 4-8 Reduktion der Felddaten durch Metall, Reichweite in %: Transponder und RF260R

Transponder		Reader ohne Metall direkten Metalleinfluss	Reader auf Metall (Metallplatte)	Reader bündig eingebaut in Metall (umlaufend 20 mm)
MDS D100 1)	ohne Metall	100	85	65
	auf Metall, Abstand 20 mm	70	65	50
	bündig eingebaut in Metall; Abstand umlaufend 20 mm	65	50	40
MDS D124 1)	ohne Metall	100	93	75
	auf Metall, Abstand 15 mm	95	85	70
	bündig eingebaut in Metall; Abstand umlaufend 25 mm	78	75	65
MDS D126 1)	ohne Metall	100	85	73
	auf Metall, Abstand 25 mm	75	68	60
	bündig eingebaut in Metall; Abstand umlaufend 50 mm	55	53	40
MDS D139 1)	ohne Metall	100	90	75
	auf Metall, Abstand 30 mm	95	90	75
MDS D160 1)	ohne Metall	100	90	75
	auf Metall, Abstand 10 mm	90	80	80
MDS D165	ohne Metall	100	85	65
	auf Metall, Abstand 25 mm	65	60	45
MDS D200 1)	ohne Metall	100	85	70
	auf Metall, Abstand 20 mm	70	65	50
	bündig eingebaut in Metall, Abstand umlaufend 20 mm	55	50	45
MDS D261	ohne Metall	100	85	70
	auf Metall, Abstand 25 mm	80	70	60
MDS D324 1)	ohne Metall	100	90	75
	auf Metall, Abstand 15 mm	90	80	70
	bündig eingebaut in Metall; Abstand umlaufend 25 mm	70	65	55
MDS D339 1)	ohne Metall	100	90	75
	auf Metall, Abstand 30 mm	95	90	75
MDS D400 1)	ohne Metall	100	85	70
	auf Metall, Abstand 20 mm	70	65	50
	bündig eingebaut in Metall; Abstand umlaufend 20 mm	55	50	45
MDS D423	auf Metall, Abstand 0 mm	100	90	80
	bündig eingebaut in Metall; Abstand umlaufend 0 mm	75	65	60
MDS D424 1)	ohne Metall	100	90	80

Transponder		Reader ohne Metall direkten Metalleinfluss	Reader auf Metall (Metallplatte)	Reader bündig eingebaut in Metall (umlaufend 20 mm)
	auf Metall, Abstand 15 mm	90	80	70
	bündig eingebaut in Metall; Abstand umlaufend 25 mm	60	60	50
MDS D426 1)	ohne Metall	100	100	73
	auf Metall, Abstand 25 mm	88	85	68
	bündig eingebaut in Metall; Abstand umlaufend 50 mm	65	55	55
MDS D428	ohne Metall	100	90	90
	auf Metall, Abstand 0 mm	90	90	85
MDS D460 1)	Ohne Metall	100	95	90
	auf Metall, Abstand 10 mm	90	85	80

Die Montage des Transponders auf oder in Metall ist nur in Verbindung mit dem zugehörigen Abstandshalter, bzw. entsprechendem Abstand zu dem Metall möglich.

4.4 Weiterführende Informationen

Nähere Informationen zu "Grundlagen zur Einsatzplanung" und "EMV" finden Sie im Kapitel 4 des "Systemhandbuch MOBY D

(http://support.automation.siemens.com/WW/view/de/21738946)".

4.4 Weiterführende Informationen

Inbetriebnahme und Parametrierung

Nachdem das System montiert und verdrahtet wurde, sind folgende Schritte notwenig, um einen RF200 IO-Link-Reader in Betrieb zu nehmen.

5.1 Projektierung

Abhängig von den Betriebsmodi SIO-Mode oder IO-Link-Kommunikation muss der Reader parametriert werden.

SIO-Mode:

Im SIO-Mode muss der Reader nicht parametriert werden. Der Reader kann als Standard-IO an die Eingangsbaugruppen (z. B. IO-Link-Master) angeschlossen werden.

• IO-Link-Mode:

Bei dem IO-Link-Mode ist die Projektierung des IO-Link-Masters nötig, bei dem das vom Device benötigte Prozessabbild an einem bestimmten Port nach Art und Länge konfiguriert werden muss.

Über ein Engineeringtool (z. B. STEP 7) muss ein neues Projekt angelegt bzw. ein bestehendes geöffnet werden, in dem der IO-Link-Master eingebunden werden soll.

Die Projektierung erfolgt beim STEP 7 über "HW Konfig".

Projektierung der IO-Link-Master in HW Konfig

Hinweis

Projektierungssoftware

Die nachfolgend beschriebene Projektierung wurde mit "HW Konfig" erstellt. Alternativ können Sie die Projektieung auch mit STEP 7 Professional (TIA Portal) durchführen.

Mithilfe von "HW Konfig" können die IO-Link-Master per 'Drag & Drop aus dem Katalog an die gewünschte Stelle des PROFIBUS-/PROFINET-Systems gesetzt und die Adressen vergeben werden.

Konsistenz:

Bei der Datenkonsistenz muss der gesamte Kommunikationsweg berücksichtigt werden. Was die verschiedenen CPU's anbelangt, muss zwischen PROFIBUS-DP und PROFINET-IO unterschieden werden.

Die konsistente Datenübertragung bei PROFIBUS-DP (1 bis 32 Byte) bzw. bei PROFINET-IO (1 bis 254 Byte) findet im Prozessabbild der Ein- und Ausgänge statt. Mit den Ladebefehlen können bis zu 4 Byte konsistent aus dem Prozessabbild der Eingänge ausgelesen werden. Das Prozessabbild ist CPU-abhängig und muss im jeweiligen Handbuch nachgelesen werden.

5.1 Projektierung

Für die S7-CPU's stehen die Systemfunktionen "SFC14/15" zur Verfügung, die es ermöglichen, außerhalb des Prozessabbildes eine konsistente Datenübertragung zu gewährleisten. Die Anzahl der konsistent übertragbaren Daten ist von der CPU und von dem eingesetzten Bussystem abhängig und muss deshalb in den jeweiligen Handbüchern nachgelesen werden.

Für die Datenübertragung zwischen IO-Link-Master und IO-Link-Device gewährleistet der Master für 8 Byte die Konsistenz, ohne die Auswahl "Port Qualifier" im Menü "Ports".

Zusätzlich wird die konsistente Übertragung durch die Einstellung "Ready-Verzögerung" erhöht. Damit wird die Übertragung des Bits "RDY" bzw. "Done" um einen IO-Link-Zyklus verzögert, sodass das System genug Zeit hat, die Daten zu übertragen. Bei hohem Datenaufkommen, empfehlen wir Ihnen, diese Einstellung zu aktivieren.

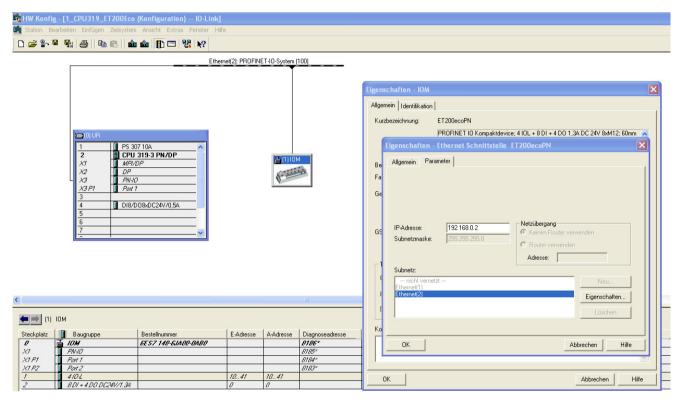


Bild 5-1 Konfigurationsbeispiel eines ET 200eco PN

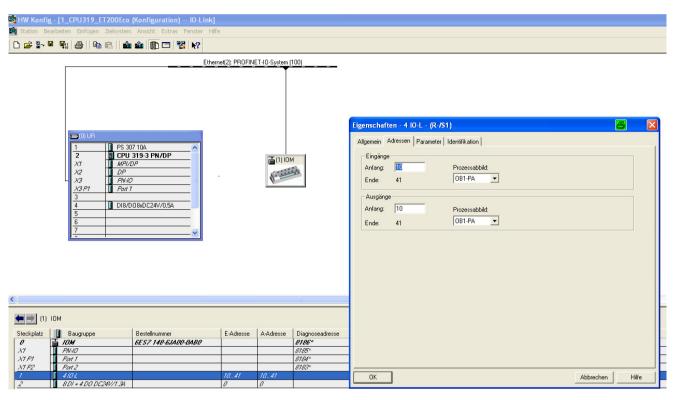


Bild 5-2 Adressenauswahl beim ET 200eco PN

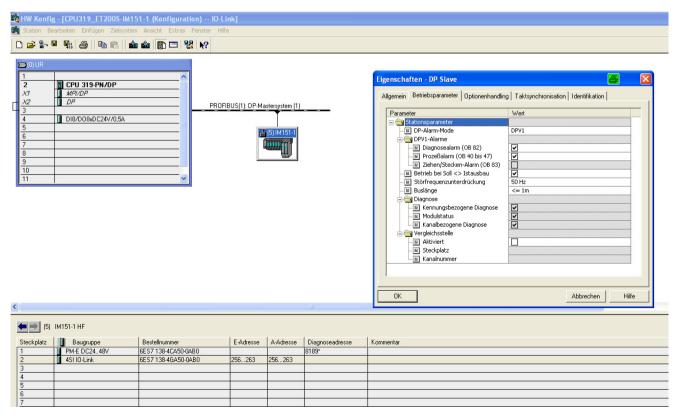


Bild 5-3 Konfigurationsbeispiel eines ET 200S

5.1 Projektierung

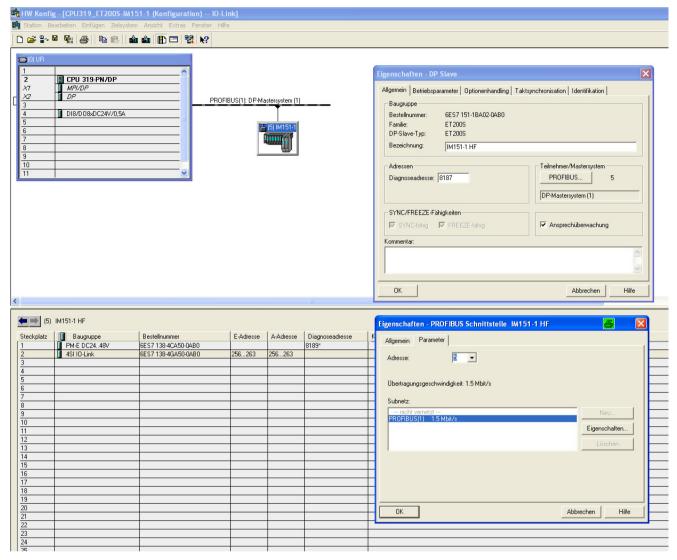


Bild 5-4 Adressenauswahl beim ET 200S (EA- und PROFIBUS-Adresse)

Das Port Configuration Tool können Sie über HW Konfig aufrufen.

