Overview

The SITRANS DA400 acoustic diagnostic unit acoustically measures the structure-borne noise:
- In the version for pump monitoring; on oscillating displacement pumps
- In the version for material flow monitoring; on pipes, conveying equipment or channels.

It comprises an electric diagnostic unit and up to four acoustic sensors.

Benefits

Benefits when pump monitoring
- Increased availability of the system through:
 - Advanced maintenance planning thanks to early recognition of defective components
 - Reduced downtimes (no fault locating necessary)
 - Increased maintenance intervals
 - Greater pump reliability
- Prevention of expensive consequential damage
- Increased safety of critical applications
- Early recognition of a reduction in power
- Increased productivity

Benefits when material flow monitoring
- Detection of insufficient or excessive inflow of material in a liquid or gas flow
- Detection of blockages or clogging
- Reduction of down times
- Increased product quality
- Increased availability
- Guaranteed operational safety
- Increased productivity

Application

In the version for pump monitoring, the SITRANS DA400 allows continuous, simultaneous and independent monitoring of up to four flow control valves in a pump for leaks. In addition, another four inputs are available for monitoring standard signals (e.g. diaphragm and temperature monitoring). This means that the condition of an oscillating displacement pump is monitored in every phase of its operation.

The SITRANS DA400 is used in all industries where an oscillating displacement pump is used.

The version for material flow monitoring monitors the material flow in liquids or gases that is usually as a result of impact or friction, e.g. against the pipe or channel wall.

If the acoustic diagnostic unit is used in potentially explosive areas, the sensors as well as the acoustic diagnostic unit can be installed in the Ex-zone.

If using the unit in potentially explosive areas, you have two options:
- Operation of the sensors over the safety barriers or
- Operation of the sensors over the SITRANS DA400 with explosion protection

Function

Product features
Continuous and independent status monitoring:
- Of the flow control valves, for leaks
- Of the membranes, for material fatigue
- Of the temperature loading of the hydraulic oil
- Of flowing bulk solids in pipes, conveying equipment or channels

Communication of the status to superordinate control systems:
- Via digital outputs
- Digitally, via PROFIBUS DP or PROFIBUS PA

Simple to operate and parameterize:
- Locally, via digital display and keys
- PROFIBUS DP and PROFIBUS PA

Mode of operation
Principle of measurement
Leaks in the flow control valves of oscillating displacement pumps are flows in which cavitation occurs. This results in sound waves that are transmitted to the valve housing, where they are recorded by the structure-borne sound sensor in the SITRANS DA400 on the outside.

The SITRANS DA400 utilizes the fact that with both an open valve and a closed intact valve, no cavitation occurs and the measured sound level thus corresponds to the operating noise of the pump. By contrast, with a closed defective valve cavitation does occur, which can be identified by a period increase in the sound level (see figures). The measured value from the SITRANS DA400 corresponds exactly to this increase in the sound level.

In the version for material flow monitoring, SITRANS DA400 continuously detects high-frequency acoustic oscillations by means of structure-born noise sensors.
Process Protection
Acoustic sensors

SITRANS DA400 Acoustic diagnostic unit

Function (continued)

These oscillations are created by:
- Friction and impact of bulk solids in:
 - pipes, raceways or channels
 - chutes
 - conveyors
- Friction and impact of mechanical parts
- Bursting of bubbles
- Cavitation
- Turbulence in gas and liquid flows

The following shows an example of signal levels at an oscillating displacement pump

Signal from structure-borne sound sensor with intact valve

Signal from structure-borne sound sensor with defective valve

Sensor operation

The structure-borne sound sensor works on the piezoelectric principle. The structure-borne sound is injected into the sensor via the sensor base (mounting surface) and inside it is converted into an electrical voltage by a piezo-ceramic element. This is amplified in the sensor and transmitted via the cable.

The sensor frequency range lies in the ultrasonic range (> 20 kHz). The sensor is non-directional, i.e. the angle at which the sound wave impacts on the sensor base is not important.

Mode of operation of the safety barrier

The safety barrier comprises intrinsically-safe circuits. These circuits serve to operate intrinsically-safe components such as sensors and to isolate safety from the non-hazardous area with the SITRANS DA400 diagnostic unit.

