Legal information

Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.
Preface

Purpose of the documentation

This device manual supplements the system manual of the S7-1500 automation system and the function manuals. All functions that go beyond the system are described in the system manual.

With the information in this manual and the system manual, you will be able to commission the CP 1542-5.

See also Guide to the documentation (Page 7)

Conventions

Make sure you read the special notices below:

Note

A notice contains important information on the product described in the documentation, handling the product or about parts of the documentation you should pay particular attention to.

Names

- In this document, the term "CP" is also used instead of the full product name.
- The name STEP 7 is used to mean the STEP 7 Professional configuration tool.

SIMATIC NET glossary

Explanations of many of the specialist terms used in this documentation can be found in the SIMATIC NET glossary.

You will find the SIMATIC NET glossary here:

- SIMATIC NET Manual Collection or product DVD
 The DVD ships with certain SIMATIC NET products.
- On the Internet under the following entry ID:
 50305045 (http://support.automation.siemens.com/WW/view/en/50305045)
License conditions

Note
Open source software
Read the license conditions for open source software carefully before using the product.

You will find license conditions in the following documents on the supplied data medium:
- DOC_OSS-S7CMCP_74.pdf
- DOC_OSS-CP1542-5_76.pdf

Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, solutions, machines, equipment and/or networks. They are important components in a holistic industrial security concept. With this in mind, Siemens’ products and solutions undergo continuous development. Siemens recommends strongly that you regularly check for product updates.

For the secure operation of Siemens products and solutions, it is necessary to take suitable preventive action (e.g. cell protection concept) and integrate each component into a holistic, state-of-the-art industrial security concept. Third-party products that may be in use should also be considered. For more information about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-specific newsletter. For more information, visit http://support.automation.siemens.com.

Trademarks

The following and possibly other names not identified by the registered trademark sign ® are registered trademarks of Siemens AG:

SIMATIC NET, CP 1542-5
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>..</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Guide to the documentation</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Product overview</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.1 Properties</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2 Further functions</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Functional characteristics</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3.1 Transmission speeds supported</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3.2 Characteristic data of the DP interface</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3.3 Characteristics of S7 communication</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>Requirements for use</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.1 Configuration limits</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.2 Project engineering</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.3 Programming</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Connecting up / commissioning</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>5.1 Important notes on using the device</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>5.2 Installing and commissioning the CP 1542-5</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>5.3 Replacing a module without a programming device</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>5.4 Mode of the CPU - effect on the CP</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Interrupts, diagnostics messages, error and system alarms</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>6.1 Status and error display of the CP</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>6.2 Diagnostics options</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6.3 DP slave diagnostics</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6.4 Standard diagnostics</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>6.5 Device-specific diagnostics in DP-V1</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>6.6 DP diagnostics frames when the CPU is in STOP</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Technical specifications</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Approvals</td>
<td>35</td>
</tr>
<tr>
<td>Index</td>
<td>..</td>
<td>39</td>
</tr>
</tbody>
</table>
Introduction

The documentation of the SIMATIC products has a modular structure and covers topics relating to your automation system.

The complete documentation for the S7-1500 system consists of a system manual, function manuals and device manuals.

The STEP 7 information system (online help) also supports you when configuring and programming your automation system.

Overview of the documentation on communication with S7-1500

The following table lists additional documents that supplement this description of the CP 1542-5 and are available in the Internet.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Documentation</th>
<th>Most important contents</th>
</tr>
</thead>
</table>
 | | • Installation
 | | • Connecting
 | | • Commissioning |
 | | • Parameter assignment/addressing
 | | • Interrupts, error messages, diagnostics and system alarms
 | | • Technical specifications
 | | • Dimensional drawing | |
 | | • Diagnostics evaluation for hardware/software |
| Communication | Function manual: Communication (http://support.automation.siemens.com/WW/view/en/59192925) | • Overview |
 | | • PROFINET functions
<pre><code> | | • PROFINET diagnostics |
</code></pre>
<table>
<thead>
<tr>
<th>Topic</th>
<th>Documentation</th>
<th>Most important contents</th>
</tr>
</thead>
</table>
• PROFIBUS functions
• PROFIBUS diagnostics |
• Operation |
• Electromagnetic compatibility
• Lightning protection
• Housing selection |
• Principle of operation
• Use |
• Calculations |
• Tables of measured values |

SIMATIC manuals

All current manuals for SIMATIC products are available for download free of charge from the Internet http://www.siemens.com/automation/service&support.

CP/CM documentation in the Manual Collection (article number A5E00069051)

The “SIMATIC NET Manual Collection” DVD contains the device manuals and descriptions of all SIMATIC NET products current at the time it was created. It is updated at regular intervals.

Version History / Current Downloads for the SIMATIC NET S7 CPs/CMs

The “Version History/Current Downloads for SIMATIC NET S7 CPs (PROFIBUS)” provides information on all CPs available up to now for SIMATIC S7 (PROFIBUS).

Product overview

2.1 Properties

Article number, validity and product names

This description contains information on the following product:

CP 1542-5
Article number 6GK7 542-5FX00-0XE0
Hardware product version 1
Firmware version V1.0

Communications processor for connecting SIMATIC S7-1500 to PROFIBUS DP.

View of the CP

Figure 2-1 View of the CP 1542-5 with closed (left) and open (right) front cover

1. LEDs
2. Type plate
3. PROFIBUS interface: 1 x 9-pin D-sub female connector (RS-485)
Application

The communications processor CP 1542-5 is intended for operation in an S7-1500 automation system. The CP 1542-5 allows the connection of an S7-1500 station to a PROFIBUS fieldbus system.

Supported communications services

In its current configuration, the CP 1542-5 supports the following communications services:

- **PROFIBUS DP master (class 1)**
 - PROFIBUS DP according to EN 50170 DPV1, DP master
 - DP master mode for DP slaves complying with the PROFIBUS DPV0 and DPV1 standard
 - DP master mode for Siemens DP slaves
 - Direct data exchange (DP slave to DP slave)
 As a DP master, the CP 1542-5 is capable of enabling direct data exchange for “its” DP slaves.
 - SYNC / FREEZE
 The outputs or inputs can be synchronized by the user program using system function DPSYNC_FR.

