

Industry Online Support

NEWS

2

PCS 7 Unit Template "CIP - Cleaning in Place"

SIMATIC PCS 7 V9.0

23

https://support.industry.siemens.com/cs/ww/de/view/78463886

Siemens Industry Online Support

Rechtliche Hinweise

Nutzung der Anwendungsbeispiele

In den Anwendungsbeispielen wird die Lösung von Automatisierungsaufgaben im Zusammenspiel mehrerer Komponenten in Form von Text, Grafiken und/oder Software-Bausteinen beispielhaft dargestellt. Die Anwendungsbeispiele sind ein kostenloser Service der Siemens AG und/oder einer Tochtergesellschaft der Siemens AG ("Siemens"). Sie sind unverbindlich und erheben keinen Anspruch auf Vollständigkeit und Funktionsfähigkeit hinsichtlich Konfiguration und Ausstattung. Die Anwendungsbeispiele stellen keine kundenspezifischen Lösungen dar, sondern bieten lediglich Hilfestellung bei typischen Aufgabenstellungen. Sie sind selbst für den sachgemäßen und sicheren Betrieb der Produkte innerhalb der geltenden Vorschriften verantwortlich und müssen dazu die Funktion des jeweiligen Anwendungsbeispiels überprüfen und auf Ihre Anlage individuell anpassen.

Sie erhalten von Siemens das nicht ausschließliche, nicht unterlizenzierbare und nicht übertragbare Recht, die Anwendungsbeispiele durch fachlich geschultes Personal zu nutzen. Jede Änderung an den Anwendungsbeispielen erfolgt auf Ihre Verantwortung. Die Weitergabe an Dritte oder Vervielfältigung der Anwendungsbeispiele oder von Auszügen daraus ist nur in Kombination mit Ihren eigenen Produkten gestattet. Die Anwendungsbeispiele unterliegen nicht zwingend den üblichen Tests und Qualitätsprüfungen eines kostenpflichtigen Produkts, können Funktions- und Leistungsmängel enthalten und mit Fehlern behaftet sein. Sie sind verpflichtet, die Nutzung so zu gestalten, dass eventuelle Fehlfunktionen nicht zu Sachschäden oder der Verletzung von Personen führen.

Haftungsausschluss

Siemens schließt seine Haftung, gleich aus welchem Rechtsgrund, insbesondere für die Verwendbarkeit, Verfügbarkeit, Vollständigkeit und Mangelfreiheit der Anwendungsbeispiele, sowie dazugehöriger Hinweise, Projektierungs- und Leistungsdaten und dadurch verursachte Schäden aus. Dies gilt nicht, soweit Siemens zwingend haftet, z.B. nach dem Produkthaftungsgesetz, in Fällen des Vorsatzes, der groben Fahrlässigkeit, wegen der schuldhaften Verletzung des Lebens, des Körpers oder der Gesundheit, bei Nichteinhaltung einer übernommenen Garantie, wegen des arglistigen Verschweigens eines Mangels oder wegen der schuldhaften Verletzung wesentlicher Vertragspflichten. Der Schadensersatzanspruch für die Verletzung wesentlicher Vertragspflichten ist jedoch auf den vertragstypischen, vorhersehbaren Schaden begrenzt, soweit nicht Vorsatz oder grobe Fahrlässigkeit vorliegen oder wegen der Verletzung des Lebens, des Körpers oder der Gesundheit gehaftet wird. Eine Änderung der Beweislast zu Ihrem Nachteil ist mit den vorstehenden Regelungen nicht verbunden. Von in diesem Zusammenhang bestehenden oder entstehenden Ansprüchen Dritter stellen Sie Siemens frei, soweit Siemens nicht gesetzlich zwingend haftet.

Durch Nutzung der Anwendungsbeispiele erkennen Sie an, dass Siemens über die beschriebene Haftungsregelung hinaus nicht für etwaige Schäden haftbar gemacht werden kann.

Weitere Hinweise

Siemens behält sich das Recht vor, Änderungen an den Anwendungsbeispielen jederzeit ohne Ankündigung durchzuführen. Bei Abweichungen zwischen den Vorschlägen in den Anwendungsbeispielen und anderen Siemens Publikationen, wie z. B. Katalogen, hat der Inhalt der anderen Dokumentation Vorrang.

Ergänzend gelten die Siemens Nutzungsbedingungen (<u>https://support.industry.siemens.com</u>).

Securityhinweise

Siemens bietet Produkte und Lösungen mit Industrial Security-Funktionen an, die den sicheren Betrieb von Anlagen, Systemen, Maschinen und Netzwerken unterstützen.

Um Anlagen, Systeme, Maschinen und Netzwerke gegen Cyber-Bedrohungen zu sichern, ist es erforderlich, ein ganzheitliches Industrial Security-Konzept zu implementieren (und kontinuierlich aufrechtzuerhalten), das dem aktuellen Stand der Technik entspricht. Die Produkte und Lösungen von Siemens formen nur einen Bestandteil eines solchen Konzepts.

Der Kunde ist dafür verantwortlich, unbefugten Zugriff auf seine Anlagen, Systeme, Maschinen und Netzwerke zu verhindern. Systeme, Maschinen und Komponenten sollten nur mit dem Unternehmensnetzwerk oder dem Internet verbunden werden, wenn und soweit dies notwendig ist und entsprechende Schutzmaßnahmen (z.B. Nutzung von Firewalls und Netzwerk-segmentierung) ergriffen wurden.

Zusätzlich sollten die Empfehlungen von Siemens zu entsprechenden Schutzmaßnahmen beachtet werden. Weiterführende Informationen über Industrial Security finden Sie unter: https://www.siemens.com/industrialsecurity.

Die Produkte und Lösungen von Siemens werden ständig weiterentwickelt, um sie noch sicherer zu machen. Siemens empfiehlt ausdrücklich, Aktualisierungen durchzuführen, sobald die entsprechenden Updates zur Verfügung stehen und immer nur die aktuellen Produktversionen zu verwenden. Die Verwendung veralteter oder nicht mehr unterstützter Versionen kann das Risiko von Cyber-Bedrohungen erhöhen.

Um stets über Produkt-Updates informiert zu sein, abonnieren Sie den Siemens Industrial Security RSS Feed unter: <u>http://www.siemens.com/industrialsecurity</u>.

Inhaltsverzeichnis

Recl	ntliche Hi	nweise	2
1	Einführ	ung	4
	1.1 1.2 1.3	Überblick Funktionsweise Verwendete Komponenten	4 5 7
2	Vorbere	eitung und Inbetriebnahme	8
	2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.3 2.4.4	Vorbereitung Arbeiten am Multiprojekt Inbetriebnahme Bedienung des Anwendungsbeispiels Übersicht Szenario A Szenario B Szenario C	8 . 11 . 17 . 21 . 21 . 21 . 25 . 27
3	Enginee	əring	. 31
	3.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 3.1.8 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.4 3.4.1 3.4.2	Technische Funktionen und Messstellen Vorlauf (CIP SUPPLY) Rücklauf (CIP RETURN) Waschmitteltank (DETERGENT TANK) Nachspültank (POST RINSE TANK) Vorspültank (PRE RINSE TANK) Mixer Zulauf Mixer (TANK_IN) Ablauf Mixer Verriegelungen Schrittketten (SFC-Typ-Instanzen) CIP_RETURN CIP_SUPPLY FILL_HEAT_CONC TANK_IN Tank_OUT SIMATIC BATCH Reinigungsrezepte Reinigungschargen	. 31 . 39 . 47 . 57 . 60 . 62 . 63 . 67 . 75 . 82 . 89 . 96 100 105 105
4	Wissen	swertes	108
	4.1 4.1.2 4.2 4.3 4.4 4.4.1 4.4.2	Grundlagen Beschreibung der einzelnen Funktionen RI-Fließbild Verfahrenstechnik Automatisierungstechnik Projektstruktur Namenskonvention der CFC-Pläne Technologische Sicht	108 108 110 110 111 112 112 113
5	Anhang		116
	5.1 5.2 5.3	Service und Support Links und Literatur Änderungsdokumentation	116 117 117

1 Einführung

1.1 Überblick

Bei Anlagen zur Produktion von Lebensmitteln oder pharmazeutischen Produkten und deren verfahrenstechnischen Prozessen wiederholen sich bestimmte Prozessschritte, Abläufe und Apparate in gleicher oder ähnlicher Form.

Ein wichtiger Prozess in diesem Zusammenhang ist die automatisierte Reinigung der Apparaturen und Anlagenteile.

Dieser Prozess wird mit zunehmender Anlagengröße immer wichtiger, da eine manuelle Reinigung nicht mehr möglich ist. Ein effizientes Verfahren ist das "Cleaning in Place" Verfahren, kurz CIP-Verfahren.

Das CIP-Verfahren ermöglicht die Reinigung von Apparaturen und Anlagenteilen vor Ort. Eine Demontage ist nicht erforderlich. Durch diese Art der automatisierten Reinigung wird zugleich wertvolle Arbeitszeit eingespart.

Übersicht Gesamtlösung

Die CIP-Anlage dient zur Reinigung der anderen Anlagenteile und Armaturen. Die Ansteuerung der einzelnen Armaturen erfolgt über das Automatisierungsprogramm.

Beschreibung

In der CIP-Anlage werden die für die Reinigung benötigten Flüssigkeiten aufbereitet und vorgehalten. Für die verschiedenen Reinigungsphasen gibt es verschiedene Flüssigkeiten, die immer in ausreichender Menge vorhanden sein müssen. Dafür müssen die Füllstände in den Vorhaltetanks kontinuierlich überwacht werden. Sind diese zu gering, muss Flüssigkeit in die Tanks zugeführt werden.

Neben dem Füllstand ist auch die Qualität der Flüssigkeit von Bedeutung. Dafür werden die Flüssigkeiten in den Tanks auf eine festgelegte Temperatur und Konzentration an Waschmittel geregelt. Daher werden auch Temperatur und Konzentration kontinuierlich überwacht und gegebenenfalls angepasst.

Eine weitere Aufgabe ist es, die Reinigungsflüssigkeit nach dem Gebrauch soweit wie möglich wiederzuverwenden. Dafür wird die Qualität im Rücklauf erneut geprüft. Wenn die Qualität den Vorgaben entspricht, dann wird sie automatisch in die Tanks zurück geleitet, solange diese nicht voll sind. Wenn die Qualität nicht ausreichend ist oder die Tanks voll sind, dann wird die Flüssigkeit entsorgt.

Vorteile

Die vorliegende Anwendung bietet Ihnen folgende Vorteile:

- Realisierung einer CIP-Anlage nach ISA S88.01
- Beschreibung der wichtigsten Automatisierungsfunktionen für eine CIP-Anlage

Abgrenzung

Der Sonderfall einer simultanen Reinigung von Anlagenteilen wird vom Anwendungsbeispiel "CIP" nicht abgedeckt.

Vorausgesetzte Kenntnisse

Grundlegende Kenntnisse der folgenden Fachgebiete werden vorausgesetzt:

- Projektierung mit SIMATIC PCS 7, SIMATIC BATCH und der APL-Bibliothek
- Kenntnisse der Regelungstechnik
- Grundkenntnisse der Verfahrenstechnik

1.2 Funktionsweise

Prozessbild

Das Anwendungsbeispiel "CIP" ist als SIMATIC PCS 7-Multiprojekt nach ISA S88.01 realisiert.

Das Multiprojekt besteht aus einem AS-Projekt (Anwenderprogramm), einem OS-Projekt (Visualisierung mit Prozessbildern), sowie einer SIMATIC BATCH Anlage (Produktions- und Reinigungsrezepte).

Das AS-Projekt wurde mit der APL-Bibliothek (<u>A</u>dvanced <u>P</u>rocess <u>L</u>ibrary) und SIMATIC BATCH-Bausteinen erstellt.

Kernfunktionalität

Das Anwendungsbeispiel "CIP" enthält das Anwenderprogramm mit typischen Messstellen einer CIP-Anlage.

Die Technologische Hierarchie (TH) ist nach der ISA S88.01 aufgebaut. Die für die CIP-Anlage notwendigen Technischen Einrichtungen sind definiert. Für die Bedienung sind ein Anlagenübersichtsbild und ein BATCH Übersichtsbild enthalten. Das BATCH Übersichtsbild bietet die Möglichkeit Chargenprozessen von einem PCS 7 OS Client zu bedienen und ist ein Vorlagenbild, welches nach der Installation von SIMATIC BATCH zur Verfügung steht und alle relevanten SIMATIC BATCH OS Controls Funktionen enthält.

		6
RECIPE CONTROL		NS
MIX PLANT		7
	U Siemens	
SIMATIC BATCH OS Master (Pflichtbild) BATCH Projekte austwählen und vertanden	SIMATIC BATCH OS Monitor BATCH Metangen arcargen	
Project Computer same Rectandancy	Image AD (Dates) Medical Dates 1	
SIMATIC BATCH OS Allocation Telazagenübersicht	SIMATIC BATCH OS Process Cell Eator-velage, Batch-Aufrage estaliten	
Televise Other print Other print		
SIMATIC BATCH OS Properties ROP-Übersicht, Chargen bedienen und beobachten	SIMATIC BATCH OS Batch Creation Chargemetzeugung	
	Receipt: DPM/mm/14 013 FormArk Aufring Aufrings/Instrume Name Statistical Instrume Min Statistical Instrume Min Statistical Instrume Statistical Instrume Statistical Instrume Beechronical Statistical Instrume	
	👻 🔿 💼 🖛 🗃 🚍 📾 😰 🐗 💌	4

Die folgende Abbildung zeigt das BATCH Übersichtsbild:

Für die Erstellung von Reinigungschargen ist ein SIMATIC BATCH Backup mit einem Beispielrezept enthalten.

Das Anwendungsbeispiel enthält eine einfache Simulation auf Basis von CFCs. Die Sollwerte in den Rezepten sind frei gewählt und können anlagenspezifisch abweichen. Die Technischen Einrichtungen und Messstellen dienen als beispielhafte Vorlage und können mit anlagenspezifischen Anpassungen auf eine reale Produktionsanlage angewendet werden.

Die Reinigungsrezepte sind für die zu reinigenden Anlagenteile in Abhängigkeit von Aufbau und Produkt zu erstellen. Das Beispielrezept beschreibt lediglich den grundlegenden Aufbau.

Hinweis Der verfahrenstechnische Prozess innerhalb der CIP-Anlage wird nicht simuliert.

1.3 Verwendete Komponenten

Dieses Anwendungsbeispiel wurde mit folgenden Hard- und Softwarekomponenten erstellt:

Komponente	Hinweis	
SIMATIC PCS 7 ES/OS IPC547G W7	Für das PCS 7 V9.0 Beispielprojekt	
SIMATIC PCS 7 V9.0	Bestandteil von SIMATIC PCS 7 ES/OS IPC547G W7	
S7-PLCSIM	Bestandteil von SIMATIC PCS 7 V9.0	
APL-Bibliothek V9.0	Bestandteil von SIMATIC PCS 7 V9.0	
SIMATIC BATCH V9.0	Kein Bestanteil von PCS 7, entsprechende Lizenzen werden benötigt.	
PCS 7 Logic Matrix ES-Paket	Kein Bestandteil von SIMATIC PCS 7 V9.0	
PCS 7 Logic Matrix Editor		
PCS 7 Logic Matrix Library		
PCS 7 Logic Matrix OS-Paket	Kein Bestandteil von SIMATIC PCS 7 V9.0	
PCS 7 Logic Matrix Viewer		

Dieses Anwendungsbeispiel besteht aus folgenden Komponenten

Komponente	Hinweis
78463886_CIP_PROJ_PCS7V90.zip	PCS 7 V9.0 Beispielprojekt und SIMATIC BATCH Backup
78463886_CIP_DOC_de.pdf	Dieses Dokument

2 Vorbereitung und Inbetriebnahme

2.1 Vorbereitung

Die folgende Anleitung beschreibt die Inbetriebnahme des Anwendungsbeispiels, in dem die Steuerung mit dem Programm "S7-PLCSIM" emuliert wird. Liegt eine reale Steuerung vor, müssen Sie in der HW Konfig die vorliegenden Hardware-Komponenten projektieren.

Vorbereitung in Windows

Die folgende Anleitung beschreibt die Schritte, die in Windows durchzuführen sind:

- 1. Klicken Sie auf "Start".
- 2. Rechtsklicken Sie auf "Computer" und öffnen Sie den Menüpunkt "Verwalten". Die Computerverwaltung wird geöffnet.
- Rechtsklicken Sie auf der linken Seite des Fensters auf den Menüpunkt "Lokale Benutzer und Gruppen > Gruppen". Wählen Sie den Menübefehl "Neue Gruppe". Es öffnet sich das Fenster "Neue Gruppe".
- 4. Tragen Sie im Feld "Namen" "CIPDemoUser" ein.
- 5. Fügen Sie den Benutzer, mit dem Sie aktuell an Windows angemeldet sind, zu dieser Gruppe hinzu.
- 6. Klicken Sie auf "Erstellen".
- Markieren Sie auf der linken Seite des Fensters den Punkt "Lokale Benutzer und Gruppen". Rechtsklicken Sie auf der rechten Seite auf den Benutzer, mit dem Sie aktuell angemeldet sind. Wählen Sie den Menüpunkt "Eigenschaften". Das Fenster "Eigenschaften" öffnet sich.

8. Wechseln Sie in das Register "Mitglied von" und prüfen Sie, ob der Benutzer in folgenden Gruppen Mitglied ist:

Ist der Benutzer nicht in allen Gruppen enthalten, fügen Sie diesen in die Fehlenden hinzu.

Vorbereitung des Projektes

- Kopieren Sie die Datei "78463886_CIP_PROJ_PCS7V90.zip" und "78463886_CIP_BATCH_PCS7V90.sbb" in einen beliebigen Ordner auf dem Projektierungsrechner und öffnen Sie anschließend den SIMATIC Manager.
- Klicken Sie in der Menüleiste auf "Datei > Dearchivieren" und wählen Sie die Datei "78463886_CIP_PROJ_PCS7V90.zip" aus. Bestätigen Sie anschließend mit "Öffnen".
- Wählen Sie den Ordner aus, in dem das Projekt gespeichert wird und bestätigen Sie mit der Schaltfläche "OK". Das Projekt wird extrahiert.
- 4. Klicken Sie im Dialog "Dearchivieren" auf die Schaltfläche "OK" und klicken Sie anschließend im Dialog auf "Ja", um das Projekt zu öffnen.
- 5. Rechtsklicken Sie auf "UT_CIP_OS > PCS7ES" und klicken Sie auf den Menübefehl "Objekteigenschaften".