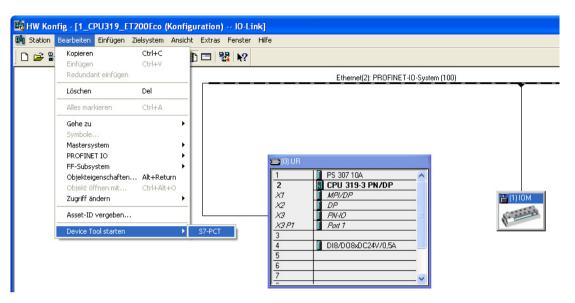


Bild 5-5 Aufruf des PCT aus HW Konfig über die Menüleiste

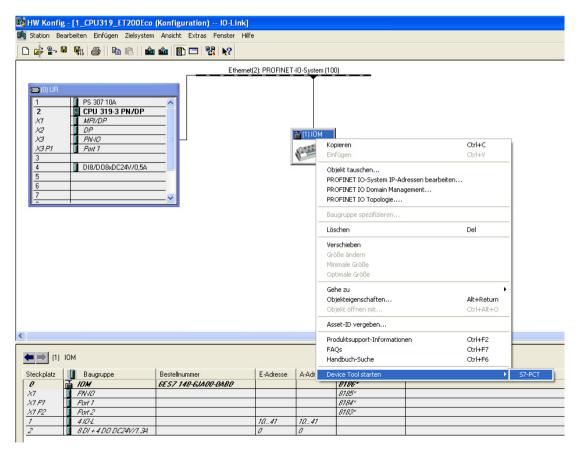


Bild 5-6 Aufruf des PCT aus HW Konfig über den Master

Hinweis

Aufruf des PCT bei installiertem STEP 7 V5.4 oder älter

Wurde bei der STEP 7-Installation PCT nicht mitinstalliert (bis V5.4), müssen Sie PCT nachträglich installieren. In diesem Fall können Sie PCT direkt über den Master aufrufen. Klicken Sie dazu mit der rechten Maustaste auf den Master und dann im Kontextmenü auf "IO-Link konfigurieren".

5.2.1 Das Port Configuration Tool (PCT)

Bei der Verwendung von SIEMENS-Mastern steht für die Konfiguration des IO-Link-Masters und zur Parametrierung der Devices das "Port Configuration Tool" zur Verfügung.

Bei der Verwendung von Fremd-Mastern müssen Sie zuerst das Tool des jeweiligen Herstellers installieren oder die Konfigurierung über die Parametriermöglichkeiten des Projektierungssystems vornehmen.

Das STEP 7-Engineering verfüg mit dem PCT (ab V2.3) über eine leistungsstarke Software zur Parametrierung von Siemens IO-Link-Master-Modulen und IO-Link-Devices. S7-PCT ist integriert in STEP 7 ab V5.4 SP5 und wird über die Hardwarekonfiguration der IO-Link-Master aufgerufen. Neben dieser ins STEP 7-Enineering integrierten Programmform steht auch eine separat installierbare "Standalone"-Version von S7-PCT zur Verfügung.

Die S7-PCT-Standalone-Variante ermöglicht eine einfache Nutzung von IO-Link mit der dezentralen SIMATIC Peripherie ET200 an Steuerungssystemen von Drittanbietern (ohne STEP 7). Des Weiteren wird die Standalone-Variante zur Projektierung über STEP 7 (TIA Portal) benötigt.

Mit dem Port Configuration Tool lassen sich Parameterdaten der IO-Link-Geräte einstellen, verändern, kopieren und im STEP 7-Projekt sichern: Auf diese Weise werden alle Konfigurationsdaten und Parameter bis auf die IO-Link-Device-Ebene hinab konsistent gespeichert.

Eigenschaften des Port Configuration Tool (S7-PCT)

- Kostenlos verfügbar als Download im Internet (http://support.automation.siemens.com/WW/view/de/32469496)
- Projektierungsscreens (Register) in S7-PCT mit Klartext und Produktbild direkt aus der IODD des zertifizierten Devices
- Zentrale Datenspeicherung aller Projektdaten im STEP 7-Projekt bei integriertem PCT-Aufruf
- Umfangreiche Test- und Diagnosefunktionen
- Auslesen von Identifikationsdaten aus den Devices
- Rücklesen der Geräteinformationen einschließlich Parametrierung voll unterstützt

Das PCT integriert IO-Link-Devices unterhalb der Feldbusebene, in allen Bereichen der Produktionsautomatisierung, vollständig in STEP 7 (TIA Portal).

5.2.2 Parametrierung mit PCT

Mit Hilfe des S7-PCT können Sie IO-Link-Master-Ports konfigurieren, Parameter ändern und auslesen und vieles mehr.

Vergewissern Sie sich, dass die notwendigen IODD-Dateien im Hardware-Katalog vorhanden sind. Wenn nicht importieren Sie diese über das Menü "Options". Anschließend übertragen Sie die IODD-Dateien mittels Drag & Drop in das PCT-Tool.

Die IODD-Dateien erhalten Sie hier:

- DVD "RFID Systems Software & Documentation" (6GT2080-2AA20)
- IOOD-Dateien für SIMATIC RF210R (IO-Link) (http://support.automation.siemens.com/WW/view/de/59038542)
- IOOD-Dateien für SIMATIC RF220R (IO-Link) (http://support.automation.siemens.com/WW/view/de/59038758)
- IOOD-Dateien für SIMATIC RF260R (IO-Link) (http://support.automation.siemens.com/WW/view/de/59038765)

Hinweis

Vergabe von Rechten

Im Menü "Options" ist unter "Benutzerrolle" die Vergabe von Rechten für die jeweilige Ansicht möglich. Alle Parameter werden mit der Rolle "Inbetriebnahme" freigegeben.

Die nachfolgenden Screenshots zeigen einige wichtige Parametrierungsoptionen auf IO-Link-Master- und IO-Link-Device-Ebene:

IO-Link-Master-Ebene

 Ziehen Sie im Register "Ports" per Drag & Drop die IO-Link-Master aus dem Hardware-Katalog in das Bereich "Name". Anschließend können Sie die Ports der IO-Link-Master konfigurieren.

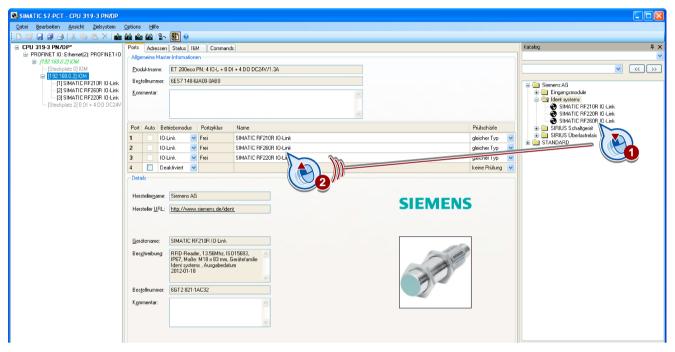


Bild 5-7 IO-Link-Master-Ports konfigurieren

- 2. Wählen Sie in der Klappliste bei "Prüfschärfe" den Wert "keine Prüfung" aus, wenn Sie die Prüfung des Gerätetyps deaktivieren möchten.
- 3. Wechseln Sie in das Register "Adressen", um die eingestellten Adressen zu überprüfen.

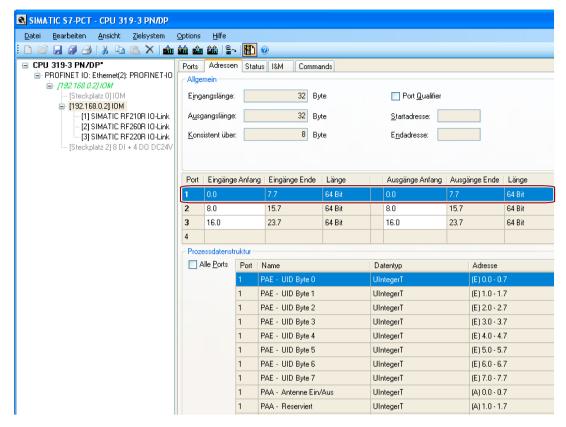


Bild 5-8 Eingestellte Adressen

- 4. Wechseln Sie in das Register "Status" und klicken Sie dort auf die Schaltfläche "Aktualisieren", um den Gerätestatus aktualisieren zu können.
- Im Register "Status" werden Ihnen im Feld "Ereignisanzeige" aufgetretene Statusfehler angezeigt.

Bild 5-9 Statusfehler in der Ereignisanzeige

6. Wechseln Sie in das Register "I&M" und wählen Sie dort auf der linken Seite den IO-Link-Master aus, damit Ihnen die I&M-Daten angezeigt werden.

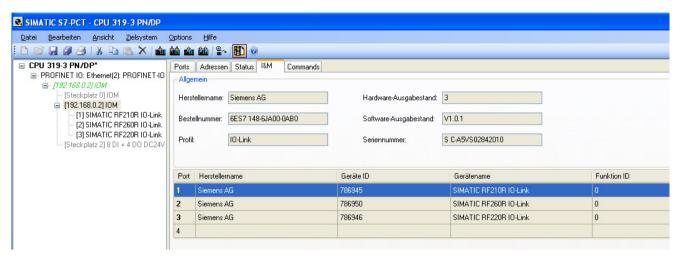


Bild 5-10 I&M-Master-Daten anzeigen

IO-Link-Device-Ebene

Hinweis

Registerwechsel im Offline-Modus

Gehen Sie in den Offline-Modus, bevor Sie zwischen den Registern "Identifikation", "Parameter", "Beobachten" oder "Diagnose" wechseln.

- 1. Klicken Sie auf das Symbol "Laden in PG" in damit Ihnen die Identifikationsparameter angezeigt werden. Zuvor müssen Sie das entsprechende IO-Link-Device selektieren.
- Wechseln Sie in das Register "Parameter", damit Ihnen die Parameter des IO-Link-Devices angezeigt werden.

3. Klicken Sie im Register "Parameter" auf die Parameter, die Sie ändern möchten. Hier können Sie die Parameter "Event-Meldung", "Bertriebsart", "Ready-Verzögerung", "Datenhaltezeit" und "HF-Parameter" konfigurieren. Wählen Sie dazu im selektierten Parameter Ihre Konfiguration über die Klappliste aus .