- **PROFIBUS DP slave**
 PROFIBUS DP according to EN 50170 DPV1, DP slave

Note

DP master or DP slave

Please note, however: The CP 1542-5 only supports operation either as DP master or DP slave.

- **S7 communication**
 - PG communication for uploading / downloading of S7 configuration, diagnostics and routing
 - Operator control and monitoring functions (HMI communication)
 - Data exchange via S7 connections

The services of the CP 1542-5 listed above can be used independently at the same time.
2.2 Further functions

Enabling /disabling DP slave - in the standard system
DP slaves can be activated and deactivated by the user program using system function D_ACT_DP.

Diagnostics requests
As a DP master (class 1), the CP 1542-5 supports diagnostics requests of a DP master (class 2).

Getting the bus topology in a DP master system
The CP 1542-5 operating as DP master supports the measurement of the PROFIBUS bus topology in a DP master system using a diagnostics repeater (DP slave).
System function DP_TOPOL in the user program can instruct diagnostics repeaters to measure the PROFIBUS BUS topology in a DP master system.

Time-of-day synchronization - time master or time slave
The CP 1542-5 can be enabled for time-of-day synchronization. As an alternative, the CP can be configured as time master or time slave on PROFIBUS.

- Time master: The CP is synchronized using the time of day in the S7-1500 station and outputs the time of day on PROFIBUS. The output interval can be set.
- Time slave: The CP receives time-of-day frames on PROFIBUS and outputs the time within the S7-1500 station. The output interval within the S7-1500 station is set permanently to 10 seconds.

Note
Recommendation for setting the time
It is advisable to set the time-of-day master so that time-of-day frames are sent at intervals of approximately 10 seconds. This achieves as small a deviation as possible between the internal time and the absolute time.

Web diagnostics
With the aid of Web diagnostics of the CPU, you read the diagnostics data from an S7 station via the Web browser on the PG/PC.
In terms of the CP, the Web pages provide the following information:

- Module and status information
- Special information on the DP master system (status of the DP slaves)
Functional characteristics

3.1 Transmission speeds supported

The transmission speed is set with the SIMATIC STEP 7 configuration software.

Note
Remember the cable length
The permitted cable length must be kept to depending on the transmission speed.

Refer to the information in the section Technical specifications (Page 33)

3.2 Characteristic data of the DP interface

General characteristic data

No special program blocks are required for DP mode. The interfacing to the distributed I/O is by direct I/O access or using program blocks (SFCs/SFBs) of the CPU.

Table 3- 1 General characteristic data of DP mode

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanation / values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of operable DP slaves</td>
<td>32</td>
</tr>
<tr>
<td>Max. size of the input area of all DP slaves</td>
<td>2 Kbytes</td>
</tr>
<tr>
<td>Max. size of the output area of all DP slaves</td>
<td>2 Kbytes</td>
</tr>
<tr>
<td>Maximum size of the input area per DP slave</td>
<td>244 bytes</td>
</tr>
<tr>
<td>Maximum size of the output area per DP slave</td>
<td>244 bytes</td>
</tr>
<tr>
<td>Max. size of the consistent area for a module</td>
<td>128 bytes</td>
</tr>
</tbody>
</table>
3.3 Characteristics of S7 communication

Diagnostics requests

As a DP master (class 1), the CP 1542-5 supports diagnostics requests of a DP master (class 2).

DP startup behavior

Note

Increasing the default value for startup parameters - configuration of the CPU

In some situations, it is necessary to increase the default value for the startup parameter "Parameter assignment time for the distributed I/O" in the configuration of the CPU:

- When there is a large number of modules (DP slaves) configured that can be assigned parameters.
- When a high value is configured for the constant bus cycle time in the network properties of the PROFIBUS DP line.

3.3 Characteristics of S7 communication

General characteristic data

The following information is important when operating S7 connections:

Table 3-2 General characteristics of S7 connections

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Explanation / values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of S7 connections that can be operated via PROFIBUS</td>
<td>Operable in total: Max. 16</td>
</tr>
<tr>
<td></td>
<td>The value depends on the S71500 CPU being used.</td>
</tr>
</tbody>
</table>
Requirements for use

4.1 Configuration limits

When using the CP type described here, the following limits apply:

- The number of CPs that can be operated in a rack depends on the CPU type being used.

Note the information in the documentation of the CPU, see Guide to the documentation (Page 7)

4.2 Project engineering

Configuration and downloading the configuration data

When the configuration data is downloaded to the CPU, the CP 1542-5 is supplied with the configuration information. The configuration data can be downloaded to the CPU via PROFIBUS or any PROFINET interface of the S7-1500 station.

The following version of STEP 7 is required:

<table>
<thead>
<tr>
<th>STEP 7 version and additional modules</th>
<th>Functions of the CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 7 Professional V12 SP1</td>
<td>The full functionality of the CP 1542-5 (6GK7 542 5FX00 0XE0) can be configured</td>
</tr>
</tbody>
</table>

4.3 Programming

Program blocks

For communications services, there are preprogrammed program blocks (instructions) available as the interface in your STEP 7 user program.