6. Tragen Sie im Feld "Name" den Namen Ihres PCs ein und klicken Sie auf "OK".

Properties - SIMATIC	PC Station	x
General Settings Co	onfiguration	_
Name:	PCS7ES	
Project path:	UT_CIP_OS\PCS7ES	
Storage location of the project:	E:\Project\CIP\UT_CIP_M\UT_CIP_0	
Author:		
Date created:	05/23/2016 03:31:34 PM	
Last modified:	06/08/2016 08:48:39 AM	
Comment:	*	
Computer name		
Computer name	identical to PC station name	
Computer name:	PCS7ES	
ОК	Cancel Help	

- Rechtsklicken Sie auf "UT_CIP_OS > Name Ihres PCs > WinCC Appl > OS(1)" und klicken Sie auf den Menübefehl "Objekt öffnen".
- 8. Bestätigen Sie den Dialog "Konfigurierter Server nicht verfügbar" mit "OK".
- Öffnen Sie im WinCC Explorer die Eigenschaften Ihres Rechners und klicken Sie im geöffneten Eigenschaften-Dialog auf die Schaltfläche "Lokalen Rechnernamen übernehmen". Bestätigen Sie die Meldung "Rechnernamen ändern" mit "OK".

WinCC Explorer - E:\Project\CIP\UT_CIP_M\UT_CIP_0\wincproj\05(1)\05(1).me Ele Edit View Tools Hep	mcp
□≫ ■ ▶ X 间間 出記於錄 購 嗯 ?	Computer properties
□ Computer □ Computer □ Tag Management ∧ Graphics Designer □ □ □ □	Name General Startup Parameters Graphics Runtime Runtime TEST Computer Name: IIISII Use Local Computer Type: Computer Type: C Server

- Klicken Sie im WinCC Explorer auf "Datei > Beenden" und wählen Sie im folgenden Dialog "WinCC Explorer beenden und Projekt schließen". Klicken Sie anschließend auf die Schaltfläche "OK".
- 11. Öffnen Sie den WinCC Explorer erneut, wie unter Schritt 7 beschrieben.

12. Öffnen Sie durch doppelklicken den "OS-Projekteditor".

Wählen Sie im Register "Layout" unter "Verfügbare Layouts" das Bild "SIMATIC Standard" entsprechend Ihrer eingestellten Bildschirmauflösung aus.

Klicken Sie auf "OK" um die Einstellungen zu übernehmen und den "OS-Projekteditor" zu schließen.

User Archive					
	Kessage Configuration	Message Display	🙀 Area 🕞 Runtime Wir	ndow 🎒 Basic Data 😭 🕯	General
	ut: SIMATIC Standard 1	680*1050			
Available Lay	youts:		Layout Desc	ription:	
** OS Project Editor 会 Simari 会 SFC 学 Web Navigator 学 Web Navigator SIMATI SIMATI SIMATI SIMATI	me IC Standard 1024*768 IC Standard 1152*864 IC Standard 1280*1024 IC Standard 1600*1200 IC Standard 1600*1050 IC Standard 1920*1080 IC Standard 1920*1200 IC Standard 2560*1600		SIMATIC Sta 1680*1050 Number of ar Number of se Overview ext Runtime I Display C Use	andard-Layout for screen resolu rea keys: erver keys: tended configuration: help available er name	6 Detail
Monitor co	onfiguration	88		2 C ET 2 ET OK Cancel	

13. Beenden Sie den WinCC Explorer, wie unter Schritt 10 beschrieben.

2.2 Arbeiten am Multiprojekt

Die folgende Anleitung beschreibt die Arbeiten, die am Multiprojekt durchzuführen sind. Es wird vorausgesetzt, dass der SIMATIC Manager bereits geöffnet und das Projekt in der Komponentensicht angewählt ist.

1. Rechtsklicken Sie auf "UT_CIP_AS > AS1 > CPU 410-5H > S7-Programm(1) > Pläne" und klicken Sie auf den Menübefehl "Übersetzen". Wählen Sie im Dialog "Programm übersetzen" den Punkt "Gesamtes Programm" und deaktivieren Sie die Option "Baugruppentreiber erzeugen" und bestätigen Sie diesen Dialog mit "OK".

mpile program		
Compile Charts as Pro	gram	
CPU:	CPU 410-5H	
Program name:	AS1\CPU 410-5H\	S7-Programm(1)\
Scope		
Entire program		
C Changes only		
Generate module	e drivers	Block Driver Settings
Generate SCL so	ource	
ОК		Abbrechen Hilfe

- 3. Schließen Sie das Übersetzungsprotokoll.
- Rechstklicken Sie auf "UT_CIP_OS > PCS7ES (Name der PC-Station) > WinCC Appl > OS (1)" und klicken Sie auf den Menübefehl "Übersetzen". Der Übersetzungsdialog öffnet sich.
- 5. Klicken Sie auf "Weiter".
- 6. Klicken Sie auf "Weiter".
- 7. Stellen Sie sicher, dass alle Bereiche angewählt sind und klicken Sie auf "Weiter".

Operator stations and areas:	S7 programs an	d network conne	ctions:	
🖃 🐨 🥐 OS(1)	S7 pro 🗵	Connections	Subnet	Subnet type
	I III UT_CIP	. 2	Plantb	Ind. Eth.
	۲.			

Data ✓ Tags and messages	Further options Minimum acquisition cycle of the archive tags: 1 second
SFC Visualization	✓ With interconnection partner (SFC option)
Picture Tree	Compression Settings
Scope	Create server data
Entire OS With	memory reset
C Changes	
anguage settings	
Multiple languages are installed in the duration of the OS compilation. Do you	STEP 7 multiproject. This has an impact on the u want to start the wizard for the language settings? Yes

8. Selektieren Sie folgende Einstellungen und klicken Sie auf "Weiter".

- 9. Klicken Sie auf "Übersetzen".
- 10. Bestätigen Sie den Dialog "OS-Übersetzen" mit "OK".
- 11. Rechtsklicken Sie im SIMATIC Manager auf das Multiprojekt "UT_CIP_MP" und wählen Sie den Menübefehl "SIMATIC BATCH >Projektierungsdialog öffnen". Der SIMATIC BATCH Projektierungsdialog wird geöffnet.
- 12. Markieren Sie das Multiprojekt "UT_CIP_MP" und klicken Sie auf "Einstellungen".

	Prop	perties			
UT_CIP_MP	3	UT_CIP_MP			
Bottoms Stations PRODUCTION B→3 Batch types B→1 Batch instances	De	scription			
		Multiproject Settings	Log Basic data	.	
			Dieolay	1	

Das Fenster "Einstellungen" wird geöffnet.

13. Klicken Sie im Register "Verteilung" auf "Aktualisieren".

Con	nponent	PC station	Target system	
Bato	h Datenbank	-Server		
	Project	UT_CIP_OS\PCS7ES	📇 {local}	
Master	g) Offline	UT_CIP_OS\PCS7ES	📇 {local}	
	Online	UT_CIP_OS\PCS7ES	📇 {local}	
	Project			
Standby	g Offline			
	Online			
📳 Bato	h Server			
Master		UT_CIP_OS\PCS7ES	📇 {local}	
Standby				
😨 Bato	h Client			
		UT_CIP_OS\PCS7ES	📇 {local}	

14. Klicken Sie im Register "OS-Objekte" auf "Aktualisieren".

Message t	tex Name	Target system	Project type	Symbolic computer name	Create/up
N 100	OS(1)	🖳 {local}	Single station	UT_CIP_OS_OS(1)	N
•				1	•

15. Klicken Sie im Register "Anlagen" auf "Aktualisieren".

atch process cell n	ame of multiproject: PRODUCTION		S88 P-cells only
Project	Path	Batch process cell	Process cell
UT_CIP_AS	E:\Project\CIP\UT_CIP_M\UT_C_Prj	PRODUCTION	PRODUCTIO
UT_CIP_AS	E:\Project\CIP\UT_CIP_M\UT_C_Pr	PRODUCTION	

- 16. Klicken Sie auf "OK", um das Fenster "Einstellungen" zu verlassen.
- 17. Wählen Sie den Punkt "BATCH Typen" und klicken Sie auf "Generieren".
- 18. Klicken Sie auf "Starten".
- 19. Klicken Sie auf "Schließen".

T_CIP_MP/PRODUCTION/Ba	tch types		
icess cell data	Properties		
UT_CIP_MP	🚽 Batch types		
S/ Programs	Description		
PRODUCTION	Last changed on	7/21/2016 2:04:37 PM (UTC +2:00)	
E 🛃 Batch types			
H Batch Instanc			
()		Generate types for entire process cell	
		Process cells in the projects:	
		BUT CIP AS FOR EXPriment/CIP/LIT CIP Immil PRODUCTI Undordate	
	Batch types		
	Propagate		
			Help
	Genarate		
		Diaday	
		Usplay	

- 20. Wählen Sie den Punkt "BATCH Instanzen" und klicken Sie auf "Zusammenführen".
- 21. Klicken Sie auf "Starten".
- 22. Klicken Sie auf "Schließen".

7/21/2016 2:10:08 PM Plerge/Com Batch proce Proce PD UT_CI 1	(UTC +2:00) NICPRODUCTION s cells in the projects: t	If Compile If To Compile	Path ENProject/CIPNUT_CIP	Batch proce
7/21/2016 2:10:08 PM Herge/Com Batch proce Projec Age UT_CI	(UTC +2:00) HIEPRODUCTION s cells in the projects: t V Include _AS V	V Compile	Path E:\Project\CIP\UT_CIP	Batch proce
7/21/2016 2:10:08 PM Herge/Com Batch proce Project 20 UT_CI	(UTC +2:00) idePRODUCTION s cells in the projects: t	⊽ Compile ⊽	Path E\Project\CIP\UT_CIP	Batch proce
Merge/Com Batch proce Proje Ag UT_CI	s cells in the projects: t AS AS AS AS AS AS AS A	⊽ Compile ▼	Path E:\Project\CIP\UT_CIP	Batch proce
		1		
Start Start Wa Display	Close	0		Help
	Stat	Start Close Start	Stat Cose 3 Warning(e) Display Cancel	Start Cose Warning(s) Display Cancel Help

- 23. Wählen Sie den Punkt "PRODUCTION" und klicken Sie auf "Laden".
- 24. Klicken Sie auf "Start".
- 25. Klicken Sie auf "Schließen".

	Properties							
UT_CIP_MP	PRODUCTION							
E III Stations	Description							
PRODUCTION	Process cell component grouping	UNIT CLASSES			<u> </u>			
Batch ses								
H- Match								
		Design land in the	-	all lut oth san'		_	1	
		Download batt	n process	en of_cip_mp				
		Components to	be download	ed:				
		Compone	nt	PC station	Target system	verify	Status	
	1	Batch Dat	enbank-Serv	er				
	Batch process cell		Project	UT_CIP_OS\PCS7ES	📇 (local)		Downloaded	0
	Check validity	Master	g) Offline	UT_CIP_OS\PCS7ES	🖳 (local)		Not up-to-date	
		V	Online	UT_CIP_OS\PCS7ES	🖳 (local)	1	Not up-to-date	
	Transfer messages	Γ	Project					0
		T Standby	g Offline					0
	Developed	Г	Online					\odot
	Download	Batch Ser	ver					
		Master		UT_CIP_OS\PCS7ES	📇 (local)		Downloaded	0
		Standby						0
	2	- Batch Clie	nt					
				UT_CIP_OS\PCS7ES	📇 (local)		Downloaded	

- 26. Beenden Sie den SIMATIC BATCH Projektierungsdialog mit "OK".
- 27. Rechtsklicken Sie in der Windows Taskleiste auf das Symbol des SIMATIC BATCH Launch Coordinators und wählen Sie den Menübefehl "Startart wechseln > automatisch nach manuell"

hange start mode from 🔹 🕨
ATCH status hange server language hange security settings bout
xit
21.07.2016

Hinweis Der SIMATIC BATCH Launch Coordinator startet beim Start des PCs automatisch. Sollte der SIMATIC BATCH Launch Coordinator nicht gestartet sein, gehen Sie wie folgt vor:

Klicken Sie auf "Start > Alle Programme > Siemens Automation > SIMATIC > BATCH Launch Coordinator".

2.3 Inbetriebnahme

Die folgende Anleitung beschreibt, wie das Anwendungsbeispiel "CIP" in den Initialisierungszustand versetzt wird.

Für die Inbetriebnahme wird vorausgesetzt, dass der SIMATIC Manager bereits geöffnet und das Projekt in der Komponentensicht angewählt ist.

Simulation (S7-PLCSIM) starten

Gehen Sie zum Starten der Simulation nach folgender Anleitung vor:

- Wählen Sie im Menü "Extras > Baugruppe simulieren". Das Dialogfenster von "S7-PLCSIM" wird geöffnet.
- 2. Wählen Sie im Menü "Ausführen > Position Schlüsselschalter > Run-P" aus.
- Wechseln Sie in die Komponentensicht des SIMATIC Manager und markieren Sie "UT_CIP_MP > UT_CIP_AS > AS1 > CPU 410-5H > S7-Programm > Pläne".
- 4. Klicken Sie in der Menüleiste auf "Zielsystem > Laden".
- 5. Bestätigen Sie den Dialog "Laden" mit "Ja".
- 6. Bestätigen Sie den Dialog "Zielbaugruppe stoppen" mit "OK".
- 7. Bestätigen Sie den Dialog "Laden" mit "Ja".

OS (WinCC Runtime) aktivieren

Gehen Sie zum Aktivieren der OS nach folgender Anleitung vor:

- 1. Rechtsklicken Sie auf "UT_CIP_OS > PCS7ES >WinCC Appl. > OS" und klicken Sie auf den Menübefehl "Objekt öffnen".
- 2. Wählen Sie im WinCC Explorer Menü "Datei > Aktivieren".
- 3. Melden Sie sich am SIMATIC Logon Dialog mit ihrem Windows Benutzer an.

User name:			
Password:			
Log on to:	PCS7ES (this	s computer)	
		ř	

4. Wählen Sie im Bildbereich "CIP" aus.

SIMATIC BATCH aktivieren

Gehen Sie zum Aktivieren von SIMATIC BATCH nach folgender Anleitung vor:

- 1. Klicken Sie auf die "Windows-Logo-Taste" Ihrer Tastatur, um die Windows Taskleiste einzublenden.
- Im Symbol des SIMATIC BATCH Launch Coordinators befindet sich ein grünes "Stoppsymbol"
 Als Tool-Tip-Text wird das aktuell geladene Projekt "UT_CIP_MP" angezeigt.
- Rechtsklicken Sie auf das Symbol des SIMATIC BATCH Launch Coordinators und wählen Sie den Menübefehl "BATCH Runtime > Start" um die SIMATIC BATCH Runtime zu starten.

Im Symbol des SIMATIC BATCH Launch Coordinators befindet sich eine "Sanduhr" **1** Diese symbolisiert, dass der SIMATIC BATCH Server gerade

gestartet wird. Aus der "Sanduhr" wird eine "Playsymbol" 6. Der SIMATIC BATCH Server befindet sich jetzt im Zustand "Run".

- Klicken Sie auf "Start > Alle Programme > Siemens Automation > SIMATIC > BATCH Control Center".
 Das BATCH Control Center öffnet sich.
- 5. Klicken Sie auf den Menüpunkt "Extras" und wählen Sie den Menübefehl "Restore" aus.

Suchen i	n: 🚺 CIP_Backup	b.		- G 💋 🖡	🤊 🛄 -	
Zuletzt besucht	Name 78463886_C SB8_367-21	IP_PCS7_BATCH -914655.sbb	↓ H_BACKUP.sbb	Anderungsdat 21.07.2016 15:23 11.07.2016 12:04	 ▼ Typ SBB-Datei SBB-Datei 	
Desktop Bibliotheken Computer						
Netzwerk	<u>.</u>			10		
Netzwerk	_▲ Dateiname:	SB8_367-21-	914655	1	- Offr	162
Netzwerk	Dateiname:	SB8_367-21- Backup files	914655 (*.sbb;*.xml)	1	Offr Abbre	
Netzwerk Without log	Dateiname: Dateityp:	SB8_367-21- Backup files of Start ID:	914655 (*.sbb;*.xml) Last ID:	1	Offr Abbre	
Netzwerk	Dateiname: Dateityp: Batches:	SB8_367-21- Backup files (Start ID: 1	914655 (*.sbb;*.xml) Last ID: 0		Offr Abbre	ne n
Netzwerk	Dateiname: Dateityp: Batches: Recipe/Library:	SB8_367-21- Backup files Start ID: 1	914655 (*.sbb;*.xml) Last ID: 0		Offr Abbre	167
Netzwerk	Dateiname: Dateityp: Batches: Recipe/Library: Formula:	SB8_367-21- Backup files (Start ID: 1 1	914655 (*.sbb;*.xml) Last ID: 0 0		Offr Abbre	76 - ect
Netzwerk	Dateiname: Dateityp: Batches: Recipe/Library: Formula: Categories:	SB8_367-21- Backup files Start ID: 1 1 1 1 1 1 1 1 1 1	914655 (*.sbb;*.xml) Last ID: 0 0 0		Offr Abbre	

Es öffnet sich der Restore Dialog.

- 6. Navigieren Sie zum Ablageort der Datei "78463886_CIP_BATCH_PCS7V90.sbb" und markieren Sie diese.
- 7. Klicken Sie auf "Öffnen".
- 8. Rechtsklicken Sie im linken Fenster auf das Anlagensymbol "PRODUCTION und wählen Sie den Menübefehl "Aktualisieren der Anlage".
- 9. Bestätigen Sie den Dialog "Aktualisieren der Anlage" mit "OK".
- Klicken Sie auf den Menüpunkt "Extras" und wählen Sie den Menübefehl "Rollenverwaltung". Die "SIMATIC Logon Rollenverwaltung" wird geöffnet.

 Rechtsklicken Sie im Fenster "Konfigurierte Rollen und Zuweisungstypen" auf "Rollen > Superuser > Gruppen und Benutzer". Wählen Sie den Menübefehl "Bearbeiten".

Das Fenster "Bearbeiten von Gruppen und Benutzern" wird geöffnet.

- 12. Klicken Sie auf die Schaltfläche "Auflisten". Es werden Ihnen alle verfügbaren Gruppen und Benutzer aufgelistet.
- 13. Entfernen Sie den vorhandenen Benutzer.
- 14. Fügen Sie die Gruppe "CIPDemoUser", zu "Konfigurierte Gruppen und Benutzer" hinzu.
- 15. Klicken Sie auf die Schaltfläche "OK", um das Fenster "Bearbeiten von Gruppen und Benutzern" zu verlassen.
- 16. Klicken Sie im Fenster "SIMATIC Logon Rollenverwaltung" auf "Datei > speichern".
- 17. Klicken Sie im Fenster "SIMATIC Logon Rollenverwaltung" auf "Datei > beenden".

2.4 Bedienung des Anwendungsbeispiels

2.4.1 Übersicht

Die folgenden Abschnitte beschreiben die Bedienung des Anwendungsbeispiels. Es werden drei verschiedene Szenarien beschrieben:

- Manuelle Bedienung der einzelnen Funktionen im WinCC Übersichtsbild.
- Anlegen und Starten einer Reinigungscharge aus dem SIMATIC BATCH Control Center.
- Anlegen und Starten einer Reinigungscharge mit den SIMATIC BATCH Controls direkt aus der WinCC Runtime.

2.4.2 Szenario A

Beschreibung

Im Szenario wird der Umgang mit der Anlage im "manuellen" Betrieb erläutert. In diesem haben Sie die Möglichkeit, die einzelnen Bestandteile der CIP-Anlage zu bedienen, und z.B. eine Anpassung der Waschmittelkonzentration im Waschmitteltank durchzuführen.