Technical specifications

<table>
<thead>
<tr>
<th>SITRANS DA400</th>
<th>Without Ex protection</th>
<th>With Ex protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustic channels</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cycle time</td>
<td>10 ms</td>
<td></td>
</tr>
<tr>
<td>Only for connection to intrinsically safe sensors with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. voltage U_0</td>
<td>≤ 5.5 V</td>
<td></td>
</tr>
<tr>
<td>Max. current I_0</td>
<td>≤ 70 mA</td>
<td></td>
</tr>
<tr>
<td>Max. power P_0</td>
<td>≤ 100 mW</td>
<td></td>
</tr>
<tr>
<td>Internal capacitance C_i</td>
<td>≤ 1.2 µF</td>
<td></td>
</tr>
<tr>
<td>Internal inductance L_i</td>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Universal inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle time</td>
<td>80 ms</td>
<td></td>
</tr>
<tr>
<td>Low pass filter time</td>
<td>1 s</td>
<td></td>
</tr>
<tr>
<td>Universal analog current input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td>< 105 Ω</td>
<td>< 12 Ω</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1 %</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.5 %</td>
<td></td>
</tr>
<tr>
<td>Fault signal</td>
<td>> 21 mA or < 3.6 mA (at 4 ... 20 mA)</td>
<td></td>
</tr>
<tr>
<td>Alarm monitoring hysteresis</td>
<td>0.5 %</td>
<td></td>
</tr>
<tr>
<td>Static destruction limit</td>
<td>40 mA, 4 V</td>
<td></td>
</tr>
</tbody>
</table>

For connection with approved intrinsically safe circuits with:

Max. supply voltage U_i	≤ 30 V	
Max. short-circuit current I_i	≤ 100 mA	
Max. power P_i	≤ 1 W	
Internal capacitance C_i	≤ 11 nF	
Internal inductance L_i	≤ 70 µH	

Universal input 24 V digital signal

Input resistance	> 19 kΩ	
Signal level Low	< 4.5 V or open	
Signal level High	> 7 V	
Hysteresis	> 1 V	
Static destruction limit	≤ 40 V	

For connection with approved intrinsically safe circuits with:

Max. supply voltage U_i	≤ 30 V	
Max. short-circuit current I_i	≤ 100 mA	
Max. power P_i	≤ 1 W	
Internal capacitance C_i	≤ 11 nF	
Internal inductance L_i	≤ 70 µH	

Universal input closing contact

| For connection to closing contact with the maximum values: |
Max. voltage U_0	≤ 10 V	
Max. current I_0	≤ 1 mA	
Max. power P_0	≤ 5 mW	
Internal capacitance C_i	≤ 11 nF	
Internal inductance L_i	≤ 70 µH	

8.2 V source for NAMUR signal (DIN EN 60947-5-6)

Open circuit voltage	8.2 V ± 0.3 V, short-circuit proof	
Input resistance	< 950 Ω	
Static destruction limit for incorrect wiring	≤ 20 V/-10 V	
Technical specifications (continued)

SITRANS DA400

Power supply

Without Ex protection
- Rated voltage: 24 V DC
- Operating range: 19 ... 36 V DC
- Current consumption: < 100 mA

With Ex protection
- Rated voltage: 16 V DC
- Operating range: 15 ... 17 V DC
- Current consumption: < 40 mA

For connection with approved intrinsically safe circuits with:

- Max. supply voltage U_S - ≤ 17.4 V
- Max. short-circuit current I_S - ≤ 191 mA
- Max. power P_S - ≤ 1.35 W
- Internal capacitance C_S - ≤ 33 nF
- Internal inductance L_S - ≤ 28 μH

Certificates and approvals

- Explosion protection to EN 50014, EN 50020 and EN 50021
- Intrinsic safety “i”
- TÜV (German Technical Inspectorate) 06 ATEX 2952
- Marking: II 2(1) G Ex ia IIC T6

Communication

- PROFIBUS DP
- RS 485, switchable terminating resistor
- Protocol: Cyclic with Master C1 and acyclic with Master C2
- Power supply: Bus-supplied
- Bus voltage: 9 ... 24 V
- Current consumption: 10.5 mA ± 10 %
- Bus connection with FISCO supply unit, ia/ib group IIC or IIB: Yes