Table 4- 1 Instructions for PROFIBUS DP

<table>
<thead>
<tr>
<th>System blocks and system functions</th>
<th>Meaning when used with CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPSYC_FK</td>
<td>DP slaves synchronize / freeze inputs (SYNC/FREEZE instruction)</td>
</tr>
<tr>
<td>DPNRM_DG</td>
<td>Reading the diagnostics data of a DP slave</td>
</tr>
<tr>
<td>DP_TOPOL</td>
<td>Detecting the topology for the DP master system</td>
</tr>
<tr>
<td>WRREC</td>
<td>Writing the data record of a DP slave</td>
</tr>
</tbody>
</table>
System blocks and system functions

<table>
<thead>
<tr>
<th>System blocks and system functions</th>
<th>Meaning when used with CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDREC</td>
<td>Reading the data record of a DP slave</td>
</tr>
<tr>
<td>GETIO</td>
<td>Reading the process image of a DP standard slave</td>
</tr>
<tr>
<td>SETIO</td>
<td>Transferring the process image of a DP standard slave</td>
</tr>
<tr>
<td>GETIO_PART</td>
<td>Reading the process image partition of a DP standard slave</td>
</tr>
<tr>
<td>SETIO_PART</td>
<td>Transferring the process image partition of a standard DP slave</td>
</tr>
<tr>
<td>D_ACT_DP</td>
<td>Disable / enable DP slaves</td>
</tr>
<tr>
<td>DPRD_DAT</td>
<td>Reading consistent data of a DP standard slave</td>
</tr>
<tr>
<td>DPWR_DAT</td>
<td>Writing consistent data of a DP standard slave</td>
</tr>
<tr>
<td>RALRM</td>
<td>Event-driven reading of interrupt information (diagnostics, pull/plug, hardware interrupt) and DPV1-specific interrupts (update, status, vendor-specific interrupt)</td>
</tr>
</tbody>
</table>

Refer to the documentation of the program blocks in the online help of STEP 7

Calling program blocks (instructions) for distributed I/O

Several calls are necessary for the instructions of the distributed I/O.

The time required to process the job depends on load, round-trip time and transmission speed. If these instructions are called in a loop within one cycle, the cycle time could be exceeded.

Exceptions:

- Only one call is required for the RALRM instruction "receive alarm".

Program blocks for DPV1 (according to the PNO standard) ¹):

- Instruction RDREC "Read data record from a DP slave" corresponds to SFC59 in terms of function
- Instruction WRREC "Write data record to a DP slave" corresponds to SFC58 in terms of function
- Instruction RALRM "Read interrupt information from a DP slave" - call in an interrupt OB

¹) PNO: PROFIBUS Users Organization

See also

Connecting up / commissioning

5.1 Important notes on using the device

Safety notices on the use of the device

The following safety notices must be adhered to when setting up and operating the device and during all associated work such as installation, connecting up, replacing devices or opening the device.

General notices

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety extra low voltage</td>
</tr>
<tr>
<td>The equipment is designed for operation with Safety Extra-Low Voltage (SELV) by a Limited Power Source (LPS). (This does not apply to 100 V...240 V devices.)</td>
</tr>
<tr>
<td>This means that only SELV / LPS complying with IEC 60950-1 / EN 60950-1 / VDE 0805-1 must be connected to the power supply terminals. The power supply unit for the equipment power supply must comply with NEC Class 2, as described by the National Electrical Code (r) (ANSI / NFPA 70).</td>
</tr>
<tr>
<td>There is an additional requirement if devices are operated with a redundant power supply:</td>
</tr>
<tr>
<td>If the equipment is connected to a redundant power supply (two separate power supplies), both must meet these requirements.</td>
</tr>
</tbody>
</table>

General notices on use in hazardous areas

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of explosion when connecting or disconnecting the device</td>
</tr>
<tr>
<td>EXPLOSION HAZARD</td>
</tr>
<tr>
<td>DO NOT CONNECT OR DISCONNECT EQUIPMENT WHEN A FLAMMABLE OR COMBUSTIBLE ATMOSPHERE IS PRESENT.</td>
</tr>
</tbody>
</table>
5.1 Important notes on using the device

WARNING

Replacing components

EXPLOSION HAZARD

SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2 OR ZONE 2.

WARNING

Requirements for the cabinet/enclosure

When used in hazardous environments corresponding to Class I, Division 2 or Class I, Zone 2, the device must be installed in a cabinet or a suitable enclosure.

WARNING

Restricted area of application

This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or non-hazardous locations only.

WARNING

Restricted area of application

This equipment is suitable for use in Class I, Zone 2, Group IIIC or non-hazardous locations only.

WARNING

LAN attachment

A LAN or LAN segment with the attachments belonging to it should be within a single low-voltage supply system and within a single building. Make sure that the LAN is in an of type A environment according to IEEE 802.3 or in a type 0 environment according to IEC TR 62101.

Never establish a direct electrical connection to TNV networks (telephone network) or WANs (Wide Area Network).

WARNING

Requirements for the cabinet/enclosure

To comply with EU Directive 94/9 (ATEX95), this enclosure must meet the requirements of at least IP54 in compliance with EN 60529.
5.2 Installing and commissioning the CP 1542-5

WARNING

Suitable cables for temperatures in excess of 70 °C

If the cable or conduit entry point exceeds 70°C or the branching point of conductors exceeds 80°C, special precautions must be taken. If the device is operated at ambient temperatures above 50°C, the permitted temperature range of the selected cable must be suitable for the temperatures actually measured.

WARNING

Protection against transient voltage surges

Provisions shall be made to prevent the rated voltage from being exceeded by transient voltage surges of more than 40%. This criterion is fulfilled, if supplies are derived from SELV (Safety Extra-Low Voltage) only.

WARNING

Read the system manual "S7-1500 Automation System"

Prior to installation, connecting up and commissioning, read the relevant sections in the system manual "S7-1500 Automation System" (references to documentation, refer to the section Guide to the documentation (Page 7)).

Make sure that the power supply is turned off when installing/uninstalling the devices.

