SIEMENS

SINAMICS/SIMOTICS

SINAMICS V90, SIMOTICS S-1FL6

Operating Instructions

Preface	
Safety instructions	1
General information	2
Mounting	3
Connecting	4
Commissioning	5
Basic operator panel (BOP)	6
Control functions	7
PROFINET communication	8
Safety integrated function	9
Tuning	10
Parameters	11
Diagnostics	12
Appendix	Α

PROFINET (PN) interface

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by [®] are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Preface

Documentation components

Document	Content
Operating Instructions	(this manual)
Getting Started	Describes how to install, connect, operate, and perform basic commissioning of the SINAMICS V90 PN servo system.
SIMOTICS S-1FL6 Servo Motors Installation Guide	Describes how to install the SMOTICS S-1FL6 servo motor and relevant safety notices.

Target group

This manual provides information about the SINAMICS V90 PN servo system for planners, operators, mechanical engineers, electrical engineers, commissioning engineers, and service engineers.

Technical support

Country	Hotline
China	+86 400 810 4288
Germany	+49 911 895 7222
Italy	+39 (02) 24362000
India	+91 22 2760 0150
Turkey	+90 (216) 4440747
Further service contact information:	

Support contacts (https://support.industry.siemens.com/cs/ww/en/ps)

Table of contents

	Preface		3
1	Safety ins	structions	9
	1.1 1.1.1 1.1.2 1.1.3 1.1.4	Fundamental safety instructions General safety instructions Handling electrostatic sensitive devices (ESD) Industrial security Residual risks of power drive systems	9 15 15
	1.2	Additional safety instructions	18
2	General i	nformation	25
	2.1 2.1.1 2.1.2	Deliverables Drive components Motor components	25
	2.2	Device combination	30
	2.3	Product overview	33
	2.4	Accessories	37
	2.5	Function list	47
	2.6 2.6.1 2.6.2 2.6.3	Technical data Technical data - servo drives Technical data - servo motors Technical data - cables	48 51
3	Mounting		63
	3.1 3.1.1 3.1.2 3.1.3	Mounting the drive Mounting orientation and clearance Drill patterns and outline dimensions Mounting the drive	63 64
	3.2 3.2.1 3.2.2	Mounting the motor Mounting orientation and dimensions Mounting the motor	68
4	Connectir	ng	75
	4.1	System connection	75
	4.2 4.2.1 4.2.2	Main circuit wirings Line supply - L1, L2, L3 Motor power - U, V, W	80
	4.3 4.3.1 4.3.1.1 4.3.1.2 4.3.2	Control/status interface - X8 Digital inputs/outputs (DIs/Dos) DIs DOs Standard application wirings in speed control mode (factory setting)	85 85 86

	4.3.3 4.3.3.1 4.3.3.2	Connection example with PLCs SIMATICS S7-1200 SIMATICS S7-1500	90
	4.4	24 V power supply/STO	92
	4.5	Encoder interface - X9	93
	4.6	External braking resistor - DCP, R1	97
	4.7	Motor holding brake	98
	4.8	PROFINET interface - X150	103
5	Commissior	ning	.105
	5.1	General commissioning information	105
	5.2	Commissioning in JOG mode	106
	5.3	Commissioning in speed control mode	108
6	Basic opera	tor panel (BOP)	.111
	6.1	BOP overview	111
	6.1.1	BOP display	
	6.1.2	Control buttons	
	6.2	Parameter structure	
	6.3	Actual status display	
	6.4 6.4.1	Basic operations Editing parameters	
	6.4.2	Viewing parameters	
	6.4.3	Searching parameters in "P ALL" menu	
	6.5	Auxiliary functions	
	6.5.1		
	6.5.2 6.5.3	Saving parameters (RAM to ROM) Setting parameters to default	
	6.5.4	Transferring data (drive to SD)	
	6.5.5	Transferring data (SD to drive)	
	6.5.6	Updating firmware	126
7	Control fund	ctions	.127
	7.1	Direction of motor rotation	127
	7.2	Stopping method at servo OFF	127
	7.3	Speed limit	129
	7.4	Torque limit	130
	7.5	Ramp-function generator	131
8	PROFINET	communication	.133
	8.1	Supported telegrams	133
	8.2	IO data signals	134
	8.3	Control word STW and status word ZSW	
	8.3.1	Definition of the control word STW	135

	8.3.2	Definition of the status word ZSW	138
	8.4	Encoder control word and status word	141
	8.5	Signal sources for MELDW	143
9	Safety integ	rated function	145
	9.1	Standards and regulations	
	9.1.1	General information	
	9.1.1.1	Aims	
	9.1.1.2	Functional safety	
	9.1.2	Safety of machinery in Europe	
	9.1.2.1	Machinery Directive	
	9.1.2.2	Harmonized European Standards	
	9.1.2.3	Standards for implementing safety-related controllers	
	9.1.2.4 9.1.2.5	DIN EN ISO 13849-1 (replaces EN 954-1)	
	9.1.2.5 9.1.2.6	EN 62061 Series of standards EN 61508 (VDE 0803)	
	9.1.2.0	Risk analysis/assessment	
	9.1.2.7	Risk reduction	
	9.1.2.0	Residual risk	
	9.1.3	Machine safety in the USA	
	9.1.3.1	Minimum requirements of the OSHA	
	9.1.3.2	NRTL listing	
	9.1.3.3	NFPA 79	
	9.1.3.4	ANSI B11	
	9.1.4	Machine safety in Japan	157
	9.1.5	Equipment regulations	
	9.2	General information about SINAMICS Safety Integrated	158
	9.3	System features	158
	9.3.1	STO functional safety data	158
	9.3.2	Certification	158
	9.3.3	Safety instructions	
	9.3.4	Probability of failure of the safety function	160
	9.3.5	Response time	
	9.3.6	Residual risk	161
	9.4	Safety Integrated basic function	
	9.4.1	Safe Torque Off (STO)	
	9.4.2	Forced dormant error detection	
10	Tuning		165
	10.1	Controller overview	165
	10.2	Tuning mode	166
	10.3	One-button auto tuning	167
	10.4	Real-time auto tuning	172
	10.5	Manual tuning	175
	10.6	Resonance suppression	176

11	Parameters		179
	11.1	Overview	. 179
	11.2	Parameter list	. 181
12	Diagnostics		203
	12.1	LED status indicators	. 207
	12.2	List of faults and alarms	. 208
Α	Appendix		223
	A.1	Assembly of cable terminals on the drive side	. 223
	A.2	Assembly of cable connectors on the motor side	. 226
	A.3	Motor selection	. 230
	A.3.1	Selection procedure	. 230
	A.3.2	Parameter description	
	A.3.3	Selection examples	
	A.4	Replacing fans	. 234
	Index		235

Safety instructions

1.1 Fundamental safety instructions

1.1.1 General safety instructions

DANGER

Danger to life due to live parts and other energy sources

Death or serious injury can result when live parts are touched.

- Only work on electrical devices when you are qualified for this job.
- Always observe the country-specific safety rules.

Generally, six steps apply when establishing safety:

- 1. Prepare for shutdown and notify all those who will be affected by the procedure.
- 2. Disconnect the machine from the supply.
 - Switch off the machine.
 - Wait until the discharge time specified on the warning labels has elapsed.
 - Check that it really is in a no-voltage condition, from phase conductor to phase conductor and phase conductor to protective conductor.
 - Check whether the existing auxiliary supply circuits are de-energized.
 - Ensure that the motors cannot move.
- Identify all other dangerous energy sources, e.g. compressed air, hydraulic systems, or water.
- 4. Isolate or neutralize all hazardous energy sources by closing switches, grounding or short-circuiting or closing valves, for example.
- 5. Secure the energy sources against switching on again.
- 6. Ensure that the correct machine is completely interlocked.

After you have completed the work, restore the operational readiness in the inverse sequence.

WARNING

Danger to life through a hazardous voltage when connecting an unsuitable power supply

Touching live components can result in death or severe injury.

 Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV-(Protective Extra Low Voltage) output voltages for all connections and terminals of the electronics modules.

Danger to life when live parts are touched on damaged motors/devices

Improper handling of motors/devices can damage them.

For damaged motors/devices, hazardous voltages can be present at the enclosure or at exposed components.

- Ensure compliance with the limit values specified in the technical data during transport, storage and operation.
- Do not use any damaged motors/devices.

WARNING

Danger to life through electric shock due to unconnected cable shields

Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected cable shields.

As a minimum, connect cable shields and the cores of cables that are not used at one end at the grounded housing potential.

Danger to life due to electric shock when not grounded

For missing or incorrectly implemented protective conductor connection for devices with protection class I, high voltages can be present at open, exposed parts, which when touched, can result in death or severe injury.

Ground the device in compliance with the applicable regulations.

Danger to life due to electric shock when opening plug connections in operation

When opening plug connections in operation, arcs can result in severe injury or death.

• Only open plug connections when the equipment is in a no-voltage state, unless it has been explicitly stated that they can be opened in operation.

NOTICE

Material damage due to loose power connections

Insufficient tightening torques or vibrations can result in loose electrical connections. This can result in damage due to fire, device defects or malfunctions.

- Tighten all power connections with the specified tightening torques, e.g. line supply connection, motor connection, DC link connections.
- Check all power connections at regular intervals. This applies in particular after transport.

Danger to life due to fire spreading if housing is inadequate

Fire and smoke development can cause severe personal injury or material damage.

- Install devices without a protective housing in a metal control cabinet (or protect the device by another equivalent measure) in such a way that contact with fire is prevented.
- Ensure that smoke can only escape via controlled and monitored paths.

Danger to life through unexpected movement of machines when using mobile wireless devices or mobile phones

Using mobile wireless devices or mobile phones with a transmit power > 1 W closer than approx. 2 m to the components may cause the devices to malfunction, influence the functional safety of machines therefore putting people at risk or causing material damage.

 Switch the wireless devices or mobile phones off in the immediate vicinity of the components.

Danger to life due to the motor catching fire in the event of insulation overload

There is higher stress on the motor insulation through a ground fault in an IT system. If the insulation fails, it is possible that death or severe injury can occur as a result of smoke and fire.

- Use a monitoring device that signals an insulation fault.
- Correct the fault as quickly as possible so the motor insulation is not overloaded.

Danger to life due to fire if overheating occurs because of insufficient ventilation clearances

Inadequate ventilation clearances can cause overheating of components with subsequent fire and smoke. This can cause severe injury or even death. This can also result in increased downtime and reduced service lives for devices/systems.

• Ensure compliance with the specified minimum clearance as ventilation clearance for the respective component.

Danger of an accident occurring due to missing or illegible warning labels

Missing or illegible warning labels can result in accidents involving death or serious injury.

- Check that the warning labels are complete based on the documentation.
- Attach any missing warning labels to the components, in the national language if necessary.
- Replace illegible warning labels.

NOTICE

Device damage caused by incorrect voltage/insulation tests

Incorrect voltage/insulation tests can damage the device.

• Before carrying out a voltage/insulation check of the system/machine, disconnect the devices as all converters and motors have been subject to a high voltage test by the manufacturer, and therefore it is not necessary to perform an additional test within the system/machine.

Danger to life when safety functions are inactive

Safety functions that are inactive or that have not been adjusted accordingly can cause operational faults on machines that could lead to serious injury or death.

- Observe the information in the appropriate product documentation before commissioning.
- Carry out a safety inspection for functions relevant to safety on the entire system, including all safety-related components.
- Ensure that the safety functions used in your drives and automation tasks are adjusted and activated through appropriate parameterizing.
- Perform a function test.
- Only put your plant into live operation once you have guaranteed that the functions relevant to safety are running correctly.

Note

Important safety notices for Safety Integrated functions

If you want to use Safety Integrated functions, you must observe the safety notices in the Safety Integrated manuals.

Danger to life or malfunctions of the machine as a result of incorrect or changed parameterization

As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization (parameter assignments) against unauthorized access.
- Respond to possible malfunctions by applying suitable measures (e.g. EMERGENCY STOP or EMERGENCY OFF).

Danger to life from permanent magnet fields

Even when switched off, electric motors with permanent magnets represent a potential risk for persons with heart pacemakers or implants if they are close to converters/motors.

- If you are such a person (with heart pacemaker or implant) then keep a minimum distance of 2 m.
- When transporting or storing permanent magnet motors always use the original packing materials with the warning labels attached.
- Clearly mark the storage locations with the appropriate warning labels.
- IATA regulations must be observed when transported by air.

Injury caused by moving parts or those that are flung out

Touching moving motor parts or drive output elements and loose motor parts that are flung out (e.g. feather keys) in operation can result in severe injury or death.

- Remove any loose parts or secure them so that they cannot be flung out.
- Do not touch any moving parts.
- Safeguard all moving parts using the appropriate safety guards.

Danger to life due to fire if overheating occurs because of insufficient cooling

Inadequate cooling can cause overheating resulting in death or severe injury as a result of smoke and fire. This can also result in increased failures and reduced service lives of motors.

• Comply with the specified coolant requirements for the motor.

WARNING

Danger to life due to fire as a result of overheating caused by incorrect operation

When incorrectly operated and in the case of a fault, the motor can overheat resulting in fire and smoke. This can result in severe injury or death. Further, excessively high temperatures destroy motor components and result in increased failures as well as shorter service lives of motors.

- Operate the motor according to the relevant specifications.
- Only operate the motors in conjunction with effective temperature monitoring.
- Immediately switch off the motor if excessively high temperatures occur.

Risk of injury due to touching hot surfaces

In operation, the motor can reach high temperatures, which can cause burns if touched.

• Mount the motor so that it is not accessible in operation.

When maintenance is required

- allow the motor to cool down before starting any work.
- Use the appropriate personnel protection equipment, e.g. gloves.

Danger to life from electromagnetic fields

Electromagnetic fields (EMF) are generated by the operation of electrical power equipment such as transformers, converters or motors.

People with pacemakers or implants are at a special risk in the immediate vicinity of these devices/systems.

Ensure that the persons involved are the necessary distance away (minimum 2 m).

1.1.2 Handling electrostatic sensitive devices (ESD)

Electrostatic sensitive devices (ESD) are individual components, integrated circuits, modules or devices that may be damaged by either electric fields or electrostatic discharge.

NOTICE

Damage through electric fields or electrostatic discharge

Electric fields or electrostatic discharge can cause malfunctions through damaged individual components, integrated circuits, modules or devices.

- Only pack, store, transport and send electronic components, modules or devices in their original packaging or in other suitable materials, e.g conductive foam rubber of aluminum foil.
- Only touch components, modules and devices when you are grounded by one of the following methods:
 - Wearing an ESD wrist strap
 - Wearing ESD shoes or ESD grounding straps in ESD areas with conductive flooring
- Only place electronic components, modules or devices on conductive surfaces (table with ESD surface, conductive ESD foam, ESD packaging, ESD transport container).

1.1.3 Industrial security

Note

Industrial security

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, solutions, machines, equipment and/or networks. They are important components in a holistic industrial security concept. With this in mind, Siemens' products and solutions undergo continuous development. Siemens recommends strongly that you regularly check for product updates.

For the secure operation of Siemens products and solutions, it is necessary to take suitable preventive action (e.g. cell protection concept) and integrate each component into a holistic, state-of-the-art industrial security concept. Third-party products that may be in use should also be considered. For more information about industrial security, visit this address (http://www.siemens.com/industrialsecurity).

To stay informed about product updates as they occur, sign up for a product-specific newsletter. For more information, visit this address (<u>http://support.automation.siemens.com</u>).

Danger as a result of unsafe operating states resulting from software manipulation

Software manipulation (e.g. by viruses, Trojan horses, malware, worms) can cause unsafe operating states to develop in your installation which can result in death, severe injuries and/or material damage.

• Keep the software up to date.

You will find relevant information and newsletters at this address (<u>http://support.automation.siemens.com</u>).

• Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.

You will find further information at this address (http://www.siemens.com/industrialsecurity).

• Make sure that you include all installed products into the holistic industrial security concept.

Danger to life due to software manipulation when using exchangeable storage media

Storing files onto exchangeable storage media amounts to an increased risk of infection, e.g. with viruses and malware. As a result of incorrect parameterization, machines can malfunction, which in turn can lead to injuries or death.

 Protect files stored on exchangeable storage media from malicious software by taking suitable protection measures, e.g. virus scanners.

1.1.4 Residual risks of power drive systems

When assessing the machine- or system-related risk in accordance with the respective local regulations (e.g., EC Machinery Directive), the machine manufacturer or system installer must take into account the following residual risks emanating from the control and drive components of a drive system:

- 1. Unintentional movements of driven machine or system components during commissioning, operation, maintenance, and repairs caused by, for example,
 - Hardware and/or software errors in the sensors, control system, actuators, and cables and connections
 - Response times of the control system and of the drive
 - Operation and/or environmental conditions outside the specification
 - Condensation/conductive contamination
 - Parameterization, programming, cabling, and installation errors
 - Use of wireless devices/mobile phones in the immediate vicinity of electronic components

- External influences/damage
- X-ray, ionizing radiation and cosmic radiation
- 2. Unusually high temperatures, including open flames, as well as emissions of light, noise, particles, gases, etc., can occur inside and outside the components under fault conditions caused by, for example:
 - Component failure
 - Software errors
 - Operation and/or environmental conditions outside the specification
 - External influences/damage
- 3. Hazardous shock voltages caused by, for example:
 - Component failure
 - Influence during electrostatic charging
 - Induction of voltages in moving motors
 - Operation and/or environmental conditions outside the specification
 - Condensation/conductive contamination
 - External influences/damage
- 4. Electrical, magnetic and electromagnetic fields generated in operation that can pose a risk to people with a pacemaker, implants or metal replacement joints, etc., if they are too close
- 5. Release of environmental pollutants or emissions as a result of improper operation of the system and/or failure to dispose of components safely and correctly

For more information about the residual risks of the drive system components, see the relevant sections in the technical user documentation.

1.2 Additional safety instructions

Delivery check

Intact deliverables

Note

Deliverables received must be intact. It's not permissible to put a damaged unit into use.

Transport and storage

NOTICE

Property loss

Notify Siemens service personnel immediately of any damage discovered after delivery. If the equipment is put into storage, keep it in a dry, dust-free, and low-vibration environment. The storage temperature ranges from -40 $^{\circ}$ C to +70 $^{\circ}$ C.

Otherwise you will suffer property loss.

Mechanical installation

Death or severe personal injury from harsh installation environment

A harsh installation environment will jeopardize personal safety and equipment. Therefore,

- Do not install the drive and the motor in an area subject to inflammables or combustibles, water or corrosion hazards.
- Do not install the drive and the motor in an area where it is likely to be exposed to constant vibrations or physical shocks.
- Do not keep the drive exposed to strong electro-magnetic interference.
- Make sure that no foreign body (e.g., chips of wood or metal, dust, paper, etc.) can be seen inside the drive or on the heat sink of the drive.
- Make sure that the drive is installed in an electrical cabinet with an adequate degree of protection.

Note

Mounting clearance

To guarantee good heat dissipation and ease of cabling, keep sufficient clearance between drives, one drive and another device/inner wall of the cabinet.

Note

Screw tightening

Make sure you fix the screw to the terminal door of the drive after you have completed the installation work.

Electrical installation

DANGER

Death or severe personal injury from electrical shock

The earth leakage current for the drive can be greater than AC 3.5 mA, which may cause death or severe personal injury due to electrical shock.

A fixed earth connection is required to eliminate the dangerous leakage current. In addition, the minimum size of the protective earth conductor shall comply with the local safety regulations for high leakage current equipment.

Danger to life when PE connectors are touched

When the equipment is working, hazardous touch current can be present at the PE connectors; if touched, this can result in death or severe personal injury.

 Do not touch the PE connector during operation or within a certain period since power disconnection.

Personal injury and damage to property from improper connections

Improper connections have high risks of electrical shock and short circuit, which will jeopardize personal safety and equipment.

- The drive must be directly connected with the motor. It is not permissible to connect a capacitor, inductor or filter between them.
- Make sure that all connections are correct and reliable, the drive and the motor are well grounded.
- The line supply voltage must be within the allowable range (refer to the drive rating plate). Never connect the line supply cable to the motor terminals U, V, W or connect the motor power cable to the line input terminals L1, L2, L3.
- Never wire up the U, V, W terminals in an interchanged phase sequence.
- If the CE marking for cables is mandatory in some cases, the motor power cable, line supply cable and brake cable used must all be shielded cables.
- For terminal connection, make sure that the clearances in air between non-insulated live parts are at least 5.5 mm.
- Route signal cables and power cables separately in different cable conduits. The signal cables shall be at least 10 cm away from the power cables.
- Cables connected may not come into contact with rotating mechanical parts.

Personal injury and damage to property from inadequate protection

Inadequate protection may cause minor personal injury or damage to property.

- The drive must have been disconnected from the power supply for at least five minutes before you perform any wiring to it.
- Check that the equipment really is in a no-voltage condition.
- Make sure that the drive and the motor are properly grounded.
- Route a second PE conductor with the cross section of the supply system lead in parallel to the protective earth via separate terminals or use a copper protective earth conductor with a cross section of 10 mm².
- Terminals for equipotential bondings that exist in addition to terminals for PE conductors must not be used for looping-through the PE conductors.
- To ensure protective separation, an isolating transformer must be used for the 220 VAC/380 VAC line supply system.

NOTICE

Damage to property from incorrect input voltage

Incorrect input voltage will cause severe damage to the drive.

It is recommended that the actual input voltage should not be greater than 110% of the rated voltage or smaller than 85%.

Note

STO wiring

The safe torque off (STO) function is integrated in the drive, this means that the function can be used without involving any upper level control. It is disabled in the factory configuration by short-circuiting the STO terminals. The safety function of the servo drive is SIL 2 (EN61800-5-2).

Connect the STO terminals as the actual requirements.

Commissioning/Operation

Burns from hot surface

The operating temperature of drive base-plate and heat sink is higher than 65 °C, and the surface temperature of the motor may be higher than to 80 °C. The hot surface may burn your hands.

Do not touch the motor or the heat sink of the drive during operation or within a certain period since power disconnection.

NOTICE

Shortening the service life of motor brake

The motor brake is used for holding purpose only. Frequent emergency stops with the motor brake will shorten its service life.

Unless absolutely necessary, do not apply the motor brake as an emergency stop or deceleration mechanism.

NOTICE

Damage to the equipment from frequent power-on/off

Frequent power-on/off will cause damage to the drive.

Do not switch on/off the power frequently.

NOTICE

Damage to the absolute encoder from the magnetic field

To avoid magnetic interference to the absolute encoder, keep the servo motor with an absolute encoder at least 15 mm away from the devices that produce a magnetic field stronger than 10 mT.

Note

Voltage requirement

Before switching the power on, make sure that the drive system has been reliably installed and connected, and the line supply voltage is within the allowable range.

Note

Drive functioning interfered by use of radio devices

Some environmental factors may result in power derating, e.g. altitude and surrounding temperature. In this case, the drive cannot work normally.

Environmental factors must be taken into account during commissioning or operation.

Troubleshooting

WARNING

Drive remaining charged

The drive may remain charged in a short period after it is powered off.

Touching terminals or disassembling cables may cause minor injury due to electrical shock.

Do not touch terminals or disassemble cables until the drive system has been disconnected for at least five minutes.

Personal injury due to unexpected restart

The machine might unexpectedly restart after the power supply that was suddenly switched off is switched on again. Touching the machine at this time may cause personal injury.

Do not approach the machine after the power supply is switched on again.

Disposal

Note

Equipment disposal

Disposal of the equipment must be made in accordance with the regulations of the competent environmental protection administration on the disposal of electronic wastes.

Certification

Requirements for United States/Canadian installations (UL/cUL)

Suitable for use on a circuit capable of delivering not more than 65000 rms Symmetrical Amperes, 480 VAC maximum for 400 V variants of drives or 240 VAC maximum for 200 V variant drives, when protected by the UL/cUL listed (JDDZ) fuse or type E self-protected controller and marked. For each frame size AA, A, B, C and D, use 75 °C copper wire only.

This equipment is capable of providing internal motor overload protection according to UL508C.

For Canadian (cUL) installations the drive mains supply must be fitted with any external recommended suppressor with the following features:

- Surge-protective devices; device shall be a Listed Surge-protective device (Category code VZCA and VZCA7)
- Rated nominal voltage 480/277 VAC, 50/60 Hz, 3-phase; 120/208 VAC, 50/60 Hz, 1/3-phase
- Clamping voltage VPR = 2000 V, IN = 3kA min, MCOV = 508 VAC, SCCR = 65 kA
- Suitable for Type 2 SPD application
- Clamping shall be provided between phases and also between phase and ground.

WARNING

Harms to human health from electromagnetic radiation

This product may cause high-frequency electromagnetic radiation, which will affect human health. Therefore, in a residential environment, make sure that necessary suppression measures are taken.

Note

Low Voltage Directive complied

Our products comply with EN61800-5-1: 2007 standards and Low Voltage Directive (Low Voltage Directive 2006/95/EC).

Note

EMC instructions

- To comply with the EMC standards, all cables connected with the SINAMICS V90 PN drive system must be shielded cables, which include cables from the line supply to the line filter and from the line filter to the drive.
- The SINAMICS V90 PN drives have been tested in accordance with the emission requirements of the category of C2 (domestic) environment. The conductive emissions and radiated emissions are in compliance with the standard of EN 55011 and reached Class A.
- In a residential environment, this product can cause high-frequency interferences that may necessitate suppression measures.
- For a radiated emission test, an external AC filter (between the mains supply and the drive) will be used to meet the EMC requirement and the drive will be installed inside the shielded metallic chamber, other parts of the motion control system (including the PLC, DC power supply, motor) will be put inside the shielded chamber.
- For a conductive emission test, an external AC filter (between the mains supply and the drive) will be used to meet the EMC requirement.
- For the radiated emission and conductive emission test, the length of the line supply cable between the line filter and the drive must be shorter than 1 m.
- The harmonic current value of SINAMICS V90 PN drive exceeds the class A limit of IEC 61000-3-2, but the SINAMICS V90 PN drive system installed within the Category C2 First Environment require supply authority acceptance for connection to the public low-voltage power supply network. Please contact your local supply network provider.

Information regarding non-Siemens products

Note

Non-Siemens products

This document contains recommendations relating to non-Siemens products. Non-Siemens products whose fundamental suitability is familiar to us. It goes without saying that equivalent products from other manufacturers may be used. Our recommendations are to be seen as helpful information, not as requirements or dictates. We cannot accept any liability for the quality and properties/features of non-Siemens products.

Safety instructions

1.2 Additional safety instructions

Warning labels

Warning labels attached to the motor or drive have the following meanings:

Symbol	Description
•	Risk of electric shock
<u>/</u>	Do not touch any terminals or disassemble cables until the drive has been disconnected from power for at least five minutes.
^	Caution
	Pay attention to the information given on the rating plate and operating instructions.
	For more information, refer to this manual.
	Hot surface
	Do not touch the heatsink of the drive during operation or within a certain period since power disconnection because its surface temperature may reach up to 65 °C.
	No knocking at the shaft
	Do not exert any shock at the shaft end; otherwise, the encoder may be damaged.
	Protective conductor terminal

General information

The SINAMICS V90 drives with the PROFINET interface (referred to as SINAMICS V90 PN) are available in two variants, 400 V variant and 200 V variant.

The 200 V variant is available in three frame sizes: FSB, FSC, and FSD. Frame sizes B, and C are used on the single phase or three phase power network while frame size D is used on the three phase power network only.

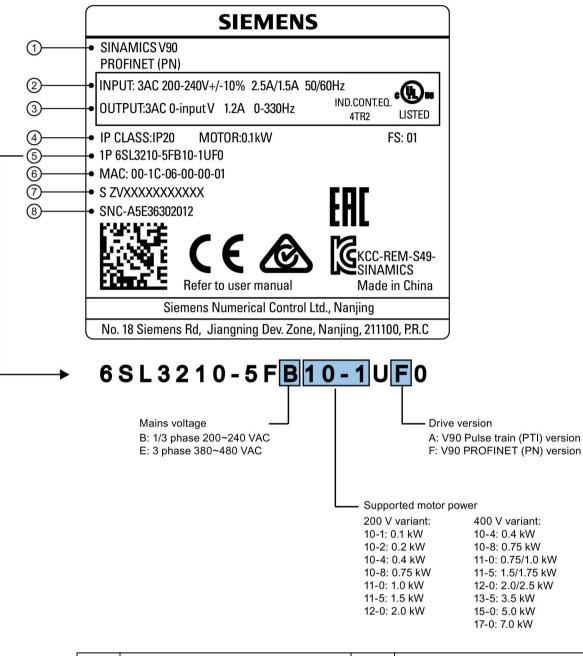
The 400 V variant is available in four frame sizes: FSAA, FSA, FSB, and FSC. All the frame sizes are used on three phase power network only.

2.1 Deliverables

2.1.1 Drive components

Component	Illustration	Rated power (kW)	Outline dimension (Width x Height x Depth, mm)	Frame size	Order number	
SINAMICS V90 PN,		0.1/0.2/0.4	55 x 170 x 170	FSB	6SL3210-5FB10-1UF0	
single/three-phase,	Spith				6SL3210-5FB10-2UF0	
200 V					6SL3210-5FB10-4UF1	
	на н	0.75	80 x 170 x 195	FSC	6SL3210-5FB10-8UF0	
	Height	1.0/1.5/2.0	95 x 170 x 195	FSD	6SL3210-5FB11-0UF1	
					6SL3210-5FB11-5UF0	
	Width				6SL3210-5FB12-0UF0	
Connectors		For FSB			6SL3200-0WT02-0AA0	
		For FSC and FSD			6SL3200-0WT03-0AA0	
Shielding plate	00	For FSB				
		For FSC and FSD				
User documentation	Information Guide	English-Chinese bilingual version				

Components in the SINAMICS V90 PN 200 V variant drive package


2.1 Deliverables

Components in the SINAMICS V90 PN 400 V variant drive package

Component	Illustration	Rated power (kW)	Outline dimension (Width x Height x Depth, mm)	Frame size	Order number	
SINAMICS V90 PN,		0.4	60 x 180 x 200	FSAA	6SL3210-5FE10-4UF0	
three phase, 400 V		0.75/1.0	80 x 180 x 200	FSA	6SL3210-5FE10-8UF0	
					6SL3210-5FE11-0UF0	
		1.5/2.0	100 x 180 x 220	FSB	6SL3210-5FE11-5UF0	
					6SL3210-5FE12-0UF0	
		3.5/5.0/7.0	140 x 260 x 240	FSC	6SL3210-5FE13-5UF0	
					6SL3210-5FE15-0UF0	
	Width				6SL3210-5FE17-0UF0	
Connectors		For FSAA			6SL3200-0WT00-0AA0	
		For FSA			6SL3200-0WT01-0AA0	
		For FSB and F	SC *			
Shielding plate		For FSAA and FSA				
		For FSB and FSC				
User documentation	Information guide	English-Chinese bilingual version				

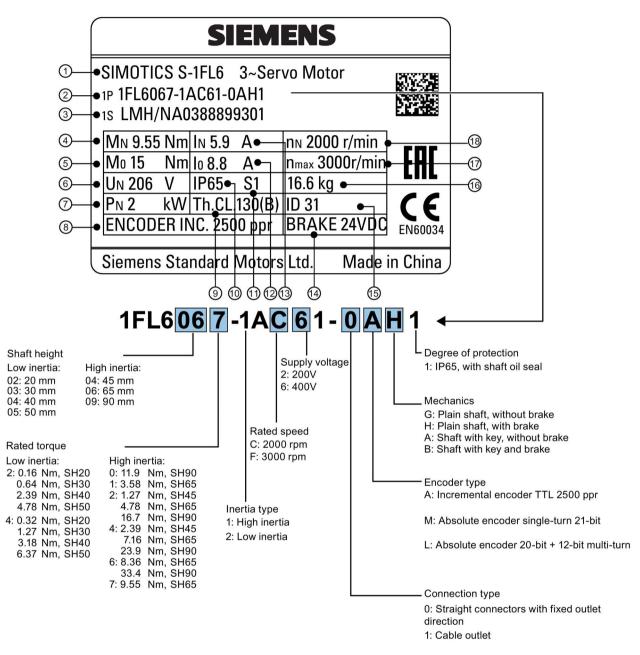
* For SINAMICS V90 PN 400V variant servo drives with frame size B and C, you can order the connector kits used for FSAA or FSA.

Drive rating plate (example)

1	Drive name	5	Order number
2	Power input	6	MAC address
3	Power output	7	Product serial number
4	Rated motor power	8	Part number

2.1 Deliverables

2.1.2 Motor components


Component	Illustration	Rated power (kW)	Shaft height (mm)	Order number
SIMOTICS S-1FL6,		0.05/0.1	20	1FL6022-2AF21-1001
low inertia				1FL6024-2AF21-101
		0.2/0.4	30	1FL6032-2AF21-101
				1FL6034-2AF21-101
		0.75/1.0	40	1FL6042-2AF21-101
				1FL6044-2AF21-1001
	P	Pa_ 1.5/2.0	50	1FL6052-2AF21-0□□1
				1FL6054-2AF21-0□□1
User documentation	SIMOTICS S-1FL6 Servo Motors Installation Guide			

Components in the SIMOTICS S-1FL6 low inertia motor package

Components in the SIMOTICS S-1FL6 high inertia motor package

Component	Illustration	Rated power (kW)	Shaft height (mm)	Order number			
SIMOTICS S-1FL6,	C.	0.4/0.75	45	1FL6042-1AF61-001			
high inertia				1FL6044-1AF61-0□□1			
		0.75/1.0/1.5/1.75/2.0	65	1FL6061-1AC61-001			
				1FL6062-1AC61-001			
				1FL6064-1AC61-0□□1			
				1FL6066-1AC61-0□□1			
				1FL6067-1AC61-0□□1			
		2.5/3.5/5.0/7.0	90	1FL6090-1AC61-0-1			
				1FL6092-1AC61-001			
				1FL6094-1AC61-001			
				1FL6096-1AC61-0001			
User documentation SIMOTICS S-1FL6 Servo Motors Installation Guide							

Motor rating plate (example)

1	Motor type	7	Rated power	(13)	Rated current
2	Order number	8	Encoder type and resolution	14	Holding brake
3	Serial number	9	Thermal class	15	Motor ID
4	Rated torque	10	Degree of protection	16	Weight
5	Stall torque	1	Motor operating mode	17	Maximum speed
6	Rated voltage	12	Stall current	18	Rated speed

2.2 Device combination

The tables below show the combination of SINAMICS V90 PN servo drives and SIMOTICS S-1FL6 servo motors.

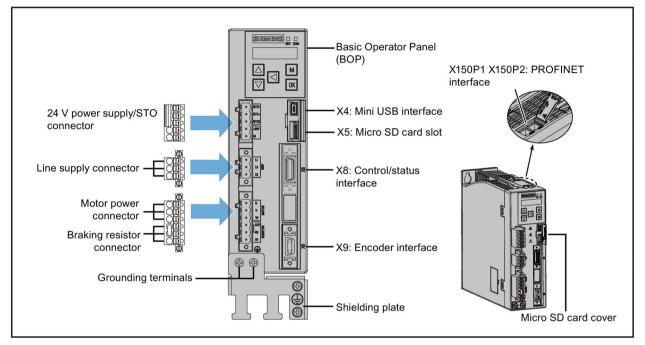
Combination between V90 PN 200 V variant drives and low inertia motors

SIMOT	ICS S-1F	FL6 serv	SINAMICS V90 PN servo drive							
Туре		Rated		Shaft height (mm)	Motor ID		Order number ¹⁾	Order number	Frame	Power
		power (kW)			Without brake	With brake			size	supply
Low inertia	0.16	0.05	3000	20	42 *	43	1FL6022-2AF21- 1A❑1	6SL3210-5FB10- 1UF0	FSB	1/3- phase 200 V AC to 240 V AC
					10001	10030	1FL6022-2AF21- 1M❑1			
	0.32	0.1	3000	20	46	47	1FL6024-2AF21- 1A❑1			
					10002	10031	1FL6024-2AF21- 1M□1			
	0.64	0.2	2 3000	30	50 *	51	1FL6032-2AF21- 1A❑1	6SL3210-5FB10- 2UF0		
					10003	10032	1FL6032-2AF21- 1M□1			
	1.27	0.4	3000	30	54 *	55	1FL6034-2AF21- 1A□1	6SL3210-5FB10- 4UF1		
					10004	10033	1FL6034-2AF21- 1M□1			
	2.39	0.75	75 3000	000 40	58 *	59	1FL6042-2AF21- 1A□1	6SL3210-5FB10- 8UF0		
					10005	10034	1FL6042-2AF21- 1M□1			
	3.18	1	3000	40	62 *	63	1FL6044-2AF21- 1A□1	6SL3210-5FB11- 0UF1	FSD	3- phase 200 V AC to 240 V AC
					10006	10035	1FL6044-2AF21- 1M□1			
	4.78	1.5	.5 3000	000 50	66 *	67	1FL6052-2AF21- 0A□1	6SL3210-5FB11- 5UF0		
					10007	10036	1FL6052-2AF21- 0M□1]		
	6.37	2	2 3000	000 50	70 *	71	1FL6054-2AF21- 0A□1	6SL3210-5FB12- 0UF0		
					10008	10037	1FL6054-2AF21- 0M□1			

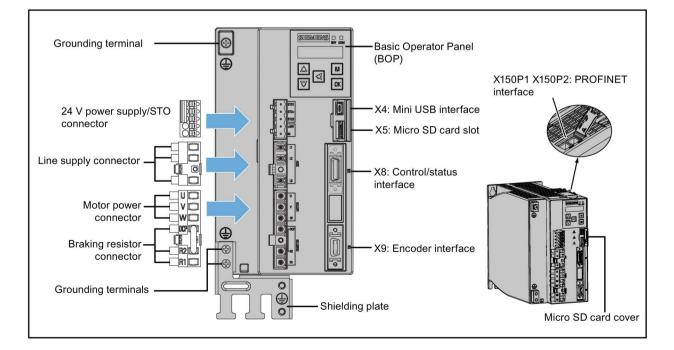
SIMOT	<u> ICS S-1</u>	FL6 ser	vo motor	SINAMICS V90 PI	N servo d	rive				
Туре	Rated	Rated	ed Rated er speed	l Shaft height	Motor ID C		Order number ¹⁾	Order number	Frame	Power
	torque power (Nm) (kW)	power (kW)			Without brake	With brake			size	supply
High inertia	1.27 (0.4	3000	45	18 *	19	1FL6042-1AF61- 0A❑1	6SL3210-5FE10- 4UF0	FSAA	3- phase 380 V AC to 480 V AC
					10009	10038	1FL6042-1AF61- 0L□1			
	2.39	0.75	5 3000	000 45	20 *	21	1FL6044-1AF61- 0A❑1	6SL3210-5FE10- 8UF0	FSA	
					10010	10039	1FL6044-1AF61- 0L□1			
	3.58	0.75	2000	65	22	23	1FL6061-1AC61- 0A❑1	6SL3210-5FE11- 0UF0		
					10011	10040	1FL6061-1AC61- 0L□1			
	4.78	1.0	2000	65	24 *	25	1FL6062-1AC61- 0A❑1			
					10012	10041	1FL6062-1AC61- 0L□1			
	7.16	1.5	2000	65	26 *	27	1FL6064-1AC61- 0A⊒1	6SL3210-5FE11- 5UF0 6SL3210-5FE12- 0UF0 6SL3210-5FE13- 5UF0	FSB	
					10013	10042	1FL6064-1AC61- 0L□1			
	8.36	1.75	2000	65	28	29	1FL6066-1AC61- 0A⊒1			
					10014	10043	1FL6066-1AC61- 0L□1			
	9.55	2.0	2000	65	30 *	31	1FL6067-1AC61- 0A❑1			
					10015	10044	1FL6067-1AC61- 0L□1			
	11.9	2.5	2000	90	32	33	1FL6090-1AC61- 0A⊒1			
					10016	10045	1FL6090-1AC61- 0L□1			
	16.7	3.5	2000	90	34 *	35	1FL6092-1AC61- 0A□1		FSC	
					10017	10046	1FL6092-1AC61- 0L□1			
	23.9	5.0	2000	90	36 *	37	1FL6094-1AC61- 0A□1	6SL3210-5FE15- 0UF0		
					10018	10047	1FL6094-1AC61- 0L□1			
	33.4	7.0	2000	90	38 *	39	1FL6096-1AC61- 0A□1	6SL3210-5FE17- 0UF0		
					10019	10048	1FL6096-1AC61- 0L□1			

Combination between V90 PN 400 V variant drives and high inertia motors

2.2 Device combination

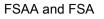

¹⁾ The symbol **□** in a motor order number is for optional configurations (mechanics). Refer to the motor rating plate explanation in Motor components (Page 28) for detailed information.

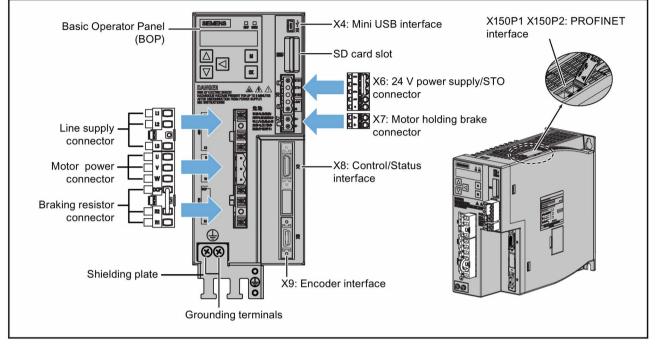
²⁾ The Motor ID values marked with an asterisk (*) are the default incremental motor IDs for V90 PN drives. If you have connected a different motor to the drive, you need to configure the motor ID manually.

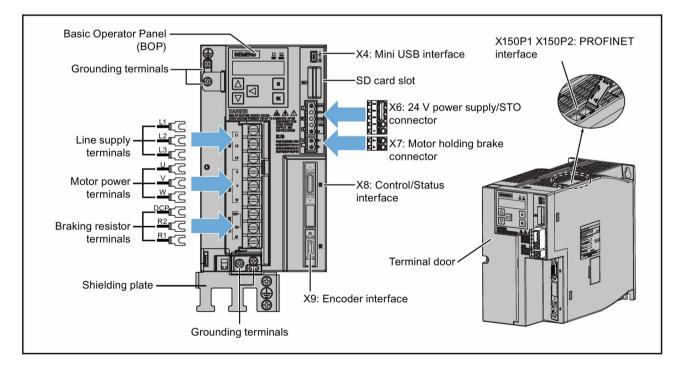

2.3 Product overview

SINAMICS V90 PN servo drives

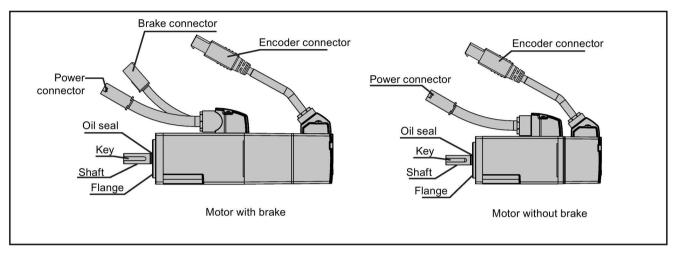
- SINAMICS V90 PN 200V variant
 - FSB



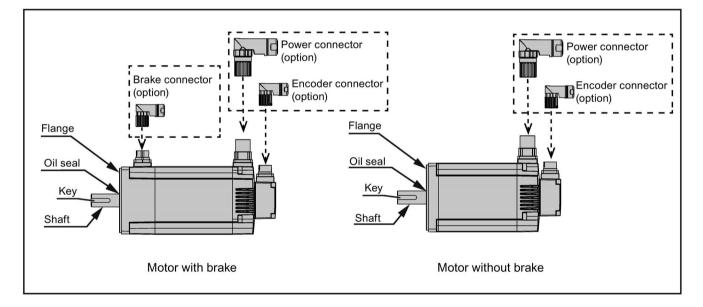

FSC and FSD


SINAMICS V90, SIMOTICS S-1FL6 Operating Instructions, 04/2016, A5E37208830 2.3 Product overview

SINAMICS V90 PN 400V variant

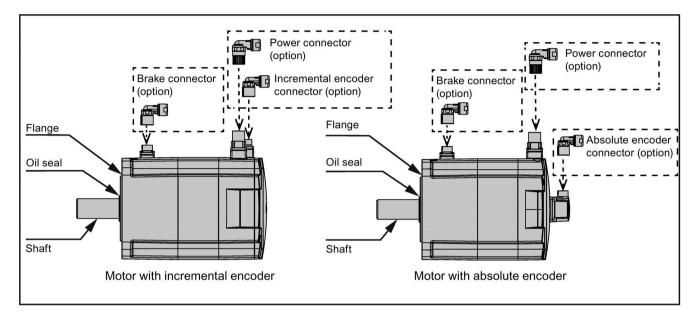


FSB and FSC

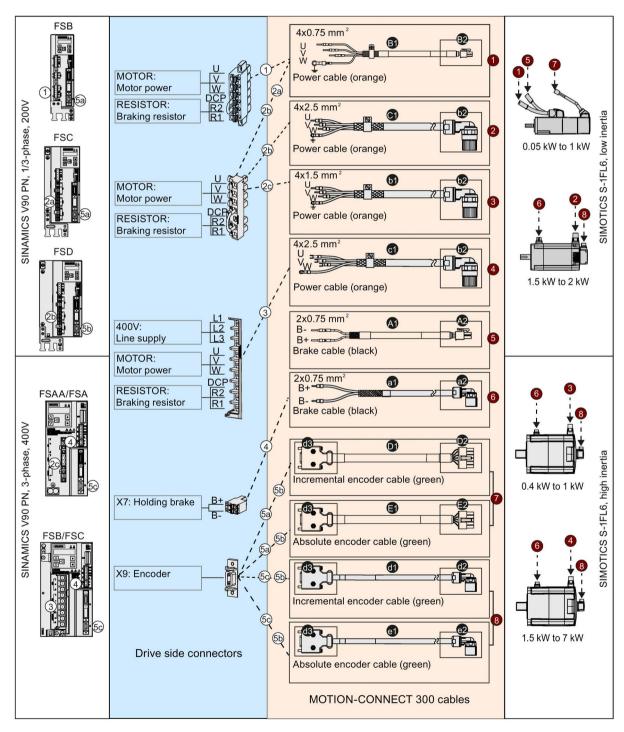


SIMOTICS S-1FL6 servo motors

- Low inertia motors
 - Shaft height: 20 mm, 30 mm, and 40 mm


Shaft height: 50 mm

2.3 Product overview


High inertia motors

Shaft height: 45 mm, 65 mm, and 90 mm

Cables and connectors

The illustration below shows cables between the drive and the motor and configurable cable connectors:

General information

2.4 Accessories

MOTION-CONNECT	300 cable		Cable connector (motor side)		Cable connector (drive side)	
Туре	Length	Order No. 6FX3002	Туре	Order No. 6FX2003	Туре	Order No. 6FX2003
Power cable (B1)	3 m	5CK01-1AD0	Power connector	0LL12	-	-
	5 m	5CK01-1AF0	(B2)			
	10 m	5CK01-1BA0				
	20 m	5CK01-1CA0				
Power cable (b1)	3 m	5CL01-1AD0	Power connector	0LL11		
	5 m	5CL01-1AF0	(b2)			
	7 m	5CL01-1AH0				
	10 m	5CL01-1BA0				
	15 m	5CL01-1BF0	_			
	20 m	5CL01-1CA0				
Power cable (C1)	3 m	5CK31-1AD0				
	5 m	5CK31-1AF0				
	10 m	5CK31-1BA0				
	20 m	5CK31-1CA0				
Power cable (c1)	3 m	5CL11-1AD0				
	5 m	5CL11-1AF0				
	7 m	5CL11-1AH0				
	10 m	5CL11-1BA0				
	15 m	5CL11-1BF0				
	20 m	5CL11-1CA0				
Brake cable (A1)	3 m	5BK02-1AD0	Brake connector	0LL52	-	-
	5 m	5BK02-1AF0	(A2)			
	10 m	5BK02-1BA0				
	20 m	5BK02-1CA0				
Brake cable (a1)	3 m	5BL02-1AD0	Brake connector	0LL51		
	5 m	5BL02-1AF0	(a2)			
	7 m ***	5BL02-1AH0				
	10 m	5BL02-1BA0				
	15 m ***	5BL02-1BF0				
	20 m	5BL02-1CA0				

You can select cables and connectors according to the table below:

MOTION-CONNECT 300 cable			Cable connector (motor side)		Cable connector (drive side)	
Туре	Length	Order No. 6FX3002	Туре	Order No. 6FX2003	Туре	Order No. 6FX2003
Incremental encoder	3 m	2CT20-1AD0	Incremental en-	0SL12	Encoder	0SB14
cable (D1)	5 m	2CT20-1AF0	coder connector		connector	
	10 m	2CT20-1BA0	(D2)		(d3)	
	20 m	2CT20-1CA0				
Incremental encoder	3 m	2CT10-1AD0	Incremental en-	0SL11		
cable (d1)	5 m	2CT10-1AF0	(d2)			
	7 m ***	2CT10-1AH0				
	10 m	2CT10-1BA0				
	15 m ***	2CT10-1BF0			_	
	20 m	2CT10-1CA0				
Absolute encoder cable	3 m	2DB20-1AD0	Absolute encoder	0DB12		
(E1) *	5 m	2DB20-1AF0	connector (E2)			
	10 m	2DB20-1BA0				
	20 m	2DB20-1CA0				
Absolute encoder cable	3 m	2DB10-1AD0	Absolute encoder	0DB11]	
(e1) **	5 m	2DB10-1AF0	connector (e2)			
	7 m ***	2DB10-1AH0	-			
	10 m	2DB10-1BA0				
	15 m ***	2DB10-1BF0				
	20 m	2DB10-1CA0	7			

* The cable is used for connecting the 200 V variant servo drive to the low inertia motors with an absolute encoder (shaft heights 20 mm, 30 mm, and 40 mm).