Die folgende Anleitung beschreibt das Starten der Aufbereitung der Waschflüssigkeit im Waschmitteltank.

Voraussetzung

Folgende Punkte werden vorausgesetzt:

- Die WinCC Runtime ist aktiv
- Das S7-Programm in "S7-PLCSIM" geladen und Schlüsselschalter auf Run(-P)

Durchführung

1. Öffnen Sie das Anlagenübersichtsbild der CIP-Anlage.

2. Klicken Sie im SFC Control "Detergent/DETERGENT" auf die Schaltfläche "Bildbaustein".

Dete	ergent	DETERGEN	IT
MANUAL	т	Idle	
Sequencer:			
Step:			
Runtime:			
	Fa	ceplate	

Es öffnet sich der Bildbaustein des SFC "Detergent/DETERGENT"

3. Klicken Sie auf die Schaltfläche "Start".

<u>A</u>					<u>×</u>
				[Detergent/DETERGEN
					Prepared values 🛛 💌
Idle			Т	-	🔽 Synchronize 🗖
MANUAL				0.00	PREPARE
MANUAL	Hold	Resume	Command output		Active step
	V Complete	Stop	Cyclic operation		+
8	🖍 Reset		Time monitoring		Ŧ
		-			1
				0	_ <u>_</u> + +
					Ŧ
Prepare control strategy:		PREPARE		-	
Setpoint name:	Setpoint:	Actual valu	ie: Unit		<u>+</u> ++
Tank Size	15000	15000	L		1-4
Level Hysteresis	300	300	L		≹_
Temp Heating	85,0	0,0	°C		
Temp Hysteresis	3,0	3,0	0 *		1 17
Concentration	150	95	mS		
Conc Hysteresis	30	30	mS		

4. Bestätigen Sie den Dialog "SFC Bedienung" mit "OK". Der SFC startet und stellt die vorgegebenen Sollwerte ein.

5. Öffnen Sie das Ventil des Waschmitteltanks.

Das venti wird geoiniet.

6. Starten Sie die Pumpe mit dem Befehl "Vorwärts".

	CIP Supply	
🔺 NC_Supply/U		×
Motor speed control - large	 ● ◆ ● ● 	a 📲 📭 🔄 🛃
H	Mode	Manual
	Command	Stop
	Setpoint	Internal 02
	Ī	Pesei
		Permission
	<u>گ</u> 1	Interlock
	Setpoint	0,00 %
		0,00
Command		
Forward	Reverse	Stop.
Execution	M OK	Cancel
		4

					10
🖊 NC_Supply/U					×
Motor speed control - large	, 😪 🎦 📃			1	¥
B	Mode		Manu	al	
	Command		Star	.	
	Setpoint		Intern	al	
			Ra	eset	
		1	Perm	nission	
-		23	Inte	rlock	
-				10	0,00
	Setpoint		0,00	%	
	Readback	value 😤		%	
-					0,00
-					
Setpoint		_	400.00	1	00,00
Direct control [%]		2			0,00
-2.5 -0.5 0.5	2.5	AI			•
Execution	44	ОК		Cance	1
			¯(►)¯		

7. Geben Sie als Sollwert "100"% vor.

Die Pumpe läuft mit 100%.

8. Beobachten Sie die Messwerte und den SFC "Detergent/DETERGENT".

Durch die Entnahme der Flüssigkeit, wird Frischwasser nachgefüllt. Dadurch ändern sich Temperatur und Waschmittelkonzentration. Der SFC "Detergent/DETERGENT" stellt die Messwerte auf die vorgegebenen Sollwerte ein. Somit wird sichergestellt, dass die Flüssigkeit immer in der vorgegebenen Qualität vorhanden ist.

2.4.3 Szenario B

Im Szenario A haben Sie die einzelnen Funktionen der CIP-Anlage im Handbetrieb kennen gelernt. Im Folgenden wird Ihnen beschrieben, wie Sie diese Funktionen mit SIMATIC BATCH nutzen. Die Bedienung erfolgt dabei aus dem SIMATIC BATCH Control Center.

Voraussetzung

Folgende Punkte werden vorausgesetzt:

- Die WinCC Runtime ist aktiv
- Das S7-Programm in "S7-PLCSIM" geladen und Schlüsselschalter auf Run(-P)
- Der SIMATIC BATCH Server befindet sich im Zustand "Run"
- Der SFC "DETERGENT" im Zustand "Run" (aktiver Schritt "LEVEL CHECK)
- Das mitgelieferte Backup wurde eingespielt
- Die Rollenverwaltung bereits vorgenommen

Durchführung

1. Klicken Sie im Tastenbereich auf den Button "Tastensatzwechsel".

2. Klicken Sie im Tastenbereich auf den Button "BATCH Control Center".

Das SIMATIC BATCH Control Center öffnet sich.

3. Rechtsklicken Sie auf "Aufträge" und wählen Sie den Menübefehl "Neu".

Das Fenster "Auftragskategorie erzeugen" öffnet sich.

4. Tragen Sie im Feld "Namen" einen geeigneten Namen ein (z.B. CIP).

- 5. Klicken Sie auf die Schaltfläche "OK".
- 6. Rechtsklicken Sie auf "CIP" und wählen Sie den Menübefehl "Neu". Das Fenster "Auftrag Anlegen" öffnet sich.
- 7. Tragen Sie im Register "Allgemein" im Feld "Namen" einen geeigneten Namen ein (z.B. CIP MIXER).
- 8. Rechtsklicken Sie auf "CIP MIXER" und wählen Sie den Menübefehl "Neu". Das Fenster "Charge(n) hinzufügen" öffnet sich.
- Klicken Sie auf den Button "Neu". Das Fenster "Auswahl von Formula oder Grundrezept" öffnet sich.
- 10. Markieren Sie das Grundrezept "CIP MIXER V1.0".
- 11. Klicken Sie auf die Schaltfläche "OK".

	Recipe/Formula Product Formu	ula category
	CIP Mixer V1.0 CIP	n Sie Text hier ein
	Selected element Name: CIP Mixer V1.0	Properties
	Type 하 Master recipe Status: 아이 Released for testing Product: CIP	Preview AS-based
	[ncel Help

12. Geben Sie der Charge im Fenster "Auftrag anlegen" einen geeigneten Namen.

13. Klicken Sie im Fenster "Auftrag anlegen" auf die Schaltfläche "OK".

Sie haben nun einen neuen Auftrag mit einer Charge angelegt.

- 14. Rechtsklicken Sie auf die Charge und wählen Sie den Menübefehl "Freigeben".
- 15. Bestätigen Sie das sich öffnende Dialogfenster mit "Ja".
- 16. Doppelklicken Sie auf die Charge. Das Steuerrezept wird Ihnen angezeigt.
- 17. Rechtsklicken Sie auf die Charge und wählen Sie den Menübefehl "Start".
- Bestätigen Sie das sich öffnende Dialogfenster mit "Ja". Die Charge wird gestartet. SIMATIC BATCH Belegt nun die Teilanlagen und startet die Funktionen der SFCs. Es werden alle Fahrweisen nacheinander durchlaufen.

- 19. Wechseln Sie in die WinCC Runtime und beobachten Sie, wie die einzelnen Ventile und Pumpen angesteuert werden.
- 20. Wechseln Sie in das Prozessbild "Mixer". Auch hier werden die Ventile und die Pumpe am Mixer angesteuert.

Die Charge beendet sich selbstständig. Die gestarteten SFCs werden durch SIMATIC BATCH beendet und in den Zustand "IDLE" zurückgesetzt.

2.4.4 Szenario C

Im Szenario A haben Sie die einzelnen Funktionen der CIP-Anlage im Handbetrieb kennen gelernt. Im Folgenden wird Ihnen beschrieben, wie Sie diese Funktionen mit SIMATIC BATCH nutzen. Die Bedienung erfolgt dabei in WinCC Runtime über das BATCH Übersichtsbild von SIMATIC BATCH OS Controls.

Voraussetzung

Folgende Punkte werden vorausgesetzt:

- Die WinCC Runtime ist aktiv
- Das S7-Programm in "S7-PLCSIM" geladen und Schlüsselschalter auf Run(-P)
- Der SIMATIC BATCH Server befindet sich im Zustand "Run"
- Der SFC "DETERGENT" im Zustand "Run" (aktiver Schritt "LEVEL CHECK)
- Das mitgelieferte Backup wurde eingespielt
- Die Rollenverwaltung wurde bereits vorgenommen
- Der Auftrag wurde im SIMATIC BATCH Control Center angelegt

Durchführung

- 1. Öffnen Sie in der WinCC Runtime das BATCH Übersichtsbild "RECIPE CONTROL".
- 2. Rechtsklicken Sie im "SIMATIC BATCH OS Master" auf das Projekt "UT_CIP_MP".
- 3. Wählen Sie den Menübefehl "Projekt verbinden".

SIMATIC BATCH OS Master (must anways be present and conligured) Select and connect BATCH projects				
Project	Computer name	Redundancy		
0	Q	Q		
	Update project list)		

- 4. Klicken Sie im "SIMATIC BATCH OS Batch Creation" auf die Schaltfläche neben "Formula".
- 5. Wählen Sie im Fenster "Rezept/Formula auswählen" das Rezept "CIP Mixer V1.0" aus.
- 6. Klicken Sie auf die Schaltfläche "OK".

		SIMATIC BA	atch creation			
Desien [Family -			
necipe: j			romula. j			
Order:			Order category:			J <u>(</u>)
Name: Batc	h					
Min:		0 Quantity:	0	Max:		0
tart time: 07/2	2/2016 2:52:50 PM (UTC +2:00)		극지	Mode: Operation		-
escription:				1		
÷ [⇒ -⊅		atories automatically				
⇒ 🕞 🚽	ecipe / formula				×	
⇒ 🕞 🚽 Select r ⊡ 🚰 PR	ecipe / formula	Recip	e	Formula	×	
⇒ 🕞 🚽 Select r ⊐ 🚰 PR	ecipe / formula ODUCTION Formulas		e	Formula	×	
⇒ 🕞 + Select r	ecipe / formula ODUCTION Formulas Recipes		e 1 CIP Mixer V 1,0 [3]	Formula	×	
⇒ 🕞 🚽 Select r ⊃ 🚰 PR	ecipe / formula ODUCTION Formulas Recipes		e 4 CIP Mixer V 1.0 [3]	Formula Q		
Select r	ecipe / formula ODUCTION Formulas Recipes		e 1 CIP Mixer V 1 0 [3]	Formula Q	×	
Select r	ecipe / formula ODUCTION Formulas Recipes		e 3 CIP Mixer V 1 0 [3]	Formula Q	×	
Select r □ £ PR	ecipe / formula ODUCTION Formulas Recipes		e 3 CIP Mixer V1 0 [3]	Formula Q	X	
3 (3) 42 Select r - ∰ PR	ecipe / formula ODUCTION Formulas Recipes		e CIP Mixer V1 0 [3]	Formula Q	×	
Select r	ecipe / formula ODUCTION Formulas Recipes		e CIP Mixer V1 0 [3]	Formula Q		
Select r	ecipe / formula ODUCTION Formulas Recipes		e CIP Mixer V 10 [3]	Formula Q		

ΟK

.

Cancel

- 7. Klicken Sie im "SIMATIC BATCH OS Batch Creation" auf die Schaltfläche neben "Auftragskategorie".
- Wählen Sie im Fenster "Auftrag auswählen" den Auftrag "CIP MIXER" (muss vorher im BATCH Control Center angelegt werden) aus. Klicken Sie auf die Schaltfläche "OK".

S	IMATIC BATCH OS Batch Creation Batch creation	
Recipe: CIP Mixer V1.0 [3] Order:	Formula:	
Name: Batch Min: 1 Quanti	ty: 30	Max
Start time: 07/22/2016 2:57:50 PM (UTC +2:00)	<u> </u>	Mode: Operation
Description:		
Generate batch(es)	omatically	

Select order Select order for creating one or more batches	×
	Cancel

- 9. Tragen Sie im "SIMATIC BATCH OS Batch Creation" im Feld "Name" einen geeigneten Namen ein.
- 10. Passen Sie die Startzeit im "SIMATIC BATCH OS Batch Creation" an.
- 11. Klicken Sie im "SIMATIC BATCH OS Batch Creation" auf die Schaltfläche "Charge(n) automatisch freigeben."
- 12. Klicken Sie im Dialog "Bestätigen" auf die Schaltfläche "Ja". Die Charge wird freigegeben.

13. Rechtsklicken Sie im "SIMATIC BATCH OS Process Cell" auf die Charge, die Sie zuvor angelegt haben.

	E	latch	Formula	Product	Status	Actual q	Planned	Mode
		2	Q	0	0	9	0	Q
	, 1	👌 💊 CIP Mixer		CIP [100]	Completed	-	30	Operatio
			New batch(e	s)	released		30	Operatio
			Cancel batch	1				
	1000		► Start batch	M				
			乾Display cont ⑦ Tooltip ∥ Enter comme	rol r 22				
			2 Update					
	•		- 😪 Add batch to	favorites				•

14. Wählen Sie den Menübefehl "Charge starten".

- 15. Klicken Sie im Dialogfeld "Bestätigung" auf die Schaltfläche "Ja".
- 16. Im "SIMATIC BATCH OS Allocation" sehen Sie die durch die Charge belegten Teilanlagen.
- SIMATIC BATCH OS Allocation Batch Batch ru Order catego Order Unit Master recipe Form 0 CIP CIP MIXER OCX CIP Mixer CIP Mixer V1.0 Þ 00:01:16 CIP **MIXER** Þ S CIP MIXER OCX 00:01:16 CIP **CIP** Mixer CIP Mixer V1.0 2 4 • 🕞 🕞 🚽 🖹 😭 🖤 | MI II II> = X X | **2 8** | 幸 2 🛡
- 17. Doppelklicken Sie auf eine der belegten Teilanlagen.

Im "SIMATIC BATCH OS Properties" wird das Steuerrezept anzeigt.

3 Engineering

3.1 Technische Funktionen und Messstellen

Das Anwendungsbeispiel "CIP" setzt sich aus verschiedenen technischen Funktionen und Messstellen zusammen. Im PCS 7-Projekt basieren alle Messstellen, auch die Messstellen der technischen Funktionen auf Einzelsteuereinheitstypen, kurz CMT, der Stammdatenbibliothek. Für die Beschreibung der technischen Funktionen werden SFC-Typen verwendet, die ebenfalls in der Stammdatenbibliothek enthalten sind.

In den folgenden Kapiteln finden Sie Informationen zum Aufbau der einzelnen technischen Funktionen. Zusätzlich finden Sie auch die Beschreibung der verwendeten SFCs.

3.1.1 Vorlauf (CIP SUPPLY)

Über den Vorlauf wird das Reinigungsmittel von den Tanks zu den einzelnen Teilanlagen der Anlage geleitet. Welches Reinigungsmittel entnommen wird, ist über eine SFC-Typ-Instanz realisiert. Je nachdem welche Fahrweise ausgewählt ist, wird die Flüssigkeit aus dem entsprechenden Tank entnommen. Die entnommenen Mengen werden über Reinigungsrezepte in SIMATIC BATCH definiert. Die Reinigung erfolgt mit Hilfe von Reinigungschargen und wird somit auch protokolliert.

Aufbau

18.07 2016 13:11:13 RECIPE CONTROL SIEMENS MIX PLANT m. 21.00 15000.00 × **CIP Supply** 1 0.00 影 * Ċ 11 11 5 3

Die folgende Abbildung zeigt den Aufbau der Vorlauf-Einrichtung:

Das Öffnen und Schließen der Ventile sowie das Starten der Pumpe im Vorlauf erfolgt über eine Instanz des SFC-Typs "CIP_SUPPLY".

Bezeichnung	Technische Funktion/ CMT	Beschreibung
CIP_Supply	SFC-Typ "CIP_SUPPLY"	 Öffnen und Schließen der Ventile in Abhängigkeit von der vorgegebenen Fahrweise
		Starten und Stoppen der Pumpe
NC_Supply	"MotVsd"	Messstelle zum Antrieb der Pumpe
YS_SupDetergent	"Val"	Messstelle Ventil Waschmitteltank
YS_SupPostRinse	"Val"	Messstelle Ventil Vorspültank
YS_SupPreRinse	"Val"	Messstelle Ventil Nachspültank

In der folgenden Tabelle erhalten Sie eine Übersicht der Bestandteile und der verwendeten CMTs.

Verschaltung der Messstellen

In der folgenden Abbildung ist die Vorlauf-Einrichtung einschließlich der CFC übergreifenden Verschaltungen bzw. SFC-Zugriffe schematisch dargestellt:

Parametrierung

Im Folgenden wird die Parametrierung der einzelnen Messstellen beschrieben. Eine detaillierte Beschreibung des SFC-Typ befindet sich im Kapitel " 3.3 Schrittketten".

NC_Supply

Die Pumpe, die von der Messstelle "NC_Supply" angesprochen wird, regelt die Durchflussmenge der Reinigungsflüssigkeit. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "CIP_Supply". Die Messstelle "NC_Supply" ist eine Instanz des CMTs "MotVsd" mit folgenden selektierten Varianten:

- Intlock
- Permit
- Rbk
- SP_Out

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
FbkFwd	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimNC_Supply\SimFbkFwd.Out)
Rbk	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimNC_Supply\SimSpeed.Out)
Fwd	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (NC_Supply\U.Fwd)
SP_Out	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (NC_Supply\U.SP_Out)
Calc_SP_Ext	ln1	1	Sollwert in m³/h (Verschaltung zu SFC)
	ln2	1.666667	Umrechnungsfaktor
	Out		Verschaltung zu SP_Ext (NC_Supply\U.SP_Ext)

Baustein	Anschluss	Wert	Verwendung
U	FwdAut		Ansteuerungsbefehl für Vorwärtsbetrieb im Automatikmodus (CIP_Supply\CIP_SUPPLY.M1_FwdAut)
	Occupied		Von Charge belegt (CIP_Supply\CIP_SUPPLY.QOCCUPIE)
	StepNo		Chargen Schrittnummer (CIP_Supply\CIP_SUPPLY.QSTEP_NO)
	BatchName		Chargenbezeichnung (CIP_Supply\CIP_SUPPLY.QBA_NA)
	BatchID		Chargenkennung (CIP_Supply\CIP_SUPPLY.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (CIP_Supply\CIP_SUPPLY.QBA_EN)
Intlock	In01		Verriegelung des Motors (Verschaltung zu Verriegelungslogik LM_CIP\E004.Out)

Hinweis Beim Verschalten von "U.FwdAut" und "CIP_SUPPLY.M1_FwdAut" werden automatisch alle weiteren Verbindungen zwischen Motorbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

Der Baustein "Intlock" dient zur Verriegelung des Motors. Damit wird sichergestellt, dass der Motor nur läuft, wenn auch eines der Ventile geöffnet ist. Die Verriegelungslogik ist mit der PCS 7 Logic Matrix erstellt. Eine detaillierte Beschreibung der Verriegelungslogiken finden Sie in Kapitel 3.2 "Verriegelungen".