Configuration

Commissioning the CP fully is only possible if the STEP 7 project data is complete.
Connecting up / commissioning

5.2 Installing and commissioning the CP 1542-5

Procedure for installation and commissioning

<table>
<thead>
<tr>
<th>Step</th>
<th>Execution</th>
<th>Notes and explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>When installing and connecting up, keep to the procedures described for installing I/O modules in the system manual “S7-1500 Automation System”.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Connect the CP to PROFIBUS via the RS-485 socket.</td>
<td>Underside of the CP</td>
</tr>
<tr>
<td>4</td>
<td>Turn on the power supply.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Close the front covers of the module and keep them closed during operation.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>The remaining steps in commissioning involve downloading the STEP 7 project data.</td>
<td>The STEP 7 project data of the CP is transferred when you download to the station. To load the station, connect the engineering station on which the project data is located to the Ethernet/MPI interface of the CPU. You will find more detailed information on loading in the following sections of the STEP 7 online help: • Downloading project data • Using online and diagnostics functions</td>
</tr>
</tbody>
</table>
5.3 Replacing a module without a programming device

General procedure

The configuration data of the CP is stored on the CPU. This means that this module can be replaced by a module of the same type (identical article number) without using a PG.

PROFIBUS interface

The table below shows the terminal assignment of the PROFIBUS interface. The assignment corresponds to the standard assignment of RS485 interface.

<table>
<thead>
<tr>
<th>View</th>
<th>Signal name</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>RxD/TxD-P</td>
<td>Data line B</td>
</tr>
<tr>
<td>4</td>
<td>RTS</td>
<td>Request To Send</td>
</tr>
<tr>
<td>5</td>
<td>M5V2</td>
<td>Data reference potential (from station)</td>
</tr>
<tr>
<td>6</td>
<td>P5V2</td>
<td>Supply plus (from station)</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>RxD/TxD-N</td>
<td>Data line A</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note

The CP provides no 24 VDC power supply on the PROFIBUS interface. I/O devices (for example, PC adapter 6ES7972-0CB20-0XA0) are therefore not operational on the interface.)
5.4 Mode of the CPU - effect on the CP

You can change the mode of the CPU between RUN and STOP using the STEP 7 configuration software.

Depending on the operating status of the CPU, the CP behaves as described below.

Changing the CPU from STOP to RUN:

The CP loads configured and/or downloaded data into the work memory and then changes to RUN mode.

Changing the CPU from RUN to STOP:

The reaction is as follows in STOP:

- DP master mode: Change to the CLEAR mode.
- DP slave mode: Input data is sent to the DP master with the value "0" and a DP diagnostics alarm is sent.
- The following functions remain enabled:
 - The configuration and diagnostics of the CP (system connections for configuration, diagnostics, and PG channel routing are retained);
 - S7 routing function
 - Time-of-day synchronization
The status and error displays of the CP 1542-5 are described below. You can find additional information on "Interrupts" in the STEP 7 online help. You can find additional information on "Diagnostics" and "System alarms" in the System diagnostics (http://support.automation.siemens.com/WW/view/en/59192926) function manual.

6.1 Status and error display of the CP

LED display

The following figure shows the LEDs of the CP 1542-5.

Figure 6-1 LED display of the CP 1542-5 (without front cover)
Meaning of the LED displays

The CP 1542-5 has 3 LEDs to display the current operating status and the diagnostics status and these have the following meanings:

- **RUN/STOP LED** (one-color LED: green)
- **ERROR LED** (one-color LED: red)
- **MAINT LED** (one-color LED: yellow)

The following table shows the meaning of the various combinations of colors of the RUN/STOP, ERROR and MAINT LEDs.

<table>
<thead>
<tr>
<th>RUN/STOP LED</th>
<th>ERROR LED</th>
<th>MAINT LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED off</td>
<td>LED off</td>
<td>LED off</td>
<td>No supply voltage on the CP or supply voltage too low.</td>
</tr>
<tr>
<td>LED lit green</td>
<td>LED lit red</td>
<td>LED lit yellow</td>
<td>LED test during startup</td>
</tr>
<tr>
<td>LED lit green</td>
<td>LED lit red</td>
<td>LED off</td>
<td>Startup (booting the CP)</td>
</tr>
<tr>
<td>LED lit green</td>
<td>LED off</td>
<td>LED lit yellow</td>
<td>CP is in RUN mode.</td>
</tr>
<tr>
<td>LED flashing green</td>
<td>LED off</td>
<td>LED off</td>
<td>No CP configuration exists</td>
</tr>
<tr>
<td>LED lit green</td>
<td>LED flashing red</td>
<td>LED off</td>
<td>Maintenance, maintenance is demanded.</td>
</tr>
<tr>
<td>LED lit green</td>
<td>LED off</td>
<td>LED lit yellow</td>
<td>Maintenance is required.</td>
</tr>
<tr>
<td>LED lit green</td>
<td>LED off</td>
<td>LED flashing yellow</td>
<td>Module fault</td>
</tr>
</tbody>
</table>

Diagnostics with LEDs

Diagnostics using the LEDs is the first means of narrowing down errors/faults. To narrow the error/fault down even further, evaluate the message on the display of the S7-1500 CPU. If errors/faults occur, you can also identify them using the Web server or by evaluating the diagnostics buffer of the CPU. The diagnostics buffer of the CPU contains plain language information about the error/fault that has occurred. The diagnostics buffer is accessible via STEP 7, the display and the Web server.
6.2 Diagnostics options

Diagnostics options

You have the following diagnostics options available for the module:

- The LEDs of the module
 For information on the LED displays, refer to the section Status and error display of the CP (Page 23).
- STEP 7: The "Diagnostics" tab in the Inspector window
 Here, you can obtain the following information on the selected module:
 - Entries in the diagnostics buffer of the CPU
 - Information on the online status of the module
- STEP 7: Diagnostics functions in the "Online > Online and diagnostics" menu
 Here, you can obtain static information on the selected module:
 - General information on the module
 - Diagnostics status
 - Information on the PROFIBUS interface
 You can obtain further information on the diagnostics functions of STEP 7 in the STEP 7 online help.
- DP diagnostics
 The DP diagnostics of the CP is described below.
 The evaluation of diagnostics data records requested by the DP master and the diagnostics interrupts or diagnostics alarms of the DP slaves is handled in the user program of the DP master station.