** The cable is used for connecting the 200 V variant servo drive to the low inertia motors with an absolute encoder (shaft height 50 mm) and 400 V variant servo drive to the high inertia motors with an absolute encoder.

*** The cables with lengths of 7 m and 15 m are only supplied for high inertia motor.

Cable and connector (between the V90 PN drive and the controller)

Name	Order number	Length (m)
SINAMICS V90 PROFINET I/O connector (20 pins)	6SL3260-2MA00-0VA0	-
SINAMICS V90 PROFINET I/O cable (20 pins)	6SL3260-4MA00-1VB0	1
RJ45 data plug-in connector, with 180° (straight) cable outlet	6GK1901-1BB10-2AA0	-
Standard bus cable (4-core), sold by meter, not assembled	6XV1840-2AH10	-
Preassembled PROFINET cable, with two RJ45 plug-180 connectors	6XV1871-5BH10	1

External 24 VDC power supply

A 24 VDC power supply is needed to supply the V90 PN servo drive. Refer to the table below to select the power supply:

Without a holding brake		With a holding brake		
Rated voltage (V)	Maximum current (A)	Rated voltage (V)	Maximum current (A)	
24 (-15% to +20%)	1.5	24 (-10% to +10%) ¹⁾	3.5	

¹⁾ The minimum voltage of 24 VDC -10% must be available at the connector on the motor side in order to guarantee that the brake reliably opens. If the maximum voltage of 24 VDC +10% is exceeded, then the brake could re-close. The voltage drop along the brake feeder cable must be taken into consideration. The voltage drop ΔU for copper cables can be approximately calculated as follows:

Where: I = Cable length [m], q = Brake cable cross section [mm²], I_{Brake} = DC current of brake [A]

Fuse/Type-E combination motor controller

A fuse/type-E combination motor controller/circuit breaker can be used to protect the system. Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes. Refer to the table below for the selection of fuses, type-E combination motor controllers, and circuit breakers:

SINAMICS \	/90 PN		Recommen	Recommended fuse		mbination moto	mbination motor controller ¹⁾			
Power supply	Frame size	Rated power (kW)	CE- compliant	UL/cUL-compliant listed (JDDZ) fuse	Rated current (A)	Rated volt- age (VAC)	Rated power (hp)	Order number		
1-phase, 200 VAC to	FSB	0.1	3NA3 801 (6 A)	6 A	2.8 to 4	230/240	1/3	3RV 2011- 1EA10		
240 VAC		0.2	3NA3 801 (6 A)	6 A	2.8 to 4	230/240	1/3	3RV 2011- 1EA10		
		0.4	3NA3 803 (10 A)	10 A	5.5 to 8	230/240	1	3RV 2011- 1HA10		
	FSC	0.75	3NA3 805 (16 A)	20 A	9 to 12.5	230/240	2	3RV 2011- 1KA10		
3-phase, 200 VAC to	FSB	0.1	3NA3 801 (6 A)	6 A	2.8 to 4	230/240	3/4	3RV 2011- 1EA10		
240 VAC		0.2	3NA3 801 (6 A)	6 A	2.8 to 4	230/240	3/4	3RV 2011- 1EA10		
		0.4	3NA3 803 (10 A)	10 A	2.8 to 4	230/240	3/4	3RV 2011- 1EA10		
	FSC	0.75	3NA3 805 (16 A)	20 A	5.5 to 8	230/240	2	3RV 2011- 1HA10		

SINAMICS V90 PN 200 V variant

 $[\]Delta U [V] = 0.042 \ \Omega \cdot mm^2/m \cdot (I/q) \cdot I_{Brake}$

SINAMICS V90 PN			Recommen	Recommended fuse		Type-E combination motor controller ¹⁾			
Power supply	Frame size	· · · · · · · · · · · · · · · · · · ·		Rated current (A)	Rated volt- age (VAC)	Rated power (hp)	Order number		
	FSD	1.0	3NA3 805 (16 A)	20 A	7 to 10	230/240	3	3RV 2011- 1JA10	
		1.5	3NA3 810 (25 A)	25 A	10 to 16	230/240	5	3RV 2011- 4AA10	
		2.0	3NA3 810 (25 A)	25 A	10 to 16	230/240	5	3RV 2011- 4AA10	

¹⁾ The above types for type-E combination motor controllers are listed in compliance with both CE and UL/cUL standards.

SINAMICS V90 PN 400 V variant

SINAMICS	V90 PN		CE-cor	npliant			UL-compli	ant		
Power	Frame	Rated	Standa	rd fuse	Circuit break	er	Standard	fuse	Circuit break	er
supply	size	power (kW)	Rated cur- rent	Order number	Rated cur- rent/voltage	Order number	Rated cur- rent/volta ge	Class	Rated cur- rent/voltage	Order number
3-phase, 380 VAC to	FSAA	0.4	6 A	3NA3 801-6	3.2 A, 690 VAC	3RV 1021- 1DA10	10 A, 600 VAC	J	3.2 A, 690 VAC	3RV 1021- 1DA10
480 VAC	FSA	0.75	6 A	3NA3 801-6	4 A, 690 VAC	3RV 1021- 1EA10	10 A, 600 VAC	J	4 A, 690 VAC	3RV 1021- 1EA10
		1.0	10 A	3NA3 803-6	5 A, 690 VAC	3RV 1021- 1FA10	10 A, 600 VAC	J	5 A, 690 VAC	3RV 1021- 1FA10
	FSB	1.5	10 A	3NA3 803-6	10 A, 690 VAC	3RV 1021- 1HA10	15 A, 600 VAC	J	10 A, 690 VAC	3RV 1021- 1HA10
		2.0	16 A	3NA3 805-6	16 A, 690 VAC	3RV 1021- 4AA10	15 A, 600 VAC	J	16 A, 690 VAC	3RV 1021- 4AA10
	FSC	3.5	20 A	3NA3 807-6	20 A, 690 VAC	3RV 1021- 4BA10	25 A, 600 VAC	J	20 A, 690 VAC	3RV 1021- 4BA10
		5.0	20 A	3NA3 807-6	20 A, 690 VAC	3RV 1021- 4BA10	25 A, 600 VAC	J	20 A, 690 VAC	3RV 1021- 4BA10
		7.0	25 A	3NA3 810-6	25 A, 690 VAC	3RV 1021- 4DA10	25 A, 600 VAC	J	25 A, 690 VAC	3RV 1021- 4DA10

Braking resistor

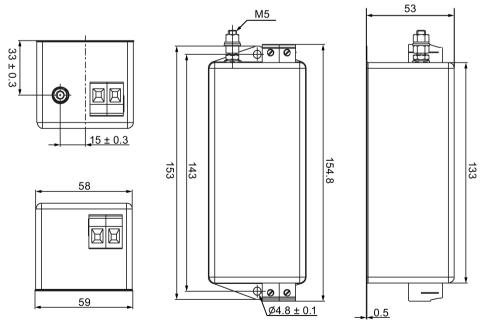
The SINAMICS V90 PN has a built-in braking resistor, the table below shows the information of the built-in resistor:

SINAMICS	6 V90 PN	Resistance (Ω)	Max. power	Rated power (W)	Max. energy (kJ)	
Power sup- ply	Frame size		(kW)			
1/3-phase, 200 VAC to 240 VAC	FSB (0.1 kW to 0.2 kW)	150	1.09	13.5	0.55	
	FSB (0.4 kW)	100	1.64	20.5	0.82	
	FSC	50	3.28	41	1.64	
3-phase, 200 VAC to	FSD (1 kW)	50	3.28	41	1.64	
240 VAC	FSD (1.5 kW to 2 kW)	25	6.56	82	3.28	
3-phase,	FSAA	533	1.2	17	1.8	
380 VAC to	FSA	160	4	57	6	
480 VAC	FSB	70	9.1	131	13.7	
	FSC	27	23.7	339	35.6	

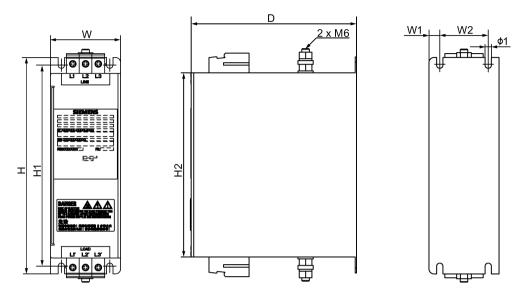
When the motor works in a fast round-trip process, the voltage of the line supply increases. The braking resistor starts to work if the voltage reaches the set threshold. The temperature of the heat sink increases (>100 °C) when the braking resistor is working. If alarms A52901 and A5000 appear at the same time, you need to switch the built-in braking resistor to the external braking resistor. You can select a standard braking resistor according to the table below:

SINAMICS	S V90 PN	Resistance (Ω)	Max. power	Rated power (W)	Max. energy (kJ)
Power sup- ply	Frame size	(kW)			
1/3-phase, 200 VAC to 240 VAC	FSB (0.1 kW to 0.2 kW)	150	1.09	20	0.8
	FSB (0.4 kW)	100	1.64	21	1.23
	FSC	50	3.28	62	2.46
3-phase, 200VAC to	FSD (1 kW)	50	3.28	62	2.46
240 VAC	FSD (1.5 kW to 2 kW)	25	6.56	123	4.92
3-phase,	FSAA	533	1.2	30	2.4
380 VAC to	FSA	160	4	100	8
480 VAC	FSB	70	9.1	229	18.3
	FSC	27	23.7	1185	189.6

Filter


Siemens recommends you to use a line filter to protect the system from high frequency noise. The line filter restricts the conductive interference emitted from the SINAMICS V90 PN to the permissible values. The SINAMICS V90 PN drives with these external line filters have been tested in accordance with the emission requirements of the Category C2 environment. The conductive emissions and radiated emissions are in compliance with the Class A requirements of the EN 55011 standard.

Recommended line filters


SINAMICS	6 V90 PN	Rated current (A)	Order number	Degree of protection
Power supply	Frame size			
1-phase,	FSB			
200 VAC to 240 VAC	FSC	18	6SL3203-0BB21-8VA0	
3-phase,	FSB			
200 VAC to 240 VAC	FSC	5	6SL3203-0BE15-0VA0	IP20
	FSD	12	6SL3203-0BE21-2VA0	
3-phase,	FSAA		6SL3203-0BE15-0VA0	
380 VAC to	FSA	5		
480 VAC	FSB	12	6SL3203-0BE21-2VA0	
	FSC	20	6SL3203-0BE22-0VA0	

Outline dimensions (mm)

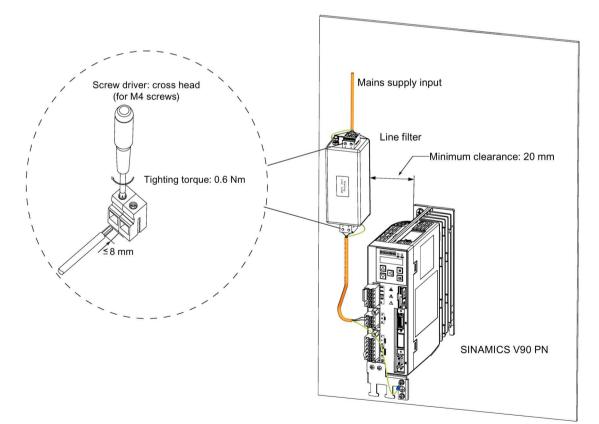
Filter used on the single phase power network

Filter used on the three phase power network

Rated current (A)	w	W1	W2	н	H1	H2	D	ø1
5	55	8.5	38	170	158	145	130	5
12	75	8.5	58	170	158	145	140	5
20	60	10	40	250	240	220	130	5.5

Basic technical data

Filter used on the single phase power network						
Rated current (A)	18					
Rated voltage	Single phase 200 VAC to	240 VAC (-15% to +10%)				
Line frequency	50/60 Hz (-10% to +10%)					
Product standard	IEC 61800-5-1	IEC 61800-5-1				
Filter used on the thre	e phase power network					
Rated current (A)	5	12	20			
Rated voltage	Three phase 200 VAC to 480 VAC (-15% to +15%) Three phase 380 VAC to 480 VAC (-15% to +15%) +15%)					
Line frequency	50/60 Hz (-10% to +10%)					
Product standard	IEC 61800-5-1					


Insertion loss

Parameter	Description	escription							
Rated current	5 A								
Noise frequency (MHz)	0.15	0.5	1.0	5.0	10	30			
CM (dB)	60	65	55	45	35	20			
DM (dB)	50	60	55	50	50	40			

Parameter	Descripti	on				
Rated current	12 A					
Noise frequency (MHz)	0.15	0.5	1.0	5.0	10	30
CM (dB)	60	70	70	55	45	15
DM (dB)	60	65	60	50	45	30
Rated current	18 A					
Noise frequency (MHz)	0.15	0.5	1.0	5.0	10	30
CM (dB)	32	70	82	88	81	90
DM (dB)	40	67	68	72	69	59
Rated current	20 A					
Noise frequency (MHz)	0.15	0.5	1.0	5.0	10	30
CM (dB)	60	60	60	55	35	15
DM (dB)	40	55	55	50	45	30

Connecting (example)

Filter used on the single phase power network

Screw driver: cross head (for M4 screws) Tightening torque: 1.5 Nm Ss mm Ss mm Ss mm Ss mm SinAMICS V90 PN

Filter used on the three phase power network

Micro SD card

Optionally a micro SD card/SD card can be used to copy drive parameters or perform a firmware update. Micro SD card is used for 200 V variant servo drive and SD card is used for 400 V variant servo drive.

You can select high quality micro SD cards/SD cards with a maximum capacity of 32 GB from manufacturers such as Kingston or SanDisk.

Replacement fans

The table below lists the replacement fans for SINAMICS V90 PN servo drives.

SINAMIC	S V90 PN	Order number
Power supply	Frame size	
3-phase, 200 VAC to 240 VAC	FSD	6SL3200-0WF00-0AA0
3-phase, 380 VAC to	FSB	6SL3200-0WF00-0AA0
480 VAC	FSC	6SL3200-0WF01-0AA0

2.5 Function list

Function	Description
Speed control (S)	Flexibly controls motor speed and direction through PROFINET communi- cation port
Safe Torque Off (STO) (Page 161)	Safely disconnects torque-generating motor power supply to prevent an unintentional motor restart
One-button auto tuning (Page 167)	Estimates the machine characteristic and sets the closed loop control parameters (speed loop gain, speed integral compensation, filter if necessary, etc.) without any user intervention
Real-time auto tuning (Page 172)	Estimates the machine characteristic and sets the closed loop control parameters (speed loop gain, speed integral compensation, filter if necessary, etc.) continuously in real time without any user intervention
Resonance suppression (Page 176)	Suppresses the mechanical resonance, such as workpiece vibration and base shake
Speed limit (Page 129)	Limits motor speed through internal speed limit commands (two groups)
Torque limit (Page 130)	Limits motor torque through internal torque limit commands (two groups)
Basic operator panel (BOP) (Page 111)	Displays servo status on a 6-digit 7-segment LED display
External braking resistor - DCP, R1 (Page 97)	An external braking resistor can be used when the internal braking resistor is insufficient for regenerative energy
Digital inputs/outputs (DIs/Dos) (Page 85)	Control signals and status signals can be assigned to four programmable digital inputs and two digital outputs
PROFINET communication (Page 133)	Supports communication between the SINAMICS V90 PN servo drive and PLC with PROFINET communication protocol

2.6 Technical data

2.6.1 Technical data - servo drives

General technical data

Parameter	r		Description					
24 VDC	Voltage (V)		24 (-15% to +20%) ¹⁾					
power	Maximum current	: (A)	1.5 A (when using a motor without a brake)					
supply			3.5 A (when using a motor with a brake)					
Overload	capability		300% $10 \times 10^{-10} \times 10^{-10}$					
Control sy	stem		Servo control					
Dynamic brake			Built-in					
Protective	functions		Earthing fault protection, output short-circuit protection ²⁾ , overvolt- age/undervoltage protection, I ² t inverter,I ² t motor, IGBT overtemperature protec- tion ³⁾					
Speed	Speed control rar	nge	Analog speed command 1:2000, internal speed command 1:5000					
control mode	Analog speed con input	-	-10 VDC to +10 VDC/rated speed					
	Torque limit		Set through a parameter or the analog input command (0 VDC to +10 VDC/max. torgue)					
Environ- mental condi- tions	Surrounding air temperature	Opera- tion	0 °C to 45 °C: without power derating 45 °C to 55 °C: with power derating 10 15 20 25 30 35 40 45 50 55 Temperature (°C)					
		Storage	-40 °C to +70 °C					

Parameter	•		Description				
	Ambient humidi- ty	Opera- tion	< 90% (non-condensing)				
		Storage	90% (non-condensing)				
	Operating enviror	iment	Indoors (without direct sunlight), free from corrosive gas, combustible gas, oil gas, or dust				
	Altitude		1000 m (without power derating) 100 100 200 1000 2000 3000 4000 5000 Altitude (m) 100 200 300 400 5000 Altitude (m) 100 300 400 5000 Altitude (m) 100 200 300 400 5000 Altitude (m) 100 10				
	Degree of protect	ion	IP 20				
	Degree of pollutio	n	Class 2				
Vibration	Operation	Shock	Operational area II Peak acceleration: 5 g, 30 ms and 15 g, 11 ms Quantity of shocks: 3 per direction × 6 directions				
		Vibration	Duration of shock: 1 s Operational area II 10 Hz to 58 Hz: 0.075 mm deflection 58 Hz to 200 Hz: 1 g vibration				
	Product packag- ing	Vibration	2 Hz to 9 Hz: 3.5 mm deflection 9 Hz to 200 Hz: 1 g vibration Quantity of cycles: 10 per axis Sweep seed: 1 octave/min				
Certifica- tions		E					

- ¹⁾ When SINAMICS V90 PN works with a motor with a brake, the voltage tolerance of 24 VDC power supply must be -10% to +10% to meet the voltage requirement of the brake.
- ²⁾ Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.
- ³⁾ SINAMICS V90 PN does not support motor overtemperature protection. Motor overtemperature is calculated by I²t and protected by the output current from the drive.

Specific technical data

SINAMICS V90 PN 200V variant

Order No.	6SL3210-5FB.		10-1UF0	10-2UF0	10-4UF1	10-8UF0	11-0UF1	11-5UF0	12-0UF0
Frame size			FSB	FSB	FSB	FSC	FSD	FSD	FSD
Rated output	current (A)		1.2	1.4	2.6 4.7 6.3 10.6 11.6 7.8 14.1 18.9 31.8 34.8 0.4 0.75 1.0 1.5 2.0 gle phase/three phase 200 VAC to 240 VAC, 50/60 Hz 200 VAC to 240 VAC, 50/60 Hz 200 VAC to 240 VAC, 50/60 Hz 5.0 10.4 - - - 3.0 5.0 7.0 11.0 12.0				
Max. output o	current (A)		3.6	4.2	7.8	14.1	18.9	31.8	34.8
Max. support	ed motor power	(kW)	0.1	0.2	0.4	0.75	1.0	1.5	2.0
Output freque	ency (Hz)		0 to 330						
Power sup- ply	Voltage/frequency			• •				AC, 50/60 ŀ	Ηz
	Permissible voltage fluctuation		-15% to +10%						
	Permissible frequency fluctuation		-10% to +10%						
	Rated input	1-phase	2.5	3.0	5.0	10.4	-	-	-
	current (A)	3-phase	1.5	1.8	3.0	5.0	7.0	11.0	12.0
	Power supply	1-phase	0.5	0.7	1.2	2.0	-	-	-
	capacity (kVA)	3-phase	0.5	0.7	1.1	1.9	2.7	4.2	4.6
	Inrush current	(A)	8.0						
Cooling meth	od		Self-cooled				Fan-cooled		
Mechanical design	Outline dimens H x D, mm)	ions (W x	50 x 170 x 170 80 x 170 x 195 95 x 170 x 195			195			
Weight (kg)			1.25			1.95	2.3	2.4	

SINAMICS V90 PN 400V variant

Order No.	6SL3210-5FE	10- 4UF0	10- 8UF0	11- 0UF0	11- 5UF0	12- 0UF0	13- 5UF0	15- 0UF0	17- 0UF0	
Frame size		FSAA	FSA	FSA	FSB	FSB	FSC	FSC	FSC	
Rated output	t current (A)	1.2	2.1	3.0	5.3	7.8	11.0	12.6	13.2	
Max. output	current (A)	3.6	6.3	9.0	13.8	23.4	33.0	37.8	39.6	
Max. support	ted motor power (kW)	0.4	0.75	1.0	1.75	2.5	3.5	5.0	7.0	
Output frequ	ency (Hz)	0 to 330								
	Voltage/frequency	Three phase 380 VAC to 480 VAC, 50/60 Hz								
	Permissible voltage fluc- tuation	-15% to +	-15% to +10%							
	Permissible frequency fluctuation	-10% to +10%								
	Rated input current (A)	1.5	2.6	3.8	6.6	9.8	13.8	15.8	16.5	
	Power supply capacity (kVA)	1.7	3.0	4.3	7.6	11.1	15.7	18.0	18.9	
	Inrush current (A)	8.0	8.0	8.0	4.0	4.0	2.5	2.5	2.5	
Cooling meth	nod	Self-cooled			Fan-coc	Fan-cooled				

Order No.	6SL3210-5FE	10- 4UF0	10- 8UF0	11- 0UF0	11- 5UF0	12- 0UF0	13- 5UF0	15- 0UF0	17- 0UF0
Frame size		FSAA	FSA	FSA	FSB	FSB	FSC	FSC	FSC
Mechanical design	Outline dimensions (W x H x D, mm)	60 x 180 x 200	80 x 180	x 200	100 x 180) x 220	140 x 260 x 240		
Weight (kg)		1.5	1.9	1.9	2.5	2.5	5.6	5.6	5.8

2.6.2 Technical data - servo motors

General technical data

Parameter	Description
Type of motor	Permanent-magnet synchronous motor
Cooling	Self-cooled
Relative humidity [RH]	90% (non-condensing at 30°C)
Installation altitude [m]	≤ 1000 (without power derating)
Thermal class	В
Vibration severity grade	A (according to IEC 60034-14)
Shock resistance [m/s ²]	25 (continuous in axial direction); 50 (continuous in radial direction); 250 (in a short time of 6 ms)
Bearing lifetime [h]	> 20000 ¹⁾
Paint finish	Black
Protection degree of shaft	IP 65, with shaft oil seal
Type of construction	IM B5, IM V1, and IM V3
Positive rotation	Clockwise (default setting in servo drives)
Certification	CE ERE

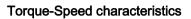
¹⁾ This lifetime is only for reference. When a motor keeps running at rated speed under rated load, replace its bearing after 20,000 to 30,000 hours of service time. Even if the time is not reached, the bearing must be replaced when unusual noise, vibration, or faults are found.

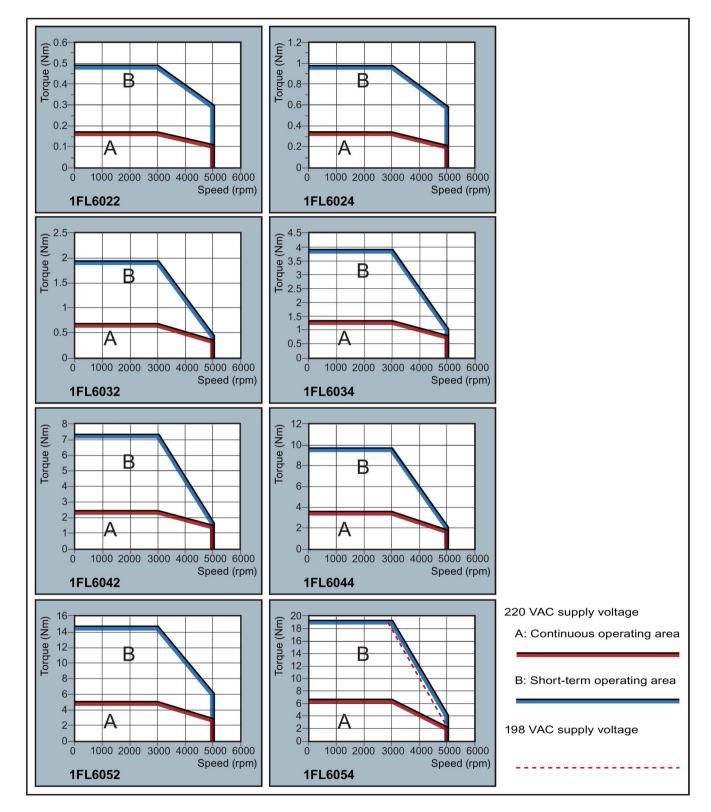
Specific technical data

SIMOTICS S-1FL6, low inertia servo motor

Order No.	1FL60	22	24	32	34	42	44	52	54			
Rated powe	er [kW]	0.05	0.1	0.2	0.4	0.75	1	1.5	2			
Rated torqu	ue [Nm]	0.16	0.32	0.64	1.27	2.39	3.18	4.78	6.37			
Maximum t	orque [Nm]	0.48	0.96	1.91	3.82	7.2	9.54	14.3	19.1			
Rated spee	ed [rpm]	3000		·	·		·					
Maximum s	speed [rpm]	5000										
Rated frequ	uency [Hz]	200										
Rated curre	ent [A]	1.2	1.2	1.4	2.6	4.7	6.3	10.6	11.6			
Maximum o	current [A]	3.6	3.6	4.2	7.8	14.2	18.9	31.8	34.8			
Moment of kgm ²]	inertia [10 ⁻⁴	0.031	0.052	0.214	0.351	0.897	1.15	2.04	2.62			
Moment of brake) [10-	inertia (with ⁴ kgm²]	0.038	0.059	0.245	0.381	1.06	1.31	2.24	2.82			
Recommer tor inertia ra	nded load to mo- atio	Max. 30x				Max. 20	ĸ	Max. 15	x			
Operating t	emperature [°C]	1FL602	1FL602, 1FL603 and 1FL604: 0 to 40 (without power derating)									
		1FL605 ^[] : 0 to 30 (without power derating) ¹⁾										
Storage ter	nperature [°C]	-20 to +65										
Maximum r	noise level [dB]	60										
	Rated voltage (V)	24 ± 10%										
	Rated current (A)	0.25	0.25 0.3					0.57	0.57			
Holding brake	Holding brake torque [Nm]	0.32		1.27	1.27		3.18		6.37			
Drake	Maximum brake opening time [ms]	35		75	105			90				
	Maximum brake closing time [ms]	10		10		15		35				
	Maximum number of emergency stops	2000 2)										
Oil seal life	time [h]	3000 to 5	000									
Encoder life	etime [h]	> 20000 3	3)									
Protection of body	degree of motor	IP 65										

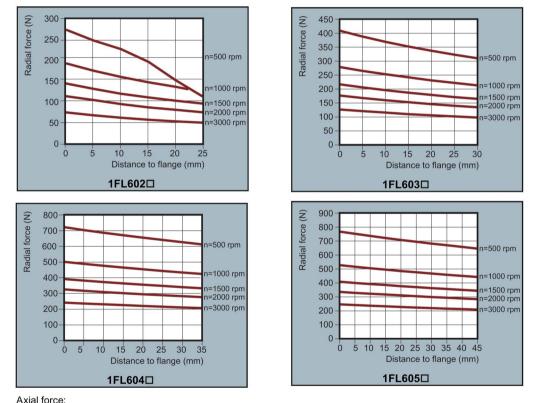
Order No.	1FL60	22	24	32	34	42	44	52	54
Protection d end connect	egree of cable or	IP20						-	
Weight [kg]	With brake	0.70	0.86	1.48	1.92	3.68	4.20	6.76	8.00
	Without brake	0.47	0.63	1.02	1.46	2.80	3.39	5.35	6.56


¹⁾ When the surrounding temperature is between 30 °C and 40 °C, the 1FL605 motor will have a power derating of 10%.


²⁾ Restricted emergency stop operation is permissible. Up to 2000 braking operations for the motors of 0.05 kW to 1 kW, and 200 braking operations for the motors of 1.5 kW to 2 kW can be executed with 300% rotor moment of inertia as external moment of inertia from a speed of 3000 rpm without the brake being subject to an inadmissible amount of wear.

³⁾ This lifetime is only for reference. When a motor keeps running at 80% rated value and the surrounding temperature is 30 °C, the encoder lifetime can be ensured.

Note


The data of rated torque, rated power, maximum torque, and armature resistance in the above table allows a tolerance of 10%.

Note

- Continuous operating area is a series of states when a motor can operate continuously • and safely. The effective torgue must be located in this area.
- Short-term operating area is a series of states when a motor can operate for a short • duration if its effective torque is larger than the rated torque.
- For the motors with different rated and maximum speeds, the output torque will decline at . a faster rate after the speed exceeds the rated speed.
- The feature in short-term operating area varies with power supply voltages. .
- The continuous operating area becomes smaller and the voltage consumptions on the cables grow larger when the cables in the major loop exceed 20 m.

Permissible radial and axial forces

Axial force:

When using, for example, helical toothed wheels as drive element, in addition to the radial force, there is also an axial force on the motor bearings. For axial forces, the spring-loading of the bearings can be overcome so that the rotor moves corresponding to the axial bearing present (up to 0.2 mm).

The permissible axial force can be approximately calculated using the following formula:

 $F_A = 0.35 \cdot F_Q$

Where FA represents axial force and Fa radial force.

SIMOTICS S-1FL6, high inertia servo motor

Order No.	1FL60	42	44	61	62	64	66	67	90	92	94	96	
Rated powe	er [kW]	0.40	0.75	0.75	1.00	1.50	1.75	2.00	2.5	3.5	5.0	7.0 ¹⁾	
Rated torqu	ue [Nm]	1.27	2.39	3.58	4.78	7.16	8.36	9.55	11.9	16.7	23.9	33.4	
Maximum t	orque [Nm]	3.8	7.2	10.7	14.3	21.5	25.1	28.7	35.7	50.0	70.0	90.0	
Rated spee	ed [rpm]	3000		2000	-	-			2000		-		
Maximum s	speed [rpm]	4000		3000					3000		2500	2000	
Rated frequ	uency [Hz]	200		133					133				
Rated curre	ent [A]	1.2	2.1	2.5	3.0	4.6	5.3	5.9	7.8	11.0	12.6	13.2	
Maximum o	current [A]	3.6	6.3	7.5	9.0	13.8	15.9	17.7	23.4	33.0	36.9	35.6	
Moment of kgm ²]	inertia [10 ⁻⁴	2.7	5.2	8.0	15.3	15.3	22.6	29.9	47.4	69.1	90.8	134.3	
Moment of brake) [10-4	inertia (with ⁴ kgm²]	3.2	5.7	9.1	16.4	16.4	23.7	31.0	56.3	77.9	99.7	143.2	
Recommer motor inerti	nded load to ia ratio	Max. 1	0×	Max. 5	×				Max. 5	×			
Operating t	emperature [°C]	0 to 40	(without	power d	erating)								
Storage ter	nperature [°C]	-15 to -	+65										
Maximum r	noise level [dB]	65		70					70				
	Rated voltage (V)	24 ± 10)%										
	Rated current (A)	0.88		1.44					1.88				
Holding brake	Holding brake torque [Nm]	3.5		12					30	30			
Diake	Maximum brake opening time [ms]	60		180					220				
	Maximum brake closing time [ms]	45		60					115	115			
	Maximum number of emergency stops	2000 2)											
Oil seal life	time [h]	5000											
Encoder life	etime [h]	20000	- 30000 3	3)									
Degree of p	protection	IP65, v	/ith shaft	oil seal									

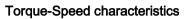
Order No.	1FL60	42	44	61	62	64	66	67	90	92	94	96
Weight of	With brake	4.6	6.4	8.6	11.3	11.3	14.0	16.6	21.3	25.7	30.3	39.1
incremen- tal encoder motor [kg]	Without brake	3.3	5.1	5.6	8.3	8.3	11.0	13.6	15.3	19.7	24.3	33.2
Weight of	With brake	4.4	6.2	8.3	11.0	11.0	13.6	16.3	20.9	25.3	29.9	38.7
absolute encoder motor [kg]	Without brake	3.1	4.9	5.3	8.0	8.0	10.7	13.3	14.8	19.3	23.9	32.7

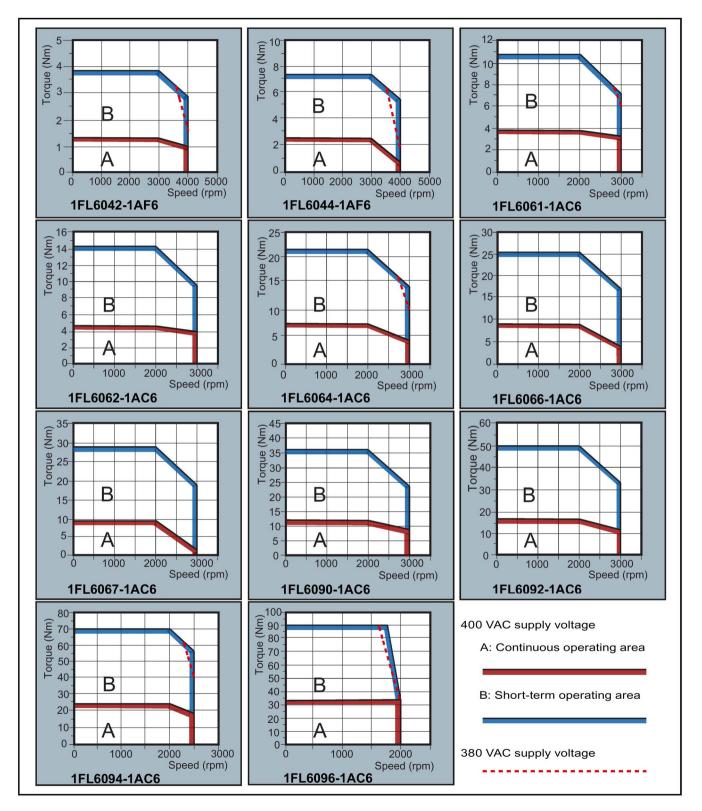
¹⁾ When the surrounding temperature is between 30 °C and 40 °C, the 1FL6096 motors with brake will have a power derating of 10%.

2) Restricted emergency stop operation is permissible. Up to 2000 braking operations can be executed with 300% rotor moment of inertia as external moment of inertia from a speed of 3000 rpm without the brake being subject to an inadmissible amount of wear.

³⁾ This lifetime is only for reference. When a motor keeps running at 80% rated value and the surrounding temperature is 30 °C, the encoder lifetime can be ensured.

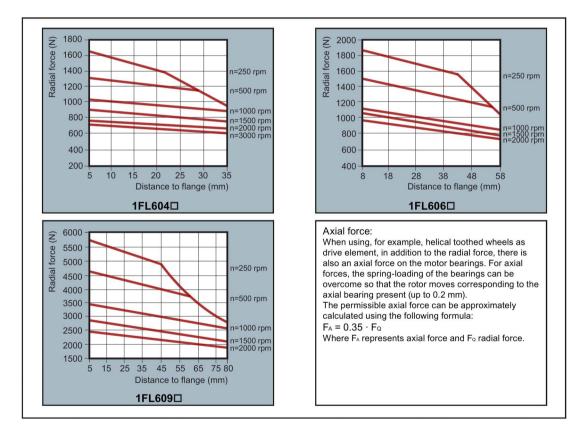
Note


The data of rated torque, rated power, and maximum torque in the above table allows a tolerance of 10%.


Power derating

For deviating conditions (surrounding temperature > 40 °C or installation altitude > 1000 m above sea level) the permissible torque/power must be determined from the following table. Surrounding temperatures and installation altitudes are rounded off to 5 °C and 500 m respectively.

Power derating as a function of the installation altitude and ambient temperature


Installation altitude above	Surrounding temperature in °C								
sea level (m)	< 30	30 to 40	45	50	55				
1000	1.07	1.00	0.96	0.92	0.87				
1500	1.04	0.97	0.93	0.89	0.84				
2000	1.00	0.94	0.90	0.86	0.82				
2500	0.96	0.90	0.86	0.83	0.78				
3000	0.92	0.86	0.82	0.79	0.75				
3500	0.88	0.82	0.79	0.75	0.71				
4000	0.82	0.77	0.74	0.71	0.67				

Note

- Continuous operating area is a series of states when a motor can operate continuously and safely. The effective torque must be located in this area.
- Short-term operating area is a series of states when a motor can operate for a short duration if its effective torque is larger than the rated torque.
- For the motors with different rated and maximum speeds, the output torque will decline at a faster rate after the speed exceeds the rated speed.
- The feature in short-term operating area varies with power supply voltages.
- The continuous operating area becomes smaller and the voltage consumptions grows larger when the cables in the major loop exceed 20 meters.
- For 1FL6096 motors, the maximum speed can be ensured when the line supply voltage is higher than 380V.

Permissible radial and axial forces

Note

1FL604 and 1FL609 have a 5 mm of shaft sheltered in sleeves, and 1FL606 has an 8 mm of shaft in sleeves. Therefore, the distances to flange in the above three figures begin respectively from 5 mm, 8mm, and 5 mm.

2.6.3 Technical data - cables

Parameter	MOTION-CONNECT 300 Power Cable	MOTION-CONNECT 300 Encoder Cable	MOTION-CONNECT 300 Brake Cable				
General technical data	÷		÷				
Jacket material	PVC	PVC	PVC				
Number of cores	4	10	2				
Operation temperature (°C)	-25 to 80		÷				
Shielding	Yes						
Minimum bending radius, static (mm)	6 x outer diameter						
Minimum bending radius, dynamic (mm)	155						
Oil resistance	EN60811-2-1 fulfilled						
Flame-retardant	EN60332-1-1to 1-3 fulfilled	60332-1-1to 1-3 fulfilled					
Certifications	RoHS, UL, CE	RoHS	RoHS				
Specific technical data							
Cable used for 200 V variant s	ervo drive + low inertia motor	of 0.05 kW to 1 kW					
Rated voltage (V)	300/500	30	30				
Cross-section of cores (mm ²)	4 x 0.75	3 x 2 x 0.20 + 4 x 0.25	2 x 0.75				
Outer diameter (mm)	ø (6.7±0.4)	ø (7.2±0.3)	ø (6.1±0.3)				
Degree of protection (motor- side only)	IP20						
Bending cycles	Maximum acceleration 3 m/	s ² , maximum speed 40 m/min:					
	100000						
Cable used for 200 V variant s inertia motor 0.4 kW to 7 kW	ervo drive + low inertia motor	of 1.5 kW to 2 kW, and for 400	V variant servo drive + high				
Cross-section of cores (mm ²)	For high inertia motor of 0.4 kW to 1 kW:	3 x 2 x 0.22 + 4 x 0.25	2 x 0.75				
	4 x 1.5						
	For low inertia motor of 1.5 kW to 2 kW and high inertia motor 1.5 kW to 7 kW:						
	4 x 2.5						
Rated voltage (V)	600/1000	30	30				
Outer diameter (mm)	For high inertia motor of 0.4 kW to 1 kW:	ø (6.9±0.3)	ø (6.0±0.3)				
	ø (7.8±0.3)						
	For low inertia motor of 1.5 kW to 2 kW and high inertia motor 1.5 kW to 7 kW:						
	ø (9.0±0.4)						

Parameter	MOTION-CONNECT 300 Power Cable	MOTION-CONNECT 300 Encoder Cable	MOTION-CONNECT 300 Brake Cable				
Degree of protection (motor- side only)	IP65						
Bending cycles	Maximum acceleration 3 m/s², maximum speed 40 m/min: 1000000						

General information

2.6 Technical data

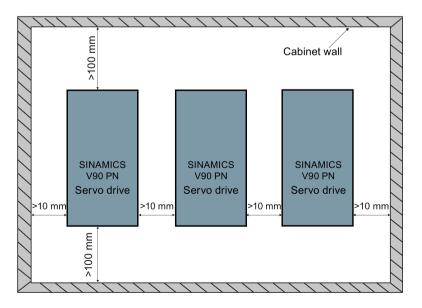
Mounting

3.1 Mounting the drive

For mounting conditions, see Technical data - servo drives (Page 48).

Protection against the spread of fire

The inverter may be operated only in closed housings or in higher-level control cabinets with protective covers that are closed, and when all of the protective devices are used. The installation of the inverter in a metal control cabinet or the protection with another equivalent measure must prevent the spread of fire and emissions outside the control cabinet.

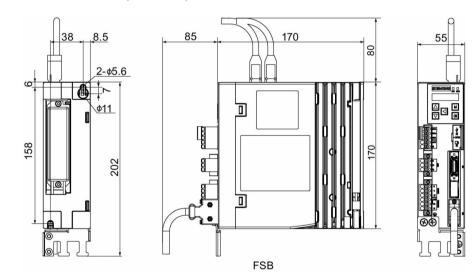

Protection against condensation or electrically conductive contamination

Protect the inverter, e.g. by installing it in a control cabinet with degree of protection IP54 according to IEC 60529 or NEMA 12. Further measures may be necessary for particularly critical operating conditions.

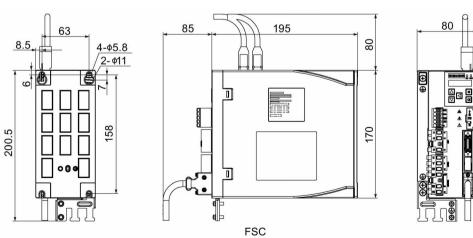
If condensation or conductive pollution can be excluded at the installation site, a lower degree of control cabinet protection may be permitted.

3.1.1 Mounting orientation and clearance

Mount the drive vertically in a shielded cabinet and observe the mounting clearances specified in the illustration below:

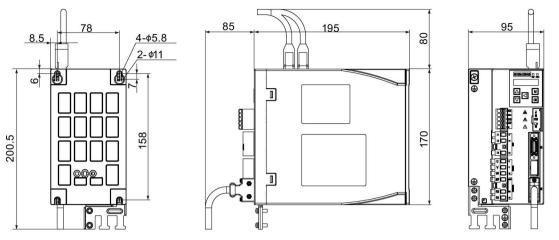


Note

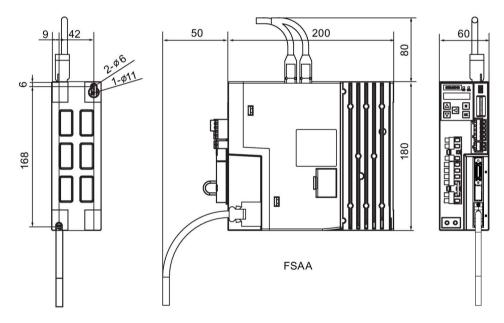

The drive must be derated to 80% when the following conditions are satisfied:

- The surrounding temperature is 0 °C to 45 °C, and the mounting clearance is less than 10 mm. In this case, the minimum mounting clearance should not be less than 5 mm.
- The surrounding temperature is 45 °C to 55 °C. In this case, the minimum mounting clearance should not be less than 20 mm.