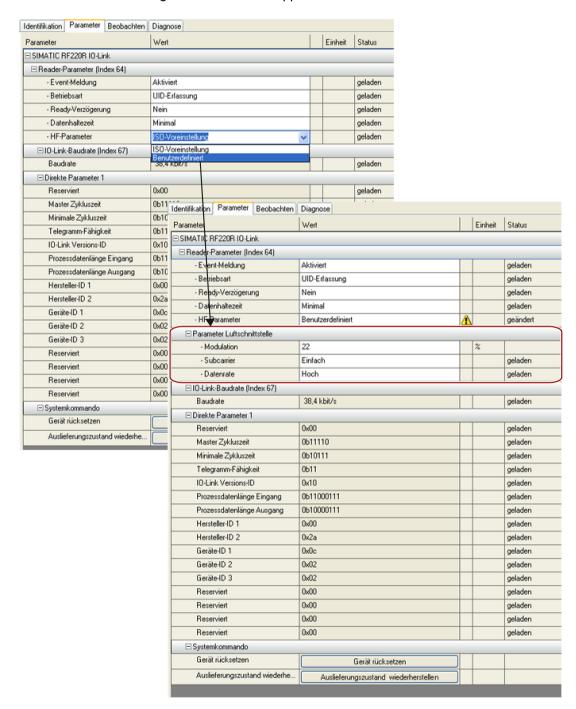


Bild 5-11 Beispiel für Register "Parameter": Parameter "HF-Parameter" konfigurieren

Hinweis

Die manuelle Anpassung der Parameter "HF-Parameter" bzw. "Luftschnittstelle" sind ausschließlich für Experten vorgesehen. Wählen Sie dazu beim Paramameter "HF-Parameter" in der Klappliste den Wert "Benutzerdefiniert" aus und konfigurieren Sie Ihre Werte bei "Parameter Luftschnittstelle" entsprechend.

Weitere Informationen zum Paramter "Datenhaltezeit" finden Sie im Kapitel "IO-Link-Modus: UID-Erfassung (Seite 55)".

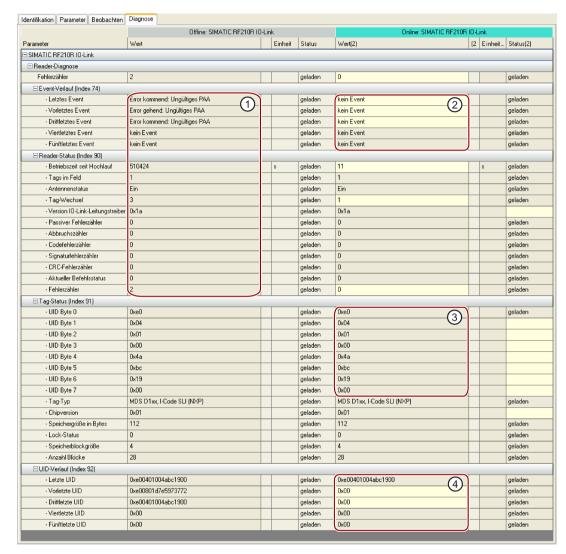
Weitere Informationen zum Parameter "Ready-Verzögerung" finden Sie im Kapitel "Projektierung (Seite 39)".

Weitere Informationen zum Parameter "Event-Meldungen" finden Sie im Kapitel "Event-Fehlercodes (Seite 80)".

4. Klicken Sie bei "Systemkommando" die Schaltfläche "Gerät rücksetzen", wenn Sie Event-Meldungen, Fehlerzähler UID-Verlauf usw. der Diagnoseseite zurückzusetzen wollen.

Hinweis

Event-Meldungen können ausschließlich über S7-PCT oder die Funktion "IOL_CALL" (Systembefehl) zurückgesetzt werden.


- 5. Klicken Sie bei "Systemkommando" die Schaltfläche "Auslieferungszustand wiederherstellen", wenn Sie alle Parameter auf den Auslieferstand zurückzusetzen wollen.
- 6. Klicken Sie auf das Symbol "Laden" M, um die geänderte Daten ins Gerät zu laden.

Hinweis

Achten Sie beim Laden der Daten darauf, dass Sie den gewünschten Reader selektiert haben.

Das erfolgreiche Laden wird im Bereich "Kommunikationsergebnisse" angezeigt.

In seltenen Fällen kann beim Laden der Parameter durch das Beschreiben des Flash eine kurze Kommunikationsunterbrechung (wenige Millisekunden) auftreten. Diese Unterbrechungen wirken sich nicht auf die Übertragung der Parameter aus. Durch das Klicken der Schaltfläche "Aktualisieren" im Register "Status", verschwindet die Fehlermeldung in der Ereignisanzeige.

7. Wechseln Sie in das Register "Diagnose", damit Ihnen die Diagnosewerte angezeigt werden.

Nummer Beschreibung

- ① Die Werte in der Spalte "Wert" ändern sich nicht durch das Systemkommando "Gerät rücksetzen". Es werden immer die Werte angezeigt, die beim letzten "Laden ins PG" aus dem Device ausgelesen wurden.
- Die Werte dieser Spalte werden nur im "Online-Modus" angezeigt und sind aktuelle Werte. Sich gerade ändernde bzw. geänderte Werte sind durch den hellen Hintergrund erkannbar. Im dargestellten Beispiel werden die geänderten Werte nach dem Systemkommando "Gerät rücksetzen" angezeigt.
- 3 UID des Transponders, der sich aktuell im Feld des Readers befindet.
- 4 UID-Historie der Transponder
- Bild 5-12 Register "Diagnose" nach dem Systemkommando "Gerät rücksetzen"

Im Abschnitt "Event-Verlauf" (Index74) des Registers "Diagnose" werden Fehler und Warnungen angezeigt, die an den IO-Link-Master übermittelt wurden. Der IO-Link-Master meldet ausschließlich Fehler der Kategorie "kommend/gehend" an die CPU weiter. Die Anzeige erfolgt über die LED's des IO-Link-Masters bzw. die der CPU (SF). Mithilfe der Diagnosefunktion "OB82 + SFB/SFC(SFC13,51/SFB54)" der jeweiligen CPU können Sie weitere Diagnosen durchführen oder diese anzeigen lassen.

Erläuterungen zum Register "Diagnose"

Bei den nachfolgenden Werten handelt es sich um Beispielwerte.

Reader-Diagnose		
Fehlerzähler	3	Anzahl der aufgetretenen Fehler (nicht Warnungen)
Event-Verlauf (Index 74)		
- Letztes Event	Warnung gehend: Übertemperatur	Anzeige des aufgetretenen Fehlers oder der aufgetretenen Warnung
- Vorletztes Event	Ungültiges PAA	Anzeige des aufgetretenen Fehlers oder der aufgetretenen Warnung
- Drittletztes Event	Fehler: Überlast	Anzeige des aufgetretenen Fehlers oder der aufgetretenen Warnung
- Viertletztes Event	Warnung: Übertemperatur	Anzeige des aufgetretenen Fehlers oder der aufgetretenen Warnung
- Fünftletztes Event	Kein Event	Anzeige des aufgetretenen Fehlers oder der aufgetretenen Warnung
Reader-Status (Index 90)		
- Betriebszeit seit Hochlauf	2641	Betriebszeit in Sekunden
- Tags im Feld	1	Aktuelle Anzahl der Transponder im Feld
- Antennenstatus	Ein	Antenne ein-/ausgeschaltet
- Tag-Wechsel	11	Anzahl der Transponderwechsel
- Version IO-Link- Leitungstreiber	0x1a	Version des IO-Link-Leitungstreibers
- Passiver Fehlerzähler	0	Luftschnittstelle: Ruhefehlerzähler
- Abbruchszähler	0	Luftschnittstelle: Kommunikation abgebrochen
- Codefehlerzähler	135	Luftschnittstelle: Kommunikationsstörung
- Signaturfehlerzähler	0	Reserviert
- CRC-Fehlerzähler	255	Luftschnittstelle: Kommunikationsstörung
- Aktueller Befehlsstatus	0	Reserviert
- Fehlerzähler	3	HOST-Schnittstelle: Kommunikationsstörung
Tag-Status (Index 91)		
- UID Byte 0	0xe0	Byte 0 der Unique Identifier des Transponders

- UID Byte 1	0x04	Byte 1 der Unique Identifier des Transponders
- UID Byte 2	0x01	Byte 2 der Unique Identifier des Transponders
- UID Byte 3	0x00	Byte 3 der Unique Identifier des Transponders
- UID Byte 4	0x01	Byte 4 der Unique Identifier des Transponders
- UID Byte 5	0x9c	Byte 5 der Unique Identifier des Transponders
- UID Byte 6	0xe9	Byte 6 der Unique Identifier des Transponders
- UID Byte 7	0x1c	Byte 7 der Unique Identifier des Transponders
- Tag-Typ	MDS D1xx, I-Code SLI (NXP)	Transponderbezeichnung / Name des Chip / (Hersteller)
- Chipversion	0x01	Version des Chip
- Speichergrößen in Bytes	112	Speichergröße des Chip in Bytes
- Lock-Status	0	Gesperrte Blöcke auf dem Chip
- Speicherblockgröße	4	Größe der Speicherblöcke des Chip
- Anzahl Blöcke	28	Anzahl der Speicherblöcke des Chip
UID-Verlauf (Index 92)		
- Letzte UID	0xe0040100019ce91c	Transponder-Historie
- Vorletzte UID	0x00	Transponder-Historie
- Drittletzte UID	0x00	Transponder-Historie
- Viertletzte UID	0x00	Transponder-Historie
- Fünftletzte UID	0x00	Transponder-Historie

Wechseln Sie gegebenenfalls in das Register "Beobachten", damit Sie die Leseergebnisse beobachten können.

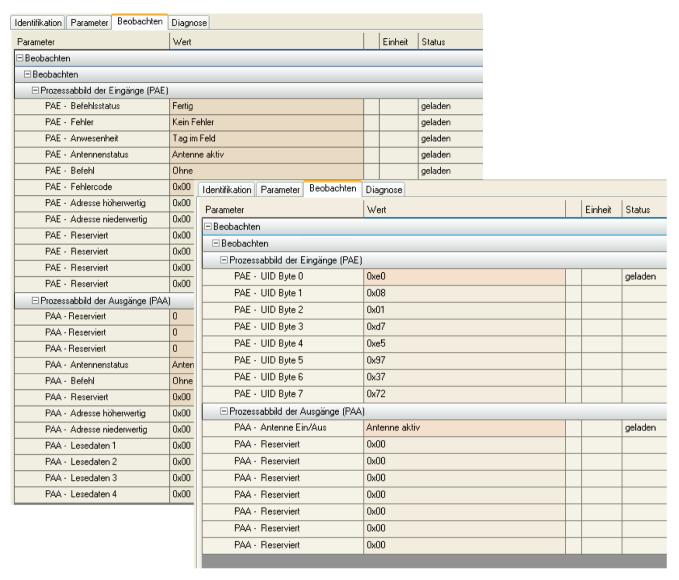


Bild 5-13 Register "Beobachten" im Modus "Erfassung Anwenderdaten" bzw. "UID-Erfassung"

5.3 Die Betriebsarten der RF200 IO-Link-Reader

5.3.1 SIO-Modus

Den SIO-Modus erhalten Sie, indem Sie die jeweiligen Ports des IO-Link-Masters als Digital-Input konfigurieren. In diesem Modus findet keine Kommunikation zwischen Reader und Master statt.

Der Reader befindet sich auch im SIO-Modus wenn er an einer Standardeingangsbaugruppe angeschlossen ist.

Der RF200 Reader verhält sich wie ein Standard-Input, dessen Signalzustand sich wie folgt verhält:

24 V Transponder im Feld des Readers

0 V kein Transponder im Feld des Readers

5.3.2 IO-Link-Modus: UID-Erfassung

Den Modus "UID-Erfassung" erhalten Sie, indem Sie für den Reader-Parameter "Betriebsart" den Wert "UID-Erfassung" eingestellt haben. Der Wert "UID-Erfassung" ist in der IODD-Datei als Defaultwert eingestellt.