YS_SupDetergent

Das Ventil, das von der Messstelle "YS_SupDetergent" angesprochen wird, steuert den Ablauf des Waschmitteltanks in den Zulauf. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "CIP_Supply". Die Messstelle "YS_SupDetergent" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_SupDetergent\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_SupDetergent\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_SupDetergent\V.Ctrl)
V	OpenAut		Ansteuerungsbefehl für Öffnen im Automatikmodus (CIP_Supply\CIP_SUPPLY.V2_OpenAut)
	Occupied		Von Charge belegt (CIP_Supply\CIP_SUPPLY.QOCCUPIE)
	StepNo		Chargen Schrittnummer (CIP_Supply\CIP_SUPPLY.QSTEP_NO)
	BatchName		Chargenbezeichnung (CIP_Supply\CIP_SUPPLY.QBA_NA)
	BatchID		Chargenkennung (CIP_Supply\CIP_SUPPLY.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (CIP_Supply\CIP_SUPPLY.QBA_EN)

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Hinweis Beim Verschalten von "V.OpenAut" und "CIP_SUPPLY.V2_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

YS_SupPostRinse

Das Ventil, das von der Messstelle "YS_SupPostRinse" angesprochen wird, steuert den Ablauf des Nachspültanks in den Zulauf. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "CIP_Supply". Die Messstelle "YS_SupPostRinse" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl
| Baustein | Anschluss | Wert | Verwendung |
|----------|-----------|------|--|
| FbkOpen | SimOn | 1 | Simulierter Prozesswert aktiv |
| | SimPV_In | | Verschaltung zu simuliertem Prozesswert
(SimYS_SupPostRinse\SimFbkOpen.Out) |
| FbkClose | SimOn | 1 | Simulierter Prozesswert aktiv |
| | SimPV_In | | Verschaltung zu simuliertem Prozesswert
(SimYS_SupPostRinse\SimFbkClose.InvOut) |
| Ctrl | SimOn | 1 | Simulierter Prozesswert aktiv |
| | SimPV_In | | Verschaltung zu simuliertem Prozesswert
(YS_SupPostRinse\V.Ctrl) |
| V | OpenAut | | Ansteuerungsbefehl für Öffnen im
Automatikmodus
(CIP_Supply\CIP_SUPPLY.V3_OpenAut) |
| | Occupied | | Von Charge belegt
(CIP_Supply\CIP_SUPPLY.QOCCUPIE) |
| | StepNo | | Chargen Schrittnummer
(CIP_Supply\CIP_SUPPLY.QSTEP_NO) |
| | BatchName | | Chargenbezeichnung
(CIP_Supply\CIP_SUPPLY.QBA_NA) |
| | BatchID | | Chargenkennung
(CIP_Supply\CIP_SUPPLY.QBA_ID) |
| | BatchEn | | Batch Belegungsfreigabe
(CIP Supply/CIP SUPPLY.QBA EN) |

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Hinweis Beim Verschalten von "V.OpenAut" und "CIP_SUPPLY.V3_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

YS_SupPreRinse

Das Ventil, das von der Messstelle "YS_SupPreRinse" angesprochen wird, steuert den Ablauf des Vorspültanks in den Zulauf. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "CIP_Supply". Die Messstelle "YS_SupPreRinse" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_SupPreRinse\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_SupPreRinse\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_SupPreRinse\V.Ctrl)
V	OpenAut		Ansteuerungsbefehl für Öffnen im Automatikmodus (CIP_Supply\CIP_SUPPLY.V3_OpenAut)
	Occupied		Von Charge belegt (CIP_Supply\CIP_SUPPLY.QOCCUPIE)
	StepNo		Chargen Schrittnummer (CIP_Supply\CIP_SUPPLY.QSTEP_NO)
	BatchName		Chargenbezeichnung (CIP_Supply\CIP_SUPPLY.QBA_NA)
	BatchID		Chargenkennung (CIP_Supply\CIP_SUPPLY.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (CIP_Supply\CIP_SUPPLY.QBA_EN)

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Hinweis Beim Verschalten von "V.OpenAut" und "CIP_SUPPLY.V1_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

3.1.2 Rücklauf (CIP RETURN)

Im Rücklauf werden die Temperatur und die Konzentration der Flüssigkeit erfasst und in Abhängigkeit der gemessenen Werte wieder in die CIP-Tanks geleitet. Abhängig davon, wie die Qualität der Flüssigkeit ist, werden die Ventile zu den Tanks geöffnet. Die Flüssigkeit aus der Vorspülphase wird direkt in den Kanal geleitet. Sind die Tanks voll oder die Qualität nicht ausreichend gut, wird die Flüssigkeit ebenfalls in den Kanal abgeführt.

Aufbau

18.07.2016 13:11:13 RECIPE CONTROL CII SIEMENS MIX PLANT 0,00 **CIP** Return 20.75 ×.... x 1 31,28 15000,00 影 -**7** कैंक Ċ

Die folgende Abbildung zeigt den Aufbau der Vorlauf-Einrichtung:

Das Öffnen und Schließen der Ventile im Rücklauf erfolgt über eine Instanz des SFC-Typs "CIP_RETURN".

Bezeichnung	Technische Funktion/ CMT	Beschreibung
CIP_Return	SFC-Typ "CIP_RETURN"	 Öffnen und Schließen der Ventile in Abhängigkeit von der vorgegebenen Fahrweise
		Schnittstelle für die Anbindung an SIMATIC BATCH
YS_RetDetergent	"Val"	Messstelle Ventil Rücklauf Waschmitteltank
YS_RetDrain	"Val"	Messstelle Ventil Rücklauf Kanal
YS_RetPreRinse	"Val"	Messstelle Ventil Rücklauf Nachspültank
QIT_Return	AMon	Erfassung der Waschmittelkonzentration im Rücklauf
TIT_Return	Amon	Erfassung der Flüssigkeitstemperatur im Rücklauf

In der folgenden Tabelle erhalten Sie eine Übersicht der Bestandteile und der verwendeten CMTs.

Verschaltung der Messstellen

In der folgenden Abbildung ist die Vorlauf-Einrichtung einschließlich der CFC übergreifenden Verschaltungen bzw. SFC-Zugriffe schematisch dargestellt:

Parametrierung

Im Folgenden wird die Parametrierung der einzelnen Messstellen beschrieben. Eine detaillierte Beschreibung des SFC-Typ befindet sich im Kapitel " 3.3 Schrittketten".

YS_RetDetergent

Das Ventil, das von der Messstelle "YS_RetDetergent" angesprochen wird, steuert den Zulauf des Waschmitteltanks im Rücklauf. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "CIP_Return". Die Messstelle "YS_RetDetergent" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl
- Intlock

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_RetDetergent\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_RetDetergent\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_RetDetergent\V.Ctrl)
V	OpenAut		Ansteuerungsbefehl für Öffnen im Automatikmodus (CIP_Return\CIP_RETURN.V2_OpenAut)
	Occupied		Von Charge belegt (CIP_Return\CIP_RETURN.QOCCUPIE)
	StepNo		Chargen Schrittnummer (CIP_Return\CIP_RETURN.QSTEP_NO)
	BatchName		Chargenbezeichnung (CIP_Return\CIP_RETURN.QBA_NA)
	BatchID		Chargenkennung (CIP_Return\CIP_RETURN.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (CIP_Return\CIP_RETURN.QBA_EN)
Intlock	In01		Verriegelung des Ventils (Verschaltung zu Verriegelungslogik LM_CIP\E001.Out)

Hinweis Beim Verschalten von "V.OpenAut" und "CIP_RETURN.V2_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

Der Baustein "Intlock" dient zur Verriegelung des Ventils. Damit wird sichergestellt, dass dieses nur geöffnet wird, wenn der Waschmitteltank nicht voll ist. Die Verriegelungslogik ist mit der PCS 7 Logic Matrix erstellt. Eine detaillierte Beschreibung der Verriegelungslogiken finden Sie in Kapitel 3.2 "Verriegelungen".

YS_RetDrain

Das Ventil, das von der Messstelle "YS_RetDrain" angesprochen wird, steuert den Zulauf zum Kanal im Rücklauf. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "CIP_Return". Die Messstelle "YS_RetDrain" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_RetDrain\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_RetDrain\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_RetDrain\V.Ctrl)
V	OpenAut		Ansteuerungsbefehl für Öffnen im Automatikmodus (CIP_Return\CIP_RETURN.V3_OpenAut)
	Occupied		Von Charge belegt (CIP_Return\CIP_RETURN.QOCCUPIE)
	StepNo		Chargen Schrittnummer (CIP_Return\CIP_RETURN.QSTEP_NO)
	BatchName		Chargenbezeichnung (CIP_Return\CIP_RETURN.QBA_NA)
	BatchID		Chargenkennung (CIP_Return\CIP_RETURN.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (CIP_Return\CIP_RETURN.QBA_EN)

Hinweis Beim Verschalten von "V.OpenAut" und "CIP_RETURN.V3_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

YS_RetPreRinse

Das Ventil, das von der Messstelle "YS_RetPreRinse" angesprochen wird, steuert den Zulauf des Waschmitteltanks im Rücklauf. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "CIP_Return". Die Messstelle "YS_RetPreRinse" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl
- Intlock

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_RetPreRinse\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_RetPreRinse\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_RetPreRinse\V.Ctrl)
V	OpenAut		Ansteuerungsbefehl für Öffnen im Automatikmodus (CIP_Return\CIP_RETURN.V1_OpenAut)
	Occupied		Von Charge belegt (CIP_Return\CIP_RETURN.QOCCUPIE)
	StepNo		Chargen Schrittnummer (CIP_Return\CIP_RETURN.QSTEP_NO)
	BatchName		Chargenbezeichnung (CIP_Return\CIP_RETURN.QBA_NA)
	BatchID		Chargenkennung (CIP_Return\CIP_RETURN.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (CIP_Return\CIP_RETURN.QBA_EN)
Intlock	In01		Verriegelung des Ventils (Verschaltung zu Verriegelungslogik LM_CIP\E002.Out)

Hinweis Beim Verschalten von "V.OpenAut" und "CIP_RETURN.V1_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

Der Baustein "Intlock" dient zur Verriegelung des Ventils. Damit wird sichergestellt, dass dieses nur geöffnet wird, wenn der Waschmitteltank nicht voll ist. Die Verriegelungslogik ist mit der PCS 7 Logic Matrix erstellt. Eine detaillierte Beschreibung der Verriegelungslogiken finden Sie in Kapitel 3.2 "Verriegelungen".

QIT_Return

Die Anzeige-Messstelle "QIT_Return" wird zum Erfassen und Anzeigen der Waschmittelkonzentration verwendet. Die Messstelle "QIT_Return" ist eine Instanz des CMT "AMon" mit folgenden selektierten Varianten:

- Opt_PV_Scale
- PV_In

Baustein	Anschluss	Wert	Verwendung
PV_Scale	HiScale	150	Skalierung des Prozesswertes
PV_Unit	IN	1289	Einheit des Prozesswertes (mS)
PV_In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (conductance\ConducReturn.Out)
1	Occupied		Von Charge belegt (CIP_Return\CIP_RETURN.QOCCUPIE)
	StepNo		Chargen Schrittnummer (CIP_Return\CIP_RETURN.QSTEP_NO)
	BatchName		Chargenbezeichnung (CIP_Return\CIP_RETURN.QBA_NA)
	BatchID		Chargenkennung (CIP_Return\CIP_RETURN.QBA_ID)
	PV_Out		Prozesswert (CIP_Return\CIP_RETURN.DET_CONC_AI; CIP_Return\CIP_RETURN.PRE_CONC_AI)

TIT_Return

Die Anzeige-Messstelle "TIT_Return" wird zum Erfassen und Anzeigen der Flüssigkeitstemperatur verwendet. Die Messstelle "TIT_Return" ist eine Instanz des CMT "AMon" mit folgenden selektierten Varianten:

- Opt_PV_Scale
- PV_In

Baustein	Anschluss	Wert	Verwendung
PV_Unit	IN	1001	Einheit des Prozesswertes (°C)
PV_In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Temperature\TemInCRet.Out)
I	Occupied		Von Charge belegt (CIP_Return\CIP_RETURN.QOCCUPIE)
	StepNo		Chargen Schrittnummer (CIP_Return\CIP_RETURN.QSTEP_NO)
	BatchName		Chargenbezeichnung (CIP_Return\CIP_RETURN.QBA_NA)
	BatchID		Chargenkennung (CIP_Return\CIP_RETURN.QBA_ID)
	PV_Out		Prozesswert (CIP_Return\CIP_RETURN.DET_TMP_AI; CIP_Return\CIP_RETURN.PRE_TMP_AI)

3.1.3 Waschmitteltank (DETERGENT TANK)

Der Waschmitteltank enthält das Waschmittel für die Reinigung. Es wird im Tank auf die geforderte Temperatur erhitzt. Zusätzlich wird die benötigte Waschmittelkonzentration eingestellt. Der Waschmitteltank wird entweder durch den Rücklauf während der Reinigungsphasen oder durch die Zufuhr von Frischwasser und Lauge kontinuierlich gefüllt. Die Temperatur der Flüssigkeit im Tank wird kontinuierlich auf einen vorgegebenen Wert geregelt.

Aufbau

Folgende Abbildung zeigt den Aufbau des Waschmitteltanks:

Der Tank enthält drei Füllstandsensoren, über die der maximale, minimale und aktuelle Füllstand erfasst werden. Über Rohre wird die Flüssigkeit durch einen Wärmetauscher gepumpt, um die Temperatur zur regeln. In den Rohrleitungen wird auch die Konzentration der Lauge gemessen. Die Zirkulation der Flüssigkeit wird über eine Instanz des SFC-Typs "DETERGENT" gesteuert. Über diese wird auch die Konzentration geregelt und die Sollwerte für den PID-Regler zur Temperaturregelung übergeben.

Bezeichnung	Technische Funktion/ CMT	Beschreibung
Detergent	SFC-Typ "FILL_HEAT_CONC"	Einstellen der Waschmitteleigenschaften in Abhängigkeit der Sollwerte der Fahrweise
LIT_Detergent	AMon	Erfassung des Füllstandes im Waschmitteltank
LSH_Detergent	DMon	Erfassung max. Füllstand im Waschmitteltank erreicht
LSL_Detergent	DMon	Erfassung min. Füllstand im Waschmitteltank erreicht
NS_DetCon	Mot	Messstelle zum Antrieb der Pumpe für Laugenzugabe
NS_DetHeat	Mot	Messstelle zum Antrieb der Pumpe für Heizkreislauf
PuPaDet		Messstelle für Dosierung der Laugenzugabe
QIT_Detergent	AMon	Erfassung der Waschmittelkonzentration im Waschmitteltank
TIC_Heat	Ctrl	Messstelle zur Regelung der Flüssigkeitstemperatur im Heizkreislauf
TIT_Detergent	AMon	Erfassung der Flüssigkeitstemperatur im Waschmitteltank
TIT_DetHeat	AMon	Erfassung der Flüssigkeitstemperatur im Heizkreislauf
YC_DetHeat	ValAn	Messstelle zum Regelventil im Heizkreislauf
YS_DetFreshWater	Val	Messstelle Ventil zur Frischwasserzufuhr Waschmitteltank

In der folgenden Tabelle erhalten Sie eine Übersicht der Bestandteile und der verwendeten CMTs:

Parametrierung

Im Folgenden wird die Parametrierung der einzelnen Messstellen beschrieben. Eine detaillierte Beschreibung des SFC-Typ befindet sich im Kapitel "3.3. Schrittketten".

LIT_Detergent

Die Anzeige-Messstelle "LIT_Detergent" wird zum Erfassen und Anzeigen des Füllstandes im Waschmitteltank verwendet. Die Messstelle "LIT_Return" ist eine Instanz des CMT "AMon" mit folgenden selektierten Varianten:

- Opt_PV_Scale
- PV_In

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
PV_Scale	HiScale	25000	Skalierung des Prozesswertes
PV_Unit	IN	1038	Einheit des Prozesswertes (L)
PV_In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Sim_Level_DetergentTank\Level.Out)
I	PV_Out		Prozesswert (Detergent\DETERGENT.LEVEL_AI; LM_CIP\C001.Ana1)

LSH_Detergent

Die Anzeige-Messstelle "LSH_Detergent" wird zum Erfassen und Anzeigen des maximalen Füllstands des Waschmitteltanks verwendet. Die Messstelle "LSH_Detergent" ist eine Instanz des CMT "DMon" mit selektierter Variante "In".

Baustein	Anschluss	Wert	Verwendung
In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Sim_Level_DetergentTank\LSH.GE)
S	Out		Digitaler Ausgangswert (CIP_Return\CIP_RETURN.LS1Out; LM_CIP\C001.Dig1)

LSL_Detergent

Die Anzeige-Messstelle "LSL_Detergent" wird zum Erfassen und Anzeigen des minimalen Füllstands des Waschmitteltanks verwendet. Die Messstelle "LSL Detergent" ist eine Instanz des CMT "DMon" mit selektierter Variante "In".

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Sim_Level_DetergentTank\LSL.LE)

NS_DetCon

Die Pumpe, die von der Messstelle "NS_DetCon" angesprochen wird, dient zur Dosierung der Waschmittelzugabe. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "DETERGENT" und die Messstelle "PuPa_Det". Die Messstelle "NS_DetCon" ist eine Instanz des CMTs "Mot" mit folgenden selektierten Varianten:

- Permit
- Opt_1Fbk
- Start

Die Messstelle wurde um die folgenden Funktionen erweitertet:

- Or04 "Start_NSDetCon"
- Or04 "Stop_NSDetCon"

Baustein	Anschluss	Wert	Verwendung
Fbk	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Sim_NSDetCon\SimFbkRun.Out)
Start	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (NSDetCon\U.Start)
Start_NSDetCon	ln1		Startimpuls (PuPa_Det\Strengh.ActGrp01)
	ln2		Startimpuls (Detergent\DETERGENT.M2_AutStart)
	Out		Startimpuls (NS_DetCon\U.StartAut)

Baustein	Anschluss	Wert	Verwendung
Stop_NSDetCon	ln1		Stopimpuls (PuPa_Det\Strengh.ActGrp01 invertiert)
	ln2		Startimpuls (Detergent\DETERGENT.M2_AutStop)
	Out		Stopimpuls (NS_DetCon\U.StopAut)
U	ModLiop		Umschaltung Betriebsartenauswahl Hand/Verschaltung (Detergent\DETERGENT.M2_ModLiOp)

Hinweis Beim Verschalten von "U.ModLiOp" und "DETERGENT.M2_ModLiOP" werden automatisch alle weiteren Verbindungen zwischen Motorbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

NS_DetHeat

Die Pumpe, die von der Messstelle "NS_DetHeat" angesprochen wird, steuert die Zirkulation der Lauge durch den Heizkreislauf. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "DETERGENT". Die Messstelle "NC_DetHeat" ist eine Instanz des CMTs "Mot" mit folgenden selektierten Varianten:

- Permit
- Opt_1Fbk
- Start

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
Fbk	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Sim_NSDetHeat\SimFbkRun.Out)
Start	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (NSDetHeat\U.Start)
U	StartAut		Ansteuerungsbefehl Starten im Automatikbetrieb (Detergent\DETERGENT.M1_StartAut)

Hinweis Beim Verschalten von "U.StartAut" und "DETERGENT.M1_StartAut" werden automatisch alle weiteren Verbindungen zwischen Motorbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

PuPaDet

Die Messstelle "PuPaDet" dient zur pulsförmigen Ansteuerung der Pumpe, die zur Dosierung der Waschmittelkonzentration dient. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "DETERGENT". Den pulsförmigen Steuerbefehl gibt die Messstelle "PuPa_Det" an die Messstelle "NS_DetCon" weiter.