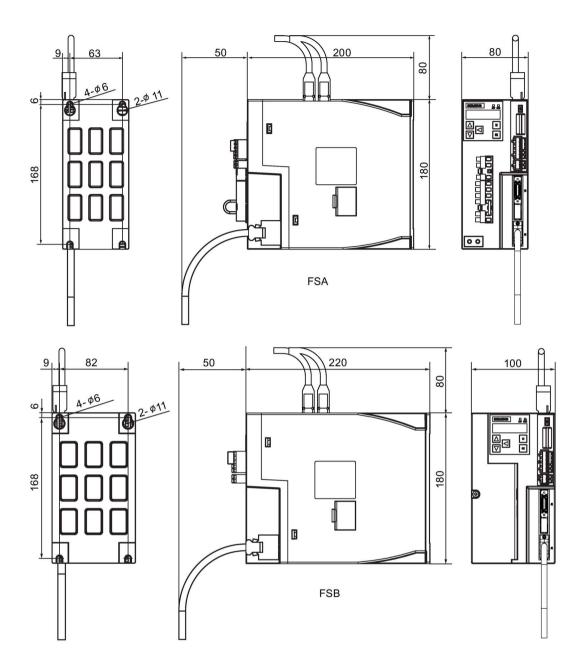
3.1.2 Drill patterns and outline dimensions



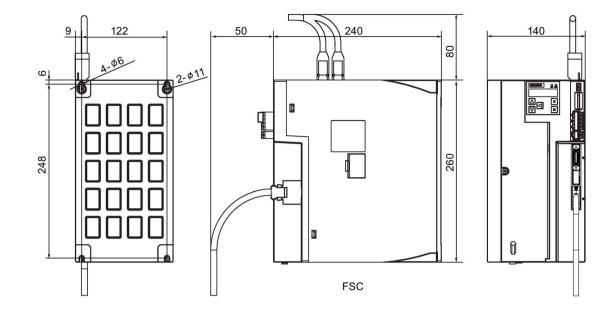
SINAMICS V90 PN 200V variant (unit: mm)


Mounting

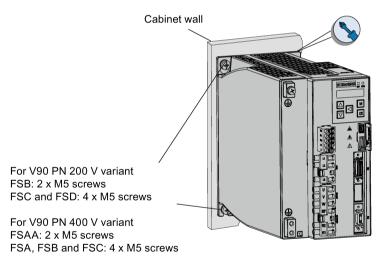
3.1 Mounting the drive


FSD

SINAMICS V90 PN 400V variant (unit: mm)


Mounting

3.1 Mounting the drive


Mounting

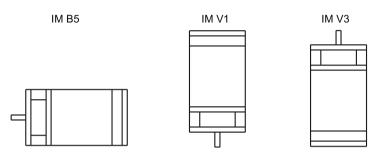
3.1 Mounting the drive

3.1.3 Mounting the drive

Tightening torque: max. 2.0 Nm

Note

Taking EMC factors into account, you are recommended to mount the drive in a shielded cabinet.

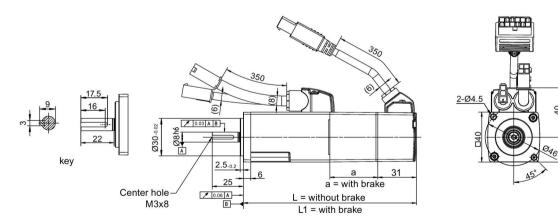

3.2 Mounting the motor

For mounting conditions, see Technical data - servo motors (Page 51).

3.2.1 Mounting orientation and dimensions

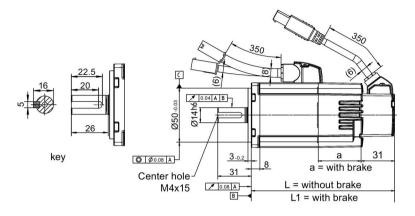
Mounting orientation

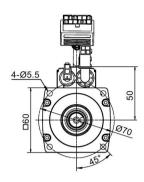
SIMOTICS S-1FL6 supports flange mounting only and three types of constructions, so it can be installed in three orientations as shown in the following figure.



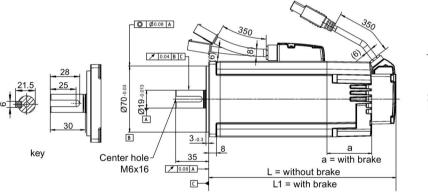
Note

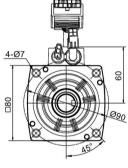
When configuring the IM V3 type of construction, pay particular attention to the permissible axial force (weight force of the drive elements) and the necessary degree of protection.


SIMOTICS S-1FL6 Low inertia servo motors (unit: mm)


Shaft height 20 mm

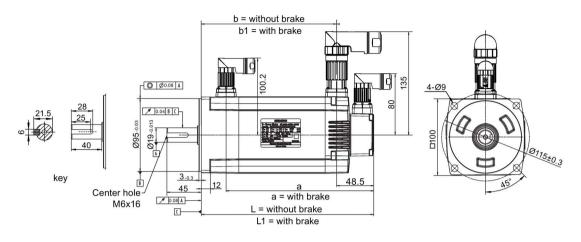
Rated power	Rated torque	а	L	L1
0.05 kW	0.16 Nm	38.5	86	119
0.1 kW	0.32 Nm	38.5	106	139


Shaft height 30 mm



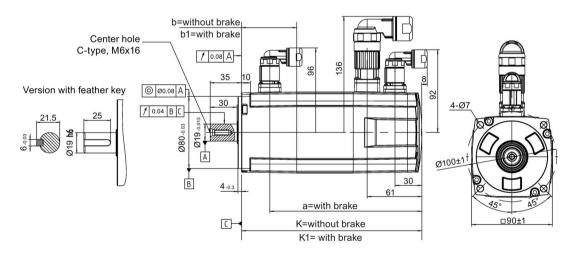
Rated power	Rated torque	а	L	L1
0.2 kW	0.64 Nm	39.5	98	132.5
0.4 kW	1.27 Nm	39.5	123	157.5

Shaft height 40 mm

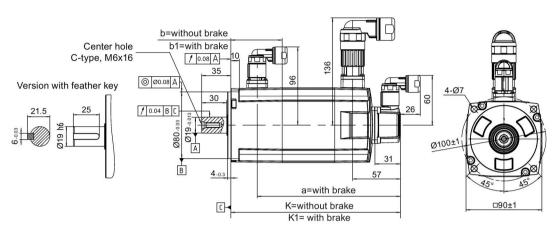


Rated power	Rated torque	а	L	L1
0.75 kW	2.39 Nm	48	139	178.3
1.0 kW	3.18 Nm	48	158.8	198.1

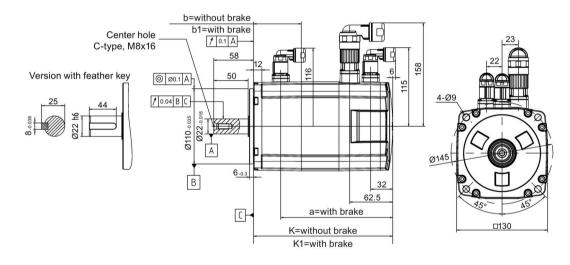
3.2 Mounting the motor


Shaft height 50 mm

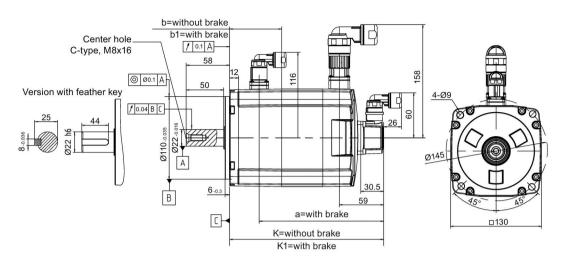
Rated power	Rated torque	а	b	b1	L	L1
1.5 kW	4.78 Nm	195	143.5	177.5	192	226
2.0 kW	6.37 Nm	219	167.5	201.5	216	250


SIMOTICS S-1FL6 high inertia servo motors (unit: mm)

Shaft height 45 mm, with the incremental encoder

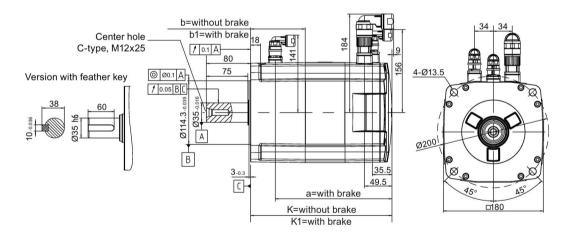

F	Rated power	Rated torque	k	k1	а	b	b1
(0.4 kW	1.27 Nm	154.5	201	169.5	15	61.5
(0.75 kW	2.39 Nm	201.5	248	216.5		

Shaft height 45 mm, with the absolute encoder


Rated power	Rated torque	k	k1	а	b	b1
0.4 kW	1.27 Nm	157	203.5	172	15	61.5
0.75 kW	2.39 Nm	204	250.5	219		

Shaft height 65 mm, with the incremental encoder

Rated power	Rated torque	k	k1	а	b	b1
0.75 kW	3.58 Nm	148	202.5	163	15	69.5
1.0 kW	4.78 Nm	181	235.5	196		
1.5 kW	7.16 Nm	181	235.5	196		
1.75 kW	8.36 Nm	214	268.5	229		
2.0 kW	9.55 Nm	247	301.5	262		


3.2 Mounting the motor

Shaft height 65 mm, with the absolute encoder

Rated power	Rated torque	k	k1	а	b	b1
0.75 kW	3.58 Nm	151	205.5	166	15	69.5
1.0 kW	4.78 Nm	184	238.5	199		
1.5 kW	7.16 Nm	184	238.5	199		
1.75 kW	8.36 Nm	217	271.5	232		
2.0 kW	9.55 Nm	250	304.5	265		

Shaft height 90 mm, with the incremental encoder

Rated power	Rated torque	k	k1	а	b	b1
2.5 kW	11.9 Nm	189.5	255	210.5	33	98.5
3.5 kW	16.7 Nm	211.5	281	236.5		
5.0 kW	23.9 Nm	237.5	307	262.5		
7.0 kW	33.4 Nm	289.5	359	314.5		

b=without brake Center hole b1=with brake 18 84 C-type, M12x25 1 0.1 A Version with feather key 80 4-Ø13.5 75 @ Ø0.1 A Ø 1 0.05 BC Ø114.3-0.035 035 Ø200 B 3-0.3 62 [[a=with brake K=without brake □180 K1=with brake

Shaft height 90 mm, with the absolute encoder

Rated power	Rated torque	k	k1	а	b	b1
2.5 kW	11.9 Nm	197	263	218	33	98.5
3.5 kW	16.7 Nm	223	289	244		
5.0 kW	23.9 Nm	249	315	270		
7.0 kW	33.4 Nm	301	367	322		

3.2.2 Mounting the motor

Personal injury and material damage

Some motors, especially the 1FL609 are heavy. The excessive weight of the motor should be considered and any necessary assistance required for mounting should be sought.

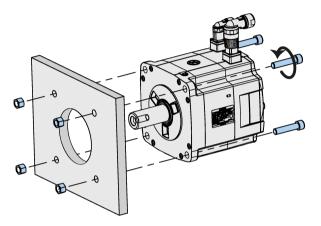
Otherwise, the motor can fall down during mounting. This can result in serious personal injury or material damage.

NOTICE

Damage to the motor

If the liquid enters the motor, the motor may be damaged

During motor installation or operation, make sure that no liquid (water, oil, etc.) can penetrate into the motor. Besides, when installing the motor horizontally, make sure that the cable outlet faces downward to protect the motor from ingress of oil or water.


Note

Using the eyebolts

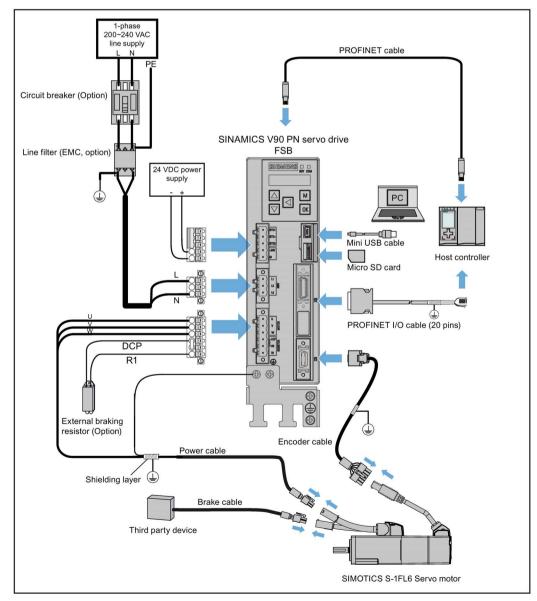
The 1FL609 motor (90 mm shaft height) has two M8 screw holes for screwing in two eyebolts. Lift the 1FL609 motor only at the eyebolts.

Eyebolts that have been screwed in must be either tightened or removed after mounting.

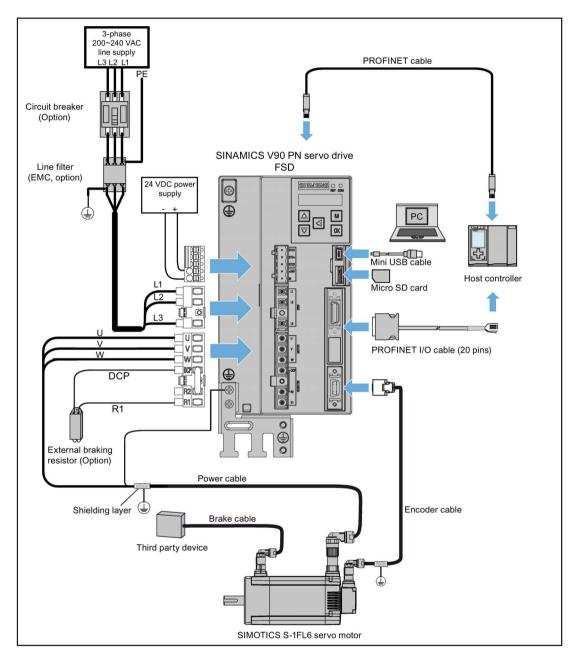
To ensure better heat dissipation, install a flange between the machine and the motor. You can install the motor onto the flange with four screws as shown in the following figure.

The information about the screws and the flange is as follows:

Motor	Screw	Recommended flange size	Tightening torque	Flange material		
Low inertia n	Low inertia motors					
1FL602	2 x M4	120 x 100 x 40 (mm)	2.4 Nm	Aluminum alloy		
1FL603ロ	4 x M5	120 x 100 x 40 (mm)	4.7 Nm			
1FL604🛛	4 x M6	120 x 100 x 40 (mm)	8 Nm			
1FL605🗅	4 x M8	120 x 100 x 40 (mm)	20 Nm			
High inertia motors						
1FL604🛛	4 x M6	270 x 270 x 10 (mm)	8 Nm	Aluminum alloy		
1FL606🗅	4 x M8	390 x 390 x 15 (mm)	20 Nm			
1FL609🗅	4 x M12	420 x 420 x 20 (mm)	85 Nm			


Connecting

4.1 System connection


The SINAMICS V90 PN servo drive is integrated with digital input/output interface and PROFINET communication port. It can be connected either to a Siemens controllers like S7-1200 or S7-1500.

The following illustrations show the examples of the SINAMICS V90 PN servo system connection.

Connection diagram for FSB on the single phase power network:

4.1 System connection

Connection diagram for FSD on the three phase power network:

NOTICE

Important wiring information

In order to meet EMC requirements, all cables must be shielded cables.

The cable shields of shielded twisted-pair cables should be connected to the shielding plate or the cable clamp of the servo drive.

NOTICE

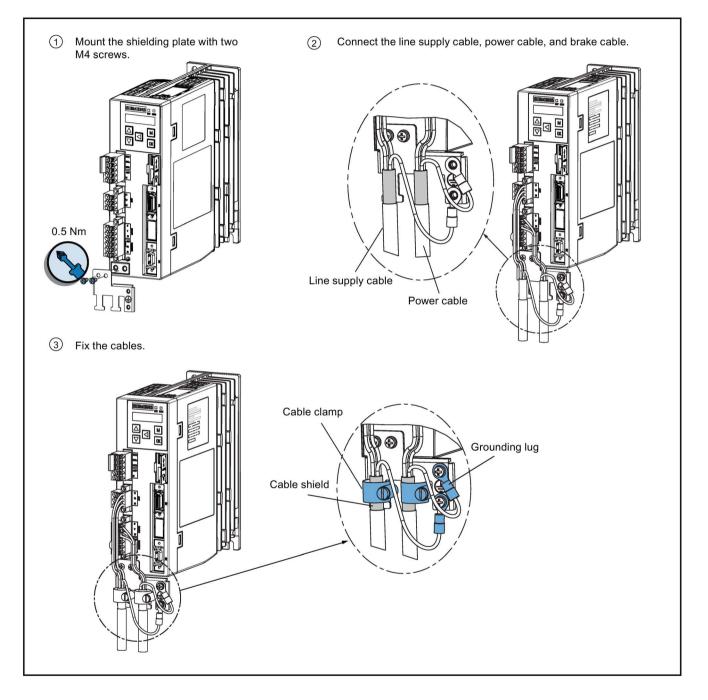
Drive damage caused by short-circuiting between the shielding wire and the unused pin on the PROFINET I/O connector

The shielding wire may inadvertently be short-circuited to the unused pin on the to-beassembled PROFINET I/O connector. This can cause damage to the drive.

Exercise caution when connecting the shielding cable to the PROFINET I/O connector.

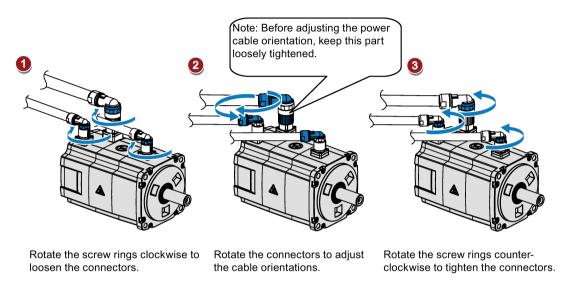
You can see the assembly method of the connector in chapter "Assembly of cable terminals on the drive side (Page 223)".

Note


For low inertia motors of shaft heights 20 mm, 30 mm and 40 mm, the encoder cable connectors may only be accessible to electrically skilled personnel.

Connecting

4.1 System connection


Connecting the cable shields with the shielding plate

To achieve EMC-compliant installation of the drive, use the shielding plate that is shipped with the drive to connect the cable shields. See the following example for steps of connecting cable shields with the shielding plate:

Adjusting cable orientations from the motor side

For the low inertia motors of shaft height 50 mm and high inertia motors, you can adjust the orientation of the power cable, encoder cable, and brake cable from motor side to facilitate cable connection.

Note

Rotating the connectors

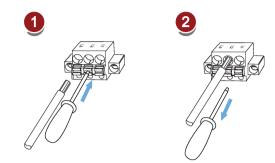
You can rotate all the three motor-side connectors only within 360°.

4.2 Main circuit wirings

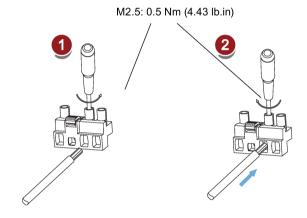
4.2 Main circuit wirings

4.2.1 Line supply - L1, L2, L3

Signal	Description				
200 V variant	00 V variant				
L1	Line phase L1				
L2	Line phase L2				
L3	Line phase L3				
Recommended minimum	cable cross-section:				
When used on the single	phase power network:				
FSB (0.1 kW to 0.2 kW):	0.33 mm ²				
FSB (0.4 kW): 0.52 mm ²					
FSC: 1.31 mm ²					
When used on the three p	phase power network:				
FSB: 0.33 mm ²					
FSC: 0.52 mm ²					
FSD (1 kW): 0.82 mm ²					
FSD (1.5 kW to 2 kW): 2.	08 mm ²				
400 V variant					
L1	Line phase L1				
L2	Line phase L2				
L3	Line phase L3				
Recommended minimum	cable cross-section:				
FSAA and FSA: 1.5 mm ²					
FSB and FSC: 2.5 mm ²					


Note

For 200 V variant servo drive, when using the FSB and FSC on the single phase power network, you can connect the power supply to any two connectors of L1, L2, and L3.


Plugging the line supply cable

• For FSB

• For FSC and FSD

400 V variant

• For FSAA and FSA

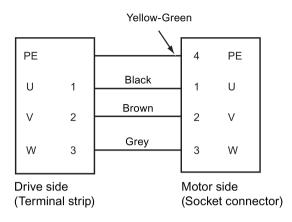
You can plug the motor power cable with the same plugging method for 200 V variant drives of frame size FSC and FSD.

• For FSB and FSC

The FSB and FSC servo drives are equipped with barrier terminals for motor power connection. You can fix the motor power cable using the M4 screws with the tightening torque of 2.25 Nm (19.91 lb.in) on the servo drives.

4.2 Main circuit wirings

4.2.2 Motor power - U, V, W


Motor output - drive side

Signal	Description			
200 V variant				
U	Motor phase U			
V	Motor phase V			
W	Motor phase W			
Recommended minimum cab	le cross-section:			
FSB: 0.75 mm ²				
FSC and FSD (1 kW): 0.75 m	m ²			
FSD (1.5 kW to 2 kW): 2.5 mi	n ²			
400 V variant				
U	Motor phase U			
V	V Motor phase V			
W Motor phase W				
Recommended minimum cab	le cross-section:			
FSAA and FSA: 1.5 mm ²				
FSB and FSC: 2.5 mm ²				

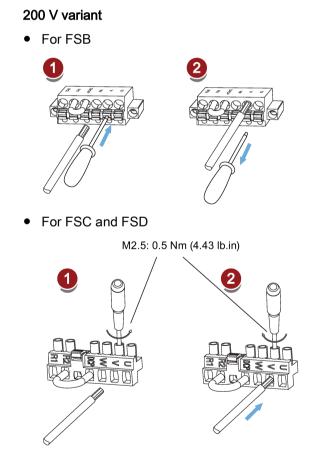

Power connector - motor side

Illustration	Pin No.	Signal	Color	Description
Low inertia motor, sh	aft height: 20) mm, 30 mm,	and 40 mm	
	1	U	Black	Phase U
	2	V	Brown	Phase V
	3	W	Gray	Phase W
	4	PE	Yellow-green	Protective earthing
Low inertia motor, sh	aft height: 50) mm		
High inertia motor, sh	haft height: 4	5 mm, 60 mm	, and 90 mm	
340	1	U	Black	Phase U
(²) ² (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	2	V	Brown	Phase V
199	3	W	Gray	Phase W
	4	PE	Yellow-green	Protective earthing

Wiring

Plugging the motor power cable

4.3 Control/status interface - X8

400 V variant

• For FSAA and FSA

You can plug the motor power cable with the same plugging method for 200 V variant drives of frame size FSC and FSD.

• For FSB and FSC

The FSB and FSC servo drives are equipped with barrier terminals for motor power connection. You can fix the motor power cable using the M4 screws with the tightening torque of 2.25 Nm (19.91 lb.in) on the servo drives.

4.3 Control/status interface - X8

Pin	Signal	Description	Pin	Signal	Description			
	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $							
	n MDR socket							
Digital input	s/outputs	1	1	1	<u> </u>			
1	DI1	Digital input 1	11	DO1+	Digital output 1, positive			
2	DI2	Digital input 2	12	DO1-	Digital output 1, negative			
3	DI3	Digital input 3	13	DO2+	Digital output 2, positive			
4	DI4	Digital input 4	14	DO2-	Digital output 2, negative			
6	DI_COM	Common terminal for digital inputs	17 *	BK+	Motor holding brake control sig- nal, positive			
7	DI_COM	Common terminal for digital inputs	18 *	BK-	Motor holding brake control sig- nal, negative			
None								
5	-	Reserved	15	-	Reserved			
8	-	Reserved	16	-	Reserved			
9	-	Reserved	19	-	Reserved			
10	-	Reserved	20	-	Reserved			

* The pins are used to connect the brake control signals for 200 V variant drive only.

4.3.1 Digital inputs/outputs (DIs/Dos)

SINAMICS V90 PN supports free assignment of signals to the following digital input and output terminals depending on the control mode selected:

DI1 to DI4 -- Assignable with parameters p29301 to p29304

DO1 to DO2 -- Assignable with parameters p29330 to p29331

For detailed information about default DI/DO signal assignments, see the table below:

Pin	Digital in- puts/outputs	Parameters	Default values/signals
1	DI1	p29301	2 (RESET)
2	DI2	p29302	11 (TLIM)
3	DI3	p29303	0
4	DI4	p29304	0
11	DO1	p29330	2 (FAULT)
13	DO2	p29331	9 (OLL)

Note

The selected DI signal will respond with a delay time of 8 to 16 ms.

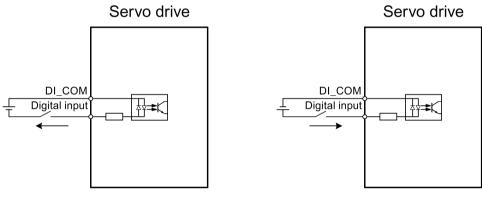
Note

DO signal inverse

The logics of digital output signals DO1 and DO2 can be inversed. You can inverse the logics of DO1 and DO2 by setting the bit 0 and bit 1 of parameter p0748.

4.3.1.1 Dls

You can assign a maximum of four internal digital input signals to the SINAMICS V90 PN servo drive. For detailed information about these signals, see the table below:


Name	Туре	Description	
RESET	Edge	Reset alarms	
	0→1	• 0→1: Reset alarms	
TLIM	Level	Torque limit selection	
		Two internal torque limit sources can be selected with the digital input signal TLIM.	
		• 0 = internal torque limit 1	
		• 1 = internal torque limit 2	

4.3 Control/status interface - X8

Name	Туре	Description	
SLIM	Level	Speed limit selection	
		Two internal speed limit sources can be selected with the digital input signal SLIM.	
		• 0 = internal speed limit 1	
		• 1 = internal speed limit 2	
EMGS	Level	Emergency stop	
		• 0 = Emergency stop	
		• 1 = Servo drive is ready to run	

Wiring

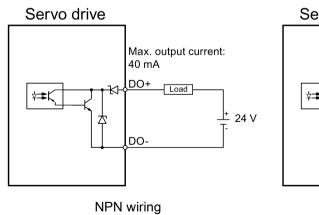
The digital inputs support both PNP and NPN types of wirings. You can find detailed information from the following diagrams:

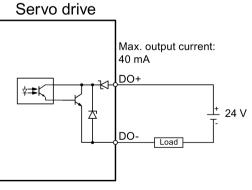
NPN wiring

PNP wiring

4.3.1.2 DOs

You can assign a maximum of seven internal digital output signals to the SINAMICS V90 PN servo drive. For detailed information about these signals, see the table below:


Name	Descriptions			
RDY	Servo ready			
	1: ready to operate			
	• 0: drive not ready (alarm occurs or enable signal is missing)			
FAULT	Fault			
	• 1: in fault status			
	• 0: no fault			

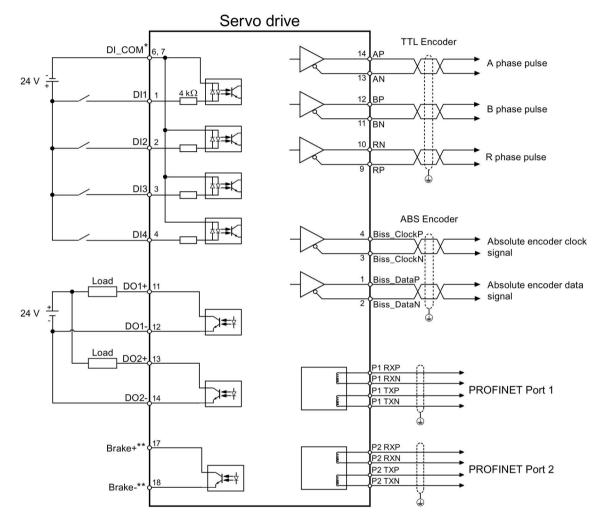

4.3 Control/status interface - X8

Name	Descriptions
ZSP	Zero speed detection
	• 1: motor speed is equal with or lower than the zero speed (can be set with parameter p2161).
	• 0: motor speed is higher than zero speed + hysteresis (10 rpm).
TLR	Torque limit reached
	• 1: the generated torque has nearly (internal hysteresis) reached the value of the positive torque limit, negative torque limit or analog torque limit
	0: the generated torque has not reached the limit
MBR	Motor holding brake
	1: motor holding brake is closed
	0: motor holding brake is released
	Note : MBR is only status signal because the control and the power supply of the motor holding brake is realized with separate terminals.
OLL	Overload level reached
	• 1: motor has reached the parameterizable output overload level (p29080 in % of rated torque, default: 100%, max: 300%)
	0: motor has not reached the overload level
RDY_ON	Ready for servo on
	1: ready to servo on
	• 0: drive is not ready for servo on (fault occurs, main power supply is missing, or STW1.1 and STW1.2 are not set to 1)
	Note: After the drive is servo on, the signal remains in 1 status unless the above abnormal cases happen.

Wiring

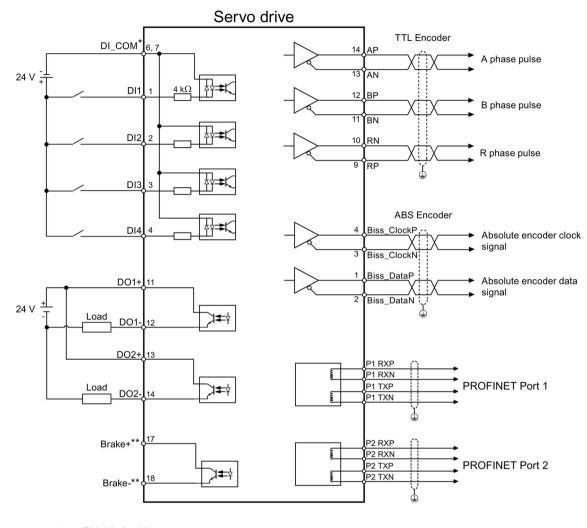
The digital outputs support both PNP and NPN types of wirings. You can find detailed information from the following diagrams:

PNP wiring


Connecting

4.3 Control/status interface - X8

4.3.2 Standard application wirings in speed control mode (factory setting)


Standard wiring for speed control mode:

Example 1

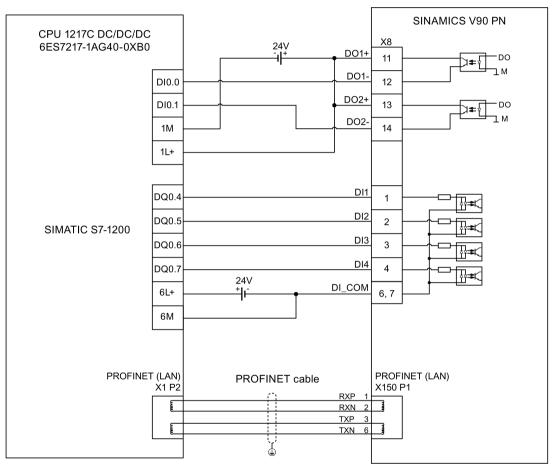
Shielded cable

Twisted-pair wires

Example 2

⊕ Shielded cable⇒ Twisted-pair wires

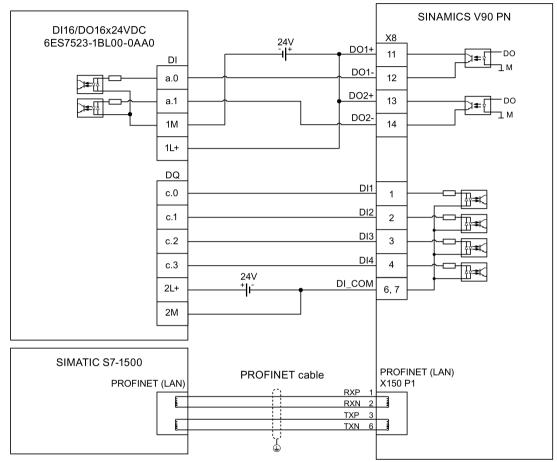
- * Digital inputs, supporting both PNP and NPN types.
- ** The pins are used to connect the brake control signals for 200 V variant drive only. Refer to section "Motor holding brake (Page 98)" for the detailed connections.


Connecting

4.3 Control/status interface - X8

4.3.3 Connection example with PLCs

4.3.3.1 SIMATICS S7-1200


Speed control (s)

Shielded cable

4.3.3.2 SIMATICS S7-1500

Speed control (S)

Shielded cable

4.4 24 V power supply/STO

Pin assignment

Interface	Signal name	Description	Remarks	
	STO 1	Safe torque off channel 1	-	
	STO +	Power supply for safe torque off	-	
⊟ (⊂)) STO+	STO 2	Safe torque off channel 2	-	
	+24 V	Power supply, 24 VDC	Voltage tolerance:	
	Μ	Power supply, 0 VDC	 Without brake: -15% to +20% With brake: -10% to +10% Maximum current consumption: 1.5 A without brake power supply 3.5 A with brake power supply 	
	Maximum conductor cross-section: 1.5 mm ²			

Wiring

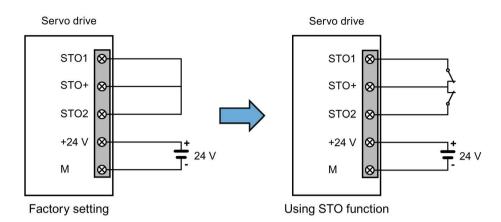
Material damages and personal injuries by the drop of a hanging axis

When the servo system is used as a hanging axis, the axis will drop if the positive and negative poles of the 24 V power supply are connected inversely. Unexpected drop of the hanging axis may cause material damages and personal injuries.

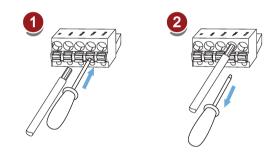
Make sure that the 24 V power supply is correctly connected.

Material damages and personal injuries by the drop of a hanging axis

It is not allowed to use the STO with a hanging axis because the axis may drop. Unexpected drop of the hanging axis may cause material damages and personal injuries.


Note

Using the STO function


The STO1, STO+ and STO2 are short connected at the factory setting.

When the STO function is to be used, you must remove the short-circuit stick before connecting the STO interfaces. If you do not need to use it any more, you must reinsert the short-circuit stick; otherwise, the motor will not run.

For detailed information about the STO function, refer to "Safety Integrated basic function (Page 161)".

Plugging the 24 V power supply and STO cables

4.5 Encoder interface - X9

The SINAMICS V90 PN 200V variant servo drive supports two kinds of encoders:

- Incremental encoder TTL 2500 ppr
- Absolute encoder single-turn 21-bit

The SINAMICS V90 PN 400V variant servo drive supports two kinds of encoders:

- Incremental encoder TTL 2500 ppr
- Absolute encoder 20-bit + 12-bit multi-turn

NOTICE

Cable shielding

The encoder cable **must** be shielded to meet the EMC requirements.

4.5 Encoder interface - X9

NOTICE

Drive damage caused by short-circuiting between the shielding wire and the unused pin on the encoder connector

The shielding wire may inadvertently be short-circuited to the unused pin on the to-beassembled encoder connector. This can cause damage to the drive.

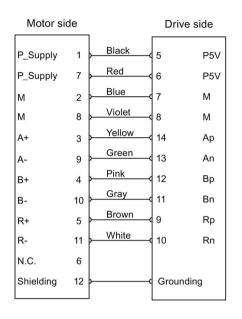
Exercise caution when connecting the shielding cable to the encoder connector.

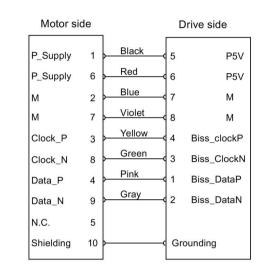
For more information, see section "Assembly of cable terminals on the drive side (Page 223)".

Encoder interface - drive side

Illustration	Pin No.	Signal name	Description	
	1	Biss_DataP	Absolute encoder data signal, positive	
	2	Biss_DataN	Absolute encoder data signal, negative	
	3	Biss_ClockN	Absolute encoder clock signal, negative	
	4	Biss_ClockP	Absolute encoder clock signal, positive	
	5	P5V	Encoder power supply, 5 V	
	6	P5V	Encoder power supply, 5 V	
	7	М	Encoder power supply, grounding	
	8	М	Encoder power supply, grounding	
	9	Rp	Encoder R phase positive signal	
	10	Rn	Encoder R phase negative signal	
	11	Bn	Encoder B phase negative signal	
	12	Вр	Encoder B phase positive signal	
	13	An	Encoder A phase negative signal	
	14	Ар	Encoder A phase positive signal	
	Screw type: UNC 4-40 (plug-in terminal block)			
	Tighten	ing torque: 0.5 N	lm - 0.6 Nm	

Encoder connector - motor side

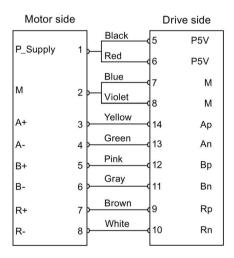

Illustration	Pin No.	Incremental encoder TTL 2500 ppr		Illustration	Absolute e	ncoder single-turn 21-bit
		Signal	Description		Signal	Description
Low inertia motor, shaft height: 20 mm, 30 mm and 40				mm		
	1	P_Supply	Power supply 5 V		P_Supply	Power supply 5 V
	2	М	Power supply 0 V		М	Power supply 0 V
	3	A+	Phase A+		Clock_P	Clock
	4	B+	Phase B+		Data_P	Data
126	5	R+	Phase R+		n. c.	Not connected
	6	n. c.	Not connected		P_Supply	Power supply 5 V
	7	P_Supply	Power supply 5 V		М	Power supply 0 V
	8	М	Power supply 0 V		Clock_N	Inverted clock
	9	A-	Phase A-		Data_N	Inverted data
	10	B-	Phase B-		Shielding	Grounding
	11	R-	Phase R-		-	Null
	12	Shielding	Grounding		-	Null


Illustration	Pin No.	Incremental enco	der TTL 2500 ppr		er single-turn 21- 2-bit multi-turn
		Signal Description		Signal	Description
Low inertia motor, s	haft h	eight: 50 mm			
High inertia motor,	shaft h	neight: 45 mm, 65 n	nm, and 90 mm		
	1	P_Supply	Power supply 5 V	P_Supply	Power supply 5 V
$20 & 06 \\ 30^{E}_{Q_{4}} 05 \\ 30^{E}_{Q_{4}} 05 $	2	Μ	Power supply 0 V	Μ	Power supply 0 V
	3	A+	Phase A+	n. c.	Not connected
	4	A-	Phase A-	Clock_N	Inverted clock
	5	B+	Phase B+	Data_P	Data
	6	В-	Phase B-	Clock_P	Clock
	7	R+	Phase R+	n. c.	Not connected
	8	R-	Phase R-	Data_N	Inverted data

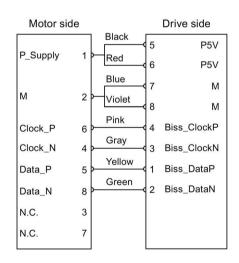
Connecting

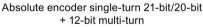
4.5 Encoder interface - X9

Wiring



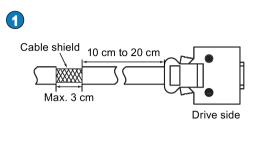
Low inertia motor, shaft height: 20 mm, 30 mm and 40 mm

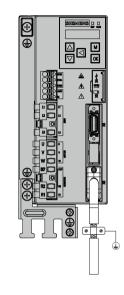

Absolute encoder single-turn 21-bit


Incremental encoder TTL 2500 ppr

Low inertia motor, shaft height: 50 mm High inertia motor, shaft height: 45 mm, 65 mm, and 90 mm

Incremental encoder TTL 2500 ppr





Grounding

To ensure better EMC effects, you are recommended to strip the encoder cable and connect the cable shield to earth, as shown in the following figure:

 $(\mathbf{2})$

4.6 External braking resistor - DCP, R1

The SINAMICS V90 PN has been designed with an internal braking resistor to absorb regenerative energy from the motor. When the internal braking resistor cannot meet the braking requirements (e.g. the alarm A52901 is generated), you can connect an external braking resistor. For the selection of braking resistors, refer to Accessories (Page 37).

Connecting an external braking resistor

Damage to the drive

Before connecting an external resistor to DCP and R1, remove the short-circuit stick on the connectors. Otherwise, the drive may be damaged.

For the connection of the external braking resistor, refer to System connection (Page 75).

4.7 Motor holding brake

The motor holding brake is used to prevent the moving load from unwanted motions (for example, falling under the influence of gravity) when the servo system is deactivated (for example, the servo power is shut off). The servo motor can move because of its own weight or an external force even the motor power has been cut off.

The holding brake is built in the servo motors with brakes.

For 400 V variant servo drive, a motor holding brake interface (X7) is integrated in the front panel. You can connect it to a servo motor with brake to use the function of motor holding brake directly.

For 200 V variant servo drive, no specific interface is integrated. To use the function, you need to connect the drive to a third-party device via the control/status interface (X8).

Note

- Use this brake for the "hold" purpose only, that is, to hold the stalling state only. Never use this for the "brake" purpose to stop the load in motion. Use the holding brake only to hold a stopped motor.
- The holding brake is activated at the same time when the motor power is cut off.

Motor holding brake - drive side (for 400 V variant servo drive only)

Illustration	Signal	Description		
	B+	24 V, motor brake voltage positive		
	B-	0 V, motor brake voltage negative		
Maximum conductor cross-section: 1.5 mm ²				

Input voltage tolerance: 24 V ± 10%

Motor holding brake - motor side

Illustration	Pin No.	Signal	Description		
Low inertia motor, shaft height: 20 mm, 30 mm and 40 mm					
			Phase Brake+		
Ô	2	Brake-	Phase Brake-		
Low inertia motor, sh	naft height: 5	0 mm			
High inertia motor, sl	haft height: 4	15 mm, 65 n	nm, and 90 mm		
	1	Brake+	Phase Brake+		
	2	Brake-	Phase Brake-		

Single status

The following table describes the states of various interfaces and components when the brake works.

• 200 V variant

Status	MBR (DO)	Brake control (Brake)	Relay	Motor brake function	Motor shaft
Brake en- gagement	High level (1)	Brake off	Without cur- rent	Opened	Cannot run
Brake release	Low level (0)	Brake on	With current	Closed	Can run

• 400 V variant

Status	MBR (DO)	Brake control (B+, B-)	Motor brake func- tion	Motor shaft
Brake engage- ment	High level (1)	0 V	Opened	Cannot run
Brake release	Low level (0)	24 V	Closed	Can run

DO signal

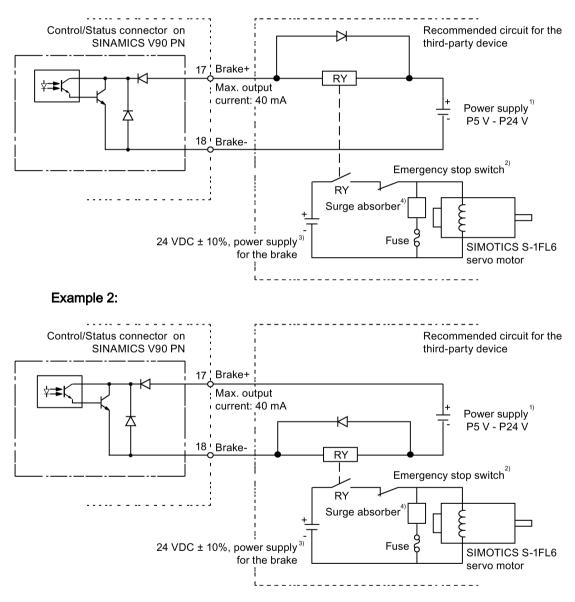
Signal type	Signal name	Setting	Description
DO	MBR	ON = high level (1)	Motor holding brake is closed.
		OFF = low level (0)	Motor holding brake is released.

You can also change the assignment of the digital output signal MBR and assign it to any DO pin with one of the following parameters:

Parameter	Range	Factory set- ting	Unit	Description
p29330	1 to 14	2 (FAULT)	-	Assignment of digital output 1
p29331	1 to 14	9 (OLL)	-	Assignment of digital output 2

Note

Refer to Section "Digital inputs/outputs (DIs/Dos) (Page 85)" for detailed information about the digital outputs.


4.7 Motor holding brake

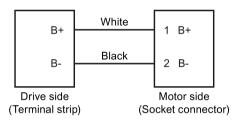
Connection example

For 200 V variant servo drive

The following diagrams show the examples when the brake is controlled through the motor holding brake signal (Brake) of the 200 V variant servo drive.

Example 1:

Note


¹⁾ It is the Isolated digital output power supply. Select a proper power supply based on the relay type. When you use the 24 VDC power supply, it can be also the controller power supply.

²⁾ The motor brake can be controlled not only by the brake control signal from the SINAMICS V90 PN servo drive but also by external emergency stop.

³⁾ Never use the same power supply for the brake (24 VDC) and for the brake control signal (P24 V).

⁴⁾ Install a surge absorber as the above figure shows to suppress surge voltage generated by ON/OFF action of the relay (RY). When you use a diode, the time from the brake release to brake engagement is slower than the case when you use a surge absorber.

