SIEMENS

SINUMERIK 840D sl/ SINAMICS S120

SINUMERIK Safety Integrated

Function Manual

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid for</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>SINUMERIK 840D sl</td>
<td></td>
</tr>
<tr>
<td>SINUMERIK 840D sl (export version)</td>
<td></td>
</tr>
<tr>
<td>Drive</td>
<td></td>
</tr>
<tr>
<td>SINAMICS S120</td>
<td></td>
</tr>
<tr>
<td>Software version</td>
<td></td>
</tr>
<tr>
<td>1.3.2</td>
<td></td>
</tr>
<tr>
<td>03.06 Edition</td>
<td></td>
</tr>
<tr>
<td>Regulations and Standards</td>
<td>1</td>
</tr>
<tr>
<td>Brief Description</td>
<td>2</td>
</tr>
<tr>
<td>System Features</td>
<td>3</td>
</tr>
<tr>
<td>Safety Functions Integrated in the Drive</td>
<td>4</td>
</tr>
<tr>
<td>Basic on the Safety Functions Integrated in the System/Drive</td>
<td>5</td>
</tr>
<tr>
<td>Safety Functions Integrated in the System/Drive</td>
<td>6</td>
</tr>
<tr>
<td>Connecting Sensors/Actuators</td>
<td>7</td>
</tr>
<tr>
<td>Data Description</td>
<td>8</td>
</tr>
<tr>
<td>Commissioning</td>
<td>9</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>10</td>
</tr>
<tr>
<td>Interaction with Other Functions</td>
<td>11</td>
</tr>
<tr>
<td>Appendix</td>
<td>A</td>
</tr>
<tr>
<td>Index</td>
<td>I</td>
</tr>
</tbody>
</table>
SINUMERIK® documentation

Printing history

Brief details of this edition and previous editions are listed below.

The status of each edition is shown by the code in the “Remarks” column.

Status code in the “Remarks” column:

A New documentation.
B Unrevised reprint with new Order No.
C Revised edition with new status.

If factual changes have been made on the page since the last edition, this is indicated by a new edition coding in the header on that page.

<table>
<thead>
<tr>
<th>Edition</th>
<th>Order No.</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.06</td>
<td>6FC5 397-4BP10-0BA0</td>
<td>A</td>
</tr>
</tbody>
</table>

Registered Trademarks

Any product names mentioned may be trademarks or product designations of Siemens or their suppliers, whose use by third parties for their own purposes may infringe the rights of the trademark owners.
Preface

Structure of the documentation

The SINUMERIK documentation is organized in 3 parts:

- General Documentation
- User documentation
- Manufacturer/Service documentation

An overview of publications, which is updated monthly and also provides information about the language versions available, can be found on the Internet at: http://www.siemens.com/motioncontrol

Follow menu items – “Support” -> “Technical Documentation” -> “Overview of Documentation”.

The Internet version of DOConCD (DOConWEB) is available at: http://www.automation.siemens.com/doconweb

Information on the range of training courses and FAQs (frequently asked questions) are available in the Internet under: http://www.siemens.com/motioncontrol and there under the menu item “Support”.

Target group

This documentation is intended for manufacturers/end users of machine tools and production machines who use SINUMERIK 840D sl and SINAMICS S120 and the integrated safety functions (SINUMERIK Safety Integrated ®).

Standard scope

The functionality of the standard scope is described in the following documentation. The machinery construction OEM documents supplements or changes that he makes (the machinery construction OEM).

Other functions not described in this documentation might be executable in the control. However, no claim can be made regarding the availability of these functions when the equipment is first supplied or in the event of servicing.

For the sake of simplicity, this documentation does not contain all detailed information about all types of the product and cannot cover every conceivable case of installation, operation, or maintenance.
Technical Support

If you have any questions, please get in touch with our Hotline:

Europe and Africa time zone
A&D Technical Support
Tel.: +49 (0) 180 / 5050 – 222
Fax: +49 (0) 180 / 5050 – 223
Internet: http://www.siemens.com/automation/support-request
Email: mailto:adsupport@siemens.com

Asia and Australia time zone
A&D Technical Support
Tel.: +86 1064 719 990
Fax: +86 1064 747 474
Internet: http://www.siemens.com/automation/support-request
Email: mailto:adsupport@siemens.com

America time zone
A&D Technical Support
Tel.: +1 423 262 2522
Fax: +1 423 262 2289
Internet: http://www.siemens.com/automation/support-request
Email: mailto:adsupport@siemens.com

Note
Country telephone numbers for technical support are provided under the following Internet address:

Enter http://www.siemens.com/automation/service&support

Questions on the manual
If you have any queries (suggestions, corrections) in relation to this documentation, please fax or e-mail us:

Fax: +49 (0) 9131 / 98 – 63315
Email: mailto:motioncontrol.docu@siemens.com

Fax form: Refer to the reply form at the end of the document.

SINUMERIK Internet address
EC Declaration of Conformance

The EC Declaration of Conformity for the EMC Directive can be found/obtained:

- the internet:
 http://www.ad.siemens.de/csinfo
 under product/order no. 15257461
- the relevant branch office of the A&D MC group of Siemens AG.

Standard scope

The main areas covered by this Description of Functions are as follows:

- Regulations and Standards
- Brief Description
- System Features
- Safety Functions Integrated in the Drive
- Basics on the Safety Functions Integrated in the System/Drive
- Safety Functions Integrated in the System/Drive
- Connecting Sensors/Actuator
- Data Description
- Commissioning
- Diagnostics
- Interaction with Other Functions

Separate documents are available for user-oriented activities. These include, for example, generating part programs and handling controls.

Separate information is also available for operations that the machine tool manufacturer must carry-out. These include, for example, configuring/engineering, installation and programming the PLC.

Notes on how to use this manual

The following support functions are provided for this function description:

- Overall table of contents
- Appendix with abbreviations and references, glossary
- Index

If you require information about a certain term, please look in the Appendix for the specific Chapter Index for the particular term. Both the chapter number and the page number are listed where you will find this particular information.
Documentation, 03/06 Edition

Note
The documentation 03/06 Edition describes the scope of functions for the following products and software release:
SINUMERIK 840D sl with software release 1.3.2

Safety information
This manual contains notices that you must observe in order to ensure your personal safety, as well as to prevent damage to property. Notices which are relevant to your own personal safety are highlighted by a safety alert symbol; notices which are relevant only to equipment and property damage have no safety alert symbol. The warnings appear in decreasing order of risk as given below.

⚠️ Danger
Indicates that death or severe personal injury will result if proper precautions are not taken.

⚠️ Warning
indicates that death or severe personal injury may result if proper precautions are not taken.

⚠️ Caution
With a warning triangle indicates that minor personal injury can result if proper precautions are not taken.

⚠️ Caution
without warning triangle indicates that material damage can result if proper precautions are not taken.
Note
indicates that an unintended event or situation can occur if the corresponding information is not taken into account.

If several hazards of different degrees occur, the hazard with the highest degree must always be given priority. A warning notice accompanied by a safety alert symbol indicating a risk of bodily injury can also indicate a risk of property damage.

Qualified personnel
The associated device/system may only be set up and operated using this documentation. Only qualified personnel should be allowed to commission and operate the device/system. Qualified persons are defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and systems in accordance with established safety practices and standards.

Proper use
Please note the following:

Warning
The equipment may only be used for single purpose applications explicitly described in the catalog and in the technical description and it may only be used along with third-party devices and components recommended by Siemens. To ensure trouble-free and safe operation of the product, it must be transported, stored and installed as intended and maintained and operated with care.

Additional notes

Note
This symbol always appears in the document where further information is provided.
Contents

1 **Regulations and Standards** ... 1-15
 1.1 General information ... 1-15
 1.1.1 Objectives .. 1-15
 1.1.2 Functional safety ... 1-16
 1.2 Safety of machinery in Europe 1-16
 1.2.1 Machinery Directive (98/37/EC) 1-17
 1.2.2 Harmonized European standards 1-18
 1.2.3 Standards to implement safety-related programmable electronic controls .. 1-20
 1.2.4 prEN/ISO 13849–1 (revision from EN 954–1) 1-21
 1.2.5 EN IEC 62061 .. 1-22
 1.2.6 DIN EN 61508 (VDE 0803) or IEC 61508 1-24
 1.2.7 Risk analysis/assessment ... 1-25
 1.2.8 Risk reduction ... 1-27
 1.2.9 Residual risk ... 1-27
 1.3 Machine safety in the US .. 1-28
 1.3.1 Minimum requirements of the OSHA 1-28
 1.3.2 NRTL listing ... 1-29
 1.3.3 NFPA 79 ... 1-29
 1.3.4 ANSI B11 .. 1-30
 1.4 Machine safety in Japan ... 1-31
 1.5 Equipment regulations ... 1-31
 1.6 Other safety-related subjects and issues 1-32
 1.6.1 Information sheets from the various regulatory bodies 1-32
 1.6.2 Safety Integrated system manual 1-32

2 **Brief Description** .. 2-33
 2.1 Control/drive system .. 2-33
 2.2 SI system structure and basic features 2-35
 2.3 Overview, SI functions ... 2-37

3 **System Features** ... 3-39
 3.1 Fault analysis ... 3-39
 3.1.1 Monitoring ... 3-39
 3.1.2 Fault analysis ... 3-39
 3.2 Residual risks ... 3-40
 3.3 System requirements .. 3-42

4 **Safety Functions Integrated in the Drive** 4-43
 4.1 General information about SINAMICS Safety Integrated 4-43
 4.1.1 Explanations, standards and terminology 4-43
 4.1.2 Parameter, checksum, version, password 4-46
 4.2 Safe standstill (SH) .. 4-49
 4.3 Safe brake control (SBC) .. 4-54
 4.4 Commissioning the SH and SBC functions 4-57
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1</td>
<td>General information about commissioning safety functions</td>
<td>4-57</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Procedure for commissioning SH and SBC</td>
<td>4-58</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Safety faults</td>
<td>4-62</td>
</tr>
<tr>
<td>4.5</td>
<td>Overview of parameters and function diagrams</td>
<td>4-64</td>
</tr>
<tr>
<td>4.6</td>
<td>Acceptance test and certificate</td>
<td>4-66</td>
</tr>
<tr>
<td>4.6.1</td>
<td>General information about acceptance</td>
<td>4-66</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Documentation</td>
<td>4-68</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Function test</td>
<td>4-71</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Completing the log</td>
<td>4-75</td>
</tr>
<tr>
<td>5</td>
<td>Basics on the Safety Functions Integrated in the System/Drive</td>
<td>5-79</td>
</tr>
<tr>
<td>5.1</td>
<td>Monitoring clock cycle</td>
<td>5-79</td>
</tr>
<tr>
<td>5.2</td>
<td>Crosswise data comparison</td>
<td>5-80</td>
</tr>
<tr>
<td>5.3</td>
<td>Forced checking procedure</td>
<td>5-81</td>
</tr>
<tr>
<td>5.4</td>
<td>Actual value conditioning</td>
<td>5-83</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Encoder types</td>
<td>5-83</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Encoder adjustment, calibrating the axes</td>
<td>5-87</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Axis states</td>
<td>5-88</td>
</tr>
<tr>
<td>5.4.4</td>
<td>User agreement</td>
<td>5-90</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Taking into account selector gearboxes</td>
<td>5-92</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Actual value synchronization (slip for 2-encoder systems)</td>
<td>5-94</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Encoder limit frequency</td>
<td>5-95</td>
</tr>
<tr>
<td>5.5</td>
<td>Enabling the safety-related functions</td>
<td>5-96</td>
</tr>
<tr>
<td>5.6</td>
<td>Switching the system on/off</td>
<td>5-97</td>
</tr>
<tr>
<td>6</td>
<td>Safety Functions Integrated in the System/Drive</td>
<td>6-99</td>
</tr>
<tr>
<td>6.1</td>
<td>Safe standstill (SH)</td>
<td>6-99</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Shutdown paths</td>
<td>6-102</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Testing the shutdown paths</td>
<td>6-104</td>
</tr>
<tr>
<td>6.2</td>
<td>Safe operating stop (SBH)</td>
<td>6-106</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Selecting/de-selecting the safe operating stop</td>
<td>6-107</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Effects when the limit is exceeded for SBH</td>
<td>6-110</td>
</tr>
<tr>
<td>6.3</td>
<td>Safe stops A-F</td>
<td>6-113</td>
</tr>
<tr>
<td>6.3.1</td>
<td>General information</td>
<td>6-113</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Description of STOP A</td>
<td>6-120</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Description of STOP B</td>
<td>6-122</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Description of STOP C</td>
<td>6-123</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Description of STOP D</td>
<td>6-124</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Description of STOP E</td>
<td>6-125</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Description of STOP F</td>
<td>6-127</td>
</tr>
<tr>
<td>6.3.8</td>
<td>Forced checking procedure of the external STOPs</td>
<td>6-130</td>
</tr>
<tr>
<td>6.4</td>
<td>Safe braking ramp (SBR)</td>
<td>6-132</td>
</tr>
<tr>
<td>6.5</td>
<td>Safely-reduced speed (SG)</td>
<td>6-136</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Speed monitoring, encoder limit frequency</td>
<td>6-137</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Selecting/de-selecting safely reduced speed</td>
<td>6-138</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Effects when the limit value is exceeded for SG</td>
<td>6-141</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Override for safely-reduced speed</td>
<td>6-144</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Example: override for safely-reduced speed</td>
<td>6-147</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.6</td>
<td>Safety-related output “n<nx”</td>
<td>6-149</td>
</tr>
<tr>
<td>6.7</td>
<td>Safe software limit switches (SE)</td>
<td>6-151</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Effects when an SE responds</td>
<td>6-152</td>
</tr>
<tr>
<td>6.8</td>
<td>Safe software cams (SN)</td>
<td>6-155</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Special points to be noted</td>
<td>6-156</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Effects when SN responds</td>
<td>6-159</td>
</tr>
<tr>
<td>7</td>
<td>Connecting Sensors/Actuators</td>
<td>7-161</td>
</tr>
<tr>
<td>7.1</td>
<td>Safety-relevant input/output signals</td>
<td>7-161</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Overview of the SGEs/SGAs and their structure</td>
<td>7-161</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Forced checking procedure of SPL signals</td>
<td>7-167</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Connecting sensors – actuators using the 3-terminal concept</td>
<td>7-170</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Sensor connection using the 4-terminal concept</td>
<td>7-173</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Multiple distribution and multiple interlocking</td>
<td>7-175</td>
</tr>
<tr>
<td>7.2</td>
<td>Connecting I/O via PROFIsafe</td>
<td>7-178</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Function description</td>
<td>7-178</td>
</tr>
<tr>
<td>7.2.2</td>
<td>System structure</td>
<td>7-180</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Parameterizing the F master (NCK)</td>
<td>7-181</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Parameterizing the PROFIsafe communication (NCK)</td>
<td>7-182</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Parameterizing the SPL-SGE interface</td>
<td>7-184</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Parameterizing the SPL-SGA interface</td>
<td>7-188</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Module type (NCK)</td>
<td>7-191</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Parameterizing the F master (PLC)</td>
<td>7-191</td>
</tr>
<tr>
<td>7.2.9</td>
<td>Response times</td>
<td>7-192</td>
</tr>
<tr>
<td>7.2.10</td>
<td>Functional limitations</td>
<td>7-195</td>
</tr>
<tr>
<td>7.3</td>
<td>Safe programmable logic (SPL)</td>
<td>7-196</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Fundamentals</td>
<td>7-196</td>
</tr>
<tr>
<td>7.3.2</td>
<td>NCK-SPL program</td>
<td>7-200</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Starting the SPL</td>
<td>7-202</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Starting the NCK-SPL using the PROG_EVENT mechanism</td>
<td>7-203</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Starting the NCK-SPL from the PLC user program</td>
<td>7-206</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Diagnostics/commissioning</td>
<td>7-207</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Safe software relay</td>
<td>7-209</td>
</tr>
<tr>
<td>7.3.8</td>
<td>System variables for SINUMERIK 840D sl</td>
<td>7-216</td>
</tr>
<tr>
<td>7.3.9</td>
<td>Behavior after power on / mode change / reset</td>
<td>7-219</td>
</tr>
<tr>
<td>7.3.10</td>
<td>SPL data on the PLC side</td>
<td>7-219</td>
</tr>
<tr>
<td>7.3.11</td>
<td>Direct communications between NCK and PLC-SPL</td>
<td>7-221</td>
</tr>
<tr>
<td>7.4</td>
<td>Safe brake test (SBT)</td>
<td>7-223</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Applications</td>
<td>7-223</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Parameterization</td>
<td>7-223</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Operational sequence</td>
<td>7-227</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Limitations and constraints</td>
<td>7-232</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Activating</td>
<td>7-233</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Example</td>
<td>7-233</td>
</tr>
<tr>
<td>8</td>
<td>Data Description</td>
<td>8-235</td>
</tr>
<tr>
<td>8.1</td>
<td>Machine data for SINUMERIK 840D sl</td>
<td>8-235</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Overview of the machine data</td>
<td>8-235</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Description of machine data</td>
<td>8-239</td>
</tr>
<tr>
<td>8.2</td>
<td>Parameters for SINAMICS S120</td>
<td>8-281</td>
</tr>
</tbody>
</table>
Contents

8.2.1 Parameter overview .. 8-282
8.2.2 Description of parameters .. 8-285
8.3 Interface signals ... 8-312
8.3.1 Interface signals for SINUMERIK 840Dsl 8-313
8.3.2 Description of the interface signals 8-314
8.3.3 PLC data block (DB 18) ... 8-322
8.4 System variables ... 8-329
8.4.1 System variables for SINUMERIK 840Dsl 8-329
8.4.2 Description of the system variables 8-332

9 Commissioning ... 9-341
9.1 HMI screens and softkeys .. 9-342
9.2 Procedure when commissioning the drive for the first time 9-347
9.3 Series commissioning ... 9-351
9.4 Changing data ... 9-352
9.5 Acceptance test .. 9-353
9.5.1 General information .. 9-353
9.5.2 Conventional acceptance test .. 9-358
9.6 Replacing a motor or encoder .. 9-362

10 Diagnostics ... 10-369
10.1 Troubleshooting procedure .. 10-369
10.1.1 Service displays .. 10-369
10.1.2 Diagnostics support by configuring your own extended alarm text ... 10-374
10.1.3 Servo trace bit graphics for Safety Integrated 10-377
10.1.4 Bit graphics for SI signals in the servo trace 10-380
10.2 NCK safety alarms for Sinumerik 840D sl 10-386
10.3 Safety messages for SINAMICS S120 10-444
10.3.1 General information .. 10-444
10.3.2 List of faults and alarms .. 10-447
10.4 Safety PLC alarms ... 10-476
10.5 Reducing the number of alarms .. 10-477
10.5.1 Alarm suppression ... 10-477
10.5.2 Assigning priorities to alarms .. 10-478

11 Interaction with Other Functions .. 11-481
11.1 Limiting the speed setpoint .. 11-481
11.2 Measuring system changeover .. 11-482
11.3 Gantry axes ... 11-483
11.4 Parking axis .. 11-483
11.5 OEM applications ... 11-484
11.6 Behavior of Safety Integrated when Profinet fails 11-485
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>A.1 Customer Support</td>
<td>A-487</td>
</tr>
<tr>
<td>A.2 Fault analysis tables</td>
<td>A-489</td>
</tr>
<tr>
<td>A.3 References</td>
<td>A-494</td>
</tr>
<tr>
<td>A.4 Abbreviations</td>
<td>A-496</td>
</tr>
<tr>
<td>A.5 Terminology</td>
<td>A-500</td>
</tr>
<tr>
<td>Index</td>
<td>I-503</td>
</tr>
</tbody>
</table>
Regulations and Standards

1.1 General information

1.1.1 Objectives

Manufacturers and operating companies of equipment, machines and products are responsible for ensuring the appropriate level of safety. This results in the requirement that plants, machines and other equipment should be made as safe as possible according to state-of-the-art technology. In this case, companies describe in the various Standards, state-of-the-art technology that is relevant for safety. When the relevant Standards are complied with, it can be ensured that state-of-the-art technology has been utilized and therefore the erector/builder of a plant or a manufacturer of a machine or a piece of equipment has fulfilled his appropriate responsibility.

Safety systems are intended to play their role in keeping potential hazards for both people and the environment as low as possible by using suitable technical equipment, without restricting, more than absolutely necessary, industrial production and the use of machines. The protection of man and environment has to be put on an equal footing in all countries by applying rules and regulations that have been internationally harmonized. At the same time, this is also intended to avoid that safety requirements in different countries have an impact on the competitive situation – i.e. the intention is to facilitate international trade.

There are different concepts and requirements in the various regions and countries of the world when it comes to ensuring the appropriate degree of safety. The legislation and the requirements of how and when proof is to be given and whether there is an adequate level of safety are just as different as the assignment of responsibilities.

What is important for manufacturers of machines and companies that erect plants and systems is that always the local legislation and regulations apply where the machine or plant is being operated. For instance, the control system of a machine, that is to be used in the US, must fulfill the local US requirements even if the machinery construction company (OEM) is based in Europe.
1.1.2 Functional safety

Safety, from the perspective of the object to be protected, cannot be split-up. The causes of hazards and therefore also the technical measures to avoid them can vary significantly. This is the reason that a differentiation is made between different types of safety – e.g. by specifying the cause of possible hazards. “Functional safety” is involved if safety depends on the correct function.

In order to achieve the functional safety of a machine or plant, it is necessary that the safety-related parts of the protection and control devices function correctly. And not only this, when faults develop, they must behave so that either the plant remains in a safe state or it is brought into a safe state.

In this case, it is necessary to use specially qualified technology that fulfills the requirements described in the associated Standards. The requirements to achieve functional safety are based on the following basic goals:

- Avoiding systematic faults
- Controlling systematic faults
- Controlling random faults or failures

The measure for the achieved functional safety is the probability of dangerous failures, the fault tolerance and the quality that should be guaranteed as a result of freedom from systematic faults. This is expressed in the Standards using different terms. In IEC 61508: “Safety Integrity Level” (SIL), in EN 954: “Categories” and ISO 13849–1 “Performance Level” (PL) (this has still not been ratified).

1.2 Safety of machinery in Europe

The EU Directives, that apply to the implementation of products, based on Article 95 of the EU contract, that regulates the free exchange of goods. These are based on a new global concept (“new approach”, “global approach”):

- EU Directives only specify generally valid safety goals and define basic safety requirements.
- Technical details can be defined in Standards by Standards Associations that have an appropriate mandate from the EU Commission (CEN,CENELEC). These Standards are harmonized under a specific Directive and are listed in the Official Journal of the EU. When the harmonized Standards are complied with, then it can be assumed that the safety requirements and specifications of the Directives involved are fulfilled.
- Legislation does not specify that certain standards have to be complied with. However, when specific Standards are complied with, then it can be assumed that the safety goals of the EU Directives involved are also fulfilled.
- EU Directives specify that the Member States must mutually recognize domestic regulations.
The EU Directives are equal. This means that if several Directives apply for a specific piece of equipment or device, then the requirements of all of the relevant Directives apply (e.g. for a machine with electrical equipment, then the Machinery Directive and the Low-Voltage Directive apply).

1.2.1 Machinery Directive (98/37/EC)

With the introduction of a European common market, a decision was made that the domestic Standards and regulations of all of the EU Member States – that are involved with the technical implementation of machines – would be harmonized. This means that the Machinery Directive had to be implemented – as an internal market Directive – as far as the content was concerned – in the domestic legislation of the individual Member States. For the Machinery Directive, this was realized with the objective to achieve standard protective goals thus removing trade barriers resulting from technical differences. Corresponding to its definition “a machine is an assembly of linked parts or components – at least one of which moves”, this Directive is extremely extensive. The range of applications was subsequently expanded to include “safety-related components” and “exchangeable equipment” in the form of revision Directives.

The Machinery Directive involves the implementation of machines. It has 14 Articles and 7 Annexes. The basic safety and health requirements specified in Annex I of the Directive must be fulfilled for the safety of machines. The manufacturer must carefully observe the following principles when it comes to integrating safety (Annex I, Paragraph 1.1.2):

a) “Machinery must be constructed that it is fitted for its functions, and can be adjusted and maintained without putting persons at risk when these operations are carried-out under the conditions foreseen by the manufacturer.”

“The measures must...eliminate...any risks of accidents...!”

b) “When selecting the appropriate solutions, the manufacturer must apply the following basic principles – and more precisely, in the specified sequence:

- Eliminate or minimize hazards (by integrating the safety concept into the development and construction of the machine);
- Apply and use the necessary protective measures to protect against dangers that cannot be avoided;
- Inform the user about the residual dangers due to the fact that the safety measures applied are not completely effective."

The protective goals must be responsibly implemented in order to fulfill the requirements for conformity with the Directive.

The manufacturer of a machine must provide proof that his machine is in compliance with the basic requirements. This proof is made more simple by applying harmonized Standards.
1.2.2 Harmonized European standards

The two Standards Organizations CEN (Comité Européen de Normalisation) and CENELEC (Comité Européen de Normalisation Électrotechnique), mandated by the EU Commission, drew-up harmonized European Standards in order to precisely specify the requirements of the EU Directives for a specific product. These Standards (EN Standards) are published in the Official Journal of the European Communities and must be included in domestic standards without any revisions. These are used to fulfill the basic health and safety requirements and the protective goals specified in Annex I of the Machinery Directive.

When the harmonized Standards are complied with, then there is an “automatic assumption” that the Directive is fulfilled. This means that the manufacturer may then assume that he has complied with the safety aspects of the Directive under the assumption that they are also handled in that particular Standard. However, not every European Standard is harmonized in this sense. The listing in the Official European Journal is decisive.

The European Standards for Safety of Machines is hierarchically structured as follows:

- A standards (basic standards)
- B standards (group standards)
- C standards (product standards)

Regarding type A standards/basic standards

A Standards include basic terminology and definitions that are applicable for all machines. This includes EN ISO 12100 (previously EN 292) “Safety of Machines, Basic Terminology, General Design Principles”. A Standards primarily address those bodies setting the B and C Standards. However, the techniques documented there regarding minimizing risks can also be helpful to manufacturers if there are no applicable C Standards.

Regarding type B standards/group standards

B Standards include all Standards with safety-related statements that can involve several machine types. B Standards also primarily address those bodies setting C Standards. However, they can also be helpful for manufacturers when designing and constructing a machine if no C Standards apply.

For B Standards, an additional sub-division is made - and more precisely as follows:

- **Type B1 standards** for higher-level safety aspects, e.g. basic ergonomic principles, safety clearances from hazards, minimum clearances to avoid crushing parts of the body.
- **Type B2 standards** for protective safety devices are defined for various machine types – e.g. Emergency Stop devices, two-hand operating circuits, interlocking elements, contactless protective devices, safety-related parts of controls.
Regarding type C standards/product standards

C Standards are Standards for specific machines – for instance, machine tools, woodworking machines, elevators, packaging machines, printing machines etc. Product Standards list requirements for specific machines. The requirements can, under certain circumstances, deviate from the Basic and Group Standards. For machinery construction companies (e.g. OEMs), Type C Standards/Product Standards have absolutely the highest priority. The machinery construction company can then assume that it fulfills the basic requirements of Attachment I of the Machinery Directive (automatic presumption of compliance).

If, for a particular machine, no Product Standard is available, then Type B Standards can be used as help when designing and constructing a machine.

All of the listed Standards as well as the mandated Draft Standards are provided in the Internet under:

http://www.newapproach.org/

Recommendation: Technical development is progressing at a tremendous pace and with it changes and modifications to machine concepts. This is the reason that especially when using C Standards, it should be carefully checked as to whether they are still up-to-date. Where relevant, it should be noted that it is not mandatory that the Standard is applied but that the safety goal must be achieved.
1.2.3 Standards to implement safety-related programmable electronic controls

If the functional safety of the machine depends on control functions, then the control must be implemented so that the probability of failure of the safety-related functions is sufficiently low. This is the reason that Standard IEC 61508 must be carefully observed when using programmable electronic systems. ISO 13849–1 and EN 954–1 and IEC 62061 provide instructions specifically addressing the safety of machine controls.

The areas of application of ISO 13849–1 and IEC 62061 are very similar. In order to help users make a decision, the IEC and ISO associations have defined in detail the application areas of both Standards in a common table in the introduction to the Standards. Either prEN ISO 13849–1 (rev) or EN IEC 62061 is applied depending on the particular technology (mechanical, hydraulic, pneumatic, electrical, electronic, programmable electronic), risk classification and architecture.
Systems to execute safety-related control functions

<table>
<thead>
<tr>
<th></th>
<th>EN ISO 13849–1 (rev)</th>
<th>EN IEC 62061</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Non-electrical (e.g. hydraulic, pneumatic)</td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td>Electromechanical (e.g. relay and/or basic electronics)</td>
<td>Restricted to the designated architectures (see comment 1) and maximum, up to $PL = e$</td>
</tr>
<tr>
<td>C</td>
<td>Complex electronics (e.g. programmable electronics)</td>
<td>Restricted to the designated architectures (see comment 1) and maximum, up to $PL = d$</td>
</tr>
<tr>
<td>D</td>
<td>A combined with B</td>
<td>Restricted to the designated architectures (see comment 1) and maximum, up to $PL = e$</td>
</tr>
<tr>
<td>E</td>
<td>C combined with B</td>
<td>Restricted to the designated architectures (see comment 1) and maximum, up to $PL = d$</td>
</tr>
<tr>
<td>F</td>
<td>C combined with A or C combined with A and B</td>
<td>X See comment 2</td>
</tr>
</tbody>
</table>

“X” indicates that the point is covered by this Standard.

Comment 1:
Designated architectures are described in Annex B of EN ISO 13849–1 and provide a simplified basis for the quantification.

Comment 2:
For complex electronics: Using designated architectures in compliance with prEN ISO 13849–1 (rev) up to $PL = d$ or every architecture in compliance with EN IEC 62061.

Comment 3:
For non-electrical systems: Use parts/components, that correspond to EN ISO 13849–1 (rev) as subsystems.

1.2.4 prEN/ISO 13849–1 (revision from EN 954–1)

The qualitative approach acc. to EN 954–1 is not sufficient for state-of-the-art controls as a result of their technology. EN 954–1 does not take into account, among other things, time behavior (e.g. test interval and/or cyclic test, lifetime). This results in the probabilistic basis in EN ISO 13849–1 (probability of failure per unit time).

EN ISO 13849–1 is based on the known categories of EN 954–1. It now takes into consideration complete safety functions with all of the devices involved in their execution. With EN ISO 13849–1, safety functions are investigated from a quantitative perspective going beyond the qualitative basis of EN 954–1. Performance levels (PL) are used, for this purpose, based on the various Categories. The following safety-related characteristic quantities are required for devices/equipment:

- Category (structural requirement)
- PL: Performance Level
1.2 Safety of machinery in Europe

- MTTF_d: Meantime time up to a dangerous failure
 meantime to dangerous failure
- DC: Diagnostics Coverage
 diagnostic coverage
- CCF: Common cause failure

The Standard describes the calculation of the Performance Level (PL) for safety-related parts of controls on the basis of designated architectures. For deviations from this, EN ISO 13849–1 refers to IEC 61508.

When combining several safety-related parts to form a complete system, the Standard explains how to determine the resulting PL.

Note
prEN ISO 13849–1 (rev) is available as Draft. Until it is ratified, which is scheduled for the end of 2005, EN 954–1 still applies for a transition period that is scheduled for three years: 1996.

1.2.5 EN IEC 62061

EN IEC 62061 is a sector-specific standard below IEC 61508. It describes the implementation of safety-related electrical control systems of machines and takes into account the complete lifecycle - from the conceptual phase to de-commissioning. Safety functions are considered from both quantitative and qualitative standpoints as basis.

In so doing, the Standard consequentially applies a top-down technique in implementing complex control systems – known as functional decomposition. Starting from the safety functions resulting from the risk analysis, a sub-division is made into sub-safety functions and these sub-safety functions are then assigned to real devices/equipment, subsystems and subsystem elements. Both the hardware as well as the software is taken into consideration. EN IEC 62061 also describes the requirements placed on implementing application programs.

A safety-related control system comprises various subsystems. The subsystems are described from a safety-related perspective using the characteristic quantities (SIL claim limit and PFHD).

Safety-related characteristic quantities for subsystems:

- SIL CL: SIL claim limit
- PFHD_d: Probability of dangerous failures per hour
1.2 Safety of machinery in Europe

These subsystems can, in turn, consist of different interconnected subsystem elements (devices) with the characteristic quantities to determine the appropriate PFH₀ value of the subsystems.

Safety-related characteristic quantities for subsystem elements (devices):

- **T₁**: Lifetime

These components can, in turn, consist of different interconnected subsystem elements (devices) with the characteristic quantities to determine the appropriate PFH₀ value of the subsystems.

Safety-related characteristic quantities for subsystem elements (devices):

- **λ**: Failure rate
- **B₁₀ value**: For elements that are subject to wear
- **T₁**: Lifetime

For electro-mechanical devices, a manufacturer specifies a failure rate λ referred to the number of operating cycles. The failure rate per unit time and the lifetime must be determined using the switching frequency for the particular application.

Parameters to be defined for the subsystem – comprising subsystem elements – when designing equipment:

- **T₂**: Diagnostic test interval
- **β**: Susceptibility to common cause failure
- **DC**: Diagnostic coverage

The PFH₀ value of the safety-related control is determined by adding the individual PFH₀ values for subsystems.

The user has the following possibilities when configuring a safety-related control:

- To use devices and subsystems that already comply with EN 954–1 (or prEN ISO13849–1 (rev)) or IEC 61508 or EN IEC 62061. Information is provided in the Standard as to how qualified devices can be integrated when implementing safety-related functions.
- Develop of their own subsystems.
 - Programmable, electronic systems and complex systems: Apply IEC 61508, as well as EN 954–1 or ISO13849–1.
 - Simple devices and subsystems: Apply EN IEC 62061.

Data on non-electrical systems is not included in EN IEC 62061. The Standard represents an extensive system to implement safety-related electrical, electronic and programmable electronic control systems. EN 954–1/EN ISO 13849–1 should be applied for non-electrical systems.
Note
EN IEC 62061 is ratified as EN. It will be harmonized under the Machinery Directive in 2005.

1.2.6 DIN EN 61508 (VDE 0803) or IEC 61508

Standards of the IEC 61508 series were included as EN 61508 is the European Community and as DIN EN 61508 (VDE 0803) in Germany. These series of Standards describe state-of-the-art technology; however, they only have to be observed on a voluntary basis and they are not binding.

IEC 61508 is not harmonized under a particular European Directive. This means that it cannot be used as a basis for automatic presumption that the protective goals of a Directive are fulfilled. However, the manufacturer of a safety-related product can use IEC 61508 to fulfill basic requirements from the European Directives according to the new concept. For instance in the following cases:

- If there is no harmonized Standard for the application involved. In this particular case, the manufacturer may use IEC 61508. However, it has no presumption of conformity.

- A harmonized European Standard (e.g. EN 954 or ISO 13849, EN 60204–1) makes reference to IEC/EN 61508. This ensures that the appropriate requirements of the Directives are complied with (“standard that is also applicable”). If the manufacturer correctly applies IEC/EN 61508 in the sense of this reference and acts responsibly, then he uses the presumption of conformity of the referencing standard.

IEC 61508 handles, from a universal basis, all aspects that must be taken into consideration if E/E/PES systems (electrical, electronic and programmable electronic systems) are used in order to execute safety-related functions and to guarantee the appropriate level of functional safety. Other hazards, e.g. hazards as a result of electric shock are – similar to EN 954 – not included in the Standard.

A new aspect of IEC 61508 is its international positioning as “International Basic Safety Publication”, which makes it a framework for other sector-specific Standards (e.g. IEC 62061). As a result of its international positioning, this Standard enjoys a high acceptance worldwide – especially in North America and in the Automobile industry. Today, many regulatory bodies already specify it, e.g. as basis for NRTL listing.

A new aspect of IEC 61508 is also its system approach. This extends the technical requirements to the complete safety installation – from the sensor to the actuator – the quantification of the probability of dangerous failure due to random hardware failures and the generation of documentation associated with every phase of the complete safety-related lifecycle of the E/E/PES.
1.2.7 Risk analysis/assessment

As a result of their very design and functionality, machines and plants represent potential risks. This is the reason that the Machinery Directive specifies that a risk assessment is carried-out for every machine and, where necessary, risks are then reduced until the residual risk is less than the tolerable risk. For the techniques to evaluate these risks, the following Standards should be applied:

- EN ISO 12100 “Safety of Machinery – basic terminology, general principles for design” and
- EN 1050 “Safety of Machinery, general principles for assessing risk”.

EN ISO 12100 mainly describes the risks to be considered and the design principles to minimize risks; EN 1050 describes the iterative process when assessing and reducing risks to achieve the appropriate degree of safety.

The risk assessment is a sequence of steps that allows hazards, as a result of machines, to be systematically investigated. Where necessary, a risk reduction procedure follows risk assessment. When this procedure is repeated, an iterative process is obtained (see Fig. 1-1), which can then be used to eliminate hazards as far as possible and so that the appropriate protective measures can be taken.

The risk assessment involves the following

- Risk analysis
 a) Determines the limits of the particular machine (EN ISO 12100, EN 1050 Para. 5)
 b) Identifies the hazards (EN ISO 12100, EN 1050 Para. 6)
 c) Techniques to estimate risk (EN 1050 Para. 7)
- Risk evaluation (EN 1050 Para. 8)

As part of the iterative process to achieve the appropriate degree of safety, after the risk has been estimated, the risk is evaluated. In so doing, a decision must be made as to whether the residual risk must be reduced. If the risk is to be further reduced, suitable protective measures must be selected and also applied. The risk assessment should then be repeated.
Determining the machine limits
Identifying the potential hazard
Risk estimation
Risk evaluation
Is the machine safe?

