Application description • 11/2016

Position Control with S7-1200 and SINAMICS V90 PN (S mode)

SINAMICS V90 Profinet Version

Warranty and liability

Note

The Application Examples are not binding and do not claim to be complete regarding the circuits shown, equipping and any eventuality. The Application Examples do not represent customer-specific solutions. They are only intended to provide support for typical applications. You are responsible for ensuring that the described products are used correctly. These Application Examples do not relieve you of the responsibility to use safe practices in application, installation, operation and maintenance. When using these Application Examples, you recognize that we cannot be made liable for any damage/claims beyond the liability clause described. We reserve the right to make changes to these Application Examples at any time without prior notice. If there are any deviations between the recommendations provided in these Application Examples and other Siemens publications – e.g. Catalogs – the contents of the other documents have priority.

We do not accept any liability for the information contained in this document. Any claims against us – based on whatever legal reason – resulting from the use of the examples, information, programs, engineering and performance data etc., described in this Application Example shall be excluded. Such an exclusion shall not apply in the case of mandatory liability, e.g. under the German Product Liability Act ("Produkthaftungsgesetz"), in case of intent, gross negligence, or injury of life, body or health, guarantee for the quality of a product, fraudulent concealment of a deficiency or breach of a condition which goes to the root of the contract ("wesentliche Vertragspflichten"). The damages for a breach of a substantial contractual obligation are, however, limited to the foreseeable damage, typical for the type of contract, except in the event of intent or gross negligence or injury to life, body or health. The above provisions do not imply a change of the burden of proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts hereof is prohibited without the expressed consent of the Siemens AG.

Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks. In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens’ products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and networks. Systems, machines and components should only be connected to the enterprise network or the internet if and to the extent necessary and with appropriate security measures (e.g. use of firewalls and network segmentation) in place. Additionally, Siemens’ guidance on appropriate security measures should be taken into account. For more information about industrial security, please visit http://www.siemens.com/industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them more secure. Siemens strongly recommends to apply product updates as soon as available and to always use the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer’s exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under http://www.siemens.com/industrialsecurity.
Table of contents

Warranty and liability .. 2

1 Task .. 4
 1.1 Overview .. 4

2 Solution ... 5
 2.1 Solution overview ... 5
 2.2 Hardware and Software Components ... 5
 2.2.1 Validity ... 5
 2.2.2 Used Components ... 6

3 Basics .. 7
 3.1 Basics regarding SINAMICS V90 PN version ... 7
 3.2 Basic information about using NON-isochronous communication between PLC and drive ... 8
 3.3 Improvements for a better system behavior .. 10
 3.4 Recommendation of time setting with SIMATIC S7-1200 ... 12
 3.5 Recommendation of time setting SIMATIC S7-1500 .. 14
 3.6 Installation and startup .. 16
 3.6.1 Hardware installation ... 16
 3.6.2 Startup (JOG from drive side) .. 16

4 Configuration .. 17
 4.1 Basic parameter configuration regarding SINAMICS V90 PN 17
 4.1.1 Configure PROFINET settings via SINAMICS V-ASSISTANT 17
 4.1.2 Configure PROFINET settings via the TIA Portal ... 19

5 Operation of the application ... 27

6 Related literature ... 43

7 Contact .. 43

8 History .. 43
1 Task

1.1 Overview

Introduction

In this manual the basic application “Position control with a S7-1200 and SINAMICS V90 PN” will be described in detail.

The SINAMICS V90 PN works in this application in speed control mode (S mode) and the communication will use PROFINET RT.

The described solution in this document contains the variations which have some detailed technical issues to look at it.

Overview of the automation task

The figure below provides an overview of the automation task.

Figure 1-1
2 Solution

2.1 Solution overview

Schema Display

The following figure displays the most important components of the solution:

Figure 2-1

IO Supervisor

IO controller

IO device

Delimitation

This application does not include a description of
- Profinet communication
- SINAMICS V90 PN version
- BOP operation of SINAMICS V90

Basic knowledge of these topics is assumed.

Required knowledge

Basic knowledge on TIA Portal is assumed.