For 400 V variant servo drive

Relevant parameters

No.	Unit	Range	Default	Description
p1215	-	0 to 2	0	Configuration of the holding brake.
				• 0: No holding brake available
				1: Motor holding brake according to sequence control
				• 2: Motor holding brake always open
p1216	ms	0 to 10000	Motor depend- ent	Motor holding brake opening time.
p1217	ms	0 to 10000	Motor depend- ent	Motor holding brake closing time.

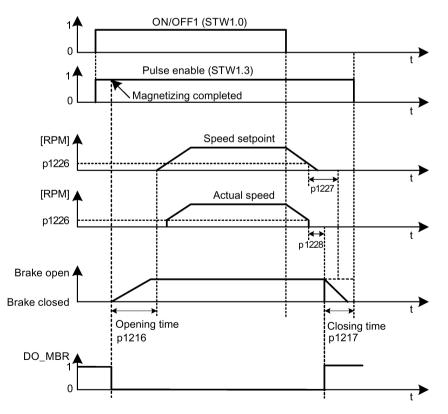
You can configure the holding brake with the parameter p1215 according to the actual application. When you set p1215=1, the motor holding brake is open once the control word STW1.0 has a rising edge and becomes closed once the motor servo is OFF.

If the servo motor is used to control a vertical axis, the machine movable part can have a slight shift when the holding brake becomes open or closed. To eliminate such slight shift, you can configure a delay time for the close or open time of the motor holding brake by setting the parameters p1216 and p1217.

Note

The default values of p1216 and p1217 depend on the rated power of the motor which connects to the servo drive.

Note


For 200 V variant servo drives, the actual motor holding brake time consists of the time delay of the motor brake and the time delay of the current amplifying component (a relay in the example above); therefore, you can set the values of p1216 and p1217 as follows:

p1216 = motor brake opening time + relay opening time

p1217 = motor brake closing time + relay closing time

Braking sequence

The operating principle of the holding brake is configured during motor selection for motors with incremental encoders and configured automatically for motors with absolute encoders.

The start of the closing time for the brake depends on the expiration of the shorter of p1227 (zero speed detection monitoring time) and p1228 (pulse suppression delay time).

4.8 PROFINET interface - X150

PROFINET interface

PROFINET devices from the SINAMICS family have a PROFINET interface (Ethernetcontroller/interface) with two ports (physical connection possibilities).

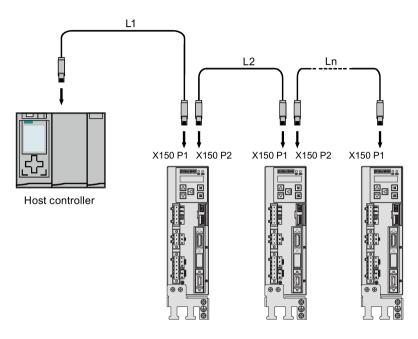
Every PROFINET device on the network is uniquely identified via its PROFINET interface. For this purpose, each PROFINET interface has:

- A MAC address (factory default)
- An IP address
- A device name (name of the station)

Illustration	Pin	PROFINET	communication port 1 - P1	PROFINET	communication port 2 - P2
		Signal	Description	Signal	Description
	1	P1RXP	Port 1 receive data +	P2RXP	Port 2 receive data +
	2	P1RXN	Port 1 receive data -	P2RXN	Port 2 receive data -
	3	P1TXP	Port 1 transmit data +	P2TXP	Port 2 transmit data +
	4	PE over termination	Protective earthing	PE over termination	Protective earthing
	5	PE over termination	Protective earthing	PE over termination	Protective earthing
	6	P1TXN	Port 1 transmit data -	P2TXN	Port 2 transmit data -
	7	PE over termination	Protective earthing	PE over termination	Protective earthing
	8	PE over termination	Protective earthing	PE over termination	Protective earthing

LED displays

For diagnostic purposes, the RJ45 sockets are each equipped with a green and an orange LED. This allows the following status information about the respective PROFINET port to be displayed:


Name	Color	Status	Meaning
Link	Green	lit	Transfer rate 100 Mbit/s
		off	No or faulty connection
Activity	Orange	lit	Data exchange
		off	No data exchange

Connecting

4.8 PROFINET interface - X150

Wiring

The maximum length of cables between stations (L1 to Ln) is 100 m. For a long cable, you are recommended to fix it on the cabinet to prevent the connector damage caused by dragging.

Note

When connecting the ports P1 and P2, you need to make sure that the physical input and output connections are the same with the connections in the topology.

Commissioning

5.1 General commissioning information

Prior to commissioning, read "Basic operator panel (BOP) (Page 111)" for more information about the BOP operations. In case of any faults or alarms during commissioning, refer to Chapter "Diagnostics (Page 203)" for detailed description.

Carefully read the safety instructions

Before your commissioning or operation, read the safety instructions in Section "Safety instructions (Page 9)" carefully. Failure to observe the instructions may cause serious effects.

Material damages and personal injuries by the drop of a hanging axis

When the servo system is used as a hanging axis, the axis will drop if the positive and negative poles of the 24 V power supply are connected inversely. Unexpected drop of the hanging axis may cause material damages and personal injuries.

Before commissioning, a crosstie must be used to hold the hanging axis in prevention of an unexpected drop. In addition, make sure that the 24 V power supply is correctly connected.

NOTICE

Plugging or unplugging the micro SD card/SD card will cause startup failure.

Do not plug or unplug the micro SD card/SD card during startup; otherwise, the drive will fail to start up.

NOTICE

Firmware damage due to drive power-off during data transfer

Switching off the 24 V power supply for the drive during data transfer from the micro SD card/SD card to the drive can cause damage to the drive firmware.

Do not switch off the drive power supply when the data transfer from the micro SD card/SD card to the drive is in process.

5.2 Commissioning in JOG mode

NOTICE

Existing setting data may be overwritten by the setting data on the micro SD card/SD card during startup.

- When a drive is switched on with a micro SD card/SD card containing user setting data, the existing setting data on the drive will be overwritten.
- When a drive is switched on with a micro SD card/SD card containing no user setting data, the drive will automatically save the existing user setting data onto the micro SD card/SD card.

Before starting up the drive with a micro SD card/SD card, check whether the micro SD card/SD card contains user setting data. Otherwise, the existing data on the drive may be overwritten.

Note

In S control mode, if the motor shaft is blocked, the blocked torque is the current effective torque. Long time shaft blocking can cause damage to the motor.

5.2 Commissioning in JOG mode

Commissioning purpose

When the servo drive is powered on for the first time, you can perform a test run with the BOP to check:

- · Whether the line supply has been connected correctly
- Whether the 24 VDC power supply has been connected correctly
- Whether the cables (power cable, encoder cable, and brake cable) between the servo drive and the servo motor have been connected correctly
- Whether the motor speed and direction of rotation are correct

Prerequisites

- The servo drive is connected to the servo motor without load
- The servo drive is not in servo on status

Operating sequence

Note

The bit 0 of parameter p29108 **must** be set to 1 to enable JOG function; otherwise, the function related parameter p1058 cannot be accessed.

If you have assigned the digital signal EMGS, it **must** be kept at high level (1) to ensure normal operation.

Step	Description	Remarks
1	Connect necessary units and check wiring.	It is necessary to connect the following cables:
		Power cable
		Encoder cable
		Brake cable
		Line supply cable
		• 24 VDC cable
		Check:
		Is the device or cable damaged?
		• Do the connected cables have excessive pressure, load or tension?
		• Are the connected cables put on sharp edges?
		• Is the line supply within the permissible range?
		• Are all the terminals firmly and correctly connected?
		Are all the connected system components well grounded?
		Refer to "Connecting (Page 75)".
2	Switch on the 24 VDC power supply.	
3	Check the servo motor type.	Fault F52984 occurs when the servo motor is not identi-
	• If the servo motor has an incremental encoder, input	fied. You can find the motor ID from the motor rating plate.
	motor ID (p29000).	Go to "Motor components (Page 28)" for detailed de-
	 If the servo motor has an absolute encoder, the servo drive can identify the servo motor automatical- 	scriptions about motor rating plate.
	ly.	Refer to "Basic operations (Page 117)" for information about how to change a parameter with the BOP.
4	Check the direction of motor rotation.	p29001=0: CW
	The default direction of rotation is CW (clockwise). You can change it by setting the parameter p29001 if necessary.	p29001=1: CCW
5	Check the JOG speed.	The bit 0 of parameter p29108 must be set to 1 to ena-
	The default JOG speed is 100 rpm. You can change it by setting the parameter p1058.	ble JOG function, otherwise, you cannot access p1058.
6	Save parameters with the BOP.	For detailed information about the parameter set- ting/saving with the BOP, refer to the sections "Basic operations (Page 117)" or "Saving parameters (RAM to ROM) (Page 123)".

5.3 Commissioning in speed control mode

Step	Description	Remarks
7	Switch on the main line supply.	
8	Clear faults and alarms.	Refer to "Diagnostics (Page 203)".
9	For the BOP, enter the JOG menu function and press the UP or DOWN button to run the servo motor.	For more information about JOG with the BOP, see Section "JOG (Page 121)".

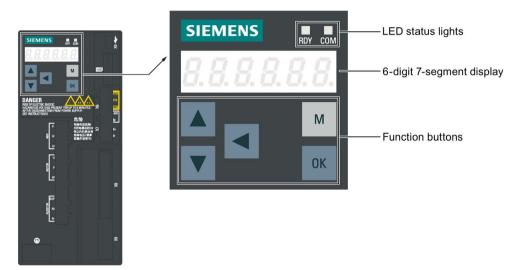
Note

When you run the servo motor with an incremental encoder in JOG mode, the servo motor makes a short buzzing sound indicating that it is identifying the magnetic pole position of the rotor.

5.3 Commissioning in speed control mode

Step	Description	Remarks
1	Switch off the main line supply.	
2	Power off the servo drive and connect it to the controller (for example, SIMATIC S7-1500) with the PROFINET cable and signal cable.	If you have assigned the signal EMGS to the DI terminal, it must be kept at high level (1) to ensure normal opera- tion. Refer to "Standard application wirings in speed control mode (factory setting) (Page 88)" and "Connection ex- ample with PLCs (Page 90)".
3	Switch on the 24 VDC power supply.	
4	 Check the servo motor type. If the servo motor has an incremental encoder, input motor ID (p29000). If the servo motor has an absolute encoder, the servo drive can identify the servo motor automatically. 	Fault F52984 occurs when the servo motor is not identi- fied. You can find the motor ID from the motor rating plate. Go to "Motor components (Page 28)" for detailed de- scriptions about motor rating plate. Refer to "Basic operations (Page 117)" for information about how to change a parameter with the BOP.
5	Set up the PROFINET configuration with TIA Portal.	
6	Select the telegram for PROFINET communication with parameter p0922.	
7	Set the IP address for the station with parameters p8921, p8923.	
8	Set the device name for the station with parameter p8920.	The device name must be unique within the PROFINET network.
9	Active the IP configuration and device name with pa- rameter p8925.	
10	Set the torque limitation and speed limitation.	Refer to "Torque limit (Page 130)" and "Speed limit (Page 129)".

Step	Description	Remarks
11	Configure necessary digital input signals by setting the	The factory settings are:
	following parameters:	• p29301: 2 (RESET)
	• p29301: DI1	• p29302: 11 (TLIM)
	• p29302: DI2	• p29303: 0
	• p29303: DI3	• p29304: 0
	• p29304: DI4	Refer to "Digital inputs/outputs (DIs/Dos) (Page 85)".
12	Save parameters with the BOP and restart the drive.	
13	Switch on the main line supply.	
14	Clear faults and alarms.	Refer to "Diagnostics (Page 203)".
15	Send and receive the process data (PZD) with TIA Por- tal.	The actual speed of the servo motor can be viewed from the BOP operating display.
		The default display is the actual speed.
		Refer to "Actual status display (Page 117)".


Commissioning

5.3 Commissioning in speed control mode

Basic operator panel (BOP)

6.1 BOP overview

The SINAMICS V90 PN servo drive is designed with a Basic Operator Panel (BOP) on the front panel of the servo drive:

You can use the BOP for the following operations:

- Standalone commissioning
- Diagnosis
- Parameter access
- Parameter settings
- Micro SD card/SD card operations
- Drive restart

6.1 BOP overview

6.1.1 BOP display

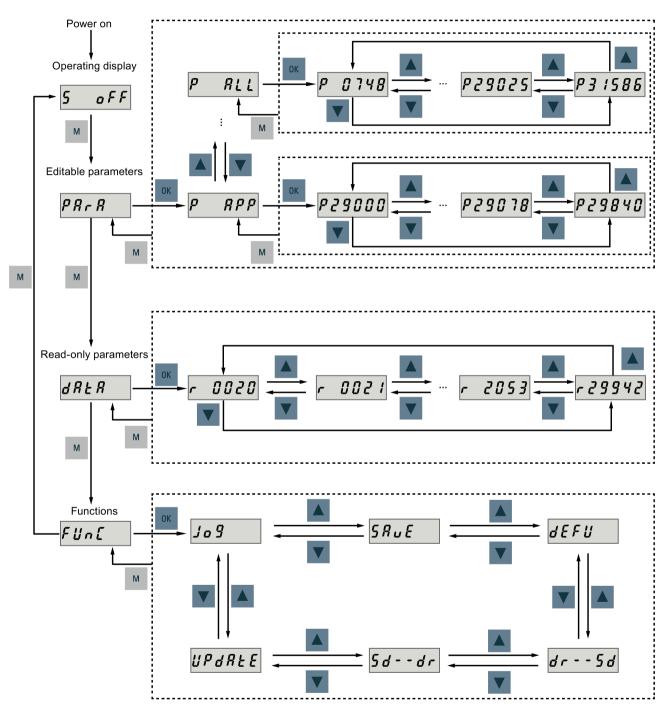
Display	Example	Description	Remarks
8.8.8.8.8.8.	<i>8.8.8.8.8.8</i> .	Drive is in startup state	
		Drive is busy	
Fxxxx	F 7985	Fault code	In the case of a single fault
F.xxxx.	F. 7985.	Fault code of the first fault	In the case of multiple faults
Fxxxxx.	F 7985.	Fault code	In the case of multiple faults
Аххххх	R 3 0 0 1 6	Alarm code	In the case of a single alarm
A.xxxx.	R.300 / 6.	Alarm code of the first alarm	In the case of multiple alarms
Axxxxx.	R 3 0 0 1 6.	Alarm code	In the case of multiple alarms
Rxxxxx	r 0031	Parameter number	Read-only parameter
Pxxxxx	P 0840	Parameter number	Editable parameter
P.xxxxx	P. 0840	Parameter number	Editable parameter; the dot means that at least one parameter has been changed
ln xx	in 001	Indexed parameter	Figure after " In " indicates the number of indices.
			For example, " In 001 " means that this in- dexed parameter is 1.
XXX.XXX	- 2 3.3 4 5	Negative parameter value	
xxx.xx<>	-21005	Current display can be moved to left or right	
xxxx.xx>	46 ,	Current display can be moved to right	
xxxx.xx<	00400r	Current display can be moved to left	

6.1 BOP overview

Display	Example	Description	Remarks
S Off	5 oFF	Operating display: servo off	
Para	PRrR	Editable parameter group	Refer to the section "Change a parameter value (Page 118)".
P xxxx	<i>P R P P</i>	Parameter group	 Three groups are available: 1. PAPP: application 2. PBASE: basic 3. PCON: communication
Data	d R E R	Read-only parameter group	Refer to "Read a parameter value (Page 120)".
Func	FUnE	Function group	Refer to "Function overview (Page 121)".
Jog	1 o 9	Jog function	Refer to "Jog (Page 121)".
Save	5 <i>R</i> E	Save data in drive	Refer to "Save parameters in the servo drive (Page 123)".
defu	dEFU	Restore drive to default settings	Refer to "Reset parameters to default values (Page 124)".
drsd	dr 5 d	Save data from drive to micro SD card/SD card	Refer to "Copy parameters from the servo drive to a micro SD card/SD card (Page 124)".
sddr	5d dr	Upload data from micro SD card/SD card to drive	Refer to "Copy parameters from a micro SD card/SD card to the servo drive (Page 125)".
Update	UPdREE	Update firmware	Refer to "Update firmware (Page 126)".
r xxx	r 40	Actual speed (positive direction)	
r -xxx	r - 40	Actual speed (negative direction)	
T x.x	E 0.4	Actual torque (positive direction)	
Т -х.х	£ - 0.4	Actual torque (negative direction)	
DCxxx.x	d E 5 4 9.0	Actual DC link voltage	

6.1 BOP overview

Display	Example	Description	Remarks
run	rUn	The motor is running	
Con [on		The communication between the commissioning tool and the servo drive is established. In this case, the BOP is protected from any operations except clearing alarms and acknowledging faults.	


6.1.2 Control buttons

Button	Description	Functions	
	M button	Exits from the current menu	
Μ		Switches between operating modes in the top level menu	
	OK button	Short-pressing:	
ОК		Confirms selection or input	
		Enters sub menu	
		Acknowledges faults	
		Long-pressing:	
		Activates auxiliary functions	
		Sets Drive Bus address	
		• JOG	
		Saves parameter set in drive (RAM to ROM)	
		Sets parameter set to default	
		Transfers data (drive to micro SD card/SD card)	
		Transfers data (micro SD card/SD card to drive)	
		Updates firmware	
	UP button	Navigates to the next item	
		Increases a value	
		JOG in CW (clockwise)	
	DOWN button	Navigates to the previous item	
		Decreases a value	
		JOG in CCW (counter-clockwise)	
	SHIFT button	Moves the cursor from digit to digit for single digit editing, including the digit of positive/negative sign	
		Note:	
		When the sign is edited, "_" indicates positive and "-" indicates negative.	
0K + M	Press the key combination for four seconds to restart the drive		
▲ + ◄	Moves current display to the left page when r is displayed at the upper right corner, for example $D D D D D r$.		
▼ + <	Moves current display to the right page when \mathbf{J} is displayed at the lower right corner, for example \mathbf{D} \mathbf{D} \mathbf{J} \mathbf{D} \mathbf{J} .		

6.2 Parameter structure

6.2 Parameter structure

The overall parameter structure of SINAMICS V90 PN BOP is designed as follows:

6.3 Actual status display

The following drive states can be monitored using the operating panel after power-on:

- Servo off
- Actual speed
- Actual torque
- DC voltage

If servo enable signal is available, actual drive speed is displayed by default; otherwise, "**S OFF**" (servo off) is displayed.

With p29002, you define which of the following drive operating status data is to be displayed on the BOP.:

Parameter	Value	Meaning
p29002	02 0 (default) Actual speed	
	1	DC voltage
	2	Actual torque

Note

Make sure you save p29002 after modification.

6.4 Basic operations

Overview

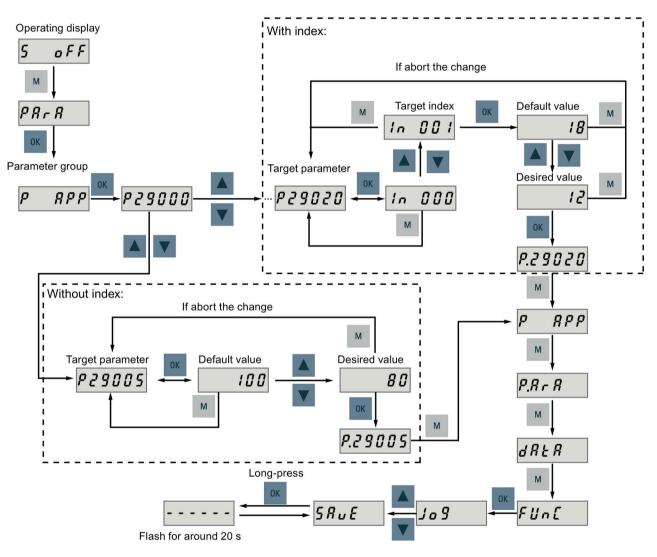
- Editable parameters: all **P** parameters under the "**Para**" menu are settable parameters. Four groups in total are available:
 - **P APP**: application
 - P BASE: basic
 - P COM: communication
 - PALL: all parameters
- Read-only parameters: All **r** parameters under the "**Data**" menu are read-only parameters. You can only read values of these parameters.

Parameters with index

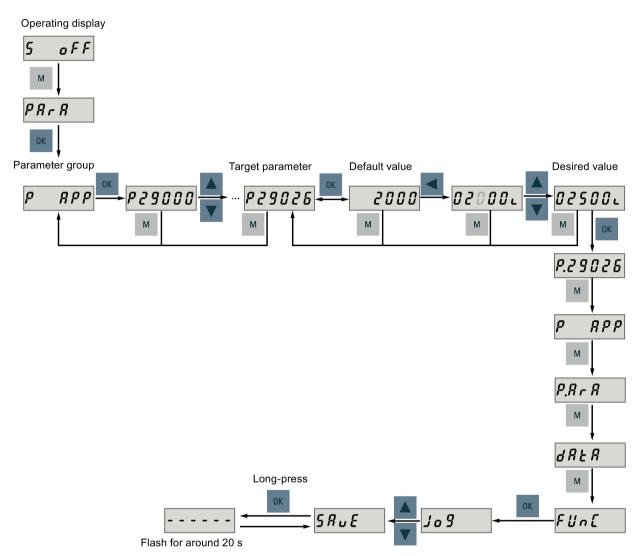
Some parameters have several indices. Each index has its own meaning and corresponding value.

Parameters without index

All parameters that do not have indices are parameters without index.


6.4 Basic operations

6.4.1 Editing parameters


You can edit a parameter value in two methods:

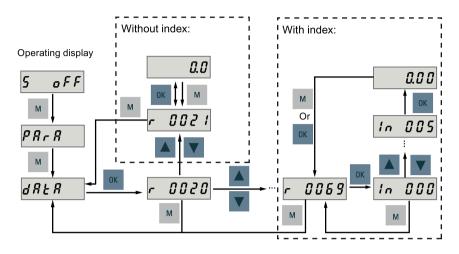
- Method 1: change the value directly with the UP or DOWN button
- Method 2: move the cursor to a digit with the **SHIFT** button, then change the digit value with the **UP** or **DOWN** button

Method 2

NOTICE

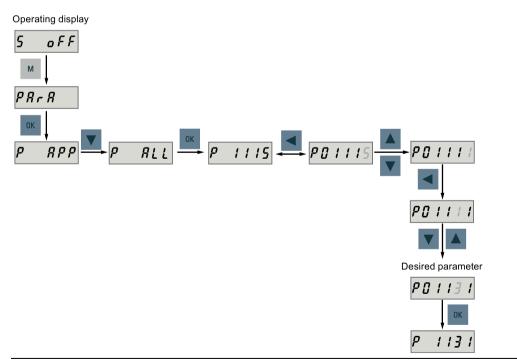
It is forbidden to use this function when the servo is ON.

Use this function when the servo is OFF.


Note

The parameters p1414 and p1656 cannot be changed using the SHIFT button.

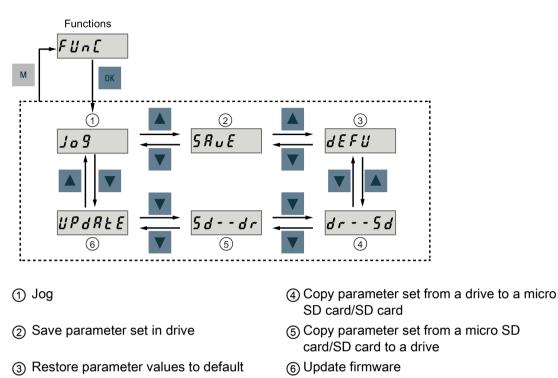
6.4 Basic operations


6.4.2 Viewing parameters

To view a parameter, proceed as follows:

6.4.3 Searching parameters in "P ALL" menu

If you do not know which group that a parameter belongs to, you can search for in the "P ALL" menu.


Note

Invalid parameter number

If the input parameter number is unavailable, the nearest parameter number to the input value is displayed.

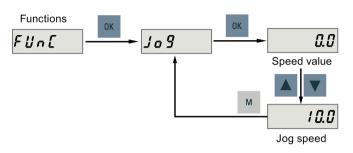
6.5 Auxiliary functions

In total, there are six BOP functions available:

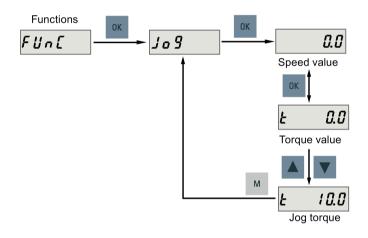
6.5.1 JOG

Note

The bit 0 of parameter p29108 must be set to 1 to enable JOG function.


The digital signal EMGS must be kept at high level (1) to ensure normal operation.

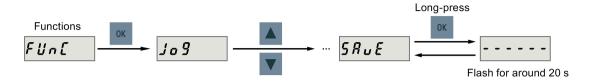
With the JOG function, you can run the connected motor and view JOG speed or JOG torque.


To run the connected motor with the JOG function and view the JOG speed, proceed as follows:

JOG in speed (example)

To run the connected motor with the JOG function and view the JOG torque, proceed as follows:

JOG in torque (example)


NOTICE

Exit the JOG mode after completing JOG run.

The servo motor cannot run if the servo drive is in the JOG mode.

6.5.2 Saving parameters (RAM to ROM)

This function is used for saving a parameter set from the drive RAM to the drive ROM. To use this function, proceed as follows:

NOTICE

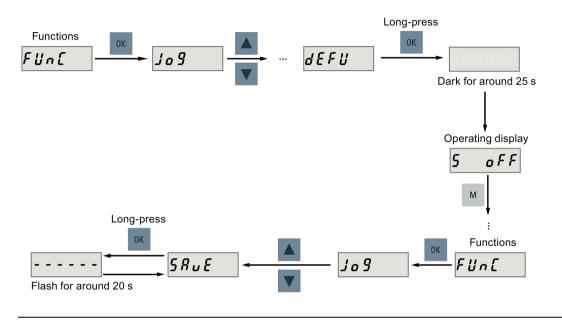
Plugging or unplugging the micro SD card/SD card will cause saving failure.

Do not plug or unplug the micro SD card/SD card during saving; otherwise, the saving operation will fail.

Note

- If a micro SD card/SD card has been inserted, the parameter set will be saved onto the micro SD card/SD card simultaneously.
- All signal functions become inactive during the saving process. Use the signal functions afterwards.

Reference


Editing parameters (Page 118)

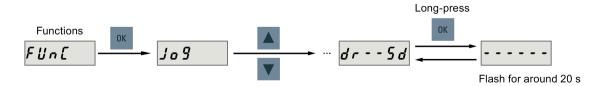
6.5 Auxiliary functions

6.5.3 Setting parameters to default

This function is used to reset all parameters to their default values.

To reset the parameters to their default values, proceed as follows:

Note


You **must** save the parameter set after setting the parameter set to the default values; otherwise, the default values will not be saved to drive ROM.

Reference

Saving parameters (RAM to ROM) (Page 123)

6.5.4 Transferring data (drive to SD)

You can save the parameter set from the drive ROM to a micro SD card/SD card with the BOP. To do this, proceed as follows:

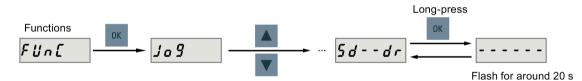
NOTICE

It is forbidden to use this function when the servo is ON.

Use this function when the servo is OFF.

NOTICE

Plugging or unplugging the micro SD card/SD card will cause copying failure.


Do not plug or unplug the micro SD card/SD card during copying; otherwise, the copying operation will fail.

Note

Write protection function is not supported by SINAMICS V90 PN. Data in the micro SD card/SD card will be overwritten even if the write protection function of the micro SD card/SD card is enabled.

6.5.5 Transferring data (SD to drive)

You can also upload the parameters from a micro SD card/SD card to the drive ROM. To do this, proceed as follows:

NOTICE

It is forbidden to use this function when the servo is ON.

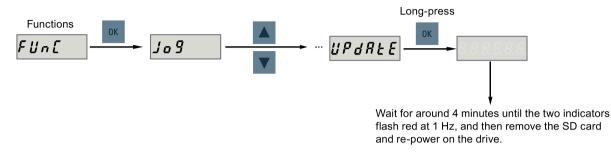
Use this function when the servo is OFF.

NOTICE

Plugging or unplugging the micro SD card/SD card will cause copying failure.

Do not plug or unplug the micro SD card/SD card during copying; otherwise, the copying operation will fail.

Note


Parameter inconsistency

If the parameters on the micro SD card/SD card are inconsistent with existing parameters in the drive memory, you **must** restart the servo drive to apply the changes.

6.5 Auxiliary functions

6.5.6 Updating firmware

With the firmware update function of the BOP, you can update the drive firmware. To do this, you have to store proper firmware files on a micro SD card/SD card and insert it into the micro SD card/SD card slot. After that, proceed as follows:

After you have updated the firmware, you need to set parameters to their default values. Refer to "Setting parameters to default (Page 124)" about the default process.

Note

Before you update the firmware, you can back up the drive data on a micro SD card/SD card. If you want to use them after the update, you can copy the data from the micro SD card/SD card to the drive (Page 125).

Improper firmware files will cause update failure.

When the update fails, the RDY indicator flashes red at 2 Hz and the COM indicator becomes red on. An update failure is probably caused by improper firmware files or files missing.

- If the firmware files on the micro SD card/SD card are corrupt, the servo drive **cannot** start up after power-on.
- If the firmware on the micro SD card/SD card is the same with the current firmware of the servo drive, **only** a restart is performed.

When a failure occurs, try to update the firmware again using proper firmware files. If the failure persists, contact your local distributor.

Note

Update the firmware by restarting the drive.

After inserting the micro SD card/SD card with proper firmware files, you can also update the firmware by restarting the drive.

7.1 Direction of motor rotation

With parameter p29001, you can reverse the direction of rotation of the motor. The polarity of output signal analog monitoring remains unchanged at a reversal of direction.

Parame-	Value	Description	Set	point
ter			Positive	Negative
p29001	0	CW is forward direction (factory setting)	Analog monitoring: Output torque Motor speed	Analog monitoring: Motor speed Output torque
	1	CCW is forward direction	Analog monitoring: Motor speed Output torque	Analog monitoring: Output torque Motor speed

7.2 Stopping method at servo OFF

You can select a stopping method when the servo is OFF. The following stopping methods are available:

- Ramp-down (OFF1)
- Coast-down (OFF2)
- Emergency stop (OFF3)

7.2 Stopping method at servo OFF

Ramp-down (OFF1) and coast-down (OFF2)

The ramp-down and coast-down can be configured with the PROFINET control words STW1.0 and STW1.1:

Ramp-down (OFF1)

Control word	Setting	Description
STW1.0	Rising edge (0→1)	Power circuit is powered on (servo is ON) and the servo motor is ready to run.
	0	Motor ramps down.

Note:

The control word STW1.0 can be used to control the start and stop of the motor.

Coast-down (OFF2)

Control word	Setting	Description
STW1.1	1	Servo motor is ready to run.
	0	Motor coasts down.

Emergency stop (OFF3)

The emergency stop can be configured with the PROFINET control word STW1.2 or the digital input signal EMGS:

Emergency stop by PROFINET control word

Control word	Setting	Description
STW1.2	1	Servo motor is ready to run.
	0	Emergency stop.

Emergency stop by digital input signal

DI Signal	Setting	Description
EMGS	1	Servo motor is ready to run.
	0	Emergency stop.

For detailed information about the PROFINET control word and the digital input signal EMGS, refer to Section "Definition of the control word STW (Page 135)" and "Digital inputs/outputs (DIs/Dos) (Page 85)".

7.3 Speed limit

Two sources in total are available for the speed limit. You can select one of them via a combination of digital input signal SLIM:

Digital signal (SLIM)	Speed limit
0	Internal speed limit 1
1	Internal speed limit 2

Note

The bit 0 of parameter p29108 must be set to 1 to enable the speed limit function.

Note

You can switch between the two sources and modify their values when the servo drive is running.

Note

Fault F7901 occurs when the actual speed exceeds the positive speed limit + hysteresis speed (p2162) or the negative speed limit - hysteresis speed (p2162). Go to "List of faults and alarms (Page 208)" for information about the acknowledgment of this fault.

Refer to "DIs (Page 85)" for more information about the digital input signal SLIM.

Overall speed limit

Besides the above two channels, an overall speed limit is also available.

You can configure the overall speed limit by setting the following parameters:

Parameter	Parameter Value range		Unit	Description	
p1083	0 to 210000	210000	rpm	Overall speed limit (positive)	
p1086	-210000 to 0	-210000	rpm	Overall speed limit (negative)	

Internal speed limit

Select an internal speed limit by setting the following parameters:

Parameter	Value range	Default	Unit	Description	Digital input (SLIM)
p29070[0]	0 to 210000	210000	rpm	Internal speed limit 1 (positive)	0
p29070[1]	0 to 210000	210000	rpm	Internal speed limit 2 (positive)	1

Control functions

7.4 Torque limit

Parameter	Value range	Default	Unit	Description	Digital input (SLIM)
p29071[0]	-210000 to 0	-210000	rpm	Internal speed limit 1 (negative)	0
p29071[1]	-210000 to 0	-210000	rpm	Internal speed limit 2 (negative)	1

Note

After the motor is commissioned, p1082, p1083, p1086, p29070 and p29071 are set to the maximum speed of the motor automatically.

7.4 Torque limit

Two sources in total are available for the torque limit. You can select one of them via the digital input signal TLIM:

Digital input (TLIM)	Torque limit		
0	Internal torque limit 1		
1	Internal torque limit 2		

When the torque setpoint reaches torque limit, the torque is limited to the value selected by TLIM.

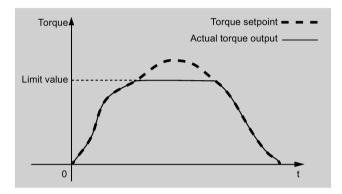
Note

You can switch between the two sources and modify their values when the servo drive is running.

Refer to "DIs (Page 85)" for more information about the digital input signal TLIM.

Overall torque limit

Besides the above two sources, an overall torque limit is also available. The overall torque limit takes effect when an emergency stop (OFF3) happens. In this case, the servo drive brakes with a maximum torque.


You can configure the overall torque limit by setting the following parameters:

Parame- ter	Value range	Default	Unit	Description
p1520	-1000000.00 to 20000000.00	0	Nm	Overall torque limit (positive)
p1521	-2000000.00 to 1000000.00	0	Nm	Overall torque limit (negative)

Internal torque limit

Parameter	Value range	Default	Unit	Description	Digital input (TLIM)
p29050[0]	-150 to 300	300	%	Internal torque limit 1 (positive)	0
p29050[1]	-150 to 300	300	%	Internal torque limit 2 (positive)	1
p29051[0]	-300 to 150	-300	%	Internal torque limit 1 (negative)	0
p29051[1]	-300 to 150	-300	%	Internal torque limit 2 (negative)	1

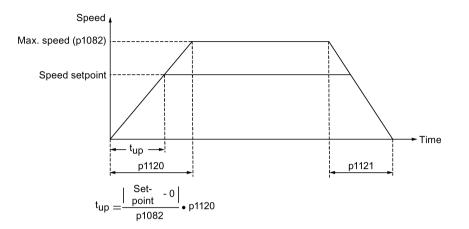
The following diagram shows how the internal torque limit functions:

Torque limit reached (TLR)

When the generated torque has nearly (internal hysteresis) reached the value of the positive torque limit or negative torque limit, the signal TLR is output.

7.5 Ramp-function generator

Note

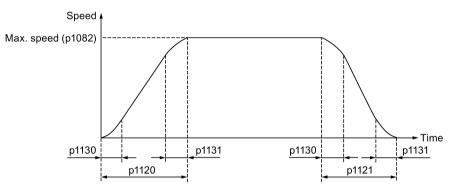

The bit 0 of parameter p29108 **must** be set to 1 to enable ramp-function generator; otherwise, the function related parameters including p1115, p1120, p1130, and p1131 cannot be accessed.

The ramp-function generator is used to limit acceleration in the event of abrupt setpoint changes and thus helps prevent load surges during drive operation.

The ramp-up time p1120 and ramp-down time p1121 can be used to set acceleration and deceleration ramps separately. This allows a smoothed transition in the event of setpoint changes.

The maximum speed p1082 is used as the reference value for calculating the ramp-up and ramp-down times.

7.5 Ramp-function generator


You can see the properties of the ramp-function generator from the diagram below:

S-curve ramp-function generator

You can also use the S-curve ramp-function generator by setting p1115 to 1. The S-curve ramp-function generator is realized with the following parameters:

- the acceleration (p1120) and deceleration (p1121) ramps
- the initial (p1130) and final (p1131) rounding-off times

You can see the properties of the S-curve ramp-function generator from the diagram below:

Parameter settings

Parameter	Value range	Default	Unit	Description
p1082	0 to 210000	1500	rpm	Maximum motor speed
p1115	0 to 1	0	-	Ramp-function generator selection
p1120	0 to 999999	1	s	Ramp-function generator ramp-up time
p1121	0 to 999999	1	s	Ramp-function generator ramp-down time
p1130	0 to 30	0	s	Ramp-function generator initial rounding-off time
p1131	0 to 30	0	s	Ramp-function generator final rounding-off time

PROFINET communication

PROFINET IO is a real time protocol based on Ethernet. It is used as high level network for industrial automation applications. PROFINET IO focuses on the data exchange for a programmable controller. A PROFINET IO network consists of the following devices:

- IO controller: typically, it is the PLC, which controls the whole application
- IO device: a decentralized IO device (for example, encoder, sensor), which is controlled by the IO controller
- IO supervisor: HMI (human machine interface) or PC for diagnostic purposes or commissioning

PROFINET supplies two kinds of real time communication, that is, PROFINET IO RT (Real Time) and PROFINET IO IRT (Isochronous Real Time). The real time channel is used for IO data and alarm mechanism.

In PROFINET IO RT, the RT data is transferred via a prioritized Ethernet frame. No special hardware is required. Due to this prioritization a cycle time of 4 ms can be achieved. PROFINET IO IRT is used for more precise timing requirements. Cycle time of 2 ms is possible, but also special hardware for IO devices and switches are required.

All diagnostic and configuration data is transferred via the non-real time channel (NRT). For this purpose the common TCP/IP protocol is used. Anyhow, no timing can be guaranteed and typically the cycle times can be more than 100 ms.

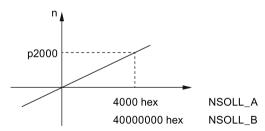
8.1 Supported telegrams

SINAMICS V90 PN supports standard telegrams and Siemens telegrams for speed control mode. You can select the desired telegram with parameter p0922. See the following table for details.

From the perspective of the drive unit, the received process data represents the receive words and the process data to be sent to the send words.

Telegram	Maximum nu	Description	
	Receive word Send word		
Standard telegram 1	2	2	p0922 = 1
Standard telegram 2	4	4	p0922 = 2
Standard telegram 3	5	9	p0922 = 3
Standard telegram 5	9	9	p0922 = 5
Siemens telegram 102	6	10	p0922 = 102
Siemens telegram 105	10	10	p0922 = 105

One PZD = one word


The telegram 5 and telegram 105 can only be used when the V90 PN connects to the SIMATICS S7-1500. 8.2 IO data signals

Standard telegrams

Tele- gram	1		2		3		5		102		105	
Appl. class	1		1		1, 4		4		1, 4		4	
PZD1	STW1	ZSW1	STW1	ZSW1	STW1	ZSW1	STW1	ZSW1	STW1	ZSW1	STW1	ZSW1
PZD2	NSOLL _A	NIST_A	NSOLL _B	NIST_B	NSOLL _B	NIST_B	NSOLL _B	NIST_B	NSOLL _B	NIST_B	NSOLL _B	NIST_ B
PZD3	\land	Π										
PZD4			STW2	ZSW2	STW2	ZSW2	STW2	ZSW2	STW2	ZSW2	STW2	ZSW2
PZD5	Бо				G1_ST W	G1_ZS W	G1_ST W	G1_ZS W	MOMR ED	MELD W	MOMR ED	MELD W
PZD6	Receive telegram from PROFINET	Send telegram to PROFINET				G1_XIS T1	XERR	G1_XIS T1	G1_ST W	G1_ZS W	G1_ST W	G1_ZS W
PZD7	tele	tele ROFI								G1_XIS	XERR	G1_XI
PZD8	PR	PR				G1_XIS	KPC	G1_XIS		T1		ST1
PZD9	Sec	S				T2		T2		G1_XIS	KPC	G1_XI
PZD10										T2		ST2

8.2 IO data signals

Parameters p200x apply as reference variables (telegram contents = 4000 hex or 40000000 hex in the case of double words if the input variable has the value p200x).

The following table provides an overview of the IO data used in the telegram.

Signal	Description	Receive word/send word	Data type	Scaling
STW1	Control word 1	Receive word	U16	-
STW2	Control word 2	Receive word	U16	-
ZSW1	Status word 1	Send word	U16	-
ZSW2	Status word 2	Send word	U16	-
NSOLL_A	Speed setpoint A (16 bit)	Receive word	I16	4000 hex ≙ p2000
NSOLL_B	Speed setpoint B (32 bit)	Receive word	132	40000000 hex ≙ p2000
NIST_A	Speed actual value A (16 bit)	Send word	116	4000 hex ≙ p2000
NIST_B	Speed actual value B (32 bit)	Send word	132	40000000 hex ≙ p2000
G1_STW	Encoder 1 control word	Receive word	U16	-

Signal Description		Receive word/send word	Data type	Scaling
G1_ZSW	Encoder 1 status word	Send word	U16	-
G1_XIST1 Encoder 1 actual position 1		Send word	U32	-
G1_XIST2	Encoder 1 actual position 2	Send word	U32	-
MOMRED	Torque reduction	Receive word	I16	4000 hex ≙ p2003
MELDW	Message word	Send word	U16	-
KPC	Position controller gain factor	Receive word	132	-
XERR	Position deviation	Receive word	132	-

8.3 Control word STW and status word ZSW

8.3.1 Definition of the control word STW

Control words when telegrams 1, 2, 3, and 5 are used

Note

When p29108.0 = 0, STW1.11 is disabled.

Control word STW1

Signal	Description
STW1.0	▲ = ON (pulses can be enabled)
	0 = OFF1 (braking with ramp-function generator, then pulse suppression and ready for switching on)
STW1.1	1 = No OFF2 (enable is possible)
	0 = OFF2 (immediate pulse suppression and switching on inhibited)
STW1.2	1 = No OFF3 (enable is possible)
	0 = OFF3 (braking with the OFF3 ramp p1135, then pulse suppression and switching on inhibited)
STW1.3	1 = Enable operation (pulses can be enabled)
	0 = Inhibit operation (suppress pulses)
STW1.4	1 = Operating condition (the ramp-function generator can be enabled)
	0 = Inhibit ramp-function generator (set the ramp-function generator output to zero)
STW1.5	1 = Continue ramp-function generator
	0 = Freeze ramp-function generator (freeze the ramp-function generator output)
STW1.6	1 = Enable setpoint
	0 = Inhibit setpoint (set the ramp-function generator input to zero)
STW1.7	✓ = 1. Acknowledge faults
STW1.8	Reserved
STW1.9	Reserved

PROFINET communication

8.3 Control word STW and status word ZSW

Signal	Description		
STW1.10	1 = Control via PLC		
STW1.11	1 = Setpoint inversion		
STW1.12	Reserved		
STW1.13	Reserved		
STW1.14	Reserved		
STW1.15	Reserved		

Note

STW1.10 must be set to 1 to allow PLC to control the drive.

Control word STW2

Signal	Description	
STW2.0	Reserved	
STW2.1	Reserved	
STW2.2	Reserved	
STW2.3	Reserved	
STW2.4	Reserved	
STW2.5	Reserved	
STW2.6	Reserved	
STW2.7	Reserved	
STW2.8	1 = Traverse to fixed endstop	
STW2.9	Reserved	
STW2.10	Reserved	
STW2.11	Reserved	
STW2.12	Master sign-of-life, bit 0	
STW2.13	Master sign-of-life, bit 1	
STW2.14	Master sign-of-life, bit 2	
STW2.15	Master sign-of-life, bit 3	

Control words when telegrams 102, and 105 are used

Note

When p29108.0 = 0, STW2.4 is disabled.

Control word STW1

Signal	Description	
STW1.0	▲ = ON (pulses can be enabled)	
	$\vec{0}$ = OFF1 (braking with ramp-function generator, then pulse suppression and	
	ready for switching on)	
STW1.1	1 = No OFF2 (enable is possible)	
	0 = OFF2 (immediate pulse suppression and switching on inhibited)	
STW1.2	1 = No OFF3 (enable is possible)	
	0 = OFF3 (braking with the OFF3 ramp p1135, then pulse suppression and switching on inhibited)	
STW1.3	1 = Enable operation (pulses can be enabled)	
	0 = Inhibit operation (suppress pulses)	
STW1.4	1 = Operating condition (the ramp-function generator can be enabled)	
	0 = Inhibit ramp-function generator (set the ramp-function generator output to zero)	
STW1.5	1 = Continue ramp-function generator	
	0 = Freeze ramp-function generator (freeze the ramp-function generator output)	
STW1.6	1 = Enable setpoint	
	0 = Inhibit setpoint (set the ramp-function generator input to zero)	
STW1.7	= 1. Acknowledge faults	
STW1.8	Reserved	
STW1.9	Reserved	
STW1.10	1 = Control via PLC	
STW1.11	1 = Ramp-function generator active	
STW1.12	1 = Unconditionally open the holding brake	
STW1.13	Reserved	
STW1.14	Reserved	
STW1.15	Reserved	

Note

STW1.10 must be set to 1 to allow PLC to control the drive.