START

Risk analysis
Risk assessment

END

Minimizing risks and selecting suitable protective measures are not part of the risk assessment

Fig. 1-1 Iterative process to achieve safety in compliance with ISO 14121 (EN 1050)

Risks must be reduced by suitably designing and implementing the machine. For instance a control system or protective measures suitable for the safety-related functions.

If the protective measures involve interlocking or control functions, then these must be designed and implemented acc. to EN 954/ISO 13849. For electrical and electronic controls, EN 62061 can be used as an alternative to EN 954/ISO 13849. Electronic controls and bus systems must also comply with IEC/EN 61508.
1.2.8 Risk reduction

Risk reduction for a machine can also be implemented using structural measurements and also safety-related control functions. To implement these control functions, special requirements must be taken into consideration – graduated according to the magnitude of the risk. These are described in EN 954–1 or ISO 13849–1 and, for electrical controls, especially programmable electronics in IEC 61508 or IEC 62061.

The requirements placed on safety-related parts of controls are graduated and classified according to the magnitude of the risk and the necessity to reduce risk.

EN 954–1 defines “Categories” for this purpose. In its Annex B, it also describes a technique to select a suitable Category to design and implement the safety-related part of a control system. In the future, a new risk diagram will be provided in the New Edition (EN ISO 13849–1). Instead of categories, this risk diagram will lead to hierarchic Performance Levels (PL).

IEC 62061 uses “Safety Integrity Level” (SIL) to make this type of classification. This is a quantified measure for the safety-related performance of a control. The necessary SIL is also determined using the principle of risk assessment according to ISO 14121 (EN 1050). A technique to determine the required Safety Integrity Level (SIL) is described in Annex A of the Standard.

It is always important, independent of which Standard is applied, that all parts of the machine control that are involved in executing safety-related functions fulfills these requirements.

1.2.9 Residual risk

In our technological world, safety is a relative term. In practice, safety cannot be implemented that guarantees a “zero risk” situation. The remaining residual risk is defined as:

- Risk that remains after executing the protective measures.

In this case, protective measures are measures to minimize risks, that are known and correspond to state-of-the-art technology.

Residual risks must be clearly referred to in the machine/plant documentation (user information according to EN ISO 12100–2).
1.3 Machine safety in the US

An essential difference in the legal requirements regarding safety at work between the US and Europe is the fact that in the US there is no legislation regarding machinery safety that is applicable in all of the states and that defines the responsibility of the manufacturers/supplier. On the other hand, there is a general requirement that the employer must offer a safe workplace.

1.3.1 Minimum requirements of the OSHA

The Occupational Safety and Health Act (OSHA) from 1970 regulates the requirement that employers must offer a safe place of work. The core requirements of OSHA are in Chapter 5 “Duties”.

The requirements of the OSH Act are adminstered by the Occupational Safety and Health Administration (also known as OSHA). OSHA employs regional inspectors that check whether workplaces are in compliance with the valid regulations.

http://www.osha.gov

The application and use of the Standards is regulated in 29 CFR 1910.5 “Applicability of standards”. The concept is similar to that used in Europe. Standards for specific products have priority over general Standards if the relevant aspects are handled there. When the Standard is fulfilled, the employer can assume that he has fulfilled the core requirements of the OSM Act regarding the aspects handled by the Standards.

In conjunction with certain applications, OSHA specifies that all electrical equipment and devices that are used to protect workers must be authorized by an OSHA-certified, Nationally Recognized Testing Laboratory (NRTL) for the specific application.

In addition to the OSHA regulations, it is important that the current standards from organizations such as NFPA and ANSI are carefully observed as well as the extensive product liability legislation that exists in the US. As a result of the product liability legislation, it is in their own interests that manufacturing and operating companies carefully maintain the applicable regulations and they are more or less “forced” to fulfill the requirement to use state-of-the-art technology.

Third-party insurance companies generally demand that their customers fulfill the applicable standards of the Standards Organizations. Initially, self-insured companies do not have this requirement, but, in the case of an accident, they must prove that they have applied generally recognized safety principles.
1.3.2 NRTL listing

All electrical equipment and devices that are used in the US to protect workers must be certified for the particular application by a “Nationally Recognized Testing Laboratory” (NRTL) certified by OSHA. These “Nationally Recognized Testing Laboratories” are authorized to certify equipment and material in the form of listing, labeling or similar. Domestic standards such as the NFPA 79–2002 and also international Standards such as e.g. IEC 61508 for E/E/PES systems form the basis for testing.

1.3.3 NFPA 79

NFPA 79 (Electrical Standard for Industrial Machinery) applies to electrical equipment on industrial machines with rated voltages of less than 600 V. (A group of machines that operate together in a coordinated fashion is also considered to be one machine.)

The new of NFPA 79 – 2002 Edition includes some basic requirements for programmable electronics and communication buses if these are to be used to implement and execute safety-related functions. If these requirements are fulfilled, then electronic controls and communication buses can also be used for Emergency Stop functions, Stop Categories 0 and 1 (see NFPA 79 – 2002 9.2.5.4.1.4). Contrary to EN 60204–1, NFPA 79 specifies that for Emergency Stop functions, the electrical energy must be disconnected using electro-mechanical elements.

The core requirements placed on programmable electronics and communication buses include:
System requirements (see NFPA 79 – 2002 9.4.3)

- Control systems that include software-based controllers must,
 (1) If an individual fault occurs,
 – bring the system into a safe state to shut it down
 – prevent restarting until the fault has been removed
 – prevent unexpected starting
 (2) Provide protection comparable to hard-wired controls
 (3) Be implemented corresponding to a recognized Standard that defines the requirements for such systems.
 In a note, IEC 61508 is specified as a suitable Standard.

Requirements placed on programmable equipment (see NFPA 79 – 2002 11.3.4)

- Software and firmware-based controllers, that are used in safety-related functions, must be listed for such an application (i.e. certified by an NRTL).
 A note states that IEC 61508 provides the requirements to design such a controller.
1.3 Machine safety in the US

Underwriter Laboratories (UL) has defined a special Category for “Programmable Safety Controllers” for implementing this requirement (code NRGF). This category handles control devices that contain software and are used in safety-related functions. The precise description of the Category and the list of devices that fulfill this requirement are listed in the Internet:

http://www.ul.com \(\rightarrow\) certifications directory \(\rightarrow\) UL Category code/Guide information \(\rightarrow\) search for category “NRGF”

TUV Rheinland of North America, Inc. is also an NRTL for these applications.

1.3.4 ANSI B11

ANSI B11 Standards are joint Standards, that were developed by associations such as e.g. the Association for Manufacturing Technology (AMT and the Robotic Industries Association (RIA)).

The hazards of a machine are evaluated using a risk analysis/assessment. Risk analysis is an important requirement acc. to NFPA79–2002, ANSI/RIA 15.06 1999, ANSI B11.TR–3 and SEMI S10 (semiconductors). Using the documented results of a risk analysis, suitable safety systems can be selected based on the safety class obtained as a result of the particular application.
1.4 Machine safety in Japan

The situation in Japan is different than that in Europe and the US. Comparable legislation regarding functional safety such as in Europe does not exist. Further, product liability does not play a role such as it is in the US.

There are no legal requirements to apply Standards but an administrative recommendation to apply JISs (Japanese Industrial Standards):

Japan bases its approach on the European concept and uses basic Standards as its National Standards (see Table 1-1).

Table 1-1 Japanese standards

<table>
<thead>
<tr>
<th>ISO/IEC number</th>
<th>JIS number</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO12100–1</td>
<td>JIS B 9700–1</td>
<td>Earlier designation TR B 0008</td>
</tr>
<tr>
<td>ISO12100–2</td>
<td>JIS B 9700–2</td>
<td>Earlier designation TR B 0009</td>
</tr>
<tr>
<td>ISO14121 (EN1050)</td>
<td>JIS B 9702</td>
<td></td>
</tr>
<tr>
<td>ISO13849–1 (Ed. 1)</td>
<td>JIS B 9705–1</td>
<td></td>
</tr>
<tr>
<td>ISO13849–2 (Ed. 2)</td>
<td>JIS B 9705–1</td>
<td></td>
</tr>
<tr>
<td>IEC60204–1</td>
<td>JIS B 9960–1</td>
<td>Without Annex F or Route Map of the European Foreword</td>
</tr>
<tr>
<td>IEC61508–1 to 7</td>
<td>JIS C 0508</td>
<td></td>
</tr>
<tr>
<td>IEC 62061</td>
<td>A JIS number has still not been assigned</td>
<td></td>
</tr>
</tbody>
</table>

1.5 Equipment regulations

In addition to the requirements specified in Directives and Standards, company-specific requirements should also be carefully taken into account. Especially large corporations – e.g. automobile manufacturers – place high requirements on the automation components, that are then often listed in their own equipment specifications.

Safety-related subjects (e.g. operating modes, operator actions with access to hazardous areas, Emergency Stop Concepts...) should be clarified with customers at an early phase so that they can be integrated in the risk assessment/risk reduction.
1.6 Other safety-related subjects and issues

1.6.1 Information sheets from the various regulatory bodies

Safety-related measures to be implemented cannot always be derived from Directives, Standards and Regulations. In this case, supplementary information and explanations are required.

As part of their function, some regulatory bodies issue publications on an extremely wide range of subjects. Information sheets are, for example, available on the following subjects:

- Process monitoring in production environments
- Axes that can fall due to gravity
- Roller pressing machines
- Lathes and turning centers – purchasing/selling

These information sheets handling specific subjects and issues can be ordered from all parties interested – e.g. for providing support in operations, when drawing-up regulations or for implementing safety-related measures at machines, plants and systems. These information sheets provide support in machinery construction, production systems, steel construction.

The information sheets can be downloaded from the following Internet addresses:

http://www.bgmetallsued.de/downloads

There, the Category "Fachausschuß Infoblätter" should be selected.

1.6.2 Safety Integrated system manual

In the Safety Integrated System Manual (5th Edition), additional information regarding Regulations and Standards is provided in the Chapters listed below:

- Chapter 1: Regulations and Standards
- Chapter 2: Specification and design of safety-related controls for machines
2.1 Control/drive system

In order to implement safety-related measures, up until now, external equipment and devices were used - e.g. contactors, switches, cams and monitoring devices. If a hazardous situation is detected, these devices generally interrupt the power circuit thus stopping the motion, see Fig. 2-1.

With the integration of safety functions, drive systems and CNC controls perform safety functions in addition to their functional tasks. Very short response times can be achieved because of the short data paths from acquisition of the safety-related information - e.g. speed or position - up to evaluation. The systems with integrated safety technology generally respond very quickly when the permissible limit values are violated, e.g. position and velocity limit values. They can be of decisive importance for the required monitoring result. The integrated safety technology can directly access the power semiconductors in the drive controller without using electromechanical switching devices in the power circuit. This helps reduce the susceptibility to faults - and the integration also reduces the amount of cabling.
Using the “SINUMERIK Safety Integrated” function, for SINUMERIK 840D sl, for all power/performance classes, integrated safety functions are available in conjunction with the SINAMICS S120 drive system; these are used to monitor standstill (zero speed), velocity and position.

SINAMICS S120 is used in conjunction with 1FT6/1FK6/1FK7 three-phase servo-motors and 1FN linear motors for feed drives as well as 1FE and 1PH motors for main spindle drives.

The safety-related sensors and actuators are connected through distributed I/O via PROFIBUS-DP with the PROFIsafe profile, e.g. ET 200S, ET 200eco.

This means that a complete digital system is available that is suitable for complex machining tasks.
2.2 SI system structure and basic features

A two-channel, diverse system structure is formed on the basis of an existing multi-processor structure.

Fig. 2-2 Total system and sub systems

Fig. 2-3 Evaluation/logic with monitoring functions and examples of sensors and actuators
Features of the two-channel, diverse structure

A two-channel, diverse structure is characterized by the following features:

- Two-channel structure with at least 2 independent computers (i.e. computers with different hardware and software).
- Crosswise result and data comparison with forced checking procedure for the purpose of detecting internal errors even in functions that are not often used (dormant errors).
- The computers can access data, reaction-free and decoupled at the shared (common) interfaces (e.g. actual value input).

Sensing

The actual values of the individual axes are sensed by the sensor modules through two channels and are provided to the drive and control.

In order to connect sensors and actuators in a safety-related fashion, their process signals must be connected-in for further processing.

Evaluating

The safety-related functions are executed independently of one another by the NCK-CPU, PLC-CPU and the drive CPUs. The CPUs cyclically and mutually compare their safety-related data and results (crosswise data comparison). A test can be carried-out – initiated by the CPUs – to check the shutdown paths and actuators (forced checking procedure).

Responding

When the integrated safety-relevant functions respond, the drive processors, the PLC processor and/or the NCK processor can act on the connected actuators in a safety-relevant fashion in-line with the actual situation. For example, the appropriate stop responses for the drives can be initiated and the actuators shutdown via the shutdown paths.
2.3 Overview, SI functions

The safety-related functions are available in all of the operating modes and can communicate with the process via safety-related input/output signals. These can be implemented individually for each axis.

- **Safe stopping process**
 When a monitoring function or a sensor responds (e.g. a light grid), the drives are safely controlled down to standstill, optimally adapted to the actual operating state of the machine.

- **Safe braking ramp (SBR)**
 Monitors the speed characteristic. The speed must be reduced after a stop request has been issued.

- **Safe standstill (SH)**
 The drive pulses are cancelled. The energy feed is safely and electronically disconnected.

- **Safe operating stop (SBH)**
 Monitors the drives during standstill (to ensure that they remain stationary). The drives remain fully functional in closed-loop control.

- **Safely-reduced speed (SG)**
 Configured speed limits are monitored, e.g. when setting-up without using an agreement button.

- **Safety-relevant output “n<nx”**
 This is used to detect the velocity range of a drive in a safety-relevant fashion.

- **Safe software limit switches (SE)**
 Variable traversing range limits

- **Safe software cams (SN)**
 To detect ranges

- **Safety-related input/output signals (SGE/SGA)**
 Interface to the process

- **Safety-related communication via standard bus**
 Distributed I/Os for process and safety signals are connected via PROFIBUS using the PROFIsafe profile.

- **Safe programmable logic (SPL)**
 All of the safe signals and internal logic are directly connected.

- **Safe brake management (SBM)**
 Safety-relevant two-channel brake control (SBC) and cyclic brake test (SBT).

- **Integrated acceptance test**
 Partially automated acceptance test for all safety-related functions. Simple operation of the test process, automatic configuration of Trace functions and automatic generation of an acceptance report.
Notes

__

__

__

__

__

__

__

__

__

__
System Features

3.1 Fault analysis

3.1.1 Monitoring

The SINUMERIK 840D sl control with SINAMICS S120 is equipped with various standard monitoring functions. These functions detect system faults/errors and initiate specific responses (also refer to the appropriate literature). These standard monitoring functions do not comply with EN 954–1 or IEC 61508.

The safety functions of SINUMERIK Safety Integrated with their crosswise data comparison and the forced checking procedure detects system faults and bring the machine into a safe condition (see Chapter 6, “System/drive-integrated safety functions” and Chapter 4, “Safety functions integrated in the drive”).

3.1.2 Fault analysis

Based on the appropriate Directives and Standards, a detailed fault analysis is carried-out using SINUMERIK Safety Integrated. The brief edition in tabular form, listed in Attachment A, shows the various disturbances and system faults controlled by SINUMERIK Safety Integrated with an extremely low residual risk; whereby the basis was disturbances that are already known.
3.2 Residual risks

Risk assessment enables the machine manufacturer to determine the residual risk for his machine with respect to the control. The following residual risks are defined:

- Safety Integrated is only activated if all of the system components are powered-up and have been booted.

- Faults in the absolute track (C-D track), cyclically interchanged phases of motor connections (V-W-U instead of U-V-W) and a reversal in the control direction can cause an increase in the spindle speed or axis motion. Category 1 and 2 Stop functions according to EN 60204–1 (defined as Stop B to E in Safety Integrated) that are provided are however not effective due to the fault.

Category 0 stop function according to EN 60204–1 (defined as Stop A in Safety Integrated) is not activated until the transition or delay time set via machine data has expired. When SBR is active, these errors are detected (STOP B/C) and the Category 0 stop function according to EN 60204–1 (STOP A in Safety Integrated) is activated as early as possible irrespective of this delay (see Section 6.4, “Safe braking ramp”). Electrical faults (defective components etc.) can also result in the response described above.

- When incremental encoders are used, the functions safe software limit switch” (SE) and “safe software cam” (SN) can only be used after referencing has been successfully completed.

- When no user agreement has been given (see Subsection 5.4.4. “User agreement”), the safe software limit switches (SE) are not operative; the safe software cams (SN) are operative, but are not safe as defined by Safety Integrated.

- The simultaneous failure of two power transistors (one in the upper and the other offset in the lower inverter bridge) in the inverter may cause the axis to move briefly.

Example: Synchronous motor:
For a 6-pole synchronous motor, the axis can move by a maximum of 30 degrees. With a ballscrew that is directly driven by, e.g. 20 mm per revolution, this corresponds to a maximum linear motion of approximately 1.6 mm.

Example, synchronous linear motor:
For a synchronous linear motor, the movement can be a maximum of one pole width. This corresponds to the following distances:

1FN1-07 2 7 mm
1FN1-12/-18/-24 36 mm
1FN3 20 mm
• For a 1-encoder system, encoder faults are detected by various HW and SW monitoring functions. It is not permissible that these monitoring functions are de-activated and they must be parameterized carefully. Depending on the fault type and which monitor responds, a Category 0 or Category 1 stop function according to EN 60204–1 (defined as STOP A or B in SINUMERIK Safety Integrated) is activated.

• The Category 0 stop function according to EN 60204–1 (defined as STOP A in Safety Integrated) means that the spindles/axes are not braked to zero speed, but coast to a stop (this may take an appropriately long time depending on the level of kinetic energy involved). This must be included in the protective door locking mechanism logic (e.g. with the logic operation $n<n_x$).

• When a limit value is violated, the speed may exceed the set value briefly or the axis/spindle may overshoot the setpoint position to a greater or lesser degree during the period between error detection and system response. This depends on the dynamic response of the drive and the parameters/machine data settings that have been entered (see Chapter 6, “System/drive integrated safety functions”).

• A position-controlled axis may be forced out of the safe operating stop state (SBH) by mechanical forces that are greater than the max. axis torque. In such cases, a stop function, Category 1 according to EN 60204–1 (STOP B) is activated.

• Safety Integrated is not capable of detecting parameterization and programming errors made by the machine manufacturer. The required level of safety can only be assured by thorough and careful acceptance testing.

• Motor modules and motors must always be replaced with the same equipment type. If this is not the case, the parameters will no longer match the actual configuration – causing Safety Integrated to respond incorrectly. The axis involved must be re-commissioned if an encoder is replaced.

• If, for a 1-encoder system, the encoder signals remain at a steady-state due to an encoder fault (i.e. they no longer following the motion, but have a correct signal level), then when the axis is stationary (e.g. in SBH), this fault is not detected. Generally, the axis is kept at a standstill by the active closed-loop control. Especially for vertical (suspended) axes, from a closed-loop control-related perspective, it is conceivable that such an axis can move downwards without this being detected. For the above mentioned encoder fault, the risk is only possible for a few encoder types as a result of their principle of operation (e.g. encoders with microprocessor-controlled signal generation).
3.3 System requirements

- Software option “SINUMERIK Safety Integrated”

<table>
<thead>
<tr>
<th>Software option</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI-Basic (including 1 axis/spindle, up to 4 SPL I/Os)</td>
<td>6FC5800 – 0AM63 – 0YB0</td>
</tr>
<tr>
<td>SI-Comfort (including 1 axis/spindle, up to 64 SPL I/Os)</td>
<td>6FC5800 – 0AM64 – 0YB0</td>
</tr>
<tr>
<td>SI-axis/spindle (in addition for each axis/spindle)</td>
<td>6FC5800 – 0AC70 – 0YB0</td>
</tr>
<tr>
<td>SI axis/spindle package (in addition, 15 axes/spindles)</td>
<td>6FC5800 – 0AC60 – 0YB0</td>
</tr>
</tbody>
</table>

- SINUMERIK 840D sl; software release:
 From 1.3.1 for safety functions integrated in the drive (SH/SBC via terminals, Chapter 4)
 From 1.3.2 for safety functions integrated in the system (Chapters 5 to 7)

- SINUMERIK 840D sl; all NCU types can be used

- The measuring circuit cables must comply with the specifications of the SINAMICS S120.

- Drive, SINAMICS S120

- The safety-related devices/modules are open-type devices/modules corresponding to UL 50 and in order to provide protection against mechanical damage, they should be accommodated in enclosures/cabinets with degree of protection IP54 according to EN 60529.

- The state of a deleted/clear safety-related input or output (i.e. the state logical “0” of an SGE/SGA and electrical “low” of an associated I/O terminal) or the state of a drive where the pulses are cancelled that can be achieved by the user as well by the fault response of the “SINUMERIK Safety Integrated” system, is defined as the so-called “fail-safe state”. This is the reason that the system is only suitable for applications where this state corresponds to the safe state of the process controlled by SINUMERIK Safety Integrated.

- Drives with slip cannot be used for SE and SN.

The following specifically applies for fail-safe SIMATIC modules:

- STEP7 F configuration tool (F Configuration Pack) as supplement to STEP7
 This F configuration tool is required so that ET 200 F modules can be integrated into the HW configuration.
 The F configuration tool can be downloaded from the A&D Service&Support pages under the Subject F-Configuration-Pack. Which F configuration tool can be used for which STEP7 version is also specified there.
 When using ET 200 F modules it should be noted that a version of the F configuration tool should be used that already supports the module.
 Which modules can be configured with which versions that can be downloaded are also specified in the download area.
4 Safety Functions Integrated in the Drive

Note
This Chapter describes the safety functions that are integrated in the drive – “safe standstill” (SH) and “safe brake control” (SBC), which are controlled via the drive terminals. The safety functions SH and SBC from the context of the safety-relevant motion monitoring functions are described in Chapter 6 “System/drive-integrated safety functions”. Control via terminals and from the motion monitoring functions is in parallel and can be used independently of one another.

4.1 General information about SINAMICS Safety Integrated

4.1.1 Explanations, standards and terminology

Note
In this Chapter, the NCU is designated “Control Unit”.

Expected response
The monitoring functions in each monitoring channel work on the principle that a defined status must prevail before each action is carried out and a specific acknowledgement made after each action.

If this expected response in a monitoring channel is not fulfilled, the drive coasts to a standstill (two channel) and an appropriate message is output.
4.1 General information about SINAMICS Safety Integrated

Shutdown paths
Two independent shutdown paths are available. All shutdown paths are low active. Thereby ensuring that the system is always switched to a safe status if a component fails or in the event of cable breakage.

If an error is discovered in the shutdown paths, the “safe standstill” function is activated and a system restart inhibited.

Two-channel monitoring structure
All the main hardware and software functions for Safety Integrated are implemented in two independent monitoring channels (e.g. shutdown signal paths, data management, data comparison).

The two drive monitoring channels are implemented using the following components:
• Control Unit
• Motor Module belonging to a drive

Forced checking procedure and test of the shutdown paths
The forced checking procedure of the shutdown paths is used to detect errors in the software and hardware of the two monitoring channels as quickly as possible and is automatically carried-out when the “safe standstill” function is activated/deactivated.

To fulfill the requirements of EN 954–1 regarding timely error detection, the two shutdown paths must be tested at least once within a defined time to ensure that they are functioning properly. For this purpose, the forced checking procedure must be either initiated manually by the user or automatically as part of the process.

A timer ensures that the forced checking procedure is carried-out as quickly as possible.

• p9659 Safety Integrated timer for forced checking procedure

The forced checking procedure of the shutdown paths must be carried-out at least once during the time set in this parameter.

Once this time has elapsed, an alarm is output and remains present until the forced checking procedure is carried-out.

The timer returns to the set value each time the “safe standstill” function is deactivated.

When the appropriate safety devices are implemented (e.g. protective doors), it can be assumed that running machinery will not pose any risk to personnel. For this reason, only an alarm is output to inform the operator that a forced checking procedure is due and request that this be carried-out at the next available opportunity. This alarm does not affect machine operation.
The machinery construction OEM must set the time interval for carrying-out the forced checking procedure to between 0 and 9000 hours depending on the application (factory setting: 8 hours). The 9000 hours only apply for the SH/SBC functions integrated in the drive, that are controlled using the local terminals – i.e. not for safety-relevant motion monitoring functions according to Chapter 6.

Examples for carrying-out the forced checking procedure:

- When the drives are at a standstill after the system has been powered-up.
- When the protective door is opened.
- In defined cycles (e.g. every 8 hours).
- In the automatic mode (time and event dependent).

Safety-related input signals (SGE)

The safety-relevant input signals act as an interface to the process. These digital signals are transmitted to the system (two channel) and are used for selecting/deselecting safety functions.

Example: Selecting/deselecting safe standstill (SH)

Crosswise data comparison

A cyclic crosswise comparison of the safety-relevant data in the two monitoring channels is carried-out.

In the event of inconsistencies, the following occurs:

1. Fault F01611 or F30611 (STOP F) is output and the time in p9658 or p9858 initiated.
2. Once the time has elapsed, a further fault (F01600 or F30600 (STOP A)) is output and the pulses are safely cancelled.

The stop response is transferred to the other monitoring channel so that two-channel stopping can be carried out.

Detailed information on the stop responses, see Section 6.3 “Safe Stops A-F”.

© Siemens AG, 2006. All rights reserved
SINUMERIK 840D sl/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition 4-45
Monitoring clock cycle integrated in the drive

The safety-relevant drive functions are executed cyclically in the monitoring clock cycle.

The monitoring clock cycle integrated in the drive is as a minimum 4 ms. Increasing the basic DRIVE-CLIQ sampling time (p0110) also increases the monitoring clock cycle integrated in the drive.

Parameter overview (see /LH1/ SINAMICS S List Manual and /LIS/ List Manual)

- r9780 “SI monitoring clock cycle (Control Unit)”
- r9880 “SI monitoring clock cycle (Motor Module)”

4.1.2 Parameter, checksum, version, password

Properties of Safety Integrated parameters

The following applies to Safety Integrated parameters:

- They are kept separate for each monitoring channel.
- They are password-protected against accidental or unauthorized changes.
- When booting, a checksum (cyclic redundancy check: CRC) is generated and checked via the safety parameters, which have undergone a checksum check.
- Data management
 - Safety parameters for Control Units and Motor Modules
 These parameters are stored on the non-volatile CompactFlash card.
- Establish/restore the factory setting for safety parameters
 You can only reset the safety parameters to the factory setting on a drive-specific basis using p0970 or p3900 when the safety functions are not enabled (p9601 = p9801 = 0).
 All the factory settings can be restored (p0976 = 1 and p0009 = 1 on the Control Unit) even when the safety functions are enabled (p9601 = p9801 = 1).
Checking the checksum

For each monitoring channel, the safety parameters include one parameter for the actual checksum for the relevant safety parameters that have undergone a checksum check.

During commissioning, the actual checksum must be transferred in the corresponding parameters of the specified reference checksum.

- r9798 "SI actual checksum SI parameters (Control Unit)"
- p9799 "SI actual checksum SI parameters (Control Unit)"
- r9898 "SI actual checksum SI parameters (Motor Module)"
- p9899 "SI actual checksum SI parameters (Motor Module)"

Each time the system boots, the actual checksum is calculated using the safety parameters and then compared with the specified reference checksum.

If the actual and specified reference checksums are different, fault F01650 or F30650 is output and an acceptance test requested.

Safety Integrated versions

The safety software integrated in the drive on the Control Unit and on the Motor Modules each have their own version ID.

- r9770[0...2] "SI Version (Control Unit)"
- r9870[0...2] "SI Version (Motor Module)"

Password

Note

A password allocation is not relevant in the SINUMERIK environment. It is only used in conjunction with Starter (commissioning tool used for SINAMICS).

The safety password protects the safety parameters against unauthorized write access.

In the commissioning mode for Safety Integrated (p0010 = 95), you cannot change safety parameters until you have entered the valid safety password in p9761.

- When Safety Integrated is commissioned for the first time, the following applies:
 - Safety password = 0
 - Default setting for p9761 = 0

In other words:

The safety password does not need to be set during initial commissioning.

- Changing the password
4.1 General information about SINAMICS Safety Integrated

- p0010 = 95 commissioning mode (see Section 4.4 “Commissioning the functions SH and SBC”)
- p9761 = Enter “old safety password”
- p9762 = Enter “new password”
- p9763 = Confirm “new password”
- The new and confirmed safety password is valid immediately.

If you need to change safety parameters but you do not know the safety password, proceed as follows:

1. Restore the factory setting of the complete drive unit (Control Unit with all connected drives/components) (see SINUMERIK 840D s/SINAMICS S120 Commissioning Manual)
2. Recommission the drive unit and drives
3. Recommission Safety Integrated

Parameter overview (see Subsection 8.2.2 “Description of the parameters”)

- p9761 = “Enter SI password”
- p9762 = “New SI password”
- p9763 = “Confirm SI password”
4.2 Safe standstill (SH)

General description

In conjunction with a machine function or in the event of an error, the “safe standstill (SH)” function is used to safely disconnect the torque-generating motor power supply.

When the function is selected, the drive unit is in a “safe status”. The power-on disable function prevents the drive unit from being restarted.

The pulse cancellation function integrated in the Motor Modules is a prerequisite for this function.

Features of safe standstill

- This function is integrated in the drive, i.e. a higher-level control is not required.
- The function is drive specific. This means that each drive has the function and it must be individually commissioned.
- The function must be enabled via parameter.
- The terminals for the safe standstill function can be grouped together.
- When the safe standstill function is selected:
 - The motor cannot be started accidentally.
 - The safety-relevant pulse cancellation interrupts the torque-generating power-feed to the motor.
 - The Motor Module and motor are not electrically isolated.

Caution

Appropriate measures must be taken to ensure that the motor does not move once the motor power supply has been disconnected (“coast down”) (e.g. enable the “Safe brake control” function for a vertical axis).

Caution

If two power transistors in the Motor Module (one in the upper and one in the lower bridge) fail at the same time, this can cause a momentary movement.

The maximum movement can be:

- Synchronous rotary motors: Max. movement = $180^\circ / \text{number of pole pairs}$
- Synchronous linear motors: Max. movement = pole width
The status of the safe standstill function is displayed via the appropriate parameters.

Terminals for safe standstill

The safe standstill function is selected/deselected separately for each drive using a specific terminal on the Control Unit and Motor Module.

- **Control Unit**
 - The required input terminal for safe standstill (SH) is selected via the BICO interconnection (BI: p9620).
 - Digital input DI 0 ... DI 7 on the Control Unit can be used as a signal source (NCU). NX modules have DI 0 to DI 3.

- **Motor Modules**
 - The input terminal for “safe standstill (SH)” is terminal “EP” (“enable pulses”).

Both terminals must be simultaneously energized, otherwise a fault will be issued.

Grouping drives

If the function is to be simultaneously initiated for several drives, the terminals for the corresponding drives must be grouped together:

- **Control Unit**
 - By appropriately interconnecting the binector input to a joint input terminal for the drives to be combined to form a group.
- Motor Modules
 By appropriately connecting terminal “EP” for the individual Motor Modules belonging to a group.

Note

The grouping must be identical in both monitoring channels.

If a fault in a drive results in a safe standstill (SH), this does not automatically mean that the other drives in the same group also switch to safe standstill (SH).

The assignment is checked while testing the shutdown paths. Whereby the operator selects safe standstill for each group. The check is drive specific.

Example: terminal grouping for safe standstill (SH)

It must be possible to select/deselect safe standstill separately for group 1 (drive 1 and 2) and group 2 (drive 3 and 4).

In addition, the same grouping for safe standstill must be assigned on both the Control Unit and the Motor Modules.

![Diagram](image-url)

Fig. 4-2 Example: terminal grouping for safe standstill (SH)
4.2 Safe standstill (SH)

Enabling the safe standstill (SH) function

The safe standstill function is enabled via the following parameters:

- **p9601.0** “Safe standstill enabled via terminals (Control Unit)”
- **p9801.0** “Safe standstill enabled via terminals (Motor Modules)”

Selecting/deselecting safe standstill

The safe standstill function must be selected/deselected “simultaneously” in both monitoring channels using the input terminals and act only on the associated drive.

1 signal: Deselects the function
0 signal: Selects the function

“Simultaneously” means:

The changeover must be completed in both monitoring channels within the parameterized tolerance time.

- **p9650** “SI SGE changeover tolerance time (Control Unit)"
- **p9850** “SI SGE changeover tolerance time (Motor Modules)"

If the safe standstill function is not selected/deselected within the tolerance time, this is detected by the crosswise data comparison and fault F01611 or F30611 (STOP F) is output.

The following occurs when safe standstill is selected:

- Every monitoring channel initiates safety-relevant pulse cancellation via its shutdown path.
- A brake is applied (if a brake is connected and SBC is configured).

The following occurs when safe standstill is de-selected:

- Every monitoring channel withdraws (cancels) the safety-relevant pulse cancellation via its shutdown path.
- The safety prompt “close brake” is cancelled.

Note

If the two input signals for selecting/deselecting safe standstill differ momentarily, i.e. within the tolerance time in p9650/p9850, the drive is stopped although no message is output.
 Restart once the safe standstill function has been selected

1. Deselect the function in each monitoring channel via the input terminals.
2. Issue drive enable signals.
3. Cancel the power-on inhibit and power-up again.
 - 1/0 edge at input signal “ON/OFF1” (cancel power-on inhibit)
 - 0/1 edge at input signal “ON/OFF1” (power-up drive)
4. Move/traverse the drives again.

 Status with safe standstill

The status of the safe standstill (SH) function is indicated via the following parameters:

Parameter overview (see Subsection 8.2.2 “Description of parameters”)

- r9772 “CO/BO: SI status (Control Unit)”
- r9872 “CO/BO: SI status (Motor Modules)”
- r9773 “CO/BO: SI status (Control Unit + Motor Modules)”
- r9774 “CO/BO: SI status (safe standstill group)”

Response time for the “safe standstill” function

The following values can be specified for the response times when the function is selected/deselected via input terminals:

- Typical response time
 2x safety monitoring clock cycle CU (r9780) + inputs/outputs, sampling time (p0799)
- Maximum response time that can occur when an error develops
 4x safety monitoring clock cycle CU (r9780) + inputs/outputs, sampling time (p0799)

Examples:

Assumption:
Safety monitoring clock cycle CU (r9780) = 4 ms and inputs/outputs, sampling time (r0799) = 4 ms

\[t_{R_{\text{type}}} = 2 \times r9780 \text{ (4 ms)} + r0799 \text{ (4 ms)} = 12 \text{ ms} \]
\[t_{R_{\text{max}}} = 4 \times r9780 \text{ (4 ms)} + r0799 \text{ (4 ms)} = 20 \text{ ms} \]

Parameter overview (see Subsection 8.2.2 “Description of parameters”)

- p0799 “CU inputs/outputs, sampling time”
- r9780 “SI monitoring clock cycle (Control Unit)”
- r9880 “SI monitoring clock cycle (Motor Module)”
4.3 Safe brake control (SBC)

Description
Safe brake control is used to activate holding brakes that function according to the closed-circuit principle (e.g. brake).

The command for releasing or applying the brake is transmitted to the Motor Module via DRIVE-CLiQ. The Motor Module then carries out the action and activates the outputs for the brake.

Brake activation via the brake connection on the Motor Module is carried out using a safe, two-channel method.

Warning
Safe brake control does not detect faults in the brake itself – such as e.g. brake winding short-circuit, worn brakes and similar.

If the brake cable has a short-circuit, this is only detected when the brake closes.

Safe brake control only detects faults in the brake cables (e.g. interrupted cable) when the status changes – i.e. when the brake either opens or closes.

Features of safe brake control (SBC)
- When safe standstill is selected or when safety monitor functions respond with safe pulse cancellation, SBC is initiated.
- Unlike conventional brake control, SBC is implemented via p1215 through two channels.
- SBC is initiated independently of the brake control mode set in p1215.
- The function must be enabled via parameter.
- Every time safe standstill is selected, the holding brake is immediately closed and a forced checking procedure carried-out.

Enabling the safe brake control (SBC) function
The safe brake control function is enabled using the following parameters:
- p9602 “SI enable safe brake control (Control Unit)”
- p9802 “SI enable safe brake control (Motor Module)”

The safe brake control function only becomes active if at least one safety monitoring function is enabled (i.e. p9601 = p9801 ≠ 0).
Two-channel brake control

The brake is controlled from the Control Unit. The brake can be closed through two signal paths.

Fig. 4-3 Two-channel brake control

For the safe brake control, the Motor Module carries-out a check to ensure that if the Control Unit fails or is faulty, the brake current is interrupted and the brake is closed.

The brake diagnosis can only reliably detect a malfunction in either of the switches (TB+, TB-) when the status changes (when the brake is released or applied).