2.2 Hardware and Software Components

2.2.1 Validity

This application example is valid for
- TIA Portal V13 or newer
- S7-1200 CPU with PN interface
- SINAMICS V90 PN FW V10001.0 or newer
- SIMOTICS S-1FL6 Li motor
2 Solution

2.2.2 Used Components

The application was generated with the following components:

Hardware components

Table 2-1

<table>
<thead>
<tr>
<th>Component</th>
<th>No.</th>
<th>Article number</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMATIC S7-1200 1217C DC/DC/DC</td>
<td>1</td>
<td>6ES7217-1AG40-0XB0</td>
<td>V4.1</td>
</tr>
<tr>
<td>SINAMICS V90 PN 200V</td>
<td>1</td>
<td>6SL3210-5FB10-4UF0</td>
<td>400W</td>
</tr>
<tr>
<td>SIMOTICS S-1FL6 Li motor</td>
<td>1</td>
<td>1FL6034-2AF21-1AG1</td>
<td>400W</td>
</tr>
</tbody>
</table>

Standard software components

Table 2-2

<table>
<thead>
<tr>
<th>Component</th>
<th>No.</th>
<th>Article number</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIA Portal</td>
<td>1</td>
<td></td>
<td>V13</td>
</tr>
<tr>
<td>SINAMICS V-ASSISTANT</td>
<td>1</td>
<td></td>
<td>V1.04.00</td>
</tr>
</tbody>
</table>

Sample files and projects

The following list includes all files and projects that are used in this example.

Table 2-3

<table>
<thead>
<tr>
<th>Component</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>109743917_CPU1217C + V90 PN for Position Control</td>
<td>Project file</td>
</tr>
<tr>
<td>Standard Application_v90pn_S7_1200_PositionControl.docx</td>
<td>Reference document</td>
</tr>
</tbody>
</table>
3 Basics

3.1 Basics regarding SINAMICS V90 PN version

When SINAMICS V90 PN works in the speed control mode (S mode), the following telegrams are supported:

- Standard telegram 1
- Standard telegram 2
- Standard telegram 3
- Standard telegram 5
- Siemens telegram 102
- Siemens telegram 105

NOTE Siemens telegram 105 is only available with TIA Portal V14, the Hardware Support Package for V90PN for TIA Portal and in combination with S7-1500 / 1500T.

The standard telegram 1 can be used only for RT mode. The standard telegram 2, the standard telegram 3 and the standard telegram 102 can be used either for RT mode or IRT mode depending on the IO controller. The standard telegram 5 and the standard telegram 105 can only support IRT mode and be used with TIA Portal V14.

The telegrams 1, 2 and 102 are used for speed control axis while telegrams 3, 5 and 105 are used for positioning axis because these telegrams contain the actual position of the encoder (Gn_XIST1).

If SIMATIC S7-1200 is used for positioning control then the TO (Technology Object) Positioning axis has to be used. The TO Positioning axis only supports the standard telegrams 1, 2 and 3. **Thus, the standard telegram 3 will be used in this basic application.**
3.2 Basic information about using NON-isochronous communication between PLC and drive

PROFINET IO is a scalable real-time communication system based on the Layer 2 protocol for Fast Ethernet. With the RT transmission method, two real-time-support performance levels are available for time-critical process data and IRT for high accuracy and also isochronous processes.

Figure 3-1

Real-time Communication (RT)

PROFINET IO with real-time communication (RT) is the ideal solution for integrating IO systems. This is a solution that also uses standard Ethernet in the devices and commercially available industrial switches as infrastructure components. A special hardware support is not required.

PROFINET IO frames have priority over standard frames in accordance with IEEE802.1Q. This ensures the required determinism in the automation technology. The data is transferred via prioritized Ethernet frames.

With RT, you can achieve update times ≥ 250 μs with RT.

NOTE SIMATIC S7-1200 works only with RT communication.

Isochronous Real-time Communication (IRT)

IRT is a synchronized communication protocol for cyclic exchange of IRT data between PROFINET devices. A reserved bandwidth is available in the send cycle for IRT data. The reserved bandwidth ensures that the IRT data can be transferred at reserved synchronized intervals, without being influenced also by higher other network loads (such as TCP/IP communication, or additional real-time communication).