6.3 DP slave diagnostics

DP-V1 slave: Diagnostics interrupt

The diagnostics data is transferred as a diagnostics interrupt. Diagnostics interrupts must be acknowledged by the DP master.

Supported diagnostics functions

The CP 1542-5 supports the following blocks of DP diagnostics:

- Standard diagnostics (6 bytes)
- Identifier-related diagnostics (2 to 17 bytes), depending on the number of configured transfer areas
- Module status (5 to 35 bytes), depending on the number of configured transfer areas
- If it exists: Diagnostics interrupt (8 bytes)
User program (DP master)

To read out the diagnostics data of the DP slave (DP single diagnostics), use the "DPNRM_DG" instruction on the DP master.

Diagnostics interrupts of DP-V1 slaves are evaluated in the user program of the master using the "RALRM" instruction.

You will find the required parameter assignment for the instructions in the STEP 7 online help.

Below, there is an overview of the structure of the diagnostics data.

Overview of standard diagnostics

<table>
<thead>
<tr>
<th>Byte</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Station status 1</td>
</tr>
<tr>
<td>1</td>
<td>Station status 2</td>
</tr>
<tr>
<td>2</td>
<td>Station status 3</td>
</tr>
<tr>
<td>3</td>
<td>Master address</td>
</tr>
<tr>
<td>4...5</td>
<td>Vendor ID of the slave</td>
</tr>
</tbody>
</table>

Overview of device-specific diagnostics

The device-specific diagnostics data depends on the protocol variant operating on the DP slave:

- DP-V1 slave

Table 6-2 Overview of device-specific diagnostics of the CP with DP-V1 slaves

<table>
<thead>
<tr>
<th>Byte</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Header</td>
</tr>
<tr>
<td>1</td>
<td>Variant Interrupt type</td>
</tr>
<tr>
<td></td>
<td>Variant Status type</td>
</tr>
<tr>
<td>2</td>
<td>Slot number</td>
</tr>
<tr>
<td>3</td>
<td>Variant Interrupt specifier</td>
</tr>
<tr>
<td></td>
<td>Variant Status specifier</td>
</tr>
<tr>
<td>4...62</td>
<td>Module-specific diagnostics data</td>
</tr>
</tbody>
</table>
6.4 Standard diagnostics

The coding of the standard diagnostics bytes is explained below.

Byte 0: Station status 1

Table 6-3 Structure of station status byte 1

<table>
<thead>
<tr>
<th>Bit no.</th>
<th>Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Master_Lock</td>
<td>The DP slave was assigned parameters by a different DP master. The DP slave can only be read by the configured productive DP master. This bit is set by the DP master when its bus address differs from the configured address.</td>
</tr>
<tr>
<td>6</td>
<td>Parameter_Fault</td>
<td>The last received parameter assignment frame was bad or not permitted. The DP slave sets this bit. Solution: Check the parameter settings for illegal parameters.</td>
</tr>
<tr>
<td>5</td>
<td>Invalid_Slave_Response</td>
<td>This bit is set by the DP master when no plausible response has been received from the DP slave.</td>
</tr>
<tr>
<td>4</td>
<td>Service_Not_Supported</td>
<td>This bit is set by the DP master when the master has requested a function that is not supported by the DP slave. Solution: Change the parameter setting to disable the function on the master.</td>
</tr>
<tr>
<td>3</td>
<td>Ext_Diag</td>
<td>This bit is set by the slave.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bit =1: There is diagnostics data in the slave-specific diagnostics area. The diagnostics data can be evaluated in the user program of the master.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bit =0: There may be status information in the slave-specific diagnostics area. The status information can be evaluated in the user program of the master.</td>
</tr>
<tr>
<td>2</td>
<td>Slave_Config_Check_Fault</td>
<td>The configuration data sent by the DP master is rejected by the DP slave. Cause: Configuration error. Solution: Change configuration.</td>
</tr>
<tr>
<td>1</td>
<td>Station_Not_Ready</td>
<td>The DP slave is not ready for productive data exchange. This is a temporary status that cannot be influenced by the DP master.</td>
</tr>
<tr>
<td>0</td>
<td>Station_Non_Existent</td>
<td>The DP slave is not reacting on the bus. This bit is set by the DP master 1 (the slave sets this bit permanently to 0). If the bit is set, the diagnostic bits have the state of the last diagnostics alarm or the initial value.</td>
</tr>
</tbody>
</table>
Byte 1: Station status 2

Table 6-4 Structure of station status byte 2

<table>
<thead>
<tr>
<th>Bit no.</th>
<th>Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Deactivated</td>
<td>The DP slave was identified as being not active in the local parameter record and it is not polled cyclically.</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td>- reserved -</td>
</tr>
<tr>
<td>5</td>
<td>Sync_Mode</td>
<td>The DP slave is in SYNC mode. The bit is set by the slave.</td>
</tr>
<tr>
<td>4</td>
<td>Freeze_Mode</td>
<td>The DP slave is in FREEZE mode. The bit is set by the slave.</td>
</tr>
<tr>
<td>3</td>
<td>Watchdog_On</td>
<td>Watchdog monitoring is active on the DP slave. The bit is set by the slave.</td>
</tr>
<tr>
<td>2</td>
<td>Status_From_Slave</td>
<td>Bit =1: The diagnostics information comes from the DP slave. The bit is set permanently to 1 by the slave.</td>
</tr>
<tr>
<td>1</td>
<td>Static_Diag</td>
<td>Static diagnostics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the DP slave sets this bit, the DP master must fetch diagnostics data from the DP slave until the DP slave resets the bit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The DP slave sets this bit, for example when it is not capable of data transfer.</td>
</tr>
<tr>
<td>0</td>
<td>Parameter_Request</td>
<td>The DP slave sets this bit when it needs to have new parameters assigned and be reconfigured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If bit 0 and bit 1 are both set, bit 0 has the higher priority.</td>
</tr>
</tbody>
</table>

Byte 2: Station status 3

Table 6-5 Structure of station status byte 3

<table>
<thead>
<tr>
<th>Bit no.</th>
<th>Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Ext_Data_Overflow</td>
<td>If this bit is set, there is more diagnostics information available than indicated in the diagnostics data. This data cannot be displayed.</td>
</tr>
<tr>
<td>6...0</td>
<td>Reserved</td>
<td>- reserved -</td>
</tr>
</tbody>
</table>

Byte 3: Master address

The address of the DP master that assigned parameters to this DP slave is entered in the "Master_Add" byte.