If the Motor Module or Control Unit detects a fault, the brake current is switched off and the safe status is reached.
Response time for safe brake control function

The following values can be specified for the response times when the function is selected/deselected via input terminals:

- Typical response time
 4x safety monitoring clock cycle CU (r9780) + inputs/outputs, sampling time (p0799)

- Maximum response time that can occur when an error develops
 8x safety monitoring clock cycle CU (r9780) + inputs/outputs, sampling time (p0799)

Examples:

Assumption:
Safety monitoring clock cycle CU (r9780) = 4 ms and inputs/outputs, sampling time (r0799) = 4 ms

\[t_{R_{\text{type}}} = 4 \times r9780 (4 \text{ ms}) + r0799 (4 \text{ ms}) = 20 \text{ ms} \]
\[t_{R_{\text{max}}} = 8 \times r9780 (4 \text{ ms}) + r0799 (4 \text{ ms}) = 36 \text{ ms} \]

Parameter overview (see Subsection 8.2.1 “Overview of parameters”)

- p0799 “CU inputs/outputs, sampling time”
- r9780 “SI monitoring clock cycle (Control Unit)”
- r9880 “SI monitoring clock cycle (Motor Module)”
4.4 Commissioning the SH and SBC functions

4.4.1 General information about commissioning safety functions

Note
- The “SH” and “SBC” functions are drive specific, that is, the functions must be commissioned individually for each drive.
- To support the “SH” and “SBC” functions, the following (minimum) safety versions are required:
 - Control Unit: V02.01.01 (r9770[0...2])
 - Motor module: V02.01.01 (r9870[0...2])
- If the version in the Motor Module is incompatible, the Control Unit responds as follows during the switchover to safety commissioning mode (p0010 = 95):
 - Fault F01655 (Safety Integrated control unit: align monitoring functions) is output. The fault initiates stop response OFF2.
 - The fault cannot be acknowledged until the safety commissioning mode (p0010 ≠ 95) is exited.
 - The Control Unit initiates a safe pulse cancellation via its own safety shutdown path.
 - If parameterized (p1215), the brake is closed.
 - It is not possible to enable the safety functions (p9601/p9801 and p9602/p9802).

Prerequisites for commissioning the safety functions

1. Commissioning of the drives must be completed.
2. The non safety-relevant pulse cancellation must be present, e.g. via OFF1 = “0” or OFF2 = “0”
 - If a brake is connected and has been parameterized, then the brake is closed.
3. The terminals for “safe standstill” must be connected-up.
 - Control Unit: Digital input DI 0 ... DI 7 (NCU)
 Digital input DI 0 ... DI 3 (NX)
 - Motor Modules: Terminal "EP"
4. For operation with SBC, the following applies:
 - A brake must be connected to the appropriate Motor Module connector.
Commissioning support using macros

Note
For the sake of simplifying the drive commissioning, macros are included in the SW. By starting and executing these macros in the commissioning phase, it is possible to pre-configure the drive set connected to the NCU for the most part. Refer to SINUMERIK 840D sl/SINAMICS S120 Commissioning Manual. We recommend that you always use these macros!

4.4.2 Procedure for commissioning SH and SBC

To commission the SH and SBC functions, carry out the following steps:

Table 4-1 Commissioning the SH and SBC functions

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Description and comments</th>
</tr>
</thead>
</table>
| 1 | p0010 = 95 | Sets the Safety Integrated commissioning mode
 | | • The following alarms and faults are output:
 | | – A01698 (SI CU: commissioning mode active)
 | | Only when commissioning the system for the first time:
 | | – F01650 (SI CU: Acceptance test required) with fault value = 130 (no safety parameters exist for the Motor Module).
 | | – F30650 (SI MM: Acceptance test required) with fault value = 130 (no safety parameters exist for the Motor Module).
 | | For information on the acceptance test and certificate, see Step 13.
 | | • The pulses are safely cancelled and monitored by the Control Unit and Motor Module.
 | | • The safety sign-of-life is monitored by the Control Unit and Motor Module.
 | | • The function for exchanging stop responses between the control unit and motor module is active.
 | | • An existing and parameterized brake has already been closed.
 | | • In this mode, fault F01650 or F30650 with fault value = 2003 is output after a safety parameter is changed for the first time.
 | | This behavior applies for the entire duration of safety commissioning, that is, the safe standstill function cannot be selected/deselected while safety commissioning mode is active because this would constantly force safe pulse cancellation. |
Table 4-1 Commissioning the SH and SBC functions, continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Description and comments</th>
</tr>
</thead>
</table>
| 2 | p9761 = “Value” | Sets the safety password
When Safety Integrated is commissioned for the first time, the following applies:
- Safety password = 0
- Default setting for p9761 = 0
This means that the safety password does not need to be set during initial commissioning. |
| 3 | p9601.0, p9801.0 | Enables the safe standstill function
SH via Control Unit terminals
SH via Motor Module terminals
- The parameters are not changed until safety commissioning mode has been exited (i.e. when p0010 ≠ 95 is set).
- Both parameters are contained in the crosswise data comparison and must, therefore, be identical. |
| 4 | p9602 = 1, p9802 = 1 | Enables the safe brake control function
Enables SBC on the Control Unit
Enables SBC on the Motor Module
- The parameters are not changed until safety commissioning mode has been exited (i.e. when p0010 ≠ 95 is set).
- Both parameters are contained in the crosswise data comparison and must, therefore, be identical.
- The safe brake control function only becomes active if at least one safety monitoring function is enabled (i.e. p9601 = p9801 ≠ 0). |
| 5 | p9620 = “Value”
Terminal “EP” | Sets the terminals for safe standstill
Sets the signal source for safe standstill on the Control Unit
Connects terminal “EP” (Enable Pulses) on the Motor Module.
- Control Unit monitoring channel:
The following is possible by appropriately interconnecting BI: p9620 for the individual drives:
- safe standstill can be selected/deselected
- the terminals for safe standstill can be grouped
Digital input DI 0 ... DI 7 on the Control Unit can be used as a signal source (NCU). DI 0 ... DI 3 (NX).
- Motor Module monitoring channel:
By wiring the “EP” terminal accordingly on the individual Motor Modules, the following is possible:
- safe standstill can be selected/deselected
- the terminals for safe standstill can be grouped
Note:
The safe standstill terminals must be grouped identically in both monitoring channels. |
Table 4-1 Commissioning the SH and SBC functions, continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Description and comments</th>
</tr>
</thead>
</table>
| 6 | p9650 = “Value”
 p9850 = “Value” | **Sets the tolerance time for the SGE changeover**
Tolerance time for the SGE changeover on the Control Unit
Tolerance time for the SGE changeover on the Motor Module
- The parameters are not changed until safety commissioning mode has been exited (i.e. when p0010 ≠ 95 is set).
- Due to the different runtimes in the two monitoring channels, an SGE changeover (e.g. selection/deselection of SH) does not take immediate effect. After an SGE switchover, dynamic data is not subject to a crosswise data comparison during this tolerance time.
- Both parameters are contained in the crosswise data comparison and must, therefore, be “identical”. |
| 7 | p9658 = “Value”
 p9858 = “Value” | **Sets the transition time from STOP F to STOP A**
Transition time from STOP F to STOP A on the Control Unit
Transition time from STOP F to STOP A on the Motor Module
- The parameters are not changed until safety commissioning mode has been exited (i.e. when p0010 ≠ 95 is set).
- STOP F is the stop response initiated by fault F01611 or F30611 (SI defect in a monitoring channel) when the crosswise data comparison is violated. STOP F normally initiates “no stop response”.
- Once the parameterized time has elapsed, STOP A (immediate safety pulse cancellation) is initiated by fault F01600 or F30600 (SI STOP A initiated).
 The default setting for p9658 and p9858 is 0, i.e. STOP F immediately results in STOP A.
- Practical use for STOP F:
 Re-configure the stop response for fault F01611 e.g. from NONE to OFF1 or OFF3, for example, (p2100, p2101) and set a sufficient transition time (e.g. p9658 = p9858 = 500 ms). In this way, STOP F can be used to initiate stopping via the ramp-function generator (OFF1) or a fast stop (OFF3) before STOP A cancels the pulses.
- Both parameters are contained in the crosswise data comparison and must, therefore, be “identical”. |
| 8 | p9659 = “Value”
 | **Sets the time to carry-out the forced checking procedure and testing the safety shutdown paths**
- After this time has expired, using alarm A01699 (SI CU: Shutdown paths must be tested), is requested to test the shutdown paths (i.e. select/de-select SH).
- The commissioning engineer can change the time required for carrying out the forced checking procedure and testing the safety shutdown paths. |
Table 4-1 Commissioning the SH and SBC functions, continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Description and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>p9799 = “r9798” p9899 = “r9898”</td>
<td>Adapt the specified reference checksums
Reference checksum on the Control Unit
Reference checksum on the Motor Module
The actual checksums for the safety parameters that have undergone a checksum check are displayed as follows:
• Actual checksum on the Control Unit: r9798
• Actual checksum on the Motor Module: r9898
By setting the actual checksum in the parameter for the specified reference checksum, the commissioning engineer confirms the safety parameters in each monitoring channel.
In the HMI environment, this procedure is carried-out with “press softkey”.</td>
</tr>
<tr>
<td>10</td>
<td>p9762 = “Value” p9763 = “Value”</td>
<td>Sets a new safety password
Enter a new password
Confirm the new password
In the SINUMERIK environment we recommend that an axial password is not used. The commissioning area is sufficiently protected using the password protection at the HMI and an axial password makes further commissioning steps more difficult.
• The new password is not valid until it has been entered in p9762 and confirmed in p9763.
• From now on you must enter the new password in p9761 so that you can change safety parameters.
• Changing the safety password does not mean that you have to change the checksums in p9799 and p9899.</td>
</tr>
<tr>
<td>11</td>
<td>p0010 = Value not equal to 95</td>
<td>Exit Safety Integrated commissioning mode
• If at least one safety monitoring function is enabled (p9601 = p9801 ≠ 0), the checksums are checked:
If the reference checksum on the Control Unit has not been correctly adapted, then fault F01650 (SI CU: Acceptance test required) is output with fault code 2000 and it is not possible to exit the safety commissioning mode.
If the reference checksum on the Motor Module has not been correctly adapted, then fault F01650 (SI CU: Acceptance test required) is output with fault code 2001 and it is not possible to exit the safety commissioning mode.
If a safety monitoring function has not been enabled (p9601 = p9801 = 0), safety commissioning mode is exited without the checksums being checked.
When the safety commissioning mode is exited, the following is carried-out:
• All of the drive parameters are stored on the CompactFlash card.
• The safety parameters on the Motor Module are loaded by the Control Unit and stored on the CompactFlash card.
• The new safety parameterization becomes effective on the Control Unit and on the Motor Module.</td>
</tr>
</tbody>
</table>
Table 4-1 Commissioning the SH and SBC functions, continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Description and comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>–</td>
<td>Carry-out a POWER ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After commissioning, a POWER ON reset must be carried-out.</td>
</tr>
<tr>
<td>13</td>
<td>–</td>
<td>Carry-out an acceptance test and create a test certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Once safety commissioning has been completed, the commissioning engineer must carry-out an acceptance test for the enabled safety monitoring functions. The results of the acceptance test must be documented in an acceptance certificate (see Section 4.6 “Acceptance test and acceptance certificate”).</td>
</tr>
</tbody>
</table>

4.4.3 Safety faults

Stop response

When Safety Integrated faults occur, the following stop responses can be initiated:

Table 4-2 Safety Integrated stop responses

<table>
<thead>
<tr>
<th>Stop response</th>
<th>Action</th>
<th>Effect</th>
<th>Initiated when</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP A cannot be acknowledged</td>
<td>Initiates safe pulse cancellation via the shutdown path of the relevant monitoring channel. For operation with SBC: The brake is closed.</td>
<td>The motor coasts to a standstill or is braked by the holding brake.</td>
<td>For all safety faults that cannot be acknowledged with pulse cancellation.</td>
</tr>
<tr>
<td>STOP A</td>
<td>STOP A corresponds to stop Category 0 to EN 60204–1. With STOP A, the motor is directly brought into a zero torque condition using the safe standstill (SH) function. A motor at standstill cannot be started again accidentally. A moving motor "coasts" to standstill. This can be prevented by using external braking mechanisms, e.g. armature short-circuit, holding or operational brake. When STOP A is present safe standstill (SH) is effective.</td>
<td>For all safety faults that can be acknowledged with pulse cancellation. As a subsequent response to STOP F.</td>
<td></td>
</tr>
<tr>
<td>STOP F</td>
<td>Transition to STOP A.</td>
<td>None</td>
<td>If an error occurs in the crosswise data comparison.</td>
</tr>
<tr>
<td>STOP F is permanently assigned to the crosswise data comparison (CDCs). In this way, errors are detected in the monitoring channels. After STOP F, STOP A is initiated. When STOP A is present safe standstill (SH) is effective.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Warning
With a vertical axis or pulling load, there is a risk of uncontrolled axis movements when STOP A/F is initiated. This can be prevented by using safe brake control (SBC) and a brake with sufficient holding force.

Acknowledging safety faults
Safety Integrated faults must be acknowledged as follows:

1. Remove the cause of the fault.
2. Selecting/deselecting safe standstill (SH).
3. Acknowledge the fault.

If the safety commissioning mode is exited when the safety functions are switched off (p0010 = value not equal to 95 when p9601 = p9801 = 0), all the safety faults can be acknowledged.

After the safety commissioning mode has been set again (p0010 = 95), all of the faults that were previously available, re-appear.

Note
Safety faults can also be acknowledged (as with all other faults) by switching the drive unit off and then on again (power on).

If the fault cause has still not been resolved, then the fault is immediately displayed again after booting.

Description of faults and alarms
See also Section 10.3.

Note
The faults and alarms for SINAMICS Safety Integrated are described in the following documentation:

References: /LH1/ SINAMICS S List Manual – Section 3.2
4.5 Overview of parameters and function diagrams

Parameter overview

Table 4-3 Safety Integrated parameters

<table>
<thead>
<tr>
<th>No.</th>
<th>Control Unit (CU)</th>
<th>No. Motor Modules (MM)</th>
<th>Name</th>
<th>Can be changed in</th>
</tr>
</thead>
<tbody>
<tr>
<td>p9601</td>
<td>p9601</td>
<td>Enables safety functions</td>
<td>Safety Integrated commissioning (p0010 = 95)</td>
<td></td>
</tr>
<tr>
<td>p9602</td>
<td>p9602</td>
<td>Enables safe brake control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9620</td>
<td>–</td>
<td>Signal source for safe standstill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9650</td>
<td>p9650</td>
<td>Tolerance time SGE changeover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9658</td>
<td>p9658</td>
<td>Transition time STOP F to STOP A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9659</td>
<td>–</td>
<td>Timer for forced checking procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9761</td>
<td>–</td>
<td>Enter password</td>
<td>In every operating state</td>
<td></td>
</tr>
<tr>
<td>p9762</td>
<td>–</td>
<td>New password</td>
<td>Safety Integrated commissioning (p0010 = 95)</td>
<td></td>
</tr>
<tr>
<td>p9763</td>
<td>–</td>
<td>Confirm password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9770[0...2]</td>
<td>r9780[0...2]</td>
<td>Version</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>r9771</td>
<td>r9771</td>
<td>Shared functions</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>r9772</td>
<td>r9772</td>
<td>Status</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>r9773</td>
<td>–</td>
<td>Status (Control Unit + Motor Module)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>r9774</td>
<td>–</td>
<td>Status (group safe standstill)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>r9780</td>
<td>r9780</td>
<td>Monitoring clock cycle</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>r9794</td>
<td>r9794</td>
<td>Cross monitoring list</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>r9795</td>
<td>r9795</td>
<td>Diagnostics for STOP F</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>r9798</td>
<td>r9798</td>
<td>Actual checksum Safety Integrated parameters</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>p9799</td>
<td>p9799</td>
<td>Reference checksum, Safety Integrated parameters</td>
<td>Safety Integrated commissioning (p0010 = 95)</td>
<td></td>
</tr>
</tbody>
</table>
Overview of parameters and function diagrams

Function diagram overview

- 2800 Parameter manager
- 2802 Monitoring functions and faults/alarms
- 2804 Status words
- 2810 Safe standstill (SH)
- 2814 Safe brake control (SBC)

Also see Subsection 8.2.2 “Description of parameters”.

Note

The SINAMICS Safety Integrated parameters are described in the following references:

References: /LH1/ SINAMICS S List Manual – Section 1.2
4.6 Acceptance test and certificate

4.6.1 General information about acceptance

Also see Section 9.5 of this Function Description.

Acceptance test

The machine manufacturer must perform an acceptance test of the activated Safety Integrated functions at the machine.

The acceptance test must cause all of the entered limit values to be exceeded for the enabled Safety Integrated functions in order to check and verify their correct function.

Authorized persons, acceptance certificate

Every Safety Integrated function must be tested and the results documented and signed in the acceptance certificate by an authorized person. The acceptance certificate must be kept with the machine logbook.

An authorized person in the above sense is a person authorized by the machine manufacturer who on account of his or her technical qualifications and knowledge of the safety functions has the necessary skill sets to perform the acceptance test in the correct manner.

Note

- The information and descriptions regarding commissioning must be carefully observed.
- If any parameters are altered by Safety Integrated functions, the acceptance test must be carried-out again and documented in the acceptance certificate.
Contents of a complete acceptance test

Documentation (see Subsection 4.6.2)
Machine documentation including the Safety Integrated functions.

1. Machine description and overview diagram (see Tables 4-4 and 4-5)
2. Safety Integrated functions for every drive (see Table 4-6)
3. Description of safety equipment (see Table 4-7)

Functional test (see Subsection 4.6.3)
Checking the individual Safety Integrated functions used.

4. “Safe standstill” function, part 1 (see Table 4-8)
5. “Safe standstill” function, part 2 (see Table 4-9)
6. “Safe brake control” function (see Table 4-10)

Completing the certificate (see Subsection 4.6.4).
Record the commissioning procedure and provide countersignatures.

7. Check the safety parameters
8. Record the checksums
9. Verify the data backups (archives)
10. Countersignatures

Appendix
Measurement records for functional test parts 1 and 2.

- Alarm logs
- Trace recordings
4.6.2 Documentation

Table 4-4 Machine description and overview diagram

<table>
<thead>
<tr>
<th>Designation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>Serial number</td>
<td></td>
</tr>
<tr>
<td>Vendor</td>
<td></td>
</tr>
<tr>
<td>End customer</td>
<td></td>
</tr>
<tr>
<td>Electrical axes</td>
<td></td>
</tr>
<tr>
<td>Other axes</td>
<td></td>
</tr>
<tr>
<td>Spindles</td>
<td></td>
</tr>
</tbody>
</table>

Block diagram of the machine
Table 4-5 Values from relevant machine data

<table>
<thead>
<tr>
<th>Parameter Control Unit</th>
<th>FW version</th>
<th>r0018 =</th>
<th>r9770 =</th>
<th>r0128 =</th>
<th>r9870 =</th>
<th>r0128 =</th>
<th>r9870 =</th>
<th>r0128 =</th>
<th>r9870 =</th>
<th>r0128 =</th>
<th>r9870 =</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive number</td>
<td>FW version</td>
<td>Safety Integrated version</td>
<td>r0018 =</td>
<td>r9770 =</td>
<td>r0128 =</td>
<td>r9870 =</td>
<td>r0128 =</td>
<td>r9870 =</td>
<td>r0128 =</td>
<td>r9870 =</td>
<td>r0128 =</td>
</tr>
<tr>
<td>Motor modules</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-6 Safety Integrated functions per drive

<table>
<thead>
<tr>
<th>Drive number</th>
<th>Safety Integrated function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-7 Description of safety equipment

Examples:
Wiring of SH terminals (protective door, Emergency Stop), grouping of SH terminals, holding brake for vertical axis, etc.
4.6.3 Function test

The function test must be carried out individually for each drive (as far as the machine allows).

Carrying-out the test

<table>
<thead>
<tr>
<th>Initial start-up</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Series commissioning</td>
<td>Please mark accordingly</td>
</tr>
</tbody>
</table>

“Safe standstill” (SH) function, part 1

This test comprises the following steps:

Table 4-8 “Safe standstill” (SH) function, part 1

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Initial state</td>
<td></td>
</tr>
<tr>
<td>• Drive in “Ready” state (p0010 = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• SH function enabled (p9601.0 = 1, p9801.0 = 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No safety faults and alarms (r0945, r2122)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• r9772.0 = r9772.1 = 0 (SH deselected and inactive – CU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• r9872.0 = r9872.1 = 0 (SH deselected and inactive – MM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• r9773.0 = r9773.1 = 0 (SH deselected and inactive – drive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For terminal grouping for “safe standstill”:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9774.0 = r9774.1 = 0 (SH deselected and inactive – group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Run the drive</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Ensure that the correct drive is running</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Select SH when you issue the run command.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Check the following:</td>
<td></td>
</tr>
<tr>
<td>• The drive “coasts” to a standstill or is braked and stopped by the mechanical brake – if a brake is available and is configured (p1215, p9602, p9802)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No safety faults and alarms (r0945, r2122)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• r9772.0 = r9772.1 = 1 (SH selected and active – CU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• r9872.0 = r9872.1 = 1 (SH selected and active – MM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• r9773.0 = r9773.1 = 1 (SH selected and active – drive)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For terminal grouping for “safe standstill”:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9774.0 = r9774.1 = 1 (SH selected and active – group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Deselect SH</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-8 “Safe standstill” (SH) function, part 1, continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Check the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No safety faults and alarms (r0945, r2122)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9772.0 = r9772.1 = 0 (SH deselected and inactive – CU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9872.0 = r9872.1 = 0 (SH deselected and inactive – MM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9773.0 = r9773.1 = 0 (SH deselected and inactive – drive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For terminal grouping for “safe standstill”:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r9774.0 = r9774.1 = 0 (SH deselected and inactive – group)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r0046.0 = 1 (drive in “power-on inhibit” state)</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Acknowledge power-on inhibit and run the drive</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Ensure that the correct drive is running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following is tested:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Correct DRIVE-CLiQ wiring between Control Unit and Motor Modules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Correct assignment, drive No. – Motor Module – motor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The hardware is functioning correctly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The shutdown paths are correctly wired.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Correct SH terminal assignment on the Control Unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Correct SH grouping (if available)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The SH function is parameterized correctly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Routine for the forced checking procedure of the shutdown paths</td>
<td></td>
</tr>
</tbody>
</table>

“Safe standstill” (SH) function, part 2

This test comprises the following steps:

Table 4-9 “Safe standstill” (SH) function, part 2

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Initial state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A channel for selecting SH is permanently connected to HIGH level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(here as an example: SH wiring, Motor Modules)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drive in the “Ready” state (p0010 = 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SH function enabled (p9601.0 = 1, p9801.0 = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No safety faults and alarms (r0945, r2122)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9772.0 = r9772.1 = 0 (SH deselected and inactive – CU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9872.0 = r9872.1 = 0 (SH deselected and inactive – MM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9773.0 = r9773.1 = 0 (SH deselected and inactive – drive)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Run the drive</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Ensure that the correct drive is running</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-9 “Safe standstill” (SH) function, part 2, continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Select SH when you issue the run command.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Check the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The drive “coasts” to a standstill or is braked and stopped by the mecha-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nical brake – if a brake is available and is configured (p1215, p9602,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p9802)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The following safety faults are output (r0945, r2122, r2132):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– F01611, fault value = 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– F01600, fault value = 9999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– F30611, fault value = 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– F30600, fault value = 9999</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9772.0 = r9772.1 = 1 (SH selected and active – CU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9872.0 = 0, r9872.1 = 1 (SH deselected but active – MM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9773.0 = 0, r9773.1 = 1 (SH deselected but active – drive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following is tested:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Correct wiring of the shutdown paths</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Crosswise comparison of SH terminals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Routine for the forced checking procedure of the shutdown paths</td>
<td></td>
</tr>
</tbody>
</table>
“Safe brake control” (SBC) function

This test comprises the following steps:

Table 4-10 “Safe brake control” (SBC) function

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Initial state</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drive in the “Ready” state (p0010 = 0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SH function enabled (p9601.0 = 1, p9801.0 = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SBC function enabled (p9602 = 1, p9802 = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertical axis:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brake as in sequential control (p1215 = 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No vertical axis:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brake always open (p1215 = 2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertical axis:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical brake is closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertical axis:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical brake is open</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No safety faults and alarms (r0945, r2122)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9772.0 = r9772.1 = 0 (SH deselected and inactive – CU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9872.0 = r9872.1 = 0 (SH deselected and inactive – MM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9773.0 = r9773.1 = 0 (SH deselected and inactive – drive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9772.4 = r9872.4 = 0 (SBC not requested – CU and MM)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Run drive (the closed brake is opened)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Ensure that the correct drive is running</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Select SH when you issue the run command.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Check the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Drive is braked and stopped by the mechanical brake.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No safety faults and alarms (r0945, r2122)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9772.0 = r9772.1 = 1 (SH selected and active – CU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9872.0 = r9872.1 = 1 (SH selected and active – MM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9773.0 = r9773.1 = 1 (SH selected and active – drive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9772.4 = r9872.4 = 1 (SBC requested – CU and MM)</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Deselect SH</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-10 “Safe brake control” (SBC) function, continued

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Check the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertical axis:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical brake remains closed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No vertical axis:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical brake is opened</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No safety faults and alarms (r0945, r2122)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9772.0 = r9772.1 = 0 (SH deselected and inactive – CU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9872.0 = r9872.1 = 0 (SH deselected and inactive – MM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9773.0 = r9773.1 = 0 (SH deselected and inactive – drive)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r9772.4 = r9872.4 = 0 (SBC not requested – CU and MM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• r0046.0 = 1 (drive in “power-on inhibit” state)</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Acknowledge power-on inhibit and run the drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Vertical axis: mechanical brake is opened)</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Ensure that the correct drive is running</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following is tested:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The brake is correctly connected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The hardware is functioning correctly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The SBC is parameterized correctly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Routine for forced checking procedure of the brake control</td>
<td></td>
</tr>
</tbody>
</table>

4.6.4 Completing the log

Safety Integrated parameters

<table>
<thead>
<tr>
<th></th>
<th>Were the specified values checked?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Control Unit</td>
<td></td>
</tr>
<tr>
<td>Motor Module</td>
<td></td>
</tr>
</tbody>
</table>
Checksums

<table>
<thead>
<tr>
<th>Axis/spindle</th>
<th>Checksum (8 hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Drive number</td>
</tr>
<tr>
<td></td>
<td>Control Unit</td>
</tr>
<tr>
<td></td>
<td>Motor Module</td>
</tr>
</tbody>
</table>

Data backup

<table>
<thead>
<tr>
<th>Memory medium</th>
<th>Archiving location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Designation</td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
</tbody>
</table>

Parameter

PLC program

Circuit diagrams

Countersignatures

Startup engineer

This confirms that the tests and checks have been correctly carried-out.

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Company / department</th>
<th>Signature</th>
</tr>
</thead>
</table>
Machine manufacturer
This confirms that the parameterization recorded above is correct.

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Company / department</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.6 Acceptance test and certificate

Notes
Basics on the Safety Functions Integrated in the System/Drive

Motion monitoring functions with a higher-level control

The motion monitoring functions are carried-out using a higher-level control. The higher-level control and the drive are the two monitoring channels. Just like the monitoring functions integrated in the drive, also here, each channel must be assigned a shutdown path so that when a fault develops, the pulses can be cancelled independently of the other channel.

- The shutdown path of the Control Unit is assigned to the drive monitoring channel.
- The shutdown path of the Motor Module is assigned the control monitoring channel.

5.1 Monitoring clock cycle

Setting the monitoring clock cycle time

The axial safety-relevant functions are monitored cyclically in the monitoring clock cycle that can be set jointly for all axes/spindles using the following machine data:

with 840D sl

MD 10090: `$MN_SAFETY_SYSCLOCK_TIME_RATIO`

The specified clock cycle is checked and rounded-off to the next possible value when the control boots and every time the machine data changes. The resulting monitoring clock cycle is displayed using MD 10091: `$MN_INFO_SAFETY_CYCLE_TIME`

(see Subsection 8.1.2 “Description of the machine data”).

for SINAMICS S 120

p9500 SI motion, monitoring clock cycle

(see Subsection 8.2.2, “Description of the parameters”)

© Siemens AG, 2006. All rights reserved
SINUMERIK 840D sl/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition
5.2 Crosswise data comparison

The continuous comparison of the safety-relevant data in the monitoring channels carried-out in the SI monitoring clock cycle is known as “crosswise data comparison” (CDC).

The following apply to the axial monitoring functions: In the case of “non-steady-state” data, tolerance values defined using machine data are used by which amount the results of the two channels may deviate from one another without initiating a response (e.g. tolerance for crosswise data comparison of actual positions).

A distinction is made between:

- Crosswise data comparison between the NCK and drive
- SPL crosswise data comparison between the NCK and PLC (see Section 7.3 “Safe programmable logic (SPL)”.

Error response

If the crosswise data comparison identifies an error, then this results in a stop response (see Section 6.3 “Safe Stops A-F”).

In addition, safety alarms are output.

Note

If SGEs are quickly changed over several times this can initiate a STOP F.

Displays the crosswise data comparison clock cycle

To display the actual crosswise data comparison cycle time between the NCK and drive, the axial MD 36992 is used: $MA_SAFE_CROSSCHECK_CYCLE and the general MD 10092: $MN_INFO_CROSSCHECK_CYCLE_TIME. If the monitoring clock cycle is modified, then the crosswise comparison clock cycle is also changed.
5.3 Forced checking procedure

Forced checking procedure, general (extract from /6/)

"...A forced checking procedure must be carried-out for all static (steady-stage) signals and data. Within the required time (8 h), the state must change from a logical 1 to a logical 0 – or vice versa. If the state remains static in a fault situation, then this is detected at the latest as a result of this forced checking procedure and the subsequent comparison.

A forced checking procedure must be used, e.g. for components that are required to stop a process (e.g. contactors and power semiconductors) – the so-called shutdown path and for the shutdown condition. Generally, it is not possible to test a shutdown condition, e.g. violation of a limit value criterion, using other methods such as e.g. crosswise data comparison, when the machine is in an acceptable (good) condition. This also applies to errors along the entire shutdown path including associated hardware and software and circuit-breakers.

By integrating a test stop every eight hours with a comparison and expected status, faults can also be detected when the machine is in an acceptable (good) condition...."

(Comment: Acceptable (good) condition means that there are no machine faults that are apparent to the operator).

Forced checking procedure with Safety Integrated

The forced checking procedure is used to detect faults/errors in the software and hardware of the two monitoring channels. In order to do this, the safety-related parts in both channels must be processed at least once during a defined period in all safety-related branches. Any faults/errors in the monitoring channel would cause deviations and will be detected by the cross-wise data comparison.

The forced checking procedure of the shutdown path (test stop) must be initiated by the user or integrated in the process as an automatic procedure, e.g.:

- When the axes are stationary after the system has been powered-up
- When the protective door is opened
- In defined cycles (e.g. every 8 hours)
- In the automatic mode, dependent on the time and event.

The forced checking procedure also includes testing the safety-related sensors and actuators at the safety-related inputs/outputs. In this case, the entire circuit including the “safe programmable logic” (SPL) is tested to ensure that it is correctly functioning (see Subsection 7.1.2 “Forced checking procedure of SPL signals”).
5.3 Forced checking procedure

Note
The test interval duration of 8 hours may only be extended under the following conditions:

- In the time after the test interval has expired, no hazards for personnel may be allowed to occur – they must be completely excluded (e.g. the protective door is closed and is also interlocked)

- After the test interval has expired, before a possible hazard to personnel (e.g. for a request to open a protective door), a test stop or a forced-checking procedure must be carried-out to absolutely ensure the availability of the shutdown paths and the safety-related inputs/outputs.

This means that for the duration of the automatic mode (with the protective door closed and interlocked), the fixed 8-hour cycle isn’t strictly specified. When the 8 hours expires, in this case, the forced-checking procedure can be linked to the next time that the protective door is opened.

For axes where safety-relevant motion monitoring functions have been configured, this also applies to the forced checking procedure of the functions integrated in the drive (see Chapter 4 “Safety functions integrated in the drive”) – even if these functions are controlled by local terminals.

Note
If the crosswise data comparison identifies an error, then this results in a stop response (see Section 6.3 “Safe Stops A-F”).
5.4 Actual value conditioning

5.4.1 Encoder types

Basic types

The following basic encoder types can be used with a drive module to implement safety-related operation:

1. Incremental encoder via a Sensor Module and DRIVE-CLiQ with sinusoidal voltage signals A and B (signal A is shifted with respect to B through 90° and a reference signal R, e.g.: ERN 1387, LS 186, SIZAG2

2. Absolute encoder via Sensor Module and DRIVE-CLiQ with an EnDat interface and incremental sinusoidal voltage signals A and B (signal A is shifted with respect to B through 90°), e.g.: EQN 1325, LC 181

3. Motor encoder (IMS) with integrated DRIVE-CLiQ interface

4. Direct encoder (DMS, e.g. linear scale) with integrated DRIVE-CLiQ interface

Combining encoder types

Various combinations can be derived from the basic types.

Table 5-1 Combining encoder types

<table>
<thead>
<tr>
<th>Incremental encoder</th>
<th>Absolute encoder at the motor</th>
<th>Absolute encoder at the load</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td></td>
<td>1-encoder system</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>x</td>
<td>2-encoder system</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td>2-encoder system</td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>x</td>
<td>2-encoder system</td>
</tr>
</tbody>
</table>

Note: x -> encoder connection
1-encoder system

For a 1-encoder system, the incremental or absolute encoder of the motor is used for the safety-relevant actual values of the NC and drive.

The actual values are generated in a safety-relevant fashion either directly in the encoder or in the Sensor Module and are provided – with no-reaction – to the NCK and the drive using safety-relevant communications via DRIVE-CLiQ.

Special feature regarding linear motors:

For linear motors, the motor encoder (linear scale) is also the measuring system at the load. IMS and DMS are one measuring system. The connection is made at the IMS input of the Sensor Module or directly via DRIVE-CLiQ.

Significance of the coarse encoder position:

For a 1-encoder system, for all position monitoring functions, the accuracy of the redundant actual value must be assumed to apply. This accuracy depends on the encoder evaluation. For all encoder evaluation functions that can be used with Safety Integrated (SME, SMC, motor with DRIVE-CLiQ), the coarse encoder pulses are redundantly counted including the quadrupling (coarse encoder position). The machinery construction OEM must select the appropriate encoder with the necessary encoder pulse number for his particular requirements. To do this, the encoder resolution must be converted to the accuracy on the load side. This conversion is dependent on the type of encoder mounting and the type of axis. Further, gearbox factors, the spindle pitch for linear axes and the radius of the rotary table for rotary axes must also be taken into account.

Fig. 5-1 1-encoder system for a feed drive (FD)

2-encoder system

In this case, the safety-relevant actual values for an axis are supplied from 2 separate encoders. In standard applications, the drive evaluates the motor encoder (IMS) and the NC, the measuring system (DMS).
The actual values are generated in a safety-relevant fashion either directly in the encoder or in the Sensor Module and are provided – with no-reaction – to the NCK and the drive using safety-relevant communications via DRIVE-CLiQ. A separate connection or a separate Sensor Module is required for every measuring system.

Fig. 5-2 2-encoder system for a feed drive (FD), connected through 2 Sensor Modules
5.4 Actual value conditioning

Fig. 5-3 2-encoder system for the main spindle, connected via 2 Sensor Modules
5.4.2 Encoder adjustment, calibrating the axes

Adjusting the motor encoder

Generally, for 1-encoder systems, the integrated encoder is an integral component of the motor (the encoder is adjusted to match the motor). Data relating to distance, speed and rotor position (for synchronous drives) is obtained from one encoder. It is no longer possible to adjust the encoders in motor measuring systems in the conventional sense.

Calibrating the machine

The machine zero and encoder zero are calibrated purely on the basis of the offset value (the machine must be calibrated). This procedure must be carried-out for both absolute and incremental encoders.

When calibrating the machine, a known or measured position is approached using a dial gauge, fixed end stop, etc. and the offset determined. This offset is then entered into the appropriate machine data. Calibration must always be carried-out for position-controlled (closed-loop) axes/spindles.

Reference: /IAD/, Commissioning Manual SINUMERIK 840D sl
/FBD/, Description of Functions, SINUMERIK 840D sl, R1, “Reference point approach”
5.4.3 Axis states

“Axis not referenced” state

The axis state “axis not referenced” is reached after the power supply has been powered-up and the drive and control system have completely booted. This state is indicated using the axis-specific interface signal “reference point reached” as follows:

Interface signal
“Reference point reached” = “1” Axis state “Axis referenced”
“Reference point reached” = “0” Axis state “Axis not referenced”

for 840D sl DB31-61, DBX60.4 / DBX60.5

(see Fig. 5-5 “Axis states when referencing”)

“Axis referenced” state

For incremental encoders, the position actual value is lost when the NC is powered-down. When the NC is powered-up, a reference point approach must be carried-out. If this is executed correctly, then the axis is referenced and goes into the “axis referenced” state (see 5-5 “Axis states when referencing”).

Contrary to incremental encoders, absolute encoders do not require a reference point approach after the NC has been powered-up. These encoders track the absolute position, e.g. using a mechanical gear, both when powered-up and powered-down. The absolute position is transferred implicitly via a serial interface when the NC is powered-up. After the position data has been transferred and the offset value has been taken into account, the axis also goes in the axis state “axis referenced” (see Fig. 5-5 “Axis states when referencing”).

This axis state “axis referenced” is indicated using the axis-specific interface signal “reference point reached” as follows:

Interface signal
“Reference point reached” = “1” Axis state “Axis referenced”
“Reference point reached” = “0” Axis state “Axis not referenced”

for 840D sl DB31-61, DBX60.4 / DBX60.5

Reference: /IAD/, Commissioning Manual, SINUMERIK 840D sl
“Axis safely referenced” state

In order to reach the axis state “axis safely referenced”, the axis state “axis referenced” must have been reached, and either

- the user confirms the current position using the user agreement (see Subsection 5.4.4 “User agreement"

or

- a saved and set user agreement and saved stop position when the system was powered-down must exist. The position associated with the saved data must match the current position within a tolerance window. This is checked both in the drive and in the NC. (see Fig. 5-5 “Axis states when referencing”).

The axis state “axis safely referenced” is displayed using the SGA “axis safely referenced”. A safety-relevant position evaluation can only be carried-out for the SE and SN functions after this state has been reached.

Saved user agreement

The state of the user agreement function is saved in non-volatile memories. This saved user agreement forms, together with the stop position, also saved in a non-volatile fashion the prerequisite for the axis state “axis safely referenced”.