Topology configuration is a prerequisite for IRT.

In addition to the reserved bandwidth, the telegrams from defined transmission paths are exchanged for the further optimization of data transfers. For this, the topological information from the configuration is used for planning the communication. Thus, transmission and reception points of every individual data telegram at every communication node are guaranteed. This allows you to achieve
optimal usage of the bandwidth and reach the best possible performance in the PROFINET IO system.

Use of IRT allows you to achieve update times with highest deterministics ≥ 250 μs and a jitter accuracy of the send clock < 1 μs. Isochronous applications are possible with IRT.

Fields of application

Table 3-1 Fields of application for RT and IRT

<table>
<thead>
<tr>
<th></th>
<th>RT</th>
<th>IRT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time-critical applications in factory automation</td>
<td>Considerable deterministics with large quantity structures concerning the I/O user data communication (productive data)</td>
</tr>
<tr>
<td></td>
<td>The implementation of large quantity structures in line process plants</td>
<td>Considerable performance also with many devices concerning the I/O user data communication (productive data)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parallel transfer of productive and TCP/IP data via a cable, even with considerable data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>traffic whilst ensuring the forwarding of productive data by reserving the transmission bandwidth</td>
</tr>
</tbody>
</table>

The major differences between RT and IRT

Table 3-2 Comparison between RT and IRT

<table>
<thead>
<tr>
<th>Property</th>
<th>RT</th>
<th>IRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission method</td>
<td>Prioritizing the RT frames through Ethernet priority (VLAN tag)</td>
<td>Path-based switching on the basis of a communication path plan; no transmission of TCP/IP frames in the time range with IRT communication.</td>
</tr>
<tr>
<td>Determinism</td>
<td>Variance of the duration of transmission by the shared use of the transmission bandwidth with other protocols (e.g., TCP/IP)</td>
<td>Exact, planned transmission, transmission and reception times are guaranteed for all topologies.</td>
</tr>
<tr>
<td>Hardware support through special Ethernet controllers is required</td>
<td>Not required</td>
<td>Required</td>
</tr>
<tr>
<td>Isochronous application</td>
<td></td>
<td>Yes (only for the integrated PROFINET IO interface of the CPU)</td>
</tr>
<tr>
<td>Starting time of the isochronous application</td>
<td></td>
<td>The point in time for the reception of the data is planned exactly. Application can be started synchronized to the cycle.</td>
</tr>
</tbody>
</table>
3.3 Improvements for a better system behavior

Figure 3-2 Communication cycle

Send clock

Send clock is the shortest possible time interval in data exchange. The calculation of send clock should follow the formula below:

\[
\text{Send clock} = 31.25 \, \mu s \times \text{Send Clock Factor}
\]

The send clock factor is \(2^n\) (\(n\) is an integral value from 0 to 9), while 31.25 \(\mu\)s is the basic time unit.

Figure 3-3 Send clock in TIA Portal (follow step 1 to 2 to do the change of send clock)

NOTE The send clock is unable to be changed for RT communication.
Update time (Bus cycle time)

The update time is a time interval. IO controller and IO device/I-device exchange IO data cyclically in the IO system within this time interval. The update time can be configured separately for each IO device and determines the interval at which output data is sent from the IO controller to the IO device (output module/submodule) as well as input data from the IO device to the IO controller (input module/submodule).

STEP 7 calculates the update time automatically in the default setting for each IO device of the PROFINET IO system, taking into account the volume of data to be exchanged as well as the set send clock.

The calculation of update time should follow the formula below:

\[\text{Update time} = 31.25 \mu s \times \text{Send Clock Factor} \times 2^n = \text{Send clock} \times 2^n \]

\(2^n\): reduction (an integral value ≤ 16), \(n\): reduction ratio

Figure 3-4 update time (bus cycle time) in TIA Portal (follow step 1 to 3 to change the bus cycle time)

Cycle time for PLC program

Cycle time of PLC program is also calculated automatically within STEP 7. It can be changed according to actual application.