If the DP slave did not have parameters assigned to it by any DP master, the DP slave sets the address 255 in this byte.

Bytes 4 and 5: Vendor ID of the slave ("Ident_Number")

The vendor ID ("Ident_Number") for the DP slave type is entered in bytes 4 and 5.

This identifier can be used to identify the slave.

The more significant part of the value is in byte 5.
6.5 Device-specific diagnostics in DP-V1

There are two variants of device-specific diagnostics with DP-V1 slaves:

- Interrupt type
- Status type

The two variants differ from each other in the coding of byte 1, bit 7 of the device-specific diagnostics data. The difference is component-specific.

Byte 0: Header

The two most significant bits have the value 00. This identifies the "module-specific diagnostics data" field (see bytes 4... 62) as a whole.

The remaining six bits indicate the length of the data field including byte 0.

Byte 1: Variant "Interrupt type"

Table 6-6 Structure of byte 1 of the device-specific diagnostics (variant "interrupt type")

<table>
<thead>
<tr>
<th>Bit no.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Value</td>
</tr>
<tr>
<td>0</td>
<td>Interrupt</td>
</tr>
<tr>
<td>6...0</td>
<td>Alarm_Type</td>
</tr>
<tr>
<td>0</td>
<td>- reserved -</td>
</tr>
<tr>
<td>1</td>
<td>Diagnostics interrupt</td>
</tr>
<tr>
<td>2</td>
<td>Hardware interrupt</td>
</tr>
<tr>
<td>3</td>
<td>Pull interrupt</td>
</tr>
<tr>
<td>4</td>
<td>Plug interrupt</td>
</tr>
<tr>
<td>5</td>
<td>Status interrupt</td>
</tr>
<tr>
<td>6</td>
<td>Update interrupt</td>
</tr>
<tr>
<td>7...31</td>
<td>- reserved -</td>
</tr>
<tr>
<td>32...126</td>
<td>Vendor-specific</td>
</tr>
<tr>
<td>127</td>
<td>- reserved -</td>
</tr>
</tbody>
</table>

If status interrupts are received in quick succession, older status interrupts may be overwritten by newer interrupts.
Interrupts, diagnostics messages, error and system alarms

6.5 Device-specific diagnostics in DP-V1

Byte 1: Variant "Status type"

Table 6-7 Structure of byte 1 of the device-specific diagnostics (variant "status type")

<table>
<thead>
<tr>
<th>Bit no.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Value</td>
</tr>
<tr>
<td>1</td>
<td>Status information</td>
</tr>
<tr>
<td>6...0</td>
<td>Status_Type</td>
</tr>
<tr>
<td>0</td>
<td>- reserved -</td>
</tr>
<tr>
<td>1</td>
<td>Status information</td>
</tr>
<tr>
<td>2</td>
<td>Modul_Status (see also bytes 4...62)</td>
</tr>
<tr>
<td>3...31</td>
<td>- reserved -</td>
</tr>
<tr>
<td>32...126</td>
<td>Vendor-specific</td>
</tr>
<tr>
<td>127</td>
<td>- reserved -</td>
</tr>
</tbody>
</table>

Byte 2: Slot number

Slot number (1...n) of the slave module
0 is the placeholder for the entire device.

Byte 3: Variant "Interrupt specifier"

Table 6-8 Structure of byte 3 of the device-specific diagnostics (variant "interrupt specifier")

<table>
<thead>
<tr>
<th>Bit no.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7...3</td>
<td>Seq_No</td>
</tr>
<tr>
<td>2</td>
<td>Add_Ack</td>
</tr>
<tr>
<td>1...0</td>
<td>Alarm_Specifer</td>
</tr>
<tr>
<td>0</td>
<td>No further distinction</td>
</tr>
<tr>
<td>1</td>
<td>Interrupt appears, slot disrupted</td>
</tr>
<tr>
<td></td>
<td>The slot generates an interrupt due to an error.</td>
</tr>
<tr>
<td>2</td>
<td>Interrupt disappears, slot OK</td>
</tr>
<tr>
<td></td>
<td>The slot generates the interrupt and indicates that it has no further errors.</td>
</tr>
<tr>
<td>3</td>
<td>Interrupt disappears, slot still disrupted</td>
</tr>
<tr>
<td></td>
<td>The slot generates an interrupt and indicates that it has further errors.</td>
</tr>
</tbody>
</table>
Interrupts, diagnostics messages, error and system alarms

6.5 Device-specific diagnostics in DP-V1

Byte 3: Variant "Status specifier"

Table 6-9 Structure of byte 3 of the device-specific diagnostics (variant "status specifier")

<table>
<thead>
<tr>
<th>Bit no.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>7...2</td>
<td>reserved</td>
</tr>
<tr>
<td>1...0</td>
<td>Status_Specifier</td>
</tr>
<tr>
<td>0</td>
<td>No further distinction</td>
</tr>
<tr>
<td>1</td>
<td>Status appears</td>
</tr>
<tr>
<td>2</td>
<td>Status disappears</td>
</tr>
<tr>
<td>3</td>
<td>reserved</td>
</tr>
</tbody>
</table>

Bytes 4...62: Module-specific diagnostics: General coding

This byte contains data with module-specific information that is described in the relevant module documentation. The relevant module is identified by the slot (byte 2).