Control word STW2

Signal	Description			
STW2.0	Reserved			
STW2.1	Reserved			
STW2.2	Reserved			
STW2.3	Reserved			
STW2.4	1 = Bypass ramp-function generator			
STW2.5	Reserved			
STW2.6	1 = Integrator inhibit, speed controller			
STW2.7	Reserved			

Signal	Description			
STW2.8	1 = Traverse to fixed endstop			
STW2.9	Reserved			
STW2.10	Reserved			
STW2.11	Reserved			
STW2.12	Master sign-of-life, bit 0			
STW2.13	Master sign-of-life, bit 1			
STW2.14	Master sign-of-life, bit 2			
STW2.15	Master sign-of-life, bit 3			

8.3.2 Definition of the status word ZSW

Status words when the telegrams 1, 2, 3, and 5 are used

• Status word ZSW1

Signal	Description	
ZSW1.0	1 = Ready for servo on	
ZSW1.1	1 = Ready for operation	
ZSW1.2	1 = Operation enabled	
ZSW1.3	1 = Fault present	
ZSW1.4	1 = No coast down active (OFF2 inactive)	
ZSW1.5	1 = No fast stop active (OFF3 inactive)	
ZSW1.6	1 = Switching on inhibited active	
ZSW1.7	1 = Alarm present	
ZSW1.8	1 = Speed setpoint - actual value deviation within tolerance t_off	
ZSW1.9	1 = Control requested	
ZSW1.10	1 = f or n comparison value reached/exceeded	
ZSW1.11	1 = I, M, or P limit reached	
ZSW1.12	1 = Open the holding brake	
ZSW1.13	1 = No motor overtemperature alarm	
ZSW1.14	1 = Motor rotates forwards $(n_act \ge 0)$	
	0 = Motor rotates backwards (n_act < 0)	
ZSW1.15	1 = No alarm, thermal overload, power unit	

• Status word ZSW2

Signal	Description	
ZSW2.0	Reserved	
ZSW2.1	Reserved	
ZSW2.2	Reserved	
ZSW2.3	Reserved	
ZSW2.4	Reserved	
ZSW2.5	1 = Alarm class bit 0	
ZSW2.6	1 = Alarm class bit 1	
ZSW2.7	Reserved	
ZSW2.8	1 = Traverse to fixed endstop	
ZSW2.9	Reserved	
ZSW2.10	1 = Pulses enabled	
ZSW2.11	Reserved	
ZSW2.12	Slave sign-of-life, bit 0	
ZSW2.13	Slave sign-of-life, bit 1	
ZSW2.14	Slave sign-of-life, bit 2	
ZSW2.15	Slave sign-of-life, bit 3	

Status words when telegrams 102 and 105 are used

• Status word ZSW1

Signal	Description		
ZSW1.0	1 = Ready for servo on		
ZSW1.1	1 = Ready for operation		
ZSW1.2	1 = Operation enabled		
ZSW1.3	1 = Fault present		
ZSW1.4	1 = No coast down active (OFF2 inactive)		
ZSW1.5	1 = No fast stop active (OFF3 inactive)		
ZSW1.6	1 = Switching on inhibited active		
ZSW1.7	1 = Alarm present		
ZSW1.8	1 = Speed setpoint - actual value deviation within tolerance t_off		
ZSW1.9	1 = Control requested		
ZSW1.10	1 = f or n comparison value reached/exceeded		
ZSW1.11	1 = Alarm class bit 0		
ZSW1.12	1 = Alarm class bit 1		
ZSW1.13	Reserved		
ZSW1.14	1 = Closed-loop torque control active		
ZSW1.15	Reserved		

• Status word ZSW2

Signal	Description		
ZSW2.0	Reserved		
ZSW2.1	Reserved		
ZSW2.2	Reserved		
ZSW2.3	Reserved		
ZSW2.4	1 = Ramp-function generator inactive		
ZSW2.5	1 = Open the holding brake		
ZSW2.6	1 = Integrator inhibit, speed controller		
ZSW2.7	Reserved		
ZSW2.8	1 = Traverse to fixed endstop		
ZSW2.9	Reserved		
ZSW2.10	Reserved		
ZSW2.11	Reserved		
ZSW2.12	Slave sign-of-life, bit 0		
ZSW2.13	Slave sign-of-life, bit 1		
ZSW2.14	Slave sign-of-life, bit 2		
ZSW2.15	Slave sign-of-life, bit 3		

8.4 Encoder control word and status word

The table below shows the definition of the encoder 1 control word G1_STW.

Signal	Description		
G1_STW.0	Selects the function to be activate (with bit value = 1)		
G1_STW.1 G1_STW.2	Function No.	Function for bit 7 = 0 (search for reference mark)	Function for bit 7 = 1 (flying measurement)
G1_STW.3	1	Reference mark 1	Measuring probe 1
	2	Reference mark 2	Measuring probe 1
	3	Reference mark 3	Measuring probe 2
	4	Reference mark 4	Measuring probe 2
G1_STW.4	Start/stop/read	selected function	
G1_STW.5			
G1_STW.6	0 1 0	1	
	0 0 1	1	
	0 0 0	0	
		Interrupt function	
		——— Read generated value	
		Activate selected function	
		No function	
G1_STW.7	Mode of the fur	ction to be activated	
	1 = Flying meas	surement	
	0 = Search for r	eference mark	
G1_STW.8	Reserved		
G1_STW.9	Reserved		
G1_STW.10	Reserved		
G1_STW.11	Reserved		
 G1_STW.12	Reserved		
G1_STW.13	1 = Request value cyclic transfer of the absolute position value in Gn_XIST2		
G1_STW.14	1 = Request value cycle transfer of the absolute position value in Gr_XIO12		
G1_STW.15	Г	dge encoder fault	

8.4 Encoder control word and status word

The table below shows the definition of the encoder 1 status word G1_ZSW.

Signal	Description			
G1_ZSW.0	Feedback signal of the active function (1 = function active)			
G1_ZSW.1				
G1_ZSW.2	Function No.	For reference number and flying measurement		
G1_ZSW.3	1	Reference mark 1 or measuring probe 1		
	2	Reference mark 2	e or measuring probe 1	
	3	Reference mark 3	or measuring probe 2	
	4	Reference mark 4	or measuring probe 2	
G1_ZSW.4	1 = Position actu	al value from function 1	Generated value in Gn_XIST2 (and can	
G1_ZSW.5	1 = Position actual value from function 2		be read)	
G1_ZSW.6	1 = Position actual value from function 3			
G1_ZSW.7	1 = Position actual value from function 4			
G1_ZSW.8	1 = Measuring probe 1 deflected (high signal)			
G1_ZSW.9	1 = Measuring probe 2 deflected (high signal)			
G1_ZSW.10	Reserved			
G1_ZSW.11	1 = Acknowledge encoder fault active			
G1_ZSW.12	Reserved (for reference point offset)			
G1_ZSW.13	Absolute value is cyclically transferred			
G1_ZSW.14	Parking encoder active			
G1_ZSW.15	Encoder fault, the fault is in Gn_XIST2			

8.5 Signal sources for MELDW

The table below shows the definition of the message word MELDW.

Signal	Description		
MELDW.0	1 = Ramp-up/ramp-down complete		
	0 = Ramp-function generator active		
MELDW.1	1 = Torque utilization [%] < torque threshold value 2		
MELDW.2	1 = n_act < speed threshold value 3 (p2161)		
MELDW.3	$1 = n_act \le speed threshold value 2$		
MELDW.4	1 = Vdc_min controller active		
MELDW.5	Reserved		
MELDW.6	1 = No motor overtemperature alarm		
MELDW.7	1 = No alarm, thermal overload, power unit		
MELDW.8	1 = Speed setpoint - actual value deviation within tolerance t_on		
MELDW.9	Reserved		
MELDW.10	Reserved		
MELDW.11	1 = Controller enable		
MELDW.12	1 = Drive ready		
MELDW.13	1 = Pulses enabled		
MELDW.14	Reserved		
MELDW.15	Reserved		

8.5 Signal sources for MELDW

Safety integrated function

9.1 Standards and regulations

9.1.1 General information

9.1.1.1 Aims

Manufacturers and operating companies of equipment, machines, and products are responsible for ensuring the required level of safety. This means that plants, machines, and other equipment must be designed to be as safe as possible in accordance with the current state of the art. To ensure this, companies describe in the various standards the current state of the art covering all aspects relevant to safety. When the relevant Standards are observed, this ensures that state-of-the-art technology has been utilized and, in turn, the erector/builder of a plant or a manufacturer of a machine or a piece of equipment has fulfilled his appropriate responsibility.

Safety systems are designed to minimize potential hazards for both people and the environment by means of suitable technical equipment, without restricting industrial production and the use of machines more than is necessary. The protection of man and environment must be assigned equal importance in all countries, which is it is important that rules and regulations that have been internationally harmonized are applied. This is also designed to avoid distortions in the competition due to different safety requirements in different countries.

There are different concepts and requirements in the various regions and countries of the world when it comes to ensuring the appropriate degree of safety. The legislation and the requirements of how and when proof is to be given and whether there is an adequate level of safety are just as different as the assignment of responsibilities.

The most important thing for manufacturers of machines and companies that set up plants and systems is that the legislation and regulations in the country where the machine or plant is being operated apply. For example, the control system for a machine that is to be used in the US must fulfill local US requirements even if the machine manufacturer (OEM) is based in the European Economic Area (EEA).

9.1.1.2 Functional safety

Safety, from the perspective of the object to be protected, cannot be split-up. The causes of hazards and, in turn, the technical measures to avoid them can vary significantly. This is why a differentiation is made between different types of safety (e.g. by specifying the cause of possible hazards). "Functional safety" is involved if safety depends on the correct function. To ensure the functional safety of a machine or plant, the safety-related parts of the protection and control devices must function correctly. In addition, the systems must behave in such a way that either the plant remains in a safe state or it is brought into a safe state if a fault occurs. In this case, it is necessary to use specially qualified technology that fulfills the requirements described in the associated Standards. The requirements to achieve functional safety are based on the following basic goals:

- Avoiding systematic faults
- Controlling systematic faults
- Controlling random faults or failures

Benchmarks for establishing whether or not a sufficient level of functional safety has been achieved include the probability of hazardous failures, the fault tolerance, and the quality that is to be ensured by minimizing systematic faults. This is expressed in the Standards using different terms. In IEC/EN 61508, IEC/EN 62061 "Safety Integrity Level" (SIL) and EN ISO 13849-1 "Categories" and "Performance Level" (PL).

9.1.2 Safety of machinery in Europe

The EU Directives that apply to the implementation of products are based on Article 95 of the EU contract, which regulates the free exchange of goods. These are based on a new global concept ("new approach", "global approach"):

- EU Directives only specify general safety goals and define basic safety requirements.
- Technical details can be defined by means of standards by Standards Associations that have the appropriate mandate from the commission of the European Parliament and Council (CEN, CENELEC). These standards are harmonized in line with a specific directive and listed in the official journal of the commission of the European Parliament and Council. Legislation does not specify that certain standards have to be observed. When the harmonized Standards are observed, it can be assumed that the safety requirements and specifications of the Directives involved have been fulfilled.
- EU Directives specify that the Member States must mutually recognize domestic regulations.

The EU Directives are equal. This means that if several Directives apply for a specific piece of equipment or device, the requirements of all of the relevant Directives apply (e.g. for a machine with electrical equipment, the Machinery Directive and the Low-Voltage Directive apply).

9.1.2.1 Machinery Directive

The basic safety and health requirements specified in Annex I of the Directive must be fulfilled for the safety of machines.

The protective goals must be implemented responsibly to ensure compliance with the Directive.

Manufacturers of a machine must verify that their machine complies with the basic requirements. This verification is facilitated by means of harmonized standards.

9.1.2.2 Harmonized European Standards

The two Standards Organizations CEN (Comité Européen de Normalisation) and CENELEC (Comité Européen de Normalisation Électrotechnique), mandated by the EU Commission, drew-up harmonized European standards in order to precisely specify the requirements of the EC directives for a specific product. These standards (EN standards) are published in the official journal of the commission of the European Parliament and Council and must be included without revision in domestic standards. They are designed to fulfill basic health and safety requirements as well as the protective goals specified in Annex I of the Machinery Directive.

When the harmonized standards are observed, it is "automatically assumed" that the Directive is fulfilled. As such, manufacturers can assume that they have observed the safety aspects of the Directive under the assumption that these are also covered in this standard. However, not every European Standard is harmonized in this sense. Key here is the listing in the official journal of the commission of the European Parliament and Council.

The European Safety of Machines standard is hierarchically structured. It is divided into:

- A standards (basic standards)
- B standards (group standards)
- C standards (product standards)

Type A standards/basic standards

A standards include basic terminology and definitions relating to all types of machine. This includes EN ISO 12100-1 (previously EN 292-1) "Safety of Machines, Basic Terminology, General Design Principles".

A standards are aimed primarily at the bodies responsible for setting the B and C standards. The measures specified here for minimizing risk, however, may also be useful for manufacturers if no applicable C standards have been defined.

Type B standards/group standards

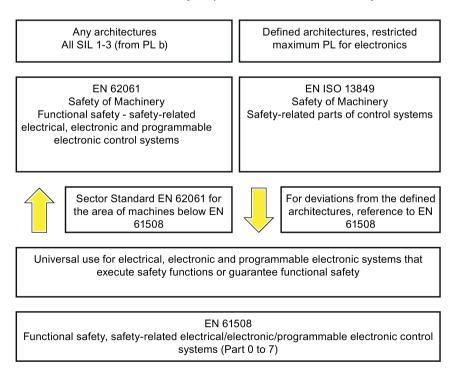
B standards cover all safety-related standards for various different machine types. B standards are aimed primarily at the bodies responsible for setting C standards. They can also be useful for manufacturers during the machine design and construction phases, however, if no applicable C standards have been defined.

A further sub-division has been made for B standards:

- Type B1 standards for higher-level safety aspects (e.g. ergonomic principles, safety clearances from sources of danger, minimum clearances to prevent parts of the body from being crushed).
- Type B2 standards for protective safety devices are defined for different machine types (e.g. EMERGENCY STOP devices, two-hand operating circuits, interlocking elements, contactless protective devices, safety-related parts of controls).

Type C standards/product standards

C standards are product-specific standards (e.g. for machine tools, woodworking machines, elevators, packaging machines, printing machines etc.). Product standards cover machine-specific requirements. The requirements can, under certain circumstances, deviate from the basic and group standards. Type C/product standards have the highest priority for machine manufacturers who can assume that it fulfills the basic requirements of Annex I of the Machinery Directive (automatic presumption of compliance). If no product standard has been defined for a particular machine, type B standards can be applied when the machine is constructed.


A complete list of the standards specified and the mandated draft standards are available on the Internet at the following address:

http://www.newapproach.org/

Recommendation: Due to the rapid pace of technical development and the associated changes in machine concepts, the standards (and C standards in particular) should be checked to ensure that they are up to date. Please note that the application of a particular standard may not be mandatory provided that all the safety requirements of the applicable EU directives are fulfilled.

9.1.2.3 Standards for implementing safety-related controllers

If the functional safety of a machine depends on various control functions, the controller must be implemented in such a way that the probability of the safety functions failing is sufficiently minimized. EN ISO 13849-1 (formerly EN 954-1) and EN IEC61508 define principles for implementing safety-related machine controllers which, when properly applied, ensure that all the safety requirements of the EC Machinery Directive are fulfilled. These standards ensure that the relevant safety requirements of the Machinery Directive are fulfilled.

The application areas of EN ISO 13849-1, EN 62061, and EN 61508 are very similar. To help users make an appropriate decision, the IEC and ISO associations have specified the application areas of both standards in a joint table in the introduction to the standards. EN ISO 13849-1 or EN 62061 should be applied depending on the technology (mechanics, hydraulics, pneumatics, electrics, electronics and programmable electronics), risk classification and architecture.

Systems for executing safety-related control functions	EN ISO 13849-1	EN 62061	
Non-electrical (e.g. hydraulic, pneumatic)	Х	Not covered	
Electromechanical (e.g. relay and/or basic electronics)	Restricted to the designated architectures (see comment 1) and max. up to PL = e	All architectures and max. up to SIL 3	
Complex electronics (e.g. programmable electronics)	Restricted to the designated architectures (see comment 1) and max. up to PL = d	All architectures and max. up to SIL 3	
A standards combined with B standards	Restricted to the designated architectures (see comment 1) and max. up to PL = e	X See comment 3	
C standards combined with B standards	Restricted to the designated architectures (see comment 1) and max. up to PL = d	All architectures and max. up to SIL 3	
C standards combined with A standards or C standards combined with A standards and B standards	X See comment 2	X See comment 3	
-	functions Non-electrical (e.g. hydraulic, pneumatic) Electromechanical (e.g. relay and/or basic electronics) Complex electronics (e.g. programmable electronics) A standards combined with B standards C standards combined with B standards C standards combined with A standards or C standards combined with A standards and B	functionsXNon-electrical (e.g. hydraulic, pneumatic)XElectromechanical (e.g. relay and/or basic electronics)Restricted to the designated architectures (see comment 1) and max. up to PL = eComplex electronics (e.g. programmable electronics)Restricted to the designated architectures (see comment 1) and max. up to PL = dA standards combined with B standardsRestricted to the designated architectures (see comment 1) and max. up to PL = dC standards combined with B standardsRestricted to the designated architectures (see comment 1) and max. up to PL = eC standards combined with B standardsRestricted to the designated architectures (see comment 1) and max. up to PL = eC standards combined with A standards or C standards combined with A standards and BX	

Comment 1:

Designated architectures are described in Annex B of EN ISO 13849-1 and provide a simplified basis for the quantification. Comment 2:

For complex electronics: Using designated architectures in compliance with EN ISO 13849-1 up to PL = d or every architecture in compliance with EN 62061.

Comment 3:

For non-electrical systems: Use components that comply with EN ISO 13849-1 as sub-systems.

9.1.2.4 DIN EN ISO 13849-1 (replaces EN 954-1)

A qualitative analysis according to DIN EN 13849-1 is not sufficient for modern control systems due to their technology. Among other things, DIN EN ISO 13849-1 does not take into account time behavior (e.g. test interval and/or cyclic test, lifetime). This results in the probabilistic approach in DIN EN ISO 13849-1 (probability of failure per unit time). DIN EN ISO 13849-1 is based on the known categories of EN 954-1. It now also takes into account complete safety functions and all the devices required to execute these. With DIN EN ISO 13849-1, safety functions are investigated from a quantitative perspective going beyond the qualitative basis of EN 954-1. Performance levels (PL), which are based on the categories, are used. The following safety-related characteristic quantities are required for devices/equipment:

- Category (structural requirement)
- PL: Performance level

- MTTFd: Mean time to dangerous failure
- DC: Diagnostic coverage
- CCF: Common cause failure

The standard describes how the performance level (PL) is calculated for safety-related components of the controller on the basis of designated architectures. In the event of any deviations from this, EN ISO 13849-1 refers to EN 61508.

When combining several safety-related parts to form a complete system, the standard explains how to determine the resulting PL.

Note

DIN EN ISO 13849-1 and machinery directive

Since May 2007, DIN EN ISO 13849-1 has been harmonized as part of the Machinery Directive.

9.1.2.5 EN 62061

EN 62061 (identical to IEC 62061) is a sector-specific standard subordinate to IEC/EN 61508. It describes the implementation of safety-related electrical machine control systems and looks at the complete life cycle, from the conceptual phase to decommissioning. The standard is based on the quantitative and qualitative analyses of safety functions, whereby it systematically applies a top-down approach to implementing complex control systems (known as "functional decomposition"). The safety functions derived from the risk analysis are sub-divided into sub-safety functions, which are then assigned to real devices, sub-systems, and sub-system elements. Both the hardware and software are covered. EN 62061 also describes the requirements placed on implementing application programs.

A safety-related control system comprises different sub-systems. From a safety perspective, the sub-systems are described in terms of the SIL claim limit and PFHD characteristic quantities.

Programmable electronic devices (e.g. PLCs or variable-speed drives) must fulfill EN 61508. They can then be integrated in the controller as sub-systems. The following safety-related characteristic quantities must be specified by the manufacturers of these devices.

Safety-related characteristic quantities for subsystems:

- SIL CL: SIL claim limit
- PFHD: Probability of dangerous failures per hour
- T1: Lifetime

Simple sub-systems (e.g. sensors and actuators) in electromechanical components can, in turn, comprise sub-system elements (devices) interconnected in different ways with the characteristic quantities required for determining the relevant PFHD value of the sub-system.

Safety-related characteristic quantities for subsystem elements (devices):

- λ: Failure rate
- B10 value: For elements that are subject to wear
- T1: Lifetime

For electromechanical devices, a manufacturer specifies a failure rate λ with reference to the number of operating cycles. The failure rate per unit time and the lifetime must be determined using the switching frequency for the particular application.

Parameters for the sub-system, which comprises sub-system elements, that must be defined during the design phase:

- T2: Diagnostic test interval
- β: Susceptibility to common cause failure
- DC: Diagnostic coverage

The PFHD value of the safety-related controller is determined by adding the individual PFHD values for subsystems.

The user has the following options when setting up a safety-related controller:

- Use devices and sub-systems that already comply with EN ISO 13849-1, IEC/EN 61508, or IEC/EN 62061. The standard provides information specifying how qualified devices can be integrated when safety functions are implemented.
- Develop own subsystems:
 - Programmable, electronic systems and complex systems: Application of EN 61508 or EN 61800-5-2.
 - Simple devices and subsystems: Application of EN 62061.

EN 62061 does not include information about non-electric systems. The standard provides detailed information on implementing safety-related electrical, electronic, and programmable electronic control systems. EN ISO 13849-1 must be applied for non-electric systems.

Note

Function examples

Details of simple sub-systems that have been implemented and integrated are now available as "functional examples".

Note

EN 62061 and machinery directive

IEC 62061 has been ratified as EN 62061 in Europe and harmonized as part of the Machinery Directive.

9.1.2.6 Series of standards EN 61508 (VDE 0803)

This series of standards describes the current state of the art.

EN 61508 is not harmonized in line with any EU directives, which means that an automatic presumption of conformity for fulfilling the protective requirements of a directive is not implied. The manufacturer of a safety-related product, however, can also use EN 61508 to fulfill basic requirements of European directives in accordance with the latest conceptual design, for example, in the following cases:

- If no harmonized standard exists for the application in question. In this case, the manufacturer can use EN 61508, although no presumption of conformity exists here.
- A harmonized European standard (e.g. EN 62061, EN ISO 13849, EN 60204-1) references EN 61508. This ensures that the appropriate requirements of the directives are fulfilled ("standard that is also applicable"). When manufacturers apply EN 61508 properly and responsibly in accordance with this reference, they can use the presumption of conformity of the referencing standard.

EN 61508 covers all the aspects that must be taken into account when E/E/PES systems (electrical, electronic, and programmable electronic System) are used in order to execute safety functions and/or to ensure the appropriate level of functional safety. Other hazards (e.g. electric shock) are, as in EN ISO 13849, not part of the standard.

EN 61508 has recently been declared the "International Basic Safety Publication", which makes it a framework for other, sector-specific standards (e.g. EN 62061). As a result, this standard is now accepted worldwide, particularly in North America and in the automotive industry. Today, many regulatory bodies already stipulate it (e.g. as a basis for NRTL listing).

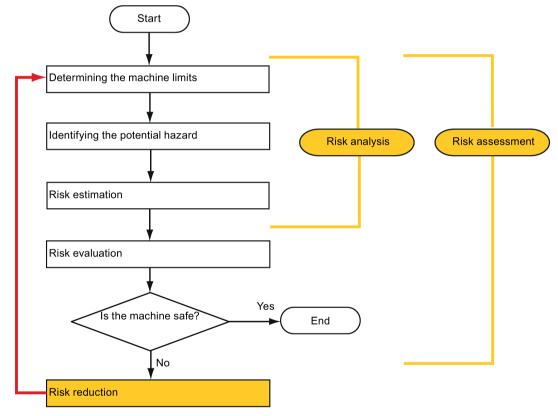
Another recent development with respect to EN 61508 is its system approach, which extends the technical requirements to include the entire safety installation from the sensor to the actuator, the quantification of the probability of hazardous failure due to random hardware failures, and the creation of documentation covering all phases of the safety-related lifecycle of the E/E/PES.

9.1.2.7 Risk analysis/assessment

Risks are intrinsic in machines due to their design and functionality. For this reason, the Machinery Directive requires that a risk assessment be performed for each machine and, if necessary, the level of risk reduced until the residual risk is less than the tolerable risk. To assess these risks, the following standards must be applied:

EN ISO 12100-1 "Safety of Machinery - basic terminology, general principles for design"

EN ISO 13849-1 (successor to EN 954-1) "Safety-related parts of control systems"


EN ISO 12100-1 focuses on the risks to be analyzed and the design principles for minimizing risk.

The risk assessment is a procedure that allows hazards resulting from machines to be systematically investigated. Where necessary, the risk assessment is followed by a risk reduction procedure. When the procedure is repeated, this is known as an iterative process. This can help eliminate hazards (as far as this is possible) and can act as a basis for implementing suitable protective measures.

The risk assessment involves the following:

- Risk analysis
 - Determines the limits of the machine (EN ISO 12100-1)
 - Identification of the hazards (EN ISO 12100-114)
 - Estimating the level of risk (EN 1050 Paragraph 7)
- Risk evaluation

As part of the iterative process to achieve the required level of safety, a risk assessment is carried out after the risk estimation. A decision must be made here as to whether the residual risk needs to be reduced. If the risk is to be further reduced, suitable protective measures must be selected and applied. The risk assessment must then be repeated.

Minimizing risks and selecting suitable protective measures are not part of the risk assessment

Risks must be reduced by designing and implementing the machine accordingly (e.g. by means of controllers or protective measures suitable for the safety-related functions).

If the protective measures involve the use of interlocking or control functions, these must be designed according to EN ISO 13849-1. For electrical and electronic controllers, EN 62061 can be used as an alternative to EN ISO 13849-1. Electronic controllers and bus systems must also comply with IEC/EN 61508.

9.1.2.8 Risk reduction

Risk reduction measures for a machine can be implemented by means of safety-related control functions in addition to structural measures. To implement these control functions, special requirements must be taken into account, graded according to the magnitude of the risk. These are described in EN ISO 13849-1 or, in the case of electrical controllers (particularly programmable electronics), in EN 61508 or EN 62061. The requirements regarding safety-related controller components are graded according to the magnitude of the risk and the level to which the risk needs to be reduced.

EN ISO 13849-1 defines a risk flow chart that instead of categories results in hierarchically graduated Performance Levels (PL).

IEC/EN 62061 uses "Safety Integrity Level" (SIL) for classification purposes. This is a quantified measure of the safety-related performance of a controller. The required SIL is also determined in accordance with the risk assessment principle according to ISO 12100 (EN 1050). Annex A of the standard describes a method for determining the required Safety Integrity Level (SIL).

Regardless of which standard is applied, steps must be taken to ensure that all the machine controller components required for executing the safety-related functions fulfill these requirements.

9.1.2.9 Residual risk

In today's technologically advanced world, the concept of safety is relative. The ability to ensure safety to the extent that risk is ruled out in all circumstances – "zero-risk guarantee" – is practically impossible. The residual risk is the risk that remains once all the relevant protective measures have been implemented in accordance with the latest state of the art.

Residual risks must be clearly referred to in the machine/plant documentation (user information according to EN ISO 12100-2).

9.1.3 Machine safety in the USA

A key difference between the USA and Europe in the legal requirements regarding safety at work is that, in the USA, no legislation exists regarding machinery safety that is applicable in all of the states and that defines the responsibility of the manufacturer/supplier. A general requirement exists stating that employers must ensure a safe workplace.

9.1.3.1 Minimum requirements of the OSHA

The Occupational Safety and Health Act (OSHA) from 1970 regulates the requirement that employers must offer a safe place of work. The core requirements of OSHA are specified in Section 5 "Duties".

The requirements of the OSH Act are managed by the "Occupational Safety and Health Administration" (also known as OSHA). OSHA employs regional inspectors who check whether or not workplaces comply with the applicable regulations.

The OSHA regulations are described in OSHA 29 CFR 1910.xxx ("OSHA Regulations (29 CFR) PART 1910 Occupational Safety and Health"). (CFR: Code of Federal Regulations.)

http://www.osha.gov

The application of standards is regulated in 29 CFR 1910.5 "Applicability of standards". The concept is similar to that used in Europe. Product-specific standards have priority over general standards insofar as they cover the relevant aspects. Once the standards are fulfilled, employers can assume that they have fulfilled the core requirements of the OSH Act with respect to the aspects covered by the standards.

In conjunction with certain applications, OSHA requires that all electrical equipment and devices that are used to protect workers be authorized by an OSHA-certified, "Nationally Recognized Testing Laboratory" (NRTL) for the specific application.

In addition to the OSHA regulations, the current standards defined by organizations such as NFPA and ANSI must be carefully observed and the extensive product liability legislation that exists in the US taken into account. Due to the product liability legislation, it is in the interests of manufacturing and operating companies that they carefully maintain the applicable regulations and are "forced" to fulfill the requirement to use state-of-the-art technology.

Third-party insurance companies generally demand that their customers fulfill the applicable standards of the standards organizations. Self-insured companies are not initially subject to this requirement but, in the event of an accident, they must provide verification that they have applied generally-recognized safety principles.

9.1.3.2 NRTL listing

To protect employees, all electrical equipment used in the USA must be certified for the planned application by a "Nationally Recognized Testing Laboratory" (NRTL) certified by the OSHA. NRTLs are authorized to certify equipment and material by means of listing, labeling, or similar. Domestic standards (e.g. NFPA 79) and international standards (e.g. IEC/EN 61508 for E/E/PES systems) are the basis for testing.

9.1.3.3 NFPA 79

Standard NFPA 79 (Electrical Standard for Industrial Machinery) applies to electrical equipment on industrial machines with rated voltages of less than 600 V. A group of machines that operate together in a coordinated fashion is also considered to be one machine.

For programmable electronics and communication buses, NFPA 79 states as a basic requirement that these must be listed if they are to be used to implement and execute safety-related functions. If this requirement is fulfilled, then electronic controls and communication buses can also be used for Emergency Stop functions, Stop Categories 0 and 1 (refer to NFPA 79 9.2.5.4.1.4). Like EN 60204-1, NFPA 79 no longer specifies that the electrical energy must be disconnected by electromechanical means for emergency stop functions.

The core requirements regarding programmable electronics and communication buses are: system requirements (see NFPA 79 9.4.3)

- 1. Control systems that contain software-based controllers must:
- In the event of a single fault
 - cause the system to switch to a safe shutdown mode
 - prevent the system from restarting until the fault has been rectified
 - prevent an unexpected restart
- Offer the same level of protection as hard-wired controllers
- Be implemented in accordance with a recognized standard that defines the requirements for such systems.

2. IEC 61508, IEC 62061, ISO 13849-1, ISO 13849 2 and IEC 61800-5-2 are specified as suitable standards in a note.

Underwriter Laboratories Inc. (UL) has defined a special category for "Programmable Safety Controllers" for implementing this requirement (code NRGF). This category covers control devices that contain software and are designed for use in safety-related functions.

A precise description of the category and a list of devices that fulfill this requirement can be found on the Internet at the following address:

http://www.ul.com \rightarrow certifications directory \rightarrow UL Category code/ Guide information \rightarrow search for category "NRGF"

TUV Rheinland of North America, Inc. is also an NRTL for these applications.

9.1.3.4 ANSI B11

ANSI B11 standards are joint standards developed by associations such as the Association for Manufacturing Technology (AMT) and the Robotic Industries Association (RIA).

The hazards of a machine are evaluated by means of a risk analysis/assessment. The risk analysis is an important requirement in accordance with NFPA 79, ANSI/RIA 15.06, ANSI B11.TR-3 and SEMI S10 (semiconductors). The documented findings of a risk analysis can be used to select a suitable safety system based on the safety class of the application in question.

The situation in Japan is different from that in Europe and the US. Legislation such as that prescribed in Europe does not exist. Similarly, product liability does not play such an important role as it does in the US.

Instead of legal requirements to apply standards have been defined, an administrative recommendation to apply JIS (Japanese Industrial Standard) is in place: Japan bases its approach on the European concept and uses basic standards as national standards (see table).

Japanese standards

ISO/IEC number	JIS number	Comment
ISO12100-1	JIS B 9700-1	Earlier designation TR B 0008
ISO12100-2	JIS B 9700-2	Earlier designation TR B 0009
ISO14121-1/EN1050	JIS B 9702	
ISO13849- 1	JIS B 9705-1	

ISO/IEC number	JIS number	Comment
ISO13849-2	JIS B 9705-1	
IEC 60204-1	JIS B 9960-1	Without annex F or route map of the European foreword
IEC 61508-0 to -7	JIS C 0508	
IEC 62061		JIS number not yet assigned

In addition to the requirements of the guidelines and standards, company-specific requirements must be taken into account. Large corporations in particular (e.g. automobile manufacturers) make stringent demands regarding automation components, which are often listed in their own equipment specifications.

Safety-related issues (e.g. operating modes, operator actions with access to hazardous areas, EMERGENCY STOP concepts, etc.) should be clarified with customers early on so that they can be integrated in the risk assessment/risk reduction process.

9.1.4 Machine safety in Japan

The situation in Japan is different from that in Europe and the US. Legislation such as that prescribed in Europe does not exist. Similarly, product liability does not play such an important role as it does in the US.

Instead of legal requirements to apply standards have been defined, an administrative recommendation to apply JIS (Japanese Industrial Standard) is in place: Japan bases its approach on the European concept and uses basic standards as national standards (see table).

ISO/IEC number	JIS number	Comment
ISO12100-1	JIS B 9700-1	Earlier designation TR B 0008
ISO12100-2	JIS B 9700-2	Earlier designation TR B 0009
ISO14121-1/EN1050	JIS B 9702	
ISO13849-1	JIS B 9705-1	
ISO13849-2	JIS B 9705-1	
IEC 60204-1	JIS B 9960-1	Without annex F or route map of the European foreword
IEC 61508-0 to -7	JIS C 0508	
IEC 62061		JIS number not yet assigned

Japanese standards

9.1.5 Equipment regulations

In addition to the requirements of the guidelines and standards, company-specific requirements must be taken into account. Large corporations in particular (e.g. automobile manufacturers) make stringent demands regarding automation components, which are often listed in their own equipment specifications.

9.2 General information about SINAMICS Safety Integrated

Safety-related issues (e.g. operating modes, operator actions with access to hazardous areas, EMERGENCY STOP concepts, etc.) should be clarified with customers early on so that they can be integrated in the risk assessment/risk reduction process.

9.2 General information about SINAMICS Safety Integrated

Safety Integrated function - STO

The Safe Torque Off (STO) is a safety function that prevents the drive from restarting unexpectedly, in accordance with EN 60204-1:2006 Section 5.4.

The STO function is in conformance with the IEC 61508, SIL2 standard, in the operating mode with a high demand, Category 3 and Performance Level d (PL d) acc. to ISO 13849-1:2006, as well as IEC 61800-5-2.

Controlling the STO Function

The STO function can be controlled via terminals. For the details about STO wiring, refer to the chapter "24 V power supply/STO (Page 92)".

9.3 System features

9.3.1 STO functional safety data

The STO functional safety data of SINAMICS V90 PN is as follows:

Applied standards	IEC 61508, IEC 62061, ISO 13849-1
Туре	A
Safety Integrity Level (SIL)	2
Hardware Fault Tolerance (HFT)	1

9.3.2 Certification

The safety function of the SINAMICS V90 PN drive system meets the following requirements:

- Category 3 according to ISO 13849-1:2006
- Performance Level (PL) d to ISO 13849-1:2006
- Safety integrity level 2 (SIL 2) to IEC 61508

In addition, the safety function of SINAMICS V90 PN has been certified by independent institutes. An up-to-date list of certified components is available on request from your local Siemens office.

9.3.3 Safety instructions

Note

Additional safety information and residual risks not specified in this section are included in the chapter "Safety instructions (Page 9)".

Safety Integrated can be used to minimize the level of risk associated with machines and plants.

Machines and plants can only be operated safely in conjunction with Safety Integrated, however, when the machine manufacturer is familiar with and observes every aspect of this technical user documentation, including the documented general conditions, safety information, and residual risks.

Precisely knows and observes this technical user documentation - including the documented limitations, safety information and residual risks;

Carefully constructs and configures the machine/plant. A careful and thorough acceptance test must then be performed by qualified personnel and the results documented.

Implements and validates all the measures required in accordance with the machine/plant risk analysis by means of the programmed and configured Safety Integrated functions or by other means.

The use of Safety Integrated does not replace the machine/plant risk assessment carried out by the machine manufacturer as required by the EC machinery directive.

In addition to using Safety Integrated functions, further risk reduction measures must be implemented.

The Safety Integrated functions cannot be activated until the system has been completely powered up. System startup is a critical operating state with increased risk. No personnel may be present in the immediate danger zone in this phase.

The drives of vertical axes must be in torque state.

A complete forced dormant error detection cycle is required after power on.

EN 60204-1:2006

Emergency Stop function must bring the machine to a standstill in accordance with STO.

The machine must not restart automatically after EMERGENCY STOP.

When the safety function is deactivated, an automatic restart is permitted under certain circumstances depending on the risk analysis (except when Emergency Stop is reset). An automatic start is permitted when a protective door is closed, for example.

9.3 System features

After hardware and/or software components have been modified or replaced, all protective equipment must be closed prior to system startup and drive activation. Personnel shall not be present within the danger zone.

Before allowing anybody to re-enter the danger zone, you should test steady control response by briefly moving the drives in forward and reverse direction (+/–).

To observe during power on:

The Safety Integrated functions are only available and can only be selected after the system has completely powered up.

9.3.4 Probability of failure of the safety function

Probability of failure per hour (PFH)

The probability of the failure of safety functions must be specified in the form of a PFH value in accordance with IEC 61508, IEC 62061, and ISO 13849-1:2006. The PFH value of a safety function depends on the safety concept of the drive unit and its hardware configuration, as well as on the PFH values of other components used for this safety function.

Corresponding PFH values are provided for the SINAMICS V90 PN drive system, depending on the hardware configuration (number of drives, control type, number of encoders used). The various integrated safety functions are not differentiated.

The PFH values can be requested from your local sales office.

Hardware fault tolerance (HFT)

The HFT value of SINAMICS V90 PN drive system is one. It means that the system can handle one fault without brake down. SINAMICS V90 PN STO function is a subsystem from type A, and only the discrete components are involved in the STO function.

9.3.5 Response time

Response time means the time from the control via terminals until the response actually occurs. The worst response time for the STO function is 5 ms. The response time of fault reaction functions is 2 s.

9.3.6 Residual risk

The fault analysis enables the machine manufacturer to determine the residual risk at this machine with regard to the drive unit. The following residual risks are known:

Due to the intrinsic potential of hardware faults, electrical systems are subject to additional residual risk, which can be expressed by means of the PFH value.

Simultaneous failure of two power transistors (one in the upper and the other offset in the lower inverter bridge) in the inverter may cause brief movement of the drive, depending on the number of poles of the motor.

Maximum value of this movement:

Synchronous rotary motors: Max. movement = 180° / no. of pole pairs

9.4 Safety Integrated basic function

9.4.1 Safe Torque Off (STO)

In conjunction with a machine function or in the event of a fault, the "Safe Torque Off" (STO) function is used to safely disconnect and de-energize the torque-generating energy feed to the motor.

When the function is selected, the drive unit is in a "safe status". The switching on inhibited function prevents the drive unit from being restarted.

The two-channel pulse suppression function integrated in the Motor Modules/Power Modules is a basis for this function.

Functional features of "Safe Torque Off"

- This function is integrated in the drive; this means that a higher-level controller is not required.
- The function is drive-specific, i.e. it is available for each drive and must be individually commissioned.

9.4 Safety Integrated basic function

- When the "Safe Torque Off" function is selected, the following applies:
 - The motor cannot be started accidentally.
 - The pulse suppression safely disconnects the torque-generating energy feed to the motor.
 - The power unit and motor are not electrically isolated.
- By selecting/deselecting STO, in addition to the fault messages, the safety messages are also automatically withdrawn.

The STO function can be used wherever the drive naturally reaches a standstill due to load torque or friction in a sufficiently short time or when "coasting down" of the drive will not have any relevance for safety.

Appropriate measures must be taken to ensure that the motor does not undesirably move once the energy feed has been disconnected, e.g. against coasting down.

If two power transistors simultaneously fail in the power unit (one in the upper and one in the lower bridge), then this can cause brief momentary movement.

The maximum movement can be:

Synchronous rotary motors: Max. movement = 180 ° / No. of pole pairs

Synchronous linear motors: Max. movement = pole width

Note

Closing delay of the holding brake

The closing signal (low level) of the holding brake is output 30 ms after the STO is triggered.

Preconditions for using the STO function

When use the STO function, the following preconditions should be fulfilled:

- Each monitoring channel (STO1 and STO2) triggers safe pulse suppression with its switch off signal path.
- If a motor holding brake is connected and configured, the connected brake is not safe because there is no safety function for brake, such as safe brake.

Behaviors of the STO function

Teri	Terminal		Action
STO1	STO2		
High level	High level	Safe	The servo motor can normally run when you power on the servo drive.
Low level	Low level	Safe	The servo drive starts up normally but the servo motor cannot run.

9.4 Safety Integrated basic function

Terminal State		State	Action
STO1	STO2		
High level	Low level	Unsafe	Fault F1611 occurs and servo motor coasts down (OFF2).
Low level	High level	Unsafe	Fault F1611 occurs and servo motor coasts down (OFF2).

Selecting/deselecting "Safe Torque Off"

The following is executed when "Safe Torque Off" is selected:

- Each monitoring channel triggers safe pulse suppression via its switch-off signal path.
- A motor holding brake is closed (if connected and configured).

Note

If "Safe Torque Off" is selected and de-selected through one channel within 2 seconds, the pulses are suppressed without a message being output.

Restart after the "Safe Torque Off" function has been selected

- 1. Deselect the function in each monitoring channel via the input terminals.
- 2. Issue drive enable signals.
- 3. Switch the drive back on.
 - 1/0 edge at input signal "ON/OFF1"
 - 0/1 edge at input signal "ON/OFF1" (switch on drive)
- 4. Operate the drives again.

Response time for the "Safe Torque Off" function

The worst response time for the STO function is 5 ms.

9.4.2 Forced dormant error detection

Forced dormant error detection or test of the switch-off signal paths for Safety Integrated basic functions

The forced dormant error detection function at the switch-off signal paths is used to detect software/hardware faults at both monitoring channels in time and is automated by means of activation/deactivation of the "Safe Torque Off" function.

To fulfill the requirements of ISO 13849-1:2006 regarding timely error detection, the two switch-off signal paths must be tested at least once within a defined time to ensure that they

9.4 Safety Integrated basic function

are functioning properly. This functionality must be implemented by means of forced dormant error detection function, triggered either in manual mode or by the automated process.

A timer ensures that forced dormant error detection is carried out as quickly as possible.

8760 hours for the forced dormant error detection.

Once this time has elapsed, an alarm is output and remains present until forced dormant error detection is carried out.

The timer returns to the set value each time the STO function is deactivated.

When the appropriate safety devices are implemented (e.g. protective doors), it can be assumed that running machinery will not pose any risk to personnel. For this reason, only an alarm is output to inform the user that a forced dormant error detection run is due and to request that this be carried out at the next available opportunity. This alarm does not affect machine operation.

Examples of when to carry out forced dormant error detection:

- When the drives are at a standstill after the system has been switched on (POWER ON).
- When the protective door is opened.
- At defined intervals.
- In automatic mode (time and event dependent)

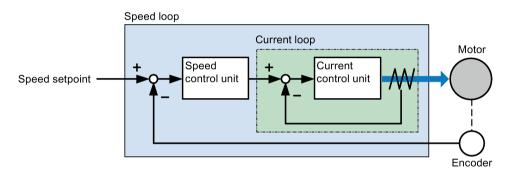
Note

The timer will be reset if the associated forced dormant error detection is executed. The corresponding alarm is not triggered.

The forced dormant error detection procedure of Safety Function (STO) always has to be executed through the terminals.

The mission time of the devices is 40000 hours.

10


Tuning

10.1 Controller overview

The SINAMICS V90 PN servo drive consists of two control loops:

- Current control
- Speed control

The following block diagram shows the relationship between the control loops:

In theory, the frequency width of the inside control loop **must** be wider than that of the outer control loop; otherwise, the whole control system can vibrate or have a low response level. The relationship between the frequency widths of these two control loops is as follows:

Current loop > speed loop

Since the current loop of SINAMICS V90 PN servo drives already have a perfect frequency width, it is only necessary for you to adjust the speed loop gain.

Servo gains

Speed loop gain

Speed loop gain directly influences the response level of the speed loop. If the mechanical system does not vibrate or produce noises, you can increase the value of speed loop gain so that the response level can be increased.

Parameter	Value range	Default value	Unit	Description
p29120	0 to 999999	Motor dependent	Nms/rad	Speed loop gain 1

Speed loop integral gain

With adding integral component into speed loop, the servo drive can efficiently eliminate the steady-state error of speed and give response to a small change to speed.

Generally speaking, if the mechanical system does not vibrate or produce noises, you can decrease speed loop integral gain so that the system rigidity can be increased.

If the load inertia ratio is very high or the mechanical system has a resonance factor, it must be guaranteed that the speed loop integral time constant is big enough; otherwise, the mechanical system may have a resonance.

Parameter	Value range	Default value	Unit	Description
p29121	0 to 100000	15	ms	Speed loop integral time 1
p29022	1 to 10000	1	-	Load moment of inertia ratio

10.2 Tuning mode

Responsivity of a machine can be optimized by tuning. The responsivity is reflected by dynamic factor and determined by the servo gains that is set in the servo drive.

The servo gains are set by using a combination of parameters. These parameters influence each other so you must consider the balance between set values when setting these values.

Generally, the responsivity of a machine with high rigidity can be improved by increasing the servo gains; however, if the servo gains of a machine with low rigidity are increased, the machine can vibrate and the responsivity cannot be improved.

NOTICE

Effectiveness of servo gains

The tuning function **only** uses the first group of servo gains (speed loop gain 1 and speed loop integral time 1).

The following tuning functions are available for the SINAMICS V90 PN servo drive.

Select a tuning mode by setting parameter p29021:

Parameter	Setting value	Description
p29021	0 (default)	Auto tuning is disabled (manual tuning) without changing servo gains relevant parameters.
	1	One-button auto tuning
		Identify the ratio of load moment of inertia and automatically ad- just servo gains accordingly.
	3	Real-time auto tuning
		Identify the ratio of load moment of inertia and automatically ad- just servo gains in real time.
	5	Auto tuning is disabled (manual tuning). All servo gains relevant parameters are set to tuning default values.