Über die IO-Link-Kommunikation werden jeweils 8 Byte Prozessabbild der Eingänge (PAE) und 8 Byte Prozessabbild der Ausgänge (PAA) mit folgender Struktur übertragen:

Adresse Offset	0	1	2	3	4	5	6	7	
PAA	0	0	0	0	0	0	0	0	Normalbetrieb
PAE	0	0	0	0	0	0	0	0	Kein Transponder anwesend
	UID0	UID1	UID2	UID3	UID4	UID5	UID6	UID7	ISO-Transponder anwesend

Im PAE wird jeweils die 8 Byte lange UID des Transponders angezeigt, der sich gerade im Antennenfeld befindet. Verlässt der Transponder das Feld, so wird 0 im PAE angezeigt.

Über den Reader-Parameter Datenhaltezeit ist eine Mindestanzeigezeit parametrierbar, in der die Daten des Readers auch dann noch angezeigt werden, wenn der Transponder das Feld bereits verlassen hat. Diese Anzeigezeit gilt auch dann, wenn sich kein Transponder mehr im Feld befindet bzw. wenn der Transponder das Feld verlassen hat. Ein neuer Transponder kommt erst nach Ablauf der Datenhaltezeit zur Anzeige.

Um sicherzustellen, dass alle Transponder angezeigt werden, muss der Abstand zwischen den einzelnen Transpondern ausreichend bemessen werden. Ist der Abstand zwischen den einzelnen Transpondern zu klein, werden einzelne Transponder auf Grund der Datenhaltezeit nicht angezeigt.

Das höchstwertigste Bit der Adresse 0 (UID0.7) ist "1", wenn sich ein Transponder im Feld befindet. Die 1 an der höchstwertigen UID-Stelle ist vom Standard ISO 15693 garantiert.

5.3 Die Betriebsarten der RF200 IO-Link-Reader

Durch Setzen des Bit 4 im Byte 0 im PAA können Sie die Antenne des Readers und damit das HF-Feld ausschalten.

Im PAE wird die ausgeschaltete Antenne durch 0xFF bestätigt.

Adresse Offset	0	1	2	3	4	5	6	7	
PAA	0x10	0	0	0	0	0	0	0	Antenne aus
PAE	0xFF	Antenne aus							

5.3.3 IO-Link-Modus: Erfassung-Anwenderdaten

Den Modus "Erfassung-Anwenderdaten" erhalten Sie, indem Sie für den Parameter "Betriebsart" des Readers den Wert "Erfassung-Anwenderdaten" eingestellt haben.

Über die IO-Link-Kommunikation werden jeweils 8 Byte Prozessabbild der Eingänge (PAE) und 8 Byte Prozessabbild der Ausgänge (PAA) übertragen. Die zu lesenden Daten können Sie über das Prozessabbild "Ausgang" mittels Kommando oder Adresseingabe bestimmen.

Adresse Offset	0	1	2	3	4	5	6	7	
PAA	CMD	0	Adr-H	Adr-L	0	0	0	0	Lesen
	CMD	0	Adr-H	Adr-L	Data (MSB)	Data	Data	Data (LSB)	Schreiben
PAE	0	0	0	0	0	0	0	0	Kein Transponder anwesend
	Status	error_ RFID	Adr-H	Adr-L	Data (MSB)	Data	Data	Data (LSB)	Transponder anwesend
	0x10	0	0	0	0	0	0	0	Antenne aus
	Status	error_ RFID	0	0	0	0	0	0	Fehlermeldung des RFID-Readers

CMD Befehls-Byte

Adr-H Höherwertiges Adressbyte der zu bearbeitenden Daten auf dem

Transponder.

Adr-L Niedrigwertigeres Adressbyte der zu bearbeitenden Daten auf dem

Transponder.

error_RFID Fehlermeldung des RFID-Readers: Fehler werden durch den Befehl "Antenne

Aus" bzw. durch den Vorgang, dass der Transponder das Feld verlässt

quittiert (=RESET).

Weitere Informationen zu den Fehlermeldungen finden Sie im Kapitel

"Diagnose (Seite 69)".

Status Status-Byte

PAA

Befehl-Byte:

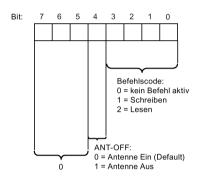


Bild 5-14 Aufbau des Befehl-Bytes "PAA"

PAE

Status-Byte:

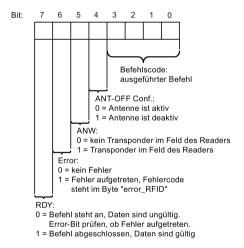


Bild 5-15 Aufbau des Status-Bytes im "PAE"

Hinweis

Fehlermeldung des RFID-Readers

Fehler werden durch den Befehl "Antenne Aus" bzw. durch den Vorgang, dass der Transponder das Feld verlässt quittiert (=RESET).

Starten eines Befehls:

Ein gültiger Befehl im PAA (Lesen oder Schreiben) wird im Reader gestartet, sobald ein Transponder in das Feld kommt. Weitere Befehle (z. B. zum Lesen langer Datensequenzen) werden im Reader gestartet, sobald eine neue Adresse (Adr-L, Adr-H) dem Reader übergeben wurde. Dabei ist es nicht notwendig zwischendurch das CMD = 0 zu setzen.

Fertigmeldung ohne Fehler:

Ein Befehl wurde richtig bearbeitet, wenn RDY = 1 gesetzt ist und zugleich die Adresse im PAE den gleichen Wert hat, wie im PAA.

Fertigmeldung mit Fehler:

Ein Fehler wird angezeigt, wenn RDY = 0 und Error = 1 ist. Der Fehler wird zurückgesetzt, wenn der Transponder das Feld verlassen hat oder wenn der Befehl "Antenne Aus" abgesetzt wird.

5.4 ISDU-Datenverkehr

Neben den Prozessdaten können je nach Bedarf für Diagnose und Wartungszwecke verschiedene Datenobjekte (Indexed Service Data Unit) azyklisch angesprochen werden (weitere Informationen finden Sie im Kapitel "Übersicht der Servicedaten (Seite 82)"). Für SIEMENS-CPU's steht dazu der IOL CALL-Baustein zur Verfügung.

5.4.1 IOL CALL

Mithilfe des Funktionsbaustein IOL_CALL können Sie beliebige Datenobjekte von IO-Link-Devices lesen, netzausfallsicher speichern und nach Tausch eines IO-Link-Devices bzw. - Masters mittels des IOL CALL wieder in das IO-Link-Device schreiben.

Der Aufruf des Funktionsbausteins IOL_CALL und das remanente Sichern können Sie vom Anwenderprogramm aus steuern.

Eigenschaften des Funktionsbausteins IOL_CALL

Der Funktionsbaustein IOL_CALL erhöht den Programmier- und Parametrierkomfort im IO-Link-Engineering durch folgende Eigenschaften:

- Lauffähig auf allen CPUs der SIMATIC S7
- geringer Programmieraufwand für IO-Link-Parametrierung und -Diagnose zur Laufzeitumgebung
- Universell einsetzbar f
 ür alle Master und Devices
- Unterstützt IO-Link-Master an PROFINET und PROFIBUS DP
- HMI-Faceplates mit Oberflächen für SIEMENS-Master und -Devices für SIMATIC HMI enthalten
- Parametrierung und Diagnose im laufenden Betrieb ohne Engineering-System

- (Um)parametrierung eines IO-Link-Devices im laufenden Betrieb
- Auslesen von Zusatzinformationen aus dem IO-Link-Device (z. B. Diagnose, Maintenance, etc.)
- Ausführen von IO-Link-Port-Funktionen
- Sichern/Rücksichern von IO-Link Parametern bei Austausch IO-Link-Mastern bzw. -Devices
- Nutzung des FB1 "IOL_CALL" für den Tausch von IO-Link-Master und IO-Link-Device ohne PG

5.5 Anwendungsbeispiel

Im nachfolgenden Beispiel wird ein Transponder MDS D124 mit einer einfachen Schleife und einem RF2X0 IO-Link Reader in der Betriebsart "Erfassung-Anwenderdaten" komplett gelesen. Die gültigen, gelesenen Daten werden in einem globalen Datenbaustein gespeichert.

Tabelle 5-1 Programmierbeispiel

```
Programmcode //Kommentare
//Wenn kein Transponder im Feld, dann springe zur Error-Auswertung
           "ANW";
     U
                                       // Anwesenheit (E10.5)
     SPBN ende;
//Die Leseschleife nur einmal durchlaufen
     TT
           "Once flag";
                                       // Schleife einmalig durchlaufen (M2.0)
     SPB
           ende;
//Wenn ein Fehler auftritt, Fehlerzähler erhöhen
           "Error";
                                       // Error bit (E10.6)
     SPB
                                       // => bei Fehler abbrechen
           erro;
//Neuer Lesebefehl, wenn <Ready-Bit> gesetzt und kein <Fehler>
            "Done";
                                       // Ready-Bit (E10.7)
     SPBN ende;
//Ist die Adresse <Lese-Befehl> = <Lese-Ouittung>?
//Adresse 10 ist eingestellt (siehe HW-Konfiguration)
           "PAE Status";
     L
                                       // PAE : CMD
           W#16#2;
     TTW
                      // Lese-Befehl
     L
           B#16#2;
     ==I
           ; // = Quittung
     U(
           "PAA Adr L";
                                       // PAA : Adr-L
           "PAE Adr L";
                                       // PAE : Adr-L
     L
     ==I
     )
     SPB
                                       // gültige Quittung => Daten übernehmen
          adre;
                                       // => Lesebefehl ausgeben
     SPA
           Lese;
//Daten an aktueller Transponderadresse in Daten-DB speichern
adre: L
           "PAE Adr L";
                                       // PAE : Adr-L
     SLD
           3;
                                       // Erweitern auf 16-Bit Adresse
     Т
           "lwa";
                                       // Speicher der aktuellen Adresse (MD3)
```