Layer 1 and 2 from PROFIBUS PA, transfer technology from IEC 1158-2

- C2 connections
- 4 connections are supported in master class 2
- Device profile: PROFIBUS PA Profil V3.0 Rev. 1, Class B
- Device address: 1 ... 126 (126 factory-set)
- PC parameterization software: SIMATIC PDM (not included in the scope of delivery)

Conditions of use

Installation conditions

- Vertical wall mounting, cables fed in from below
- Climatic class: Class 4K4 according to EN 60721-3-4
- Mounting location: Zone 1 or zone 2
- Permissible ambient temperature: -20 ... +60 °C (-4 ... +140 °F)
 - Temperature class T5 ... T1
 - Temperature class T6
- Storage temperature: -20 ... +60 °C (-4 ... +140 °F)
- Mechanical load: Class 4M3 according to EN 60721-3-4
- Degree of protection to EN 60529: IP65
- Electromagnetic Compatibility: To EN 61326 and NAMUR NE 21

Usage limits for water

- Delivery side: ≥ 10 bar a
 - Number of strokes: Min. 4 min⁻¹, max. 10 ... 500 min⁻¹

Design

Weight (without options)

- Approx. 2.5 kg

Dimensions (W x H x D) in mm (inch)

- 172 x 320 x 80 (6.8 x 12.6 x 3.2)

Enclosure material

- Macrolon (polycarbonate + 20 % glass fibers)
- Makroon (Polycarbonate + 20 % glass fibers), surface attentuated with CrNi layer and painted

Electrical connection via screw terminals

- Rigid 2.5 mm (0.084 inch)
- Flexible 1.5 mm (0.59 inch)
- Flexible with connector sleeves 1.5 mm (0.59 inch)

Cable inlet via plastic cable joints

- 2 x Pg 13.5
- 5 x Pg 11
Process Protection
Acoustic sensors

SITRANS DA400 Acoustic diagnostic unit

Technical specifications (continued)

Sensor for SITRANS DA400

Setup
- Piezoceramic sensor with pre-amplifier
- Encapsulated electronics
- 4-wire cable with anti-kink sleeve

Conditions of use
Permissible ambient temperature
-40 ... +110 °C (-40 ... +230 °F)
Degree of protection to EN 60529
P66/IP68
Mechanical load
Class 4M7 according to EN 60721-3-4
Climatic class
Class 4K4 according to EN 60721-3-4

Design
Housing material
Stainless steel 1.4571 (316Ti SST)
Cable
Ends with wire protectors and cable shoe for connection to the SITRANS DA400
Weight
125 g (0.276 lb)
Mounting location
Zone 0/1 or zone 20/21/22
Dimensions (W x H x D) in mm (inch)
26 x 29 x 40 (1.02 x 1.14 x 1.57)

Power Supply
Power fed from device

Certificates and approvals

Explosion protection
Intrinsic safety ‘i’
TÜV 2005 ATEX 2876 X
Marking
II 1 G Ex ia IIC T6/T5/T4 or II 1 D Ex ia D 20/21/22 T160

Permissible ambient temperature
Category 1G
- Temperature class T4, T5
 -20 ... +60 °C (-4 ... +140 °F)
- Temperature class T6
 -20 ... +50 °C (-4 ... +122 °F)
- Category 2G
- Temperature class T4
 -40 ... +110 °C (-40 ... +230 °F)
- Temperature class T5
 -40 ... +80 °C (-40 ... +176 °F)
- Temperature class T6
 -20 ... +65 °C (-4 ... +149 °F)
- Category 1D or 2D
- Temperature class T160
 -40 ... +110 °C (-40 ... +230 °F)

Ex barriers for sensors

Application area
For the intrinsically safe supply of the acoustic sensors in zone 1; the safety barriers must be installed between the SITRANS DA400 acoustic diagnostic unit and the sensor if only the sensors are being operated in the Ex zone.

Input
A maximum of two sensors can be connected.

Conditions of use
Degree of protection to EN 60529
IP20
Permissible Ambient Temperature
-20 ... +60 °C (-4 ... +140 °F)

Design
Weight
115 g (0.254 lb)
Housing material
Plastic, polyamide
Type of installation
Installation on mounting rail NS 32 or NS 35/7.5
The acoustic diagnostic unit SITRANS DA400 and the safety barrier must be operated outside the Ex zone.