Auto-tuning methods

The SINAMICS V90 PN supplies two auto-tuning modes: one-button auto tuning and realtime auto tuning. The auto tuning function can optimize control parameters with ratio of machine load moment of inertia (p29022) and set suitable current filter parameters to suppress the machine resonance automatically. You can change the dynamic performance of the system by setting different dynamic factors.

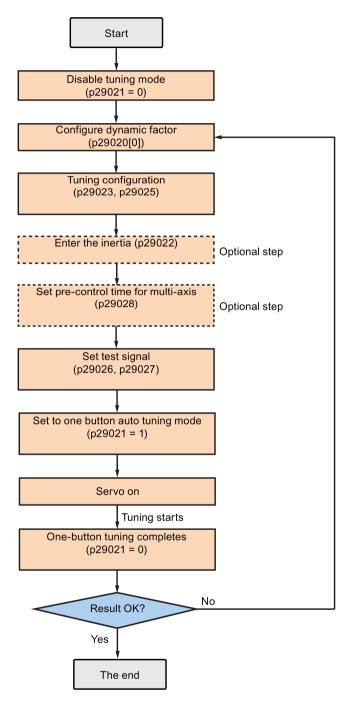
- One-button auto tuning
 - One-button auto tuning estimates the machine load moment of inertia and mechanical characteristics with internal motion commands. To achieve the desired performance, you can execute the process many times before you control the drive with the host controller. The maximum speed is limited by the rated speed.
- Real-time auto tuning
 - Real-time auto tuning estimates the machine load moment of inertia automatically while the drive is running with the host controller command. After the motor is servo on, the real-time auto tuning function stays effective. If you do not need to estimate the load moment of inertia continuously, you can disable the function when the system performance is acceptable.

You are recommended to save the tuned parameters when the tuning is completed and the drive performance is acceptable.

10.3 One-button auto tuning

Note

Before using the one-button auto tuning, move the servo motor to the middle of mechanical position to avoid approaching the actual machine position limit.


Pre-conditions for one-button auto tuning

- The ratio of machine load moment of inertia is unknown and needs to be estimated.
- The motor is allowed to rotate clockwise and counter clockwise.
- The motor rotation position (p29027 defines that one revolution equals to 360 degree) is allowed by the machine.
 - For the motor with an absolute encoder: position limitation is defined by p29027
 - For the motor with an incremental encoder: the motor must be allowed to rotate freely about two rounds when tuning starts

10.3 One-button auto tuning

One-button auto tuning procedure

Proceed as follows to perform one-button auto tuning for the SINAMICS V90 PN servo drive.

Parameter settings

You can set the ratio of machine load moment of inertia (p29022) with the following methods:

- Enter it manually if you have known the ratio of machine load moment of inertia.
- Estimate the ratio of machine load moment of inertia with one-button auto tuning (p29023.2 = 1). When you have executed the one-button tuning many times and obtained a stable value of p29022, you can stop estimating it by setting p29023.2 = 0.

Parame- ter	Value range	Default value	Unit	Description
p29020[1 to 35	18	-	The dynamic factor of auto tuning
01]				• [0]: dynamic factor for one-button auto tuning
				• [1]: dynamic factor for real-time auto tuning
p29021	0 to 5	0	-	Selection of a tuning mode
				• 0: disabled
				1: one-button auto tuning
				• 3: real-time auto tuning
				• 5: disabled with default control parameters
p29022	1 to 10000	1	-	Ratio of load moment of inertia
p29023	0 to 0xffff	0x0007	-	One-button auto tuning configuration
p29025	0 to 0x003f	0x0004	-	Overall tuning configuration
p29026	0 to 5000	2000 (default)	ms	Test signal duration
p29027	0 to 3000	0 (de- fault)	0	Limit rotation position of the motor
p29028	0.0 to 60.0	7.5	ms	Pre-control time constant

Parameter p29028 is available when the multi-axis interpolation function is activated (p29023.7 = 1). If the axes are used as the interpolation axes, you need to set the same precontrol time constants (p29028) for them.

You can configure the dynamic factor of the servo system with the parameter p29020. Higher dynamic factor means higher tracking ability and shorter settling time but also higher possibility of resonance. You should find a desired dynamic factor within a resonance-free range.

A total of 35 dynamic factors are available for the SINAMICS V90 PN servo drive:

Dynamic factor (p29020)	Machine rigidity
1	Low
2	
	î
17	
18	Middle

10.3 One-button auto tuning

Dynamic factor (p29020)	Machine rigidity
19	
	Ļ
35	High

If the dynamic factor setting cannot be increased up to the desired level because of machine resonance beyond 250 Hz, the function of resonance suppression can be used to suppress machine resonance and thus increase dynamic factor. Refer to Section "Resonance suppression (Page 176)" for detailed information about the function of resonance suppression.

Note

The tuning configuration parameters must be set carefully when the auto tuning function is disabled (p29021=0).

After servo on, the motor will run with the test signal.

When the one-button auto tuning process completes successfully, the parameter p29021 will be set to 0 automatically. You can also set the parameter p29021 to 0 before servo on to interrupt the one-button tuning process. Before you save the parameters on the drive, make sure that p29021 has changed to 0.

Note

Do not use the JOG function when you use the one-button tuning function.

Note

After the one-button tuning is activated, no operation will be allowed except the servo off and emergency stop.

With one-button auto tuning, the servo drive can automatically estimate the ratio of load moment of inertia and set the following relevant parameters accordingly.

Parame- ter	Value range	Default value	Unit	Description
p1414	0 to 3	0	-	Speed setpoint filter activation
p1415	0 to 2	0	-	Speed setpoint filter 1 type
p1417	0.5 to 16000	1999	Hz	Speed setpoint filter 1 denominator natural frequency
p1418	0.001 to 10	0.7	-	Speed setpoint filter 1 denominator damping
p1419	0.5 to 16000	1999	Hz	Speed setpoint filter 1 numerator natural frequency
p1420	0.001 to 10	0.7	-	Speed setpoint filter 1 numerator damping
p1441	0 to 50	0	ms	Actual speed smoothing time
p1656	0 to 15	1	-	Activates current setpoint filter
p1658	0.5 to 16000	1999	Hz	Current setpoint filter 1 denominator natural frequen- cy
p1659	0.001 to 10	0.7	-	Current setpoint filter 1 denominator damping
p29022	1 to 10000	1	-	Ratio of load moment of inertia

Parame- ter	Value range	Default value	Unit	Description
p29120	0 to 999999	Motor dependent	Nms/ra d	Speed loop gain 1
p29121	0 to 100000	15	ms	Speed loop integral time 1

After one-button tuning, four current setpoint filters can be activated at most. The following parameters related to the filters may be tuned accordingly.

Parame- ter	Value range	Default value	Unit	Description
p1663	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 2 denomina- tor.
p1664	0.001 to 10	0.3	-	Damp of current notch filter 2 denominator.
p1665	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 2 numerator.
p1666	0.0 to 10	0.01	-	Damp of current notch filter 2 numerator.
p1668	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 3 denomina- tor.
p1669	0.001 to 10	0.3	-	Damp of current notch filter 3 denominator.
p1670	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 3 numerator.
p1671	0.0 to 10	0.01	-	Damp of current notch filter 3 numerator.
p1673	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 4 denomina- tor.
p1674	0.001 to 10	0.3	-	Damp of current notch filter 4 denominator.
p1675	0.5 to 16000	1000	Hz-	Natural frequency of current notch filter 4 numerator.
p1676	0.0 to 10	0.01	-	Damp of current notch filter 4 numerator.

Note

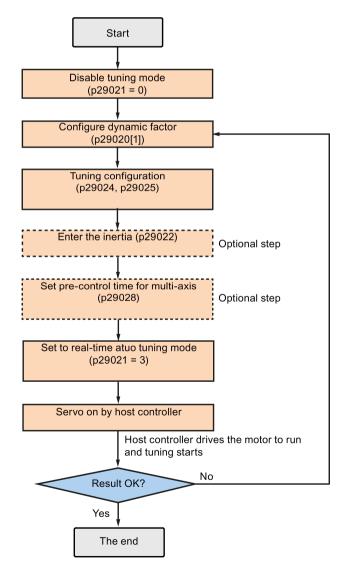
After one-button auto tuning is activated, do not change other auto tuning related control/filter parameters since these parameters can be set automatically and your changes will not be accepted.

Note

One-button auto tuning may cause some changes of the control parameters. When the system rigidity is low, this may lead to a situation that when you set EMGS = 0, the motor needs take long time to emergency stop.

10.4 Real-time auto tuning

10.4 Real-time auto tuning


With real-time auto tuning, the servo drive can automatically estimate the ratio of load moment of inertia and set the optimum control parameters.

Pre-conditions for the real-time auto tuning

- The drive must be controlled by the host controller.
- The machine actual load moment of inertia is different when the machine moves to the different positions.
- Make sure that the motor has multiple accelerations and decelerations. Step command is recommended.
- Machine resonance frequency changes when the machine is running.

Real-time auto tuning procedure

Proceed as follows to perform real-time auto tuning for the SINAMICS V90 PN servo drive.

Parameter settings

You can set the ratio of machine load moment of inertia (p29022) with the following methods:

- Enter it manually if you have known the ratio of machine load moment of inertia
- Use the ratio of machine load moment of inertia estimated by the one-button auto tuning function directly
- Estimate the ratio of machine load moment of inertia with real-time auto tuning (p29024.2 = 1). When you have obtained a stable value of p29022, you can stop estimating it by setting p29024.2 = 0.

Parame- ter	Value range	Default value	Unit	Description
p29020[1 to 35	18	-	The dynamic factor of auto tuning.
01]				• [0]: dynamic factor for one-button auto tuning
				• [1]: dynamic factor for real-time auto tuning
p29021	0 to 5	0	-	Selection of a tuning mode.
				• 0: disabled
				1: one-button auto tuning
				• 3: real-time auto tuning
				• 5: disable with default controller parameters
p29022	1 to 10000	1	-	Ratio of load moment of inertia
p29024	0 to 0xffff	0x004c	-	Real-time auto tuning configuration
p29025	0 to 0x003f	0x0004	-	Overall tuning configuration
p29028	0.0 to 60.0	7.5	ms	Pre-control time constant

Parameter p29028 is available when the multi-axis interpolation function is activated (p29024.7 = 1). If the axes are used as the interpolation axes, you need to set the same precontrol time constants (p29028) for them.

You can configure the dynamic factor of the servo system with the parameter p29020. Higher dynamic factor means higher tracking ability and shorter settling time but also higher possibility of resonance. You should find a desired dynamic factor within a resonance-free range.

35 dynamic factors are available for the SINAMICS V90 PN servo drive:

Dynamic factor (p29020)	Machine rigidity
1	Low
2	
	↑
17	
18	Middle
19	
	Ļ
35	High

If the dynamic factor setting cannot be increased up to the desired level because of machine resonance beyond 250 Hz, the function of resonance suppression can be used to suppress machine resonance and thus increase dynamic factor. Refer to Section "Resonance suppression (Page 176)" for detailed information about the function of resonance suppression.

Note

The tuning configuration parameters must be set carefully when the auto tuning function is disabled (p29021=0).

During tuning, you can modify the dynamic factor with p29020[1] to obtain the different dynamic performance after p29022 has been tuned and accepted by the drive.

After servo on, the real-time auto tuning function will always effective for the servo drive. If you want to end or interrupt the real-time auto tuning process, set the drive to the servo off state then set p29021 to 0.

The following relevant parameters can be continuous set in real time when you are using the real-time auto tuning:

Parameter	Value range	Default value	Unit	Description
p1417	0.5 to 16000	1999	Hz	Speed setpoint filter 1 denominator natural frequency
p1419	0.5 to 16000	1999	Hz	Speed setpoint filter 1 numerator natural frequency
p29022	1 to 10000	1	-	Ratio of load moment of inertia
p29120	0 to 999999	Motor dependent	Nms/rad	Speed loop gain 1
p29121	0 to 100000	15	ms	Speed loop integral time 1

Note

When using the real-time auto tuning function, if the default values are inappropriate, the host controller cannot run the motor. To run the motor with the host controller, you need to let the drive tune the parameters automatically through trial run with the real-time auto tuning function. After the tuning is completed, the host controller can run the motor.

Note

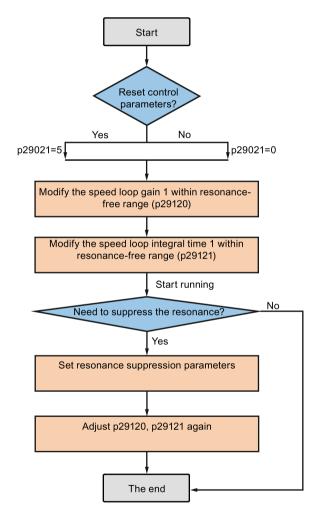
After the real-time auto tuning is activated, do not change other auto tuning related control/filter parameters since these parameters can be set automatically and your changes will not be accepted.

Note

The real-time auto tuning may not be performed properly if the following conditions are not satisfied:

- Accelerate the motor for 100 ms or more with the acceleration torque.
- The acceleration/deceleration torque is 15% or more of the rated torque.

Under operating conditions that impose sudden disturbance torque during acceleration/deceleration or on a machine that its rigidity is poor, auto tuning may not function properly, either. In such cases, use the one-button auto tuning or manual tuning to optimize the drive.


10.5 Manual tuning

When the auto tuning cannot reach expected tuning results, you can disable the auto tuning function by setting the parameter p29021 and manually perform tuning:

- p29021=5: auto tuning function is disabled and all control parameters are reset to tuning default values.
- p29021=0: auto tuning function is disabled without changing control parameters.

Procedure for manual tuning

Follow the procedure below to perform manual tuning:

Note

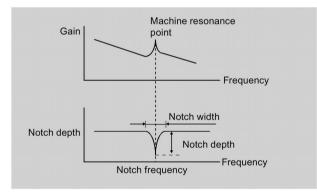
Resonance suppression

For detailed information about the resonance suppression, refer to Section "Resonance suppression (Page 176)".

10.6 Resonance suppression

Parameter settings

You need to set the following servo gains related parameters manually when using the manual tuning function:


Parame- ter	Value range	Default value	Unit	Description
p29120	0 to 999999	Motor depen- pen- dent	Nms /rad	Speed loop gain 1
p29121	0 to 100000	15	ms	Speed loop integral time 1

10.6 Resonance suppression

The resonance suppression function is filter (notch filter) function. It detects mechanical resonance at a frequency between 250 Hz and 1500 Hz, and decreases the gain of specific frequency (by automatically setting notch filter) to suppress the mechanical resonance.

Now four current setpoint filters are available for the V90 PN servo drive. Filter 1 is lowpass filter. Filter 2, filter 3 and filter 4 are band damp filters.

The gain decreasing frequency, width as well as depth can be set by setting the notch filter:

Using the resonance suppression function

Note

The resonance suppression function is used together with the auto tuning function. In realtime auto tuning and one-button auto tuning mode, the function is activated by default.

When you use real-time auto tuning function, you are recommended to disable the resonance suppression function to get a high dynamic performance if there is no resonance in the machine.

The function can be activated/deactivated with the following parameters:

- For one-button auto tuning: bit 1 of p29023
- For real-time auto tuning: bit 6 of p29024

Resonance suppression with one-button auto tuning (p29021=1, p29023.1=1)

Before you use the resonance suppression function with one-button auto tuning, make sure the load is mounted as required and the servo motor can rotate freely. When the one-button auto tuning process completes successfully, the servo drive automatically sets the following notch filter relevant parameters with real machine characteristic. Four current setpoint filters can be activated at most.

Parameter	Value range	Default value	Unit	Description
p1663	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 2 denominator.
p1664	0.001 to 10	0.3	-	Damp of current notch filter 2 denominator.
p1665	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 2 numerator.
p1666	0.0 to 10	0.01	-	Damp of current notch filter 2 numerator.
p1668	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 3 denominator.
p1669	0.001 to 10	0.3	-	Damp of current notch filter 3 denominator.
p1670	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 3 numerator.
p1671	0.0 to 10	0.01	-	Damp of current notch filter 3 numerator.
p1673	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 4 denominator.
p1674	0.001 to 10	0.3	-	Damp of current notch filter 4 denominator.
p1675	0.5 to 16000	1000	Hz-	Natural frequency of current notch filter 4 numerator.
p1676	0.0 to 10	0.01	-	Damp of current notch filter 4 numerator.

Note

Notch filter remains active when the resonance suppression function is activated automatically.

After one-button tuning is completed, four filters can be activated at most. You can deactivate the notch filters by setting the parameter p1656.

Resonance suppression with real-time auto tuning (p29021=3, p29024.6=1)

When you choose to use the resonance suppression function with real-time auto tuning, the servo drive performs real-time detection of the resonance frequency and configures the following notch filter relevant parameters accordingly:

Parameter	Value range	Default value	Unit	Description
p1663	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 2 denominator.
p1664	0.001 to 10	0.3	-	Damp of current notch filter 2 denominator.
p1665	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 2 numerator.
p1666	0.0 to 10	0.01	-	Damp of current notch filter 2 numerator.

10.6 Resonance suppression

Resonance suppression with manual tuning (p29021=0)

When both the resonance suppression with real-time auto tuning and one-button tuning mode cannot reach the suppression effect, you can do the resonance suppression by manually setting the following parameters:

Parameter	Value range	Default value	Unit	Description
p1663	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 2 denominator.
p1664	0.001 to 10	0.3	-	Damp of current notch filter 2 denominator.
p1665	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 2 numerator.
p1666	0.0 to 10	0.01	-	Damp of current notch filter 2 numerator.
p1668	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 3 denominator.
p1669	0.001 to 10	0.3	-	Damp of current notch filter 3 denominator.
p1670	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 3 numerator.
p1671	0.0 to 10	0.01	-	Damp of current notch filter 3 numerator.
p1673	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 4 denominator.
p1674	0.001 to 10	0.3	-	Damp of current notch filter 4 denominator.
p1675	0.5 to 16000	1000	Hz	Natural frequency of current notch filter 4 numerator.
p1676	0.0 to 10	0.01	-	Damp of current notch filter 4 numerator.

Assume the notch frequency is f_{sp} , notch width is f_{BB} , and notch depth is **K**, then the filter parameters can be calculated as follows:

p1663=p1665=f_{sp}

p1664=f_{BB} / (2 × f_{sp})

p1666=($f_{BB} \times 10^{(k/20)}$)/ (2 × f_{sp})

Parameters

11.1 Overview

Parameter number

Numbers prefixed with an "r" indicate that parameter is a read-only parameter. Numbers prefixed with a "p" indicate that the parameter is an editable parameter.

Effective

Indicates the conditions for making parameterization effective. Two conditions are possible:

- IM (Immediately): Parameter value becomes effective immediately after changing.
- RE (Reset): Parameter value becomes effective after repower-on.

Can be changed

This indicates when the parameter can be changed. Two states are possible:

- **U** (Run): Can be changed in the "**Running**" state when the drive is in the servo on state. The "RDY" LED lights up green.
- T (Ready to run): Can be changed in the "Ready" state when the drive is in the servo off state. The "RDY" LED lights up red.

Note

When judging the state of the drive according to the "RDY" LED, ensure that no faults or alarms exist.

Data type

Date type	Abbreviation	Description
Integer16	116	16-bit integer
Integer32	132	32-bit integer
Unsigned8	U8	8-bit unsigned integer
Unsigned16	U16	16-bit unsigned integer
Unsigned32	U32	32-bit unsigned integer
FloatingPoint32	Float	32-bit floating point number

Parameters

11.1 Overview

Parameter groups

The SINAMICS V90 PN parameters are divided into the following groups:

Parameter group	Available parameters	Parameter group display on the BOP
Basic parameters	p07xx, p10xx to p16xx, p21xx	Р 685Е
Application parameters	p29xxx	P R P P
Communication parameters	p09xx, p89xx	P Loñ
Status monitoring parameters	All read-only parameters	dRER

11.2 Parameter list

Editable parameters

The values of the parameters marked with an asterisk (*) may be changed after commissioning. Make sure you back up the parameters first as required if you desire to replace the motor. The default values of the parameters marked with two asterisks (**) are motor dependent. They may have different default values when the drive connects to different motors.

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p0748	CU invert digital outputs	-	-	0	-	U32	IM	T, U
	Description: Inverts the sig	nals at the digital	outputs.					
	• Bit 0: inverts signal DO	1						
	 Bit 0 = 0: not inverte 	ed						
	– Bit 0 = 1: inverted							
	• Bit 1: inverts signal DO	2						
	 Bit 1 = 0: not inverte 	ed						
	– Bit 1 = 1: inverted							
p0922	PROFIdrive: PZD tele- gram	1	105	105	-	U16	IM	Т
	Description: Sets the send	and receive teleg	Iram.					
p0925	PROFIdrive: Synchro- nous sign-of-life tolerance	0	65535	1	-	U16	IM	T, U
	Description: Sets the numb ter. The sign-of-life signal is							nous mas-
p0972	Drive unit reset	0	2	0	-	U16	IM	T, U
	Description: Sets the require	red procedure to	execute a har	dware res	et for tl	he drive un	it.	
	0: Inactive							
	1: Hardware reset immedia	ite						
	2: Hardware reset preparat	ion						
	Danger: It must be absolute	-	-					
	The memory card/device m	nemory of the Cor	ntrol Unit must	t not be ac	cesse	d.		
	Note: If value = 1:							
	Reset is immediately execu	uted and commur	nications interr	upted.				
	If value = 2:							
	Help to check the reset ope				<i></i>			
	Firstly, set p0972 = 2 and t no longer acknowledged).				(it is po	ssible that	this request i	s possibly
	After the drive unit has bee following:	n restarted and c	ommunicatior	is have be	en est	ablished, re	ead p0972 an	d check the
	p0972 = 0? \rightarrow The reset wa	as successfully ex	ecuted.					
	p0972 > 0? \rightarrow The reset wa	as not executed.						

	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p0977	Save all parameters	0	1	0	-	U16	IM	T, U
-	Description: Saves all para	meters of the dri	ve system to th	ne non-vol	atile m	emory.		•
	When saving, only the adju						count.	
	• Value = 0: Inactive							
	• Value = 1: Save in non	-volatile memory	- downloaded	at POWEF	RON			
	Notice: The Control Unit po save has been started, wa					ita has be	en saved (i.e.	after data
	Writing to parameters is in	nibited while savi	ng.					
p1058	JOG 1 speed setpoint	0.00	210000.000	100.00	rpm	Float	IM	Т
	Description: Sets the spee mentally moved.	d/velocity for JOC	G 1. Jogging is	level-trigg	ered a	ind allows	the motor to b	be incre-
	Note: The parameter value	s displayed on th	e BOP are inte	egers.				
p1082 *	Maximum speed	0.000	210000.000	1500.00 0	rpm	Float	IM	Т
	Description: Sets the higher	est possible spee	d.					
	Notice: After the value has	been modified, r	o further parar	neter mod	ificatio	ons can be	e made.	
	Note: The parameter value	s displayed on th	e BOP are inte	egers.				
	The parameter applies for	both motor direct	ions.					
	The parameter has a limitin down ramps, ramp-function				all ram	p-up and	ramp-down tir	nes (e.g.
	The range of the paramete	r is different whe	n connect with	different r	notors	<u>.</u>		
p1083 *	Speed limit in positive direction of rotation	0.000	210000.000		rpm	Float	IM	
	Description: Sate the maxi			000				T, U
	Description. Sets the maxim	num speed for th	l ne positive dire					1, U
	Note: The parameter value			ction.		1		I, U
p1086 *				ction.	rpm	Float	IM	T, U
p1086 *	Note: The parameter value Speed limit in negative direction of rotation	s displayed on th -210000.000	ne BOP are inte 0.000	ction. egers. - 210000. 000	rpm	Float	IM	
p1086 *	Note: The parameter value Speed limit in negative	s displayed on th -210000.000 d limit for the neg	e BOP are inte 0.000 pative direction	ction. egers. - 210000. 000	rpm	Float	IM	
	Note: The parameter valueSpeed limit in negative direction of rotationDescription: Sets the speed	s displayed on th -210000.000 d limit for the neg	e BOP are inte 0.000 pative direction	ction. egers. - 210000. 000	rpm -	Float I16	IM IM	
	Note: The parameter value Speed limit in negative direction of rotation Description: Sets the spee Note: The parameter value Ramp-function generator selection	s displayed on th -210000.000 d limit for the neg s displayed on th 0	e BOP are inte 0.000 pative direction the BOP are inte 1	ction. egers. - 210000. 000				T, U
p1086 * p1115	Note: The parameter value Speed limit in negative direction of rotation Description: Sets the spee Note: The parameter value Ramp-function generator	s displayed on th -210000.000 d limit for the neg s displayed on th 0 -function generat	ative direction BOP are interestion BOP are interestion 1 or type.	ction. egers. - 210000. 000 egers. 0	-	116	IM	T, U
	Note: The parameter value Speed limit in negative direction of rotation Description: Sets the spee Note: The parameter value Ramp-function generator selection Description: Sets the ramp	s displayed on th -210000.000 d limit for the neg s displayed on th 0 -function generat	ative direction BOP are interestion BOP are interestion 1 or type.	ction. egers. 210000. 000 egers. 0	-	116	IM	T, U
p1115	Note: The parameter value Speed limit in negative direction of rotation Description: Sets the spee Note: The parameter value Ramp-function generator selection Description: Sets the ramp Note: Another ramp-function Ramp-function generator	s displayed on th -210000.000 d limit for the neg s displayed on th 0 -function generator n generator type 0.000 ction generator ra	e BOP are interestion 0.000 ative direction the BOP are interestion to BOP are interestion to type. can only be se 999999.000	ction. egers. - 210000. 000 egers. 0 elected wh 1	- een the s	I16 e motor is Float	IM at a standstill. IM	T, U T, U T T, U

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p1121	Ramp-function generator ramp-down time	0.000	999999.000	1	s	Float	IM	T, U
	Description: Sets the ramp	-down time for the	e ramp-functio	n generat	or.			
	The ramp-function general standstill (setpoint = 0) in t		ne speed setpo	oint from th	ne max	kimum spe	ed (p1082) do	wn to
	Further, the ramp-down tin	ne is always effec	tive for OFF1.					
	Dependency: Refer to p10	82						
p1130	Ramp-function generator initial rounding-off time	0.000	30.000	0.000	s	Float	IM	T, U
	Description: Sets the initia and ramp-down.	rounding-off time	e for the extend	led ramp	genera	ator. The va	alue applies to	ramp-up
	Note: Rounding-off times a	avoid an abrupt re	sponse and pr	event dar	nage to	o the mech	nanical system	l.
p1131	Ramp-function generator final rounding-off time	0.000	30.000	0.000	s	Float	IM	Τ, U
	Description: Sets the final and ramp-down.	rounding-off time	for the extend	ed ramp g	enerat	or. The va	lue applies to	ramp-up
	Note: Rounding-off times a	avoid an abrupt re	sponse and pr	event dan	nage to	o the mech	nanical system	I.
p1135	OFF3 ramp-down time	0	600	0	s	Float	IM	T, U
	Description: Sets the ramp	-down time from t	the maximum	speed dov	vn to z	ero speed	for the OFF3	command.
	Note: This time can be exc	eeded if the DC li	ink voltage rea	ches its n	naximu	ım value.		
p1215 *	Motor holding brake con- figuration	0	2	0	-	116	IM	Т
	Description: Sets the holdi	ng brake configur	ation.					
	Dependency: Refer to p12	16, p1217, p1226	i, p1227, p122	8				
	Caution: For the setting p1 the brake.	215 = 0, if a brak	e is used, it re	mains clos	sed. If	the motor I	moves, this wi	ll destroy
	Notice: If p1215 was set to still rotating.	1, then when the	pulses are su	ppressed,	, the br	ake is clos	ed even if the	motor is
	Note: The parameter can o	only be set to zero	when the pul	ses are inl	hibited			
p1216 *	Motor holding brake opening time	0	10000	100	ms	Float	IM	T, U
	Description: Sets the time	to open the motor	r holding brake	e.				
	After controlling the holding the speed/velocity setpoint		he speed/velo	city setpoi	int rem	ains at zei	ro for this time	. After this,
	Dependency: Refer to p12	15, p1217						
	Note: For a motor with inte	grated brake, this	time is pre-as	signed the	e value	e saved in	the motor.	
	For p1216 = 0 ms, the more	nitoring and the m	essage A7931	"Brake d	oes no	ot open" ar	e deactivated.	
p1217 *	Motor holding brake clos- ing time	0	10000	100	ms	Float	IM	T, U
	Description: Sets the time	to apply the moto	r holding brake	Э.				
	After OFF1 or OFF3 and the controlled for this time state when the time expires.							
	mon the time expires.							

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
	Note: For a motor with inte	egrated brake, this	time is pre-as	ssigned the	e value		the motor.	
	For p1217 = 0 ms, the mo	-	-	-				d.
p1226	Threshold for zero speed detection	0.00	210000.00	20.00	rpm	Float	IM	T, U
	Description: Sets the spee	ed threshold for the	e standstill ide	ntification.				
	Acts on the actual value a undershot, standstill is ide		oring. When br	aking with	OFF1	or OFF3,	when the thre	eshold is
	The following applies whe	n the brake contro	l is activated:					
	When the threshold is und in p1217. The pulses are t		control is start	ted and the	e syste	em waits fo	r the brake cl	osing time
	If the brake control is not a	activated, the follow	wing applies:					
	When the threshold is unc	lershot, the pulses	are suppress	ed and the	e drive	coasts do	wn.	
	Dependency: Refer to p12	215, p1216, p1217	, p1227					
	Notice: For reasons relating indices 1 to 31 is overwritt							zero in
	Note: Standstill is identifie	d in the following a	cases:					
	- The speed actual value f expired.	alls below the spe	ed threshold i	n p1226 a	nd the	time starte	ed after this in	p1228 has
	- The speed setpoint falls expired.	below the speed t	hreshold in p1	226 and th	ne time	e started af	ter this in p12	227 has
	The actual value sensing speed threshold is too low	-	uring noise. Fo	or this reas	son, st	andstill ca	nnot be detec	ted if the
p1227	Zero speed detection monitoring time	0.000	300.000	300.000	S	Float	IM	T, U
	Description: Sets the mon	itoring time for the	standstill ider	ntification.				
	When braking with OFF1 has fallen below p1226.	or OFF3, standstill	l is identified a	fter this tir	ne has	expired, a	after the setpo	oint speed
	After this, the brake contro suppressed.	ol is started, the sy	stem waits for	r the closir	ig time	in p1217 :	and then the	pulses are
	Dependency: Refer to p12	215, p1216, p1217	, p1226					
	Notice: The setpoint is not toring time in p1227 to be							
	Note: Standstill is identifie	d in the following a	cases:					
	- The speed actual value f expired.	alls below the spe	ed threshold i	n p1226 a	nd the	time starte	ed after this in	p1228 has
	- The speed setpoint falls expired.	below the speed t	hreshold in p1	226 and th	ne time	e started af	ter this in p12	227 has
	For p1227 = 300.000 s, th	e following applies	S:					
	Monitoring is de-activated							
	For p1227 = 0.000 s, the f							
	With OFF1 or OFF3 and a "coasts" down.		= 0, the pulses	s are imme	ediatel	y suppress	ed and the m	otor

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p1228	Pulse suppression delay time	0.000	299.000	0.000	s	Float	IM	T, U
	Description: Sets the delay least one of the following of - The speed actual value fa pired.	onditions is fulfill alls below the thr	ed: eshold in p12	26 and the	time st	tarted afte	er this in p1228	has ex-
	- The speed setpoint falls I		bid in p1226 a	ind the time	starte	a after thi	$s \ln p / 2 / nas$	s expired.
	Dependency: Refer to p12 Notice: When the motor ho closing time (p1217).		tivated, pulse	cancellatio	on is ac	ditionally	delayed by th	e brake
p1414	Speed setpoint filter acti- vation	-	-	0000 bin	-	U16	IM	T, U
p1415	 Description: Setting for act Bit 0: Activate filter 1 Bit 0 = 0: Deactivate Bit 0 = 1: Activated Bit 1: Activate filter 2 Bit 1 = 0: Deactivate Bit 1 = 1: Activated Dependency: The individual must convert the hex number of sets the type Description: Sets the type Dependency: PT1 low pass: p1416 	ed al speed setpoint ys the value in he ber to the binary 0	filters are pa ex format. To number, for e	rameterized know the lo	d as of ogic (hi	gh/low) as	-	ach bit, you
	PT2 low pass: p1417, p14	18						
	General filter: p1417 p1	420						
p1416	Speed setpoint filter 1 time constant	0.00	5000.00	0.00	ms	Float	IM	T, U
	Description: Sets the time	constant for the s	speed setpoin	t filter 1 (P	Г1).			
	Dependency: Refer to p14	14, p1415						
	Note: This parameter is on	ly effective if the	filter is set as	a PT1 low	pass.			
p1417	Speed setpoint filter 1 denominator natural fre- quency	0.5	16000.0	1999.0	Hz	Float	IM	T, U
	Description: Sets the deno	minator natural f	requency for s	speed setpo	oint filte	er 1(PT2,	general filter).	
	Dependency: Refer to p14	14, p1415						
	Note: This parameter is on	-	speed filter is	parameter	ized a	s a PT2 lo	w pass or as	general

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p1418	Speed setpoint filter 1 denominator damping	0.001	10.000	0.700	-	Float	IM	T, U
	Description: Sets the deno	minator damping	for speed setp	ooint filter	1 (PT2	, general fil	ter).	
	Dependency: Refer to p14	14, p1415						
	Note: This parameter is on filter.	ly effective if the s	speed filter is	parameter	ized as	s a PT2 low	pass or as ge	eneral
p1419	Speed setpoint filter 1 numerator natural fre- quency	0.5	16000.0	1999.0	Hz	Float	IM	T, U
	Description: Sets the nume	erator natural freq	uency for spe	ed setpoin	t filter	1 (general f	ilter).	
	Dependency: Refer to p14	14, p1415						
	Note: This parameter is on natural frequency is less th				eneral	filter. The fi	Iter is only effe	ective if the
p1420	Speed setpoint filter 1 numerator damping	0.001	10.000	0.700	-	Float	IM	T, U
	Description: Sets the nume	erator damping for	speed setpoi	nt filter 1 (genera	al filter).		•
	Dependency: Refer to p14	14, p1415		-				
	Note: This parameter is on	ly effective if the s	speed filter is	set as a ge	eneral	filter.		
p1421	Speed setpoint filter 2 type	0	2	0	-	116	IM	T, U
	Description: Sets the type	for speed setpoint	t filter 2.			•		
	Dependency: PT1 low pass: p1422 PT2 low pass: p1423, p142 General filter: p1423 p14							
p1422	Speed setpoint filter 2 time constant	0.00	5000.00	0.00	ms	Float	IM	T, U
	Description: Sets the time	constant for the s	peed setpoint	filter 2 (P1	1).	•		
	Dependency: Refer to p14	14, p1421						
	Note: This parameter is on	ly effective if the s	speed filter is	set as a P	T1 low	pass.		
p1423	Speed setpoint filter 2 denominator natural fre- quency	0.5	16000.0	1999.0	Hz	Float	IM	T, U
	Description: Sets the deno	minator natural fre	equency for sp	beed setpo	oint filte	er 2 (PT2, g	eneral filter).	
	Dependency: Refer to p14	14, p1421						
	Note: This parameter is on filter.	ly effective if the s	speed filter is	parameter	ized as	s a PT2 low	pass or as ge	eneral
	The filter is only effective if	the natural freque	ency is less th	an half of	the sa	mpling freq	uency.	
p1424	Speed setpoint filter 2 denominator damping	0.001	10.000	0.700	-	Float	IM	T, U
	Description: Sets the deno	minator damping	for speed setp	point filter	2 (PT2	, general fil	ter).	
	Dependency: Refer to p14	14, p1421						
	Note: This parameter is on filter.	ly effective if the s	speed filter is	parameter	ized as	s a PT2 low	pass or as ge	eneral

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p1425	Speed setpoint filter 2 numerator natural fre- quency	0.5	16000.0	1999.0	Hz	Float	IM	T, U
	Description: Sets the nume	erator natural freq	uency for spee	ed setpoin	t filter :	2 (general f	filter).	•
	Dependency: Refer to p14	14, p1421		-				
	Note: This parameter is on	ly effective if the s	speed filter is s	set as a ge	eneral	filter.		
	The filter is only effective if	the natural freque	ency is less th	an half of	the sa	mpling freq	uency.	
p1426	Speed setpoint filter 2 numerator damping	0.000	10.000	0.700	-	Float	IM	T, U
	Description: Sets the nume	erator damping for	speed setpoi	nt filter 2 (genera	al filter).		
	Dependency: Refer to p14	14, p1421						
	Note: This parameter is on	ly effective if the s	speed filter is s	set as a ge	eneral	filter.		
p1441	Actual speed smoothing time	0.00	50.00	0.00	ms	Float	IM	Τ, U
	Description: Sets the smoo	thing time consta	nt (PT1) for th	e speed a	ctual v	alue.		
	Note: The speed actual val	ue should be smo	oothed for incr	ement end	coders	with a low	pulse number.	
	After this parameter has be controller settings checked			at the spe	ed cor	ntroller is a	dapted and/or t	the speed
p1520 *	Torque limit upper	-1000000.00	2000000.0 0	0.00	Nm	Float	IM	T, U
	Description: Sets the fixed	upper torque limit	t.					
	Danger: Negative values w in an uncontrollable fashior	۱.		-				elerating
	Notice: The maximum valu			-	conne			1
p1521 *	Torque limit lower	-20000000.00	100000.00	0.00	Nm	Float	IM	T, U
	Description: Sets the fixed							
	Danger: Positive values whan uncontrollable fashion.	en setting the lov	ver torque limi	t (p1521 >	• 0) cai	n result in tl	he motor accel	erating in
	Notice: The maximum valu	e depends on the	maximum tor	que of the	conne	ected motor	·.	
p1656 *	Activates current setpoint filter	-	-	0001 bin	-	U16	IM	T, U
	Description: Setting for acti	ivating/de-activati	ng the current	setpoint f	ilter.			
	• Bit 0: Activate filter 1							
	 Bit 0 = 0: Deactivate 	ed						
	– Bit 0 = 1: Activated							
	Bit 1: Activate filter 2							
	 Bit 1 = 0: Deactivate 	h						
	 Bit 1 = 1: Activated 							
	Bit 2: Activate filter 3							
		1						
	Bit 2 = 0: Deactivate	ea						
	Bit 2 = 1: Activated							
	• Bit 3: Activate filter 4							
	 Bit 3 = 0: Deactivate 	ed						
	 Bit 3= 1: Activated 							
	Dependency: The individua	al current setpoint	filters are par	ameterize	d as o	f p1658.		

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
	Note: If not all of the filters drive unit displays the valu convert the hex number to	e in hex format. T	o know the lo	gic (high/lo	ow) ass	signment to	each bit, you	
p1658 *	Current setpoint filter 1 denominator natural fre- quency	0.5	16000.0	1999.0	Hz	Float	IM	T, U
	Description: Sets the deno	minator natural fro	equency for cu	urrent setp	oint fill	ter 1 (PT2,	general filter).	
	Dependency: The current	setpoint filter 1 is	activated via p	01656.0 ar	nd para	meterized	via p1658 p	1659.
p1659 *	Current setpoint filter 1 denominator damping	0.001	10.000	0.700	-	Float	IM	T, U
	Description: Sets the deno	minator damping	for current set	tpoint filter	1.			
	Dependency: The current	setpoint filter 1 is	activated via p	o1656.0 ar	nd para	meterized	via p1658 p	01659.
p1663	Current setpoint filter 2 denominator natural fre- quency	0.5	16000.0	1000.0	Hz	Float	IM	T, U
	Description: Sets the deno	minator natural fre	equency for cu	urrent setp	oint fill	ter 2 (PT2,	general filter).	
	Dependency: Current setp	oint filter 2 is activ	ated via p165	6.1 and pa	aramet	erized via	o1663 p166	6.
p1664	Current setpoint filter 2 denominator damping	0.001	10.000	0.300	-	Float	IM	T, U
	Description: Sets the deno	minator damping	for current set	tpoint filter	2.	1		
	Dependency: Current setp			•		erized via	o1663 p166	6.
p1665	Current setpoint filter 2 numerator natural fre- quency	0.5	16000.0	1000.0	Hz	Float	IM	T, U
	Description: Sets the nume	erator natural freq	uency for curr	ent setpoi	nt filter	2 (general	filter).	
	Dependency: Current setp	oint filter 2 is activ	ated via p165	6.1 and pa	aramet	erized via	o1662 p166	6.
p1666	Current setpoint filter 2 numerator damping	0.000	10.000	0.010	-	Float	IM	T, U
	Description: Sets the nume	erator damping for	r current setpo	oint filter 2.				
	Dependency: Current setp	oint filter 2 is activ	ated via p165	6.1 and pa	aramet	erized via	o1663 p166	6.
p1668	Current setpoint filter 3 denominator natural fre- quency	0.5	16000.0	1000.0	Hz	Float	IM	T, U
	Description: Sets the deno	minator natural fre	equency for cu	urrent setp	oint fill	ter 3 (PT2,	general filter).	
	Dependency: Current setp	oint filter 3 is activ	ated via p165	6.2 and p	aramet	erized via	o1668 p167	1.
p1669	Current setpoint filter 3 denominator damping	0.001	10.000	0.300	-	Float	IM	T, U
	Description: Sets the deno	minator damping	for current set	tpoint filter	3.			
	Dependency: Current setp	oint filter 3 is activ	ated via p165	6.2 and pa	aramet	erized via	o1668 p167	1.
p1670	Current setpoint filter 3 numerator natural fre- quency	0.5	16000.0	1000.0	Hz	Float	IM	T, U
	Description: Sets the nume	erator natural freq	uency for curr	ent setpoi	nt filter	3 (general	filter).	
	Dependency: Current setp	-	-	-			-	1.

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p1671	Current setpoint filter 3 numerator damping	0.000	10.000	0.010	-	Float	IM	Τ, U
	Description: Sets the nume	erator damping for	r current setpo	int filter 3.				
	Dependency: Current setp	oint filter 3 is activ	ated via p165	6.2 and pa	aramet	erized via p	o1668 p167	1.
p1673	Current setpoint filter 4 denominator natural fre- quency	0.5	16000.0	1000.0	Hz	Float	IM	T, U
	Description: Sets the deno	minator natural fro	equency for cu	irrent setp	oint fil	ter 4 (PT2,	general filter).	
	Dependency: Current setp	oint filter 4 is activ	ated via p165	6.3 and pa	aramet	erized via p	o1673 p167	5.
p1674	Current setpoint filter 4 denominator damping	0.001	10.000	0.300	-	Float	IM	Τ, U
	Description: Sets the deno	minator damping	for current set	point filter	4.			
	Dependency: Current setp	oint filter 4 is activ	vated via p165	6.3 and pa	aramet	erized via p	o1673 p167	5.
p1675	Current setpoint filter 4 numerator natural fre- quency	0.5	16000.0	1000.0	Hz	Float	IM	T, U
	Description: Sets the nume	erator natural freq	uency for curr	ent setpoir	nt filter	4 (general	filter).	•
	Dependency: Current setp	oint filter 4 is activ	ated via p165	6.3 and pa	aramet	erized via p	o1673 p167	5.
p1676	Current setpoint filter 4 numerator damping	0.000	10.000	0.010	-	Float	IM	T, U
	Description: Sets the nume	erator damping for	r current setpo	int filter 4.				
	Dependency: Current setp	oint filter 4 is activ	vated via p165	6.3 and pa	aramet	erized via p	o1673 p167	5.
p2000	Reference speed	6.00	210000.00	3000.00	rpm	Float	IM	Т
	Description: Sets the reference	ence quantity for s	speed and free	quency.				
	All speeds or frequencies s The reference quantity cor	-				-	-	
	Dependency: Refer to: p20	003						
p2003	Reference torque	0.01	20000000.0 0	1.00	Nm	Float	IM	Т
	Description: Sets the reference	ene quantity for to	rque.					
	All torques specified as rel	ative value are re	ferred to this r	eference o	quantity	y.		
	The reference quantity cor	responds to 100%	or 4000 hex	(word) or 4	40000	000 hex (do	uble word).	_
p2153	Speed actual value filter time constant	0	1000000	0	ms	Float	IM	Τ, U
	Description: Sets the time	constant of the P	T1 element to	smooth th	e spee	d/velocity a	actual value.	
	The smoothed actual spee signals.	d/velocity is comp	pared with the	threshold	values	and is only	y used for mes	sages and
p2161 *	Speed threshold 3	0.00	210000.00	10.00	rpm	Float	IM	T, U
	Description: Sets the spee	d threshold value	for the signal	that indica	tes the	e axis is sta	tionary.	