5.5 Anwendungsbeispiel

```
Programmcode //Kommentare
     L "PAE Data";
                                     // PAE : Data(Byte4-7)
     AUF "FC1Daten";
                                     // Speicher-DB (DB100)
           DBD ["lwa"];
                                      // gelesene Daten in DB eintragen
           "PAE Adr L";
     т.
                                     // Adresse um 4Byte erhöhen
          B#16#4;
           "FC1Daten".dbadresse; // neue Lese-Adresse speichern
//Neuer Lesebefehl, wenn <Ready-Bit> gesetzt und kein <Fehler>
                                     // Lese-Befehl
Lese: L B#16#2;
          "PAA CMD";
     Т
                                      // PAA : CMD
//Lade die letzte gültige Adresse
     L
          "FC1Daten".dbadresse;
                                   // Speicher-DB (DB100.DBB114)
     Т
           "PAA Adr L";
                                     // PAA : Adr-L
//Lese-Adresse erhöhen (Adressenbereich 112 Bytes = 70 Hex für MDS D124)
        "FC1Daten".dbadresse; // Speicher-DB (DB100.DBB114)
          B#16#6C;
                                     // Endadresse prüfen
     Τ.
                                         (MDS D124 = 112Byte = 6Fhex)
     >I
          ;
     SPB
                                      // => wenn Endadresse erreicht, beenden
          enda;
                                      // => im nächsten Zyklus weiterlesen
     SPA ende;
//Nächsten Transponder lesen
           "VKE1";
enda: U
                                      // Wenn alle Daten gelesen
           "Once flag";
                                      // Lesen des Transponders beenden
     L
           0;
           "PAA CMD";
     Т
                                      // => dann Adresse etc. löschen
                                      //
           "lwa";
     Т
     Т
           "PAA Adr L";
                                      //
           "FC1Daten".dbadresse;
                                     // => warten auf neuen Transponder
     SPA
          ende;
//Fehlerbehandlung
           "FC1Daten".fehler1;
                                     // Fehler zählen
erro: L
     L
     +I
                                     // und Lesen beenden
           "FC1Daten".fehler1;
                                      // Daten die zum Error führten
     L
           "PAA Adr L";
           "FC1Daten".err dbadresse;
                                       // sichern
     _{\rm L}
           "PAA CMD";
                                     //
     Т
                                     //
           "FC1Daten".err_cmd;
           "PAE Status";
                                     //
     _{\rm L}
           "FC1Daten".err_Status;
                                     //
     Т
                                      //
     L
           "PAE Error RFID";
     Т
           "FC1Daten".err ErrorRFID; //
                                     // Adressen/Merker/Speicher löschen
     Τ.
           0:
     Т
           "FC1Daten".dbadresse;
                                     //
                                     //
     Т
           "lwa";
                                            "
     Т
           "PAA Adr L";
                                     //
           "PAA CMD";
                                     //
     Т
     U
           "VKE1";
                                     // Lesen beenden
           "Once_flag";
ende: BE
```

Globaler Datenbaustein

Programmcode //Kommentare

```
DATA BLOCK "FC1Daten"
TITLE =ScanUserData
AUTHOR : IASCCI
FAMILY : RFID
NAME : IOLink
VERSION: 1.0
STRUCT
                : ARRAY [1 .. 112 ] OF BYTE; // Speicher für "Daten"
  fehler1 : WORD := W#16#0;  // Speicher für "Fehler"-Zähler
dbadresse : Byte := B#16#0;  // Speicher für "dbadresse"
                                                       // Speicher Adresse im Fehlerfall
  err dbadresse : BYTE ;
  err cmd : BYTE ;
                                                        // Speicher Command im Fehlerfall
  err Status : BYTE ;
                                                         // Speicher Status im Fehlerfall
  err ErrorRFID : BYTE ;
                                                         // Speicher Error RFID im Fehlerfall
END STRUCT ;
BEGIN
  fehler1 := W#16#0; // Speicher für "Fehler"-Zähler
dbadresse := B#16#0; // Speicher für "dbadresse"
  err_dbadresse := B#16#0;  // Speicher Adresse im Fehlerfall
err_cmd := B#16#0;  // Speicher Command im Fehlerfall
err_Status := B#16#0;  // Speicher Status im Fehlerfall
err_ErrorRFID := B#16#0;  // Speicher Error_RFID im Fehlerfall
END DATA BLOCK
```

5.5 Anwendungsbeispiel

Reader

6.1 Merkmale

Tabelle 6- 1

SIMATIC RF210R IO-Link	Merkmale		
1	Anwendungsbereich	Identifikationsaufgaben in Montagelinien in rauer industrieller Umgebung	
SEME	Aufbau	① RF200 IO-Link-Schnittstelle	
2		② Betriebsanzeige	

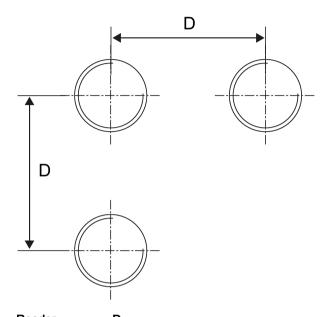
SIMATIC RF220R IO-Link	Merkmale			
-0	Anwendungsbereich	Identifikationsaufgaben in Montagelinien in rauer industrieller Umgebung		
35	Aufbau	① RF200 IO-Link-Schnittstelle		
2		② Betriebsanzeige		

SIMATIC RF260R IO-Link	Merkmale	Merkmale			
	Anwendungsbereich	Identifikationsaufgaben in Montagelinien in rauer industrieller Umgebung			
	Aufbau	① RF200 IO-Link-Schnittstelle			
SIEMENS SIMATIC RF260R		② Betriebsanzeige			
1					

6.2 Pinbelegung RF200-Reader mit IO-Link-Schnittstelle

Tabelle 6-2

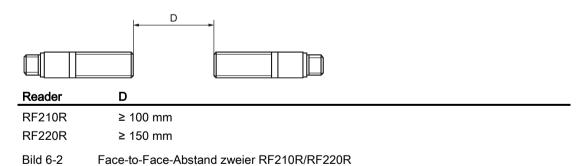
Pin	Pin	Belegung
	Geräteseite 4-pol. M12	
1	1	DC 24 V
	2	reserviert
2 4	3	GND
3	4	IO-Link-Datensignal bzw. Schaltausgang im SIO-Mode


6.3 Anzeigeelemente der RF200 IO-Link-Reader

Als Anzeigeelement dient eine LED am Reader.

LED-Ar	nzeige	Betriebszustand
aus		Keine Versorgungsspannung am Reader
rot	gepulst	Hochlauf
	blinkend	Fehler aufgetreten, die Anzahl der Impulse gibt Auskunft über den aufgetretenen Fehler (siehe Kapitel "Diagnose (Seite 69)") z. B. Hardwarefehler, ungültige Parameter, Watchdog
grün	blinkend	Antenne ausgeschaltet Ein-Aus-Verhältnis 1:1, 1 Hz
	dauerhaft leuchtend	SIO-Mode, kein Transponder im Feld
	gepulst	IO-Link-Mode, kein Transponder im Feld Ein-Aus-Verhältnis 1:10
gelb	dauerhaft leuchtend	SIO-Mode, Transponder im Feld
	gepulst	IO-Link-Mode, Transponder im Feld Ein-Aus-Verhältnis 1:10
abwech blinken	nselnd rot/grün d	Firmware-Update Pulsdauer 500 ms

6.4 Mindestabstand zwischen mehreren Readern


RF210R/RF220R nebeneinander

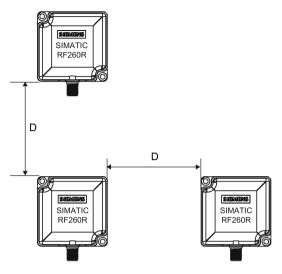
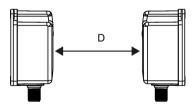

Reader	ט
RF210R	≥ 60 mm
RF220R	≥ 100 mm

Bild 6-1 Mindestabstand zwischen mehreren RF210R/RF220R

RF210R/RF220R Face to Face

RF260R nebeneinander



RF260R ≥ 150 mm (bei 2 Readern)

RF260R ≥ 250 mm (bei mehr als 2 Readern)

Bild 6-3 Mindestabstand zwischen mehreren RF260R

RF260R Face to Face

Reader D

RF260R ≥ 500 mm

Bild 6-4 Face-to-Face-Abstand zweier RF260R

6.5 Maßbilder

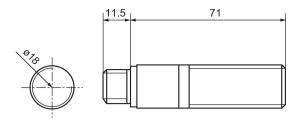


Bild 6-5 Maßbild RF210R IO-Link

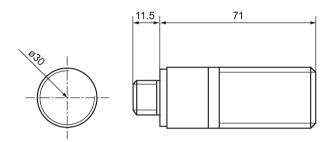


Bild 6-6 Maßbild RF220R IO-Link

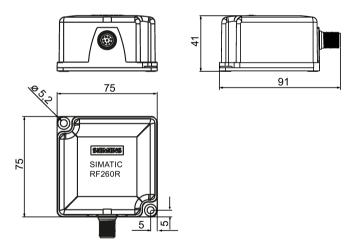


Bild 6-7 Maßbild RF260R IO-Link

Alle Maße in mm.

Diagnose

RFID-Fehlercodes der RF200-Reader

Den Fehler können Sie auf mehreren Wegen ermitteln:

- direkt am Reader durch Abzählen des Blinkmusters der roten Fehler-LED
- Fehlercode im PAE-Byte 1 "error_RFID" (siehe Kapitel "IO-Link-Modus: Erfassung-Anwenderdaten (Seite 56)")
- Meldung als IO-Link-Event (vergleiche Kapitel "Event-Fehlercodes (Seite 80)")

Blinken der roten LED- Anzeige am Reader	Fehlercode (hexa- dezimal)	Beschreibung
00	00	kein Fehler
02	01	Anwesenheitsfehler, mögliche Ursachen:
		der aktive Befehl wurde nicht vollständig ausgeführt
		der Transponder hat das Feld verlassen, während der Befehl bearbeitet wird Kommunikationsstörung zwischen Reader und Transponder
05	05	Parametrierfehler, mögliche Ursachen:
		unbekannter Befehl
		falscher Parameter
		Funktion nicht erlaubt
06	06	Luftschnittstelle gestört
13	0D	Fehler in der angegebenen Speicheradresse (versuchter Zugriff auf nicht vorhandene oder nicht zugängliche Speicherbereiche).
17	11	Kurzschluss oder Überlastung bzw. Übertemperatur
		Der betroffene Ausgang wird abgeschaltet
		Bei Gesamtüberlastung werden alle Ausgänge abgeschaltet
		Ein Rücksetzen ist nur durch das Aus- und Wiedereinschalten der 24 V-Versorgungsspannung möglich
18	12	Interner Hardwarefehler, mögliche Ursachen:
		Stecker-Kontaktproblem auf dem Reader
		Hardware defekt
20	14	schwerwiegender Systemfehler (Hardwarefehler)
21	15	Parametrierfehler: fehlerhafter Parameter
24	18	Nur "RESET" zulässig

Blinken der roten LED- Anzeige am Reader	Fehlercode (hexa- dezimal)	Beschreibung
25	19	Vorheriger Befehl ist noch aktiv
-	1F	laufender Befehl durch "RESET" abgebrochen

Hinweis

Diese Fehler werden durch den Befehl "Antenne Aus" bzw. durch den Vorgang, dass der Transponder das Feld verlässt quittiert (=RESET). Die hexadezimalen Fehler 11, 12, 14 und 15 werden nur durch "Blinken" der LED-Anzeige angezeigt, das Byte "error_RFID" wird nicht verwendet.

Zusätzlich werden an den Master sogenannte Eventmeldungen weitergegeben (siehe Kapitel "Event-Fehlercodes (Seite 80)"). Diese Fehlermeldungen können Sie sich mit Hilfe von S7-PCT anzeigen lassen (Diagnose) oder mit Hilfe des Funktionsbausteins "IOL_CALL" auslesen. Eventmeldungen können Sie ausschließlich über S7-PCT oder die Funktion "IOL_CALL" (Systembefehl) zurücksetzen.