Bytes 4...62: Module-specific diagnostics with "status type" and "module status"

With the variant "status type" of the device-specific diagnostics of DP-V1 slaves (see byte 1, bit 7) and the setting "Modul_Status" (see byte 1, bits 0...6), there are two status bits here for each slot (= module). Bits not required are set to 0.

Table 6-10 Structure of the bytes for module-specific diagnostics data

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Module status 4</td>
</tr>
<tr>
<td>5</td>
<td>Module status 3</td>
</tr>
<tr>
<td></td>
<td>Module status 2</td>
</tr>
<tr>
<td></td>
<td>Module status 1</td>
</tr>
<tr>
<td>6</td>
<td>Module status 8</td>
</tr>
<tr>
<td>7</td>
<td>Module status 7</td>
</tr>
<tr>
<td></td>
<td>Module status 6</td>
</tr>
<tr>
<td></td>
<td>Module status 5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>39</td>
<td>...</td>
</tr>
<tr>
<td>40</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>62</td>
<td>Module status 236</td>
</tr>
<tr>
<td></td>
<td>Module status 235</td>
</tr>
<tr>
<td></td>
<td>Module status 234</td>
</tr>
<tr>
<td></td>
<td>Module status 233</td>
</tr>
</tbody>
</table>

The status bits are coded as follows:

Table 6-11 Meaning of the values of the status bits

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Data valid</td>
</tr>
<tr>
<td>01</td>
<td>Data invalid - error (for example short-circuit)</td>
</tr>
<tr>
<td>10</td>
<td>Data invalid - wrong module</td>
</tr>
<tr>
<td>11</td>
<td>Data invalid - no module plugged in</td>
</tr>
</tbody>
</table>
6.6 DP diagnostics frames when the CPU is in STOP

DP diagnostics frames when the CPU is in STOP

All diagnostics frames from DPV0 standard slaves and all DP interrupt frames from DP-S7/DPV1 standard slaves arriving when the CPU is in STOP are forwarded to the CPU. During module startup, the diagnostics frames must then be evaluated by a suitable user program.
Technical specifications

Note the information in the System description of SIMATIC S7-1500 (Page 7).
In addition to the information in the system description, the following technical specifications apply to the module.

<table>
<thead>
<tr>
<th>6GK7 542-5FX00-0XE0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product type name</td>
</tr>
</tbody>
</table>

Connection to PROFIBUS

- **Number** 1 x PROFIBUS interface
- **Design of the PROFIBUS interface**
 - **Connector** 1 x D-sub female connector (RS-485)
 - **Transmission speed**
 - 9.6 Kbps, 19.2 Kbps, 45.45 Kbps
 - 93.75 Kbps, 187.5 Kbps, 500 Kbps
 - 1.5 Mbps, 3 Mbps, 6 Mbps, 12 Mbps

Electrical data

- **Power supply**
 - via S7-1500 backplane bus 15 V
- **Current consumption**
 - From backplane bus 100 mA
 - Power dissipation 1.5 W

Insulation

Insulation tested with 707 VDC (type test)

Design, dimensions and weight

- **Module format** Compact module S7-1500, single width
- **Degree of protection** IP20
- **Weight** Approx. 270 g
- **Dimensions (W x H x D)** 35 x 142 x 129 mm
- **Installation options** Mounting in an S7-1500 rack

Product functions *

* You will find the product functions in the section Functional characteristics (Page 13).
Approvals

Approvals issued

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued approvals on the type plate of the device</td>
</tr>
<tr>
<td>The specified approvals - with the exception of the certificates for shipbuilding - have only been obtained when there is a corresponding mark on the product. You can check which of the following approvals have been granted for your product by the markings on the type plate. The approvals for shipbuilding are an exception to this.</td>
</tr>
</tbody>
</table>

Certificates for shipbuilding and national approvals

Under this entry, go to the required product and select the following settings: "Entry list" tab > entry type "Certificates".

Standards and test specifications

The device meets the following standards and test specifications. The test criteria for the module are based on these standards and test specifications.

IEC 61131–2

The SIMATIC NET S7 CPs described in this manual fulfill the requirements and criteria of the IEC 61131-2 standard (Programmable Logic Controllers, Part 2: equipment requirements and verifications).
CE mark

The SIMATIC NET S7-CPs described in this manual fulfill the requirements and protection goals of the following EC directives and meet the harmonized European standards (EN) that have been published for the programmable logic controllers in the official journals of the European communities:

- 94/9/EC "Equipment and protective systems intended for use in potentially explosive atmospheres" (Explosion Protection Directive)

The EC Declarations of Conformity are available for the responsible authorities according to the above-mentioned EC Directive at the following address:

- Siemens Aktiengesellschaft
 Industry Automation
 Industrielle Kommunikation SIMATIC NET
 Postfach 4848
 D-90327 Nürnberg

You will find the EC Declaration of Conformity at the following address / under the following entry ID on the Internet (http://support.automation.siemens.com/WW/view/en/16689636)

EMC directive

The SIMATIC NET S7 CPs listed above are designed for use in an industrial environment.

<table>
<thead>
<tr>
<th>Field of application</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emission</td>
</tr>
<tr>
<td>Industry</td>
<td>EN 61000–6–4</td>
</tr>
</tbody>
</table>

Explosion Protection Directives

Complying with EN 60079 (electrical apparatus for potentially explosive atmospheres; Type of protection "n")

EN 60079-15, EN 60079-0
II 3 G Ex nA IIC T4 Gc
DEKRA 12 ATEX 0240X

Note

When using (installing) SIMATIC NET products in hazardous area zone 2, make absolutely sure that the associated conditions are adhered to!

You will find these conditions here:
- In the SIMATIC NET Manual Collection under
 "All Documents" > "Use of subassemblies/modules in a Zone 2 Hazardous Area"
Notice for Australia - C-TICK

The above listed SIMATIC NET S7 CPs meet the requirements of the standard AS/NZS 2064 (Class A).

Notices for Canada

This class A digital device meets the requirements of the Canadian standard ICES-003.