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p2162 *	Hysteresis speed n_act > n_max	0.00	60000.00	0.00	rpm	Float	IM	T, U
	Description: Sets the hyste	resis speed (ban	dwidth) for the	e signal "n_	act >	n_max".		
	Note:							
	For a negative speed limit, the limit value.	the hysteresis is	effective below	w the limit	value	and for a p	positive speed	limit above
	If significant overshoot occ advised to increase the dyr resis p2162 can be increas low when the motor maxim	namic response o ed, but its value i	f the speed co must not be gr	ontroller (if reater than	possil the va	ole). If this alue calcu	is insufficient, lated by the fo	the hyste-
	p2162 ≤ 1.05 × motor maxi	imum speed - ma	ximum speed	(p1082)				
	The range of the paramete	r is different wher	n connect with	different r	notors	-	-	
p8920[0	PN: Name of station	-	-	-	-	U8	IM	T, U
239]	Description: Sets the statio	n name for the or	nboard PROF	INET inter	face or	n the Cont	rol Unit.	
	The active station name is	displayed in r893	0.					
	Note: The interface configu	ration (p8920 and	d following) is	activated	with p8	3925.		
	The parameter is not influe	nced by setting th	ne factory sett	ing.				
p8921[0	PN: IP address of station	0	255	0	-	U8	IM	T, U
3]	Description: Sets the IP ad	dress for the onb	oard PROFIN	ET interfac	ce on t	he Contro	l Unit.	
	The active IP address is dis	splyed in r8931.						
	Note: The interface configu	ration (p8920 and	d following) is	activated	with p8	3925.		
	The parameter is not influe	nced by setting th	ne factory sett	ing.				
p8922[0 3]	PN: Default gateway of station	0	255	0	-	U8	IM	T, U
	Description: Sets the defau	It gateway for the	onboard PR	OFINET in	terface	on the C	ontrol Unit.	
	The active default gateway	is displayed in r8	3932.					
	Note: The interface configu	ration (p8920 and	d following) is	activated	with p8	3925.		
	The parameter is not influe	nced by setting th	ne factory sett	ing.				
p8923[0 3]	PN: Subnet mask of sta- tion	0	255	0	-	U8	IM	T, U
	Description: Sets the subne	et mask for the or	board PROFI	NET interf	ace or	n the Cont	rol Unit.	
	The active subnet mask is	displayed in r893	3.					
	Note: The interface configu	ration (p8920 and	d following) is	activated	with p8	3925.		
	The parameter is not influe	nced by setting th	ne factory sett	ing.				
p8925	PN: Interface configura- tion	0	2	0	-	U8	IM	T, U
	Description: Setting to activ Unit.	vate the interface	configuration	for the onl	board I	PROFINE	T interface on	the Control
	p8925 is automatically set	to 0 at the end of	the operation					
	• p8925 = 0: No function							
	 p8925 = 2: Save and ad 	ctivate configurati	on					
	The interface configuration							

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p29000 *	Motor ID	0	65535	0	-	U16	IM	Т
	Description: Motor type nu	mber is printed or	n the motor ra	ting plate a	as mot	or ID.	•	
	For a motor with an increm					e paramete	er value. The ra	ange of
	For a motor with an absolution inertia motor with multi-turn			ally reads	the pa	irameter va	alue. The rang	e of high
p29001	Reversal of motor direc- tion	0	1	0	-	116	IM	Т
	Description: Reversal of m tive direction. After changing							
	0: No reversal							
	1: Reverse							
p29002	BOP display selection	0	2	0	-	l16	IM	T, U
	Description: Selection of B	OP operating dis	play.					
	• 0: Actual speed (defaul	t)						
	1: DC voltage							
	2: Actual torque							
p29005	Braking resistor capacity percentage alarm thresh- old	1	100	100	%	Float	IM	Т
	Description: Alarm triggerin Alarm number: A52901	ng threshold for th	ne capacity of	the interna	al braki	ing resisto	r.	
p29006	Line supply voltage	200	480	400/230	V	U16	IM	Т
	Description: Nominal Line to +10% error.					-		vithin -15%
	For 400 V variant servo dri		-					
	For 200 V variant servo dri	ve, the value rang			fault va	1		I
p29020[0 .1]	Tuning: Dynamic factor	1	35	18	-	U16	IM	T, U
]	Description: The dynamic f	actor of auto tuni	ng. 35 dynam	ic factors ii	n total	are availal	ole.	
	Index:							
	[0]: Dynamic factor for		-					
	[1]: Dynamic factor for		-		1			
p29021	Tuning: Mode selection	0	5	0	-	116	IM	T, U
	Description: Selection of a	tuning mode.						
	0: Disabled							
	1: One-button auto tuni	-						
	3: Real-time auto tuning	-						
	• 5: Disable with default		1		r –	I	T	
p29022	Tuning: Ratio of total inertia moment to motor inertia moment	1.00	10000.00	1.00	-	Float	IM	T, U
	Description: Ratio of total i	nertia moment to	servo motor i	nertia morr	nent.	•	•	•

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed
p29023	Tuning: One-button auto tuning configuration	-	-	0x0007	-	U16	IM	Т
	Description: One-button au	uto tuning configu	ration.					
	• Bit 0: The speed contro	oller gain is deterr	mined and set	using a no	oise sig	ınal.		
	 Bit 1: Possible required quence, a higher dynametric dyna	mic performance ent ratio (p29022) pe set manually w	can be achiev can be meası <i>v</i> ith p29022.	ed in the s ured after t	peed c his fur:	control loop	nning. If not se	et, the iner
	 Bit 7: With this bit set, i for interpolating axes. sponse. 				-			-
p29024	Tuning: Real-time auto tuning configuration	-	-	0x004c	-	U16	IM	Т
	Description: Real-time auto	o tuning configura	ation.					
	Bit 2: The inertia mome ment ratio must be set			vhile the m	notor is	running, if	not set, the i	nertia mo-
	Bit 3: If not set, the inertivated automatically at	fter the estimation	is completed	If the bit is	s set to	o 1, the ine	rtia moment r	atio is esti-
	mated in real time and the parameters when the the controller will be sta	he estimation res	ult is satisfied.	After that,		•		
	the parameters when the	he estimation rest arted with the opti current setpoint fil operation. It can a	ult is satisfied. imized parame ter. This adap ilso be used to	After that, eters. tion may b dampen a	when e nece a fixed	you power essary if a n resonance	on the drive in nechanical re frequency. C	next time, sonance Ince the
	 the parameters when the controller will be state Bit 6: The adaption of of frequency changes in of control loop has stabilized. 	he estimation rest arted with the opti current setpoint fil operation. It can a zed, this bit shoul multi-axes are ada	ult is satisfied. imized parame ter. This adap ilso be used to d be deactivat apted to the d	After that, eters. tion may b dampen a ed and to s ynamic res	when e nece a fixed save p	you power essary if a n resonance arameters set in p290	on the drive i nechanical re frequency. C in a non-volat 028. This is n	next time, sonance once the ile ecessary
o29025	 the parameters when the controller will be state Bit 6: The adaption of of frequency changes in of control loop has stabilized memory. Bit 7: With this bit set, a for interpolating axes. 	he estimation rest arted with the opti current setpoint fil operation. It can a zed, this bit shoul multi-axes are ada	ult is satisfied. imized parame ter. This adap ilso be used to d be deactivat apted to the d	After that, eters. tion may b dampen a ed and to s ynamic res	when e nece a fixed save p	you power essary if a n resonance arameters set in p290	on the drive i nechanical re frequency. C in a non-volat 028. This is n	next time, sonance once the ile ecessary
p29025	 the parameters when the controller will be state the controller will be state. Bit 6: The adaption of a frequency changes in a control loop has stability memory. Bit 7: With this bit set, a for interpolating axes. sponse. Tuning: Configuration 	he estimation rest arted with the opti current setpoint fil operation. It can a zed, this bit shoul multi-axes are add The time in p2902	ult is satisfied. imized parame ter. This adap ilso be used to d be deactivat apted to the dy 28 should be s	After that, eters. tion may b dampen a ed and to s ynamic res et accordir 0x0004	when e nece a fixed save p ponse ng to th -	you power essary if a n resonance arameters set in p290 ne axis with U16	on the drive in nechanical re frequency. C in a non-volat 028. This is no the lowest dy IM	next time, sonance nce the ile ecessary ynamic re-
p29025	 the parameters when the controller will be state Bit 6: The adaption of of frequency changes in of control loop has stability memory. Bit 7: With this bit set, if for interpolating axes. Tuning: Configuration overall 	he estimation rest arted with the opti- current setpoint fil operation. It can a zed, this bit shoul multi-axes are add The time in p2902 - uration of auto tu ferences between then the P contra amic performance	ult is satisfied. imized parame ter. This adap ilso be used to d be deactivat apted to the dy 8 should be s - ning, apply for n the motor an coller becomes of the position	After that, eters. tion may b dampen a ed and to s ynamic res et accordir 0x0004 both one- d load mon a PD con n controlle	when e nece a fixed save p ponse ng to th - button ment o troller i r is inc	you power essary if a n resonance arameters set in p290 ne axis with U16 U16 and real-tin f inertia, or in the posit reased. Th	on the drive in nechanical re frequency. C in a non-volat 028. This is no the lowest dy IM me auto tunin for low dynami ion control loc is function sh	next time, sonance once the ile ecessary ynamic re- T g. mic perfor- op. As a
p29025	 the parameters when the controller will be state the controller will be state. Bit 6: The adaption of a frequency changes in a control loop has stability memory. Bit 7: With this bit set, a for interpolating axes. The sponse. Tuning: Configuration overall Description: Overall configuration of the controller consequence, the dynamic of the dynamic of the controller consequence, the dynamic of t	he estimation rest arted with the opti- current setpoint fil operation. It can a zed, this bit shoul multi-axes are ada The time in p2902 - uration of auto tu ferences between then the P contra amic performance pre-control (bit 3 the controller gain the	ult is satisfied. imized parame ter. This adap lso be used to d be deactivat apted to the de 8 should be s - ning, apply for n the motor an roller becomes of the position = 1) or the tor factors are aut	After that, eters. tion may b o dampen a ed and to s ynamic res et accordir 0x0004 both one- d load more a PD con n controlle que pre-co comatically	when e nece a fixed save p ponse ng to th - button ment o troller i r is inc ontrol (reduc	you power essary if a n resonance arameters set in p290 ne axis with U16 U16 and real-tin f inertia, or in the posit reased. Th bit 4 = 1) is ed in order	on the drive in nechanical re frequency. C in a non-volat 028. This is no the lowest dy IM IM me auto tunin for low dynai ion control loo is function sh active.	next time, sonance once the ille ecessary ynamic re- T g. mic perfor- op. As a ould only
o29025	 the parameters when the the controller will be state the controller will be state. Bit 6: The adaption of a frequency changes in a control loop has stability memory. Bit 7: With this bit set, a for interpolating axes. sponse. Tuning: Configuration overall Description: Overall config Bit 0: For significant difference of the controller consequence, the dyna be set when the speed Bit 1: At low speeds, the dyna be set when the speed 	he estimation rest arted with the opti- current setpoint fil operation. It can a zed, this bit shoul multi-axes are add The time in p2902 - uration of auto tu ferences between r, then the P contra amic performance pre-control (bit 3 be controller gain to setting is recomr	ult is satisfied. imized parame ter. This adap ilso be used to d be deactivat apted to the dy 8 should be s - ning, apply for n the motor an roller becomes of the position = 1) or the tor factors are aut	After that, eters. tion may b dampen a ed and to s ynamic res et accordir 0x0004 both one- d load more a PD con n controlle que pre-co comatically cremental e	when e nece a fixed save p ponse ng to th - button ment o troller i r is inc ontrol (reduce	you power essary if a m resonance arameters set in p290 ne axis with U16 U16 and real-tin f inertia, or in the posit reased. Th bit 4 = 1) is ed in order ers.	on the drive in inchanical refrequency. Comparison of the lowest defined the lowest defined the lowest defined to the lowest defined to the low dynamic on control low dynamics function she active.	next time, sonance once the ille ecessary ynamic re- T g. mic perfor- op. As a ould only
o29025	 the parameters when the the controller will be stated. Bit 6: The adaption of our frequency changes in our control loop has stabilized memory. Bit 7: With this bit set, and for interpolating axes. Tuning: Configuration overall Description: Overall configuration of the controller consequence, the dyname be set when the speed. Bit 1: At low speeds, the lation at standstill. This 	he estimation rest arted with the opti- current setpoint fil operation. It can a zed, this bit shoul multi-axes are ada The time in p2902 - uration of auto tu ferences between r, then the P contra amic performance pre-control (bit 3 he controller gain to setting is recomr ad moment of ine	ult is satisfied. imized parame ter. This adap lso be used to d be deactivat apted to the de 8 should be s - ning, apply for n the motor an roller becomes of the position = 1) or the tor factors are aut mended for incor rtia is taken in	After that, eters. tion may b o dampen a ed and to s ynamic res et accordir 0x0004 both one- d load more a PD con n controlle que pre-co comatically cremental et to account	when e nece a fixed save p ponse ng to th - button ment o troller i r is inc ontrol (reduce	you power essary if a m resonance arameters set in p290 ne axis with U16 U16 and real-tin f inertia, or in the posit reased. Th bit 4 = 1) is ed in order ers.	on the drive in inchanical refrequency. Comparison of the lowest defined the lowest defined the lowest defined to the lowest defined to the low dynamic on control low dynamics function she active.	next time, sonance once the ile ecessary ynamic re- T g. mic perfor- op. As a ould only
o29025	 the parameters when the the controller will be state the controller will be state. Bit 6: The adaption of a frequency changes in a control loop has stability memory. Bit 7: With this bit set, a for interpolating axes. Tuning: Configuration overall Description: Overall config Bit 0: For significant difference of the controller consequence, the dyna be set when the speed Bit 1: At low speeds, the lation at standstill. This Bit 2: The estimated loop 	he estimation rest arted with the opti- current setpoint fil operation. It can a zed, this bit shoul multi-axes are add The time in p2902 - uration of auto tu ferences between then the P contro amic performance pre-control (bit 3 setting is recommand and moment of ine red pre-control for	ult is satisfied. imized parame ter. This adap ilso be used to d be deactivat apted to the dy 28 should be s - ning, apply for n the motor an roller becomes of the position = 1) or the tor factors are aut mended for inco rtia is taken in the position of	After that, eters. tion may b dampen a ed and to s ynamic res et accordir 0x0004 both one- d load mon a PD con n controlle que pre-co comatically cremental et to account	when e nece a fixed save p ponse ng to th - button ment o troller i r is inc ontrol (reduce	you power essary if a m resonance arameters set in p290 ne axis with U16 U16 and real-tin f inertia, or in the posit reased. Th bit 4 = 1) is ed in order ers.	on the drive in inchanical refrequency. Comparison of the lowest defined the lowest defined the lowest defined to the lowest defined to the low dynamic on control low dynamics function she active.	next time, sonance once the ile ecessary ynamic re- T g. mic perfor- op. As a ould only
o29025	 the parameters when the the controller will be stated. Bit 6: The adaption of a frequency changes in a control loop has stability memory. Bit 7: With this bit set, a for interpolating axes. The sponse. Tuning: Configuration overall Description: Overall configional difference of the controller consequence, the dyname be set when the speed. Bit 1: At low speeds, the lation at standstill. This Bit 2: The estimated low Bit 3: Activates the speed 	he estimation rest arted with the opti- current setpoint fil operation. It can a zed, this bit shoul multi-axes are ada The time in p2902 - uration of auto tu ferences between r, then the P contra amic performance pre-control (bit 3 ne controller gain to setting is recom- ad moment of ine red pre-control for que pre-control for	ult is satisfied. imized parame ter. This adap ilso be used to d be deactivat apted to the dy 28 should be s - ning, apply for n the motor an roller becomes of the position = 1) or the tor factors are aut mended for inco rtia is taken in the position of	After that, eters. tion may b dampen a ed and to s ynamic res et accordir 0x0004 both one- d load mon a PD con n controlle que pre-co comatically cremental et to account	when e nece a fixed save p ponse ng to th - button ment o troller i r is inc ontrol (reduce	you power essary if a m resonance arameters set in p290 ne axis with U16 U16 and real-tin f inertia, or in the posit reased. Th bit 4 = 1) is ed in order ers.	on the drive in inchanical refrequency. Comparison of the lowest defined the lowest defined the lowest defined to the lowest defined to the low dynamic on control low dynamics function she active.	next time, sonance once the ille ecessary ynamic re- T g. mic perfor- op. As a ould only

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed	
p29027	Tuning: Limit rotation of motor	0	3000	0	0	U32	IM	Т	
	Description: The limit posit limited within +/- p29027 de						traversing ra	nge is	
p29028	Tuning: Pre-control time constant	0.0	60.0	7.5	ms	Float	IM	T, U	
	Description: Sets the time of As a consequence, the drive For drives, which must inter The higher this time constant Note: This time constant is p29024).	ve is allocated a d rpolate with one a ant is, the smooth	lefined, dynan another, the s er the drive wi	nic respons ame value ill follow the	se via must l e posit	its pre-cont be entered. tion set poir	nt.	and	
p29050[0	Torque limit upper	-150	300	300	%	Float	IM	T, U	
.1]	Torque limit upper 1.00 300 300 70 1000 1000 11,00 Description: Positive torque limit. Two internal torque limits in total are available. Two internal torque limits in total are available. You can select the internal parameters as the source of the torque limit with the digital input signals TLIM.						s TLIM.		
p29051[0	Torque limit lower	-300	150	-300	%	Float	IM	T, U	
.1]	Description: Negative torque limit. Two internal torque limits in total are available. You can select the internal parameters as the source of the torque limit with the digital input signals TLIM.								
p29070[0	Speed limit positive	0	210000	210000	rpm	Float	IM	T, U	
.1] *	Description: Positive speed limit. Two internal speed limits in total are available. You can select the internal parameters as the source of the speed limit with the digital input signals SLIM.								
p29071[0 .1] *	Speed limit negative	-210000	0	- 210000	rpm	Float	IM	T, U	
	Description: Negative speed limit. Two internal speed limits in total are available. You can select the internal parameters as the source of the speed limit with the digital input signals SLIM.								
p29080	Overload threshold for output signal triggering	10	300	100	%	Float	IM	Т	
	Description: Overload threshold for the output power.								
p29108	 Function module activate Description: Bit 0: activate (SLIM), and JOG. Bit 0 = 0: Deactivate Bit 0 = 1: Activate 				- o-funct	U32 ion genera	RE tor (RFG), spe	T eed limit	
p29120**	Note: Changes only becom Speed loop gain	0.00	save and repo	wer-on. Motor de- pendent	Nms /rad	Float	IM	T, U	
	Description: Speed loop ga	iin.							
	Dependency: The paramet	er value will be se	et to default af	ter confiau	irina a	new motor	ID (p29000).		

Par. No.	Name	Min	Max	Factory Setting	Unit	Data type	Effective	Can be changed		
p29121*	Speed loop integral time	0.00	100000.00	15	ms	Float	IM	T, U		
	Description: Speed loop int	tegral time.								
	Dependency: The paramet	er value will be se	et to default at	fter configu	uring a	new mot	or ID (p29000).			
p29301	Digital input 1 assignment	0	29	2	-	I16	IM	Т		
	Description: Defines the fu	nction of digital in	put signal DI1							
	• NA 0									
	RESET 2									
	TLIMT 11									
	SLIMT 20									
	• EMGS 29									
p29302	Digital input 2 assignment	0	29	3	-	I16	IM	Т		
	Description: Defines the function of digital input signal DI2									
p29303	Digital input 3 assignment	0	29	4	-	I16	IM	Т		
	Description: Defines the function of digital input signal DI3									
p29304	Digital input 4 assignment	0	29	11	-	I16	IM	Т		
	Description: Defines the fu	nction of digital in	put signal DI4	ļ						
p29330	Digital output 1 assign- ment	1	14	1	-	l16	IM	Т		
	Description: Defines the function of digital output signal DO1									
	• RDY 1									
	FAULT 2									
	• ZSP 4									
	• TLR 6									
	• MBR 8	• MBR 8								
	• OLL 9									
	• RDY_ON 14									
p29331	Digital output 2 assign- ment	1	14	2	-	116	IM	Т		
	Description: Defines the fu	nction of digital or	utput signal D	02						

Read-only parameters

Par. No.	Name	Unit	Data type					
r0020	Speed setpoint smoothed	rpm	Float					
	Description: Displays the currently smoothed speed setpoint at the input of the speed controller or U/f charac teristic (after the interpolator).							
	Note: Smoothing time constant = 100 ms							
	The signal is not suitable as a process quantity and may only be use	d as a display q	uantity.					
	The speed setpoint is available smoothed (r0020) and unsmoothed.							
r0021	Actual speed smoothed	rpm	Float					
	Description: Displays the smoothed actual value of the motor speed.							
	Note: Smoothing time constant = 100 ms							
	The signal is not suitable as a process quantity and may only be use	d as a display q	uantity.					
	The speed actual value is available smoothed (r0021) and unsmoothed.							
r0026	DC link voltage smoothed	V	Float					
	Description: Displays the smoothed actual value of the DC link voltage	ge.						
	Note: Smoothing time constant = 100 ms							
	The signal is not suitable as a process quantity and may only be used as a display quantity.							
	The DC link voltage is available smoothed.		-					
r0027	Absolute actual current smoothed	Arms	Float					
	Description: Displays the smoothed absolute actual current value.							
	Notice: This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.							
	Note: Smoothing time constant = 100 ms							
	The signal is not suitable as a process quantity and may only be used as a display quantity.							
	The absolute current actual value is available smoothed (r0027) and unsmoothed.							
r0029	Current actual value field-generating smoothed	Arms	Float					
	Description: Displays the smoothed field-generating actual current.							
	Note: Smoothing time constant = 100 ms							
	The signal is not suitable as a process quantity and may only be used as a display quantity.							
	The field-generating current actual value is available smoothed (r0029) and unsmoothed.							
r0030	Current actual value torque-generating smoothed	Arms	Float					
	Description: Displays the smoothed torque-generating actual current.							
	Note: Smoothing time constant = 100 ms							
	The signal is not suitable as a process quantity and may only be used as a display quantity.							
	The torque-generating current actual value is available smoothed.							
r0031	Actual torque smoothed	Nm	Float					
	Description: Displays the smoothed torque actual value.							
	Note: Smoothing time constant = 100 ms							
	The signal is not suitable as a process quantity and may only be use	d as a display q	uantity.					
	The torque actual value is available smoothed (r0031) and unsmooth							
r0034	Motor utilization thermal	%	Float					

Par. No.	Name	Unit	Data type				
r0037[01	Power unit temperatures	°C	Float				
9]	Description: Displays the temperatures in the power unit.						
	Index:						
	[0]: Inverter maximum value						
	[1]: Depletion layer maximum value						
	[2]: Rectifier maximum value						
	• [3]: Air intake						
	• [4]: Interior of power unit						
	• [5]: Inverter 1						
	• [6]: Inverter 2						
	• [7]: Inverter 3						
	• [8]: Inverter 4						
	• [9]: Inverter 5						
	• [10]: Inverter 6						
	• [11]: Rectifier 1						
	• [12]: Rectifier 2						
	[13]: Depletion layer 1						
	• [14]: Depletion layer 2						
	• [15]: Depletion layer 3						
	• [16]: Depletion layer 4						
	• [17]: Depletion layer 5						
	• [18]: Depletion layer 6						
	[19]: Cooling unit liquid intake						
	Dependency: Refer to A01009						
	Notice: Only for internal Siemens troubleshooting.						
	Note: The value of -200 indicates that there is no measuring signal.						
	r0037[0]: Maximum value of the inverter temperatures (r0037[510]).						
	• r0037[1]: Maximum value of the depletion layer temperatures (r0037[1318]).						
	r0037[2]: Maximum value of the rectifier temperatures (r0037[1112]).						
	The maximum value is the temperature of the hottest inverter, depl	etion layer, or rec	ctifier.				
0079[01	Torque setpoint total	Nm	Float				
	Description: Displays and connector output for the torque setpoint at the output of the speed controller (before clock cycle interpolation).						
	Index:						
	• [0]: Unsmoothed						
	• [1]: Smoothed						
0296	DC link voltage undervoltage threshold	V	U16				
	Description: Threshold to detect a DC link undervoltage.	•					
	If the DC link voltage falls below this threshold, the drive unit is tripped due to a DC link undervoltage condi- tion.						
	Note: The value depends on the device type and the selected device	ce rated voltage.					

Par. No.	Name	Unit	Data type				
r0297	DC link voltage overvoltage threshold	V	U16				
	Description: If the DC link voltage exceeds the threshold specified here, the drive unit is tripped due to DC lin						
	overvoltage. Dependency: Refer to F30002.						
r0311	Rated motor speed	rom	Float				
10311	Description: Displays the rated motor speed (rating plate).	rpm	FIUAL				
r0333	• • • • • • • • • • • • • • • • • • • •	Nm	Float				
10333							
	Description: Displays the rated motor torque. IEC drive: unit Nm						
	NEMA drive: unit lbf ft						
r0482[02	Encoder actual position value Gn_XIST1	_	U32				
	Description: Displays the encoder actual position value Gn_XIST1.		002				
	• [0]: Encoder 1						
	• [1]: Encoder 2						
	• [2]: Reserved						
	Note:						
	 In this value, the measuring gear is only taken into account when the position tracking is activated. The update time for the position control (EPOS) corresponds to the position controller clock cycle. 						
	The update time in isochronous operation corresponds to the bus cycle time.						
	• The update time in isochronous operation and with position control (EPOS) corresponds to the position controller clock cycle.						
	The update time in non-isochronous operation or without position control (EPOS) comprises the following:						
	 Update time = 4 * least common multiple (LCM) of all current controller clock cycles in the drive group (infeed + drives). The minimum update time is 1 ms. 						
	 Example 1: infeed, servo Update time = 4 * LCM(250 μs, 125 μs) = 4 * 250 μs = 1 ms 						
	 Example 2: infeed, servo, vector Update time = 4 * LCM(250 μs, 125 μs, 500 μs) = 4 * 500 μs = 2 ms 						
r0632	Motor temperature model, stator winding temperature	°C	Float				
	Description: Displays the stator winding temperature of the motor temp	erature mode	I.				
0722	CU digital inputs status	-	U32				
	Description: Displays the status of the digital inputs.						
	Note:						
	DI: Digital Input						
	DI/DO: Bidirectional Digital Input/Output						
	The drive unit displays the value in hex format. You can convert the hex number to the binary number, for example, FF (hex) = 11111111 (bin).						
0747	CU digital outputs status	-	U32				
	Description: Displays the status of digital outputs.						
	Note:						
	DI/DO: Bidirectional Digital Input/Output						
	The drive unit displays the value in hex format. You can convert the hex number to the binary number, for example, FF (hex) = 11111111 (bin).						

Par. No.	Name	Unit	Data type					
r0930	PROFIdrive operating mode	-	U16					
	Description: Displays the operating mode.							
	1: Closed-loop speed controlled operation with ramp-function generator							
	2: Closed-loop position controlled operation							
	3: Closed-loop speed controlled operation without ramp-function generator							
r0945[06	Fault code	-	U16					
3]	Description: Displays the number of faults that have occurred.							
	Dependency: Refer to r0949							
	Note: The buffer parameters are cyclically updated in the background.							
	Fault buffer structure (general principle):							
	r0945[0], r0949[0] \rightarrow actual fault case, fault 1							
	r0945[7], r0949[7] → actual fault case, fault 8 r0945[8], r0949[8] → 1st acknowledged fault case, fault 1							
	T0945[0], T0949[0] → TSt acknowledged fault case, fault f							
	r0945[15], r0949[15] → 1st acknowledged fault case, fault 8							
	r0945[56], r0949[56] → 7th acknowledged fault case, fault 1							
	r0945[63], r0949[63] \rightarrow 7th acknowledged fault case, fault 8	T	1					
r0949[06	Fault value	-	132					
3]	Description: Displays additional information about the fault that occurred (as integer number).							
	Dependency: Refer to r0945							
	Note: The buffer parameters are cyclically updated in the background.							
r0964[06	The structure of the fault buffer and the assignment of the indices is show Device identification	/1 10945.	1116					
10904[00]	Description: Displays the device identification.	-	U16					
	Index:							
	Index: [0]: Company (Siemens = 42)							
	• [1]: Device type							
	• [2]: Firmware version							
	• [3]: Firmware data (year)							
	• [4]: Firmware data (day/month)							
	[5]: Number of drive objects							
	[6]: Firmware patch/hot fix							
	Note:							
	Example:							
	r0964[0] = 42 → SIEMENS							
	r0964[1] = Device type							
	r0964[2] = 403 \rightarrow First part of the firmware version V04.03 (for second part, refer to index 6)							
	r0964[3] = 2010 → Year 2010							
	r0964[4] = 1705 → 17th of May							
	r0964[5] = 2 \rightarrow 2 drive objects							
	r0964[6] = $200 \rightarrow$ Secnod part, firmware version (complete version: V04.0	3.02.00)						

Par. No.	Name	Unit	Data type					
r0965	PROFIdrive profile number - U16							
	Description: Displays the PROFIdrive profile and profile version.							
	Constant value = 0329 hex							
	Byte 1: Profile number = 03 hex = PROFIdrive profile							
	Byte 2: Profile version = 29 hex = Version 4.1							
	Note: When the parameter is read via PROFIdrive, the Octet Strin	ng 2 data type appl	ies.					
r0975[01	Drive object identification	-	U16					
0]	Description: Displays the identification of the drive object.							
	Index:							
	• [0]: Company (Siemens = 42)							
	• [1]: Drive object type							
	[2]: Firmware version							
	• [3]: Firmware data (year)							
	• [4]: Firmware data (day/month)							
	• [5]: PROFIdrive drive object type class							
	[6]: PROFIdrive drive object sub-type class 1							
	• [7]: Drive object number							
	• [8]: Reserved							
	• [9]: Reserved							
	• [10]: Firmware patch/hot fix							
	Note:							
	Example:							
	r0975[0] = 42 → SIEMENS							
	r0975[1] = SERVO drive object type							
	r0975[2] = $102 \rightarrow$ First part of the firmware version V01.02 (for second part, refer to index 10)							
	$r0975[3] = 2003 \rightarrow Year 2003$							
	$r0975[4] = 1401 \rightarrow 14$ th of January							
	r0975[5] = 1 \rightarrow PROFIdrive drive object, type clase							
	r0975[6] = 9 \rightarrow PROFIdrive drive object sub-type class 1							
	r0975[7] = 2 \rightarrow Drive object number = 2							
	r0975[8] = 0 (Reserved)							
	r0975[9] = 0 (Reserved)							
	r0975[10] = 600 \rightarrow Sencod part, firmware version (complete versi	on: V01.02.06.00)						

Par. No.	Name	Unit	Data type				
r0979[03	PROFIdrive encoder format	-	U32				
0]	Description: Displays the actual position encoder used according to PROFIdrive.						
	Index:						
	• [0]: Header						
	• [1]: Type encoder 1						
	• [2]: Resolution encoder 1						
	 [3]: Shift factor G1_XIST1 						
	• [4]: Shift factor G1_XIST2						
	• [5]: Distinguishable revolutions encoder 1						
	• [6][30]: Reserved						
	Note: Information about the individual indices can be taken from the follow	wing literature:					
	PROFIdrive Profile Drive Technology						
r2043.02	PROFIdrive: PZD state	-	U8				
	Description: Displays the PROFIdrive PZD state.						
	Bit 0: Setpoint failure						
	• Value = 1: Yes						
	• Vaule = 0: No						
	Bit 1: Clock cycle synchronous operation active						
	• Vaule = 1: Yes						
	• Vaule = 0: No						
	Bit 2: Fieldbus operation						
	• Value = 1: Yes						
	• Vaule = 0: No						
	Note: When using the "setpoint failure" signal, the bus can be monitored a triggered when the setpoint fails.	and an applica	tion-specific response				
2050[01	PROFIdrive: PZD receive word	-	l16				
9]	Description: Displays the PZD (setpoints) with word format received from the fieldbus controller.						
	Dependency: Refer to r2060.						
	Index:						
	Index 0 to index 19 stand for PZD1 to PZD20 correspondingly.						
2053[02	PROFIdrive: Diagnostics PZD send word	-	U16				
7]	Description: Displays the PZD (actual values) with word format send to the fieldbus controller.						
	Index:						
	Index 0 to index 27 stand for PZD1 to PZD28 correspondingly.						
	Bit field: For each PZD, it has 16 bits from bit 0 to bit 15. For the control words, if t	he bit value eq	uals to 0, the function				
	of the bit is OFF; if the bit vaule equals to 1, the function of the bit is ON.	·					

Par. No.	Name	Unit	Data type					
r2060[01	PROFIdrive: PZD receive double word	-	132					
8]	Description: Displays the PZD (setpoints) with double word format receive	d from the field	bus controller.					
	Dependency: Refer to r2050.							
	Index:							
	Index [n] = PZD[n + 1] + n + 2							
	In the formula, n = 018.							
	Notice: A maximum of 4 indices of the "trace" function can be used.							
r2063[02	PROFIdrive: Diagnostics PZD send double word	-	U32					
6]	Description: Displays the PZD (actual values) with double word format ser	nd to the fieldb	us controller.					
	Index:							
	Index $[n] = PZD[n + 1] + n + 2$							
	In the formula, $n = 026$.							
	Bit field:							
	For each PZD, it has 32 bits from bit 0 to bit 31. For the control words, if the bit value equals to 0, the function of the bit is OFF; if the bit vaule equals to 1, the function of the bit is ON.							
	Notice: A maximum of 4 indices of the "trace" function can be used.							
	PROFIdrive: PZD1 receive bit-serial	-	U16					
5	Description: Bit-serial description of PZD1 (normally control word 1) received from the PROFIdrive controller.							
	If the value of the bit equals to 0, it means the function of this bit is deactivated. If the value of the bit equals to 1, it means the function of this bit is activated.							
r2093.01	PROFIdrive: PZD4 receive bit-serial	-	U16					
5	Description: Bit-serial description of PZD4 (normally control word 2) received from the PROFIdrive controller.							
	If the value of the bit equals to 0, it means the function of this bit is deactivated. If the value of the bit equals to 1, it means the function of this bit is activated.							
r2122[06	Alarm code	-	U16					
3]	Description: Displays the number of faults that have occurred.							
	Dependency: Refer to r2124							
	Note: The buffer parameters are cyclically updated in the background.							
	Alarm buffer structure (general principle):							
	r2122[0], r2124[0] → alarm 1 (the oldest)							
	r2122[7], r2124[7] → alarm 8 (the latest)							
	When the alarm buffer is full, the alarms that have gone are entered into the alarm history:							
	r2122[8], r2124[8] → alarm 1 (the latest)							
	r2122[63], r2124[63] → alarm 1 (the oldest)	1						
2124[06	Alarm value	-	132					
3]	Description: Displays additional information about the active alarm (as integer number).							
	Dependency: Refer to r2122							
	Note: The buffer parameters are cyclically updated in the background.							
	The structure of the alarm buffer and the assignment of the indices is show	wn in r2122.						
r8909	PN: Device ID	-	U16					
	Description: Displays the PROFINET device ID. Every SINAMICS device type has its own PROFINET device ID and its own	n PROFINET	GSD.					

Par. No.	Name	Unit	Data type				
r8930[02	PN: Name of station active	-	U8				
39]	Description: Displays the active station name for the onboard PROFINET	interface on th	e Control Unit.				
r8931[03	PN: IP address of station active	-	U8				
]	Description: Displays the active IP address for the onboard PROFINET in	terface on the	Control Unit.				
r8932[03	PN: Default gateway of station active	-	U8				
]	Description: Displays the active default gateway for the onboard PROFIN	ET interface or	the Control Unit.				
r8933[03	PN: Subnet mask of station active	-	U8				
]	Description: Displays the active subnet mask for the onboard PROFINET	interface on th	e Control Unit.				
r8935	PN: MAC address of station	-	U8				
	Description: Displays the MAC address for the onboard PROFINET interface	ace on the Con	itrol Unit.				
r8939	PN: Device access point (DAP) ID	-	U32				
	Description: Displays the PROFINET device access point ID for the onboa	ard PROFINET	interface.				
	The combination of device ID (r8909) and DAP ID uniquely identifies a PF	ROFINET acce	ss point.				
r29018[0	OA version	-	Float				
1]	Description: Displays the OA version.						
	Index:						
	• [0]: Firmware version						
	[1]: Build increment number						
r29400	Internal control signal status indicating	_	U32				
120100	Description: Control signal status identifiers						
	The bits of the parameter are reseved except the following ones:						
	Bit 1 RESET, Bit 10 TLIMT, Bit 19 SLIMT, Bit 28 EMGS						
r29942	DO signals status indicating	_	U32				
	Description: Indicates the status of DO signals.						
	• Bit 0: RDY						
	• Bit 1: FAULT						
	Bit 2: Reserved						
	• Bit 3: ZSP						
	Bit 4: Reserved						
	• Bit 5: TLR						
	Bit 6: Reserved						
	Bit 7: MBR						
	• Bit 8: OLL						
	Bit 9: Reserved						
	Bit 10: Reserved						
	• Bit 11: Reserved						
	Bit 12: Reserved						
	Bit 13: RDY_ON						

Diagnostics

General information about faults and alarms

The errors and states detected by the individual components of the drive system are indicated by messages.

The messages are categorized into faults and alarms.

Properties of faults and alarms

- Faults
 - Are identified by Fxxxx.
 - Can lead to a fault reaction.
 - Must be acknowledged once the cause has been remedied.
 - Status via control unit and LED RDY.
 - Status via PROFINET status word ZSW1.3.
 - Entry in the fault buffer.
- Alarms
 - Are identified by Axxxxx.
 - Have no further effect on the drive.
 - The alarms are automatically reset once the cause has been remedied. No acknowledgement is required.
 - Status via Control Unit and LED RDY.
 - Status via PROFINET status word ZSW1.7.
 - Entry in the alarm buffer.
- General properties of faults and alarms
 - Triggering on selected messages possible.
 - Contain the component number for identifying the affected SINAMICS component.
 - Contain diagnostic information on the relevant message.

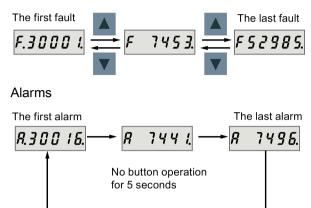
Differences between faults and alarms

Туре	BOP display	y (example)	Status i	ndicator	Reaction	Acknowledgement							
			RDY	СОМ									
Fault	F 7985 Sin	-9	Slow flashing	-	NONE: no reactionOFF1: servo motor	• POWER ON : re-power on the servo drive to clear a							
		e first fault in the se of multiple	OFF2: servo motor coasts down OFF3: servo motor stops quickly (emer- gency stop) ENOCDER: Encod- er fault causes OFF2. ava ing ack				n red		ramps of	ramps down rautratter e cause. Cause.	• OFF2: servo motor	OFF2: servo motor	
	C JOOC Nor	n-first fault in the se of multiple		 coasts down OFF3: servo motor stops quickly (emer- gency stop) ENOCDER: Encod- er fault causes OFF2. IM dis aft. PL cal ed Th avaiing action 	 coasts down OFF3: servo motor stops quickly (emer- gency stop) ENOCDER: Encod- er fault causes 	disappears immediately after eliminating its cause.							
Alarm	<i>R</i> 300 / 6 Sin	.9.0 0.0	Slow flashing	-	• NONE: no reaction	Self-acknowledgement							
	H. J Ü Ü İ b. cas	e first alarm in the se of multiple irms	in red										
	H 3 U U 1 B. the	n-first alarm in e case of multiple rrms											

The differences between faults and alarms are shown as follows:

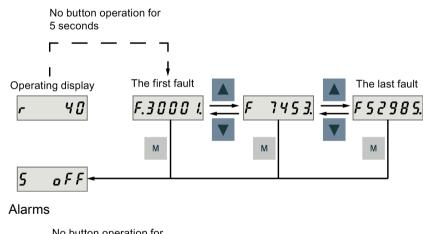
NOTICE

Faults have higher display priority than alarms

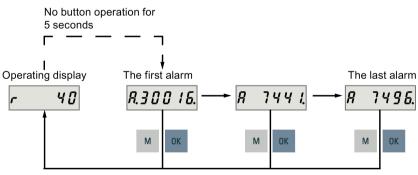

In the case that both faults and alarms occur, only faults are displayed until they have been acknowledged.

BOP operations for faults and alarms

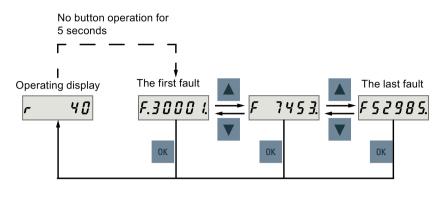
•


To view faults or alarms, proceed as follows:

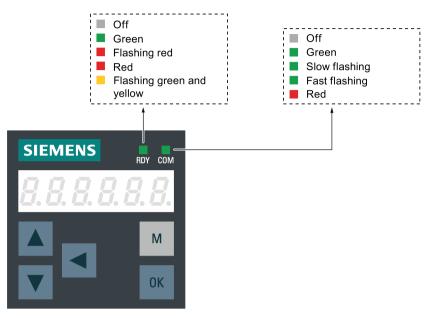
Faults •



To exit from fault or alarm display, proceed as follows:


Faults

To acknowledge faults, proceed as follows:



Note

- If you do not eliminate the cause(s) of the fault, it can appear again after no button operation for five seconds. Make sure that you have eliminated the cause(s) of the fault.
- You can acknowledge faults using RESET signal. For details of the signal, refer to DIs (Page 85).

12.1 LED status indicators

Two LED status indicators (RDY and COM) are available to indicate drive status. Both LEDs are tricolor (green/red/yellow).

You can find detailed information about the status indications in the table below:

Status indicator	Color	Status	Description
RDY	RDY - Off		24 V control board power supply is missing
	Green Continuously lit		The drive is in the servo on state
	Red	Continuously lit	The drive is in the servo off state or in the startup state
	Flash at 1 Hz		Alarms or faults occurs
	Green and yellow	Flash alternatively at 2 Hz	Drive identification
СОМ	Green	Continuously lit	PROFINET communication is working with IRT
		Flash at 0.5 Hz	PROFINET communication is working with RT
		Flash at 2 Hz	Micro SD card/SD card operating (read or write)
	Red	Continuously lit	PROFINET communication is in error or not connected (PN high priority)

12.2 List of faults and alarms

Fault list

Fault	Cause	Remedy
F1000: Internal software error Reaction: OFF2 Acknowledgement: POWER ON	An internal software error has occurred.	 Evaluate fault buffer. Carry out a POWER ON (power off/on) for all components. Upgrade firmware to later version. Contact the Hotline. Replace the Control Unit.
F1001: FloatingPoint excep- tion Reaction: OFF2 Acknowledgement: POWER ON	An exception occurred during an operation with the FloatingPoint data type.	 Carry out a POWER ON (power off/on) for all components. Upgrade firmware to the latest version. Contact the Hotline.
F1002: Internal software error Reaction: OFF2 Acknowledgement: IMMEDIATELY	An internal software error has occurred.	 Carry out a POWER ON (power off/on) for all components. Upgrade firmware to the latest version. Contact the Hotline.
F1003: Acknowledgement delay when accessing the memory Reaction: OFF2 Acknowledgement: IMMEDIATELY	A memory area was accessed that does not return a "READY".	Carry out a POWER ON (power off/on).Contact the Hotline.
F1015: Internal software error Reaction: OFF2 Acknowledgement: POWER ON	An internal software error has occurred.	 Carry out a POWER ON (power off/on) for all components. Upgrade firmware to the latest version. Contact the Hotline.
F1018: Booting has been interrupted several times Reaction: NONE Acknowledgement: POWER ON	 Module booting was interrupted several times. As a consequence, the module boots with the factory setting. Possible reasons for booting being interrupted: Power supply interrupted. CPU crashed. Parameterization invalid. After this fault is output, then the module is booted with the factory settings. 	 Carry out a POWER ON (power off/on). After switching on, the module reboots from the valid parameterization (if availa- ble). Restore the valid parameterization Examples: Carry out a first commissioning, save, carry out a POWER ON (switch-off/switch- on). Load another valid parameter backup (e.g. from the memory card), save, carry out a POWER ON (switch-off/switch-on). Note: If the fault situation is repeated, then this fault is again output after several interrupted boots.

Fault	Cause	Remedy
F1030: Sign-of-life failure for master control Reaction: OFF3 Acknowledgement: IMMEDIATELY	For active PC master control, no sign-of- life was received within the monitoring time.	Contact the Hotline.
F1611: SI CU: Defect detect- ed Reaction: OFF2 Acknowledgement: IMMEDIATELY	The drive-integrated "Safety Integrated" (SI) function on the Control Unit (CU) has detected an error and initiated an STO	 Carry out a POWER ON (power off/on) for all components. Upgrade software. Replace the Control Unit.
F1910: Fieldbus: setpoint timeout Reaction: OFF3 Acknowledgement: IMMEDIATELY	 The reception of setpoints from the fieldbus interface (Modbus/USS) has been interrupted. Bus connection interrupted. Controller switched off. Controller set into the STOP state. 	Restore the bus connection and set the con- troller to RUN.
F1911: PROFIdrive: Clock cycle synchronous operation clock cycle failure Reaction: OFF1 Acknowledgement: IMMEDIATELY	The global control telegram to synchronize the clock cycles has failed - for several DP clock cycles or has violated the time grid specified in the parameterizing telegram over several consecutive DP clock cycles (refer to the bus cycle time, Tdp and Tpllw).	 Check the physical bus configuration (cable, connector, terminating resistor, shielding, etc.). Check whether communication was briefly or permanently interrupted. Check the bus and controller for utilization level (e.g. bus cycle time Tdp was set too short).
F1912: PROFIdrive: Clock cycle synchronous operation sign-of-life failure Reaction: OFF1 Acknowledgement: IMMEDIATELY	The maximum permissible number of er- rors in the controller sign-of-life (clock synchronous operation) has been exceed- ed in cyclic operation.	 Physically check the bus (cables, connectors, terminating resistor, shielding, etc). Correct the interconnection of the controller sign-of-life. Check whether the controller correctly sends the sign-of-life (e.g. create a trace with STW2.12STW2.15 and trigger signal ZSW1.3). Check the permissible telegram failure rate (p0925). Check the bus and controller for utilization level (e.g. bus cycle time was set too short).
F7011: Motor overtempera- ture Reaction: OFF2 Acknowledgement: IMMEDIATELY	 Motor overloaded Motor surrounding temperature too high Wire breakage or sensor not connected Motor temperature model incorrectly parameterized 	 Reduce the motor load. Check the surrounding temperature and the motor ventilation. Check the wiring and the connection. Check the motor temperature model parameters.