Saved stop position

The saved stop position data is combined with the permanently saved user agreement to form the previous history.

The following must be noted when the stop position is saved:

The following applies when SE/SN is active:

- The stop position is also cyclically saved.
- If the axis is moved with the system powered-down, then the saved stop position no longer matches the current position.

As described under “axis safely referenced” the “axis safely referenced” state can also be achieved using a saved and set user agreement and a saved stop position.

The following conditions must be fulfilled:

- The saved user agreement must be available.
- The difference between the “reference position” (power-on position with absolute measuring systems or reference position for incremental measuring systems) and the saved stop position (including the traversing distance to the reference point with ERN) must be within a tolerance window specified using the appropriate machine data.
5.4.4 User agreement

Description

With a user agreement, an appropriately authorized person confirms that the currently displayed SI actual position of an axis corresponds to the actual position at the machine.

This can be checked by traversing the axis to a known position (e.g. a visual mark) or the axis is adjusted/calibrated and the SI actual position is therefore compared in the “user agreement” screen.

An axis/spindle with integrated safety functions can have the following status:
User agreement = yes, or
User agreement = no
All safety axes are listed in the HMI display “user agreement” for which safety end stops and/or safety cams have been activated. The following data are displayed:

- Machine-axis name
- SI position
- User agreement

When does a user agreement have to be given?

A user agreement is always required if an axis/spindle is to be monitored for SE, SN.

A user agreement is only required:

- when the axis/spindle is commissioned for the first time.
- when the user intends or needs to again manually and safely reference the axis/spindle.
- if, after Power On, the stop position did not correspond with the actual position and the control cancelled the user agreement.
- after parking an axis/spindle
 (only if the change in position is greater than that defined using MD 36944:
 $MA_SAFE_REFP_POS_TOL$ tolerance actual value comparison (referencing) is defined).

Note

An axis/spindle must have the status User agreement = yes before the SN and SE functions can be used.

For axes/spindles without the safety “SE” and “SN” functions, the saved stop position position is not evaluated.

Warning

If the drive has not been safely referenced and a user agreement has not been given, then the following applies:

- The “safe software cams” are active but not safe in the sense of control Class 3.
- The “safe software limit switches” are not active

The user agreement can only be set by an authorized user.

The user agreement can be cancelled by the user or as a result of a function being selected (e.g. new gear stage) or also an incorrect state (e.g. inconsistency in the user agreement between the NC and drive). When the user agreement is cancelled, the axis state “axis safely referenced” is always reset (see Fig. 5-5 “Axis states when referencing”).
Interlocking the user agreement

Before a user agreement can be issued, the interlock must be cancelled:

- Key switch
 in setting 3 → the user agreement can be issued

After the user agreement has been issued, the interlocking must be again set (e.g. key switch position 3 must be left and the key withdrawn).

5.4.5 Taking into account selector gearboxes

The possible gearbox ratios must be known in order that the NC and drive can evaluate the position actual values referred to the load.

For this purposes, various gearbox ratios can be selected on an axis-for-axis basis in the machine data and selected using the “safety-related inputs/outputs” (SGEs/SGAs).

The following points must be carefully observed for drives with selector gearboxes (these are generally used with spindles).

- If the drive is operated with an (indirect) encoder (motor measuring system), i.e. the safety-related actual value for the NCK and drive are derived from the same measuring system, then the gearbox ratios (gearbox stage selection for Safety Integrated), must also be selected for both monitoring channels. The state of the SGE signal ratio selection (bits 0..2) is not subject to a crosswise data comparison; however, the safety-related actual values from the NCK and drive are compared to evaluate if there is any deviation (< MD 36942 $MA_SAFE_POS_TOL or parameter p9542 SI motion, actual value comparison tolerance).

- If the drive is operated with an (indirect) motor encoder and a (direct) spindle encoder, the safety-relevant actual values are derived from the direct encoder and those of the drive from the indirect encoder. For the direct encoder, the gearbox changeover is not relevant and the gearbox stage changeover only has to be configured/engineered for the drive.

- Using the two machine data fields
 MD 36921[0..7] $MA_SAFE_ENC_GEAR_DENOM[n] denominator, gearbox ratio encoder/load and
 MD 36922[0..7] $MA_SAFE_ENC_GEAR_NUMERA[n] numerator, gearbox ratio encoder/load
 or
 p9521[0..7] SI motion, denominator, gearbox encoder/load and
 p9522[0..7] SI motion, numerator, gearbox, encoder/load
 8 different gearbox stage pairs for NCK/drive can be defined. For this definition, there is no special function for an index value – e.g. interdependency on the operating mode of the spindle. These 8 pairs must be parameterized and selected depending on the encoder configuration.
• As a result of the gearbox stage changeover, the encoder evaluation for the safety-related actual values change. Ideally, the gearbox stage for Safety Integrated is changed-over at standstill. However, this is generally not in-line with what is required in practice. This means that the actual value offset when changing-over the gearbox stage (e.g. using oscillation) may not be greater than the already mentioned actual value tolerance window (MD 36942 / p9542).

• If, for the axis with selector gearbox, position-dependent monitoring functions are activated – such as SE or SN – the user agreement (assuming that it was previously set) is withdrawn when changing-over the gearbox ratio and the SGA “axis safely referenced” is set to 0. When the gearbox stage is changed from the PLC and/or by selecting a new ratio, a new gearbox ratio is detected using the appropriate SGEs.

• After the gearbox stage has been selected, the spindle must be re-synchronized. When re-synchronizing the spindle, the two safety-related actual values (NCK and drive) are re-initialized with the newly synchronized actual value. A possible difference that was previously present between the two safety-related actual values is therefore corrected.

• In order to be able to re-use the SN or SE function after the gearbox ratio has been selected (changed), the user must bring the spindle into the state “axis safely referenced” – the user agreement must be re-issued.

• For 2-encoder systems, the gearbox ratio does not have to be selected in a safety-related fashion and can be implemented through one channel. On the other hand, for a 1-encoder system, the ratio selection must implemented using safety-related technology – i.e. using two channels.

Note

When a new stage is selected for a selector gearbox (the ratio changed), an axis is parked or the mounting situation is modified (encoder and motor replaced), this means that the load and encoder have been de-coupled. The NC and drive cannot detect this. The state “axis safety referenced” is no longer applicable. The user is responsible in bringing the axis back into the “axis safely referenced” state if the functions “safe software limit switch” or “safe cams” are used.
5.4.6 Actual value synchronization (slip for 2-encoder systems)

Description of the function

When a 2-encoder system is used, SI actual values from the NC and the drive drift apart for systems that have inherent slip. The reason for this is that the drive evaluates the motor measuring system and the NC evaluates the direct measuring system after the gearbox.

There are the following two alternatives in order to avoid this:

- 1-encoder system without actual value synchronization
- 2-encoder system with actual value synchronization and therefore additional monitoring of the load side

Slip tolerance

The actual value is synchronized through two channels. In both channels, machine data 36949: $MA_SAFE_SLIP_VELO_TOL / parameter p9549 "SI motion slip velocity tolerance" is used in which the maximum offset between the NCK and drive actual value is entered as velocity. The tolerance value entered in MD 36942: $MA_SAFE_POS_TOL is not relevant.

For the actual value synchronization, both channels correct their SI actual position to half the determined actual value difference. Please note that the two SI actual positions no longer display the correct absolute position. The NC actual position and the two SI actual positions are different.

The actual values are synchronized in the crosswise data comparison clock cycle. Actual value synchronization is also performed when a crosswise data comparison of the SI actual position outputs an error.

Actual values are also synchronized after “referencing” and for “parking axis”.

The currently determined and the maximum SI speed difference since the last reset are displayed in the axis-specific service screen for diagnostic purposes.

In order to define the slip tolerance, in MD 36949: $MA_SAFE_SLIP_VELO_TOL the maximum differential speed is set. As a result of an action, such as e.g. maximum acceleration when starting, gearbox stage changes with oscillation, a situation is created where the actual values drift apart. This value can be taken as nominal value from the diagnostics screen “Maximum velocity difference”, multiplied by a factor of 1.5 and then entered into MD 36949.

Note

Actual values are only synchronized when there is an actual value difference between the two channels of 2 \(\mu \)m or 2 mDegrees in each SI monitoring clock cycle.
Constraints

The two SI actual positions no longer display the correct absolute machine position. The correct position can now only be read-out via the NC actual position.

The safety monitoring functions SG, SBH, SBR and “n<n_x” still only respond to actual value changes from the particular actual value acquisition channel – not to changes in the actual value resulting from the actual value synchronization. A single-channel SG violation only initiates an alarm in the channel in which this speed violation was detected. The associated stop response is therefore still initiated through two channels.

SGA “n<n_x” can also assume different static states in the two monitoring channels.

Note

It is not possible to activate the safe SE and SN functions for an axis/spindle where slip can occur between the motor and the load.

Activating

The actual value synchronization is selected by setting bit 3 in machine data 36901: $MA_SAFE_FUNCTION_ENABLE or parameter p9501: “SI motion, enable safety-relevant functions”. In addition, SI function “SBH/SG monitoring” must also be enabled.

Actual value synchronization is only permissible if a monitoring function with absolute reference has not been enabled. If SE and/or SN are also selected, power on Alarms 27033 and F01688 are also output when booting.

The actual value synchronization is only permissible for 2-encoder systems. If this function is enabled for a single-encoder system, Alarm 27033/F01688 is output.

5.4.7 Encoder limit frequency

For safety-related operation, it is not permissible that the encoder limit frequency of 500 kHz exceeded.

For this purposes, Safety Integrated monitors for the encoder limit frequency being exceeded depending on the situation (depending on the context); when the encoder limit frequency is exceeded, an appropriate alarm is output (see Section 6.5 “Safety-reduced speed”)
5.5 Enabling the safety-related functions

Global enable
SINUMERIK Safety Integrated (SI) with the safety-related functions is enabled using options. The enable signal determines the number of axes/spindles for which SI can be activated. Using an additional option, in addition, the number of possible SPL-SGE/SGAs is defined.
The SH/SBC function is completely implemented in SINAMICS S120 and is, as a function integrated in the drive, included in the basic drive scope.

Enabling safety-related functions
Which safety functions are to be effective can be individually selected for each axis using the following machine data:

with 840D sl
MD 36901: $MA_SAFE_FUNCTION_ENABLE
(see Section 8.1 “Machine data for SINUMERIK 840D sl“)

for S120
p9501: SI motion, enable safety-relevant functions
(see Section 8.2, “Parameters for SINAMICS S120“)

Among others, the following functions can be individually enabled:

- SBH/SG
- SE
- SN
- SG override
- Actual value synchronization
- External STOPs
- Cam synchronization
- STOP E
5.6 Switching the system on/off

Warning
After hardware and/or software components have been changed or replaced, it is only permissible to boot the system and activate the drives when the protective devices are closed. Personnel may not be in the hazardous area.

Depending on the change made or what has been replaced, it may be necessary to carry-out a partial or complete acceptance test (see Section 9.5 “Acceptance test”).

Before persons may re-enter the hazardous area, the drives should be tested to ensure that they exhibit stable control behavior by briefly moving them in both the plus and minus directions (+/–).

What has to be observed when powering-up?

The safety-related functions are only available and can be activated after the system has completely booted.

We recommend that the “safe operating stop (SBH)” function is selected.

For axes with SE/SN, the stop position is used to internally check the position when powering-up.

Note

- To ensure that SBH can always be selected in the event of an error, the function SBH/SG must be activated and appropriately parameterized when the function SE and/or SN are(is) enabled.
- The axis-specific enable data in the NCK must match those in the drive, otherwise, the crosswise data comparison signals an error.
- An SI axis is treated as an axis in terms of the global option if at least one safety-related function is activated via the axis-specific enable data.
- The maximum number of axes that may operate with SI and SPL SGE/SGAs is the number that was enabled using the options.
Warning

When the system boots, this represents a critical operating state with increased
risk. In this phase, especially when activating drives, it is not permissible that
personnel are close to the hazardous area.
Further, for vertical axes, it is very important to ensure that the drives are in a
state with the pulses cancelled.

We recommend a complete forced checking procedure after powering-up (see
Section 5.3, “Forced checking procedure”).

What has to be observed when powering-down?

– The following applies when SE/SN is activated:
 The stop position is also cyclically saved.
 For this reason, the user should only power-down the control when the axes/
 spindles with safety functions have stopped moving.

Note

If the axis is moved with the system powered-down, then the saved stop
position no longer matches the current position. For axes with safety SE and SN
functions, when powering-up, a user agreement is again required after the position
has been checked.
6.1 Safe standstill (SH)

Note

This Chapter describes the safety function “safe standstill” (SH), controlled from the safety-relevant motion monitoring functions. The function is based on the safety functions SH/SBC of the drive (see Chapter 4). Fig. 6-1 shows the interrelationships.

The safety functions SH and SBC, integrated in the drive, controlled via the drive terminals, are described in Chapter 4. Control via terminals and from the motion monitoring functions is in parallel and can be used independently of one another. A Stop A/SH initiated in the drive (i.e. a system error in the drive or SH/SBC selection via terminal) is however not available as two channel SGA “STOP A/B active” for the safety-relevant motion monitoring functions. There is only a single-channel signal “pulses cancelled” present.

Description

The “safe standstill” function is based on the pulse cancellation function integrated in the Motor Modules of the SINAMICS S120 (see Section 4.2 “Safe standstill”).

There are two shutdown paths that are independent of one another that ensure that when a component fails, the drive is always brought into a safe condition.

The safe standstill function safely disconnects the energy feed to the motor in the event of a fault or in conjunction with a machine function.

The following must be carefully observed when controlling/energizing SH from the motion monitoring functions.

- The safety functions SH/SBC integrated in the drive are, corresponding to the description in Chapter 4 “Safety functions integrated in the drive” fully effective (parameters, alarms etc.). The standard pre-assignment (default setting) of the associated parameters is generally sufficient in the context of the motion monitoring functions.
The safety function SH integrated in the drive does not have to be explicitly enabled; this is implicitly enabled by enabling the motion monitoring functions (p9501 < > 0). If the safety function SBC integrated in the drive is to be additionally activated when selecting SH, then this however must be explicitly enabled.

The PROFIsafe drive address must be set.

Warning

If the “safe standstill” function or “STOP A” is activated, the motor can no longer generate any torque. This is the reason that potentially hazardous motion can occur, e.g. for the following:

- When an external force acts on the drive axes
- Vertical and inclined axes without weight equalization
- Axes that are moving (coasting down)
- Direct drives with low friction and low self-locking
- Notching torques (depending on the motor type, bearing design and friction characteristics, up to half a pole pitch in a direction that cannot be predicted).

Possible hazards must be clearly identified using a risk analysis that must be carried-out by the manufacturer. With an assessment, based on this risk analysis, it should be defined as to which additional measures are required, e.g. external brakes.

Features

The main features of the safe standstill functions are as follows:

- The motor cannot be started unintentionally or accidentally
- The energy feed to the motor is safely disconnected
- The Motor Module and motor are not electrically isolated from one another

Selecting/de-selecting SH

The “safe standstill” function corresponds to an external STOP A. This makes it possible to explicitly select SH, not only using internal events (STOP A when a limit value is violated), but also via SGE.

- Safe standstill is activated after a STOP A.
- Safe standstill is automatically activated from every monitoring channel when testing the shutdown paths.
Caution

After the machine has been powered-up, the “safe standstill” function must always be tested for all of the axes/spindles by testing the shutdown path using Safety Integrated.
6.1.1 Shutdown paths

The interaction of the safety functions integrated in the drive and the motion monitoring functions (Motion Monitor) are shown in Fig. 6-1.

Shutdown path of the monitoring channel, drive

The motion monitoring function in the CU signals the monitoring function integrated in the drive in the CU that the pulses must be cancelled in the SI monitoring channel integrated in the drive.
• Drive (CU) SI, integrated in the drive
 – The requirement to cancel the pulses is detected. Mechanisms then start
 that are also executed when SH is selected for the safety functions inte-
 grated in the drive:
 – Initiating pulse cancellation
 – The timer routine is started to check the feedback. After the timer has
 expired (in the next monitoring clock cycle integrated in the drive), using
 the feedback signal, it is checked as to whether the pulses have been
 cancelled via this shutdown path.
 – If \(p9602 = 1 \), then safe brake control is executed.

Shutdown path of the monitoring channel, control

If the higher-level control with its motion monitoring identifies that it is necessary to
cancel the pulses, then the following sequence applies:

• NCK Motion Monitor
 – The control communicates to the Motor Modules the requirements to cancel
 the pulses.

• Drive (MM), SI, integrated in the drive
 – If the monitoring function integrated in the drive in the Motor Modules identi-
 fies the requirement to cancel the pulses, then the same mechanisms are
 started that are carried-out for an SH selection of the safety functions inte-
 grated in the drive and an SH is initiated:
 – Initiating the pulse cancellation
 – The timer routine is started to check the feedback. After the timer has
 expired (in the next monitoring clock cycle integrated in the drive), using
 the feedback signal, it is checked as to whether the pulses have been
 cancelled via this shutdown path.
 – If \(p9802 = 1 \), then safe brake control is executed.

 – If the Motor Module detects that communications to the NCK have failed,
 then this is identified by the safety functions integrated in the drive and an
 SH is initiated.
6.1.2 Testing the shutdown paths

Description
The test stop is used to check the shutdown paths of both monitoring channels. There is a test stop input (drive SGE). The acknowledgement is realized via the drive SGA “status pulses cancelled”. The pulse cancellation must be simultaneously initiated through both shutdown paths due to the fact that the Motor Modules and drive closed-loop control are cross-checked.

The user (machinery construction OEM) must configure the execution of the test stop phase.

Note
A test stop can be simultaneously made for all axes of a drive unit.

Instant in time of the test stop
The shutdown paths must be tested (forced checking procedure) at a suitable instant in time. This is generally carried-out after the machine has been powered-up and afterwards in the setting-up mode once within a maximum of 8 hours. We recommend that the test is carried-out before opening protective devices/guards or when the hazardous area is entered (e.g. when selecting the setting-up mode) if the shutdown paths were not tested in the last 8 hours.

Note
The machinery construction OEM should define the “test shutdown paths” time in an appropriate “test block”.

Note
If the brake control is enabled, then when the test stop is initiated, the brake is also controlled.
Prerequisites for the test stop

- At the start, the pulses must still be enabled.
- For vertical (suspended) axes, the manufacturer must ensure that these can be locked (to stop them falling).

Message

The “test stop running” message is displayed during the “test stop”.
6.2 Safe operating stop (SBH)

Description

The SBH function safely monitors the stop position (zero speed) of an axis/spindle in closed-loop position or speed control.

When SBH is active (SGA “SBH active” = 1), operating personnel can, for example, enter protected machine areas in the setting-up mode without first having to power-down the machine.

An incremental encoder is sufficient to implement this function. The actual position value is monitored for a change.

In this case, the encoder coarse position must be taken into account for a 1-encoder system (see Section 5.4 “Actual value conditioning”).

Features

The features of the SBH function are as follows:

- The axis remains in closed-loop control
- Parameterizable SBH tolerance window
- STOP B is the stop response after SBH has responded

Zero speed tolerance

The standstill of the axis/spindle is monitored using an SBH tolerance window that is parameterized using the following machine data:

- with 840D sI:
 MD 36930: $MA_SAFE_STANDSTILL_TOL
- for SINAMICS S120:
 p9530: SI motion, standstill tolerance

Note

The width of the SBH tolerance window should be based on the standstill (zero speed) monitoring limit and should lie slightly above it. Otherwise, the standard monitoring functions of the control could be ineffective. In this case, the encoder coarse position must be taken into account for a 1-encoder system (see Section 5.4 “Actual value conditioning”).
6.2 Safe operating stop (SBH)

Preconditions

The following prerequisites must be fulfilled (see Section 3.3, “System requirements”):

- The option and functions must be enabled in the axis-specific machine data
- The SGEs “SBH/SG de-selection” and “SBH de-selection” must be supplied in the NCK and drive monitoring channel

6.2.1 Selecting/de-selecting the safe operating stop

Selecting SBH

The safe operating stop function is selected using the following SGEs:

Table 6-1 Selecting/de-selecting SBH

<table>
<thead>
<tr>
<th>SBH/SG de-selection</th>
<th>SGE SBH de-selection</th>
<th>SGA SBH active</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 1</td>
<td>x</td>
<td>0</td>
<td>SBH and SG are de-selected</td>
</tr>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>1</td>
<td>SBH is selected</td>
</tr>
<tr>
<td>= 0</td>
<td>= 1</td>
<td>0</td>
<td>SG is selected (see Section 6.5, “Safely-reduced speed (SG)”), 1)</td>
</tr>
</tbody>
</table>

Note:

x –> Any signal state
1) The active SG stage is displayed using SGA “SGA active bit 0” and “SG active bit 1”.

Fig. 6-2 Zero speed tolerance
6.2 Safe operating stop (SBH)

Note
If “safely-reduced speed” was not active prior to the selection of SBH, any moving axis/spindle is stopped with STOP B/A.

The actual status of the function is displayed using the SGA “SBH active”.

The SGEs and SGAs are described in Section 7.1 “Safety-related input/output signals (SGE/SGA)”.

Internal control request for SBH

When the SG or SE responds (STOP C, D, E) the drive is internally switched to the safe operating stop state in the control. In such cases, the external circuit of the SGEs (SBH/SGH de-selection and SBH de-selection) is ignored and both are internally set to “0”.

Selecting SBH from SG

The changeover from safely-reduced speed to safe operating stop is initiated using the SGE “SBH de-selection”. A delay time that is parameterized in the following machine data is simultaneously started with the changeover to SBH (signal “SBH de-selection”=0):

with 840D sl
MD 36951: $MA_SAFE_VELO_SWITCH_DELAY

for SINAMICS S120
p9551: SI motion, SG changeover, delay time

SBH is activated as soon as the delay time expires.

Note
If the SBH function is selected while an axis/spindle is moving, the machinery construction OEM must initiate the braking process such that the axis/spindle is in position – i.e. stationary – after the delay time has expired. This can be performed automatically using the “setpoint speed limiting” function. If the axis moves out of the standstill tolerance window after the delay has expired, an alarm is generated (for 840D sl: 27010, for SINAMICS S120: F01707) and STOP B/A initiated!
De-selecting SBH

Safe operating stop can be de-selected using SGE “SBH/SG de-selection” (= “1” signal); this results in a general de-activation of SBH and SG. The SBH function is also de-selected when the SG function is selected using the SGE “SBH de-selection”.

Note

The delay time must be selected as a function of the distance to the hazardous location. The speeds to be taken into account in this respect are stipulated in Standard DIN EN 999.

Configuring NCK-SGAs

The NCK-SGA “SBH active” is configured using the following machine data:

with 840D sl

MD 36981: $MA_SAFE_SS_STATUS_OUTPUT

Configuring NCK-SGEs

with 840D sl

MD 36971: $MA_SAFE_SS_DISABLE_INPUT
6.2 Safe operating stop (SBH)

SGA “SBH active”

If this SGA is set, then safe operating stop (SBH) is active. This means that the axis is safely monitored for zero speed. This SGA can be used, for example, to implement protective door interlocking functions.

6.2.2 Effects when the limit is exceeded for SBH

Warning

If the “safe operating stop” function is activated, when a fault situation occurs, the axis mechanical system can exhibit jerky, uneven motion. The magnitude of this movement depends on the following parameters:

- Design of the mechanical system and ratio between the motor and mechanical system
- Speed and acceleration capability of the motor
- Magnitude of the selected monitoring clock cycle
- Magnitude of the selected SBH tolerance window

If the axis/spindle is being monitored (SGA “SBH active”=1) and leaves, for example, the standstill tolerance window as the result of an external influence or an undefined setpoint input, the effects are as follows:

Effects

- The axis switches to STOP A/B configured using the following MDs:
 - with 840D sl: 36956: $MA_SAFE_PULSE_DISABLE_DELAY
 - for S120: p9556 SI motion, pulse cancellation delay time
 - and
 - with 840D sl: 36960: $MA_SAFE_STANDSTILL_VELO_TOL
 - for S120: p9560 SI motion, pulse cancellation shutdown speed

- An alarm is generated (for 840D sl: 27010, for S120: F01707)
Timing when the limit value is exceeded

If the safe operating stop function is active, when the limit value is exceeded the response is as follows:

![Timing diagram](image)

Fig. 6-4 Timing when the limit value is exceeded for SBH

<table>
<thead>
<tr>
<th>Time</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>The position control clock cycle, defined by the following MDs: for 840D sl: MD 10050: $$MN_SYSCLOCK_CYCLE_TIME$ MD 10060: $$MN_POSCTRL_SYSCLOCK_TIME_RATIO$</td>
</tr>
<tr>
<td>t_2</td>
<td>Monitoring clock cycle, defined by the following MDs: for 840D sl: MD 10090: $$MN_SAFETY_SYSCLOCK_TIME_RATIO$ for SINAMICS S120: r9500 SI motion, monitoring clock cycle</td>
</tr>
<tr>
<td>t_3</td>
<td>Time until the standstill tolerance value is exceeded</td>
</tr>
<tr>
<td>t_4</td>
<td>Time until it has been detected that the standstill tolerance value has been exceeded (typical 0.5 monitoring clock cycles, maximum 1 monitoring clock cycle + 1 position controller clock cycle)</td>
</tr>
<tr>
<td>t_5</td>
<td>Response time required to initiate the configured stop response (typical 1.5 monitoring clock cycles, maximum 2 monitoring clock cycles + 1 position controller clock cycle)</td>
</tr>
<tr>
<td>t_6</td>
<td>Time until the initiated stop response starts (typical 2 position controller clock cycles, maximum 2 position controller clock cycles)</td>
</tr>
<tr>
<td>t_7</td>
<td>Time required to reach the shutdown speed for STOP B.</td>
</tr>
<tr>
<td>t_8</td>
<td>Time required to stop the axis for a STOP B.</td>
</tr>
</tbody>
</table>
Table 6-2 Explanation of the diagram

<table>
<thead>
<tr>
<th>Time</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_9)</td>
<td>Time required to stop the axis for a STOP A.</td>
</tr>
</tbody>
</table>

Note:
Each axis must be measured during commissioning (start-up) to determine the distance that it travels between the limit switch being violated and it coming to a standstill.
6.3 Safe stops A-F

6.3.1 General information

Safe Stops are used to stop drive motion and bring it to a standstill. A distinction is made between internal and external Stops. The internal Stop responses, initiated by safety-relevant functions when limit values are violated, initiate an alarm. The external Stop responses selected by SGEs do not issue an alarm and are acknowledged when the SGEs are de-selected.

Stop responses SBH and SH

Fig. 6-5 shows the relationship between the stop responses and the safe operating stop (SBH) or the safe standstill (SH).

A high degree of security against faults/errors is afforded by the two-channel system structure with its permanent, crosswise data comparison. Alarms and stop responses are initiated when differences are detected between the two channels. The purpose of the stop responses is to safely stop the drives in a controlled fashion according to the actual machine requirements. A differentiation is made between the stop responses STOP A, B, C, D, E, F and the test stop. The type of stop response that occurs in the event of a fault/error can either be pre-determined by the system or configured by the machinery construction OEM.
Stops A, C, D and E can also be externally selected as a function of an event via safety-relevant inputs (SGE).

Note

Protection of personnel must be given top priority when stop responses are configured. The objective is to stop the drives in a way that best suits the situation.

Table 6-3 Overview of stop responses

<table>
<thead>
<tr>
<th>STOP</th>
<th>Action</th>
<th>Effect</th>
<th>Initiated in response to</th>
<th>Changes to</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pulses are immediately cancelled</td>
<td>Drive coasts down</td>
<td>SBR/SG</td>
<td>SH</td>
<td>POWER ON</td>
</tr>
<tr>
<td>B</td>
<td>0 speed setpoint is immediately entered + timer t_B started (t_B = 0) or (n_{act} < n_{shutdown})</td>
<td>Drive is braked along the current limit - transition to STOP A</td>
<td>SBH/SG</td>
<td>SH</td>
<td>POWER ON</td>
</tr>
<tr>
<td>C</td>
<td>0 speed setpoint is immediately entered + timer t_C started (t_C = 0): SBH is activated</td>
<td>Drive is braked along the current limit SBH active</td>
<td>SG/SE</td>
<td>SBH</td>
<td>RESET</td>
</tr>
<tr>
<td>D</td>
<td>Motor is braked along the acceleration + timer t_D started (t_D = 0): SBH is activated</td>
<td>Drive is braked as part of a group along the path SBH active</td>
<td>SG/SE</td>
<td>SBH</td>
<td>RESET</td>
</tr>
<tr>
<td>E</td>
<td>Results in stopping and retraction + timer t_E started (t_E = 0): SBH is activated</td>
<td>Drive is braked along the programmed retraction and stopping motion (ESR), SBH active</td>
<td>SG/SE</td>
<td>SBH</td>
<td>RESET</td>
</tr>
</tbody>
</table>
Table 6-3 Overview of stop responses

<table>
<thead>
<tr>
<th>STOP</th>
<th>Action</th>
<th>Effect</th>
<th>Initiated in response to</th>
<th>Changes to</th>
<th>Alarm</th>
</tr>
</thead>
</table>
| F | Depending on the particular situation
 a) Safety function inactive:
 Saved (latched) message to the operator
 b) Safety function active:
 STOP B/A initiated (can be configured)
 c) Safety function active and STOP C, D or E initiated:
 Saved (latched) message to the operator | a) NC start and traversing interlock
 b) Transition to STOP B/A
 c) NC start and traversing interlock | | a) —
 b) SH
 c) — | a) RESET
 b) POWER ON
 c) RESET |

Note:
The timers can be set using the appropriate machine data.

Configurable stop responses

The stop responses that occur when limit values are violated can be selected by the machinery construction OEM using the appropriate machine data. These limit values are defined using the corresponding machine data:

Table 6-4 Configurable stop responses

<table>
<thead>
<tr>
<th>Safety-related function</th>
<th>Configurable stop responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBH</td>
<td>STOP B* (cannot be configured)</td>
</tr>
<tr>
<td>SG</td>
<td>STOP A, B*, C, D, E</td>
</tr>
<tr>
<td>SE</td>
<td>STOP C, D, E</td>
</tr>
</tbody>
</table>
| SN | No internal stop response
 When required, the user can configure the appropriate safe stop responses using the SGAs SN1, SN2, |
| SBR | STOP A (cannot be configured) |

Crosswise data comparison: STOP F cannot be configured

Note:
* There is an immediate transition from STOP B to A if tB = 0 or the parameterized speed threshold is exceeded.
Assignment table for stop responses

Table 6-5 Stop responses for SI acc. to EN 60204–1

<table>
<thead>
<tr>
<th>Stop response for SINUMERIK Safety Integrated</th>
<th>Stop function acc. to EN 60204–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP A</td>
<td>Category 0</td>
</tr>
<tr>
<td>STOP B, STOP F 1)</td>
<td>Category 1</td>
</tr>
<tr>
<td>STOP C, STOP D, STOP E</td>
<td>Category 2</td>
</tr>
</tbody>
</table>

Note:
1): STOP F initiates STOP B if at least one safety-related function is active.

Priority of the stop responses

Table 6-6 Priority for the stop responses

<table>
<thead>
<tr>
<th>Priority level</th>
<th>Stop response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest priority</td>
<td>STOP A</td>
</tr>
<tr>
<td></td>
<td>STOP B</td>
</tr>
<tr>
<td></td>
<td>SGE test stop selection</td>
</tr>
<tr>
<td></td>
<td>STOP C</td>
</tr>
<tr>
<td></td>
<td>STOP D</td>
</tr>
<tr>
<td></td>
<td>STOP E</td>
</tr>
<tr>
<td>Lowest priority</td>
<td>STOP F</td>
</tr>
</tbody>
</table>

Note
A stop response listed in Table 6-6 “Priorities for stop responses” can only be initiated if at least one safety-related function is active (except for STOP F).
Once a stop response has occurred, the sequence of operations it involves will be completed even if the cause of the stop no longer exists.
It is possible to advance to stop responses that have a higher priority. It is not possible to advance to stop responses that have a lower priority.
Stop response sequence

If a stop response is initiated in the drive, a signal is sent to the NC that responds by initiating the same stop response (two-channel safety). Likewise, if a stop response is initiated in the NC, the drive is automatically signaled and responds by requesting the same stop response. This mechanism ensures that stop responses are managed with a high degree of safety.

External stops

Using this function, the user can stop the drive using SGEs. The drives can be brought to a standstill in the following ways:

- By canceling the drive pulses SGE “de-select ext. STOP A”
- Braking with \(n_{\text{set}} = 0 \) SGE “de-select ext. STOP C”
- Braking along a path SGE “de-select ext. STOP D”
- Initiate an ESR SGE “de-select ext. STOP E”

Enabling and activating the function

The function “external STOPs” is enabled and activated using the following machine data:

- Enabling the function

 MD 36901 / parameter p9501: $MA_SAFE_FUNCTION_ENABLE/
 “SI motion, enable safety functions”
 Bit 0: Enable SBH/SG (see note)
 Bit 6: Enable external STOPs
 Bit 4: Enable external STOP E

Note

- In addition to enabling the function “external STOPs”, function SBH/SG must also be enabled as a minimum requirement.
- The external STOP E must be enabled with bit 4 = 1 in addition to bit 6 “enable external STOPs”.

Configuring NCK-SGEs

for 840D sl:

MD 36977: $MA_SAFE_EXT_STOP_INPUT[n]:
(input assignment, external stop request) with \(n = 0, 1, 2, 3 \).
Note

- For stopping types that are not used, the assignment must be inverted by appropriately parameterizing MD 36977[n]. This means that they are set to a “1” signal and are permanently “inactive”.

Exception:

- STOP E is interlocked by its own enable signal.

An external Stop E can also be initiated as an error response to a crosswise data comparison of NCK and PLC-SPL or for PROFlsafe errors, instead of a STOP D. Parameterization on the NCK side is carried out using MD10097: $MN_SAFE_SPL_STOP_MODE = 4$, on the PLC side using DB 18.DBX36.1=1. This parameterization is checked in the crosswise data comparison between PLC-SPL and NCK-SPL (see Section 7.3 “Safe programmable logic”).

If the value 4 is parameterized in MD 10097, without enabling the external Stop E in all axes with SI function enable, then Alarm 27033 is output for all of these axes.

SGEs to stop the drive

The following SGEs are available to stop the drive:

<table>
<thead>
<tr>
<th>SGE</th>
<th>Stopping type</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-select ext STOP A (= SH de-selection)</td>
<td>Pulse cancellation</td>
<td>high</td>
</tr>
<tr>
<td>De-select ext. STOP C</td>
<td>Braking with (n_{\text{set}} = 0)</td>
<td>...</td>
</tr>
<tr>
<td>De-select ext. STOP D</td>
<td>Braking along a path</td>
<td>...</td>
</tr>
<tr>
<td>De-select ext. STOP E</td>
<td>ESR is initiated</td>
<td>low</td>
</tr>
</tbody>
</table>

Notes:
- SGE “...” = 1 Stopping is not initiated (it is de-selected)
- SGE “...” = 0 Stopping is initiated (it is selected)

If a stop request is selected simultaneously using several SGEs, then that with the highest priority is executed. If one of the SGEs changes, the “tolerance time for SGE changeover” is activated (MD 36950/p9550).

Feedback signals:
- for SGE “de-select ext. STOP A”: via SGA “status pulses cancelled” and SGA “STOP A/B active”
- for SGE “de-select ext. STOP C”: via SGA “STOP C active”
- for SGE “de-select ext. STOP D”: via SGA “STOP D active”
- for SGE “de-select ext. STOP E”: via SGA “STOP E active”
6.3 Safe stops A-F

Note

- For external STOPs, alarms are not displayed. This means that the user himself must configure the required message/signal.

Combinations for external STOPs

The following input bit combinations are obtained for the SGEs “de-select ext. STOP A”, “de-select ext. STOP C”, “de-select ext. STOP D” and “de-select ext. STOP E”:

Table 6-8 Input bit combinations

<table>
<thead>
<tr>
<th>SGE</th>
<th>De-select external STOP E</th>
<th>De-select external STOP D</th>
<th>De-select external STOP C</th>
<th>De-select external STOP A</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>“Pulse cancellation” is initiated</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>“Braking with (n_{\text{set}} = 0)” is initiated</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>“Braking along a path” is initiated</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>“ESR” is initiated</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>External STOPs are not selected</td>
</tr>
</tbody>
</table>

Acknowledging a stop request

After requesting a specific stop type via SGE, this sequence can be cancelled by one of the following events:

- De-selecting the stop request
- Selecting a stop request using an SGE with a higher priority
- A higher stop request (STOP A; B; C or D) with a higher priority is received from an internal monitoring function
Effects of the stop responses on other axes/spindles

If a stop response is initiated, then this has the following effects on all of the other axes in the same channel:

- **STOP E**: Extended stopping and retraction is initiated
- **STOP D**: Braking along a path
- **STOP C**: IPO fast stop (braking at the current limit)
- **STOP A**: IPO fast stop (braking at the current limit)

The effect on the other axes in the channel can be influenced using MD 36964: $\text{SMA_SAFE_IPO_STOP_GROUP}$. This allows, for example, the pulses of a spindle to be safely cancelled (using an external STOP A), in order that this spindle can be manually turned and the axes can still be moved while being safely monitored.