Dimensions (W x H x D) in mm (inch)
68 x 77 x 42 (2.68 x 3.03 x 1.65)

Ex barriers for sensors

Certificates and Approvals

Explosion protection
Intrinsic safety ‘i’
TÜV 05 ATEX 2917 X
Marking
II (2) G [Ex ib] IIC

Selection and ordering data

Article No.

SITRANS DA400 Acoustic diagnostic unit
- Monitors material flow in pipes, leakage in valves or oscillating pumps with up to 4 independent acoustic sensors.

Communication
- PROFIBUS DP
- PROFIBUS PA

Explosion protection
- Without
- With EEx ia/ib to ATEX 1)

Application software
- For continuous condition monitoring of positive displacement pumps
- For material flow monitoring in pipes, raceways and conveyors

SITRANS DA400 Acoustic diagnostic unit
- Monitors material flow in pipes, leakage in valves or oscillating pumps with up to 4 independent acoustic sensors.

Cable
(incl. pin and allen screw M6)
20 m
40 m
100 m

Safety barriers for sensors
For rail mounting NS 32 and NS35/7.5 in non-hazardous areas Explosion-protected output circuit EEx ib

1) Not in combination with trigger sensor.
Dimensional drawings

Sensor for SITRANS DA400, dimensions in mm (inch)

![Sensor Diagram]

- **Dimensions:**
 - Ø40 (1.57)
 - 9 (0.35)
 - Ø3 (0.12)
 - 6.5 (0.26)
 - 11 (0.43)
 - 7 (0.28)
 - 10 (0.39)
 - 28.5 (1.12)

Safety barrier for SITRANS DA400, dimensions in mm (inch)

![Safety Barrier Diagram]

- **Dimensions:**
 - 172 (6.77)
 - 94 (3.70)
 - 286 ± 0.2 (11.26 ± 0.008)
 - 152 ± 0.2 (5.98 ± 0.008)

SITRANS DA400, dimensions in mm (inch)

![DA400 Diagram]

- **Dimensions:**
 - Ø6.5 (0.26)
 - 15 (0.59)
 - 26 (1.02)
 - 70 (2.7)
 - 6 (0.24)
 - 28.5 (1.12)
 - 15 (0.59)
 - 26 (1.02)
 - 286 ± 0.2 (11.26 ± 0.008)

1) 3 mounting holes (M6)

© Siemens 2020
Process Protection
Acoustic sensors

SITRANS DA400 Acoustic diagnostic unit

Circuit diagrams

Safety barrier for SITRANS DA400, terminal assignment

<table>
<thead>
<tr>
<th>L+/L- (Power supply)</th>
<th>Supply 24V</th>
<th>DO 1</th>
<th>DO 2</th>
<th>DO 3</th>
<th>Sens 1</th>
<th>Sens 2</th>
<th>Sens 3</th>
<th>Sens 4</th>
<th>In 1</th>
<th>In 2</th>
<th>PROFIBUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>32</td>
<td>41</td>
<td>42</td>
<td>42</td>
<td>51</td>
<td>52</td>
<td>22</td>
<td>21</td>
<td>31</td>
</tr>
<tr>
<td>L+</td>
<td>L-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>DO 4 (Digital output)</td>
<td></td>
</tr>
<tr>
<td>Sens 1 (Sensor)</td>
<td></td>
</tr>
<tr>
<td>Sens 2 (Sensor)</td>
<td></td>
</tr>
<tr>
<td>Sens 3 (Sensor)</td>
<td></td>
</tr>
<tr>
<td>Sens 4 (Sensor)</td>
<td></td>
</tr>
<tr>
<td>In 1 (Input)</td>
<td></td>
</tr>
<tr>
<td>In 2 (Input)</td>
<td></td>
</tr>
</tbody>
</table>

- Signal A (green) with PROFIBUS DP, any with PROFIBUS PA
- Signal B (red) with PROFIBUS DP, any with PROFIBUS PA

Ground
Digital input

L+...L- (Any polarity with PROFIBUS PA)
Green
Brown
Black
Analog current input +