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
BIPuPa			Eingefügt als "STRENGH" für Puls-Pause- Funktion
STRENGH	ModLiOp		Umschaltung Betriebsartenauswahl Hand/Verschaltung (Detergent\DETERGENT.PuPa1_ModLiOp)

Hinweis Beim Verschalten von "STRENGH.ModLiOp" und "DETERGENT.PuPa1_ModLiOp" werden automatisch alle weiteren Verbindungen zwischen Puls-Pause-Baustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

QIT_Detergent

Die Anzeige-Messstelle "QIT_Detergent" wird zum Erfassen und Anzeigen der Waschmittelkonzentration im Waschmitteltank verwendet. Die Messstelle "QIT_Detergent" ist eine Instanz des CMT "AMon" mit folgenden selektierten Varianten:

- Opt_PV_Scale
- PV_In

Baustein	Anschluss	Wert	Verwendung
PV_Scale	HiScale	180	Skalierung des Prozesswertes
PV_Unit	IN	1289	Einheit des Prozesswertes (mS)
PV_In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (conductance\ConducTank.Out)
1	PV_Out		Prozesswert (Detergent\DETERGENT.CONC_AI)

TIC_DetHeat

In der Messstelle "TIC_DetHeat" wird Flüssigkeitstemperatur im Waschmitteltank geregelt. Die aktuelle Flüssigkeitstemperatur wird in der Anzeige-Messstelle "TIT_Detergent" erfasst und an die Regler-Messstelle "TIC_DetHeat" übergeben. Die Sollwertvorgabe erfolgt im Anwendungsbeispiel über die SFC-Typ-Instanz "DETERGENT". Die Messstelle "TIC_DetHeat" übergibt den Stellwert an das Regelventil "YC_DetHeat". "TIC_DetHeat" ist eine Instanz des CMTs "Ctrl".

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
AIF_SFC	SP_LiOp		Sollwertquelle intern/extern über Verschaltung (Detergent\DETERGENT.PID1_SP_LiOp)
С	Gain	20.277	Regler-Verstärkung
	ТІ	186.941	Regler-Nachstellzeit
to_Actor_Slave	Out		Verschaltung zum Ventil (Steuern) (YC_DetHeat\from_Ctrl.In)
from_Actor_Slave	In		Verschaltung vom Ventil (Status) (YC_DetHeat\to_Ctrl.Out)

Hinweis Beim Verschalten von "AIF_SFC.SP_LiOp" und "DETERGENT.PID1_SP_LiOp" werden automatisch alle weiteren Verbindungen zwischen SFC-Schnittstellenbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

TIT_Detergent

Die Anzeige-Messstelle "TIT_Detergent" wird zum Erfassen und Anzeigen der Flüssigkeitstemperatur im Waschmitteltank verwendet. Die Messstelle "TIT_Detergent" ist eine Instanz des CMT "AMon" mit folgenden selektierten Varianten:

- Opt_PV_Scale
- PV_In

Baustein	Anschluss	Wert	Verwendung
PV_Unit	IN	1001	Einheit des Prozesswertes (°C)
PV_In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Temperature\TemInC.Out)
1	PV_Out		Prozesswert (Detergent\DETERGENT. TEMP_AI; TIC_DetHeat\C.PV)

TIT_DetHeat

Die Anzeige-Messstelle "TIT_Detheat" wird zum Erfassen und Anzeigen der Flüssigkeitstemperatur im Heizkreislauf verwendet. Die Messstelle "TIT_Detheat" ist eine Instanz des CMT "AMon" mit folgenden selektierten Varianten:

- Opt_PV_Scale
- PV_In

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
PV_Unit	IN	1001	Einheit des Prozesswertes (°C)
PV_In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Temperature\TempTIT_DetHeat.Out)

YC_DetHeat

Das Ventil, das von der Messstelle "YC_DetHeat" angesprochen wird, regelt den Durchfluss des Heizmediums im Heizkreislauf. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "DETERGENT". Die Stellwertvorgabe erfolgt über die Regler-Messstelle "TIC_DetHeat". Die Messstelle "YC_Detheat" ist eine Instanz des CMTs "ValAn" mit folgenden selektierten Varianten:

- Ctrl
- FbkClose
- FbkOpen
- MV_Out
- Opt_lf_Ctrl
- Permit
- Rbk

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYC_Detheat\SimValveOpen.GE)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_Detheat\SimValveClose.LE)
Rbk	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYC_Detheat\SimRbk.Out)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_Detheat\V.Ctrl)
MV_Out	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YC_Detheat\V.MV)
V	OpenAut		Ansteuerbefehl zum Öffnen des Ventils (Detergent\DETERGENT.V2_OpenAut
from_Ctrl	In		Verschaltung zum Regler (TIC_DetHeat\to_Actor_Slave.Out)
to_Ctrl	Out		Verschaltung zum Regler (TIC_DetHeat.from_Actor_Slave)

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Hinweis Beim Verschalten von "V.OpenAut" und "DETERGENT.V2_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

YS_DetFreshWater

Das Ventil, das von der Messstelle "YS_DetFreshwater" angesprochen wird, steuert den Zulauf an Frischwasser in den Waschmitteltank. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "DETERGENT". Die Messstelle "YS_DetFreshWater" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl
- Intlock

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_FreshWater\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_FreshWater\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_DetFreshWater\V.Ctrl)
V	OpenAut		Ansteuerungsbefehl für Öffnen im Automatikmodus (Detergent\DETERGENT.V1_OpenAut)
Intlock	In01		Verriegelung des Ventils (Verschaltung zu Verriegelungslogik LM_CIP\E001.Out)

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Hinweis Beim Verschalten von "V.OpenAut" und "DETERGENT.V1_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

Der Baustein "Intlock" dient zur Verriegelung des Ventils. Damit wird sichergestellt, dass dieses nur geöffnet wird, wenn der Waschmitteltank nicht voll ist. Die Verriegelungslogik ist mit der PCS 7 Logic Matrix erstellt. Eine detaillierte Beschreibung der Verriegelungslogiken finden Sie in Kapitel 3.2 "Verriegelungen".

3.1.4 Nachspültank (POST RINSE TANK)

Der Nachspültank enthält das Frischwasser für das Nachspülen. Es wird bei der Nachspülphase entnommen. In den Tank wird kein Wasser über den Rücklauf geleitet. Im Anwendungsbeispiel wird das Wasser nicht aufbereitet und kann mit Umgebungstemperatur genutzt werden. Aus dem Nachspülwassertank kann jederzeit Flüssigkeit entnommen werden, solange der minimale Füllstand nicht unterschritten ist.

Aufbau

Folgende Abbildung zeigt den Aufbau des Nachspültanks:

Der Tank enthält zwei Füllstandsensoren, über die der maximale und der minimale Füllstand erfasst werden. Ist der minimale Füllstand erreicht, wird das Frischwasserventil geöffnet. Ist der maximale Füllstand erreicht, wird das Frischwasserventil geschlossen. Die Ansteuerung des Frischwasserventils erfolgt im Anwendungsbeispiel über die PCS 7 Logic Matrix.

Hinweis Der Aufbau des Nachspültanks hängt stark von den Anforderungen des Reinigungsprozesses ab. Als Vorlage für die Projektierung kann der Waschmitteltank (Messstellen und SFC-Typ "FILL_HEAT_CONC") genommen werden.

Bezeichnung	Technische Funktion/ CMT	Beschreibung
YS_FreshWaterPostrinse	"Val"	Messstelle Ventil Frischwasser Nachspültank
LSH_Postrinse	DMon	Erfassung max. Füllstand im Frischwassertank erreicht
LSL_Postrinse	DMon	Erfassung min. Füllstand im Frischwassertank erreicht

In der folgenden Tabelle erhalten Sie eine Übersicht der Bestandteile und der verwendeten CMTs:

Parametrierung

Im Folgenden wird die Parametrierung der einzelnen Messstellen beschrieben. Eine detaillierte Beschreibung der Ansteuerung des Frischwasserventils befindet sich im Kapitel 3.2 "Verriegelungen".

YS_FreshWaterPostrinse

Das Ventil, das von der Messstelle "YS_FreshwaterPostrinse" angesprochen wird, steuert den Zulauf an Frischwasser in den Nachspültank. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch den mit der PCS 7 Logic Matrix erstellten CFC "LM_CIP". Die Messstelle "YS_FreshWaterPostrinse" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl
- Intlock

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_FreshWaterPostR\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_FreshWaterPostR\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_FreshWaterPostrinse\V.Ctrl)
V	OpenAut		Ansteuerungsbefehl für Öffnen im Automatikmodus (LM_CIP\E005.Out)
Intlock	In01		Verriegelung des Ventils (Verschaltung zu Verriegelungslogik LM_CIP\E003.Out)

Der Baustein "Intlock" dient zur Verriegelung des Ventils. Damit wird sichergestellt, dass dieses nur geöffnet wird, wenn der Nachspültank nicht voll ist. Die Verriegelungslogik ist mit der PCS 7 Logic Matrix erstellt. Eine detaillierte Beschreibung der Verriegelungslogiken finden Sie in Kapitel 3.2 "Verriegelungen".

LSH_Postrinse

Die Anzeige-Messstelle "LSH_Postrinse" wird zum Erfassen und Anzeigen des maximalen Füllstands des Nachspültanks verwendet. Die Messstelle "LSH Postrinse" ist eine Instanz des CMT "DMon" mit selektierter Variante "In".

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Sim_Level_PostRTank\LSH.GE)
S	Out		Digitaler Ausgangswert (LM_CIP\C003.Dig1)

LSL_Postrinse

Die Anzeige-Messstelle "LSL_Postrinse" wird zum Erfassen und Anzeigen des minimalen Füllstands des Nachspültanks verwendet. Die Messstelle "LSL Postrinse" ist eine Instanz des CMT "DMon" mit selektierter Variante "In".

Baustein	Anschluss	Wert	Verwendung
In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Sim_Level_PostRTank\LSL.LE)
S	Out		Digitaler Ausgangswert (LM_CIP\C005.Dig1)

3.1.5 Vorspültank (PRE RINSE TANK)

Der Vorspültank enthält das Waschmittel für die Vorspülphase. Der Vorspültank wird im Anwendungsbeispiel durch den Rücklauf während der Reinigungsphasen gefüllt. Die Temperatur und die Waschmittelkonzentration der Flüssigkeit im Tank werden im Anwendungsbeispiel nicht geregelt.

Aufbau

Folgende Abbildung zeigt den Aufbau des Vorspültanks:

Der Tank enthält zwei Füllstandsensoren, über die der maximale und der minimale Füllstand erfasst werden. Die Erfassung des minimalen Füllstands dient im vorliegenden Anwendungsbeispiel nur zur Visualisierung. Ist der maximale Füllstand erreicht, wird das Ventil im Rücklauf geschlossen und verriegelt.

Hinweis Der Aufbau des Vorspültanks hängt stark von den Anforderungen des Reinigungsprozesses ab. Als Vorlage für die Projektierung kann der Waschmitteltank (Messstellen und SFC-Typ "FILL_HEAT_CONC") genommen werden.

Bezeichnung	Technische Funktion/ CMT	Beschreibung
LSH_Postrinse	DMon	Erfassung max. Füllstand im Frischwassertank erreicht
LSL_Postrinse	DMon	Erfassung min. Füllstand im Frischwassertank erreicht

In der folgenden Tabelle erhalten Sie eine Übersicht der Bestandteile und der verwendeten CMTs:

Parametrierung

Im Folgenden wird die Parametrierung der einzelnen Messstellen beschrieben. Eine detaillierte Beschreibung der Ansteuerung des Frischwasserventils befindet sich im Kapitel 3.2 "Verriegelungen".

LSH_PreRinse

Die Anzeige-Messstelle "LSH_PreRinse" wird zum Erfassen und Anzeigen des maximalen Füllstands des Vorspültanks verwendet. Die Messstelle "LSH_PreRinse" ist eine Instanz des CMT "DMon" mit selektierter Variante "In".

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Sim_Level_PretRTank\LSH.GE)
S	Out		Digitaler Ausgangswert (LM_CIP\C002.Dig1; CIP_Return\CIP_RETURN.LS2_Out)

LSL_PreRinse

Die Anzeige-Messstelle "LSL_ PreRinse" wird zum Erfassen und Anzeigen des minimalen Füllstands des Vorspültanks verwendet. Die Messstelle "LSL_PreRinse" ist eine Instanz des CMT "DMon" mit selektierter Variante "In".

Baustein	Anschluss	Wert	Verwendung
In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (Sim_Level_PreRTank\LSL.LE)

3.1.6 Mixer

Der Mixer ist der zu reinigende Anlagenteil des Anwendungsbeispiels und dient zur Veranschaulichung des Prozesses. Für den Mixer sind im Anwendungsbeispiel keine Messstellen projektiert.

Aufbau

Folgende Abbildung zeigt den Aufbau des Mixers:

3.1.7 Zulauf Mixer (TANK_IN)

Über den Zulauf des Mixers wird das Reinigungsmittel von der CIP-Anlage in den Mixer geleitet. Welches Reinigungsmittel zugeführt wird, ist über eine SFC-Typ-Instanz realisiert. Je nachdem welche Fahrweise ausgewählt ist, wird die entsprechende Flüssigkeit dem Mixer zugeführt. Die zugeführten Mengen werden über Reinigungsrezepte in SIMATIC BATCH definiert. Die Reinigung erfolgt mit Hilfe von Reinigungschargen und wird somit auch protokolliert.

Aufbau

Folgende Abbildung zeigt den Aufbau des Mixer Zulaufs:

Das Öffnen und Schließen der Ventile im Zulauf erfolgt über eine Instanz des SFC-Typs "TANK_IN" und der Messstelle "PuPa_Mixer".

In der folgenden Tabelle erhalten Sie eine Übersicht der Bestandteile und der verwendeten CMTs.

Bezeichnung	Technische Funktion/ CMT	Beschreibung
TANK_IN	SFC-Typ "TANK_IN"	Öffnen und Schließen der Ventile in Abhängigkeit von der vorgegebenen Fahrweise
LSH_Mixer	"DMon"	Erfassung max. Füllstand im Mixer erreicht
PuPa_Mixer		Messstelle für pulsförmige Ansteuerung Ventil Kanal
YS_TankInDrain	"Val"	Messstelle Ventil Kanal
YS_TankInMix	"Val"	Messstelle Ventil Zulauf Mixer

Parametrierung

Im Folgenden wird die Parametrierung der einzelnen Messstellen beschrieben. Eine detaillierte Beschreibung des SFC-Typ befindet sich im Kapitel 3.3 "Schrittketten".

LSH_Mixer

Die Anzeige-Messstelle "LSH_Mixer" wird zum Erfassen und Anzeigen des maximalen Füllstands des Mixers verwendet. Die Messstelle "LSH_Mixer" ist eine Instanz des CMT "DMon" mit selektierter Variante "In".

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimLevel_Mixer\LSH_Mixer.GE)

PuPa_Mixer

Die Messstelle "PuPa_Mixer" dient zur pulsförmigen Ansteuerung des Ventils, das zum Kanal führt. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "TANK_IN". Den pulsförmigen Steuerbefehl gibt die Messstelle "PuPa_Mixer" an die Messstelle "YS_TankInDrain" weiter.

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
BIPuPa			Eingefügt als "PuPa_Mixer" für Puls-Pause- Funktion
STRENGH	ModLiOp		Umschaltung Betriebsartenauswahl Hand/Veschaltung (Tank In\TANK_IN.PuPa_ModLiOp)

Hinweis Beim Verschalten von "PuPa_Mixer.ModLiOp" und "TANK_IN.PuPa_StartModLiOp" werden automatisch alle weiteren Verbindungen zwischen Puls-Pause-Baustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

YS_TankInDrain

Das Ventil, das von der Messstelle "YS_TankInDrain" angesprochen wird, steuert den Zulauf des Reinigungsmittels in den Kanal. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "TANK_IN" und der Messstelle "PuPa_Mixer". Die Messstelle "YS_TankInDrain" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl

Die Messstelle wurde um die folgenden Funktionen erweitertet:

- Or04 "OpenYS_TankInDrain"
- Or04 "CloseYS_TankInDrain"

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_TankIndrain\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_TankIndrain\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_TankInDrain\V.Ctrl)
OpenYS_Drain	In1		Öffnenimpuls (TANK IN\TANK_IN.V2_OpenAut)
	ln2		Öffnenimpuls (PUPA_Mixer\PuPa_Mixer.ActGrp01)
	Out		Öffnenimpuls (YS_TankInDrain\V.OpenAut)
CloseYS_Drain	In1		Schließenimpuls (TANK IN\TANK_IN.V2_CloseAut)
	In2		Schließenimpuls (PUPA_Mixer\PuPa_Mixer.ActGrp01 invertiert)
	Out		Schließenimpuls (YS_TankInDrain\V.CloseAut)

Baustein	Anschluss	Wert	Verwendung
V ModLiop Occupied StepNo BatchName BatchID	ModLiop		Umschaltung Betriebsartenauswahl Hand/Veschaltung (TANK IN\TANK_IN.V2_ModLiOp)
	Von Charge belegt (TANK IN\TANK_IN.QOCCUPIE)		
	StepNo		Chargen Schrittnummer (TANK IN\TANK_IN.QSTEP_NO)
	BatchName		Chargenbezeichnung (TANK IN\TANK_IN.QBA_NA)
	BatchID		Chargenkennung (TANK IN\TANK_IN.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (TANK IN\TANK_IN.QBA_EN)

Hinweis Beim Verschalten von "V.ModLiOp" und "TANK_IN.V2_ModLiOp" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

YS_TankInMix

Das Ventil, das von der Messstelle "YS_TankInMix" angesteuert wird, steuert den Zulauf des Reinigungsmittels in den Mixer. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "TANK_IN". Die Messstelle "YS_TankInMix" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_TankInMix\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (SimYS_TankInMix\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simuliertem Prozesswert (YS_TankInMix\V.Ctrl)

Baustein	Anschluss	Wert	Verwendung
V OpenAut Occupied StepNo BatchName BatchID	OpenAut		Ansteuerungsbefehl für Öffnen im Automatikmodus (TANK IN\TANK_IN.V1_OpenAut)
	Von Charge belegt (TANK IN\TANK_IN.QOCCUPIE)		
	StepNo		Chargen Schrittnummer (TANK IN\TANK_IN.QSTEP_NO)
	BatchName		Chargenbezeichnung (TANK IN\TANK_IN.QBA_NA)
	BatchID		Chargenkennung (TANK IN\TANK_IN.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (TANK IN\TANK_IN.QBA_EN)

Hinweis Beim Verschalten von "V.OpenAut" und "TANK_IN.V1_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

3.1.8 Ablauf Mixer

Über den Ablauf des Mixers wird das Reinigungsmittel zurück in CIP-Anlage geleitet.