The relationship between cycle time for PLC program and bus cycle time as well as send clock (cycle n) is shown as follows:

Figure 3-5 Cycle communication

T1: cycle time for PLC program T2: Bus cycle time
3.4 Recommendation of time setting with SIMATIC S7-1200

NOTICE

Mechanical disturbance caused by unfavorable cycle times!
Unexpected mechanical disturbances can be caused by current and torque disturbances.

NOTE

When SINAMICS V90 PN works in RT communication, the minimum cycle time is unchangeable and fixed to be 4 ms.

When SIMATIC S7-1200 is connected to SINAMICS V90 PN for positioning control, OB91 (MC-Servo) must be used. The cycle time for OB91 can be changed according to actual application requirements.

Usually, the following rules during the configuration of OB91 cycle time and bus cycle time must be observed:

- The ratio between OB91 cycle time and Bus cycle time or vice versa must be an even integral value
- The CPU capability must be considered

Following selections of bus cycle time are recommended according to our test:

<table>
<thead>
<tr>
<th>OB91 cycle time</th>
<th>Bus cycle time (IO cycle)</th>
<th>Min. cycle time in V90 PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure 3-6 Example 1 of torque/speed (OB91 cycle time = 8 ms; bus cycle time = 4 ms)

Figure 3-7 Example 2 of torque/speed (OB91 cycle time = 10 ms; bus cycle time = 4 ms)
3 Basics

3.5 Recommendation of time setting SIMATIC S7-1500

When SIMATIC S7-1500 is connected to SINAMICS V90 PN for positioning control, you can select between RT communication and IRT communication.

NOTE

In standard applications with S7-1500(T) and V90 PN the IRT communication is recommended. If there is a necessary case to setup PROFINET RT then the following description can be used.

When the RT communication has been selected, the cycle time for OB91 is changeable and can be adjusted according to actual application.

NOTE

Mechanical disturbance caused by unfavorable cycle times!

Unexpected mechanical disturbances can be caused by current and torque disturbances.

Usually, the following rules during the configuration of OB91 cycle time and bus cycle time must be observed:

- The ratio between OB91 cycle time and Bus cycle time or vice versa must be an even integral value
- The CPU capability must be considered

Following selections of time configurations are recommended according to our test:

Table 3-4 Recommended time configurations (in ms) for SIMATIC S7-1500

<table>
<thead>
<tr>
<th>OB91 cycle time</th>
<th>Bus cycle time (IO cycle)</th>
<th>Min. cycle time in V90 PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure 3-8 Example 1 of torque/speed (OB91 cycle time = 4 ms; bus cycle time = 2 ms)

Figure 3-9 Example 2 of torque/speed (OB91 cycle time = 4 ms; bus cycle time = 3 ms)

NOTICE
Mechanical disturbance caused by unfavorable cycle times!
Unexpected mechanical disturbances can be caused by current and torque disturbances.
3.6 Installation and startup

3.6.1 Hardware installation

The figure below shows the hardware configuration of the application:

CAUTION Wrong wiring can damage the drive!

In this application, the one phase 230V power supply is used. It is a must for you to check the supply voltage; otherwise, the drive can be damaged!

![Hardware Configuration Diagram]

3.6.2 Startup (JOG from drive side)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Action</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Set drive parameter p29108 to be 1.</td>
<td>JOG function is enabled when p29108=1</td>
</tr>
<tr>
<td>2.</td>
<td>Switch to JOG menu with drive BOP operation.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Press ▲ or ▼ button to run the motor.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4 Configuration

In this chapter the configurations for position control with RT mode will be described in detail. The used standard telegram is "3".

4.1 Basic parameter configuration regarding SINAMICS V90 PN

4.1.1 Configure PROFINET settings via SINAMICS V-ASSISTANT

The following parameters can be configured with the SINAMICS V-ASSISTANT from the PROFINET settings menu field:

- **Communication telegram**: in this tab you can also check the PZD structure and values:

 ![Communication telegram](image)

 - **Network**:

 ![Network](image)

Note: the configurations must be saved for activation.
Active configure: The active PROFINET settings can be checked from the tab.