Technische Daten

8.1 Technische Daten der RF200 IO-Link-Reader

Betriebsfrequenz	13,56 MHz
Antenne	integriert
Schnittstelle zum IO-Link-Master	IO-Link
Maximale Datenübertragungsrate Punkt-zu-Punkt-Verbindung	38,4 kbit/s
Leitungslänge Reader - IO-Link-Master	max. 20 m
Leseabstände des Readers	Siehe Kapitel "Felddaten (Seite 24)"
Protokoll bei Funkübertragung	ISO 15693, ISO 1800-3
Maximale Datenübertragungsrate Funkübertragung	26,6 kbit/s
Übertragungszeit bei Lesezugriff (typisch)	40 ms/Byte
Übertragungszeit bei Schreibzugriff (typisch)	40 ms/Byte
Steckverbinder	M12, 4-polig
Versorgungsspannung (min max)	DC 24 V (DC 20,4 28,8 V)
Stromaufnahme (bei DC 24 V)	50 mA
Anzeigeelemente	3-Farben LED (Betriebsspannung, Anwesenheit, Fehler)
Umgebungstemperatur	
im Betrieb	• -20 +70 °C
bei Transport und Lagerung	• -25 +80 °C
Schutzart nach EN 60529	IP67
Schockfestigkeit	EN 60721-3-7 Klasse 7 M2
Schockbeschleunigung	• 500 m/s²
Vibrationsbeschleunigung	• 200 m/s²
Zulassungen	Funk nach R&TTE-Richtlinien EN 300 330, EN 301489, CE, FCC, UL/CSA
MTBF	505 a

8.1 Technische Daten der RF200 IO-Link-Reader

Technische Daten, RF210R-spezifisch				
Gehäuse				
Maße (Länge x Durchmesser)Farbe	 83 x 18 mm (inkl. 8-pol-Steckerhülse und Kunstoffkappe) silber 			
Material	Messing, vernickelt			
Befestigung	2 Metall-Sechskantmuttern M18; Dicke: 4 mm Anzugsdrehmoment ≤ 20 Nm			
Gewicht	ca. 65 g (inkl. zwei M18-Muttern)			

Tabelle 8- 1

Technische Daten, RF220R-spezifischTechnische Daten				
Gehäuse				
 Maße (Länge x Durchmesser) 	 83 x 30 mm (inkl. 8-pol-Steckerhülse und Kunstoffkappe) 			
• Farbe	• silber			
Material	 Messing, vernickelt 			
Befestigung	2 Metall-Sechskantmuttern M30; Dicke: 5 mm Anzugsdrehmoment ≤ 40 Nm			
Gewicht	ca. 140 g (inkl. zwei M30-Muttern)			

Tabelle 8-2

Technische Daten, RF260R-spezifisch				
Gehäuse				
 Maße (Lange x Breite x Höhe) 	 75 x 75 x 41 mm (ohne M12 Gehäusestecker) 			
• Farbe	anthrazit			
Material	 Kunststoff PA 6.6 			
Befestigung	2 Metall-Schrauben M5; Anzugsdrehmoment ≤ 1,5 Nm			
Gewicht	ca. 200 g			

8.2 FCC-Information

Siemens SIMATIC RF210R IO-Link (MLFB 6GT2821-1AC32) FCC ID: NXW-RF210RIOL Siemens SIMATIC RF220R IO-Link (MLFB 6GT2821-2AC32) FCC ID: NXW-RF220RIOL Siemens SIMATIC RF260R IO-Link (MLFB 6GT2821-6AC32) FCC ID: NXW-RF260RIOL

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference.
- (2) This device must accept any interference received, including interference that may cause undesired operation.

Caution

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Canada-Information

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- (1) this device may not cause interference, and
- (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

8.3 cULus-Information

Achten Sie darauf, dass bei der Nutzung eines ET200S IO-Link-Masters das eingesetzte Netzteil einem Class 2 Device (limited Current/limited Voltage) entspricht und im UL-File entsprechend gelistet ist.

8.3 cULus-Information

Anschlusskabel

Kabel mit offenen Enden für ET 200S und ET 200SP mit CM 4xIO-Link-Master und S7-1200 mit SM 1278 4xIO-Link-Master

Das Anschlusskabel besitzt eine Länge von 5 m (Standard) bzw. 10 m.

Betriebsart IO-Link IO-Link-Seite Reader-Seite

3-Leiter

L+ braun 1 SLG-Stecker M12, Buchse (4-polig)

res. 2
blau 3

C/Q Schwarz 4

Bild 9-1 Aufbau des Verbindungskabels zwischen IO-Link Master mit Einzeladeranschlusstechnik und Reader

Anschlussbelegungen der IO-Link Master von Siemens

Tabelle 9-1 ET 200SP

Anschlussbelegung für Elektronikmodul CM 4xIO-Link (6ES7137-6BD00-0AB0)								
Klemme	Belegung	Klemme	Belegung	Erläuterungen	Farbkennzeichnungsschild			
1	C/Q 1	2	C/Q 2	• C/Q:	JOOL			
3	C/Q 3	4	C/Q 4	Kommunikationssignal	1001			
5	RES	6	RES	RES: reserviert, darf				
7	RES	8	RES	nicht belegt werden	ICOI			
9	L + 1	10	L + 2	• L+:				
11	L + 3	12	L + 4	Versorgungsspannung(p	1001			
13	M	14	М	ositiv)	CC04 6ES7193-6CP04-2MA0			
15	М	16	М	M: Masse				
L+	24VDC	М	Masse					

Tabelle 9-2 ET 200S

Anschlussbelegung für Elektronikmodul 4SI IO-Link-Master (6ES7138-4GA50-0AB0)								
Klemme	Belegung	Klemme	Belegung	Erläuterungen				
1	C/Q Port 1	5	C/Q Port 2	C/Q: Kommunikationssignal				
2	C/Q Port 3	6	C/Q Port 4	L+: Versorgungsspannung				
3	L + Port 1	7	L + Port 2	L-/M: Masse				
4	L + Port 3	8	L + Port 4					
A4	M Port 1 (AUX)	A8	M Port 2 (AUX)					
A3	M Port 3 (AUX)	A7	M Port 4 (AUX)					

Verwendbare Terminalmodule: Federklemme (6ES7193-4CA50-0AA0), Schraubklemme (6ES7193-4CA40-0AA0) und Fast Connect (6ES7193-4CA80-0AA0)

Tabelle 9-3 S7-1200: SM 1278 4xIO-Link-Master

	Anschlussbelegung für Elektronikmodul SM 1278 4xIO-Link-Master (6ES7278-4BD32-0XB0)								
Pin	X10	X11	X12	X13	Erläuterungen				
7	M ₁	M ₂	M ₃	M ₄	M _n : Masse zu Slave				
6	C/O ₁	C/O ₂	C/O ₃	C/O ₄	C/On: Kommunikationssignal				
5	L ₁	L ₂	L ₃	L ₄	L _n : 24 V DC zum Slave				
4	RES	RES	RES	RES	M: Masse				
3	Funktions erde	RES	RES	RES	L+: 24 V DC zum Master				
2	M	RES	RES	RES	RES: reserviert; darf nicht belegt werden				
1	L+	RES	RES	RES					

ET 200eco PN

Für den IO-Link Master ET 200eco PN stehen fertige Kabel mit beidseitigem M12 Stecker zur Verfügung (siehe Kapitel "Bestelldaten (Seite 77)").

Bestelldaten 10

Tabelle 10- 1 IO-Link-Schnittstellen

	Bestellnummer
RF210R mit IO-Link-Schnittstelle	6GT2821-1AC32
RF220R mit IO-Link-Schnittstelle	6GT2821-2AC32
RF260R mit IO-Link-Schnittstelle	6GT2821-6AC32

Tabelle 10- 2 Zubehör

		Bestellnummer
Steckleitung IO-Link,	5 m	6GT2891-4LH50
offenes Ende - M12	10 m	6GT2891-4LN10
Steckleitung IO-Link,	5 m	6GT2891-0MH50
M12 Stecker - M12 Buchse	10 m	6GT2891-0MN10

Anhang

Für das Verständnis dieses Anhangs, wird der Umgang mit der Funktion "IOL_CALL" vorausgesetzt.

A.1 IO-Link-Fehlercodes

A.1.1 ISDU-Return-Fehlercodes

S7-PCT, IOL_CALL und der IO-Link-Device (Reader) bedienen sich der Telegramm-Transportschicht "ISDU". In der nachfolgenden Tabelle werden mögliche ISDU-Return-Fehlercodes aufgelistet. Die ISDU-Return-Fehlercodes werden nicht vom Reader erzeugt. Die Fehlercodes können Sie sich über den Funktionsbaustein "IOL_CALL" anzeigen lassen.

Fehlercode (hex)	Fehlerbeschreibung	Fehlerbehebung
8000	Befehlsfehler	-
8011	Index nicht verfügbar	Index korrigieren
8012	Subindex nicht verfügbar	Subindex korrigieren
8020	Service vorübergehend nicht verfügbar	Abfrage nach Wartezeit wiederholen
8021	Service vorübergehend nicht verfügbar. Lokale Bedieneinheit blockiert.	Abfrage nach Wartezeit wiederholen
8022	Service vorübergehend nicht verfügbar. Device ist mit anderer Aufgabe beschäftigt.	Abfrage nach Wartezeit wiederholen
8023	Zugriff verweigert	Index kann nur gelesen werden
8030	Parameterwert ist außerhalb des zulässigen Wertebereiches	Korrekten Wert übergeben
8031	Parameterwert liegt über dem Limit	Korrekten Wert übergeben
8032	Parameterwert liegt unter dem Limit	Korrekten Wert übergeben
8033	Parameterlänge überschritten	Parameterlänge prüfen
8034	Parameterlänge unterschritten	Parameterlänge prüfen
8035	Funktion nicht verfügbar	Aufrufparameter prüfen
8036	Funktion vorübergehend nicht verfügbar	Abfrage nach Wartezeit wiederholen
8040	Ungültiger Parametersatz	Korrekten Parametersatz übergeben
8041	Ungültiger Parametersatz	Korrekten Parametersatz übergeben
8082	Applikation nicht bereit	-

A.1.2 Event-Fehlercodes

Die nachfolgenden Event-Fehlercodes, werden Ihnen angezeigt, wenn Sie in S7-PCT den Parameter "Event-Meldung" aktiviert haben.

Die Event-Fehlercodes mit dem Event-Typ "Kommend/Gehend" werden vom IO-Link-Reader gemeldet und vom IO-Link-Master zu Diagnosezwecke auf der Feldbusebene zur Speicherprogrammierbaren Steuerung (SPS) weitergeleitet. Diese Event-Fehlercodes können Sie sich mit Hilfe der Standarddiagnose der CPU anzeigen lassen. Den Event-Typ "Warnung" können Sie sich über den Funktionsbaustein "IOL_CALL" oder mit Hilfe des PCT-Tool anzeigen lassen.