<table>
<thead>
<tr>
<th>STOP</th>
<th>SMA_SAFE_IPO_STOP_GROUP = 0</th>
<th>SMA_SAFE_IPO_STOP_GROUP = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Axes that interpolate with the involved axis brake at the current limit. All other axes brake along the parameterized braking ramp.</td>
<td>Axes that interpolate with the involved axis brake at the current limit. All other axes do not brake.</td>
</tr>
<tr>
<td>D</td>
<td>Axes/spindles brake along the path or along the parameterized braking ramp.</td>
<td>Axes that interpolate with the involved axis brake along the parameterized braking ramp. All other axes do not brake.</td>
</tr>
</tbody>
</table>
| E | ESR enabled and active:
ESR is initiated
ESR neither active nor enabled:
After a delay time of max. 2 Ipo clock cycles, the behavior as described for STOP D is initiated. | |

6.3.2 Description of STOP A

Action in the drive monitoring channel:

Pulses are immediately cancelled using the internal signal "cancel pulses". In addition, the pulses in the gating unit are cancelled by a software function.

Action in the NCK monitoring channel:

the pulses are cancelled via the internal shutdown path of the NCK monitoring channel

- **Effect:**

 The drive coasts to a standstill if no external braking mechanism such as an armature short-circuit and/or holding brake is used. The axis-specific alarm results in a mode group stop, i.e. as the result of the error in one axis, all axes and spindles in a mode group are stopped. Safe standstill becomes effective at the end of STOP A.

- **Alarm message for an internally initiated STOP A:**

 The alarm message “STOP A initiated” is displayed.
• Acknowledgement for an internally initiated STOP A:
 An unintentional restart is prevented for STOP A. The error can only be ac-
 knowledged from the drive and control using a power on.

SGA STOP A/B active
This signal indicates that STOP A/B is active.
0 signal: STOP A/B is not active.
1 signal: STOP A/B is active.

Warning
If the “safe standstill” function or “STOP A” is activated, the motor can no longer
generate any torque. This is the reason that potentially hazardous motion can
occur, e.g. for the following:
• When an external force acts on the drive axes
• Vertical and inclined axes without weight equalization
• Axes that are moving (coasting down)
• Direct drives with low friction and low self-locking
• Notching torques (depending on the motor type, bearing design and friction
 characteristics, up to half a pole pitch in a direction that cannot be predicted)

Possible hazards must be clearly identified using a risk analysis that must be
carried-out by the manufacturer. With an assessment, based on this risk analysis,
it should be defined as to which additional measures are required, e.g. external
brakes.

SGE de-select external STOP A
“Pulse cancellation” can be requested and executed using this SGE.
The safe functions currently active (SG/SBH/SN/SE) are not influenced by this
SGE.
If one of the currently active limits is violated, an appropriate alarm is initiated. The
associated shutdown response cannot be activated because the pulses have al-
ready been cancelled. As soon as the stop request is cancelled via the SGE “de-
select ext. STOP A” any queued shutdown responses become active.

If a stop request is active, SGA “STOP A/B is active” is set in the same way as it
would be for an internally initiated STOP A.

The MD 36977: $MA_SAFE_EXT_STOP_INPUT[0] is used to define the selection/
de-selection of the external brake request, in this case, “de-select external STOP
A” (SH, pulse cancellation).
6.3.3 Description of STOP B

Action in the drive and NCK monitoring channel:
The drive is braked at the current limit as the result of a 0 speed setpoint that is input instantaneously either directly or from the NCK.

Action in the drive monitoring channel:
If the speed setpoint falls below the value entered into p9560: “SI motion, pulse cancellation shutdown speed”, or if the timer p9556: “SI motion, delay time expired”, then the system automatically changes into a STOP A.

Action in the NCK monitoring channel:
Essentially the same as the drive, when the value in MD 36960: $MA_SAFE_STANDSTILL_VELO_TOL is fallen below or after the timer MD 36956: $MA_SAFE_PULSE_DISABLE_DELAY has expired, then the system automatically changes over to a STOP A.

• Effect:
The drive is braked along the current limit under closed-loop speed control and brought to a safe standstill.

• Alarm message for an internally initiated STOP B:
The alarm message “STOP B initiated” is displayed.

• Alarm message for an internally initiated STOP B:
An unintentional restart is prevented using a STOP A. The error can only be acknowledged from the drive and control using a power on.

SGA STOP A/B is active
This signal indicates that STOP A/B is active.
0 signal: STOP A/B is not active.
1 signal: STOP A/B is active.

Note
If the timer in data 36956: $MA_SAFE_PULSE_DISABLE_DELAY or p 9556: “SI motion pulse cancellation, delay time” is set to zero, then for a STOP B, the system immediately changes over to a STOP A.
6.3.4 Description of STOP C

Action in the drive monitoring channel:
The drive is braked at the current limit in response to speed setpoint input = 0 and
in parallel, the timer via parameter p9552: “Transition time from STOP C to SBH” is
started. The SBH function is automatically activated after the timer expires.

Action in the NCK monitoring channel:
Essentially the same as in the drive, the control specifies a zero speed setpoint
and the interface signal “position controller active” (DB 31, ... DBX 61.5) of the as-
associated drive is set to zero.
At the same time, the timer via MD 36952: $MA_SAFE_STOP_SWITCH_TIME_C
is started. The SBH function is automatically activated after the timer expires.

- Effect:
The drive is braked at the current limit under closed-loop speed control and
brought into SBH.
6.3 Safe stops A-F

- Alarm message for an internally initiated STOP C:
 The alarm message “STOP C initiated” is output (see Section 10.2, “Alarms for SINUMERIK 840D sl”).

- Acknowledgement for an internally initiated STOP C:
 An unintentional restart is prevented for a STOP C. The error can be acknowledged using the NC-RESET key.

SGA STOP C is active
This signal indicates that STOP C is active.
0 signal: STOP C is not active.
1 signal: STOP C is active.

SGE de-select external STOP C

If a stop request is active, SGA “STOP C is active” is set in the same way as it would be for an internally initiated STOP C.

The MD 36977: $MA_SAFE_EXT_STOP_INPUT[1] is used to define the selection/de-selection of the external braking request; in this case “de-select external STOP C” (braking along the current limit).

6.3.5 Description of STOP D

Action in the drive monitoring channel:
The drive monitoring channel requests a path stop or braking along the acceleration characteristic (NC-MD). In parallel, the timer is started via parameter 9553: “transition time from STOP D to SBH” is started. The SBH function is automatically activated after the timer expires.

Action in the NCK monitoring channel:
Essentially the same as the drive, the control system monitoring channel requests a path stop or braking along the acceleration characteristic (NC-MD). At the same time, the timer is started via MD 36953:$MA_SAFE_STOP_SWITCH_TIME_D. The SBH function is automatically activated after the timer expires.

- Effect:
The drive is braked in a group - including simultaneous axes - along the set traversing path. Endlessly rotating axes are braked at the acceleration limit. The SBH function is automatically activated after the timer expires.

- Alarm message for an internally initiated STOP D:
The alarm message “STOP D initiated” is output.

- Acknowledgement for an internally initiated STOP D:
 An unintentional restart is prevented for STOP D. The error can be acknowledged using the NC-RESET key.

SGA STOP D is active
This signal indicates that STOP D is active.
0 signal: STOP D is not active.
1 signal: STOP D is active.
SGE de-select external STOP D

If a stop request is active, SGA “STOP D is active” is set in the same way as it would be for an internally initiated STOP D.

The MD 36977: $MA_SAFE_EXT_STOP_INPUT[2] is used to define the selection/de-selection of the external braking request, in this case “de-select external STOP D” (path braking).

6.3.6 Description of STOP E

Action in the drive monitoring channel:
The drive monitoring channel requests an extended stop and retract (ESR), controlled from the NC. At the same time, timer in parameter p9554: “SI motion transition time from STOP E to SBH” is started. The SBH function is automatically activated after the timer expires.

Action in the NCK monitoring channel:
An ESR is requested by the control monitoring channel. At the same time, timer in MD 36954: $MA_SAFE_STOP_SWITCH_TIME_E is started. The SBH function is automatically activated after the timer expires.

- Effect:
The extended stop and retract that have been configured are started.

- Alarm message:
The alarm message “STOP E initiated” is displayed.

- Acknowledgment:
 For STOP E, an unintentional restart is prevented. The error can be acknowledged using the NC-RESET key.

SGA STOP E is active
This signal indicates that STOP E is active.
0 signal: STOP E is not active.
1 signal: STOP E is active.

The NC-controlled ESR is initiated by writing to the system variable $AC_ESR_TRIGGER=1 (also see /FB3/, M3 “Axis coupling and ESR”). To obtain the criteria for initiating, the following SI system variables are used:

$VA_STOPSI:
Axial system variable that contains the present stop.
For a value of 4, a Stop E is active for this axis.

$A_STOPESI:
Global system variable that displays a value not equal to 0 to indicate that a Stop E is active on one of the axes. This variable saves the user having to search through all of the axes.
SGE de-select external STOP E

When a stop request is active, the SGA “STOP E is active” is set.

Note

STOP E only produces a different response than STOP D if the user has configured the ESR function – extended stop and retract – and initiation of the ESR is programmed depending on $VA_STOPSI or $A_STOPESI.

If ESR is not active, the STOP E behaves like a STOP D. However, if the ESR configuration is incorrect, there is a delay of up to 2 IPO cycles compared to STOP D until the braking operation is initiated. Possible causes:

- The initiation of the ESR as static synchronous action does not take into account the system variables $VA_STOPSI or $A_STOPESI.
- ESR is neither parameterized nor enabled.
- For individual PLC controlled axes, only the axis-specific ESR is used via $AA_ESR_TRIGGER. This trigger may be used in addition to the channel-specific trigger.

For other incorrect ESR programming, a delay by the time entered in $MC_ESR_DELAY_TIME1 and $MC_ESR_DELAY_TIME2 is possible. After these times have expired, braking is initiated at the current limit. Possible cause:

- The retraction position cannot be reached within the specified time.
6.3.7 Description of STOP F

The STOP F response is permanently assigned to the crosswise data comparison. Dormant faults/errors are detected in the drive and control systems.

- Effect:
 When a discrepancy is detected between the drive and NCK monitoring channel, the following responses are initiated:

Response, if no safety functions are active:
Dormant faults/errors are detected if none of the safety-related functions are active (safety functions are SBH, SG, SE, SN). The saved message “defect in a monitoring channel” is output on both the drive and control sides and can only be acknowledged using the NC-RESET key. The message does not interrupt machining. A system restart is prevented by an internal NC start/traversing inhibit function.

Response if one safety function is active:
Dormant faults/errors are detected. A STOP B/A response is initiated in the drive and control system (see description of STOP B). The error can only be acknowledged from the drive and control using a power on.

Exception: If a STOP C/D/E is already present, because STOP F has a lower priority (see Table 6-4 “Configurable stop responses”).

- Alarm message:
 Alarms 27001 “defect in a monitoring channel” and C01711 “SI motion defect in a monitoring channel” are displayed.
 For further diagnostics, for Alarm 27001, a fine error coding is displayed in the alarm line. The fine coding for the drive alarm can be found in r9725 “SI motion diagnostics for STOP F”.
 The significance of the error code is provided in Section 10.2 under Alarm 27001 “Defect in a monitoring channel”.

A delay time before STOP B is initiated can be parameterized using MD 36955 $MA_SAFE_STOP_SWITCH_TIME_F. During this time, the machinery construction OEM can initiate an NC controlled response, e.g. ESR. After this time has expired, the involved axis is braked with STOP B. This is also true if, in the meantime, a stop with a higher priority than STOP F (STOP E, D, C) is present. The system variables $VA_XFAULTSI and $A_XFAULTSI, bit 1 can be used to detect whether a STOP F was initiated that is then followed by a STOP B. In the delay time up to the STOP B, an ESR or braking along the programmed path can be initiated (e.g. by writing to $AC_ESR_TRIGGER or initiating an external STOP D).
Note
A delay time between STOP F and STOP B should only be set, if, during this time, an alternative response is initiated by evaluating the system variables $VA_XFAULTSI and $A_XFAULTSI.

Further, when using the delay time, a monitoring function should always be active – also in the automatic mode (e.g. SE, SN, SG with high limit switch). For example, if the SBH monitoring function is only active on the drive side, for example because of the (single-channel) failure of a door switch, then although this results in a STOP F, the STOP F → STOP B delay time on the NCK side is not started if previously no monitoring function was active. This means that in this case, the drive responds with a STOP B (however this is also initiated in the NCK due to the exchange of the stop responses), but this is not displayed in the NCK variables $VA_XFAULTSI and $A_XFAULTSI.

The appropriate monitoring functions of the drive (e.g. when SBH is selected) are also executed instantaneously without any delay.

Example 1 – delaying the transition from STOP F to STOP B:
The speed characteristics of an axis for parameterized stopping are shown in Fig. 6-7. In this case, the axis should continue 500 ms and then brake along the parameterized ramp. A delay time of 2.5 s is selected until STOP B is initiated ($MA_SAFE_STOP_SWITCH_TIME_F).

![Fig. 6-7 Velocity characteristic of an SI axis when stopping with STOP F](image)

The following actions take place at the following instants in time:

- **t1**: STOP F occurs, ESR is started
- **t2**: 500 ms after t1, braking starts along the parameterized ramp
- **t3**: STOP B is initiated 2.5 s after t1. The axis is already stationary at this time, which means that the pulses can be immediately cancelled.
Example 2 – delaying the transition from STOP F to STOP B

The same parameterization as in Example 1 is shown in Fig. 6-8. However, when a STOP F occurs, no monitoring function is active. At instant in time t_2, a monitoring function is activated. ESR is only started if there is a STOP F with active monitoring function.

Fig. 6-8 Velocity characteristic of an SI axis when stopping with STOP F

The following actions take place at the following instants in time:

t_1:
STOP F occurs, no response

t_2:
At any time after t_1, a monitoring function is activated. At this instant in time, the transition to a STOP B is started and bits 1 in $SA_XFAULTSI$ and $SVA_XFAULTSI$ of this axis are set.

t_3:
500 ms after t_2, braking starts along the parameterized ramp

t_4:
STOP B is initiated 2.5 s after t_2. The axis is already stationary at this time, which means that the pulses can be immediately cancelled.
6.3.8 **Forced checking procedure of the external STOPs**

The following applies for the test stop of external STOPs:

All stop SGEs that are used are switched one after the other in each channel and the positive response evaluated using the associated SGA “STOP x is active”.

Note

Only the enabled and activated external standstill functions have to be tested.

Fig. 6-9 Sequence of the test stop for external STOPs. Example: External STOPs A, C, D, E are used

Which SGEs/SGAs are required for the test stop of external STOPs?

The following SGEs/SGAs can be used to perform the test stop for external STOPs:
Table 6-9 SGEs/SGAs for the test stop, external STOPs

| NCK monitoring channel | NCK-SGE “de-select ext. STOP A”
| NCK-SGA “STOP A/B is active” |
| NCK-SGE “de-select ext. STOP C”
| NCK-SGA “STOP C is active” |
| NCK-SGE “de-select ext. STOP D”
| NCK-SGA “STOP D is active” |
| NCK-SGE “de-select ext. STOP E”
| NCK-SGA “STOP E is active” |

| Drive monitoring channel | PLC-SGE “de-select ext. STOP A”
| PLC-SGA “STOP A/B is active” |
| PLC-SGE “de-select ext. STOP C”
| PLC-SGA “STOP C is active” |
| PLC-SGE “de-select ext. STOP D”
| PLC-SGA “STOP D is active” |
| PLC-SGE “de-select ext. STOP E”
| PLC-SGA “STOP E is active” |
6.4 Safe braking ramp (SBR)

Description

This function is based on the assumption that after a stop request, the actual speed must decrease (the speed characteristic is monitored).

Features

The most important features include:

- Fastest possible detection if the axis starts to re-accelerate when braking
- SBR is automatically activated, when a STOP B or C has been initiated
- STOP A is initiated when SBR responds

Activating the SBR

When a stop request is initiated, the actual speed plus the speed tolerance, defined in the machine data, is activated as the speed limit. This limit is compared with the actual speed (must decrease or remain the same) and is cyclically corrected. If the axis starts to re-accelerate while braking, this is detected as quickly as possible.

Machine data/parameters for the SBR speed tolerance:

- **for 840D sl:**

 MD 36948: $MA_SAFE_STOP_VELO_TOL

- **for SINAMICS S120:**

 p9548: SI motion SBR actual speed tolerance

The speed limit is corrected until the speed, defined in the following machine data, is undershot (fallen below). After that, the limit value of the SBR monitoring is frozen to the value in MD/parameter 36946/p9546 plus the value in MD/parameter 36948/p9548.

- **for 840D sl:**

 MD 36946: $MA_SAFE_VELO_X (speed limit nx)

- **for SINAMICS S120:**

 p9546: SI motion speed limit nx
Calculating the SBR tolerance of the actual speed

The following applies when parameterizing the SBR tolerance:

The possible speed increase after initiating a STOP B/C is obtained from the effective acceleration \(a \) and the duration of the acceleration phase. The acceleration phase lasts from one monitoring clock cycle \(UT \) (delay from detecting a STOP B/C until \(n_{set} = 0 \)):

SBR tolerance
Actual speed for SBR = acceleration \(a \) * acceleration duration

The following setting rules apply:

For a linear axis:
SBR tolerance \([\text{mm/min}] = a \ [\text{m/s}^2] \times UT \ [\text{s}] \times 1000 \ [\text{mm/m}] \times 60 \ [\text{s/min}]\)

For rotary axis/spindle:
SBR tolerance \([\text{rev/min}] = a \ [\text{rev/s}^2] \times UT \ [\text{s}] \times 60 \ [\text{s/min}]\)

The following machine data should be taken into account when determining the acceleration:

MD 32300: MAX_AX_ACCEL
MD 35200: GEAR_STEP_SPEEDCTRL_ACCEL
MD 35210: GEAR_STEP_POSCTRL_ACCEL
MD 35410: SPIND_OSCILL_ACCEL

Recommendation:
The value entered for the SBR tolerance should be approx. 20% higher than the calculated value.
Timing when the actual stop limit value is exceeded

When the safe braking ramp is active, then the following timing is obtained when the actual stop limit value is exceeded:

Fig. 6-11 Timing when the actual stop limit value for SBR is exceeded

Table 6-10 Explanation of the diagram

<table>
<thead>
<tr>
<th>Time</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>The position control clock cycle, defined by the following MDs: MD 10050: $\text{MN_SYSCLOCK_CYCLE_TIME}$ MD 10060: $\text{MN_POSCTRL_SYSCLOCK_TIME_RATIO}$</td>
</tr>
<tr>
<td>t_2</td>
<td>Monitoring clock cycle, defined by the following MDs: for 840D sl: MD 10090: $\text{MN_SAFETY_SYSCLOCK_TIME_RATIO}$ for SINAMICS S120: r9500 S1 motion, monitoring clock cycle</td>
</tr>
<tr>
<td>t_3</td>
<td>Time between an error occurring and a limit value being reached</td>
</tr>
<tr>
<td>t_4</td>
<td>Time until a limit value violation is detected (typical 1 monitoring clock cycles, maximum 1.5 monitoring clock cycles + 1 position controller clock cycle)</td>
</tr>
<tr>
<td>t_5</td>
<td>Response time that is required to introduce the stop response (typical 2 monitoring clock cycles, maximum 2.5 monitoring clock cycles + 1 position controller clock cycle)</td>
</tr>
<tr>
<td>t_6</td>
<td>Time until the stop response that was initiated starts (typical 2 ms, maximum 3 position controller clock cycles + 8 ms)</td>
</tr>
<tr>
<td>t_7</td>
<td>Time required to bring the axis to a standstill. This time and thus the residual distance traveled by the axis is determined by the axis design (motor, mass, friction, ...).</td>
</tr>
</tbody>
</table>
6.4 Safe braking ramp (SBR)

Caution

During “normal” operation, speed overshoot should not unintentionally initiate the SBR. Speed overshoot should therefore be checked by making the appropriate measurements.

Warning

If the “safe standstill” function or “STOP A” is activated, the motor can no longer generate any torque. This is the reason that potentially hazardous motion can occur, e.g. for the following:

- When an external force acts on the drive axes
- Vertical and inclined axes without weight equalization
- Axes that are moving (coasting down)
- Direct drives with low friction and low self-locking
- Notching torques (depending on the motor type, bearing design and friction characteristics, up to half a pole pitch in a direction that cannot be predicted)

Possible hazards must be clearly identified using a risk analysis that must be carried-out by the manufacturer. With an assessment, based on this risk analysis, it should be defined as to which additional measures are required, e.g. external brakes.
6.5 Safely-reduced speed (SG)

Description
The purpose of the SG (safely-reduced speed) function is to safely monitor the load-side speed of an axis/spindle. The actual speed of the axis/spindle is cyclically compared in the monitoring clock cycle with the speed limit value selected using SGEs. The speed limit values are defined in the following machine data/parameters:

for 840D sl:
MD 36931: $MA_SAFE_VELO_LIMIT[n]

for SINAMICS S120:
p9531: SI motion SG limit values

The speed limit values for SG1, SG2, SG3 or SG4 allow various applications/operating states on the machine to be monitored. The safely-reduced speed function can therefore be used to implement protective measures for the operating personnel and machine in the setting-up mode or also in automatic operation.

Caution
For selector gearboxes, it is important to select the correct gear ratio!

Features
The features of the SG function are as follows:
- Load-side speed limit values are safely monitored
- Monitoring limit values are adapted to various operating states (e.g. test, setting-up, automatic modes)
- Configurable stop response when the SG responds

Preconditions
The following prerequisites must be fulfilled (see Section 3.3, “System prerequisites”):
- The option and functions must be enabled in the axis-specific machine data
- The SGEs “SBH/SG de-selection” and “SBH de-selection” must be configured
Specifying velocities and speeds

The requirements regarding speeds and velocities that are stipulated for individual processes (milling, turning, grinding, etc.) vary depending on the different C Standards. For example, the following could be specified for the setting-up mode: “Safely-reduced speed” with 2m/min for feed drives and 50 RPM for spindle drives or standstill within 2 revolutions.

The machinery construction OEM must parameterize SI in such a way as to ensure full compliance with the EC Machinery Directive. The relevant standards provide the necessary guidelines and support.

Quantities that influence the parameterization include, e.g. the drive dynamic response, the set parameters with their delay times, electrical and mechanical ratios and all of the mechanical properties and characteristics. The interrelationships between the drive dynamic response and internal delay times of SI are shown in Fig. 6-13 “Timing when exceeding the limit value for SG”.

6.5.1 Speed monitoring, encoder limit frequency

When SBH/SG is active in a configuration with a 1-encoder, the speed is monitored to ensure that it does not exceed a maximum encoder limit frequency. An appropriate alarm is output if this limit is exceeded.

Encoder limit frequency

The encoder limit frequency is 500 kHz. When the encoder limit frequency in SG is exceeded, the SG-specific parameterized stop is initiated.
6.5.2 Selecting/de-selecting safely reduced speed

Selecting SG

The following SGEs are used to select SG:

Table 6-11 Selecting/de-selecting SG

<table>
<thead>
<tr>
<th>SBH/SG de-selection</th>
<th>SBH Deselection</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 1</td>
<td>x</td>
<td>SBH and SG are de-selected</td>
</tr>
</tbody>
</table>
| = 0 | = 0 | SBH is selected (see Section 6.2, “Safe operating stop (SBH)”)
| = 0 | = 1 | SG is selected |

Note: x –> Any signal state

Note

The actual status of the function is displayed using the SGA “SBH/SG active” and SGA “SBH active”.

Before activating the SG function it must be ensured that the speed of the axis/spindle is lower than the selected speed limit value. If it is higher, an alarm is generated that causes the drive to be shut down.

The SGEs and SGAs are described in Section 7.1 “Safety-related input/output signals (SGE/SGA)”.

Selecting speed limit values

The maximum permissible speed of an axis/spindle in the setting-up mode is defined for individual machine types in the C Standards (product standards). The machinery construction OEM is responsible for ensuring that the correct speed limit value is selected depending on the operating mode and the application.

The required speed limit is selected as follows by combining the following SGEs:
Table 6-12 Selecting speed limit values for SGs

<table>
<thead>
<tr>
<th>SG selection Bit 1</th>
<th>SG selection Bit 0</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Speed limit value for SG1 active</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Speed limit value active for SG2 1)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Speed limit value for SG3 active</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Speed limit value active for SG4 1)</td>
</tr>
</tbody>
</table>

Note:
1) The SG limit values SG2 and SG4 can be finely graduated using the SG override (see Subsection 6.5.4, "Override for safely-reduced speed". The active SG stage is displayed using SGA “SGA active bit 0” and “SGA active bit 1”.

Changing-over the speed limit values

A changeover from a lower to a higher speed limit value takes effect instantaneously without any delay.

When changing-over from a higher to a lower limit value, then a delay time is started that is parameterized using the machine data (see Fig. 6-12, “Timing when changing-over from a higher to a lower speed limit”).

for 840D sl:
MD 36951: $MA_SAFE_VELO_SWITCH_DELAY

for SINAMICS S120:
p9551: SI motion, SG changeover, delay time

The axis/spindle must be braked sufficiently during the delay time so that it has reached the reduced speed that is below the new limit value when the delay time expires. However, if the actual speed is higher than the new limit value when the time has expired, an appropriate alarm is output with the configurable stop response.
6.5 Safely-reduced speed (SG)

De-selecting SG

The SG function can be de-selected at any speed by activating the SGE “SBH/SG de-selection”.

Warning

The delay time must also be selected as a function of the distance to the hazardous location. The speeds to be taken into account (speed at which hands/arms are moved to appropriately arrange protective devices/guards) are specified in Standard DIN EN 999.
6.5.3 Effects when the limit value is exceeded for SG

Configurable stop response

When the selected speed limit value is violated, a stop response configured in the following machine data/parameters is generated:

for 840D sl:

MD 36961: $MA_SAFE_VELO_STOP_MODE
MD 36963: $MA_SAFE_VELO_STOP_REACTION[n]

for SINAMICS S120:

p9561: SI motion SG stop response
p9563[0...3]: SI motion SG-specific stop response

Note

• An alarm is displayed (for 840D sl: 27011, for SINAMICS S120: F01714). After the cause of the fault has been removed, the alarm can be acknowledged with RESET. The monitoring function is then again active.

• Depending on the selected monitoring clock cycle, the dynamic drives may cause a brief increase in speed on the monitored axis/spindle before the stop response sequence starts.

• For traversing modes which use a transformation with singularity points (e.g. 5-axis transformation and TRANSMIT), relatively high axial speeds occur at these points. These speeds can initiate stop responses even though the Cartesian motion of the tool center point (TCP) is below the selected speed limit value.

The monitoring functions provided by SI are basically axis-specific. This means that it is not possible to directly monitor the TCP.
6.5 Safely-reduced speed (SG)

Timing when the limit value is exceeded

When the safely-reduced speed function is active, then the timing is as follows when the limit value is violated:

![Diagram showing timing when the limit value is exceeded for SG]

Fig. 6-13 Timing when the limit value is exceeded for SG

Table 6-13 Explanation of the diagram

<table>
<thead>
<tr>
<th>Time</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁</td>
<td>The position control clock cycle, defined by the following MDs: MD 10050: $MN_SYSCLOCK_CYCLE_TIME MD 10060: $MN_POSCTRL_SYSCLOCK_TIME_RATIO</td>
</tr>
<tr>
<td>t₂</td>
<td>Monitoring clock cycle, defined by the following MDs: for 840D sl: MD 10090: $MN_SAFETY_SYSCLOCK_TIME_RATIO for SINAMICS S120: r9500 SI motion, monitoring clock cycle</td>
</tr>
<tr>
<td>t₃</td>
<td>Time between an error occurring and a limit value being reached</td>
</tr>
<tr>
<td>t₄</td>
<td>Time until a limit value violation is detected (typical 1 monitoring clock cycle, maximum 1.5 monitoring clock cycles + 1 position controller clock cycle)</td>
</tr>
<tr>
<td>t₅</td>
<td>Response time required to initiate the configured stop response (typical 2 monitoring clock cycles, maximum 2.5 monitoring clock cycles + 1 position controller clock cycle)</td>
</tr>
<tr>
<td>t₆</td>
<td>Time until the stop response that was initiated starts (STOP A: typical 2 ms, maximum 3 position controller clock cycles + 8 ms) (STOP B/C: typical 2 position controller clock cycles, maximum 2 position controller clock cycles) (STOP D/E: typical 2 interpolation clock cycles, maximum 2 interpolation clock cycles + 2 monitoring clock cycles)</td>
</tr>
</tbody>
</table>
Configurable SG specific stop responses

Using the configurable SG-specific stop response, a suitable braking behavior can be set for every SG stage in-line with the application when the particular speed limit value is exceeded.

For example, when:
- SETTING-UP, the SG stage SG2 can be active with the configured stop response STOP C and
- in the AUTOMATIC mode, the SG stage SG4 with the configured stop response STOP D.

Activating

The function is active if the MD / parameter 36961/p9561:

- $MA_SAFE_VELO_STOP_MODE = 5 / SI motion stop response = 5.

Setting the configurable SG-specific stop responses

The SG-specific stop responses can be set using the following machine data:

- for 840D sl:
 MD 36963: $MA_SAFE_VELO_STOP_REACTION[n]

- for SINAMICS S120:
 p9563[0...3]: SI motion SG-specific stop response
6.5.4 Override for safely-reduced speed

General information

16 SG override stages for the limit values of safely-reduced speeds 2 and 4 using SGEs. This means that the limit values for SG2 and SG4 can be more finely graduated.

Using the following machine data, an override stage can be assigned factors of between 1 and 100%:

- **for 840D sl:**

 MD 36932: $MA_{SAFE VELO OVR FACTOR}[n]

- **for SINAMICS S120:**

 p9532[0...15]: SI motion SG override factor

Application example

For grinding applications, the limit value for the safely-reduced speed can be adjusted to the variations in the grinding wheel peripheral speed using the SG override.

Activating

The following prerequisites must be fulfilled before the function can be used:

- The function is enabled via MD 36901 / parameter p9501:

 $MA_{SAFE FUNCTION ENABLE}, bit 5 / SI motion enable, safety functions, bit 5

- The SBH/SG function is enabled via MD36901 / parameter p9501:

 $MA_{SAFE FUNCTION ENABLE}, bit 0 / SI motion enable, safety functions, bit 0

- The required SGEs “SG override selection bits 3, 2, 1, 0” have either been completely or partially configured

- The SG override factors have been entered into the appropriate MD 36932 / parameter p9532: $MA_{SAFE VELO OVR FACTOR}[n] / SI motion SG override factor

- Safely-reduced speed 2 or 4 has been activated

Changing-over an SG override

SG override values are changed-over subject to the same conditions as those that apply to speed limit values.
Selecting an SG override

The active speed limit value (SG1, 2, 3 or 4) is selected using SGEs “SG selection bits 1 and 0”. The desired override is selected by combining SGEs “SG override selection bits 3, 2, 1 and 0”. The override is only effective for the speed limit value for SG2 and SG4.

<table>
<thead>
<tr>
<th>SG Selection Bit 1</th>
<th>SG Selection Bit 0</th>
<th>SG Override Selection Bit 3</th>
<th>SG Override Selection Bit 2</th>
<th>SG Override Selection Bit 1</th>
<th>SG Override Selection Bit 0</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Speed limit value for SG1 active</td>
</tr>
<tr>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>Speed limit value for SG2 active with override stage 0</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 1</td>
<td>... with override stage 1</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 2</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 0</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>... with override stage 3</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>... with override stage 4</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 5</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 0</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>... with override stage 6</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 0</td>
<td>= 1</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 7</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>... with override stage 8</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 9</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>... with override stage 10</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 11</td>
</tr>
<tr>
<td>~ ~ ~ ~ ~ ~ ~ ~ ~ ~</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>... with override stage 12</td>
</tr>
</tbody>
</table>
Table 6-15 Selecting the SG override for safely-reduced speed

<table>
<thead>
<tr>
<th>SG Selection Bit 1</th>
<th>SG Selection Bit 0</th>
<th>SG override Selection Bit 3</th>
<th>SG override Selection Bit 2</th>
<th>SG override Selection Bit 1</th>
<th>SG override Selection Bit 0</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>... with override stage 13</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 14</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 1</td>
<td>= 1</td>
<td>= 1</td>
<td>... with override stage 15</td>
<td></td>
</tr>
<tr>
<td>= 1</td>
<td>= 0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Speed limit value for SG3 active</td>
<td></td>
</tr>
<tr>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>Speed limit value for SG4 active with override stage 0</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>= 1</td>
<td>... with override stage 1</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 0</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 2</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 0</td>
<td>= 0</td>
<td>= 1</td>
<td>= 1</td>
<td>... with override stage 3</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>... with override stage 4</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>... with override stage 5</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 0</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 6</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 0</td>
<td>= 1</td>
<td>= 1</td>
<td>= 1</td>
<td>... with override stage 7</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
<td>... with override stage 8</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>= 1</td>
<td>... with override stage 9</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 10</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>= 1</td>
<td>... with override stage 11</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>= 0</td>
<td>... with override stage 12</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>= 1</td>
<td>... with override stage 13</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 1</td>
<td>= 1</td>
<td>= 0</td>
<td>... with override stage 14</td>
<td></td>
</tr>
<tr>
<td>– “ –</td>
<td>= 1</td>
<td>= 1</td>
<td>= 1</td>
<td>= 1</td>
<td>... with override stage 15</td>
<td></td>
</tr>
</tbody>
</table>

x: Signal status is optional since override values are not effective for SG1 and SG3

Configuring NCK–SGEs

NCK-SGEs (override selection bits 3, 2, 1, 0) are configured using the following machine data:

for 840D sl:
MD 36978: $MA_SAFE_OVR_INPUT[n]
(input assignment for override selection)
Defining SG override factors

The SG override factors themselves (percentage values) are defined using the following machine data:

for 840D sl:
MD 36932: $MA_SAFE_VELO_OVR_FACTOR[n]

for SINAMICS S120
p9532[n]: SI motion SG override factor

6.5.5 Example: override for safely-reduced speed

Task assignment

When safely-reduced speeds are selected, the speed limit values must be set as follows.

Table 6-16 Application example of how override is used for safely-reduced speed

<table>
<thead>
<tr>
<th>SGE SG selection</th>
<th>SGE override selection</th>
<th>Effective speed limit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 1</td>
<td>Bit 0</td>
<td>Bit 3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>– “ –</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– “ –</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– “ –</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>– “ –</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– “ –</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>– “ –</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
x: Signal status is optional since override values are not effective for SG1 and SG3
SGEs “SG override selection bit 3 and bit 2” are not required to select an SG override – i.e. they do not need to be configured (they are internally set to “0”).
6.5 Safely-reduced speed (SG)

Assumptions for the example

- Defining the SGEs in the NCK monitoring channel
 - I/O number for signal SG selection, bit 1: → OUTSI[13]
 - I/O number for signal SG selection, bit 0: → OUTSI[14]
 - I/O number for signal, override, bit 1: → OUTSI[17]
 - I/O number for signal, override, bit 0: → OUTSI[18]

Defining machine data

Table 6-17 Supplying MDs for the speed limit values

<table>
<thead>
<tr>
<th>Limit value</th>
<th>with 840D sl</th>
<th>for SINAMICS S120</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD number</td>
<td>Value</td>
</tr>
<tr>
<td>SG1</td>
<td>36931[0]</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table 6-18 Supplying the MDs for the SGEs

<table>
<thead>
<tr>
<th>Signal SGE</th>
<th>Assignment</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD number</td>
<td></td>
</tr>
<tr>
<td>SG selection, bit 1</td>
<td>36972[1]</td>
<td>0401010D</td>
</tr>
<tr>
<td>SG selection, bit 0</td>
<td>36972[0]</td>
<td>0401010E</td>
</tr>
<tr>
<td>SG override selection, bit 1</td>
<td>36978[1]</td>
<td>04010111</td>
</tr>
<tr>
<td>SG override selection, bit 0</td>
<td>36978[0]</td>
<td>04010112</td>
</tr>
</tbody>
</table>

Table 6-19 Supplying MDs for override factors

<table>
<thead>
<tr>
<th>Override</th>
<th>with 840D sl</th>
<th>for SINAMICS S120</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MD number</td>
<td>Value</td>
</tr>
<tr>
<td>0</td>
<td>36932[0]</td>
<td>100</td>
</tr>
</tbody>
</table>
6.6 Safety-related output “n<n_x”

The function safety-related output “n<n_x” (SGA “n<n_x”) is used to safely detect the speed range of a drive. The speed range detection is evaluated on a user-for-user basis, e.g. in so much that a protective door can only be re-enabled if a spindle that is running-down has fallen below a certain speed.

![Diagram showing Signal n<n_x, dependent on the speed characteristic](image)

Description

This function is for each axis and is implemented through 2 channels. One channel is activated in the NCK, the other directly in the drive.

1 velocity comparison value n_x can be defined in the machine data.

If the actual speed n of the drive falls below the velocity comparison value n_x, then an associated SGA “n<n_x” switches. Contrary to SG, no other response is initiated.

By further processing the SGAs “n<n_x” – e.g. using safe programmable logic (SPL) – then, for example it can be evaluated as to whether a drive is in a non-hazardous speed range.

Defining n_x

The limit speed n_x is defined using the following MD / following parameters:

- for 840D sl: MD 36946 $MA_SAFE_VELO_X
- for SINAMICS S120: p9546 SI motion speed limit n_x
Response time and error responses

Typical response time for \(n < n_x \):
1 interpolation clock cycle + 2 monitoring clock cycles

Maximum response times: 1 position controller clock cycle + 5.5 monitoring clock cycles + 2 interpolation clock cycles + 3 PLC cycles

Caution

An error in the crosswise data comparison (STOP F, displayed using Alarms 27001, 27101 and onwards or F01611) only results in a subsequent STOP B/A response, if at least one of the safety-related functions SBH, SG, SE or SN is active. If only the function \(n < n_x \) is active, then a crosswise data comparison error does not result in a subsequent STOP B/A response.

Note

If the axis/spindle runs at a speed \(n_x \), then as a result of actual value differences in the two monitoring channels, the SGA \(n < n_x \) can have different states. This must be taken into account in the safe processing of the SGAs.
6.7 Safe software limit switches (SE)

Note
The function “safe software limit switch” (SE) is also known as “safe limit position”.