AVIS CANADIEN

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

UL and CSA approval

Note
You will recognize the approval, UL/CSA or cULus, assigned to your product from the mark on the rating plate.

UL approval

UL Recognition Mark Underwriters Laboratories (UL) nach Standard UL 508:
- Report E 85972

CSA approval

CSA Certification Mark Canadian Standard Association (CSA) nach Standard C 22.2 No. 142:
- Certification Record 063533–C-000

cULus Approval, Hazardous Location

CULUS Listed 7RA9 IND. CONT. EQ. FOR HAZ. LOC.
Underwriters Laboratories Inc. complying with
- UL 508 (Industrial Control Equipment)
- CSA C22.2 No. 142 (Process Control Equipment)
- ANSI ISA 12.12.01, CSA C22.2 No. 213-M1987 (Hazardous Location)
- CSA–213 (Hazardous Location)
APPROVED for Use in
- Cl. 1, Div. 2, GP. A, B, C, D T3...T6
- Cl. 1, Zone 2, GP. IIC T3...T6
You will find the temperature class on the type plate on the module.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explosion Hazard -</td>
</tr>
<tr>
<td>Do not disconnect while circuit is live unless area is known to be non hazardous.</td>
</tr>
<tr>
<td>Explosion Hazard -</td>
</tr>
<tr>
<td>Substitution of components may impair suitability for Class I, Division 2.</td>
</tr>
</tbody>
</table>

Note

This equipment is suitable for use in Class I, Division 2, Group A, B, C, D or non-hazardous locations only.

Note

For devices with C-PLUG memory: The C-PLUG memory module may only be inserted or removed when the power is off.

Note

This plant has to be mounted according to the NEC (National Electrical Code) stipulations. When used in environments according to class I, division 2 (see above), the SIMATIC NET S7 CPs must be mounted in an enclosure.

FM approval

Factory Mutual Approval Standard Class Number 3611, Class I, Division 2, Group A, B, C, D, T3...T6 or Class I, Zone 2, Group IIC, T3...T6.

You will find the temperature class on the type plate on the module.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal injury and damage to property may occur.</td>
</tr>
<tr>
<td>In hazardous areas, personal injury or property damage can result if you create or break an electrical circuit during operation of a SIMATIC NET S7 CP (for example, by means of plug-in connections, fuses, switches).</td>
</tr>
<tr>
<td>WARNING - EXPLOSION HAZARD: DO NOT DISCONNECT EQUIPMENT WHEN A FLAMMABLE OR COMBUSTIBLE ATMOSPHERE IS PRESENT.</td>
</tr>
<tr>
<td>When used in hazardous locations (division 2 or zone 2), the device must be installed in an enclosure.</td>
</tr>
</tbody>
</table>
Index

A
- ATEX, 18

B
- Bus topology, 11

C
- Cabinet, 18
- Cable length, 13
- Cables for temperatures in excess of 70 °C, 19
- Calling program blocks (instructions) for distributed I/O, 16
- CE mark, 36
- Changeover
 - CPU from RUN to STOP, 22
 - CPU from STOP to RUN, 22
- Characteristic data, 13, 14
- Configuration data
 - Configuration and downloading, 15
- CSA
 - Approval, 37
- C-Tick
 - Approval, 37

D
- Diagnostics, 23
- Diagnostics options, 25
- Diagnostics repeater (DP slave), 11
- Diagnostics requests, 11, 14, 14
- Direct data exchange, 10
- Downloading project data, 20
- Downloads, 8
- DP diagnostics, 25
- DP diagnostics frames when the CPU is in STOP, 32
- DP master
 - Operation as, 10
 - DP master (class 1), 10, 11
 - DP master mode, 22
 - DP masters (class 2), 11
 - DP mode
 - General characteristic data, 13
- DP slave, 10, 11
 - Operation as, 10
- DP slave mode, 22
- DP slaves
 - General characteristic data, 13

E
- EMC - electromagnetic compatibility, 36
- Error status codes, 23

F
- FM
 - Approval, 38

G
- Glossary, 3

H
- Hazardous area, 17
- Hazardous areas according to ATEX, 18

I
- IEC 61131-2, 35
- Installation and commissioning, 20
- Instruction
 - ALARM, 16
 - D_ACT_DP, 16
 - DE_ACT, 11
 - DP_TOPOL, 15
 - DPNRM DG, 15
 - DPRD_DAT, 16
 - DPSYC.FR, 15
 - DPWR_DAT, 16
 - GETIO, 16
 - GETIO_PART, 16, 16
 - RALARM, 16
 - RALRM, 16
 - RDREC, 16, 16
 - SETIO, 16
 - WRREC, 15, 16
- Interrupts, 23
L
Limitations
 Number of operable CPs, 15

M
Manual Collection, 8
 Measured values
 of values of transfer or reaction times, 13
 Module replacement, 21

N
Number of operable CPs, 15

O
Operating mode of the CPU, 22

P
PG/OP communication, 10
 PROFIBUS
 DP-V0 and DPV1 standard, 10
 PROFIBUS DP
 EN 50170 DPV1, 10
 PROFIBUS interface, 21
 Program blocks, 16
 Protection against transient voltage surges, 19

R
Replacing components, 18
 RS-485 interface, 21
 RS-485 socket, 20

S
S7 communication, 10
 S7 connections, 14
 General characteristic data, 14
 S7 routing function, 22
 Safety extra low voltage, 17
 Safety notices, 17
 Siemens DP slave, 10
 SIMATIC NET glossary, 3
 SIMATIC NET Manual Collection, 8
 Startup parameters, 14
 Status and error displays, 23

STEP 7, 3, 15
SYNC / FREEZE, 10
System alarms, 23

T
Time master, 11
Time slave, 11
Time-of-day synchronization, 11, 22
Transmission speed, 13

U
UL
 Approval, 37

V
Version history, 8

W
Web diagnostics, 11
 S7 connections, 11