Fehlercode (hex)	Fehlerbeschreibung	Device-Status 1)	Event-Typ	Fehlerursachen
1823	Interner Fehler	RFID-Fehlercode (hex) 01	Warnung	Der Lesebefehl steht an der Luftschnittstelle an und es kommt zur Kommunikationsstörung. Mögliche Ursachen: • der aktive Befehl wurde nicht vollständig ausgeführt • der Transponder hat das Feld verlassen, während der Befehl bearbeitet wird • Kommunikationsstörung zwischen Reader und Transponder z. B. aufgrund von EMV-Störungen
1831	Flash-Fehler	RFID-Fehlercode (hex) 12	Fehler Kommend/ Gehend	Hardwarefehler beim Abspeichern (Flash-Fehler)
1833	Interner Fehler	RFID-Fehlercode (hex) 05, 06, 0D, 15, 18, 19	Fehler	Sammelfehler, klassischer RFID-Fehler. Mögliche Ursachen (in der Betriebsart "Erfassung-Anwenderdaten"): Firmware-/Parametrierungsfehler Fehler in der angegebenen Speicheradresse (RFID-Fehler 0D) Luftschnittstelle gestört (RFID-Fehler 06) Parametrierungsfehler (RFID-Fehler 05): unbekannter Befehl (falsche Angabe im PAA) falscher Parameter (z. B. Adresse falsch, Länge falsch) Funktion nicht erlaubt (z. B. Befehl aufsetzen im UID-Modus)
1834	Ungültiges PAA	RFID-Fehlercode (hex) 05	Fehler Kommend/ Gehend	Befehl wurde ins PAA geschrieben obwohl nicht zulässig. z. B. der Befehl "Lesen" in der Betriebsart "UID-Erfassung"

Fehlercode (hex)	Fehlerbeschreibung	Device-Status 1)	Event-Typ	Fehlerursachen
4000	Übertemperatur	RFID-Fehlercode (hex) 11	Fehler Kommend/ Gehend	Der Reader hat Übertemperatur (> 110 °C) im Gerät und damit einen gefährlichen Zustand erkannt. Schalten Sie das Gerät spannungslos
5100	Allgemeiner Fehler bei der Spannungsversorgung	RFID-Fehlercode (hex) 11	Fehler Kommend/ Gehend	Hardware-Fehler: Unter-/Überspannung Kontrollieren Sie die Spannungsversorgung.
6000	Firmware-Fehler	RFID-Fehlercode (hex) 14	Fehler Kommend/ Gehend	Die Firmware hat einen internen Fehler (Systemfehler) erkannt. z. B. unlogischer Zustand oder Watchdog etc.
6320	Parametrierungsfehler	RFID-Fehlercode (hex) 15	Fehler Kommend/ Gehend	Parametrierungsfehler: fehlerhafter Parameter
8C00	Reset Device	RFID-Fehlercode (hex) 14	Fehler Kommend/ Gehend	schwerwiegender Systemfehler, Watchdog: Spannung aus- und wieder einschalten

¹⁾ Der Device-Status ist gleichbedeutend mit dem RFID-Fehlercode.

Hinweis

Die Eventmeldungen können Sie sich mit Hilfe von S7-PCT anzeigen lassen oder mit Hilfe des Funktionsbausteins "IOL_CALL" auslesen. Eventmeldungen können Sie ausschließlich über S7-PCT oder die Funktion "IOL_CALL" zurücksetzen.

Die Eventmeldungen können nicht durch "Antenne Aus" bzw. "Transponder aus Feld bewegen" wie bei den RFID-Fehlern zurückgesetzt werden (vergleiche Kapitel "Diagnose (Seite 69)").

A.2 Übersicht der Servicedaten

Das Device RF200R IO-Link unterstützt folgende Indices für Servicedaten und zur Parametrierung:

Hinweis

Direct Parameter Page 1 (Index 0)

Diese Parameter werden ausschließlich systemintern verwendet und brauchen in der Regel nicht berücksichtigt zu werden. Sie können aber bei Bedarf über Index 0 ausgelesen werden (siehe Kapitel "IOL_CALL (Seite 58)").

Index	Objekt- Name	Subindex	Länge in Byte	Zugriff	Parametername	Beschreibung
0x00	Direct	0x00	16	r	-	Gesamter Index selektiert
	parameter page 1	0x01	1	r	Master-Command	Schalten des IO-Link - Betriebszustandes (Fallback, Operate, Preoperate)
		0x02	1	r	MasterCycle-Time	Master-Zykluszeit
		0x03	1	r	MinCycleTime	Minimale Device-Zykluszeit (Reader)
		0x04	1	r	F-sequence Capability	Unterstützte Frame-Types für die Kommunikation.
		0x05	1	r	RevisionID	Im Device implementierte IO-Link- Protokollversion
		0x06	1	r	ProcessDataIn	Anzahl und Struktur der Daten Prozessabbild der Eingänge zum Master
		0x07	1	r	ProcessDataOut	Anzahl und Struktur der Daten Prozessabbild der Ausgänge vom Master
		0x08	1	r	VendorID 1 (MSB)	Eindeutige Hersteller- Identifikationsnummer
		0x09	1	r	VendorID 2 (LSB)	SIEMENS: 0x002A
		0x0A	1	r	DeviceID 1 (Octet 2, MSB)	Eindeutige Device-
		0x0B	1	r	DeviceID 2 (Octet 1)	Identifikationsnummer.
		0x0C	1	r	DeviceID 3 (Octet 0, LSB)	RF210R IO-Link: 0x0C0201 RF220R IO-Link: 0x0C0202 RF260R IO-Link: 0x0C0206
		0x0D	1	r	FunctionID 1 (MSB)	reserviert
		0x0E	1	r	FunctionID 2 (LSB)	
		0x0F	1	r	-	reserviert
		010	1	r	System-Command	Ungenutzt, Systemkommando wird über Index 2 aktiviert.

Index	Objekt- Name	Subindex	Länge in Byte	Zugriff	Parametername	Beschreibung
0x02	System command	0x00	1	w	-	Unterstützte Systemkommandos: Device Reset: 0x80 Rücksetzen auf Werkseinstellung: 0x82
0x03	Data storage index	0x01	1	r/w	DS command	 0x00: reserviet 0x01: DS upload start 0x02: DS upload end 0x03: DS download start 0x04: DS download end 0x05: DS break 0x06 0xFF: reserviert
		0x02	1	r	State property	Bit 0: reserviert Bit 1 und Bit 2: Status • 0b00: Inaktiv • 0b01: Upload • 0b10: Download • 0b11: Datenspeicher gesperrt Bit 3 bis Bit 6: reserviert Bit 7: Upload-Status • "0": kein Upload • "1": Upload anstehend
		0x03	4	r	Data storage size	Anzahl der Bytes zum Speichern der benötigten Parameter für Gerätetausch
		0x04	4	r	Parameter cecksum	Revision Counter (RC)
		0x05	variable	r	Index List	Liste der gespeicherten Parameter
0x10	Vendor name	0x00	12	r	-	Herstellername: "SIEMENS AG"
0x11	Vendor text	0x00	12	r	-	Herstellertext: "SIEMENS AG"
0x12	Product name	0x00	24	r	-	Produktname: "SIMATIC RF2xxR IO-Link"
0x13	Product ID	0x00	16	r	-	Produkt ID: MLFB des Readers z. B. "6GT2821-1AC32"
0x14	Product text	0x00	64	r	-	Produkttext: Angaben zu Reader-Eigenschaften
0x15	Serial number	0x00	12	r	-	Seriennummer wird nicht unterstützt
0x17	Firmware revision	0x00	12	r	-	Firmware-Version (z. B. V1.0.0)
0x18	Application specific tag	0x00	32	r/w	-	Anwenderspezifische Daten. z. B. Anlagenkennzeichen, Funktion, Wartungsdaten, Ortskennzeichen

Index	Objekt- Name	Subindex	Länge in Byte	Zugriff	Parametername	Beschreibung
0x20	Error count	0x00	2	r	-	Anzahl der aufgetretenen Fehler seit dem Einschalten (Anzahl der Events)
0x28	Process Data Input	0x00	8	r	-	Letztes Prozessabbild der Eingänge auslesen
0x29	Process Data Output	0x00	8	r	-	Letztes Prozessabbild der Ausgänge auslesen
0x40	Reader parameter	0x00	8	r/w	-	Auslesen der Reader-Parameter des Readers (gesamt möglich = Subindex 0x00)
			1	r/w	Event indications	2: Event-Meldung aktiviert (default) 4: keine Meldung
			1	r/w	Operation mode	4: UID-Erfassung (default) 8: Anwenderdaten-Erfassung
			1	r/w	Ready delay	2: Ausschalten 4: Einschalten zusätzlicher Sicherungsmechanismus für die konsistente Datenübertragung
			1	r/w	Data hold time	Mindestzeitraum in dem die Prozess- Eingangsdaten vom Device nicht verändert werden.
						0x00: minimal (default)
						• 0x0A: 100 ms
						• 0x14: 200 ms
						• 0x32: 500 ms
						• 0x64: 1s
						• 0xC8: 2s
						0xFE: Testmode "Auslösen Events"
			1	r/w	Air Interface	Einstellen der 2: ISO Default (default) 4: spezielle Einstellungen
			1	r/w	Modulation	Einstellung der Modulationsstärke 0 100 % (default 22 %)
			1	r/w	Subcarrier	Nebenträger 2: single (default) 4: double
			1	r/w	Data rate	Datenrate 2: low 4: high (default)
0x43	IO-Link baudrate	0x00	1	r	-	IO-Link Baudrate 4: 38,4 kBit/s
0x4A	Event	0x00	20	r	-	Gesamter Index selektiert
	history	0x01	4	r	-	Letztes Event
		0x02	4	r	-	Vorletztes Event
		0x03	4	r	-	Drittletztes Event

Index	Objekt- Name	Subindex	Länge in Byte	Zugriff	Parametername	Beschreibung
		0x04	4	r		Viertletztes Event
		0x05	4	r	-	Fünftletztes Event
0x5A	Reader status	0x00	18	r	-	Nur insgesamt auslesbar, nur Subindex 0 möglich.
			4	r	Time since startup	Betriebszeit des Readers seit dem Einschalten
			1	r	Tags in the field	Anzahl der sich im Feld befindlichen Transponders. Hier ist nur 1 Transponder zugelassen.
			1	r	Antenna ctatus	Zustand der Antenne:
						0: unbekannt
						1: Antenne ein
						2: Antenne aus
			4	r	Tag changes	Anzahl der im Feld durchgelaufenen Transpnder seit dem Einschalten des Readers
			1	r	Line driver Revision	Version des physikalischen IO-Link- Treiberbausteins
			1	r	Reader FZB	HF-Feld, Fehlerzähler passiv (z. B. Störimpulse) Wird beim auslesen zurückgesetzt.
			1	r	Reader ABZ	HF-Protokollfehler, Abbruchszähler Wird beim auslesen zurückgesetzt.
			1	r	Reader CFZ	HF-Protokollfehler, Codefehlerzähler Wird beim auslesen zurückgesetzt.
			1	r	Reader SFZ	HF-Protokollfehler, Signaturfehlerzähler Wird beim auslesen zurückgesetzt.
			1	r	Reader CRCFZ	HF-Protokollfehler, CRC-Fehlerzähler Wird beim auslesen zurückgesetzt.
			1	r	Reader BSTAT	Anzahl der Befehlswiederholungen Wird beim auslesen zurückgesetzt.
			1	r	Reader FZ	Fehlerzähler
0x5B	Tag status	0x00	15	r	-	Nur insgesamt auslesbar, nur Subindex 0 möglich.
			8	r	UID	Unified Identifier des im Feld befindlichen Transponders.