Aufbau

Folgende Abbildung zeigt den Aufbau des Ablaufs des Mixers:

Das Öffnen und Schließen des Ventils und das Stoppen und Starten der Pumpe im Ablauf erfolgt über eine Instanz des SFC-Typs "TANK_OUT".

In der folgenden Tabelle erhalten Sie eine Übersicht der Bestandteile und der verwendeten CMTs.

Bezeichnung	Technische Funktion/ CMT	Beschreibung
TANK_OUT	SFC-Typ "TANK_OUT"	Öffnen und Schließen des VentilsStarten und Stoppen der Pumpe
LSL_Mixer	"DMon"	Erfassung min. Füllstand im Mixer erreicht
YS_TankOutMix	"Val"	Messstelle Ventil Ablauf Mixer
NS_Mixer	Mot	Messstelle zum Antrieb der Pumpe im Ablauf des Mixers

Parametrierung

Im Folgenden wird die Parametrierung der einzelnen Messstellen beschrieben. Eine detaillierte Beschreibung des SFC-Typ befindet sich im Kapitel 3.3 "Schrittketten".

LSL_Mixer

Die Anzeige-Messstelle "LSL_Mixer" wird zum Erfassen und Anzeigen des minimalen Füllstands des Mixers verwendet. Die Messstelle "LSL_Mixer" ist eine Instanz des CMT "DMon" mit selektierter Variante "In".

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Baustein	Anschluss	Wert	Verwendung
In	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simulierten Prozesswert (SimLevel_Mixer\LSL_Mixer.LE)

NS_Mixer

Die Pumpe, die von der Messstelle "NS_Mixer" angesprochen wird, dient zum Abpumpen der Flüssigkeit aus dem Mixer. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "TANK_OUT". Die Messstelle "NS_Mixer" ist eine Instanz des CMTs "Mot" mit folgenden selektierten Varianten:

- Permit
- Opt_1Fbk
- Start

Baustein	Anschluss	Wert	Verwendung
Fbk	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simulierten Prozesswert (SimNS_Mixer\SimFbkRun.Out)
Start	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simulierten Prozesswert (NS_Mixer\U.Start)
U	StartAut		Startbefehl im Automatikmodus (TANK OUT\TANK_OUT.M1_StartAut)
	Occupied		Von Charge belegt (TANK OUT\TANK_OUT.QOCCUPIE)
	StepNo		Chargen Schrittnummer (TANK OUT\TANK_OUT.QSTEP_NO)
	BatchName		Chargenbezeichnung (TANK OUT\TANK_OUT.QBA_NA)
	BatchID		Chargenkennung (TANK OUT\TANK_OUT.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (TANK OUT\TANK_OUT.QBA_EN)

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Hinweis Beim Verschalten von "U.StartAut" und "TANK_OUT.M1_StartAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

YS_TankOutMix

Das Ventil, das von der Messstelle "YS_TankOutMix" angesprochen wird, steuert den Ablauf des Reinigungsmittels aus dem Mixer. Die Ansteuerung der Messstelle erfolgt im Anwendungsbeispiel durch die SFC-Typ-Instanz "TANK_OUT". Die Messstelle "YS_TankOutMix" ist eine Instanz des CMTs "Val" mit folgenden selektierten Varianten:

- FbkClose
- FbkOpen
- Permit
- Opt_1Ctrl

Baustein	Anschluss	Wert	Verwendung
FbkOpen	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simulierten Prozesswert (SimYSTankOutMix\SimFbkOpen.Out)
FbkClose	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simulierten Prozesswert (SimYSTankOutMix\SimFbkClose.InvOut)
Ctrl	SimOn	1	Simulierter Prozesswert aktiv
	SimPV_In		Verschaltung zu simulierten Prozesswert (YS_TankOutMix\V.Ctrl)
V	OpenAut		Öffnenbefehl im Automatikmodus (TANK OUT\TANK_OUT.V1_OpenAut)
	Occupied		Von Charge belegt (TANK OUT\TANK_OUT.QOCCUPIE)
	StepNo		Chargen Schrittnummer (TANK OUT\TANK_OUT.QSTEP_NO)
	BatchName		Chargenbezeichnung (TANK OUT\TANK_OUT.QBA_NA)
	BatchID		Chargenkennung (TANK OUT\TANK_OUT.QBA_ID)
	BatchEn		Batch Belegungsfreigabe (TANK OUT\TANK_OUT.QBA_EN)

Die folgende Tabelle fasst die Verschaltungen zu anderen Messstellen und die Parametrierung zusammen:

Hinweis Beim Verschalten von "V.OpenAut" und "TANK_Out.V1_OpenAut" werden automatisch alle weiteren Verbindungen zwischen Ventilbaustein und SFC-Typ-Instanzen erstellt. Diese sind nicht in der vorhergehenden Tabelle aufgenommen.

3.2 Verriegelungen

Die im Anwendungsbeispiel vorhandenen Verrieglungsfunktionen wurden mit Hilfe der PCS 7 Logic Matrix erstellt. Folgende Verriegelungen sind im Anwendungsbeispiel enthalten:

- Verriegelung der Ventile zu den Tanks im Rück wenn die Tanks voll sind
- Verriegelung der Pumpe im Vorlauf wenn alle Ventile geschlossen sind
- Verriegelung des Frischwasserventils zum Nachspültank wenn dieser voll ist
- **Hinweis** Im Anwendungsbeispiel sind nicht alle Verriegelungen, die in einer realen Anlage vorhanden sein müssen, projektiert. Die projektierten Verriegelungen dienen lediglich zu Veranschaulichung von genutzten PCS 7-Funktionen.

Motorverriegelung Vorlauf

Zum Schutz des Motors im Vorlauf wird dieser verriegelt, wenn alle Ventile geschlossen sind. Sobald ein Ventil geöffnet ist, wird die Verriegelung aufgehoben. Mit Hilfe von Sprungtasten kann vom Bildbaustein der Motor-Messstelle zur verriegelungsverursachenden Messstelle navigiert werden.

Die folgenden Abbildungen zeigen die Verriegelung und die Navigation zur Verriegelungsursache:

NC_Supply/U	10	×
	Mode	Manual
Н	Command	Stop
	Setpoint	Internal
		Reset
	Ċ	Permission
TE	2	Interlock
		100, 1
	Setpoint	0,00 %
	Readback value	20,00 %
-		0,00
F		

1. Zunächst ist der Motor verriegelt.

- 2. Durch Klicken auf die Schaltfläche "Verriegelung" öffnet sich der Bildbaustein des zugehörigen Interlock Bausteins.
- 3. Im Interlockbaustein werden die Verriegelungen angezeigt.
- 4. Über die Sprungtasten kann zur Ursache navigiert werden.

- 🔺 LM_CIP/Matrix × LM_Matrix -10 6 ÷. <u>-</u> SIMATIC Logic Matrix t Output-Tag Link Viotor Grp Q Comment Input-Tag Unit Function Grp AIG Link Value Alarm limit Comment + S SupDetergent Valve Closed 0 0 🗢 B R 🔍 upply Valves Closed 4 N 03
- 5. Es öffnet sich die PCS 7 Logic Matrix mit voreingestelltem Filter auf den aktivierten Effekt.

- 6. Durch Linksklick auf die "Lupe" wird der Cause Bildbaustein geöffnet.
- 7. Über den Bildbaustein des Causes können Sie zu den Messstellen springen, die die Verriegelung hervorgerufen haben.

8. Im Bildbaustein der verursachenden Messstelle können Sie die Ursache beheben (im Anwendungsbeispiel durch öffnen des Ventils).

▲ YS_SupDetergent/V			×
Valve - Large		<u>∧</u> ∑≅≅≥2	···· 单
	Mode	Manual	
	Command	Close	
		Pesei	
	Ê	Permission	
Command			
	Open	Close	
Execution		K Cance	el

9. Nach Behebung der Ursache wird die Verriegelung aufgehoben.

🔺 NC_Supply/U		×
Motor speed control - larg	je 💅 🕄 🔹 👘	😽 🖸 🔄 📰 📰 🛶
H	Mode	Manual
	Command	Stop
	Setpoint	Internal
		Reset
	Ċ	Permission
	° 🖞	Interlock
		100,00
	Setpoint	0,00 %
	Readback value	0,00 %
		0,00
E ,LIL		

Ob die Verriegelung automatisch aufgehoben wird oder manuell rückgesetzt werden muss, wird in den Einstellungen der PCS 7 Logic Matrix festgelegt.

Hinweis Detaillierte Informationen zur PCS 7 Logic Matrix finden Sie im Handbuch "SIMATIC Prozessleitsystem PCS 7 Logic Matrix" (https://support.industry.siemens.com/cs/ww/de/view/109748784) und im Anwendungsbeispiel "Effiziente Projektierung von Verriegelungslogiken mit PCS 7 Logic Matrix" (https://support.industry.siemens.com/cs/ww/de/view/109482621).

3.3 Schrittketten (SFC-Typ-Instanzen)

Die CIP-Anlage ist für einen Batch-Betrieb ausgelegt. Innerhalb der Anlage gibt es verschiedene SFC-Typ-Instanzen mit verschiedenen Aufgaben. Nach ISA 88 beschreibt die SFC-Typ-Instanz die Technische Einrichtung. Diese werden in den folgenden Punkten beschrieben.

In der folgenden Tabelle erhalten Sie eine Übersicht der im Anwendungsbeispiel vorhandenen SFC-Typen.

SFC-Typ	Kommentar
CIP_RETURN	Ansteuerung Rücklauf der CIP-Anlage
CIP_SUPPLY	Ansteuerung Vorlauf der CIP-Anlage
FILL_HEAT_CONC	Ansteuerung Flüssigkeitsaufbereitung Waschmitteltank (keine BATCH- Funktionalität)
TANK_IN	Ansteuerung Zulauf des Mixers
TANK_OUT	Ansteuerung Ablauf des Mixers

3.3.1 CIP_RETURN

Die SFC-Typ-Instanz wird von SIMATIC BATCH in den Reinigungsrezepten gestartet und öffnet bzw. schließt die Ventile zu den Tanks und dem Kanal im Rücklauf der CIP-Anlage. Dies geschieht in Abhängigkeit von der gewählten Fahrweise (wird im Rezept definiert) und der Qualität der Flüssigkeit.

Fahrweisen

Die folgende Tabelle fasst die Fahrweisen des SFC-Typen "CIP_RETURN" zusammen:

Fahrweise	Kommentar
PRERINSE	Fahrweise für Vorspülphase
DETERGENT	Fahrweise für Waschphase
POSTRINSE	Fahrweise für Nachspülphase

Sollwerte

Die folgende Tabelle fasst die Sollwerte des SFC-Typen "CIP_RETURN" zusammen:

Sollwertname	Datentyp	Anschlussname	Einheit	Kommentar
TEMP_PRERINSE	REAL	PRE_TMP	°C	Temperatur Vorspülflüssigkeit
TEMP_DETERGENT	REAL	DET_TMP	°C	Temperatur Waschflüssigkeit
HYSTERESIS_TEMP	REAL	T_HYS	°C	Temperatur Hysterese
PRE_CON	REAL	PRE_CONC	mS	Waschmittel- konzentration Vorspülflüssigkeit
DET_CONC	REAL	DET_CONC	mS	Waschmittel- konzentration Waschflüssigkeit
HYSTERESIS_CONC	REAL	C_HYS	mS	Konzentration Hysterese

Steuerwerte

Die folgende Tabelle fasst die Steuerwerte des SFC-Typen "CIP_RETURN" zusammen:

Steuerwertname	Datentyp	Anschlussname	Anfangswert	Kommentar
SetTempRet	BOOL	SetTempRet	FALSE	Rücksetzbefehl für Simulationswerte

Hinweis Der Steuerwert "SetTempRet" dient im Anwendungsbeispiel zum Rücksetzen der simulierten Prozesswerte "Temperatur" und "Leitfähigkeit" der Flüssigkeit im Rücklauf auf einen definierten Anfangswert.

Bausteinkontakte

Die folgende Tabelle fasst die Bausteinkontakte des SFC-Typen "CIP_RETURN" zusammen:

Name	Baustein	Anschlussname	Kommentar
V1	VIvL	V1	Ventil zu Vorspültank
V2	VIvL	V2	Ventil zu Waschmitteltank
V3	VIvL	V3	Ventil zum Kanal
LS1	MonDiL	LS1	Füllstandüberwachung Vorspültank
LS2	MonDiL	LS2	Füllstandüberwachung Waschmitteltank

Schrittketten

Folgende Schrittketten sind im SFC-Typ "CIP_RETURN" projektiert:

- PRERINSE
- DETERGENT
- POSTRINSE
- COMPLETING_ABORT

COMPLETING_ABORT

Die Kette "COMPLETING_ABORT" führt folgende Aktionen aus:

- Schließt alle Ventile im Rücklauf und gibt diese für den Handbetrieb frei
- Setzt den SFC-Typ in den Zustand "IDLE"

Die folgende Tabelle fasst die Startbedingungen der Kette "COMPLETING_ABORT" zusammen:

SFC-Status	=	Wert	Logik
ABORTING	=	Aborting	OP
COMPLETING	=	Completi	UK UK

Folgende Abbildung zeigt den Aufbau der Schrittkette "COMPLETING_ABORT":

PRERINSE

Die Kette "PRERINSE" führt folgende Aktionen in der Vorspülphase aus:

- Setzt Ventile im Rücklauf zurück
- Setzt Betriebsartenwahl der über Ventile auf "über Verschaltung"
- Schalt die Ventile im Rücklauf in Automatikbetrieb
- Schließt Ventile zu den Tanks
- Öffnet Ventil zum Kanal
- Setzt SFC-Typ am Ende der Bearbeitung in den Zustand "Ready to Complete"

Die folgende Tabelle fasst die Startbedingungen der Kette "PRERINSE" zusammen:

SFC-Status	=	Wert	Logik
RUN	=	Run	
QCS	=	1	AND
READY_TC	=	0	

Die Kette "PRERINSE" bleibt solange aktiv, bis sie von der überlagerten Steuerung (SIMATIC BATCH) beendet wird.

Folgende Abbildung zeigt den Aufbau der Schrittkette "PRERINSE":

DETERGENT

Die Kette "DETERGENT" führt folgende Aktionen in der Waschphase aus:

- Setzt Ventile im Rücklauf zurück
- Setzt Betriebsartenwahl der über Ventile auf "über Verschaltung"
- Schalt die Ventile im Rücklauf in Automatikbetrieb
- Öffnet bzw. schlie
 ßt die Ventile in Abh
 ängigkeit von F
 üllst
 änden der Tanks und der Qualit
 ät der Fl
 üssigkeit
- Setzt den SFC-Typ in den Zustand "Ready to Complete" (in jedem Ventilschritt)

Für jedes Ventil, das geöffnet bzw. geschlossen wird, gibt es einen separaten Schritt ("Ventilschritt"). In diesem Schritt wird das entsprechende Ventil geöffnet und alle anderen Ventile geschlossen. In der anschließenden Transition wird geprüft, ob sich die Bedingungen geändert haben. Bei geänderten Bedingungen, wird entsprechend in einen anderen Ventilschritt gesprungen.

1 P	RE_TMP_AI	f(x) < 💌	<my calculation=""></my>	f(x)	
2 P	RE_CONC_AI	f(x) < 💌	<my 1="" calculation=""></my>	f(x)	
3		f(x) 👻		f(x)	& _
4		f(x) 💌		f(x)	
5		f(x) 💌		f(x)	
6 L	S2_Out.Value	f(x) = 💌	1	f(x)	≥1 _ _
7		f(x) 👻		f(x)	2
8		f(x) 👻		f(x)	& - 1 °
9		f(x) 👻		f(x)	
0		f(x) 🔫		f(x)	1

Die Berechnung der Bedingungen erfolgt direkt im SFC-Typ, wie in den folgenden Abbildungen dargestellt.

Berechnung	Da	Verschaltung	
My calculation	REAL		
🖂 🗕 SUB			
⊡ IN1	REAL	PRE_TMP_Q	
⊡ IN2	REAL	T_HYS_Q	
mel: My calculation> =	• (PRE_	_TMP_Q - T_HYS_Q)	

Hinweis Die Berechnungen der weiteren Bedingungen in diesem und in anderen SFC-Typen erfolgen nach dem gleichen Prinzip und werden im Anwendungsbeispiel nicht beschrieben.

Detaillierte Informationen zu Berechnungen im SFC finden Sie im Handbuch "SIMATIC Prozessleitsystem PCS 7 – SFC für SIMATIC S7 (V9.0) Kapitel 12.4.5 "Berechnungen in Schritten und Transitionen von SFC". https://support.industry.siemens.com/cs/ww/de/view/109748747

SFC-Status	=	Wert	Logik
RUN	=	Run	
QCS	=	2	AND
READY_TC	=	0	

Die folgende Tabelle fasst die Startbedingungen der Kette "DETERGENT" zusammen:

Die Kette "DETERGENT" bleibt solange aktiv, bis sie von der überlagerten Steuerung (SIMATIC BATCH) beendet wird.

Folgende Abbildung zeigt den Aufbau der Schrittkette "DETERGENT":

POSTRINSE

Die Kette "POSTRINSE" führt folgende Aktionen in der Waschphase aus:

- Setzt Ventile im Rücklauf zurück
- Setzt Betriebsartenwahl der Ventile auf "über Verschaltung"
- Schaltet die Ventile im Rücklauf in Automatikbetrieb
- Öffnet bzw. schließt die Ventile in Abhängigkeit von Füllständen der Tanks und der Qualität der Flüssigkeit
- Setzt den SFC-Typ in den Zustand "Ready to Complete" (in jedem Ventilschritt)

Für jedes Ventil, das geöffnet bzw. geschlossen wird, gibt es einen separaten Schritt ("Ventilschritt"). In diesem Schritt wird das entsprechende Ventil geöffnet und alle anderen Ventile geschlossen. In der anschließenden Transition wird geprüft, ob sich die Bedingungen geändert haben. Bei geänderten Bedingungen, wird entsprechend in einen anderen Ventilschritt gesprungen.

SFC-Status	=	Wert	Logik
RUN	=	Run	
QCS	=	3	AND
READY_TC	=	0	

Die folgende Tabelle fasst die Startbedingungen der Kette "POSTRINSE" zusammen:

Die Kette "POSTRINSE" bleibt solange aktiv, bis sie von der überlagerten Steuerung (SIMATIC BATCH) beendet wird.

Der Aufbau der Kette "POSTRINSE" ist identisch mit der Kette "DETERGENT".

3.3.2 CIP_SUPPLY

Die SFC-Typ-Instanz wird von SIMATIC BATCH in den Reinigungsrezepten gestartet und öffnet bzw. schließt die Ventile von den Tanks zum Vorlauf der CIP-Anlage. Dies geschieht in Abhängigkeit von der gewählten Fahrweise, welche im Rezept definiert wird. Zusätzlich wird die Pumpe im Vorlauf gestartet. Der Sollwert der Durchflussmenge wird im Rezept definiert. Bevor die Flüssigkeit der Tanks entnommen wird, wird geprüft, ob die entsprechenden Bedingungen erfüllt sind.