Table 3-1: PROFINET relevant parameters

<table>
<thead>
<tr>
<th>Par. No.</th>
<th>Description</th>
<th>Set value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P922</td>
<td>Telegram selection</td>
<td>3</td>
</tr>
</tbody>
</table>
| P8921 | PN IP address. There are four indexes. Each index maps to a segment of the IP address. Note: after successful configuration, the values will be changed to 0 automatically. | Example IP address: 192.168.0.2
P8921[0]=192
P8921[1]=168
P8921[2]=0
P8921[3]=2 |
| P8923 | PN Subnet Mask of Station. There are four indexes. Each index maps to a segment of the subnet mask. Note: after successful configuration, the values will be changed to 0 automatically. | Example Subnet mask: 255.255.255.0
P8923[0]=255
P8923[1]=255
P8923[2]=255
P8923[3]=0 |
| P8925 | PN interface configuration Note: after successful configuration, the values will be changed to 0 automatically. | 2
Note: after setting p8921 and p8923, p8925 should be set to be 2 for activating the PN communication. |
| r8931 | PN IP address of station active | |
| r8932 | PN default gateway of station active | |
| r8933 | PN MAC address of station | |
4.1.2 Configure PROFINET settings via the TIA Portal

4.1.2.1 Create a new project

1. Open the TIA Portal and create a new project:

2. Switch to “Project view”:

 ![Image of TIA Portal](image-url)
Add S7-1200 CPU into the project

Add S7-1200 CPU into the project as follows:

1. Double-click the node "Add new device" from the Device tree:

2. Here, if you know the detailed information about the S7-1200 modules, you can directly find the type and add it into the project.

Otherwise, you can add an unspecified CPU 1200 into the project:
3. If an unspecified 1200 CPU has been added into the project, you can detect the connected CPU by clicking the “Detect” and search it with online access:

Start the search by clicking the “Start search” button, and the connected S7-1200 CPU will be found if the PROFINET network communication works properly:

4. Press “Detect” button to detect the connected CPU:
4.1.2.3 Add SINAMICS V90 PN into the project

Add SINAMICS V90 PN into the project in the TIA Portal as follows:

1. Input the V90 PN GSD file.

NOTE Installation of V90 PN GSD file is only necessary for TIA Portal prior to V14 (not including V14).

For the GSD file, you can download from following internet site:

2. Find the GSD file and select it. Press the “Install” button to install it.

3. In the network view, select V90 PN from the “other field drives” of catalog tree on the right side.
4. Double-click the V90 PN node or drag it to the network view:
4.1.2.4 Device configuration for S7-1200 CPU

Make device configurations for S7-1200 CPU as follows:

1. In the device view, select the PLC:

2. Double-click the PLC CPU to enter properties of the CPU:

 Here, you can configure information about the device name, Ethernet address...
 You can also use the “Online access” to find the accessible device and make sure the information is consistent:

 NOTE Important!

 The Profinet name is very important. You must double-check such information in the SINAMICS V90 PN configuration.
4.1.2.5 Device configuration for SINAMICS V90 PN

Make device configurations for S7-1200 CPU as follows:

1. In the device view, select the SINAMICS V90 PN:

2. Double-click the V90 PN to enter the properties field:

 ![Device configuration screenshot]

Here, you can configure information about the device name, Ethernet address...
You can also use the “Online access” to find the accessible device and make sure the information is consistent:

```
NOTE
Important!

The Profinet name is very important. You must double-check such information in the SINAMICS V90 PN configuration.
```

3. In the device view of SINAMICS V90 PN, select the standard telegram 3 from the submodules:

 ![Standard telegram selection screenshot]
4.1.2.6 Connect SINAMICS V90 PN with S7-1200 CPU

After the configurations of both SINAMICS V90 PN and S7-1200 CPU, you need to connect SINAMICS V90 PN to S7-1200 CPU:

1. In the network view, click the “Not assign” and select “PLC_1.PROFINET Interface 1”:

2. And the connected network view is shown as follows:
5 Operation of the application

In the following paragraph, we will use TO (Technology Object) of positioning axis for programming and run the motor:

1. Add a new object by double-click “Add new object” from the project tree:

![Project tree]

Figure 5-1
2. Select the “TO_PositioningAxis” from the “Motion Control” list:

 Figure 5-2

3. When a new object has been added successfully, the object node is added into the device tree and the configuration panel for this newly added axis is opened:

 Figure 5-3
4. Make configurations step by step. In this example, we firstly need to configure the type of drive to be "PROFIdrive" under general information of basic parameters:

Figure 5-4

5. After configuring the type of drive, we need to select a PROFIdrive in the drive information of basic parameters:

Figure 5-5
6. After that, change the steps per revolution to 2500 because an incremental encoder with the resolution of 2500 ppr is used in our example:

Figure 5-6
7. Select encoder coupling under the encoder information of the basic parameters. In this example, it should be "Encoder on drive":

Figure 5-7

Encoder on drive
- Encoder on high-speed counter (HSC)
- Encoder on technology module (TM)
- PROFdrive encoder on PROFINET/PROFIBUS
8. After selecting “Encoder on drive”, the information about the data exchange and encoder type is displayed and needs to be configured:

Figure 5-8
9. In this example, we use standard telegram 3 for data exchanging and an incremental encoder with the resolution of 2500 ppr (fine resolution: 2 bits):

Figure 5-9
10. Compile the project and then download it into device.

Figure 5-10

Figure 5-11
5 Operation of the application

Figure 5-12

Figure 5-13
11. Switch to the commissioning panel by double-clicking the “Commissioning” under the technology object tree:

Figure 5-14

12. Click the “Activate” button:

Figure 5-15

13. In the pop-up dialog box, click “OK” button to proceed the operation.

Figure 5-16
14. Click the “Enable” button to make servo drive at SON (servo is on) state:

Figure 5-17

15. When the drive SON (servo is on) has been enabled, you can select a command from the command list:

Figure 5-18
16. Select the command “Homing”, and then click “Set home position” to set current position to be position 0:

Figure 5-19

![Homing and Set home position screen](image)

17. Press the command of “Positioning”:

Figure 5-20

18. Input values for positioning, for example, travel by a position or to target position of 100 mm with acceleration/deceleration of 50 mm/s²:

Figure 5-21

![Positioning screen](image)

Remarks:
According to the configuration of mechanics, 100 mm means 10 motor revolutions.
19. Press “Absolute” or “Relative” to move the axis:
 Figure 5-22

20. Deactivate the axis control and switch to offline mode. Open the main program block OB1 after that.

21. Program with the technology instructions at the right side:
 Figure 5-23
22. Program as follows:
23. Add a new watch table and put all the necessary signals into this table:

Figure 5-24

![Image of watch table](image1.png)

24. Add a new watch table and put all the necessary signals into this table:

Figure 5-25

![Image of watch table](image2.png)

25. Compile and load the project into devices.

26. Switch to online mode and activate the monitoring function of the watch table:

Figure 5-26

![Image of watch table](image3.png)
27. Modify M10.0 to 1 to make drive SON:

Figure 5-27

28. Modify M10.2 to 1 to perform homing:

Figure 5-28

29. Modify M10.2 to 0 to complete homing and then modify M10.4 to 1 to move absolute position of 1000 mm with the speed of 100 mm/s:

Figure 5-29

30. Modify M10.4 to 0 and then modify M10.5 to 1 to move a position of 100 mm with the speed of 100 mm/s:

Figure 5-30

31. Modify both M10.4 and M10.0 to 0 to complete operation.
6 Related literature

Table 6-1

<table>
<thead>
<tr>
<th>|</th>
<th>Topic</th>
</tr>
</thead>
</table>
| \1\ | Siemens Industry Online Support
http://support.industry.siemens.com |
| \2\ | Download page of this entry
| \3\ | |

7 Contact

Siemens Ltd., China
DF M3-BF GMC

No. 18 Siemens Road
Jiangning Development Zone
Nanjing, 211100
China
mailto: mc_gmc_mp_asia.cn@siemens.com

8 History

Table 8-1

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0</td>
<td>11/2016</td>
<td>First version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>