Fault	Cause	Remedy
F7085: Open-loop/closed- loop control parameters changed	Open-loop/closed-loop control parameters have had to be changed for the following reasons:	It is not necessary to change the parameters as they have already been correctly limited.
Reaction: NONE Acknowledgement: IMMEDIATELY	 As a result of other parameters, they have exceeded the dynamic limits. They cannot be used due to the fact that the hardware detected not having certain features. 	
F7090: Drive: Upper torque limit less than the lower torque limit	The upper torque limit is lower than the lower torque limit.	The upper torque limit (p29050) must be ≥ lower torque limit (p29051)
Reaction: OFF2 Acknowledgement: IMMEDIATELY		
F7093: Drive: Test signal error Reaction: OFF3 Acknowledgement:	The limit rotation of the motor (p29027) is inappropriate.	Modify the value of parameter p29027.
IMMEDIATELY F7220: Drive: Master control by PLC missing	The "master control by PLC" signal was missing in operation.	Check the input for "master control by PLC".
Reaction: OFF1 Acknowledgement: IMMEDIATELY	 Input for "master control by PLC" is incorrect. The higher-level control has withdrawn the "master control by PLC" signal. Data transfer via the fieldbus (master/drive) was interrupted. 	 PLC . Check the "master control by PLC" signal and, if required, switch in. Check the data transfer via the fieldbus (master/drive).
F7403: Lower DC link voltage threshold reached Reaction: OFF1 Acknowledgement: IMMEDIATELY	The DC link voltage monitoring is active and the lower DC link voltage threshold was reached in the "Operation" state.	 Check the line supply voltage. Check the infeed. Reduce the lower DC link threshold. Switch out (disable) the DC link voltage monitoring.
F7404: Upper DC link voltage threshold reached Reaction: OFF2 Acknowledgement: IMMEDIATELY	The DC link voltage monitoring is active and the upper DC link voltage threshold was reached in the "Operation" state.	 Check the line supply voltage. Check the infeed module or the brake module. Increase the upper DC link voltage threshold. Switch out (disable) the DC link voltage monitoring.

Fault	Cause	Remedy
F7410: Current controller output limited Reaction: OFF2 Acknowledgement: IMMEDIATELY	 The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following: Motor not connected or motor contactor open. No DC link voltage present. Motor Module defective. 	 Connect the motor or check the motor contactor. Check the DC link voltage. Check the Motor Module.
F7412: Commutation angle incorrect (motor model) Reaction: ENCODER Acknowledgement: IMMEDIATELY	 An incorrect commutation angle was detected that can result in a positive coupling in the speed controller. Possible causes: The motor encoder is incorrectly adjusted with respect to the magnet position. The motor encoder is damaged. Data to calculate the motor model has been incorrectly set. Pole position identification might have calculated an incorrect value when activated. The motor encoder speed signal is faulted. The control loop is instable due to incorrect parameterization. 	 If the encoder mounting was changed, readjust the encoder. Replace the defective motor encoder. Correctly set the motor stator resistance, cable resistance and motor-stator leakage inductance. Calculate the cable resistance from the cross-section and length, check the inductance and stator resistance using the motor data sheet, measure the stator resistance, e.g. using a multimeter - and if required, again identify the values using the stationary motor data identification. With pole position identification activated, check the procedure for pole position identification and force a new pole position identification procedure by means of de-selection followed by selection.
F7420: Drive: Current set- point filter natural frequency > Shannon frequecy	One of the filter natural frequencies is greater than the Shannon frequency.	 Reduce the numerator or denominator natural frequency of the current setpoint filter involved. Switch out the filter involved (p1656).
F7453: Position actual value preprocessing error Reaction: OFF1 Acknowledgement: IMMEDIATELY	An error has occurred during the position actual value preprocessing.	Check the encoder for the position actual value preprocessing.
F7490: Enable signal with- drawn while traversing Reaction: OFF1 Acknowledgement: IMMEDIATELY	 For a standard assignment, another fault may have occurred as a result of withdrawing the enable signals. The drive is in the "switching on inhibited" state (for a standard assignment). 	 Set the enable signals or check the cause of the fault that first occurred and then result (for a standard assignment). Check the assignment to enable the basic positioning function.
F7575: Drive: Motor encoder not ready Reaction: OFF2 Acknowledgement: IMMEDIATELY	 The motor encoder signals that it is not ready. Initialization of motor encoder was unsuccessful. The function "parking encoder" is active (encoder control word G1_STW.14 = 1). 	Evaluate other queued faults via motor encoder.

Fault	Cause	Remedy
F7800 Drive: No power unit present Reaction: NONE Acknowledgement: IMMEDIATELY	The power unit parameters cannot be read or no parameters are stored in the power unit.	 Carry out a POWER ON (power off/on) for all components. Change the module.
F7801: Motor overcurrent Reaction: OFF2 Acknowledgement: IMMEDIATELY	 The permissible motor limit current was exceeded. Effective current limit set too low. Current controller not correctly set. Motor was braked with an excessively high stall torque correction factor. Up ramp was set too short or the load is too high. Short-circuit in the motor cable or ground fault. Motor current does not match the current of Motor Module. 	 Reduce the stall torque correction factor. Increase the up ramp or reduce the load. Check the motor and motor cables for short-circuit and ground fault. Check the Motor Module and motor com- bination.
F7802: Infeed or power unit not ready Reaction: OFF2 Acknowledgement: IMMEDIATELY F7815: Power unit has been	 After an internal power-on command, the infeed or drive does not signal ready because of one of the following reasons: Monitoring time is too short. DC link voltage is not present. Associated infeed or drive of the signaling component is defective. 	 Ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed. Replace the associated infeed or drive of the signaling component.
changed Reaction: NONE Acknowledgement: IMMEDIATELY	does not match the saved number.	the Control Unit again (POWER ON).
F7900: Motor blocked/speed controller at its limit Reaction: OFF2 Acknowledgement: IMMEDIATELY	The servo motor has been operating at the torque limit longer than 1s and below the speed threshold of 120 rpm . This signal can also be initiated if the speed actual value is oscillating and the speed controller output repeatedly goes to its limit.	 Check whether the servo motor can rotate freely or not. Check the torque limit. Check the inversion of the actual value. Check the motor encoder connection. Check the encoder pulse number.
F7901: Motor overspeed Reaction: OFF2 Acknowledgement: IMMEDIATELY	 The maximumly permissible speed has been exceeded. The speed limit has been exceeded. 	 Check and correct the maximum speed (p1082). Check and correct the speed limit (p29070, p29071), and the DI signal SLIM. Check if there are any peaks of actual speed. If the value of the peak is especially large, contact the hotline.

Fault	Cause	Remedy
F7995: Motor identification failure Reaction: OFF2 Acknowledgement: IMMEDIATELY	For incremental motor, needs pole position identification when the motor is servo on for the first time. If the motor already in run (i.e. by external force) position identifica- tion may failure.	Stop the motor before servo on.
F8501: PROFIdrive: Setpoint timeout Reaction: OFF3 Acknowledgement: IMMEDIATELY F30001: Power unit: Overcurrent Reaction: OFF2 Acknowledgement: IMMEDIATELY	 The reception of setpoints from the PROFINET has been interrupted. PROFINET connection interrupted. Controller switched off. Controller set into the STOP state. PROFINET defective. The power unit has detected an overcurrent condition. Closed-loop control is incorrectly parameterized. Controller parameters are not proper. Motor has a short-circuit or fault to ground (frame). Power cables are not correctly connected. Power cables exceed the maximum permissible length. Power unit defective. Line phase interrupted. 	 Restore the PROFINET connection and set the controller to RUN. Check the motor data - if required, carry out commissioning. Modify speed loop Kp (p29120), position loop Kv (p29110). Check the motor circuit configuration (star-delta). Check the power cable connections. Check the power cables for short-circuit or ground fault. Check the length of the power cables. Replace power unit. Check the external braking resistor connection.
F30002: DC link voltage, overvoltage Reaction: OFF2 Acknowledgement: IMMEDIATELY F30003: DC link voltage,	 The power unit has detected overvoltage in the DC link. Motor regenerates too much energy. Device connection voltage too high. Line phase interrupted. 	 Increase the ramp-down time. Activate the DC link voltage controller. Use a braking resistor. Increase the current limit of the infeed or use a larger module. Check the device supply voltage. Check the line supply phases. Check the line supply voltage
undervoltage Reaction: OFF2 Acknowledgement: IMMEDIATELY	 Line supply failure Line supply voltage below the permissible value. Line supply infeed failed or interrupted. Line phase interrupted. 	 Check the line supply infeed and observe the fault messages relating to it (if there are any) Check the line supply phases. Check the line supply voltage setting.

Fault	Cause	Remedy
F30004: Drive heat sink over- temperature Reaction: OFF2 Acknowledgement: IMMEDIATELY	 The temperature of the power unit heat sink has exceeded the permissible limit value. Insufficient cooling, fan failure. Overload. Surrounding temperature too high. Pulse frequency too high. 	 Check whether the fan is running. Check the fan elements. Check whether the surrounding temperature is in the permissible range. Check the motor load. Reduce the pulse frequency if this is higher than the rated pulse frequency.
F30005: Power unit: Overload I ² t Reaction: OFF2 Acknowledgement: IMMEDIATELY	 The power unit was overloaded. The permissible rated power unit current was exceeded for an inadmissibly long time. The permissible load duty cycle was not maintained. 	 Reduce the continuous load. Adapt the load duty cycle. Check the motor and power unit rated currents.
F30011: Line phase failure in main circuit Reaction: OFF2 Acknowledgement: IMMEDIATELY	 At the power unit, the DC link voltage ripple has exceeded the permissible limit value. Possible causes: A line phase has failed. The 3 line phases are inadmissibly unsymmetrical. The fuse of a phase of a main circuit has ruptured. A motor phase has failed. 	 Check the main circuit fuses. Check whether a single-phase load is distorting the line voltages. Check the motor feeder cables.
F30015: Phase failure motor cable Reaction: OFF2 Acknowledgement: IMMEDIATELY	A phase failure in the motor feeder cable was detected. The signal can also be output in the follow- ing case: The motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generat- ed.	 Check the motor feeder cables. Check the speed controller settings.
F30021: Ground fault Reaction: OFF2 Acknowledgement: IMMEDIATELY	Power unit has detected a ground fault.Ground fault in the power cables.Winding fault or ground fault at the motor.	Check the power cable connections.Check the motor.

Fault	Cause	Remedy
F30027: Precharging DC link time monitoring Reaction: OFF2 Acknowledgement: IMMEDIATELY	 The power unit DC link was not able to be pre-charged within the expected time. There is no line supply voltage connected. The line contactor/line side switch has not been closed. The line supply voltage is too low. The pre-charging resistors are overheated as there were too many precharging operations per time unit The pre-charging resistors are overheated as the DC link capacitance is too high. The pre-charging resistors are overheated. 	Check the line supply voltage at the input terminals.
F30036: Internal overtemper- ature Reaction: OFF2 Acknowledgement: IMMEDIATELY F30050: 24 V supply over-	 The temperature inside the drive converter has exceeded the permissible temperature limit. Insufficient cooling, fan failure. Overload. Surrounding temperature too high. 	 Check whether the fan is running. Check the fan elements. Check whether the surrounding temperature is in the permissible range. Notice: This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below. Check the 24 V power supply.
voltage Reaction: OFF2 Acknowledgement: POWER ON	fault on the module.	 Replace the module if necessary.
F31100: Zero mark distance error Reaction: ENCODER Acknowledgement: PULSE INHIBIT	The measured zero mark distance does not correspond to the parameterized zero mark distance. For distance-coded encoders, the zero mark distance is determined from zero marks detected pairs. This means that if a zero mark is missing, depending on the pair generation, this cannot result in a fault and also has no effect in the system.	 Check that the encoder cables are routed in compliance with EMC. Check the plug connections Replace the encoder or encoder cable

Diagnostics

Fault	Cause	Remedy
F31101: Zero mark failed Reaction: ENCODER Acknowledgement: PULSE INHIBIT F31110: Serial communica- tions error Reaction: ENCODER Acknowledgement: PULSE INHIBIT	The 1.5 x parameterized zero mark dis- tance was exceeded. Serial communication protocol transfer error between the encoder and evaluation module.	 Check that the encoder cables are routed in compliance with EMC. Check the plug connections. Replace the encoder or encoder cable. Check the encoder cable and shielding connection. Replace the encoder cable/encoder.
F31111: Encoder 1: Absolute encoder internal error Reaction: ENCODER Acknowledgement: PULSE INHIBIT	The absolute encoder fault word supplies fault bits that have been set.	 Check the encoder cable connection and make sure the cables are routed in compliance with EMC. Replace the encoder battery (for battery-powered encoder only). Check the motor temperature. Replace the motor/encoder.
F31112: Error bit set in the serial protocol Reaction: ENCODER Acknowledgement: PULSE INHIBIT F31117: Inversion error sig- nals A/B/R	The encoder sends a set error bit via the serial protocol. For a square-wave encoder (bipolar, double ended) signals A*, B* and R* are not	 Refer to F31111. Check the encoder and cable and the connection of them.
Reaction: ENCODER Acknowledgement: PULSE INHIBIT	inverted with respect to signals A, B and R.	 Does the encoder supply signals and the associated inverted signals?
F31130: Zero mark and posi- tion error from the coarse synchronization Reaction: ENCODER Acknowledgement: PULSE INHIBIT	After initializing the pole position using track C/D, Hall signals or pole position identification routine, the zero mark was detected outside the permissible range. For distance-coded encoders, the test is carried out after passing 2 zero marks. Fine synchronization was not carried out.	 Check that the encoder cables are routed in compliance with EMC. Check the plug connections If the Hall sensor is used as an equivalent for track C/D, check the connection. Check the connection of track C or D. Replace the encoder or encoder cable.
F31150: Initialization error Reaction: ENCODER Acknowledgement: PULSE INHIBIT	Encoder functionality is not operating cor- rectly.	 Check the encoder type used (incremental/absolute) and the encoder cable. If relevant, note additional fault messages that describe the fault in detail.
F52903: Fault inconsistence between fault status and fault buffer Reaction: OFF2 Acknowledgement: IMMEDIATELY	Fault status and fault number buffer are inconsistent.	Repower on.

Fault	Cause	Remedy	
F52980: Absolute encoder motor changed	The servo motor with absolute encoder is changed. Actual motor ID is different from commissioned motor ID.	The servo motor will be automatically config- ured after the acknowledgement of this fault.	
Reaction: OFF1 Acknowledgement: IMMEDIATELY			
F52981: Absolute encoder motor mismatched Reaction: OFF1 Acknowledgement: IMMEDIATELY	Connected absolute encoder motor cannot be operated. The servo drive in use does not support the Motor ID.	Use a suitable absolute encoder motor.	
F52983: No encoder detected Reaction: OFF1 Acknowledgement: IMMEDIATELY	The servo drive in use does not support encoderless operation.	 Check the encoder cable connection be- tween the servo drive and the servo mo- tor. Use a servo motor with encoder. 	
F52984: Incremental encoder motor not configured Reaction: OFF1 Acknowledgement: IMMEDIATELY	 Commissioning of the servo motor has failed. The incremental encoder motor is connected but fails to commission. 	Configure the motor ID by setting the parame- ter p29000.	
F52985: Absolute encoder motor wrong Reaction: OFF1 Acknowledgement: IMMEDIATELY	 Motor ID is downloaded wrong during manufacture. The firmware of the servo drive does not support the Motor ID. 	Update the firmware.Use a correct absolute encoder motor.	
F52987: Absolute encoder replaced Reaction: OFF1 Acknowledgement: IMMEDIATELY	Incorrect absolute encoder data.	Contact the Hotline.	

Diagnostics

12.2 List of faults and alarms

Alarm list

Alarm	Cause	Remedy • Check the air intake for the Control Unit. • Check the Control Unit fan. Note: The alarm automatically disappears after the limit value has been undershot.	
A1009: Control module over- temperature	The temperature of the control module (Control Unit) has exceeded the specified limit value.		
A1019: Writing to the remov- able data medium unsuccess- ful	The write access to the removable data medium was unsuccessful.	Remove and check the removable data me- dium. Then run the data backup again.	
A1032: All parameters must be saved	The parameters of an individual drive ob- ject were saved, although there is still no backup of all drive system parameters. The saved object-specific parameters are not loaded the next time that the system powers up. For the system to successfully power up, all of the parameters must have been completely backed up.	Save all parameters.	
A1045: Configuring data invalid	An error was detected when evaluating the parameter files saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved pa- rameter values were not able to be ac- cepted.	Save the parameterization using the "Copy RAM to ROM" function on the BOP. This overwrites the incorrect parameter files in the non-volatile memory – and the alarm is withdrawn.	
A1902: PROFIdrive: Clock cycle synchronous operation parameterization not permis- sible	Parameterization for isochronous opera- tion is not permissible.	 Adapt the bus parameterization Tdp, Ti, To. Adapt the sampling time for the current controller or speed controller. Reduce Tdx by using fewer bus partici- pants or shorter telegrams. 	
A1920: Drive Bus: Receive setpoints after To	Output data of Drive Bus master (set- points) received at the incorrect instant in time within the Drive Bus clock cycle.	 Check bus configuration. Check parameters for clock cycle syn- chronization (ensure To > Tdx). Note: To: Time of setpoint acceptance Tdx: Data exchange time 	
A1932: Drive Bus clock cycle synchronization missing for DSC	There is no clock synchronization or clock synchronous sign of life and DSC is se- lected. Note: DSC: Dynamic Servo Control	Set clock synchronization across the bus configuration and transfer clock synchronous sign-of-life.	

Alarm	Cause	Remedy
A1940: PROFIdrive: clock cycle synchronism not reached	 The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing telegram. It was not possible to synchronize to the clock cycle specified by the master. The master does not send a clock synchronous global control telegram although clock synchronous operation was selected when configuring the bus. The master is using another clock synchronous DP clock cycle than was transferred to the slave in the parameterizing telegram. At least one drive object has a pulse enable (not controlled from PROFIdrive either). 	 Check the master application and bus configuration. Check the consistency between the clock cycle input when configuring the slave and clock cycle setting at the master. Check that no drive object has a pulse enable. Only enable the pulses after synchronizing the PROFIdrive.
A1944: PROFIdrive: Sign-of- life synchronism not reached	The bus is in the data exchange state and clock synchronous operation has been selected using the parameterizing tele- gram. Synchronization with the master sign-of-life (STW2.12STW2.15) could not be com- pleted because the sign-of-life is changing differently to how it was configured in the Tmapc time grid.	Ensure that the master correctly increments the sign-of-life in the master application clock cycle Tmapc.
A5000: Drive heat sink over- temperature	The alarm threshold for overtemperature at the inverter heat sink has been reached. If the temperature of the heat sink increas- es by an additional 5 K, then fault F30004 is initiated.	 Check the following: Is the surrounding temperature within the defined limit values? Have the load conditions and the load duty cycle been appropriately dimensioned? Has the cooling failed?
A7012: Motor temperature model 1/3 overtemperature	The motor temperature model 1/3 identi- fied that the alarm threshold was exceed- ed.	 Check the motor load and reduce it if required. Check the motor surrounding temperature.
A7530: Drive: Drive Data Set DDS not present	The selected drive data set is not availa- ble. The drive data set was not changed over.	Select the existing drive data set.Set up additional drive data sets.
A7565: Drive: Encoder error in PROFIdrive encoder inter- face 1	An encoder error was signaled for encoder 1 via the PROFIdrive encoder interface (G1_ZSW.15).	Acknowledge the encoder error using the encoder control word (G1_STW.15 = 1).
A7576: Encoderless opera- tion due to a fault active	Encoderless operation is active due to a fault.	 Remove the cause of a possible encoder fault. Carry out a POWER ON (power off/on) for all components.

12.2 List of faults and alarms

Alarm	Cause	Remedy
A7582: Position actual value preprocessing error	An error has occurred during the position actual vaule preprocessing.	Check the encoder for the position actual value preprocessing.
A7805: Power unit overload I ² t	Alarm threshold for I ² t overload of the power unit exceeded.	 Reduce the continuous load. Adapt the load duty cycle. Check the assignment of the rated currents of the motor and motor module.
A7965: Save required	The angular commutation offset was re- defined and has still not been saved. In order to permanently accept the new value, it must be saved in a non-volatile fashion.	This alarm automatically disappears after the data has been saved.
A7971: Angular commutation offset determination activated	The automatic determination of the angular commutation offset (encoder adjustment) is activated. The automatic determination is carried out at the next power-on command.	The alarm automatically disappears after determination.
A7991: Motor data identifica- tion activated	The motor data ident. routine is activated. The motor data identification routine is carried out at the next power-on command.	The alarm automatically disappears after the motor data identification routine has been successfully completed. If a POWER ON or a warm restart is per- formed with motor data identification selected, the motor data identification request will be lost. If motor data identification is required, it will need to be selected again manually fol- lowing ramp-up.
A8511: PROFIdrive: Receive configuration data invalid	The drive unit did not accept the receive configuration data.	Check the receive configuration data.
A8526: PROFIdrive: No cyclic connection	There is no cyclic connection to the con- trol.	 Establish the cyclic connection and activate the control with cyclic operation. Check the parameters "Name of Station" and "IP of Station" (r8930, r8931).
A8565: PROFIdrive: Receive configuration data invalid	A consistency error was detected when activating the configuration. Note: Currently set configuration has not been activated.	Check the required interface configuration, correct if necessary.
A30016: Load supply switched off	The DC link voltage is too low.	Switch on the load supply.Check the line supply if necessary.

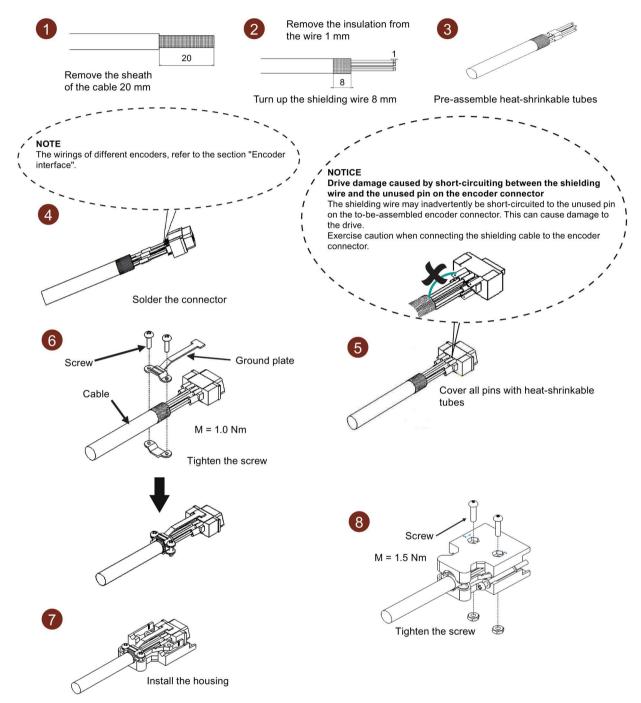
Alarm	Cause	Remedy
A30031: Hardware current limiting in phase U	 Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period. Closed-loop control is incorrectly parameterized. Fault in the motor or in the power cables. The power cables exceed the maximum permissible length. Motor load too high. Power unit defective. Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds. 	 Check the motor data. As an alternative, run a motor data identification. Check the motor circuit configuration (star-delta) Check the motor load. Check the power cable connections. Check the power cables for short-circuit or ground fault. Check the length of the power cables.
A31411: Encoder 1: Absolute encoder signals internal alarms	The absolute encoder fault word includes alarm bits that have been set.	 Check the encoder cable connection and make sure the cables are routed in compliance with EMC. Replace the encoder battery (for battery-powered encoder only). Check the motor temperature. Replace the motor/encoder.
A31412: Error bit set in the serial protocol	The encoder sends a set error bit via the serial protocol.	 Carry out a POWER ON (power off/on) for all components. Check that the cables are routed in com- pliance with EMC. Check the plug connections. Replace the encoder.
A52900: Failure during data copying A52901: Braking resistor	 Copying is halted. The micro SD card/SD card was plugged out. The drive is not in the stop state. The heat capacity reaches the threshold 	 Re-plug in the micro SD card/SD card. Make sure the drive is in the stop state. Change the external braking resistor.
A52902: Emergency missing	(p29005) of the braking resistor capacity. Implement servo on when the emergency input (EMGS) is switched off.	 Increase deceleration time. Switch on the emergency input (EMGS) and then implement servo on.

Diagnostics

12.2 List of faults and alarms

Appendix

A.1 Assembly of cable terminals on the drive side

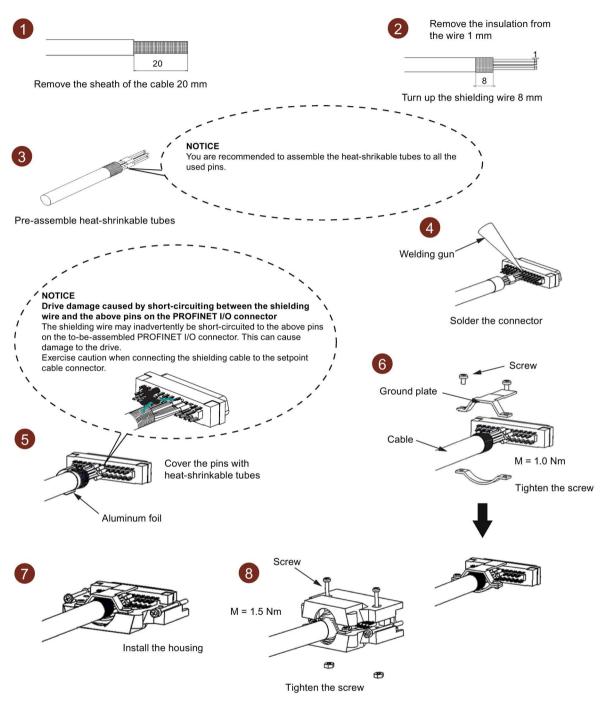

Power terminal assembly

Drive type		Procedure	Illustration		
200 V variant	FSB FSC FSD	 Terminal assembly procedure: 1. Remove the outer sheath of the cable. 2. Remove the insulation from the wire 	120±5 mm 10±2 mm 10±2 mm		
400 V variant	FSA	 Remove the insulation from the wire. Insert the stripped end into the cable end sleeve. Crimp the cable end sleeve using a crimp tool for end sleeves. 	$a > 11 \text{ mm}$ $b = 10 \text{ mm}$ $a \rightarrow b \rightarrow $		
400 V variant	FSB FSC	 Terminal assembly procedure: Remove the outer sheath of the cable. Remove the insulation from the wire. Insert the stripped end into the spade terminal. Crimp the spade terminal using a crimp tool for cable lugs. (Note: Coat any exposed wires with tin.) 	$120\pm5 \text{ mm}$ $10\pm2 \text{ mm}$ $10\pm2 \text{ mm}$ $200\pm5 \text{ mm}$ $10\pm2 \text{ mm}$ $200\pm5 \text{ mm}$ $10\pm2 \text{ mm}$		

A.1 Assembly of cable terminals on the drive side

Encoder terminal assembly

The terminal assembly procedures for incremental and absolute encoders are the same.



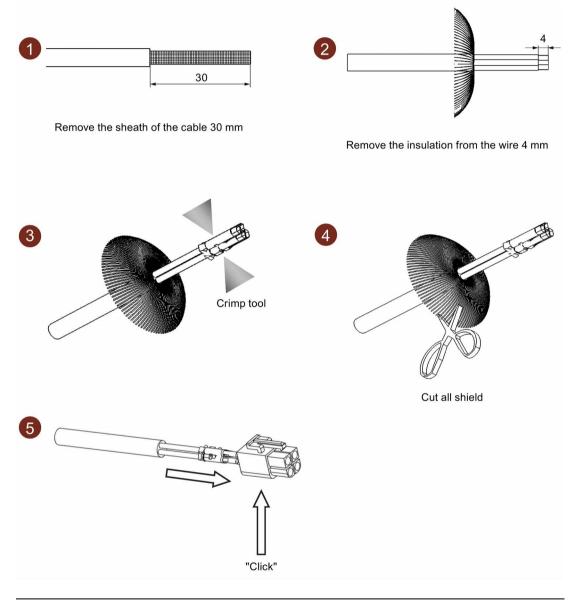
Brake terminal assembly

The assembly of a brake terminal follows the procedure as described in the figure above for a power terminal.

A.1 Assembly of cable terminals on the drive side

PROFINET I/O connector assembly

Note

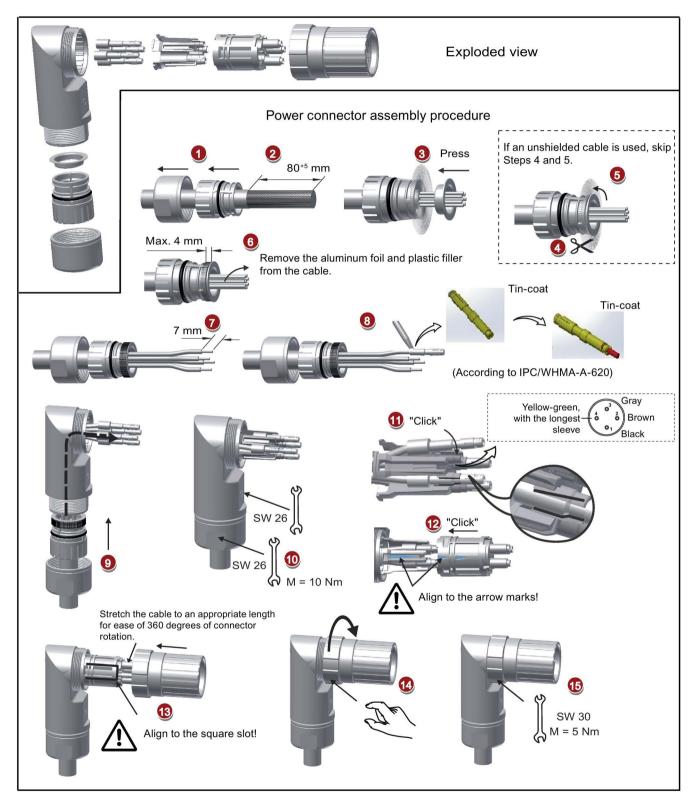

To ensure better EMC effects, you are recommended to strip the PROFINET I/O cable and connect the cable shield to earth.

A.2 Assembly of cable connectors on the motor side

A.2 Assembly of cable connectors on the motor side

Power connector assembly

Power cable used for low inertia motor with shaft height 20 mm to 40 mm

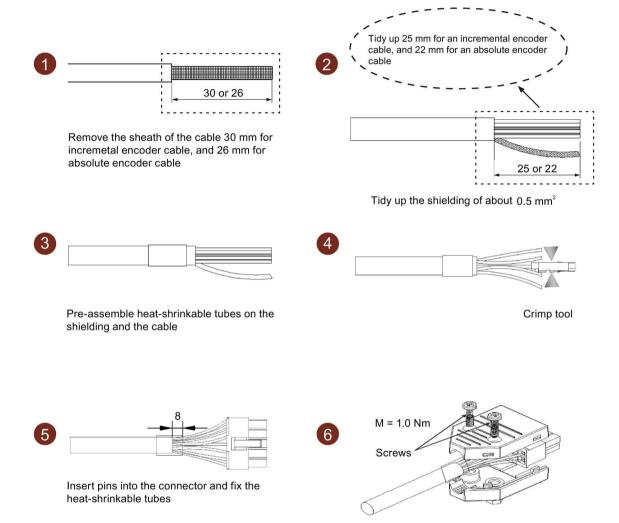


Note

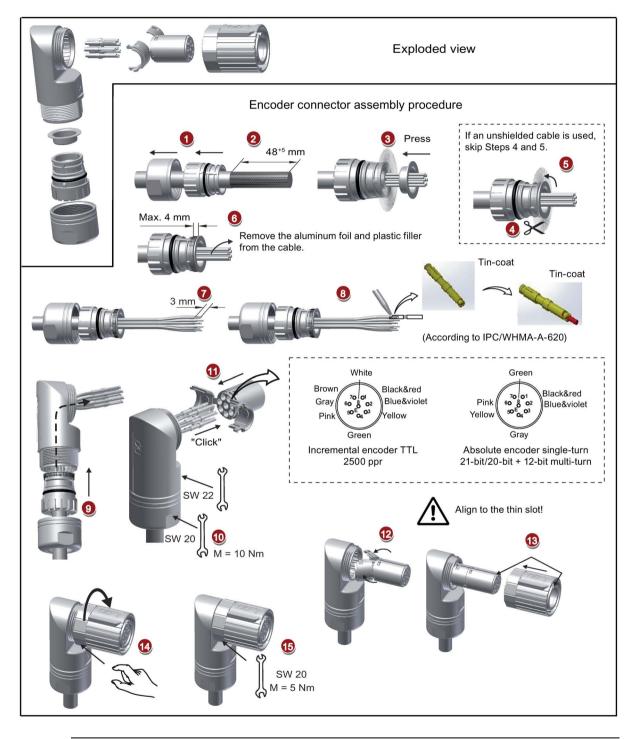
Brake connector assembly

The assembly of the brake connector used for low inertia motor with shaft height 20 mm to 40 mm follows the procedure as described in the figure above for an power connector.

A.2 Assembly of cable connectors on the motor side


Power cable used for low inertia motor with shaft height 50 mm and high inertia motor

A.2 Assembly of cable connectors on the motor side


Encoder connector assembly

The connector assembly procedures for absolute and incremental encoders are the same.

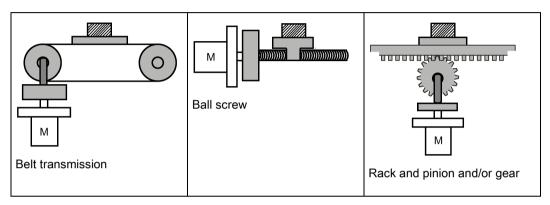
Encoder cable used for low inertia motor with shaft height 20 mm to 40 mm

Tighten the screws

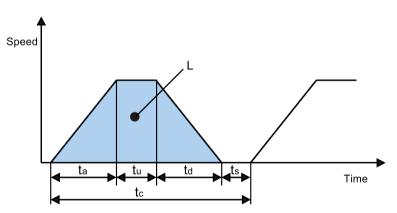
Encoder cable used for low inertia motor with shaft height 50 mm and high inertia motor

Note Broke connects

Brake connector assembly


The assembly of the brake connector used for low inertia motor with shaft height 50 mm and high inertia follows the procedure as described in the figure above for an encoder connector.

A.3 Motor selection


A.3 Motor selection

A.3.1 Selection procedure

1. Determine the mechanism type as well as the detailed data of the related mechanical parts, such as ball screw lead, diameter, lead, and gear diameter. Three mechanism types are shown below:

Determine the operation pattern including such parameters as acceleration time (t_a), constant motion time (t_u), deceleration time (t_d), stopping time (t_s), cycle time (t_c), and travel distance (L).

- Calculate load inertia and inertia ratio. The inertia ratio can be obtained by dividing the load inertia by the rotor inertia of the selected motor. The unit of inertia is x 10⁻⁴ kg·m².
- Calculate the speed. Calculate the speed according to the travel distance, acceleration time, deceleration time, and constant motion time.

- Calculate the torque. Calculate the torque according to the load inertia, acceleration time, deceleration time, and constant motion time.
- Select the motor.
 Select the motor that matches the data in step 3 to step 5.

A.3.2 Parameter description

Torque

- Summit torque: It refers to the maximum torque required by a motor in operation, which is generally less than 80% of the motor's maximum torque. When the torque is a negative value, regenerative resistors may be needed.
- Moving torque and hold torque in standstill: It refers to the torque required by a motor in long-term operation, which is generally less than 80% of the motor's rated torque. When the torque is a negative value, regenerative resistors may be needed. Torque calculation methods of two major mechanism types:

$$T_m = \frac{P_b}{2\pi \eta} (\mu gW + F)$$

W: Mass [kg] P_b: Ball screw lead [m] F: External force [N]

- η: Mechanical efficiency
 μ: Friction coefficient
 q: Gravitational acceleration 9.8 In
- g: Gravitational acceleration 9.8 [m/s²]

$$T_m = \frac{P_d}{2\eta} (\mu gW + F)$$

W: Mass [kg] P_d: Belt transmission lead [m] F: External force [N]

- η: Mechanical efficiency
- μ: Friction coefficient
- g: Gravitational acceleration 9.8 [m/s²]
- Effective torque: It refers to the continuous effective load torque converted into the equivalent value on the servo motor shaft, which is generally less than 80% of the motor's rated torque.

Trms =
$$\sqrt{\frac{Ta^2 x ta + Tm^2 x tu + Td^2 x td}{tc}}$$

 $\begin{array}{ll} T_a: \mbox{ Acceleration torque [N \cdot m] } & t_a: \mbox{ Acceleration time [s] } & t_c: \mbox{ Cycle time [s] } \\ T_m: \mbox{ Moving torque [N \cdot m] } & t_u: \mbox{ Constant motion time [s] } \\ T_d: \mbox{ Deceleration torque [N \cdot m] } & t_d: \mbox{ Deceleration time [s] } \end{array}$

A.3 Motor selection

Speed

Maximum speed: It refers to the motor's maximum speed in operation, which is generally lower than the rated speed. When a motor operating at the maximum speed, pay attention to its torque and temperature rise.

Inertia and inertia ratio

Inertia refers to the force required to keep a certain physical state. Inertia ratio indicates dynamic response performance of motors. The smaller the inertia ratio is the better response performance a motor has.

Typical load inertia equations

Mechanism	Equation	Mechanism	Equation
Axis of rotation on center	$J = \frac{W}{12} (a^2 + b^2)$ W: Mass (kg) a: Length (m) b: Width (m)	Axis of rotation on center	$J = \frac{W}{8} (D_1^2 + D_2^2)$ W: Mass (kg) D ₁ : External diameter (m) D ₂ : Internal diameter (m)
R I Axis of rotation off center	$J = W \cdot \left(\frac{a^2 + b^2}{3} + R^2\right)$ W: Mass (kg) a: Length (m) b: Width (m) R: Rotational diameter (m)	Axis of rotation off center	$J = \frac{W}{8} (D^{2} + 8R^{2})$ W: Mass (kg) D: Workpiece diameter (m) R: Rotational diameter (m)
Conveyor	$J = \frac{W \cdot D^2}{4}$ W: Mass (kg) D: Pulley wheel diameter (m)	Ball screw	$J = \frac{W \cdot P^2}{4\pi^2} + J_b$ W: Mass (kg) P: Lead (m) J_b: Ball screw inertia (kg·m ²)
Object hung with pulley	$J = W \cdot \left(\frac{D}{2}\right)^2 + J_p$ W: Mass (kg) D: Pulley wheel diameter (m) J_p : Pulley inertia (kg·m ²)	M1 n1 n2 M2 Reducer	$J = J_1 \cdot \frac{n_1^2}{n_2^2} \cdot J_2$ W: Mass (kg) n_1/n_2: Speed of each motor (rpm) J_1 /J_2: Inertia of each motor (kg·m ²)

A.3.3 Selection examples

This section uses a ball screw mechanism as an example to illustrate the motor selection procedure.

Exemplary data

The following table lists the data related to the ball screw mechanism and operation pattern.

Mechanism		Operation pattern	
Workpiece weight (W)	40 kg	Acceleration time (ta)	0.15 s
Ball screw length (B)	2 m	Constant motion time (tu)	0.7 s
Ball screw diameter (B _d)	0.04 m	Deceleration time (t _d)	0.15 s
Ball screw pitch (Bp)	0.04 m	Cycle time (tc)	2 s
Mechanical efficiency (B _ŋ)	0.9	Travel distance (L)	0.5 m
Coupler inertia (J _c)	20 x 10 ⁻⁶ kg·m ² (refer to the supplier's product catalog)	-	

1. Ball screw weight

 $B_w = \rho x \pi x (Bd/2)^2 x B_l = 19.85 \text{ kg}$

2. Load inertia

 $J_1 = J_c + J_b = J_c + 1/8 \times B_w \times B_{d^2} + W \times B_{p^2}/4\pi^2 = 5.61 \times 10^{-3} \text{ kg} \cdot \text{m}^2$

3. Preselection

If a 1000 W motor is selected, J_m (motor inertia) = 1.57 x 10⁻³ kg·m² Therefore, J_l / J_m (inertia ratio) = 3.57 < 5 times

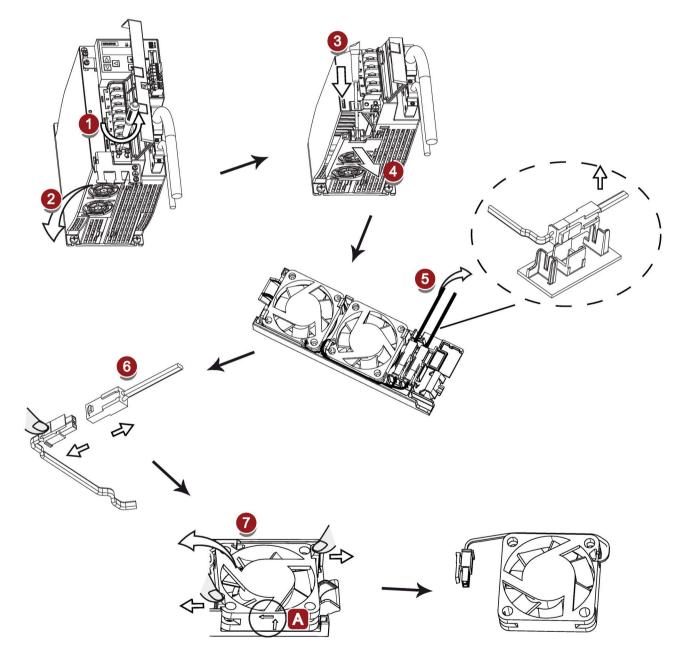
4. Maximum rotational speed

 V_{max} (maximum travelling speed) = 2L / (t_a + 2 t_u + t_d) = 5.89 m/s N_{max} (maximum rotational speed) = 60 x V_{max} / B_p = 882 rpm < 2000 rpm (rated speed)

5. Effective torque

 $\begin{array}{l} T_m \ (moving\ torque) = (\mu gW + F) \ x \ B_p \ / \ 2\pi B_\eta = 0.069 \ Nm \\ T_a \ (acceleration\ torque) = [(J_l + J_m) \ x \ 2\pi N \ / \ T_a] + T_m = 4.49 \ Nm \\ T_d \ (deceleration\ torque) = [(J_l + J_m) \ x \ 2\pi N \ / \ T_d] - T_m = 4.35 \ Nm \\ Therefore, \ T_{rms} \ (effective\ torque) = \sqrt{(T_a^2 \ x \ t_a + T_m^2 \ x \ t_b + T_d^2 \ x \ t_d) \ / \ t_c} = 1.71 \ Nm < 4.78 \ Nm \\ (rated\ torque) \end{array}$

6. Final selection


According to the above calculated speed, torque, and inertia ratio, you are recommended to select 1000 W motors, i.e. 1FL6062.

A.4 Replacing fans

A.4 Replacing fans

Proceed as illustrated below to remove the fan from the drive. To re-assemble the fan, proceed in reverse order. When re-assembling the fan, make sure that the arrow symbol (" " In the illustration) on the fan points to the drive rather than the fan housing.

Replacing the fan (example)

Index

A

Accessories Braking resistor, 42 Cables and connectors, 37 External 24 VDC power supply, 40 Filter, 43 Fuse/type E combination motor controller, 40 Micro SD card/SD card", 46 Aims, 145 ANSI B11, 156

В

BOP operations Button functions, 115 BOP operations for faults and alarms, 205 Acknowledging faults, 206 Exiting from alarm display, 205 Exiting from fault display, 205 Viewing alarms, 205 Viewing faults, 205 BOP overview, 111

С

Certification, 158 Change a parameter value, 118 Parameter setting with shift function, 119 Commissioning Initial commissioning, 106 Connecting 24 V power supply/STO, 92 Connecting an external braking resistor, 97 Copy parameter set from a micro SD card/SD card to drive, 125 Copy parameters from the servo drive to a micro SD card/SD card, 124

D

Device combination, 30 Differences between faults and alarms, 204 Digital inputs, 85 Wiring, 86 Digital outputs, 86 Wiring, 87 DIN EN ISO 13849-1, 149 Direction of motor rotation, 127

Ε

EN 61508, 152 EN 62061, 150 Equipment regulations, 157

F

Function list, 47 Functional safety, 146

G

General information about faults and alarms, 203

Н

Harmonized European Standards, 147

I

Iterative process for achieving safety, 153

J

JOG function, 121 JOG in speed, 122 JOG in torque, 122

L

LED status indicators, 207

Μ

Machine safety in Japan, 157 Machine safety in the USA, 154 Machinery directive, 146 Main circuit wirings Connecting the motor power - U, V, W, 82 Motor holding brake, 98 Relevant parameters, 101 Motor rating plate, 29 Motor selection method, 230 Mounting the motor Motor dimensions, 70 Mounting orientation, 68

Ν

NFPA 79, 155 NRTL, 155

0

Operating display, 117 OSHA, 154 Overview of SINAMICS V90 PN BOP functions, 121

Ρ

Preface Documentation components, 3 Target group, 3 Technical support, 3 Probability of failure, 160

R

Residual risk, 154 Resonance suppression, 176 Activate the resonance suppression function, 176 Manual tuning with resonance suppression (p29021=0), 178 One-button auto tuning with resonance suppression (p29023.1=1), 177 Real-time auto tuning with resonance suppression (p29024.6=1), 177 Response time, 160 Risk analysis, 152 Risk reduction, 154

S

Safe Torque Off Functional features, 161 response time, 163 selecting/deselecting STO, 163

Safety Intefrated function, 158 Safety of machinery in Europe, 146 Save parameters in the servo drive, 123 Search a parameter in "P ALL" menu, 120 Set parameter set to default, 124 Speed control mode Ramp-function generator, 131 Speed limit, 129 Overall speed limit, 129 Standards for implementing safety-related controllers, 148 Stopping method Coase-dowm (OFF2), 128 Ramp-down (OFF1), 128 Stopping method at servo OFF, 127 Emergency stop, 128

Т

Technical data Cables, 60 Torque control mode Internal speed limit, 129 Torque limit, 130 Internal torque limit, 131 Overall torque limit, 130 Torque limit reached (TLR), 131 Tuning Configuration of dynamic factor, 169, 173 Manual tuning, 175 Real-time auto tuning, 172 Servo gains, 165 Tuning methods, 166

U

Update firmware, 126 Usage of shielding plate, 78

W

Wiring and connecting Adjusting cable orientations, 79