Fahrweisen

Die folgende Tabelle fasst die Fahrweisen des SFC-Typen "CIP_SUPPLY" zusammen:

Fahrweise	Kommentar
PRERINSE	Fahrweise für Vorspülphase
DETERGENT	Fahrweise für Waschphase
POSTRINSE	Fahrweise für Nachspülphase

Sollwerte

Die folgende Tabelle fasst die Sollwerte des SFC-Typen "CIP_SUPPLY" zusammen:

Sollwertname	Datentyp	Anschlussname	Einheit	Kommentar
RINSE_TIME	REAL	RINSE_TIME	S	Dauer der Phase
RINSE_FLOW	REAL	RINSE_FLOW	m³/h	Durchfluss der Flüssigkeit

Prozesswerte

Die folgende Tabelle fasst die Prozesswerte des SFC-Typen "CIP_SUPPLY" zusammen:

Name	Datentyp	Anschlussname	Kommentar
FCH_Level_Check	BOOL	FCH_Level	Genügend Flüssigkeit vorhanden
FCH_RUN	BOOL	FCH_RUN	Ist die Flüssigkeitsaufbereitung aktiv
FCH_HOLD	BOOL	RCH_HOLD	Ist die Flüssigkeitsaufbereitung angehalten

Steuerwerte

Die folgende Tabelle fasst die Steuerwerte des SFC-Typen "CIP_SUPPLY" zusammen:

Name	Datentyp	Anschlussname	Kommentar
Hold_LHC	BOOL	Hold_LHC	Anhalten der Flüssigkeitsaufbereitung
Resume_LHC	BOOL	Resume_LHC	Weiterlaufen der Flüssigkeiten

Hinweistexte

Die folgende Tabelle fasst die Hinweistexte des SFC-Typen "CIP_SUPPLY" zusammen:

Name	Nummer	Angezeigter Text	Kommentar
Tanks	1	CIP Tanks ready?	Hinweis, dass Flüssigkeit nicht aufbereitet bzw. Aufbereitung nicht gestartet ist.

Bausteinkontakte

Die folgende Tabelle fasst die Bausteinkontakte des SFC-Typen "CIP_SUPPLY" zusammen:

Name	Baustein	Anschlussname	Kommentar
V1	VIvL	V1	Ventil zu Vorspültank
V2	VIvL	V2	Ventil zu Waschmitteltank
V3	VIvL	V3	Ventil zu Nachspültank
M1	MotL	M1	Pumpe Vorlauf
TIMER1	BITimer	TIMER1	Timer Vorlauf

Schrittketten

Folgende Schrittketten sind im SFC-Typ "CIP_SUPPLY" projektiert:

- PRERINSE
- DETERGENT
- POSTRINSE
- COMPLETING_ABORT
- Holding
- Resuming

Die Instanz des SFC-Typen "CIP SUPPLY" ist mit dem Baustein "RinseTimer" verschaltet. Damit wird sichergestellt, dass die vorgegebene Verweildauer der Reinigungsflüssigkeit im zu reinigenden Anlagenteil verbleibt.

PRERINSE

Die Kette "PRERINSE" führt folgende Aktionen in der Vorspülphase aus:

- Prüft, ob Vorspülflüssigkeit den Qualitätsanforderungen entspricht und ausreichend vorhanden ist
- Hält Flüssigkeitsaufbereitung an
- Schaltet alle Ventile und die Pumpe in den Automatikbetrieb
- Schließt die Ventile von Waschmittel- und Nachspültank
- Öffnet Ventil von Vorspültank
- Startet Pumpe mit entsprechender Drehzahlvorgabe

Die folgende Tabelle fasst die Startbedingungen der Kette "PRERINSE" zusammen:

SFC-Status	=	Wert	Logik
RUN	=	Run	
QCS	=	1	AND

Die Kette bleibt aktiv, bis die vom Timer vorgegebene Zeit abgelaufen ist.

Folgende Abbildung zeigt den Aufbau der Schrittkette "PRERINSE":

DETERGENT

Die Kette "DETERGENT" führt folgende Aktionen in der Waschphase aus:

- Prüft, ob die Waschflüssigkeit den Qualitätsanforderungen entspricht und ausreichend vorhanden ist
- Hält Flüssigkeitsaufbereitung an
- Schaltet alle Ventile und die Pumpe in den Automatikbetrieb
- Schließt die Ventile von Vorspül- und Nachspültank
- Öffnet Ventil von Waschmitteltank
- Startet Pumpe mit entsprechender Drehzahlvorgabe
- Startet den Timer

Die folgende Tabelle fasst die Startbedingungen der Kette "DETERGENT" zusammen:

SFC-Status	=	Wert	Logik
RUN	=	Run	
QCS	=	2	AND

Die Kette bleibt aktiv, bis die vom Timer vorgegebene Zeit abgelaufen ist. Der Aufbau der Kette "DETERGENT" entspricht dem Aufbau der Kette "PRERINSE" mit folgendem Unterschied:

- Ventil zum Vorspültank wird geschlossen
- Ventil zum Waschmitteltank wird geöffnet

POSTRINSE

Die Kette "POSTRINSE" führt folgende Aktionen in der Nachspülphase aus:

- Prüft, ob die Nachspülflüssigkeit den Qualitätsanforderungen entspricht und ausreichend vorhanden ist
- Hält Flüssigkeitsaufbereitung an
- Schaltet alle Ventile und die Pumpe in den Automatikbetrieb
- Schließt die Ventile von Vorspül- und Waschmitteltank
- Öffnet Ventil von Nachspültank
- Startet Pumpe mit entsprechender Drehzahlvorgabe

Die folgende Tabelle fasst die Startbedingungen der Kette "POSTRINSE" zusammen:

SFC-Status	=	Wert	Logik
RUN	=	Run	
QCS	=	3	AND

Die Kette bleibt aktiv, bis die vom Timer vorgegebene Zeit abgelaufen ist. Der Aufbau der Kette "POSTRINSE" entspricht dem Aufbau der Kette "PRERINSE" mit folgendem Unterschied:

- Ventil zum Vorspültank wird geschlossen
- Ventil zum Nachspültank wird geöffnet

Completing_Aborting

Die Kette "Completing_Aborting" führt folgende Aktionen aus:

- Stoppt Pumpe im Vorlauf
- Setzt Flüssigkeitsaufbereitung fort
- Schließt alle Ventile im Vorlauf
- Setzt den Timer zurück
- Gibt Ventile und die Pumpe für den Handbetrieb frei

Die folgende Tabelle fasst die Startbedingungen der Kette "Completing_Aborting" zusammen:

SFC-Status	=	Wert	Logik
ABORTING	=	Aborting	OP
COMPLETING	=	Compliti	UK

Folgende Abbildung zeigt den Aufbau der Schrittkette "Completing_Aborting":

Holding

Die Kette "Holding" führt folgende Aktionen aus:

- Hält die Pumpe im Vorlauf an
- Hält den Timer an (indirekt durch Zustand "HELD = Held")

Die folgende Tabelle fasst die Startbedingungen der Kette "Holding" zusammen:

SFC-Status	=	Wert	Logik
HOLDING	=	Holding	AND

Folgende Abbildung zeigt den Aufbau der Schrittkette "Holding":

Resuming

Die Kette "Resuming" führt folgende Aktionen aus:

- Startet Pumpe im Vorlauf
- Startet Timer (indirekt durch Zustand "HELD = 0")

Die folgende Tabelle fasst die Startbedingungen der Kette "Resuming" zusammen:

SFC-Status	=	Wert	Logik
RESUMING	=	Resuming	AND

Folgende Abbildung zeigt den Aufbau der Schrittkette "Resuming":

3.3.3 FILL_HEAT_CONC

Die SFC-Typ-Instanz wird vom Bediener gestartet .Sie muss permanent aktiv sein, damit die Reinigungsflüssigkeit immer ausreichend in vorgeschriebener Qualität vorhanden ist.

Über die SFC-Typ-Instanz "FHC" vom SFC-Typen "FILL_HEAT_CONC" werden der Füllstand, die Temperatur und die Waschmittelkonzentration der Flüssigkeit erfasst und gegebenenfalls angepasst.

Im Anwendungsbeispiel "CIP" werden die Flüssigkeiten des Vor- und Nachspültanks nicht aufbereitet. Die Aufbereitung dieser Flüssigkeiten kann mit dem SFC-Typen "FILL_HEAT_CONC" durchgeführt werden.

Fahrweisen

Die folgende Tabelle fasst die Fahrweisen des SFC-Typen "FILL_HEAT_CONC" zusammen:

Fahrweise	Kommentar
PREPARE	Aufbereitung der Flüssigkeit

Sollwerte

Die folgende Tabelle fasst die Sollwerte des SFC-Typen "FILL_HEAT_CONC" zusammen:

Sollwertname	Datentyp	Anschlussname	Einheit	Kommentar
LEVEL	REAL	LEVEL	L	Füllstand Tank
HYSTERESIS_Level	REAL	L_HYS	L	Füllstand Hysterese
TEMPERATURE	REAL	TEMP	°C	Temperatur Flüssigkeit
HYSTERESIS_Temp	REAL	T_HYS	°C	Temperatur Hysterese
CONCENTRATION	REAL	CONC	mS	Konzentration Waschmittel
HYSTERESIS_Conc	REAL	C_HYS	mS	Konzentration Hysterese

Steuerwerte

Die folgende Tabelle fasst die Steuerwerte des SFC-Typen "FILL_HEAT_CONC" zusammen:

Name	Datentyp	Anschlussname	Kommentar
LEVEL_CHECK_1	BOOL	L_CHECK	Füllstand OK

Bausteinkontakte

Die folgende Tabelle fasst die Bausteinkontakte des SFC-Typen "FILL_HEAT_CONC" zusammen:

Name	Baustein	Anschlussname	Kommentar
V1	VIvL	V1	Ventil Frischwasser
V2	VlvAnL	V2	Ventil zu Temperaturregelung
M1	MotL	M1	Motor Zirkulationspupe
M2	MotL	M2	Motor Dosierpumpe
LS1	MonDiL	LS1	Füllstandüberwachung hoch
LS2	MonDiL	LS2	Füllstandüberwachung niedrig
PID1	PIDConL	PID1	Temperaturregler
PuPa1	BIPuPa	PuPa1	Puls-Pause für Dosierung

Schrittketten

Folgende Schrittketten sind im SFC-Typ "FILL_HEAT_CONC" projektiert:

- PREPARE
- Aborting

PREPARE

Die Kette "PREPARE" führt folgende Aktionen aus:

- Schaltet alle Ventile und Pumpen in den Automatikbetrieb
- Prüft Füllstand und füllt Flüssigkeit nach
- Misst und regelt die Temperatur der Flüssigkeit
- Misst Konzentration des Waschmittels und dosiert dieses nach

Die Kette wird vom Bediener gestartet.

Die folgende Tabelle fasst die Startbedingungen der Kette "PREPARE" zusammen:

SFC-Status	=	Wert	Logik
RUN	=	Run	
QCS	=	1	AND

Der Ablauf der Kette bleibt solange aktiv, bis sie durch den Bediener gestoppt wird. Zu Beginn einer Waschphase wird die Kette angehalten und am Ende der Waschphase fortgesetzt.

In der Kette wird zuerst geprüft, ob der Füllstand ausreichend ist und gegebenenfalls nachgeregelt werden muss. Ist der Füllstand ausreichend, wird geprüft, ob die Temperatur hoch genug ist und gegebenenfalls nachgeregelt werden muss. Wenn der Füllstand und die Temperatur eingestellt sind, dann wird die Konzentration des Waschmittels geprüft und gegebenenfalls nachgeregelt.

Die Dosierung des Waschmittels erfolgt mit Hilfe des mit der SFC-Typ-Instanz verschalteten BIPuPa-Bausteins. Über diesen wird die Dosierpumpe pulsförmig über einen festgelegten Zyklus angesteuert.

Die folgenden vier Abbildungen zeigen den Aufbau der Schrittkette "PREPARE". Der Ablauf der Aktionen:

- Die Ventile und die Pumpen in Automatikbetrieb setzen
- Die Zirkulationspumpe starten
- Den Füllstand prüfen
- Den Füllstand anpassen oder in die Schritte f
 ür die Temperatur- bzw. die Konzentrationspr
 üfung springen

Wird in der folgenden Abbildung gezeigt:

Der Ablauf der Aktionen:

- Den Füllstand einstellen (Frischwasserventil öffnen/schließen)
- Die Temperatur prüfen
- Die Temperatur anpassen oder in Schritte f
 ür die F
 üllstands- bzw. die Konzentrationspr
 üfung springen

Wird in der folgenden Abbildung gezeigt:

Der Ablauf der Aktionen:

- Die Temperatur einstellen (Flüssigkeit zirkulieren lassen)
- Die Konzentration prüfen
- Die Konzentration anpassen oder in den Schritt f
 ür die F
 üllstandpr
 üfung springen

Wird in der folgenden Abbildung gezeigt:

Der Ablauf der Aktionen:

- Konzentration einstellen (Puls-Pause-Ansteuerung der Dosierpumpe starten)
- Konzentration prüfen

• Dosierung erneut starten oder in Schritt für Füllstandprüfung springen Wird in der folgenden Abbildung gezeigt:

Aborting

Die Kette "Aborting" führt folgende Aktionen aus:

- Schließt alle Ventile
- Stoppt alle Pumpen
- Gibt alle angesteuerten Messstellen für den Handbetrieb frei

Die folgende Tabelle fasst die Startbedingungen der Kette "Aborting" zusammen:

SFC-Status	=	Wert	Logik
ABORTING	=	Aborting	AND

Folgende Abbildung zeigt den Aufbau der Schrittkette "Aborting":

3.3.4 TANK_IN

Die SFC-Typ-Instanz wird von SIMATIC BATCH in den Reinigungsrezepten gestartet und öffnet bzw. schließt das Ventil vor dem Mixer. Zusätzlich wird der "BIPuPa" zum Öffnen und Schließen des Ventils zum Kanal angesteuert. Die Vorgabe der Pulszeiten und Anzahl der Pulse wird im Rezept definiert.

Fahrweise

Die folgende Tabelle fasst die Fahrweisen des SFC-Typen "TANK_IN" zusammen:

Fahrweise	Kommentar
PRODUCTION	Fahrweise für Produktion
CIP	Fahrweise für Reinigung des Mixers

Sollwerte

Die folgende Tabelle fasst die Sollwerte des SFC-Typen "TANK_IN" zusammen:

Sollwertname	Datentyp	Anschlussname	Einheit	Kommentar
Loops	DINT	Loop		Anzahl der Schleifen
Loop_Time	REAL	Loop_Time	S	Dauer einer Schleife

Bausteinkontakte

Die folgende Tabelle fasst die Bausteinkontakte des SFC-Typen "TANK_IN" zusammen:

Name	Baustein	Anschlussname	Kommentar
V1	VIvL	V1	Ventil Mixer
V2	VIvL	V2	Ventil Kanal
PUPA	BIPuPa	PUPA	Anschluss für Puls- Pause-Baustein

Schrittketten

Folgende Schrittketten sind im SFC-Typ "TANK_IN" projektiert:

- PRODUCTION
- CIP
- COMPLETING_ABORT

PRODUCTION

Die Kette "PRODUCTION" führt folgende Aktionen aus:

- Setzt Betriebsartenwahl der Ventile auf "über Verschaltung"
- Schaltet die Ventile in Automatikbetrieb
- Öffnet Ventil zum Mixer

Die folgende Tabelle fasst die Startbedingungen der Kette "PRODUCTION" zusammen:

SFC-Status	=	Wert	Logik
RUN	=	Run	
QCS	=	1	AND

Die Kette "PRODUCTION" bleibt solange aktiv, bis sie von der überlagerten Steuerung (SIMATIC BATCH) beendet wird.

Folgende Abbildung zeigt den Aufbau der Schrittkette "PRODUCTION":

CIP

Die Kette "CIP" führt folgende Aktionen aus:

- Setzt Betriebsartenwahl der Ventile und des Puls-Pause-Baustein auf "über Verschaltung"
- Schaltet die Ventile und den Puls-Pause-Baustein in Automatikbetrieb
- Öffnet Ventil zum Mixer
- Startet den Puls-Pause-Baustein

Die folgende Tabelle fasst die Startbedingungen der Kette "CIP" zusammen:

SFC-Status	=	Wert	Logik
RUN	=	Run	
QCS	=	2	AND

Die Kette "CIP" bleibt solange aktiv, bis sie von der überlagerten Steuerung (SIMATIC BATCH) beendet wird.

Folgende Abbildung zeigt den Aufbau der Schrittkette "CIP":

COMPLETING_ABORTING

Die Kette "COMPLETING_ABORTING" führt folgende Aktionen aus:

- Schließt alle Ventile
- Gibt Ventile und Puls-Pause-Baustein für den Handbetrieb frei

Die folgende Tabelle fasst die Startbedingungen der Kette "COMPLETING_ABORTING" zusammen:

SFC-Status	=	Wert	Logik
ABORTING	=	Aborting	OR
COMPLETING	=	Compliti	

Folgende Abbildung zeigt den Aufbau der Schrittkette "COMPLETING_ABORTING":

3.3.5 Tank_OUT

Die SFC-Typ-Instanz wird von SIMATIC BATCH in den Reinigungsrezepten gestartet und öffnet bzw. schließt das Ablassventil des Mixers und startet bzw. stoppt die Pumpe zum Abpumpen des Mixers.

Fahrweise

Die folgende Tabelle fasst die Fahrweisen des SFC-Typen "TANK_OUT" zusammen:

Fahrweise	Kommentar	
PRODUCTION	Fahrweise für Produktion	
CIP	Fahrweise für Reinigung des Mixers	

Bausteinkontakte

Die folgende Tabelle fasst die Bausteinkontakte des SFC-Typen "TANK_OUT" zusammen:

Name	Baustein	Anschlussname	Kommentar
V1	VIvL	V1	Ventil Mixer
V2	VIvL	V2	Ventil Kanal
M1	MotL	M1	Motor für Pumpe

Schrittketten

Folgende Schrittketten sind im SFC-Typ "TANK_OUT" projektiert:

- PRODUCTION
- CIP
- COMPLETING_ABORT
- HOLDING
- RESUMING

PRODUCTION

Die Kette "PRODUCTION" führt folgende Aktionen in der Vorspülphase aus:

- Setzt Betriebsartenwahl des Ventils und des Motors auf "über Verschaltung"
- Schaltet das Ventil und den Motor in Automatikbetrieb
- Öffnet Ventil und startet Motor

Die folgende Tabelle fasst die Startbedingungen der Kette "PRODUCTION" zusammen:

SFC-Status	=	Wert	Logik
RUN	=	Run	AND
QCS	=	1	

Die Kette "PRODUCTION" bleibt solange aktiv, bis sie von der überlagerten Steuerung (SIMATIC BATCH) beendet wird.

Folgende Abbildung zeigt den Aufbau der Schrittkette "PRODUCTION":

CIP

Die Kette "CIP" führt folgende Aktionen aus:

- Setzt Betriebsartenwahl des Ventils und des Motors auf "über Verschaltung"
- Schaltet das Ventil und den Motor in Automatikbetrieb
- Öffnet Ventil und startet Motor

Die folgende Tabelle fasst die Startbedingungen der Kette "CIP" zusammen:

SFC-Status	=	Wert	Logik
RUN	=	Run	AND
QCS	=	2	

Die Kette "CIP" bleibt solange aktiv, bis sie von der überlagerten Steuerung (SIMATIC BATCH) beendet wird.