Description
The “safe software limit switch” function (SE) can be used to implement protective functions for operating personnel and machinery or limiting the working zone/protection zone for specific axes. For example, this function can replace hardware limit switches.

Two safe software limit switches (SE1 and SE2) are available for each axis. If the SE function is active, limit switch position pair SE1 or SE2 can be selected as a function of SGE “SE selection”.

Defining the upper and lower limit values
The position limit values for the software limit switch position pairs 1 and 2 are defined in the following machine data:

for 840D sl:
MD 36934: $MA_SAFE_POS_LIMIT_PLUS[n]
MD 36935: $MA_SAFE_POS_LIMIT_MINUS[n]

for SINAMICS S120:
p9534[n]: SI motion SE upper limit values
p9535[n]: SI motion SE lower limit values

Note
The upper and lower position limit values must be selected so that when the axis is traversing in this direction, the software limit switches – that are used as standard – are first reached.

Features
The most important features include:
- Software limit switches are safely defined and evaluated as a software function
- Configurable stop response when software limit switches are passed
- The stop response is implemented internally in the software (and is therefore faster than a hardware limit switch response) when software limit switches are passed (i.e. actuated)
6.7 Safe software limit switches (SE)

Preconditions

The following prerequisites must be fulfilled for the “safe software limit switch” function:

- The “safe software limit switch” function must be enabled
- The axis/axes must have been safely referenced (user agreement)
- SGE “SE selection” must be supplied (configured) in both channels

Warning

“Safe software limit switches” are only effective if the user agreement has been given.

6.7.1 Effects when an SE responds

Warning

The SE function does not predictively monitor the SW (software) limit switches. This means that the axis stops after passing the limit position. The distance traveled after the SE is dependent on:

- How the function was parameterized (monitoring clock cycle, stop response, ...)
- The actual speed
- The design of the axis

Configurable stop responses

When an axis passes (actuates) a “safe software limit switch”, a stop response configured in the following machine data is generated:

for 840D sl:
MD 36962: $MA_SAFE_POS_STOP_MODE

for SINAMICS S120:
p9562: SI motion SE stop response

The user can select either STOP C, D or STOP E.

Effect

- The configured stop response is initiated
- The relevant alarm is displayed
Acknowledging and moving away

1. Withdraw the user agreement (SE is no longer active) or changeover to another SE.
2. Acknowledge the stop and alarm response.
3. Bring the axis into a range in which the monitoring no longer responds.

Timing when a safe software limit switch is actuated

If the “safe software limit switch” function is active, the system timing is as follows when the software limit switch is actuated (passed):

![Fig. 6-15 Timing when a software limit switch is actuated](image)

Table 6-20 Explanation of the diagram

<table>
<thead>
<tr>
<th>Time</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>The position control clock cycle, defined by the following MDs: for 840D sl: MD 10050: $$MN_SYSCLOCK_CYCLE_TIME$ MD 10060: $$MN_POSCTRL_SYSCLOCK_TIME_RATIO$</td>
</tr>
<tr>
<td>t_2</td>
<td>Monitoring clock cycle, defined by the following MDs: for 840D sl: MD 10090: $$MN_SAFETY_SYSCLOCK_TIME_RATIO$ for SINAMICS S120: p9500: SI motion, monitoring clock cycle</td>
</tr>
<tr>
<td>t_3</td>
<td>Delay until the configured stop response is output (typical 0.5 monitoring clock cycles, maximum 1 monitoring clock cycle + 1 position controller clock cycle)</td>
</tr>
<tr>
<td>t_4</td>
<td>Time until the configured stop response becomes effective (typical 1.5 monitoring clock cycles, maximum 2 monitoring clock cycles + 1 position controller clock cycle)</td>
</tr>
<tr>
<td>t_5</td>
<td>Time until the stop response that was initiated actually starts STOP C: typical 2 position controller clock cycles, maximum 2 position controller clock cycles STOP D/E: typical 2 interpolation clock cycles, maximum 2 interpolation clock cycles + 2 monitoring clock cycles</td>
</tr>
</tbody>
</table>
6.7 Safe software limit switches (SE)

Table 6-20 Explanation of the diagram

<table>
<thead>
<tr>
<th>Time</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_6)</td>
<td>Time required to bring the axis to a standstill. This time and thus the residual distance traveled by the axis is determined by the axis design (motor, mass, friction, ...) and the configured stop response (STOP C is faster than STOP D).</td>
</tr>
</tbody>
</table>

Note:
Each axis must be measured during commissioning (start-up) to determine the distance that it travels between the limit switch being violated and it coming to a standstill.
6.8 Safe software cams (SN)

Description
The “safe software cams” function (SN) can be used to implement safe electronic cams, safe range detection or limiting the working zone/protective zone for specific axes, thereby replacing the hardware solution.

There are 4 pairs of cams (SN1, SN2, SN3, SN4) available for each axis. Each cam pair consists of a plus cam (SN1+, SN2+, SN3+, SN4+) and a minus cam (SN1–, SN2–, SN3–, SN4–). Each cam signal can be individually enabled and configured via machine data. The cam signals are output via SGAs.

Warning
The enabled cam signals are immediately output when the control system is powered-up, this output is however only safe after safe referencing (this is signaled using the SGA “Axis safely referenced”).

The cams are only considered as being safe if they were safely referenced. This is the reason that the user must interlock this SGA with the cam SGA.

Features
The most important features include:
- Cam positions are safely defined and evaluated as a software function
- Working ranges/zones are defined

Preconditions
The following prerequisites must be fulfilled for the “safe software cams” function:
- The axis/axes must have been safely referenced (user agreement)
- The safe cams must be configured:
 - The required cams are enabled using machine data
 for 840D sl:
 36901: $MA_SAFE_FUNCTION_ENABLE, bits 8...15 and parameter
 for SINAMICS S120:
 p9501: SI motion, enable safety functions, bits 8...15
 - SGA assignment is defined using machine data
 for 840D sl:
 36988: $MA_SAFE_CAM_PLUS_OUTPUT[n] and
 for SINAMICS S120:
 36989: $MA_SAFE_CAM_MINUS_OUTPUT[n]
Defining the cam positions

The cam positions for SN1+, SN2+, SN3+, SN4+ and SN1−, SN2−, SN3−, SN4− are specified in the following machine data/parameters:

for 840D sl:
MD 36936: $MA_SAFE_CAM_POS_PLUS[n]
MD 36937: $MA_SAFE_CAM_POS_MINUS[n]

for SINAMICS S120:
p9536[n]: SI motion, SN plus cams position
p9537[n]: SI motion, SN minus cams position

6.8.1 Special points to be noted

Tolerance for SN

Owing to variations in the clock cycle and signal run times (signal propagation times), the cam signals of the two monitoring channels do not switch simultaneously and not precisely at the same position. A tolerance bandwidth can therefore be specified for all cams using the following machine data/parameters. Within this bandwidth, the signal states for the same cam may be different in the two monitoring channels.

for 840D sl:
MD 36940: $MA_SAFE_CAM_TOL

for SINAMICS S120:
p9540: SI motion, SN tolerance

Note

The lowest possible tolerance bandwidth (less than 5–10 mm) should be selected for the “safe software cams” function. It makes sense to parameterize the cam tolerance greater than or equal to the actual value tolerance.

Special case for SN

If the axis is positioned precisely at the parameterized cam position, the cam signals may have different states owing to system-related variations in the actual values between the two monitoring channels. This must be taken into account when safely processing the cam signals, e.g. by filtering the different signal states by means of a logic circuit (see “Synchronizing cam signals”).
Synchronizing cam signals

As a result of system-related actual value differences, the cam signals of the monitoring channels can have different states. In order to prevent this, the cam synchronization can be activated. This rounds-off the results of both channels.

The cam SGAs at the input position of the SPL are synchronized if the user has parameterized this using the function enable.

Cam signal synchronization is enabled using the following machine data / parameters:

for 840D sl:
MD 36901: $MA_SAFE_FUNCTION_ENABLE, bit 7

for SINAMICS S120:
p9501: enables safety functions, bit 7

The cam SGAs including the hysteresis, but without synchronization are displayed in the service screen and servo trace.

Hysteresis of cam SGAs

When cam synchronization is activated, cam signals are output with a hysteresis that takes into account the approach direction (see Fig. 6-16, “Hysteresis of the cam SGAs”). This helps to prevent the SGAs from “flickering” if the axis is positioned exactly on the cam.

The magnitude of the hysteresis is determined by the following data:

for 840D sl:
MD 36940: $MA_SAFE_CAM_TOL
(tolerance for safe software cams)

for SINAMICS S120:
p9540: SI motion, SN tolerance

Fig. 6-16 Hysteresis of cam SGAs

If the cam is incorrectly/inadmissibly parameterized, then this is indicated by Alarm 27033.
Safe software cams for endlessly turning rotary axes

For rotary axes with cams, the modulo range (cam actual value range) can be set using the following machine data/parameters:

- For 840D sl:
 - MD 36902: $MA_SAFE_IS_ROT_AX
 - MD 36905: $MA_SAFE_MODULO_RANGE
- For SINAMICS S120:
 - p9502: SI motion, linear axis/rotary axis
 - p9505: SI motion, modulo value for SN

The cam actual value range should be selected as wide as the modulo display of the safe actual value.

For rotary axes, the modulo display of safe actual values is selected and parameterized using the following machine data:

- For 840D sl:
 - MD 30300: $MA_IS_ROT_AX
 - MD 30320: $MA_DISPLAY_IS_MODULO
 - MD 30330: $MA_MODULO_RANGE

Limiting the cam positions

When parameterizing the cam positions, the following conditions close to the modulo limits must be maintained.

- **When cam synchronization is not active:**
 - \(- \text{Mod}_\text{Pos} + \text{Pos}_\text{Tol} < \text{SN}_\text{Pos} < \text{Mod}_\text{Pos} - \text{Pos}_\text{Tol}\)

- **When cam synchronization is active:**
 - \(- \text{Mod}_\text{Pos} + \text{Pos}_\text{Tol} + \text{Cam}_\text{Tol} < \text{SN}_\text{Pos} < \text{Mod}_\text{Pos} - \text{Pos}_\text{Tol} - \text{Cam}_\text{Tol}\)

Meanings:

- **\(\text{Pos}_\text{Tol}\):** Actual value tolerance
 - MD 36942: $MA_SAFE_POS_TOL for 840D sl
 - p9542: SI motion, actual value comparison tolerance (crosswise) for SINAMICS S120

- **\(\text{Cam}_\text{Tol}\):** Cam tolerance
 - MD 36940: $MA_SAFE_CAM_TOL for 840D sl
 - p9540: SI motion, SN tolerance) for SINAMICS S120

- **\(\text{Mod}_\text{Pos}\):** Lower/upper modulo value:
 - MD 36905: $MA_SAFE_MODULO_RANGE for 840D sl
 - p9505: SI motion, modulo value for SN) for SINAMICS S120

- **\(\text{SN}_\text{Pos}\):** Cam position:
 - MD 36936: $MA_SAFE_CAM_POS_PLUS[n] for 840D sl
 - p9536: SI motion, SN plus cams position for SINAMICS S120
 - MD 36937: $MA_SAFE_CAM_POS_MINUS[n] for 840D sl
 - p9537: SI motion, SN minus cams position) for SINAMICS S120
When booting, the parameterization (parameter assignments) are checked in each monitoring channel. In the case of parameterization errors (a condition is not fulfilled), Alarm 27033 or F01687 is output after the control has been booted.

6.8.2 Effects when SN responds

Warning

When defining cam positions, please note that the function only monitors the actual position thus making (predictive) sensing of cam signals impossible.

The cams are only considered as being safe if they were safely referenced. This is the reason that the user must interlock this SGA with the cam SGAs in the SPL.

Response times

- **Response times without cam synchronization**

 typical 1 interpolation clock cycle + 1.5 monitoring clock cycles
 maximum 1 position controller clock cycle + 4 monitoring clock cycles + 2 interpolation clock cycles + 3 PLC cycles

- **Response times with cam synchronization**

 typical 1 interpolation clock cycle + 2.5 monitoring clock cycles
 maximum 1 position controller clock cycle + 5 monitoring clock cycles + 2 interpolation clock cycles + 3 PLC cycles
6.8 Safe software cams (SN)

Notes

__

__

__

__

__

__

__

__

__
Connecting Sensors/Actuators

7.1 Safety-relevant input/output signals

7.1.1 Overview of the SGEs/SGAs and their structure

Description
The safety-related input and output signals (SGEs and SGAs) are the interface of the internal Safety Integrated functionality to the process.

SGE signals (safety-related input signals) control the active monitoring by de-selecting or selecting the safety functions. This is realized, among other things, depending on the status (switching status) of sensors and transmitters.

SGA signals (safety-related output signals) are feedback signals from safety functions. They are, among other things, suitable for controlling actuators in a safety-related fashion.

Processing I/O signals for the NC and drive through two channels
A two-channel structure is used to input/output and process safety-related input/output signals (see Fig. 7-1 “NCK and drive monitoring channel”). All of the requests and feedback signals for safety-related functions should be entered or retrieved through both monitoring channels (two-channel structure).
For the NCK monitoring channel, signals are input/output via the SPL - possibly processed by the NCK (see Subsection 7.1.5 “Multiple distribution and multiple interlocking”) and emulated (mapped) in the NCK-SGE/SGA interface.

The signals from the drive monitoring channel are input/output via the SPL and sent to the drive via the interface axis/spindle DB.

Internal SGEs/SGAs (interface to the various axial safety functions) are, e.g. selecting and de-selecting safety functions, changing-over limit values, output of status signals. They are defined for the particular Safety Integrated functions.

Sensors – e.g. switches, pushbuttons, protective door contacts, Emergency Stop pushbuttons, light curtains, laser scanners are connected to the external SGEs (interface to the process, i.e. to the machine). Actuators – e.g. load contactors, valves, interlocking solenoids are connected to the external SGAs. The connection is established through the PROFIsafe I/O, also see Section 7.2. Generally, a brake is directly connected at the Motor Modules via terminals.

The external and internal SGEs/SGAs are freely interlocked (logically combined) by the user using the “safe programmable logic” (SPL), also see Section 7.3.

Crosswise data comparison is implemented between the monitoring channels that operate independently of one another. If there is inequality, then a STOP F is initiated (crosswise data comparison between the drive and NCK). A STOP D/E is triggered for an SPL crosswise data comparison.
Connecting Sensors/Actuators

7.1 Safety-relevant input/output signals

Note

As a result of the two-channel structure – both in the **NCK monitoring channel** as well as in the **drive monitoring channel** – SGEs and SGAs must be supplied from the machinery construction OEM.

The actual signal state of the SGEs/SGAs is displayed using the “Service display” menu. Information regarding Safety Integrated data with the associated axis names and the axis number are displayed in the “Service SI” window.

Sensor/actuators are, for Safety Integrated, connected through PROFIBUS with the PROFIsafe profile and I/O modules that are PROFIsafe-capable. Internal SGE/SGA signals are accessed via the SPL (see Section 7.3).

![Fig. 7-2 External SGE/SGA via PROFIBUS with the PROFIsafe profile](image)

For instance, the following can be requested or signaled in each monitoring channel and for each/spindle with safety technology using SGE/SGA signals:

- Safety functions can be selected and de-selected
- Limit values can be selected and changed-over
- States relating to safety operation can be fed back

Features

- SGE and SGA signals are processed through two channels
- Processed in the NCK monitoring channel
- Processed in the drive monitoring channel
- Safety functions are selected/de-selected independent of the NC mode
- Differences in the active SGEs/SGAs in the monitoring channels are detected in the crosswise data/result comparison

The access to SGE/SGA signals is described in Section 7.2 “Connecting I/O via PROFIsafe” and Section 7.3 “Safe programmable logic (SPL)”.

© Siemens AG, 2006. All rights reserved

SINUMERIK 840D sl/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition
Note

The state of a deleted SGE/SGA (logical “0”) that can be achieved both by the user as well as also using fault responses of the “SINUMERIK Safety Integrated” system, are defined as so-called “fail-safe state” of an SGE/SGA. This is the reason that the system is only suitable for applications where this state corresponds to the fail-safe state of the process controlled by “SINUMERIK Safety Integrated”.

Which SGEs/SGAs are there?

For each axis/spindle, the following SGEs and SGAs are in each monitoring channel:

<table>
<thead>
<tr>
<th>SBH/SG de-selection</th>
<th>SBH de-selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG selection, bit 1</td>
<td>SG selection, bit 0</td>
</tr>
<tr>
<td>SE selection</td>
<td></td>
</tr>
<tr>
<td>Ratio selection, bit 2</td>
<td>Ratio selection, bit 1</td>
</tr>
<tr>
<td>Ratio selection, bit 0</td>
<td></td>
</tr>
<tr>
<td>Test stop selection (drive)</td>
<td>Close brake (drive)</td>
</tr>
<tr>
<td>SG correction–selection, bit 3</td>
<td>SG correction–selection, bit 2</td>
</tr>
<tr>
<td>SG correction–selection, bit 1</td>
<td>SG correction–selection, bit 0</td>
</tr>
<tr>
<td>ext. STOP A de–selection</td>
<td>ext. STOP C de–selection</td>
</tr>
<tr>
<td>ext. STOP D de–selection</td>
<td>ext. STOP E de–selection</td>
</tr>
<tr>
<td>SBH/SG active</td>
<td></td>
</tr>
<tr>
<td>Axis safely referenced</td>
<td></td>
</tr>
<tr>
<td>SN1–</td>
<td>SN2 –</td>
</tr>
<tr>
<td>SN3 –</td>
<td>SN4 –</td>
</tr>
<tr>
<td>SN1 +</td>
<td>SN3 +</td>
</tr>
<tr>
<td>SN2 +</td>
<td>SN4 +</td>
</tr>
<tr>
<td>(n < n_x)</td>
<td></td>
</tr>
<tr>
<td>SG active, bit 1</td>
<td>SG active, bit 0</td>
</tr>
<tr>
<td>SBH active</td>
<td></td>
</tr>
<tr>
<td>Status, pulses cancelled (drive)</td>
<td>STOP A/B active</td>
</tr>
<tr>
<td>STOP C active</td>
<td></td>
</tr>
<tr>
<td>STOP D active</td>
<td></td>
</tr>
<tr>
<td>STOP E active</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7-3 SGEs and SGAs in every monitoring channel for each axis/spindle
Note
The SGE/SGA signals are described in Section 8.3, “Description of Interface signals”.

NCK SGEs/SGAs

The signals are assigned to the NCK-SPL inputs/outputs using machine data.

Note
Only the NCK-SGEs are assigned to an NCK-SPL output that are also required for the particular application. For axes, where for example, the gear ratio does not change, then NCK-SGs “ratio selection bit 2 to 0” do not have to be assigned to SPL inputs. A value of 0 should be entered into the associated MD (i.e. the NCK-SGE does not have an SPL assignment and is set to 0). This does not apply to external STOPs that are not used.

PLC SGEs/SGAs

For the drive monitoring channel, the NC/PLC interface (axis/spindle DB) represents the SGE/SGA interface between the PLC and the drive. The PLC user program must supply this interface.

Note
Only the PLC-SGEs should be processed in the PLC user program that are also required for the particular application. SGEs that are not used must be set to the value 0 – i.e. to a defined state. This does not apply to external STOPs that are not used.
See Subsection 6.3.8 “Forced checking procedure of the external STOPs” for information about SGEs/SGAs for the test stop for external stops.

How many SGEs/SGAs are required as a minimum?
Depending on the particular application, only some of the maximum number of SGEs/SGAs available are required.
7.1 Safety-relevant input/output signals

<table>
<thead>
<tr>
<th>Function</th>
<th>Minimum SGEs required</th>
<th>Minimum SGAs required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe operating stop (SBH)</td>
<td>SBH/SG de-selection
Test stop selection (drive)
External stops</td>
<td>SBH/SG active
Status, pulses cancelled (drive)
STOP A/B, C, D, E active (only if required)</td>
</tr>
<tr>
<td></td>
<td>If gearbox stages are being used
Gear ratio selection, bit 2 (only if it is necessary to select the ratio)
Gear ratio selection, bit 1 (only if it is necessary to select the ratio)
Gear ratio selection, bit 0 (only if it is necessary to select the ratio)</td>
<td></td>
</tr>
<tr>
<td>Safely-reduced speed (SG)</td>
<td>SBH/SG de-selection
SBH de-selection
SG selection, bit 1 (only for SG changeover)
SG selection, bit 0 (only for SG changeover)
Test stop selection (drive)
External stops</td>
<td>SBH/SG active
Status, pulses cancelled (drive)
STOP A/B, C, D, E active (only where required)
active SG stage, bits 0, 1 (only where required)</td>
</tr>
<tr>
<td></td>
<td>If gearbox stages are being used
Gear ratio selection, bit 2 (only if it is necessary to select the ratio)
Gear ratio selection, bit 1 (only if it is necessary to select the ratio)
Gear ratio selection, bit 0 (only if it is necessary to select the ratio)</td>
<td></td>
</tr>
<tr>
<td>Safe software limit switches (SE)</td>
<td>SE selection (only for SE changeover)
Test stop selection (drive)
SBH/SG de-selection
(at least for test during commissioning [start-up])
External stops</td>
<td>SBH/SG active
Axis safely referenced
Status, pulses cancelled (drive)
STOP A/B, C, D, E active (only where required)</td>
</tr>
<tr>
<td>Safe software cams (SN)</td>
<td>Test stop selection (drive)
SBH/SG de-selection
(at least for test during commissioning [start-up])
External stops</td>
<td>SBH/SG active
STOP A/B, C, D, E active (only where required)
Axial reference
N1 –, N2 –, N3 –, N4 – (only where required)
N1+, N2+, N3+, N4+ (only where required)
Status, pulses cancelled (drive)</td>
</tr>
</tbody>
</table>
Different signal run times in the channels

The signal timing in the two monitoring channels varies (the PLC cycle time takes up most of the available time in the drive monitoring channel). To prevent the crosswise data comparison function from being immediately activated after a signal change, a tolerance time is defined using the following machine data.

for 840D sl:
MD 36950: $MA_SAFE_MODE_SWITCH_TIME

for SINAMICS S120:
p9550: SI motion, SGE changeover, tolerance time

This data specifies the time period for which different signal states may be tolerated after the SGEs have been changed-over before an error message is output.

Note

System-related minimum tolerance time
2 x PLC cycle time (maximum cycle) + 1 x IPO cycle time

7.1.2 Forced checking procedure of SPL signals

Fundamentals

Safety-related input/output signals including the connecting cables to the I/O (peripherals) and the sensors and actuators connected to them must always be subject to a forced-checking procedure (see Section 5.3 “Forced checking procedure”).

The scope of the forced checking procedure should be implemented corresponding to the subsequent conditions.

This means that the selection of a suitable forced checking procedure concept depends on the specific application and the specific sensor and/or actuator; this decision must be made by the user. In this scope, the user must configure the forced checking procedure.
SPL signals

The forced checking procedure of SPL signals is a part of the SPL functionality (see Section 7.3 “Safe programmable logic (SPL)”). Once the external safety circuit has been wired, a two-channel SPL has been created and the relevant safety functions configured and checked with an acceptance test, the long-term reliability of this function, verified using an acceptance test, can be ensured:

- **External** inputs/outputs

 The external inputs/outputs of the SPL (A_INSE or A_OUTSE) must be subject to a forced checking procedure to ensure that faults do not accumulate over a period of time which would mean that both monitoring channels could fail.

- **Internal** inputs/outputs

 Internal inputs/outputs (A_INSI, A_OUTSI), markers ($A_MARKERSI$) etc. ($A_TIMERSI$) do not have to be subject to a forced checking procedure. It will always be possible to detect an error at these locations due to the differing two-channel responses of the external inputs/outputs or the NCK/drive monitoring channels; crosswise data comparison is carried-out at both ends of the response chain to detect any errors.

Test signals

“3-terminal concept” (see Subsection 7.1.3 “Connecting sensors – actuators using the 3-terminal concept”):

- If an input signal (A_INSE) is, for example, evaluated through two channels, the associated test output signal can be implemented using one channel. It is extremely important that the input signal can be forced/changed and checked in both channels.

- In the same way, the assigned test input signal for two-channel output signals (A_OUTSE) can be implemented in one channel if it is connected according to the following rule:

 The test input signal may only return an “OK” status (“1” signal level) if both output signals function (i.e. both monitoring channels have output a “0”). A simultaneous test in both channels allows the correct functioning in both channels to be checked using one feedback signal.
Trigger/test

The timer or event controlled triggering of the forced checking procedure is activated in one channel by the PLC.

If errors are detected, the PLC user program should respond by initiating an external “STOP D/E” and switching the external SGAs into a safe state.

Notes to avoid errors

1. A “2-terminal concept” in which a **single-channel net (useful) signal** is to be subject to a forced checking procedure using a **single-channel test signal** is **not permitted**. In this case, the two-channel SPL structure would be worthless and crosswise data comparison would have no effect.

 The following are permitted:
 - A “full 4-terminal concept for sensors” (two-channel test signal for a two-channel useful [net] signal),
 - the “3-terminal concept for sensors/actuators” recommended above,
 - a “2-terminal concept for sensors without test signals”, if the two-channel net (useful) signal to be tested automatically changes its level dynamically as a result of the process – e.g. for the input signals of a protective door,
 - a “2-terminal concept for sensors without test signals”, if the sensor is a safety-relevant component, e.g. light curtains,
 - a “2-terminal concept for actuators without test signals”, if the actuator is a safety-relevant component, e.g. safety valves,
 - a “2-terminal concept for actuators without test signals” if the feedback signal can be checked using other useful signals - e.g. for a valve that indirectly switches a BERO via the process and this is available for evaluation,
 - a “2-terminal concept for actuators without test signals” if the function of the mechanical system can be checked using other useful signals – e.g. for a brake that is checked using a separate brake test.

2. The signals **external STOPs** are processed internally in a special way:

 - In order to increase the level of security that a requested “external STOP” actually takes effect, the STOPs are internally exchanged between the two channels. Failure of the stop control function in one channel does not cause an error for these signals (in contrast to the mode changeover signals, e.g. “SG/SBH active”) in the crosswise data comparison. While other signals can be subject to a forced checking procedure in parallel and in both channels (and should be – in order to avoid errors being triggered by the crosswise data comparison), the “external STOPs” must be subject to a forced checking procedure **one after the other** in both channels.
7.1.3 Connecting sensors – actuators using the 3-terminal concept

Basic principle for safety-related signal processing

With the 3-terminal concept, three terminals (signals) are required to connect a sensor or actuator. Faults/errors in the sensors and actuators can be detected in conjunction with the SPL-crosswise data comparison and forced checking procedure or the forced checking as a result of the process itself. The connecting cables are generally monitored autonomously by the fail-safe I/O.

The following applies to the safety-relevant sensor connection:
2 safety-relevant inputs + 1 standard test output.

The following applies to the safety-relevant actuator connection:
2 safety-relevant outputs + 1 standard test input.

Example of an actuator connection

2 outputs (to control through 2 channels via SGA) and 1 standard test input (for the forced checking procedure) are required to connect an actuator in a safety-relevant fashion. The test input is the feedback signal from the load circuit and is fed from the power supply voltage of a standard input module. The user should derive this as directly as possible from the process quantity.

Actuator control, P/M switching:

The actuator is directly controlled using a plus potential (P-switching) and minus potential (M-switching). If the actuator is not a qualified component (safety component or component with fault exclusion), then in the case that the actuator fails, the user must apply additional cascaded measures in order to bring the process into a safe condition.
Example:

The process quantity, e.g. hydraulic pressure, is switched using a standard valve that is controlled in a safety-relevant fashion. A pressure sensor signals the status of the process quantity. If the valve can no longer switch due to a fault condition, then using a safely controlled standard contactor, the motor that is generating the pressure, is shutdown. The advantage of this particular version is that components can be used that are already available as standard. As to whether this solution can be used, must be confirmed as a result of the risk assessment (see Fig. 7-4).

![Diagram of cascaded shutdown using fail-safe outputs](image)

In other cases a second actuator must be connected in series in the load circuit (see Fig. 7-5).

In conjunction with the safety-related control of a brake, no feedback signal is available. The brake test will identify as to whether the actuator is correctly functioning from a mechanical perspective.
Example of connecting a sensor

2 safety-relevant inputs (to read-in through 2 channels via SGE) and 1 standard test output (for the forced checking procedure) are required to connect a sensor in a fail-safe fashion. The test output is fed from the power supply voltage of the safety input module. For sensors with a self-test routine, the test output on the input module is not required. For the 3-terminal connection concept we recommend that sensors with non-equivalence contacts are used (NC contact/NO contact). If a P or M short-circuit or broken cable at both signal cables, then a signal state is obtained that is not logically permissible. This means, that a cross-circuit fault can be detected by the non-equivalence concept without having to carry-out any test.

Note
It is not necessary to provide cross-circuit fault detection in the input module.
7.1 Safety-relevant input/output signals

7.1.4 Sensor connection using the 4-terminal concept

For the 4-terminal concept, four terminals are required at the fail-safe input module to connect a sensor that utilizes a contact (e.g. Emergency Stop pushbutton). Faults/errors in the sensors and actuators can be detected in conjunction with the SPL-crosswise data comparison and forced checking procedure or the forced checking as a result of the process itself. The connecting cables are generally monitored autonomously by the fail-safe input module.

The following applies to the safety-relevant sensor connection:
2 safety inputs + 2 standard test outputs

Example

2 inputs (to read-in the 2-channel sensor signals via SGE) and 2 standard test outputs (for the forced checking procedure) are required for the fail-safe connection of a sensor. The test outputs are supplied from the two power supply voltages (VS1, VS2) of the safety input module. For the connection concept with 4 terminals, both equivalence (NC contact/NC contact, NO contact/NO contact) as well as non-equivalence (NC contact/NO contact) contact versions are possible.
7.1 Safety-relevant input/output signals

Note

Cross-circuit fault detection in the input module is not required. Measures against cross-circuit faults are required only for equivalence contacts (NC contact/NC contact, NO contact/NO contact) if the cable has been routed so that it is very exposed, e.g. for cables connecting handheld terminals. This can be mechanically implemented in the cable, e.g. using the appropriate shielding.

Fig. 7-7 Sensor connection using the 4-terminal concept
7.1.5 Multiple distribution and multiple interlocking

Interlocking functions between the SGE/SGA are implemented in the NCK channel in the NCK-SPL. However, in order to relieve the NCK-SPL, it is also possible to pre-process signals between the NCK-SPL and NCK monitoring channel using the “multiple distribution” and “multiple interlocking” functions.

Note

The multiple distribution/interlocking that can be parameterized in the NCK machine data must be programmed by the user on the PLC side.

Processing the NCK-SGEs for 840D sl (multiple distribution)

Axis-specific/spindle-specific machine data is used to define which internal SPL output is to be used for which function and which axis/spindle. Under the condition that certain axes/spindles belong to the same safety group, it is possible to implement multiple distribution (1 NCK-SPL output is assigned, for example, to 3 axes with the same function). In addition, when an internal NCK-SPL output is selected via MD, it is also possible to define whether the inverted signal is also to be processed.

![Fig. 7-8 Multiple distribution for NCK—SGE](image-url)
Example

It must be possible to change over between the “safe software limit switches” 1 or 2 for axes 1, 2 and 3 as a group using an internal NCK-SPL output (OUTSI x). The machine data must be parameterized as follows:

Axis 1: MD 36973: $MA_SAFE_POS_SELECT_INPUT = OUTSI x
Axis 2: MD 36973: $MA_SAFE_POS_SELECT_INPUT = OUTSI x
Axis 3: MD 36973: $MA_SAFE_POS_SELECT_INPUT = OUTSI x

Processing NCK-SGAs for 840D sl (multiple assignment)

Axis-specific/spindle-specific machine data is used to define which SGA from which axis/spindle must be assigned to which NCK-SPL input. It is possible to implement a multiple assignment (SGAs from several axes are assigned to 1 input) provided that certain axes/spindles belong to the same safety group. The SGAs are then ANDed and the result output at the NCK-SPL input. In addition, when an NCK output is selected via an MD, it is also possible to define whether the signal is to be output in an inverted form before it is ANDed.

Fig. 7-9 Multiple assignment for NCK-SGAs
Example

Axes 1, 2 and 3 belong to one safety area. For these axes, the message “axis safely referenced” should be output at one NCK-SPL input (INSI) (this means that the message is output at the input if the message (signal) is present for all 3 axes). The machine data must be parameterized as follows:

Axis 1: MD 36987: $MA_SAFE_REFP_STATUS_OUTPUT = INSI x
Axis 2: MD 36987: $MA_SAFE_REFP_STATUS_OUTPUT = INSI x
Axis 3: MD 36987: $MA_SAFE_REFP_STATUS_OUTPUT = INSI x
7.2 Connecting I/O via PROFIsafe

7.2.1 Function description

The fail-safe DP master (F master) integrated in the SINUMERIK 840D sl allows, in conjunction with fail-safe DP modules (F modules), fail-safe communications along PROFINET DP specified in accordance with the PROFIsafe profile (PROFI- safe communication).

This means that the safety-relevant input/output signals of the process (machine) are coupled to the Safety Integrated function “safe programmable logic” (SPL) in the same way for both the PLC and NCK-SPL via PROFINET-DP.

PROFIBUS DP

PROFIBUS DP is an international, open fieldbus standard specified in the European fieldbus Standard EN 50170 Part 2. It is optimized for fast data transfer at the field level (time critical).

In the case of the components that communicate via PROFIBUS DP, a distinction is made between master and slave components.

1. Master (active bus device)
 Components operating on the bus as master determine the data exchange on the bus and are therefore also designated as active bus devices.

 There are two classes of master:
 - DP master, Class 1 (DPMC1):
 Central master devices that exchange information with the slaves in fixed message (telegram) cycles.
 Examples: S7-300 CPU; CPU 317-2 DP etc.
7.2 Connecting I/O via PROFIsafe

- DP master, class 2 (DPMC2):
 Devices to configure, commission and for operator control and monitoring during bus operation.
 Examples: Programming units, operator control and visualization devices

2. Slaves (passive devices)
 These devices may only receive and acknowledge messages, and on request of the master transmit messages to these devices.
 Examples: Drives, I/O modules etc.

PROFIsafe

For PROFIsafe, it involves a PROFIBUS profile for fail-safe data transfer between fail-safe components (F master and F slave) along PROFIBUS DP.

The PROFIsafe profile is characterized by the fact that the safety-relevant functions are implemented in the safe terminal nodes, i.e. the F/CPUs, the distributed slaves and the actuators/sensors/field devices using the standard PROFIBUS functions.

The useful (net) data of the safety function plus the safety measures are sent in a standard data telegram. This does not require any additional hardware components, since the protocol chips, drivers, repeaters, cables can still be used as they are. This means that both standard components and F components can be used on a PROFIBUS system.
7.2.2 System structure

![System structure diagram](image)

Just like Safety Integrated, the PROFIsafe system structure also has a 2-channel diverse system design based on the PLC and NCK-PROFIsafe layer.
PROFIsafe communication

The principle of PROFIsafe communications between SINUMERIK 840D and the F modules on the PROFIBUS DP is explained in detail below. This is based on the transfer of the SPL output data $A_OUTSE/$A_OUTSEP to the F-DO modules:

The PROFIsafe layer creates a PROFIsafe telegram (F telegram) in each PROFIsafe cycle with the ANDed SPL output data as F useful (net) data

\[
\text{F useful (net) data} = (\text{OUTSEP AND } \text{A_OUTSE})
\]

and the backup data (CRC and the consecutive number) and transfers it to the PROFIBUS layer via the DP data interface.

The PROFIBUS layer transfers a DP telegram with the PROFIsafe telegram created by the F layer in each PROFIBUS cycle as DP useful data to the DP slaves. This is independent of the PROFIsafe cycle.

Configuring/parameterizing

The configuration and parameterization needed to connect the F modules to the external NCK/PLC-SPL interfaces entails the following steps:

1. Generating the configuration using SIMATIC STEP7.
2. Performing a standard SINUMERIK 840D sl commissioning (minimum requirement).
3. Loading the configuration and the PLC basic and user program modules into the SINUMERIK 840D sl PLC.
4. Parameterizing the PROFIsafe-relevant SINUMERIK 840D sl machine data. See Subsection 7.2.3 "Parameterizing the F master (NCK)".

7.2.3 Parameterizing the F master (NCK)

The F master is parameterized in the machine data of the NCK and comprises the following sub-areas:

- PROFIsafe communication
 - PROFIsafe address of the F master
 - PROFIsafe clock cycle

 See Subsection 7.2.4 "Parameterizing the PROFIsafe communication (NCK)".

- SPL-SGE/SGA interface
 - PROFIsafe address of the F module
 - F net data filter
 - SGE/SGA assignment

SPL-SGE interface See Subsection 7.2.5 “Parameterizing the SPL-SGE interface (NCK)".
Connecting Sensors/Actuators

7.2 Connecting I/O via PROFIsafe

SPL–SGA interface: See Subsection 7.2.6 “Parameterizing the SPL-SGA interface (NCK)”.

7.2.4 Parameterizing the PROFIsafe communication (NCK)

F master address

In order to define a unique and clear communication relationship between F slave and F master, in addition to the target address (PROFIsafe address of the F slave), the source address (PROFIsafe address of the F master) must be defined. The PROFIsafe address of the F master is entered into the following machine data:

- MD10385: $MN_PROFISAFE_MASTER_ADDRESS
 (PROFIsafe address of the F master)
 Input format: 0s 00 aaaa
 - s: Bus segment
 Range of values: 5 = DP connection on the PLC side
 - aaaa: Hexadecimal PROFIsafe address
 Range of values: 1...FA7DH

Note

The PROFIsafe address of the F master is provided under:

- HW Config > Properties dialog box of the F module > F parameter:
 F_source_address

If the value entered does not match the value displayed in the F modules, an alarm is issued when the control boots:

- Interrupt: 27220 “PROFIsafe: Number of NCK F modules (%1) < > Number of S7 F modules (%2)”

In this case, alarm parameter %2 contains the value 0.