Index	Objekt- Name	Subindex	Länge in Byte	Zugriff	Parametername	Beschreibung
			1	r	Tag type	Tag-Typ:
						0: unbestimmt
						1: ISO allgemein, nicht spezifisch oder unbekannt
						• 3: my-d (Infineon), MDS D3xx
						• 4: MB89R118 (Fujitsu), MDS D4xx
						• 5: I-Code SLI (NXP), MDS D1xx
						6: Tag-it (Texas Instruments), MDS D2xx
						• 7: LRI2K (ST)
			1	r	Transponder Chip version	Chip-Version des Tag
			2	r	Transponder Memory size	Speichergröße des Tag
			1	r	Transponder Lock state	Lock-Status, OTP-Information:
						Pro Block wird ein Bit verwendet (4x4 Bytes oder 2x8 Bytes).
						Bit = 1: Block ist gesperrt. Z. B. 03 = Block 1 und Block 2 sind gesperrt.
			1	r	Transponder Memory block size	Blockgröße des Transponders
			1	r	Transponder Number of blocks	Blockanzahl des Transponders
0x5C	UID history	0x00	40	r	-	Gesamter Index selektiert
		0x01	8	r	-	Liste der UIDs der Transponder, die sich zuletzt im Feld befunden haben: Letzte UID
		0x02	8	r	-	Vorletzte UID
		0x03	8	r	-	Drittletzte UID
		0x04	8	r	-	Viertletzte UID
		0x05	8	r	-	Fünftletzte UID

Systembefehle

Systembefehle können Sie über den Funktionsbaustein "IOL_CALL" oder das PCT-Tool ausführen.

Gerät zurücksetzen:

Der Reader führt einen neuen Hochlauf durch. Entspricht dem Aus- und Einschalten der Versorgungsspannung.

• Auslieferungszustand wiederherstellen:

Der Reader führt einen neuen Hochlauf durch. Zusätzlich werden die "Reader parameter (Index 0x40)" sowie der "Application specific tag (Index 0x18)" auf die Voreinstellungen (Default-Werte) zurückgesetzt.

A.3 Zertifikate und Zulassungen

CE-Kennzeichnung

Zertifikat	Beschreibung
CE	Konformität nach R&TTE-Richtlinie

Für das in dieser Dokumentation beschriebene System gilt:

Trägt ein Gerät die CE-Kennzeichnung, liegt eine entsprechende Zulassung vor.

DIN ISO 9001-Zertifikat

Das Qualitätssicherungssystem unseres gesamten Produktentstehungsprozesses (Entwicklung, Produktion und Vertrieb) erfüllt die Anforderungen der DIN ISO 9001 (entspricht EN29001: 1987).

Dies wurde uns von der DQS (Deutsche Gesellschaft zur Zertifizierung von Qualitätsmanagementsystemen GmbH) bestätigt.

EQ-Net Zertifikat Nr.: 1323-01

Länderspezifische Bescheinigungen

Sicherheit

Trägt das Gerät eines der folgenden Zeichen, liegt eine entsprechende Zulassung vor:					
C US	Underwriters Laboratories (UL) nach Standard UL508 und C22.2 No. 142 (IND.CONT.EQ)				

EMV

Trägt ein Gerät eines der folgenden Z	eichen, liegt eine entsprechende EMV-Zulassung vor:				
	Brasilien				
	ANATEL				
ANATEL	Certificado de Homologação				
Agência Nacional de Telecomunicações	REPÚBLICA FEDERATIVA DO BRASIL				
xxxx-yy-6900	AGÊNCIA NACIONAL DE TELECOMUNICAÇÕES				
0107894607492145					
CMIIT ID: 20xxDJxxxx	China				
	CMMIT				
	Radio Transmission Equipment Type Approval Certificate				
	In accordance with the provisions on the Radio Regulations of the People's Republic of China, the following radio transmission equipment, after examination, conforms to the provisions with its CMIIT ID.				
Sistema de RFID para uso Industrial	Mexiko				
Marca: SIEMENS	Estados Unidos Mexicanos				
Modelo: RF xxxR	Comision Federal de Telecomunicaciones				
COFETEL: XXXXXXXXXXXXXXX					
	Südafrika				
TA-xxxx/xxxx	Independent Communications Authority of South Africa,				
ICN-SA	Sandton				
	Radio Equipment Type Approval Certificate				
APPROVED					
	Südkorea				
	Korea Communications Commission				
	Certificate of Broadcasting and Communication Equipments				
	Republic of Korea				
KCC-CRM-RF5-RFxxxR					

Die für die USA und Canada geltenden EMV-Richtlinien finden Sie im Kapitel "FCC-Information (Seite 73)".

A.4 Service & Support

Ansprechpartner

Falls Sie noch Fragen zur Nutzung unserer Produkte haben, wenden Sie sich bitte an Ihren Siemens-Ansprechpartner in den für Sie zuständigen Vertretungen und Geschäftsstellen.

Die Adressen finden Sie an folgenden Stellen:

- Im Internet (http://www.siemens.de/automation/partner)
- Im Katalog CA 01
- Im Katalog ID 10 speziell für Industrial Communication / Industrial Identification Systems

Technische Unterstützung

Sie erreichen den Technical Support für alle IA-/DT-Produkte über folgende Kommunikationswege:

- Telefon: + 49 (0) 911 895 7222
- Fax: +49 (0) 911 895 7223
- E-Mail (mailto:technical-assistance@siemens.com)
- Internet: Web-Formular für Support Request (http://www.siemens.de/automation/support-request)

Service & Support bei Industry Automation and Drive Technologies

Im Internet finden Sie auf der Support-Homepage (http://www.siemens.com/automation/service&support) von IA/DT verschiedene Service-Leistungen.

Dort finden Sie z. B. folgende Informationen:

- Den Newsletter, der Sie ständig mit den aktuellsten Informationen zu Ihren Produkten versorgt.
- Die für Sie richtigen Dokumente über unsere Suchfunktion in "Produkt Support".
- Ein Forum, in welchem Anwender und Spezialisten weltweit Erfahrungen austauschen.
- Ihren Ansprechpartner f
 ür IA/DT vor Ort.
- Informationen über Vor-Ort-Service, Reparaturen, Ersatzteile. Vieles mehr steht für Sie unter "Unser Service-Angebot" bereit.

RFID-Homepage

Allgemeine Neuigkeiten zu unseren Identifikationssystemen finden Sie im Internet auf unserer RFID-Homepage (http://www.siemens.de/ident/rfid).

A.4 Service & Support

Online-Katalog und -Bestellsystem

Den Online-Katalog und das Online-Bestellsystem finden Sie ebenfalls auf der Industry Mall-Homepage (http://www.siemens.com/industrymall/de).

Trainingscenter

Um Ihnen den Einstieg zu erleichtern, bieten wir Ihnen entsprechende Kurse an. Wenden Sie sich bitte an Ihr regionales Trainingscenter oder an das zentrale Trainingscenter in

D-90327 Nürnberg.

Telefon: +49 (0) 180 523 56 11

(0,14 €/Min. aus dem deutschen Festnetz, abweichende Mobilfunkpreise möglich)

Informationen zum Kursangebot finden Sie auch auf der SITRAIN-Homepage (http://www.sitrain.com).

Index

	Felddaten
A	RF210R IO-Link, 24
Aktive Fläche, 19	RF220R IO-Link, 25
Anschlussbelegung, 75	RF260R IO-Link, 25
Ansprechpartner, 89	
Anwendungsbereich, 7	
Anzeigeelemente, 65	1
Auswahlkriterien	IO_CALL, 58
SIMATIC RF200-Komponenten, 15	IO_CALL, 36 IO-Link-Mode, 7, 39, 55, 56
SimA no Ri 200-Romponemen, 15	Erfassung-Anwenderdaten, 56
	UID-Erfassung, 55
В	OID-Linassung, 55
<i>B</i>	
Betriebsmodus	K
IO-Link-Mode, 7, 39	IX
SIO-Mode, 7, 39	Kabel
Bewegungsrichtung	IO-Link-Master - Reader, 75
Transponder, 19	Klemmenbelegung, 75
Bündiger Einbau	Kombinationsmöglichkeiten
von Transpondern und Readern, 29	Reader - Transponder, 12
	Kommunikationsdauer
	berechnen, 21
D	Konventionen, 5
Datenkonsistenz, 39	Kursangebote, 90
Datenübertragung	
Azyklische Service-Daten, 8	
Konsistenz, 39	M
Zyklische Prozessdaten, 8	Marken, 5
Datenübertragungsrate, 71	Metall
Dynamischer Betrieb, 20	Einfluss auf das Übetragungsfenster, 31
Dynamiconol Boules, 20	Metallfreier Raum
	Reader RF210R IO-Link, 31
E	Reader RF220R IO-Link, 33
	Reader RF260R IO-Link, 35
Einbau	Metallische Einflüsse verringern, 28
mehrere Reader,	Mindestabstand
Einbaurichtlinien, 27	Reader zu Reader, 27, 66
Einsatzplanung	Transponder zu Transponder, 26
SIMATIC RF200, 15	,
EMV-Richtlinien, 88	
	N
_	
F	Nutzdaten
Fehlercodes	berechnen, 21
Event-Fehlercodes, 80	maximale Anzahl berechnen, 21
IO-Link-Fehlercodes, 79	
ISDU-Return-Fehlercodes, 79	

RFID-Fehlercodes, 69

Ρ

Pinbelegung, 64 Port Configuration Tool (PCT), 44 Prozessabbild der Ausgänge (PAA), 55, 56 der Eingänge (PAE), 55, 56

R

Reader
einbauen, 30
Merkmale, 63
Pinbelegung, 64
Reader RF210R IO-Link, 63
Metallfreier Raum, 31
Reader RF220R IO-Link, 63
Metallfreier Raum, 33
Reader RF260R IO-Link, 64
Metallfreier Raum, 35
Reader-Diagnose, 52

S

Schreib-/Leseabstand, 15 Servicedaten, 82 SIO-Mode, 7, 39, 55 Spurführung Toleranz, 18 Statischer Betrieb, 20

Т

Technische Daten, 71
RF210R IO-Link, 72
RF220R IO-Link, 72
RF260R IO-Link, 72
Technische Unterstützung, 89
Toleranz der Spurführung, 18
Training, 90
Transponder
aktive Fläche, 19
Bewegungsrichtungen, 19
Montage auf Metall, 30

U

Übertragungsfenster, 15 Beeinflussung durch Metall, 31 Breite, 18

Ζ

Zeitkonstante, 21 Zertifikate, 87 Zulassungen, 87