Folgende Abbildung zeigt den Aufbau der Schrittkette "CIP":

COMPLETING_ABORTING

Die Kette "COMPLETING_ABORTING" führt folgende Aktionen aus:

- Stoppt Motor und schließt das Ventil
- Gibt Ventil und Motor für den Handbetrieb frei

Die folgende Tabelle fasst die Startbedingungen der Kette "COMPLETING_ABORTING" zusammen:

SFC-Status	=	Wert	Logik
ABORTING	=	Aborting	OR
COMPLETING	=	Compliti	

Folgende Abbildung zeigt den Aufbau der Schrittkette "COMPLETING_ABORTING":

HOLDING

Die Kette "HOLDING" stoppt den Motor.

Die folgende Tabelle fasst die Startbedingungen der Kette "HOLDING" zusammen:

SFC-Status	=	Wert	Logik
HOLDING	=	Holding	AND

Folgende Abbildung zeigt den Aufbau der Schrittkette "HOLDING":

RESUMING

Die Kette "RESUMING" startet den Motor.

Die folgende Tabelle fasst die Startbedingungen der Kette "RESUMING" zusammen:

SFC-Status	=	Wert	Logik
RESUMING	=	Resuming	AND

Folgende Abbildung zeigt den Aufbau der Schrittkette "RESUMING":

3.4 SIMATIC BATCH

SIMATIC BATCH dient zur diskontinuierlichen Produktion. Mit Hilfe von SIMATIC BATCH lassen sich verschiedene Produkte auf einer Anlage produzieren. Die Herstellung erfolgt über Rezepte. In den Rezepten ist das Know-how enthalten, welches für die Produktion benötigt wird. Die Rezepte können von dem Bedienpersonal geändert werden. Der komplette Rezeptablauf mit Meldungen und Messwerten, sowie die Bedienereingriffe werden protokolliert.

Neben den Rezepten zur Herstellung des Produktes gibt es auch Rezepte, die zur Reinigung der Anlagenteile dienen.

3.4.1 Reinigungsrezepte

Reinigungsrezepte dienen zur Reinigung der für die Produktion notwendigen Anlagenteile.

Im Rezept enthaltene Informationen

Im Reinigungsrezept können folgende Informationen enthalten sein:

- Zu reinigender Anlagenteil
- Die Reinigungsdauer (Sollwerte für die Verweildauer der Flüssigkeiten im Anlagenteil)
- Die Temperatur der Reinigungsflüssigkeit
- Die Waschmittelkonzentration der Reinigungsflüssigkeit
- Die Menge an Reinigungsflüssigkeit (Durchfluss)

Für einen Anlagenteil können verschiedene Reinigungsrezepte erstellt werden. Diese unterscheiden sich in den oben genannten Punkten. Die Unterschiede hängen z. B. vom Verschmutzungsgrad der Anlage oder vom Produkt, das zuvor in der Anlage enthalten war, ab.

Aufbau Beispielrezept

Das Beispielreinigungsrezept "CIP Mixer" im Anwendungssbeispiel "CIP" ist für die Reinigung des Anlagenteils "Mixer". Es besteht aus den Teilrezeptprozeduren (TRP) "TRP MIXER" und "TRP CIP".

Die folgende Tabelle fasst die TRPs des Reinigungsrezeptes "CIP Mixer" zusammen:

TRP	Belegte Teilanlage	
RUP Mixer	MIXER	
RUP CIP	CIP	

Zu jeder TRP existieren die drei Rezeptoperationen (ROP) "PRERINSE", "DETERGENT" und "POSTRINSE". Die Namen der Rezeptoperationen entsprechen der aktuellen Reinigungsphase. Innerhalb der ROPs werden die Rezeptfunktionen (RFs) aufgerufen. Pro ROP sind zwei RFs enthalten, welche parallel laufen.

Die folgende Tabelle fasst die RFs des Reinigungsrezeptes "CIP Mixer" zusammen:

TRP	ROP	RF	Fahrweise
MIXER	PRERINSE	TANK_IN	CIP
		TANK_OUT	CIP
	DETERGENT	TANK_IN	CIP
		TANK_OUT	CIP
	POSTRINSE	TANK_IN	CIP
		TANK_OUT	CIP
CIP	PRERINSE	CIP_SUPPLY	PRERINSE
		CIP_RETURN	PRERINSE
	DETERGENT	CIP_SUPPLY	DETERGENT
		CIP_RETURN	DETERGENT
	POSTRINSE	CIP_SUPPLY	POSTRINSE
		CIP_RETURN	POSTRINSE

Zwischen den ROPs sind Synchronisationslinien, damit der Ablauf in den TRPs synchron verläuft. Am Ende des Rezeptes ist ein NOP-Schritt. Dieser ist notwendig, damit auch die letzten beiden ROPs synchron zueinander laufen.

Die folgende Abbildung beschreibt den Aufbau des im Anwendungsbeispiel "CIP" enthaltenen Reinigungsrezepts:

3.4.2 Reinigungschargen

Die Reinigungschargen werden als Auftrag in SIMATIC BATCH angelegt. Beim Anlegen der Charge wird das Rezept für die Reinigung festgelegt.

Es ist möglich, die Reinigungscharge direkt nach Ablauf einer Produktionscharge automatisch zu starten. So ist sichergestellt, dass nach der Produktion eines Produktes die Anlage wieder sauber ist und für die weitere Produktion genutzt werden kann.

4 Wissenswertes

4.1 Grundlagen

4.1.1 Beschreibung der einzelnen Funktionen

Nachfolgend sind die einzelnen Bestandteile einer CIP-Anlage beschrieben. Der Einstieg erfolgt über das Prozessbild der Visualisierungsoberfläche.

Das Prozessbild der CIP-Anlage besteht aus folgenden Hauptbestandteilen:

- 1. Rücklauf (CIP Return Modules)
- 2. Nachspültank (Post-rinse tank)
- 3. Waschmitteltank (Detergent tank)
- 4. Vorspültank (Pre-rinse tank)
- 5. Vorlauf (CIP Supply Modules)

1. Rücklauf

Der Rücklauf dient zur Wiedergewinnung der verwendeten CIP-Flüssigkeiten. Abhängig von den Füllständen in den Tanks, der Qualität (Temperatur und Waschmittelkonzentration) sowie der aktuellen Reinigungsphase wird die Flüssigkeit in die entsprechenden Tanks oder den Kanal geleitet. Dies geschieht mit Hilfe der Sensoren und Ventilen.

2. Nachspültank

Im Nachspültank wird die Reinigungsflüssigkeit (z. B. Wasser) für die finale Reinigungsphase gespeichert. Die Flüssigkeit kann entnommen werden, solange der Mindestfüllstand nicht unterschritten wird.
3. Waschmitteltank

Der Waschmitteltank enthält die Reinigungsflüssigkeit für die zweite Reinigungsphase. Im Tank wird die Flüssigkeit auf die vorgeschriebene Temperatur erhitzt und die nötige Waschmittelkonzentration hergestellt. Die Flüssigkeit wird permanent durch einen Heizkreislauf gepumpt, damit diese immer die vorgegebene Temperatur hat. In Abhängigkeit der Temperatur wird die Waschmittelkonzentration (über den Leitwert) gemessen. Wenn diese zu gering ist, dann wird Waschmittel nachdosiert.

Der Waschmitteltank kann auch mit Frischwasser gefüllt werden. Dies ist möglich, wenn keine CIP-Phase aktiv ist, da die Konzentration und die Temperatur wieder eingeregelt werden müssen.

Hinweis Der Waschmitteltank steht exemplarisch für einen Säure- oder Laugentank.

4. Vorspültank

Der Vorspültank enthält die Reinigungsflüssigkeit für die erste Reinigungsphase. Die Flüssigkeit entfernt Verschmutzungen und Produktreste aus den Rohren und Apparaturen.

Gefüllt wird der Tank mit Frischwasser oder CIP-Flüssigkeit aus den anderen Reinigungsphasen.

Der Tank kann gefüllt werden, solange der Höchstfüllstand nicht erreicht ist.

Ist aus verfahrenstechnischen Gründen für die Flüssigkeit eine bestimmte Temperatur und/oder eine bestimmte Konzentration an Waschmittel notwendig, kann die Flüssigkeit analog der Beschreibung des Waschmitteltanks aufbereitet werden.

5. Vorlauf

Über den Vorlauf werden die CIP-Flüssigkeiten von den CIP-Tanks in die zu reinigenden Anlagenteile geleitet. Der Zufluss aus den Tanks in den Vorlauf wird über Ventile gesteuert. Abhängig davon, welche Reinigungsphase aktiv ist, wird das entsprechende Ventil geöffnet. Die Durchflussmenge wird über eine Pumpe geregelt.

Bevor die Flüssigkeit entnommen wird, erfolgt die Prüfung, ob die Qualitätsanforderungen der Flüssigkeit erfüllt sind bzw. ob genügend Flüssigkeit vorhanden ist.

Weitere Funktionen

Neben der CIP-Anlage "CIP" enthält das Beispielprojekt noch den Anlagenteil "MIX PLANT". Dieser dient zur Veranschaulichung der Reinigung mit einer CIP-Anlage. Der Anlagenteil besteht aus dem zu reinigenden Mixer sowie den technischen Einrichtungen "TANK_IN" (Tankzulauf) und "TANK_OUT" (Tankablauf).

Vorteile dieser Lösung

- Reduzierung des erforderlichen Know-how zur Applikationsentwicklung
- Reduzierung des Projektierungsaufwandes
- Flexibler Aufbau und Anpassung durch technische Funktionen
- Einheitliche Strukturen

4.1.2 RI-Fließbild

Die folgende Abbildung zeigt das RI-Fließschema der CIP-Anlage. Es sind die Messstellen eingetragen, die im Projekt enthalten sind.

4.2 Verfahrenstechnik

Cleaning in Place (CIP)

Der Begriff "Cleaning in Place", kurz CIP, beschreibt ein Verfahren, das in der Prozessindustrie zur Reinigung der Anlagenteile eingesetzt wird. Der Vorteil des Verfahrens liegt darin, dass die Reinigung direkt im Anlagenteil vor Ort erfolgt, ohne dass dieser demontiert werden muss.

Für das CIP-Verfahren wird ein separater Anlagenteil in die Anlage eingefügt. In diesem wird die Reinigungsflüssigkeit aufbereitet und gespeichert. Die zu reinigenden Anlagenteile sind so konzipiert, dass Sie an den CIP-Anlagenteil angeschlossen werden können. Der CIP-Anlagenteil wird so positioniert, dass die Wege zu den zu reinigenden Anlagenteilen möglichst kurz sind.

4.3 Automatisierungstechnik

Das Unit-Konzept

Der Anlagenteil "CIP" kann in diesem Anwendungsbeispiel als Unit angesehen werden.

Der Begriff "Unit" steht für eine Einheit in verfahrenstechnischen Anlagen (Anlagenteil, Apparat, Maschinen) einschließlich der Sensorik, Aktorik und der zugeordneten Automatisierungssoftware, die in dieser Zusammenstellung der Komponenten häufig benötigt wird. Die Unit als "Typ" dient als Vorlage zur Erzeugung vieler, unterschiedlich parametrierbarer Instanzen.

ISA-88

Das Anwendungsbeispiel ist nach dem ISA-S88 Standard projektiert. Der Standard beschreibt einen Prozess in Bezug auf die vorhandene Ausrüstung (Physisches Modell), den definierten verfahrenstechnischen Prozess (Prozessmodell) und die Ausrüstung, die für die Produktion einer Charge genutzt wird (Modell des Steuerungsablaufs).

Die folgende Abbildung beschreibt den Aufbau des ISA-S88 Standards.

Hinweis Ausführliche Informationen zu ISA-S88.01 finden Sie im Handbuch "SIMATIC Prozessleitsystem PCS 7 SIMATIC BATCH V9.0" im Kapitel "Technologische Grundlagen nach ISA-88.01". Dieses Handbuch finden Sie unter folgendem Link: https://support.industry.siemens.com/cs/ww/de/view/109748661

4.4 Projektstruktur

4.4.1 Namenskonvention der CFC-Pläne

Für die Bezeichnung der Messstellen wurde eine einheitliche Namenskonvention verwendet, die Funktion wird nach der Europäische Norm EN 62424 bezeichnet. Die folgende Abbildung zeigt, wie eine Messstellenbezeichnung zusammengesetzt ist:

TIC_Detergent Funktion Bezeichnung T = Temperatur(Erstbuchstabe) I = Anzeige (Folgebuchstabe) C = Regelung (Folgebuchstabe)

Die folgende Tabelle enthält die in der Anwendung verwendeten Buchstaben und deren Bedeutung:

Erstbuchstabe	Bedeutung
F	Durchfluss ("Flow")
L	Füllstand ("Level")
Ν	Motor
Р	Druck ("Pressure")
Q	Leitwert
S	Geschwindigkeit, Drehzahl, Frequenz ("Speed")
Т	Temperatur ("Temperature")
Х	Frei wählbarer Erstbuchstabe
Y	Stellventil

Folgebuchstabe	Bedeutung
С	Regelung, Steuerung ("Control")
F	Verhältnis ("Fraction")
l	Anzeige ("Indication")
S	Binäre Steuerungsfunktion oder Schaltfunktion (nicht sicherheitsrelevant) ("Switching")
Т	Transmitter, Analogwertverarbeitung (Monitoring)
Н	Oben (High)
L	Unten (Low)

4.4.2 Technologische Sicht

Die Technologische Hierarchie des Anwendungsbeispiels "CIP" ist nach ISA S88.01 projektiert.

AS-Projekt

Im AS-Projekt "CIP_AS" ist die erste Technologische Hierarchieebene "PRODUCTION" als Anlage definiert und enthält die neutralen Hierarchieordner:

- "CIP", enthält den als Teilanlage definierten Hierarchieordner "CIP"
- "MIXER PLANT" enthält den als Teilanlage definierten Hierarchieordner "MIXER"
- "RECIPE CONTROL" enthält keine weiteren Objekte
- "Simulation" enthält die Simulationspläne für das Anwendungsbeispiel

Die Teilanlage "CIP" enthält den CFC-Plan "UNIT_CIP" mit dem "UNIT_PLC"-Baustein, die Hierarchieordner für die Technischen Einrichtungen "CIP_SUPPLY" und "CIP_RETURN" und die neutralen Hierarchieordner für die Tanks der CIP-Anlage. In diesen Ordnern befinden sich die notwendigen Messstellen.

Die Teilanlage "MIXER" enthält den CFC-Plan "UNIT_MIXER" mit dem "UNIT_PLC"-Baustein "UNIT_MIXER" und die Hierarchieordner für die Technischen Einrichtungen "TANK_IN" und "TANK_OUT". In diesen Ordnern befinden sich die notwendigen Messstellen.

Hinweis Die Simulationspläne dienen zur Veranschaulichung des Anwendungsbeispiels und werden nicht beschrieben.

OS-Projekt

Die Technologische Hierarchie im OS-Projekt ist von der Technologischen Hierarchie des AS-Projekts abgeleitet. Die neutralen Hierarchieordner "CIP", "MIX PLANT" und "RECIPE CONTROL" enthalten die Übersichtsbilder "OVERVIEW_CIP.pdl", "OVERVIEW_MIXPLANT.pdl" und "SIMATIC_BATCHOS.pdl". Die unterlagerten Ordner enthalten keine weiteren Objekte.

5 Anhang

5.1 Service und Support

Industry Online Support

Sie haben Fragen oder brauchen Unterstützung?

Über den Industry Online Support greifen Sie rund um die Uhr auf das gesamte Service und Support Know-how sowie auf unsere Dienstleistungen zu.

Der Industry Online Support ist die zentrale Adresse für Informationen zu unseren Produkten, Lösungen und Services.

Produktinformationen, Handbücher, Downloads, FAQs und Anwendungsbeispiele – alle Informationen sind mit wenigen Mausklicks erreichbar: <u>https://support.industry.siemens.com</u>

Technical Support

Der Technical Support von Siemens Industry unterstützt Sie schnell und kompetent bei allen technischen Anfragen mit einer Vielzahl maßgeschneiderter Angebote – von der Basisunterstützung bis hin zu individuellen Supportverträgen.

Anfragen an den Technical Support stellen Sie per Web-Formular: <u>www.siemens.de/industry/supportrequest</u>

SITRAIN – Training for Industry

Mit unseren weltweit verfügbaren Trainings für unsere Produkte und Lösungen unterstützen wir Sie mit innovativen Lernmethoden.

Mehr zu den angebotenen Trainings und Kursen sowie deren Standorte und Termine erfahren Sie unter: www.siemens.de/sitrain

Serviceangebot

Unser Serviceangebot umfasst folgendes:

- Plant Data Services
- Ersatzteilservices
- Reparaturservices
- Vor-Ort und Instandhaltungsservices
- Retrofit- und Modernisierungsservices
- Serviceprogramme und Verträge

Ausführliche Informationen zu unserem Serviceangebot finden Sie im Servicekatalog: https://support.industry.siemens.com/cs/sc

Industry Online Support App

Mit der App "Siemens Industry Online Support" erhalten Sie auch unterwegs die optimale Unterstützung. Die App ist für Apple iOS, Android und Windows Phone verfügbar: https://support.industry.siemens.com/cs/ww/de/sc/2067

https://support.industry.siemens.com/cs/ww/de/sc/

5.2 Links und Literatur

	Thema
\1\	Siemens Industry Online Support https://support.industry.siemens.com
\2\	Downloadseite des Beitrages https://support.industry.siemens.com/cs/ww/de/view/78463886
/3/	SIMATIC PCS 7 im Industry Online Support – Übersichtsseite https://support.industry.siemens.com/cs/ww/de/view/63481413
\4\	SIMATIC Prozessleitsystem PCS 7 Kompendium Teil C – Technische Funktionen mit SFC-Typen https://support.industry.siemens.com/cs/ww/de/view/109740191
\5\	SIMATIC Prozessleitsystem PCS 7 SIMATIC BATCH V9.0 https://support.industry.siemens.com/cs/ww/de/view/109748661
\6\	SIMATIC Prozessleitsystem PCS 7 Logic Matrix https://support.industry.siemens.com/cs/ww/de/view/109748784
\7\	Effiziente Projektierung von Verriegelungslogiken mit PCS 7 Logic Matrix https://support.industry.siemens.com/cs/ww/de/view/109482621
/8/	SIMATIC Prozessleitsystem PCS 7 SFC für SIMATIC S7 (V9.0) https://support.industry.siemens.com/cs/ww/de/view/109748747

5.3 Änderungsdokumentation

Version	Datum	Änderung
V1.0	10/2013	Erste Ausgabe
V2.0	02/15	Aktualisierung auf PCS 7 V8.1
V3.0	08/2016	 Aktualisierung auf PCS 7 V8.2 Implementierung PCS 7 Logic Matrix Messstellen auf Basis von CMTs Simulation auf Basis von CFCs SFC Kalkulationen
V4.0	12/2017	Aktualisierung auf PCS 7 V9.0