PROFIsafe clock cycle

The PROFIsafe clock cycle defines the time grid in which new F telegrams are generated by the F master for transfer to the F modules. The PROFIsafe clock cycle is derived as standard from the interpolation cycle in the ratio 1:1.

As part of the PROFIsafe communications, a cyclic interrupt of the PLC user program (OB1) is made. This is realized in the PROFIsafe clock cycle via OB40.
The OB40 run time increases by the following time for each F module.

- CPU 317-2 DP: approx. 0.25 ms

In order to reduce the possible resulting computational load, machine data:

- MD 10098: $MN_PROFISAFE_IPO_TIME_RATIO
 (factor, PROFIsafe communications clock cycle)

 can be used to modify the ratio between the PROFIsafe and interpolation clock cycle.

In order to achieve a sufficiently fast response time regarding PROFIsafe-communications, the PROFIsafe clock cycle may not be parameterized greater than 25 ms. The selected PROFIsafe clock cycle is displayed in the machine data:

- MD 10099: $MN_INFO_PROFISAFE_CYCLE_TIME
 (PROFIsafe, communications clock cycle)

 For a PROFIsafe clock cycle of greater than 25 ms, when the control boots the next time, an alarm is displayed:

 - Interrupt: 27200 “PROFIsafe cycle time %1 [ms] is too long”

PROFIsafe clock cycle and DP cycle time

The PROFIsafe clock cycle should be parameterized longer than the DP clock cycle time displayed by STEP 7: HW Config. Otherwise, the load (in time) on the PLC user program is increased as a result of unnecessary OB40 interrupts.

The PROFIsafe clock cycle should be parameterized so that the following applies: 12 ms < PROFIsafe clock cycle < 25 ms

PROFIsafe clock cycle overruns

Even if the parameterized software operates error-free in normal operation, run time fluctuations in the PLC operating system (e.g. processing diagnostic alarms) can mean that the processing of the OB40 interrupt was not able to be completed before the start of the next PROFIsafe clock cycle.

In this particular case, the NCK attempts, up to a limit of 50 ms after the last correctly processed PROFIsafe clock cycle, to initiate an OB40 interrupt. The repeated attempts to initiate the OB40 interrupt are no longer executed in the PROFIsafe clock cycle but in the IPO clock cycle.

After this 50 ms limit value is exceeded,

- Interrupt: 27253 "PROFIsafe communications error F master components %1, error %2"

 is displayed and the configured Stop response (Stop D or E) is output to the safety axes.
Further, an attempt is still made to initiate the OB40 interrupt and to maintain PRO-
FIsafe communications.

The time up to initiating the next OB40 interrupt is displayed in the following NCK
machine data:

- MD 10099: $MN_INFO_PROFISAFE_CYCLE_TIME
 (PROFIsafe, communications clock cycle)

If the PROFIsafe clock cycle is continuously exceeded and just not sporadically,
then the following alarm is displayed:

- Interrupt: 27256 “PROFIsafe actual cycle time %1 [ms] > parameterized cycle
time”

7.2.5 Parameterizing the SPL-SGE interface

A bitwise assignment can be made using machine data to better link the SPL inter-
faces to the net (useful) data of the F modules.

Note

The examples, now listed, to parameterize the SPL-SGE interface are based on
the following specifications:

F-DI module

- F address: 114 = 90H
- F net data length: 8 bytes

Machine data

- MD10386 $MN_PROFISAFE_IN_ADDRESS[5] = 05 00 0090
- MD13300 $MN_PROFISAFE_IN_FILTER[5] = 000F 000F
- MD10388 $MN_PROFISAFE_IN_ASSIGN[5] = 008 001

Assignment: F module to the F master

Important

Currently, only sub-slot [0] may be used.

F net data of an F-DI module is sub-divided into units each 32 bits. Each of these
32 bit units are known as sub-slots. This sub-division, for assigning the F-DI mo-
dule to the F master is expressed in the sub-slot address.
The machine data is used to assign the F-DI module to the F master:

- **MD 10386: $MN_PROFISAFE_IN_ADDRESS[Index]**
 (PROFIsafe address of the F-DI module)

 Input format: 0s 0x aaaa

 - **s**: Bus segment
 Range of values: 5 = DP connection on the PLC side

 - **x**: Sub-slot address
 Range of values: 0..1
 x = 0 addresses the F net data signals 1..32
 x = 1 addresses the F net data signals 33..64

 - **aaaa**: Hexadecimal PROFIsafe address of the F module
 Range of values: 1...FFFFH

Note

The PROFIsafe address of an F module is provided in STEP7 HW Config under:
Properties dialog box of the F module > F parameters: F_target_address

The PROFIsafe address of the F module is displayed in the decimal format in HW Config but must be entered into the machine data in the hexadecimal format.

Example

Net data of the 1st sub-slot is used to supply the SPL-SGE of the F-DI module with the PROFIsafe address: 90H.

![Fig. 7-12 F-DI addressing with the sub-slot](image)

As a result of the possibility of flexibly assigning the F net data of an F-DI module to the SPL-SGE by combining the machine data now described (...IN_FILTER[n] and ...IN_ASSIGN[n]), it is possible and also makes sense to use the same PROFIsafe and sub-slot address a multiple number of times within the machine data:

- **$MN_PROFISAFE_IN_ADDRESS[0...max. Index]**
 possible and/or practical
Note
All machine data to connect an F-DI module to the SPL-SGE are associated with one another through the common index of the machine data:

- $MN_PROFISAFE_IN_ADDRESS[\text{Index}]$
- $MN_PROFISAFE_IN_FILTER[\text{Index}]$
- $MN_PROFISAFE_IN_ASSIGN[\text{Index}]$

F net data filter
If not all of the F net data signals of the sub-slots of an F-DI module are required for further processing within the SPL, then the relevant F-net data signal signals can be selected using the F-net data filter. Only these are then transferred to the SPL-SGE.

The F net data filter is parameterized in the machine data:

- MD 13300: $MN_PROFISAFE_IN_FILTER[\text{Index}]$ (F net data filter IN)

Each F net data signal of the sub-slot is assigned to a filter bit. The filter bits of the F net data signals, that are to be transferred to SPL-SGE, should be set to 1. The filter bits of the F net data signals, that are not to be transferred, should be set to 0. The selected F net data signals are always transferred to the SPL-SGE as a consecutive bit field (i.e. a bit field without any gaps).

FFFF FFFFH is the default setting of the filter. This means that all F net data signals are transferred.

Example
8 F net data signals (bits 0...3 and bits 16...19) of the 1st sub-slot are filtered from the F net data of the F-DI module and transferred to the SPL-SGE.

- MD10386 $MN_PROFISAFE_IN_ADDRESS[5] = 05 00 0090
- MD13300 $MN_PROFISAFE_IN_FILTER[5] = 000F 000F
- MD10388 $MN_PROFISAFE_IN_ASSIGN[5] = 008 001

![Diagram](image-url)
SPL-SGE assignment

With this assignment, it is defined in which SPL-SGE (A_{INSE}/A_INSEP) the seamless (without gaps) F net data selected using the F net data filter are transferred.

The assignment is made using machine data:

- MD 10388: $MN_{PROFISAFE_IN_ASSIGN}[Index]$
 (input assignment: F net data signals to A_{INSE})

 Input format: 00 aaa bbb

 - aaa: Most significant SPL-SGE A_{INSE}/INSEP[aaa]
 - bbb: Least significant SPL-SGE A_{INSE}/INSEP[bbb]

Example

8 F net data signals of the 1st sub-slot filtered from the F net data of the F-DI module are transferred in the SPL-SGE from $A_{INSE}[1]$/INSEP[1]).

- MD10386 $MN_{PROFISAFE_IN_ADDRESS}[5] = 05 00 0090$
- MD13300 $MN_{PROFISAFE_IN_FILTER}[5] = 000F 000F$
- MD10388 $MN_{PROFISAFE_IN_ASSIGN}[5] = 008 001$

![Diagram showing the transfer of filtered F net data signals in SPL-SGE](image)

Fig. 7-14 Transfer: Filtered F net data signals in SPL-SGE
7.2.6 Parameterizing the SPL-SGA interface

Note
The following examples show the parameterization of the SPL-SGA interface based on the following specifications:

F-DO module
- F address: 256 = 100H
- F net data length: 6 bytes

Machine data
- MD10387 $MN_PROFISAFE_OUT_ADDRESS[3] = 05 01 0100
- MD13301 $MN_PROFISAFE_OUT_FILTER[3] = 0000 1031
- MD10389 $MN_PROFISAFE_OUT_ASSIGN[3] = 008 005

Assignment: F module to the F master
The F net data of an F-DO module are sub-divided into 32-bit units. Each of these 32 bit units are known as sub-slots. This sub-division, for assigning the F-DO module to the F master is expressed in the sub-slot address.

The machine data is used to assign the F-DO module to the F master:

- MD 10387: $MN_PROFISAFE_OUT_ADDRESS[Index] (PROFIsafe address of the F-DI module)
 - Input format: 0s 0x aaaa
 - s: Bus segment
 - Range of values: 5 = DP connection on the PLC side
 - x: Sub-slot address
 - Range of values: 0...1
 - x = 0 addresses the F net data signals 1...32
 - x = 1 addresses the F net data signals 33...64
 - aaaa: **Hexadecimal** PROFIsafe address of the F module
 - Range of values: 1...FFFFH

Note
The PROFIsafe address of an F module is provided in STEP7 HW Config under: Properties dialog box of the F module > F parameters: F_target_address

The PROFIsafe address of the F module is displayed in the decimal format in HW Config but must be entered into the machine data in the hexadecimal format.

Example
SPL-SGA are written – as F net data – into the 2nd sub-slot of the F-DO module with PROFIsafe address: 100H.
7.2 Connecting I/O via PROFIsafe

As a result of the possibility of flexibly assigning the F net data of an F-DO module to the SPL-SGA by combining the machine data now described (...OUT_FILTER[n] and ...OUT_ASSIGN[n]), it is possible and also makes sense to use the same PROFIsafe and sub-slot address a multiple number of times within the machine data:

- $MN_PROFISAFE_OUT_ADDRESS[0...max. Index]

possible and/or practical

Note

All machine data to connect an F-DO module to the SPL-SGA are associated with one another through the common index of the machine data:

- $MN_PROFISAFE_OUT_ADDRESS[Index]
- $MN_PROFISAFE_OUT_FILTER[Index]
- $MN_PROFISAFE_OUT_ASSIGN[Index]

F net data filter

The F net data filter allows the selected SPL-SGA - without any gaps - to distributed across any F net data signals within the sub-slot.

The F net data filter is parameterized in the machine data:

- MD 13301: $MN_PROFISAFE_OUT_FILTER[Index] (F net data filter OUT)

Every selected SPL-SGA is assigned a filter bit in an increasing sequence. The filter bits, which are used to transfer the SPL-SGA to the F net data signals, should be set to 1. The filter bits of the SPL-SGA that are not to be transferred, should be set to 0.

FFFF FFFFH is the default setting of the F net data filter; this means that all of the selected SPL-SGA, are transferred from F net data signal 1 onwards (bit 0) into the F net data of the F-DO module.

Example

4 SPL-SGA are transferred into the F net data of the 2nd sub-slot of the F-DO module corresponding to the set filter bits:

- MD10386 $MN_PROFISAFE_OUT_ADDRESS[3] = 05 01 0100
- MD13301 $MN_PROFISAFE_OUT_FILTER[3] = 0000 1031
7.2 Connecting I/O via PROFIsafe

- MD10389 $MN_PROFISAFE_OUT_ASSIGN[3] = 008 005

SPL-SGA assignment

The assignment defines which SPL-SGA ($A_OUTSE/$A_OUTSEP) are transferred in the F net data of the F-DO module. The SPL-SGA can only be specified as a field of output signals without any gaps (consecutive field of output signals).

The assignment is made using machine data:
- MD 10389: $MN_PROFISAFE_OUT_ASSIGN[Index],
 (Output assignment: SPL-SGA to F net data signals)
 - Input format: 00 aaa bbb
 - aaa: Most significant SPL-SGA $A_OUTSE/OUTSEP[aaa]
 - bbb: Least significant SPL-SGA $A_OUTSE/OUTSEP[bbb]

Example

From the SPL-SGA, 4 output signals $A_OUTSE/OUTSEP[5] to $A_OUTSE/OUTSEP[8] are selected for transfer in the F net data of the F-DO module:
- MD10386 $MN_PROFISAFE_OUT_ADDRESS[3] = 05 01 0100
- MD13301 $MN_PROFISAFE_OUT_FILTER[3] = 0000 1031
- MD10389 $MN_PROFISAFE_OUT_ASSIGN[3] = 008 005
7.2.7 Module type (NCK)

The F module type cannot be explicitly specified. The F master determines the type depending on the machine data in which a PROFIsafe address has been entered:

- $MN_PROFISAFE_IN_ADDRESS
- $MN_PROFISAFE_OUT_ADDRESS

Dependent on this, the F module is identified as either input, output or bidirectional I/O modules.

<table>
<thead>
<tr>
<th>..._IN_ADDRESS</th>
<th>..._OUT_ADDRESS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F address</td>
<td>–</td>
<td>input module</td>
</tr>
<tr>
<td>–</td>
<td>F address</td>
<td>output module</td>
</tr>
<tr>
<td>F address</td>
<td>F address</td>
<td>Input/output module</td>
</tr>
</tbody>
</table>

7.2.8 Parameterizing the F master (PLC)

In the PLC, the F master does not have to be explicitly parameterized regarding the connection of F modules.

The PLC is parameterized explicitly as follows:

- Parameterizing the NCK
- Generating and downloading the configuration

Data block DB18

Two bit arrays in data block DB 18 are used to display which INSEP/OUTSEP bytes are only assigned to F modules as a result of the parameterization in the NCK machine data:

- MD 10388: $MN_PROFISAFE_IN_ASSIGN
- MD 10389: $MN_PROFISAFE_OUT_ASSIGN
Data block DB18 (excerpt):

```plaintext
STRUCT
  :
  SPL_DATA:STRUCT
    INSEP: ARRAY[1 ... 64] OF BOOL;
    OUTSEP: ARRAY[1 ... 64] OF BOOL;
  :
  //External SPL input bytes(HW) with PROFIsafe slaves
  INSEP_PROFISAFE: ARRAY[1 ... 8] OF BOOL;
  //External SPL output bytes(HW) with PROFIsafe slaves
  OUTSEP_PROFISAFE: ARRAY[1 ... 8] OF BOOL;
  :
END_STRUCT;
```

7.2.9 Response times

The response times listed here refer exclusively to the internal processing of the signals by the F master. The means the following:

- **T(FDI -> DB18)** or **T(FDI -> SPL-INSE)**
 The transfer time from the input area of the F-DI module to the input interface of the PLC-SPL or NCK-SPL

- **T(DB18 -> FDO)** or **T(SPL-OUTSE -> FDO)**
 The transfer time from the output interface of the PLC-SPL or NCK-SPL to the output area of the F-DO module.

- **T(FDI -> FDO)**
 Sum of the transfer times from:
 - **T(FDI -> DB18)** or **T(FDI -> SPL-INSE)**
 - Processing time by the user-specific SPL program.
 - **T(DB18 -> FDO)** or **T(SPL-OUTSE -> FDO)**

The following applies for the subsequent tables of the PLC and NCK processing times:

- Values in *italics* can increase by up to 50 ms due to delays in the communication path between the NCK and PLC.
- PST = 50 ms (PST = PROFIsafe clock cycle) is the permanently implemented maximum time to detect error-free communications between the NCK and PLC. A STOP response (STOP D/E) is initiated if this time is exceeded.
- OB1 = 150 ms is the maximum time set as standard in the PLC-CPU to monitor the user level. The PLC goes into the STOP state if this time is exceeded.
- 0...m * IPO: This time component only becomes applicable if delays are incurred on the PLC side. In this case, in each subsequent IPO clock cycle, it is determined as to whether the PLC is ready to communicate again.
- OB40_INT is the maximum permissible time to initiate the interrupt on the NCK side up to execution of the PROFIsafe software and a ready signal to the NCK. The time is mainly determined by the run time (propagation time) of the F driver implementation on the PLC side and the PLC user program to be run-through in the OB40 context. These times typically lie in the vicinity of a few milliseconds.
- The specified maximum times are theoretical values; it is extremely improbable that they actually occur in practice.

Reason for this:
- It is improbable that the run time of the PLC-F driver is delayed – in the OB40 context – by the maximum time of 50 ms. The reason for this is that the interrupting organizational blocks (OB8x) only have such long run times in extremely few cases.
- For the theoretical value, it would be necessary that two consecutive runs of the PLC-PROFIsafe master driver in the OB40 context are delayed by the permitted maximum of 50 ms – this is extremely improbable.
- The maximum time of 150 ms for the user program is not reached in any of the applications relevant in practice.

PLC processing times

<table>
<thead>
<tr>
<th>Time: T(FDI→DB18)</th>
<th>Formula</th>
<th>2 * PST + 1 * OB1</th>
<th>Max. times</th>
<th>2 * 50 ms + 1 * 150 ms</th>
<th>250 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical times 1)</td>
<td>2 * 16 ms + 1 * 30 ms</td>
<td>62 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time: T(DB18→FDO)</th>
<th>Formula</th>
<th>2 * PST + 1 * OB1</th>
<th>Max. times</th>
<th>2 * 50 ms + 1 * 150 ms</th>
<th>250 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical times 1)</td>
<td>2 * 16 ms + 1 * 30 ms</td>
<td>62 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time: T(FDI→FDO)</th>
<th>Formula</th>
<th>4 * PST + 2 * OB1</th>
<th>Max. times</th>
<th>4 * 50 ms + 2 * 150 ms</th>
<th>500 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical times 1)</td>
<td>4 * 16 ms + 2 * 30 ms</td>
<td>124 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Typical times: PST = 16 ms; OB1 = 30 ms

NCK processing times: PST ≤ 2 * IPO

<table>
<thead>
<tr>
<th>Time: T(FDI→SPL-INSE)</th>
<th>Formula</th>
<th>2 * PST + 1 * IPO</th>
<th>Max. times</th>
<th>2 * 50 ms + 25 ms</th>
<th>125 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical times 1)</td>
<td>2 * 16 ms + 8 ms</td>
<td>40 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Time: T(SPL-OUTSE→FDO) | Formula | IPO + 0...m * IPO + OB40_INT | Max. times | 25 ms + 50 ms + 50 ms | 125 ms |
7.2 Connecting I/O via PROFINet

<table>
<thead>
<tr>
<th>Time: T(SPL-OUTSE→FDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical times 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time: T(FDI→FDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>Max. times</td>
</tr>
<tr>
<td>Typical times 1)</td>
</tr>
</tbody>
</table>

1) Typical times: PST = 16ms; IPO = 8ms; OB40_INT = 2ms

NCK processing times: PST > 2 * IPO

<table>
<thead>
<tr>
<th>Time: T(FDI→SPL-INSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>Max. times</td>
</tr>
<tr>
<td>Typical times 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time: T(SPL-OUTSE→FDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>Max. times</td>
</tr>
<tr>
<td>Typical times 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time: T(FDI→FDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
</tr>
<tr>
<td>Max. times</td>
</tr>
<tr>
<td>Typical times 1)</td>
</tr>
</tbody>
</table>

with:

PST: PROFINet safe clock cycle
PST = n * IPO; with n = 1, 2, 3, ...

1) Typical times: PST = 18 ms; IPO = 6 ms; OB40_INT = 2 ms
2) This time is valid for the case: IPO = 8 ms, n=3 => PST = 24 ms; (maximum times for values n > 2)
3) This time is valid for the case: PST = n * IPO = 25 ms
7.2.10 **Functional limitations**

When connecting via SPL I/O using one safety-relevant bus (PROFIsafe), several secondary conditions and constraints must be taken into consideration when configuring and programming:

- Faults/errors in the PROFIsafe input devices (e.g. input signals that differ from one another) cause the associated SPL input signals ($A_{INSE(P)}$) to be deleted (cleared). This initiates a STOP D/E.

- The external SPL input signals in the DB18 interface for the A_{INSEP} variables are transferred within the system. This means that programming is no longer necessary in the user program. Only one signal state for both SPL channels is transferred to the master from the PROFIsafe input peripherals.

- The external SPL output signals of the DB18 interface (A_{OUTSEP} variables) are transferred within the system to the relevant PROFIsafe output modules. A signal state is transferred to the output modules via PROFIsafe.

- It may be necessary to use single-channel signals (signals that are present only in the PLC or only in the NCK) to change over external SPL outputs (e.g. braking control). These single-channel signals must also be made available to the other program channel to align the logic and program synchronously. Direct communications between the NCK and PLC-SPL via DB18 is a good way to achieve this.

- In each PROFIsafe cycle, the PROFIsafe layer generates a PROFIsafe telegram with the logically AND’ed SPL output data as F net (useful) data.

F modules

As far as the F modules that can be operated with a SINUMERIK 840D sl, the following limitations apply:

- F modules with dynamic i parameters are not supported.

- The maximum possible F net data width for each F module is 64 bits.

- The value range for the F address of an F module is as follows: $1 – 65535_D$ or $1 – FFFF_H$

Axial SGE/SGA

I/O (F net data) of an F module cannot be connected to axial SGE/ SGA. They can only be connected in the context of the SPL that must be installed for the purpose.

PLC SPL SGE/SGA

The basic PLC program automatically connects the I/O (F net data) of an F module to the SPL interface in data block DB18.

It is not possible to connect them in a PLC user program.
7.3 Safe programmable logic (SPL)

7.3.1 Fundamentals

Function

These signals must be logically combined (interlocked) in a safety-relevant, freely programmable form in order to be able to flexibly process safety-relevant external process signals and safety-relevant internal input and output signals. The “Safe Programmable Logic” (SPL) handles this task as an integral system component.

Features:

- Logic operations implemented by the user are cyclically processed.
- Instructions are effective in all operating modes.
- The PLC program immediately starts to execute the instructions after the control has booted.
- The SGEs/SGAs must be supplied by the machinery construction OEM – both in the drive monitoring channel as well as in the NCK monitoring channel.
- The NCK-SPL is written as ASUB using the CNC function synchronous actions. The PLC-SPL is written as PLC user program.

In order to check that the two SPLs (PLC and NCK) are functioning, the system program arranges cyclic data comparison between the PLC and NCK.

Fig. 7-18 Safe programmable logic
Crosswise data comparison

Data is cyclically exchanged between the PLC and NCK to check the correct functioning of the two SPLs (PLC and NCK). Just the same as the comparison between the NCK and the drive, it cross-checks the signals that arrive at the SPL, the safety-related signals generated by the SPL as well as internal markers.

The discrepancy time for the crosswise data comparison of SPL variables is permanently set to 1 s (or 10 s A_CMDSI).

The following signals are included in the crosswise data comparison between the NCK and the PLC:

<table>
<thead>
<tr>
<th>Table 7-3</th>
<th>Signals for crosswise data comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC</td>
<td>NCK</td>
</tr>
<tr>
<td>$A_INSEP[1 ... 64]$</td>
<td>SPL_DATA.INSEP[1...64]</td>
</tr>
<tr>
<td>$A_OUTSEP[1 ... 64]$</td>
<td>SPL_DATA.OUTSEP[1...64]</td>
</tr>
<tr>
<td>$A_INSI[1 ... 64]$</td>
<td>SPL_DATA.INSI[1...64]</td>
</tr>
<tr>
<td>$A_OUTSI[1 ... 64]$</td>
<td>SPL_DATA.OUTSI[1...64]</td>
</tr>
<tr>
<td>$A_MARKERSI[1 ... 64]$</td>
<td>SPL_DATA.MARKERSI[1...64]</td>
</tr>
<tr>
<td>$MN_PREVENT_SYNACT_LOCK[0,1]$</td>
<td>DB18.DBX36.0</td>
</tr>
<tr>
<td>$MN_SPL_STOP_MODE$</td>
<td>DB18.DBX36.1</td>
</tr>
</tbody>
</table>

If an error is detected on one of the monitored signals, this is indicated using Alarm 27090 and the configured stop response (STOP D/E) is initiated.

If a difference is detected, Alarm 27090 “Error for crosswise data comparison NCK-PLC” is output. In addition, a STOP D/E is initiated if the SPL commissioning phase is defined as having been completed.

The criterion “commissioning phase completed” is derived from the NCK-MD $MN_PREVENT_SYNACT_LOCK[0,1]$ in the NCK. If one of the two field entries is not equal to 0, “commissioning phase completed” is set internally by the crosswise data comparison. On the PLC side, this requirement is entered using DB18.DBX36.0. If this bit is set to “1”, then the commissioning phase is considered to have been completed. An SPL crosswise data comparison error only results in a stop response after the SPL commissioning phase has been completed.

The stop response for an SPL crosswise data comparison error is set in the NCK using NCK-MD $MN_SPL_STOP_MODE$. If the MD value is 3, for an SPL crosswise data comparison error, a STOP D is initiated – for an MD value of 4, a STOP E is initiated. On the PLC side, this stop response is entered using DB18.DBX36.1. If this bit is set to “1”, for an SPL crosswise data comparison error, a STOP E is initiated – otherwise a STOP D.

Any changes to data on the NCK and PLC side do not take effect until after power on.
Clearing the external SPL outputs for SPL system errors

If communications between the NCK and PLC with reference to the SPL crosswise data comparison, are interrupted, then all external SPL output signals ($A_OUTSE/$A_OUTSEP) are deleted with a delay of 5 s.

This state occurs if no data exchange or crosswise data comparison occurs between the NCK and PLC for one second. This is due to the fact that

- the one second limit of the user cycle limit in the PLC (OB1 cycle) was exceeded.
- a system error has occurred. The NCK or PLC system software no longer runs due to a system error – therefore interrupting communications.

Behavior of the NCK

The specified timer of 5 s is started if Alarm 27092 “Communication interrupted for crosswise data comparison NCK-SPL, error detected by %1” is initiated. This is independent of which component (NCK or PLC) interrupted the alarm.

The system variable $A_STATSID, bit 29 = 1 is used to indicate to the SPL user that this timer has been started. This means that he has a possibility of initiating plant/system-specific actions before the system deletes (clears) the output.

After this time has expired, the system deletes the external SPL outputs. The status variable $A_STATSID, bit 29 remains set. When reading-back the external outputs in the NCK-SPL via the system variable $A_OUTSE, “0” is read corresponding to the actual output status.

Behavior of the PLC

If, on the PLC side, it is detected that the communication timeout has been exceeded, then a timer is started with 5 s.

After this time has expired, the PLC goes into Stop (by calling an SFC46). This state can only be exited using a power on.

After the 5 s timer has expired, the PLC outputs its own message for diagnostic purposes. At the same time, an entry with the same significance is located in the diagnostics buffer.

Using the status signal DB18.DBX119.5, the SPL programmer and the NCK is provided with the information that the timer was started. This means that he has the possibility of initiating system-specific actions before the PLC goes into the stop condition.

Note

In order to achieve the shortest possible response time, the system variable $A_STATSID, bit 29 and the status signal DB18.DBX119.5 must be evaluated in the SPL in order to bring, as far as possible, the SPL-SGAs into a safe state (deleted/cleared SPL-SGAs).
Limitations and constraints

The user must take into consideration the following points regarding the functioning of the crosswise data comparison:

- Both channels (NCK/PLC) must execute the same logic.
- Do not implement any response sequences or sequence controllers that are externally controlled using short input pulses. This is because short pulses of this type may only be sent and processed in one channel because of sampling effects.
- Unused inputs/outputs/markers of the SPL must be assigned the default value = 0; single-channel use of individual bits for non-safety relevant purposes is not permissible.
- External STOPs must be enabled (they are also used internally) and can be extracted from the SPL if required. The “external STOP A” must be parameterized at the SPL interface for all safety axes using MD $MA_SAFE_EXT_STOP_INPUT[0]. If this condition is not fulfilled, then Alarm 27033 is output.
- Crosswise data comparison checks whether the “commissioning phase” has been completed. If errors are detected in the crosswise data comparison, a “STOP D/E” is triggered on the NCK and drive depending on this criterion. If the commissioning phase has not been completed after booting, Alarm 27095 “SPL protection not activated” is repeatedly displayed (every 3 hours).

Fig. 7-19 Communications between the NCK-drive-PLC components
7.3 Safe programmable logic (SPL)

- In the case of a crosswise data comparison error, no system response is initiated regarding the SGE/SGA processed by the SPL. Users must implement this themselves. The only exception is when a system error is detected as was described above.

7.3.2 NCK-SPL program

Description

The NCK-SPL program is written as an NC program (ASUB) with synchronized actions.

Reference: /FBSY/ Description of Functions, Synchronized Actions

Features

The NCK-SPL program has the following features:

- The program can be started manually with NC START during commissioning.
- The following applies once the program has been started:
 - The synchronous actions assigned an ID No. are cyclically executed in the IPO clock cycles (modal).
 - The synchronous actions assigned the keyword IDS remain active even after the operating mode has been changed or NC-STOP/NC RESET.
 - In order to check the program, the status of the active synchronous actions (operating area "Machine", soft key "Synchronous actions") can be displayed.
 - The program can be modified during commissioning. It must then be re-started.
 - The NCK-SPL program is saved in the NCK path_N_CST_DIR as sub-routine "_N_SAFE_SPF" (HMI view: standard cycles/SAFE.SPF). Other sub-routine names are not permitted.
- The images of the PLC safety variables ($A_INSIP(D), $A_OUTSIP(D), $A_INSEP(D), $A_OUTSEP(D), $A_MARKERSIP(D)) are required for the simulation (on the NC side) of an SPL. These can be used to develop the SPL step-by-step. They can only be read by the NCK.
Protective mechanisms

- The synchronous action IDs used for the NCK-SPL are protected from being influenced by the PLC or other programs using MD $MN_PREVENT_SYNACT_LOCK. It is then no longer possible to change these synchronous actions (CANCEL, LOCK have no effect) once _N_SAFE_SPF has been started.

- System variables $A_OUTSI, $A_OUTSID, $A_OUTSE, $A_OUTSED, $A_MARKERSI, $A_TIMERSI and $A_CMDSI are protected from being written to by programs other than the NCK-SPL (/N_CST_DIR/N_SAFE_SPF). If an error occurs, Alarm 17070 “Channel %1 block %2 data item write-protected” is output.

- A reference checksum is calculated when booting by the NCK-SPL (/N_CST_DIR/N_SAFE_SPF) - it is entered into the program as a comment:
 Example: ; SAFE_CHECKSUM = 000476bbH
 The checksum is then cyclically re-calculated and compared with the reference checksum. If a deviation is detected, Alarm 27093 “Checksum error NCK-SPL, %1, %2, %3” is output.

- The system variables $A_INSIP(D), $A_OUTSIP(D), $A_INSEP(D), $A_OUTSEP(D) and $A_MARKERSIP(D) are only accessible during the commissioning phase.

If NCK-SPL execution is interrupted for any reason or the SI system variables are changed by another program, then this is detected by the cyclic crosswise data comparison with the PLC.

<table>
<thead>
<tr>
<th>Event</th>
<th>MD 11500 $MN_PREVENT_SYNACT_LOCK[m,n] equal to 0</th>
<th>MD 11500 $MN_PREVENT_SYNACT_LOCK[m,n] not equal to 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosswise data comparison NCK-PLC identifies an error</td>
<td>Alarm 27090 is triggered</td>
<td>Alarm 27090 is triggered and in addition, STOP D/E is triggered</td>
</tr>
<tr>
<td>SPL program file is to be changed (written, deleted, re-named, edited)</td>
<td>No response</td>
<td>Alarm 27093 is triggered</td>
</tr>
</tbody>
</table>
7.3 Safe programmable logic (SPL)

Caution
The protective mechanisms that prevent changes to the NCK-SPL file and the NCK-SPL instructions (statements) are only effective if MD $MN_PREVENT_SYNACT_LOCK[0,1] is not equal to 0.

The machine construction OEM must ensure that the protective mechanisms are activated no later than after the completion of the acceptance test and the values, set in MD $MN_PREVENT_SYNACT_LOCK[0,1] are documented in the acceptance report.

After commissioning has been completed, the access rights to the SAFE.SPF file must be set to the correct access level for writing/reading/deleting access operations (manufacturer or service).

As long as the protective mechanisms for the NCK-SPL have not been activated (MN_PREVENT_SYNACT_LOCK[0.1] equal to 0), Alarm 27095 is displayed when the crosswise data comparison between the NCK and the PLC starts. This alarm can be acknowledged with the NCK key so that the SPL can be commissioned.

Note
The SPL program must be addressed using upper case letters. Alarm 27097 is output if this is not observed.

7.3.3 Starting the SPL

The NCK-SPL is active after the control has booted, if at least

1. The functions SBH/SG and “external STOPs” have been enabled for at least one axis using $MA_/$MD_SAFE_FUNCTION_ENABLE,

2. One of the NCK-SPL interfaces is used.

 This means that an axial SGE/SGA was parameterized at one of the SPL interfaces using its assignment MD.

In this case, the “external STOP A” must be parameterized at the SPL interface for all of the axes that use safety integrated.

In addition, the following machine data must be set for an error-free ASUB start after the NCK and the PLC have booted:

3. $MN_ASUP_START_MASK=7:
 ASUB can be started in all operating states of the NC (RESET/JOG/not all axes referenced/read-in active).

4. $MN_ASUP_START_PRIO_LEVEL=1:
 Interrupt priority, from which MD $MN_ASUP_START_MASK becomes active.
Other actions to be executed:

5. A PLC-SPL has to be created and integrated into the PLC user program.

6. An NCK-SPL has to be created and loaded into the directory /_N_CST_DIR into the file /_N_SAFE_SPF (= MMC view standard cycles/SAFE.SPФ).

Note

It is not permissible that any alarms are present for an ASUB start.

SPL start without axial safety enable

When the machine is being commissioned, the SPL must be started without enabling axis-specific safety-relevant functions.

It is therefore possible to handle general machine functions (hydraulics, Emergency Stop) before the axis is commissioned.

This is only possible in the commissioning state of the SPL ($MN_PREVENT_SYNACT_LOCK[0,1]==0 and DB18.DBX36.0==0). This state is displayed when the SPL starts using Alarm 27095 "%1 SPL protection not activated".

If an attempt is made to start the SPL in the protective state (after commissioning has been completed) without the axial safety function having been activated, then Alarm 27096 is output. The SPL is started if the SPL crosswise data comparison is not activated.

7.3.4 Starting the NCK-SPL using the PROG_EVENT mechanism

The NCK-SPL can also be started using the PROG_EVENT mechanism.

The PROG_EVENT.SPF cycle (saved under manufacturer cycles ..\DH\CMA.DIR) is started when a specific event occurs (event-controlled program call).

Using the machine data MD 20108 $MC_PROG_EVENT_MASK, for this PROG_EVENT mechanism, certain events are enabled on a specific channel-for-channel basis which then start the cycle.

The following events can be activated as start condition:

- Start of a part program bit 0 == 1
- End of a part program bit 1 == 1
- Operator panel reset bit 2 == 1
- **Boot** bit 3 == 1

The start condition when booting (bit 3 ==1) must be active in order to start the NCK-SPL (SAFE.SPФ) via PROG_EVENT.SPФ.
7.3 Safe programmable logic (SPL)

Note

When starting the NCK-SPL (SAFE.SPF), it is important that the PROG_EVENT mechanism was started through channel 1. This must be taken into account when parameterizing the channel-specific data MD 20108 `$MC_PROG_EVENT_MASK`.

Using the system variable `$P_PROG_EVENT`, in PROG_EVENT.SPF it can be interrogated as to which event activated the call:

- Start of a part program $P_PROG_EVENT == 1
- End of a part program $P_PROG_EVENT == 2
- Operator panel reset $P_PROG_EVENT == 3
- Boot $P_PROG_EVENT == 4

For the PROG_EVENT.SPF cycle, MD 11602 `$MN_ASUP_START_MASK` (recommended setting = 7H) is taken into account; this can be used to ignore reasons for initiating a stop to run the sequence. The setting in MD 11604 `$MN_ASUP_START_PRIO_LEVEL` is not relevant for PROG_EVENT.SPF.

Example for PROG_EVENT.SPF

```plaintext
; Event-controlled program call
; PROG_EVENT.SPF under \DH\CMA.DIR

; In machine data MD 20108: PROG_EVENT_MASK can be set channel-specifically which of the following events will enable the user program:

; ( ) Start of the part program --> bit 0 == 1
; ( ) End of the part program --> bit 1 == 1
; ( ) Operator panel reset --> bit 2 == 1
; (x) Boot --> bit 3 == 1

; Using the system variable $P_PROG_EVENT, it can be interrogated as to which event activated the call:

; ( ) Start of the part program --> $P_PROG_EVENT == 1
; ( ) End of the part program --> $P_PROG_EVENT == 2
; ( ) Operator panel reset --> $P_PROG_EVENT == 3
; (x) Boot --> $P_PROG_EVENT == 4
```
Connecting Sensors/Actuators

7.3 Safe programmable logic (SPL)

;--------------- Cycle definition ---------------
; Suppress single block, display
;--

N100 PROC PROG_EVENT SBLOF DISPLOF
;
; NCK-SPL start
;--

N200 IF ($P_PROG_EVENT == 4); Boot query
N300 CALL "/_N_CST_DIR/_N_SAFE_SPF"
N400 ENDIF
N500 ...
N600 ...
N700 M17; End of cycle

The part program SAFE.SPF is called if the system variable check $P_PROG_EVENT indicated that the part program call PROG_EVENT.SPF was called when the control system booted.

Example for SAFE.SPF

A simple example for SAFE.SPF will now be shown that is started using PROG_EVENT when the system boots and includes steady-state synchronous actions.

; File: SAFE.SPF
==============

; Definitions
DEFINE STOP_A_DISABLE AS $A_OUTSI[1]
DEFINE STOP_C_DISABLE AS $A_OUTSI[2]
DEFINE STOP_D_DISABLE AS $A_OUTSI[3]
;
DEFINE STOP_A_EXT AS $A_INSE[6]
DEFINE STOP_C_EXT AS $A_INSE[7]
DEFINE STOP_D_EXT AS $A_INSE[8]

DEFINE STOP_A_XT AS $A_INSE[9]
;
; Program section
N10 IDS=01 DO STOP_A_DISABLE=STOP_A_EXT
N30 M17
7.3.5 Starting the NCK-SPL from the PLC user program

Program start

The NCK-SPL can also be started from the PLC user program. As soon as the NCK-SPL has been started, the crosswise data comparison is activated in the system program (NCK and PLC basic program).

The NCK-SPL program must be started as an ASUB. To do this, the interrupt number and channel must first be assigned via FB4 using the ASUB (asynchronous sub-routine) function via parameter PIService="PI.ASUB".

As soon as FB4 has been successfully run (output parameter “Done”=TRUE) the program is executed via FC9 “ASUB” [asynchronous sub-routine].

Starting the PLC-SPL

The PLC-SPL in conjunction with FB4/FC9 has started if the FC9 has signaled successful execution and has identified that the end of the SAFE.SPF has been reached. This is realized using a signal in SAFE.SPF (e.g. $A_PLCSIOUT variable, M function) or SPL status bit 13 (DB18.DBX137.5). Only then is it permissible to start the PLC-SPL in order to ensure synchronous execution of the two SPL and that the axial monitoring channels are supplied in synchronism.

Parameterizing FB 4

FB4 may only be started in the cyclic mode (OB 1).

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Range of values</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIService</td>
<td>ANY</td>
<td>PI.ASUB</td>
<td>Assign interrupt</td>
</tr>
<tr>
<td>Unit</td>
<td>INT</td>
<td>1 to 10 [1]</td>
<td>Channel</td>
</tr>
<tr>
<td>WVar1</td>
<td>INT</td>
<td>[1]</td>
<td>Interrupt number</td>
</tr>
<tr>
<td>WVar2</td>
<td>INT</td>
<td>[1]</td>
<td>Priority</td>
</tr>
<tr>
<td>WVar3</td>
<td>INT</td>
<td>0/1 [0]</td>
<td>LIFTFAST</td>
</tr>
<tr>
<td>WVar4</td>
<td>INT</td>
<td>0/1 [0]</td>
<td>BLSYNC</td>
</tr>
<tr>
<td>Addr1</td>
<td>STRING</td>
<td>'/N_CST_DIR/ '</td>
<td>NCK-SPL path name</td>
</tr>
<tr>
<td>Addr2</td>
<td>STRING</td>
<td>' _N_SAFE_SPF '</td>
<td>NCK-SPL program name</td>
</tr>
</tbody>
</table>

[values in brackets are standard values required for the call]
Parameterizing FC 9

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Type</th>
<th>Range of values</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>I</td>
<td>Bool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChanNo</td>
<td>I</td>
<td>Int</td>
<td>1 to 10 [1]</td>
<td>No. of the NC channel</td>
</tr>
<tr>
<td>IntNo</td>
<td>I</td>
<td>Int</td>
<td>1 – 8 [1]</td>
<td>Interrupt No.</td>
</tr>
<tr>
<td>Active</td>
<td>O</td>
<td>Bool</td>
<td></td>
<td>1 = Active</td>
</tr>
<tr>
<td>Done</td>
<td>O</td>
<td>Bool</td>
<td></td>
<td>1 = ASUB completed</td>
</tr>
<tr>
<td>Error</td>
<td>O</td>
<td>Bool</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[values in brackets are standard values required for the call]

7.3.6 Diagnostics/commissioning

The system variables $A_INSIP(D)$, $A_OUTSIP(D)$, $A_INSEP(D)$ and $A_OUTSEP(D)$, and $A_MARKERSIP(D)$ are only used for diagnostics and commissioning the NCK-SPL. These system variables represent the input data for crosswise data comparison on the PLC side. They are updated every IPO cycle. They can also be used to access the crosswise data comparison on the PLC side from the NC. This helps when commissioning the SPL:

- Crosswise data comparison function can be temporarily bypassed
- NCK-SPL can be simulated to the process and to the NCK monitoring channel

To do this, the relevant PLC images are written to the variables A_OUTSED and A_OUTSID as long as there is no NCK-SPL. This means that the NCK-SPL can be commissioned step-by-step. This data may only be accessed during the commissioning phase.
In order to allow the SPL to be commissioned without the crosswise data comparison function constantly responding, the following “minimum NCK-SPL” can be installed in this phase:

; Simulate external SPL interface

; Simulate internal SPL interface

; Emulate PLC markers (for all markers used in the PLC)

; end of program
M17

These instructions simulate the output interfaces of the NCK-SPL and therefore “short-circuit” the crosswise data comparison.

Warning

The logic used in this phase has a single channel structure and is therefore not safe as defined in control Category 3!

The described minimum NCK-SPL must be replaced by a full NCK-SPL without any access to $A_INSIP(D), ..., $A_MARKERSIP(D) when the PLC side is completed!

Additional diagnostic support:

- **$A_STATSID**: A value not equal to 0 means that an error has occurred in the crosswise data comparison. The error numbers are selected in the same way as on the PLC side (see Subsection 7.3.10).
- **$A_CMDSI[n]**: \(n=1\): 10x change timer value for long forced checking procedure pulses and/or single-channel test stop logic.
- **$A_LEVEISID**: Indicates how many signals have different signal levels on the NCK and PLC sides that can be presently detected.
- In addition, other NC variables or free R parameters can be written to monitor internal states of the SPL.

The following applies to all system variables of the NCK-SPL outputs:

They can be written from and read back to the SPL program.
7.3.7 Safe software relay

The standard SPL block “safety software relay” is designed to meet the requirements of an Emergency Stop function with safe programmable logic. However, it can also be used to implement other similar safety functions, e.g. to control a protective door.

![Function diagram of the “safety relay”](image)

The description is provided in the following...
7.3 Safe programmable logic (SPL)

<table>
<thead>
<tr>
<th>Connecting Sensors/Actuators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three shutdown inputs E1 to E3 If one of these inputs is set to 0, direct output A0 is set to 0. Outputs A1 to A3 switch with the delay of timer 1–3. If one of these inputs is not used, then it is internally set to “1” as static signal. One of these inputs must also be used to initiate test operation of the safety relay (forced checking procedure).</td>
</tr>
<tr>
<td>Two acknowledge inputs Q1 and Q2 Q1 must be supplied with the signal from the real acknowledge button. Q2 is only used to automatically acknowledge the safety software relay as part of the forced checking procedure. The software relay itself does not have to be subject to a forced checking procedure. However, if the Emergency Stop function is executed and if external actuators have been subject to a forced checking procedure, if the relay drops-out during the Emergency Stop test, then it can be acknowledged using Q2 (in a defined time window, refer to TM1). This input must also be connected with a safety system variable (even if the signal is not used) - preferably with a $A_{MARKERSI}$ - in order to detect that this acknowledge signal is available as steady-state signal in the crosswise data comparison with the PLC. The associated comparison data in the PLC must have a steady-state 0 signal level (error detection using different states of the particular SPL marker for the PLC and NCK).</td>
</tr>
<tr>
<td>Three timer initialization values TI1 to TI3 The times after which outputs A1 to A3 are switched to 0 at a negative edge in output signal A0 are defined here.</td>
</tr>
<tr>
<td>One timer limit value TM1 This limit value is used to define the maximum time that the shutdown inputs E1 to E3 (and their AND logic operation) may have been at a 0 signal level so that they can still be acknowledged using Q2. This therefore guarantees that Q2 can only be effective as automatic acknowledgment for the forced checking procedure within a defined time window after the relay has dropped-out (after it has been de-energized). It is not permissible that Q2 is used to acknowledge a “real” shutdown.</td>
</tr>
<tr>
<td>Four output values A1 to A3 A0 supplies the result of ANDing E1 to E3 without any delay. Outputs A1 to A3 supply the same result for positive edges of A0; for negative edges, the results are delayed by the timer initialization TI1 to TI3. A0 to A3 do not produce a result after booting until an acknowledgment has been received via Q1.</td>
</tr>
</tbody>
</table>

Initialization in the part program

The connections for the function block are defined when initialized. The input and output quantities of the function block are assigned to the required system variables ($A_{MARKERSI}$, A_{INSE}, A_{OUTSE},...). The following functions must be called:
SIRELIN: This language command assigns the input quantities Q1, Q2, E1, E2 and E3 to the safety relay x (x = 1..4). The return value contains the number of the first incorrect parameter; a value of 0 indicates that the parameter assignment is correct.

Syntax: \[\text{SIRELIN}(x, \text{status}, "Q1","Q2","E1","E2","E3") \]

The transfer parameters Q1 to E3 are strings and must therefore be entered in quotation marks (" "). The following system variables are permissible as input quantities:

- $A_\text{MARKERSI}[]$
- $A_\text{INSE}[]$
- $A_\text{INSI}[]$
- $A_\text{OUTSE}[]$
- $A_\text{OUTSI}[]$

E2 and E3 are optional. If these parameters are not entered, the relevant inputs are set to “1” (static signal).

SIRELOUT: This language command assigns the output quantities A0, A1, A2 and A3 to safety relay x (x = 1..4). The return value contains the number of the first incorrect parameter; a value of 0 indicates that the parameter assignment is correct.

Syntax: \[\text{SIRELOUT}(x, \text{status}, "A0","A1","A2","A3") \]

The transfer parameters A0 to A3 are strings and must therefore be entered in quotation marks (" "). The following system variables are permissible as output quantities:

- $A_\text{MARKERSI}[]$
- $A_\text{OUTSE}[]$
- $A_\text{OUTSI}[]$
- $A_\text{PLCSIOUT}[]$

A1 to A3 are optional. If these parameters are not specified, then the corresponding outputs are not supplied. However, if A1 is specified, the initialization value for timer 1 (TI1) must also be parameterized via SIRELTIME. The same applies for A2 and timer 2 (TI2) and A3 and timer 3 (TI3).

SIRELTIME: This language command assigns the times – for the timers required – to safety relay x (x = 1..4). These include the timer limit value TM1 and the timer initialization values TI1, TI2 and TI3. The return value contains the number of the first incorrect parameter; a value of 0 indicates that the parameter assignment is correct.

Syntax: \[\text{SIRELTIME}(x, \text{status}, \text{TM1}, \text{TI1}, \text{TI2}, \text{TI3}) \]

Transfer parameters TM1 to TI3 are REAL numbers (timers in seconds). TI1 to TI3 are optional. If these parameters are not specified, the corresponding outputs A1 to A3 are not supplied. However, if TI1 is specified, output A1 must also be parameterized via SIRELOUT. The same applies for TI2 and A2 and TI3 and A3.
Note

- The initialization language commands must be directly included in the part program (e.g. SAFE.SPF); they may not be used in synchronized actions! If this condition is violated, Alarm 12571, “Channel 1 Block %2 %3 not permitted in synchronized motion” is triggered.

- As described above, there is an interdependency between the number of the optional parameters for the language commands SIRELTIME and SIRELOUT. This interdependency is checked in the language command that comes later in the part program sequence. If, for example, A2 is no longer parameterized in SIRELOUT, but TI2 is specified in SIRELTIME, then this parameter is identified as being incorrect!

Cyclic sequence

The correctly timed call in the SPL is made using the language command SIRELAY. A calling parameter is not required in the cyclic section except to select the desired relay x (x = 1.4). Initialization must be carried-out beforehand. If this is not correctly done, then this is indicated in the return value of the language command SIRELAY. The cyclic section must be integrated in the synchronized actions of the SPL.

Syntax: status = SIRELAY(x)

The following values are possible for status:

<table>
<thead>
<tr>
<th>Return value status</th>
<th>Meaning</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The input quantity of the safety relay is either not parameterized or not correctly parameterized. To correct or avoid errors: Call SIRELIN with the correct parameterization.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The output quantities of the safety relay are either not parameterized or not correctly parameterized. To correct or avoid errors: Call SIRELOUT with the correct parameterization.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The input and output quantities of the safety relay are either not parameterized or not correctly parameterized. To correct or avoid errors: Call SIRELIN and SIRELOUT with the correct parameterization.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>The timers of the safety relay are either not parameterized or not correctly parameterized. To correct or avoid errors: Call SIRELTIME with the correct parameterization.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The input quantities and timers of the safety relay are either not parameterized or not correctly parameterized. To correct or avoid errors: Call SIRELIN and SIRELTIME with the correct parameterization.</td>
<td></td>
</tr>
</tbody>
</table>
7.3 Safe programmable logic (SPL)

Return value status

<table>
<thead>
<tr>
<th>Return value status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>The output quantities of the safety relay are either not parameterized or not correctly parameterized. To correct or avoid errors: Call SIRELOUT and SIRELTIME with the correct parameterization.</td>
</tr>
<tr>
<td>7</td>
<td>The initialization of the safety relay was either not carried-out or not correctly carried-out. To correct or avoid errors: Call SIRELIN, SIRELOUT and SIRELTIME with the correct parameterization.</td>
</tr>
</tbody>
</table>

Note

1. The SIRELAY call must be made in the NCK-SPL (program SAFE.SPF), since the allocation of the output quantities corresponds to the write access operations to safety system variables. If the call comes from a different program, Alarm 17070 “Channel %1 Block %2 Data write-protected” is output.

2. The SIRELAY call must be included in a synchronized action. If this condition is not satisfied, Alarm 12080, “Channel %1 Block %2 Syntax error for text SIRELAY” is output.

3. If parameter \(x \) contains a value that lies outside the range 1 to 4, Alarm 14091 “Channel %1 Block %2 function not permissible, index: %3” initiated.

Forced checking procedure

When the safety relay is tested, acknowledge input Q2 and one of the three disable inputs (E1, E2 or E3) must be used. Q2 must be connected to a safety marker ($A_MARKERSI[]$) and may only be briefly set (< 1s) to 1.

One of the three inputs E1 to E3 can be used (e.g. from the PLC) with a short falling edge to check that the safety relay has dropped-out. The 0 signal level may not be present for longer than the time parameterized in TM1. The maximum value for TM1 is 1s, as otherwise the crosswise data comparison between NCK and PLC-SPL would detect an error.

Acknowledge input Q2 can only be used if the measured time \(t_4 \) is shorter than TM1. This prevents a queued shutdown operation being acknowledged externally via the test acknowledge input. If \(A_0 \) is 1 at the time of the falling edge of \(E_{\text{AND}} \) (= ANDing of E1, E2 and E3), time \(t_{4i} \) (see Fig. 7-20) is allocated the measured time \(t_4 \). For additional measurements, while \(A_0 \) remains at 0, \(t_{4i} \) is only re-saved if the measured time \(t_4 \) is greater than the old value of \(t_{4i} \).
Limitations and constraints

The language commands SIRELIN, SIRELOUT and SIRELTIME may not be used in synchronized actions.

The language command SIRELAY may only be used in synchronized actions of the SPL (SAFE.SPF). The connection must be specified beforehand using the language commands SIRELIN, SIRELOUT and SIRELTIME.

Example

Example of an Emergency Stop implemented using NCK-SPL in SAFE.SPF:

```plaintext
DEF INT RESULT_IN, RESULT_OUT, RESULT_TIME

N10 DEFINE IE_NH_E AS $A_INSE[1]
N20 DEFINE IE_NH_Q AS $A_INSE[2]
N30 DEFINE MI_NH_Q AS $A_MARKERSI[1]
N40 DEFINE MI_C_ABW AS $A_MARKERSI[2]
N50 DEFINE MI_A_ABW_A AS $A_MARKERSI[3]
N60 DEFINE MI_A_ABW_S AS $A_MARKERSI[4]
N70 DEFINE M_STATUS_1 AS $AC_MARKER[1]

;-----------------------------------------------
N200 SIRELIN(1,RESULT_IN,"IE_NH_Q","MI_NH_Q","IE_NH_E")
N210 SIRELOUT(1,RESULT_OUT,"MI_C_ABW","MI_A_ABW_A","MI_A_ABW_S")
N220 SIRELTIME(1,RESULT_TIME,0.4, 2.2, 3.5)
;-----------------------------------------------
N300 IDS=10 DO M_STATUS_1 = SIRELAY(1)

-------------------Error handling-------------------
N310 IDS=11 EVERY M_STATUS_1 < > DO . . . . . .
```
FUNCTION_BLOCK FB 10

Declaration of the function

VAR_INPUT

In1 : BOOL := True ; // Input 1
In2 : BOOL := True ; // Input 2
In3 : BOOL := True ; // Input 3
Quit1 : BOOL ; // Ackn1 signal
Quit2 : BOOL ; // Ackn2 signal
TimeValue1 : TIME := T#0ms ; // TimeValue for Output 1
TimeValue2 : TIME := T#0ms ; // TimeValue for Output 2
TimeValue3 : TIME := T#0ms ; // TimeValue for Output 3
END_VAR

VAR_OUTPUT

Out0 : BOOL ; // Output without Delay
Out1 : BOOL ; // Delayed Output to False by Timer 1
Out2 : BOOL ; // Delayed Output to False by Timer 2
Out3 : BOOL ; // Delayed Output to False by Timer 3
END_VAR

VAR_INOUT

FirstRun: BOOL ; // True by User after 1. Start of SPL
END_VAR

The following table shows all formal parameters of the SI relay function:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>I</td>
<td>BOOL</td>
<td>Input 1</td>
</tr>
<tr>
<td>In2</td>
<td>I</td>
<td>BOOL</td>
<td>Input 2</td>
</tr>
<tr>
<td>In3</td>
<td>I</td>
<td>BOOL</td>
<td>Input 3</td>
</tr>
<tr>
<td>Quit1</td>
<td>I</td>
<td>BOOL</td>
<td>Acknowledge input 1</td>
</tr>
<tr>
<td>Quit2</td>
<td>I</td>
<td>BOOL</td>
<td>Acknowledge input 2</td>
</tr>
<tr>
<td>TimeValue1</td>
<td>I</td>
<td>TIME</td>
<td>Value 1 for switch-off delay</td>
</tr>
<tr>
<td>TimeValue2</td>
<td>I</td>
<td>TIME</td>
<td>Value 2 for switch-off delay</td>
</tr>
<tr>
<td>TimeValue3</td>
<td>I</td>
<td>TIME</td>
<td>Value 3 for switch-off delay</td>
</tr>
<tr>
<td>Out0</td>
<td>O</td>
<td>BOOL</td>
<td>Output, instantaneous (no delay)</td>
</tr>
<tr>
<td>Out1</td>
<td>O</td>
<td>BOOL</td>
<td>Output, delayed by TimeValue1</td>
</tr>
<tr>
<td>Out2</td>
<td>O</td>
<td>BOOL</td>
<td>Output, delayed by TimeValue2</td>
</tr>
</tbody>
</table>
7.3 Safe programmable logic (SPL)

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out3</td>
<td>O</td>
<td>BOOL</td>
<td>Output, delayed by TimeValue3</td>
</tr>
<tr>
<td>FirstRun</td>
<td>I/O</td>
<td>BOOL</td>
<td>Activates the initial state</td>
</tr>
</tbody>
</table>

Parameter FirstRun must be switched to the value TRUE via a retentive data (memory bit, bit in the data block) at the first run-through after the control has booted. The data can be preset, e.g. in OB 100. The parameter is reset to FALSE when FB 10 is executed for the first time. Separate data must be used for parameter FirstRun for each call with its own instance.

Note

The block must be called cyclically by the user program beginning from when the PLC program is started. The user must provide an instance DB with any number for this purpose. The call is multi-instance-capable.

7.3.8 System variables for SINUMERIK 840D sl

The following system variables can only be used in combination with SINUMERIK Safety Integrated. They are used when programming the safe programmable logic (SPL).

Also see Subsection 8.4.2 “Description of the system variables” for a detailed description of the system variables.

<table>
<thead>
<tr>
<th>System variables</th>
<th>Meaning</th>
<th>Range of values</th>
<th>Data type</th>
<th>Possible access for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Part program Synchr. action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual position</td>
<td>Safe actual position for Safety Integrated</td>
<td>DOUBLE</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$VA_IS[axis]</td>
<td>Actual position of the closed-loop control</td>
<td>DOUBLE</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$VA_IM[axis]</td>
<td>Encoder actual value in the machine coordinate system</td>
<td>DOUBLE</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
7.3 Safe programmable logic (SPL)

Table 7-7 Overview of system variables

<table>
<thead>
<tr>
<th>Error status</th>
<th>Description</th>
<th>Data Type</th>
<th>l</th>
<th>s</th>
<th>i</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{XFAULTSI}$</td>
<td>In the crosswise data comparison between NCK and drive of any axis, an actual-value error has been detected</td>
<td>INT</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VA_{XFAULTSI}$ [axis name]</td>
<td>The crosswise data comparison for this axis between NCK and drive has detected an actual value error</td>
<td>INT</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{STOPSI}</td>
<td>Act. Safety Integr. Stop for the particular axis</td>
<td>INT</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_{STOPESI}$</td>
<td>Act. Safety Integr. STOP E for any axes</td>
<td>INT</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal SPL inputs/outputs

<table>
<thead>
<tr>
<th>$A_{INSI[n]}$</th>
<th>NCK input</th>
<th>n = 1, 2, ... 64 stand for the No. of the input</th>
<th>BOOL</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{INSID[n]}$</td>
<td>NCK inputs</td>
<td>n = 1, 2</td>
<td>INT</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_{INSIP[n]}$</td>
<td>Image, PLC input</td>
<td>n = 1, 2, ... 64</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_{OUTSI[n]}$</td>
<td>NCK output</td>
<td>n = 1, 2, ... 64 stand for the No. of the output</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_{OUTSID[n]}$</td>
<td>NCK outputs</td>
<td>n = 1, 2</td>
<td>INT</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_{OUTSIP[n]}$</td>
<td>Image, PLC output</td>
<td>n = 1, 2, ... 64</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_{OUTSIPD[n]}$</td>
<td>Image of the PLC outputs</td>
<td>n = 1, 2</td>
<td>INT</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

External SPL inputs/outputs

<table>
<thead>
<tr>
<th>$A_{INSE[n]}$</th>
<th>NCK input</th>
<th>n = 1, 2, ... 64 stand for the No. of the input</th>
<th>BOOL</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{INSED[n]}$</td>
<td>NCK inputs</td>
<td>n = 1, 2</td>
<td>INT</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_{INSEP[n]}$</td>
<td>Image of PLC input</td>
<td>n = 1, 2, ... 64</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_{INSEPD[n]}$</td>
<td>Image of the PLC inputs</td>
<td>n = 1, 2</td>
<td>INT</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_{OUTSE[n]}$</td>
<td>NCK output</td>
<td>n = 1, 2, ... 64 stand for the No. of the output</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Table 7-7 Overview of system variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Type</th>
<th>l</th>
<th>s</th>
<th>l</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_OUTSED[n]$</td>
<td>NCK outputs</td>
<td>INT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_OUTSEP[n]$</td>
<td>Image of a PLC output</td>
<td>BOOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_OUTSEPD[n]$</td>
<td>Image of the PLC outputs</td>
<td>INT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPL markers and timers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_MARKERSI[n]$</td>
<td>Flag bits</td>
<td>BOOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_MARKERSI D[n]$</td>
<td>Flag bits</td>
<td>INT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_MARKERSI P[n]$</td>
<td>Image of the PLC markers</td>
<td>BOOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_MARKERSI PD[n]$</td>
<td>Image of the PLC markers</td>
<td>INT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_TIMERSI[n]$</td>
<td>Timers</td>
<td>REAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_STATSID$</td>
<td>Crosswise data comparison error triggered if the value is not equal to 0</td>
<td>INT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_CMDSI</td>
<td>10x change timer val. for long forced checking proc. pulses and/or single-channel test stop logic</td>
<td>BOOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMM_TO</td>
<td>0 -> 1 communications timeout detected, PLC will go to STOP in 5 s</td>
<td>BOOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_LEVELSID$</td>
<td>Crosswise data comparison stack level display: Number of signals for which NCK and PLC detect different signal levels</td>
<td>INT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.3 Safe programmable logic (SPL)

Table 7-7 Overview of system variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Type</th>
<th>I</th>
<th>s</th>
<th>I</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{PLCSIIN}$</td>
<td>Single-channel communication between NCK and PLC SPL</td>
<td>BOOL</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>$A_{PLCSIOUT}$</td>
<td>Single-channel communication between NCK and PLC SPL</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Note:
r → read, w → write

7.3.9 Behavior after power on / mode change / reset

1. After the system has booted, the following Safety Integrated system variables are assigned the value zero:

 $A_INSE(D),$
 $A_OUTSE(D),$
 $A_OUTSI(D),$
 $A_MARKERSI(D),$
 $A_INSEP(D),$
 $A_OUTSEP(D),$
 $A_OUTSIP(D),$
 $A_MARKERSIP(D)$
 $A_INSI(D).$

2. Pre-assignment of other variables before cyclic processing of the NCK-SPL starts can be programmed in the same part program as the NCK-SPL itself. To ensure that the pre-assignment instructions are only performed once, they must use the following syntax:

   ```plaintext
   IDS=<No.> WHEN TRUE DO<Boot instructions>
   ```

 As a result of the identifier IDS, the events “operating mode change” and “reset” have no effect on the processing of the NCK-SPL.

3. Several boot instructions can be programmed in one block.

7.3.10 SPL data on the PLC side

The safe programmable logic of the PLC (PLC-SPL) is a sub-function of the safety functions integrated in the SINUMERIK.
Signals

The PLC-SPL signals are in DB18 and are sub-divided into

1. Parameterization part, and
2. Data area/status.

Parameterization part

SPL_READY:
The SPL_READY = TRUE signal indicates that the commissioning phase has been completed, i.e. if a crosswise data comparison error has occurred, the basic program sends a “STOP D/E” to all the axes.

STOP_MODE:
For crosswise comparison error:
0 = external STOP D
1 = external STOP E
to the drive

Data area/status

SPL_DATA
The useful (net) data for the PLC-SPL is contained in the SPL_DATA structure. The useful data area is sub-divided into internal inputs/outputs and marker areas and external inputs/outputs that correspond to the hardware I/Os. With the appropriate parameterization for external inputs/outputs, the basic program transfers the input image of the I/Os to the external inputs in DB 18 and from the external outputs in DB 18 to the output.

SPL_DELTA
The SPL_DELTA area is used for diagnostics. A signal with the status TRUE in this area means that the signal is different in the NCK and PLC at this bit position.

CMDSI
Signal CMDSI can be used to extend the timeout value in the crosswise SPL data comparison by a factor of 10. This extension is used for long forced checking procedure pulses or single-channel test stop logic functions.

STATSI
A crosswise data comparison error is indicated in STATSI. STATSI contains the number of the signal whose signal difference caused this error. The error number (1–320) refers to SPL_DATA as an array with 5x64=320 signals.
7.3 Safe programmable logic (SPL)

LEVELSI
The signal LEVELSI is used for diagnostics and indicates how many signals with different signal levels are present.

COMM_TO
If communications between the NCK and PLC are interrupted regarding SPL crosswise data comparison, then after a delay of 5 s the PLC is switched into the STOP state. Status signal DB18.DBB119, bit 5 is used to inform the SPL programmer that the 5 s timer was started. This means that it is possible to initiate system-specific actions before the PLC goes into the stop condition.

SPL status signals for SPL_STATUS (DB18.DBB136)
For a detailed description, see Subsection 8.3.3 “PLC data bock (DB 18)”.

INSEP_PROFISAFE (DB18.DBB138)
Bit array INSEP_PROFISAFE[1...8] is used to indicate which INSEP bytes are only assigned to F modules.
0 = no PROFIsafe F modules are assigned to INSEP[1...8]
1 = PROFIsafe F module is transferred to INSEP[1...8] by the basic program

OUTSEP_PROFISAFE (DB18.DBB140)
Bit array OUTSEP_PROFISAFE[1...8] is used to display which OUTSEP bytes are only assigned F modules.
0 = PROFIsafe F modules not assigned to OUTSEP[1...8]
1 = OUTSEP[1...8] transferred to PROFIsafe F module using the basic program

7.3.11 Direct communications between NCK and PLC-SPL

In SPL applications, a certain degree of single-channel communications between the two SPLs (NCK and PLC) is always required in addition to safety-related switching elements being connected through two channels. Testing external stops and the Emergency Stop acknowledgment are typical applications.

In order to be able to exchange single-channel SI-specific signals between the NCK and PLC in a dedicated data area, a corresponding communication interface exists between these components. The meaning of the individual bits in this interface are defined by the user.

<table>
<thead>
<tr>
<th>NCK</th>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_PLCSIOUT[1...32]</td>
<td>DB18.DBD128</td>
</tr>
<tr>
<td>$A_PLCSIIN[1...32]</td>
<td>DB18.DBD132</td>
</tr>
</tbody>
</table>
Limitations and constraints

System variables $A_PLCSIOUT[1...32]$ and $A_PLCSIIN[1...32]$ are protected so that they cannot be accessed from other programs, except the NCK-SPL program (SAFE_SPF). A corresponding programming command is rejected with the Alarm 17070 “Channel %1 Block %2 Data write-protected”.
7.4 Safe brake test (SBT)

7.4.1 Applications

When the drives are powered-down axes and mechanical systems can drop as a result of gravity. The mechanical braking system test should be used for all axes which must be prevented from moving in an uncontrolled manner by a holding brake. This test function is primarily intended for so-called “vertical axes”.

The functionality is based on “traversing to a fixed endstop”. The traversing to a fixed endstop can be individually parameterized to test the function of the mechanical braking system. It is activated and de-selected from the PLC. For further details on traversing to a fixed endstop, see /FB1/, F1.

The machine manufacturer can use his PLC user program to close the brake at a suitable instant in time (nominal value, every 8h similar to the SI test stop) and initiates the drive to produce an additional force in addition to the weight of the axis. In a fault-free state, the brake can apply the necessary force, i.e. the axis will hardly move. When an error occurs, the actual position value exits the parameterizable monitoring window. In this case, traversing to fixed endstop is terminated so that the position controller can prevent the axis falling. The brake test is then negatively acknowledged.

The brake test must always be started when the axis is at a standstill (also see Subsection 7.4.5 “Activation”). The direction in which the drive produces its force is specified by the PLC using a “traversing motion” via FC 18. The target of this traversing motion must be able to be reached without incurring any potential hazard for the case that the brake cannot provide the necessary force.

7.4.2 Parameterization

The user can use the following axial NCK machine data to parameterize the function test of the mechanical braking system:

```
with 840D sl
MD 37000: $MA_FIXED_STOP_MODE
MD 37030: $MA_FIXED_STOP_THRESHOLD
MD 36966 $MA_SAFE_BRAKETEST_TORQUE
MD 36967: $MA_SAFE_BRAKETEST_POS_TOL
MD 36968: $MA_SAFE_BRAKETEST_CONTROL
```
The function test of the mechanical braking system is enabled by setting bit 1 in $MA_FIXED_STOP_MODE. If the user needs to travel to a fixed endstop with this axis from the part program, bit 0 can also be set. It is internally monitored to check that only one type of traverse to fixed endstop is active at a time. In the case of an error, Alarm 20092, “Axis % 1 Travel to fixed endstop still active” is issued.

The machinery construction OEM must parameterize the total required brake holding torque in the axial MD $MA_SAFE_BRAKETEST_TORQUE. Internally, this is used to calculate the drive torque that is required in addition to the weight of the axis to load the brake.

For SINAMICS S120 the drive torque is determined when the function test is selected. It is thus possible to take into account any deviation from the torque due to weight parameterized in drive parameter p1532 (or force due to weight). This ensures that the brake test can also be carried-out with varying machine loads (e.g. different workpieces or tools). The drive torque to load the holding brake is limited to the maximum motor torque if the desired braking torque would require a higher drive torque.

If the load torque at an axis changes so significantly that a sensible value cannot be parameterized in drive parameter p1532, then the automatic determination of the load torque available must be activated using $MA_SAFE_BRAKETEST_CONTROL.
When selecting the brake test, the holding torque required for the force due to the weight of the axis is internally measured (mAct).

The drive must only additionally provide the difference between this torque and the braking torque from MD 36966 $MA_SAFE_BRAKETEST_TORQUE. In the diagram 7-21, this torque is designated with mDrive.

The torque limiting of SINAMICS is symmetrical around the torque from drive parameter p1532. In the diagram 7-21 the measured torque m_Act is however less than p1532. This is the reason that mFXS from Fig. 7-21 is entered as torque limiting. mFXS is the sum from mDrive and the drive parameter p1532. If the measured torque mAct matches that parameterized in drive parameter p1532, mFXS becomes the value from the MD $MA_SAFE_BRAKETEST_TORQUE.
7.4 Safe brake test (SBT)

Incorrect parameterization in MD $MA_SAFE_BRAKETEST_TORQUE or drive parameter p1532 could mean that the drive with reduced torque cannot even apply the required holding torque. This parameterization is detected when the brake test is selected and results in Alarm 20095 (see Section 10.2). The fact that the actual torque/force setpoint is displayed in parameter p1509 makes it easier to correctly parameterize drive parameter p1532. If only the force due to the weight is effective, then this value can be directly transferred into the drive parameter. This value must be entered – with an additional safety margin – into MD $MA_SAFE_BRAKETEST_TORQUE. The magnitude of the safety margin is orientated to the maximum holding force of the brake to be tested.

$MA_SAFE_BRAKETEST_CONTROL

Some machines have braked axes whose load torque can very significantly over the complete traversing range or depending on the workpiece or tool being used. If drive parameter p1532 cannot be generally parameterized, for all of the situations using MD 1192, an automatic determination of the load torque present at the start of the braking test can be activated using MD 36968 $MA_SAFE_BRAKETEST_CONTROL. If bit 0 of $MA_SAFE_BRAKETEST_CONTROL is set to 1, then the torque, determined at the start of the brake test (mAct from Fig. 7-21 or Fig. 7-22) is temporarily used as average value for the torque limiting in the drive.

The user must carefully ensure that the brake is not previously closed thus preventing an incorrect load torque being determined. This would then mean that the brake test would be carried-out with an incorrect torque. The plausibility of the load torque is then no longer checked.

This is the reason that this should only be activated if it is not possible to sensibly parameterize MD 1532.

$MA_SAFE_BRAKETEST_POS_TOL

The monitoring window for the maximum permissible movement during the brake test is defined in the axial MD $MA_SAFE_BRAKETEST_POS_TOL. The PLC actively monitors this position window – from the start of the brake test and not only when it has been detected that the fixed endstop has been reached. This is a difference when compared to activating the traversing to the fixed endstop function from the part program.

$MA_FIXED_STOP_THRESHOLD

The contour deviation that is determined is always used in the brake test to detect that the fixed endstop has been reached. The parameterization in $MA_FIXED_STOP_BY_SENSOR is therefore irrelevant. The required threshold value must be set in MD $MA_FIXED_STOP_THRESHOLD. This means that the traversing distance from the PLC via FC 18 must be greater than this threshold value. Furthermore, the drive must have reached its torque limit parameterized using $MA_SAFE_BRAKETEST_TORQUE.
7.4.3 Operational sequence

The brake test in the PLC is carried-out by calling function block FB11 (from the basic program) from the user program. The brake test comprises the following steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Expected feedback</th>
<th>Monitoring time value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start brake test</td>
<td>DBX 71.0 = 1</td>
<td>TV_BTactiv</td>
</tr>
<tr>
<td>Close brake</td>
<td>Bclosed = 1</td>
<td>TV_Bclose</td>
</tr>
<tr>
<td>Output traversing command</td>
<td>DBX 64.6 Or DBX 64.7</td>
<td>TV_FeedCommand</td>
</tr>
<tr>
<td>Check, output traversing command</td>
<td>DBX62.5 = 1</td>
<td>TV_FXSreached</td>
</tr>
<tr>
<td>Wait for the holding time</td>
<td>DBX62.5 = 1</td>
<td>TV_FXShold</td>
</tr>
<tr>
<td>De-select brake/test/open brake</td>
<td>DBX71.0 = 0</td>
<td>TV_BTactiv</td>
</tr>
</tbody>
</table>

Function_Block FB 11

Declaration of the function:

```plaintext
VAR_INPUT
    Start : BOOL ; //Start of the brake test
    Quit : BOOL ; //Acknowledge fault
    Bclosed : BOOL ; //Brake closed input (single channel – PLC)
    Axis : INT ; //Testing axis No.
    TimerNo : TIMER ; //Timer from user
    TV_BTactiv : S5TIME ; //TimeValue -> brake test active
    TV_Bclose : S5TIME ; //TimeValue -> close brake
    TV_FeedCommand : S5TIME ; //TimeValue -> force FeedCommand
    TV_FXSreached : S5TIME ; //TimeValue -> Fixed stop reached
    TV_FXShold : S5TIME ; //TimeValue -> test brake
END_VAR

VAR_OUTPUT
    CloseBrake : BOOL ; //Signal close brake
    MoveAxis : BOOL ; //do move axis
    Done : BOOL ;
    Error : BOOL ;
    State : BYTE ; //Error byte
END_VAR
```

The following table lists all of the formal parameters of the brake test function:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>I</td>
<td>BOOL</td>
<td>Starts the brake test</td>
</tr>
<tr>
<td>Ack</td>
<td>I</td>
<td>BOOL</td>
<td>Acknowledge fault</td>
</tr>
</tbody>
</table>
Connecting Sensors/Actuators

7.4 Safe brake test (SBT)

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Type</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bclosed</td>
<td>I</td>
<td>BOOL</td>
<td>Feedback input whether a control signal has been issued to close the brake (single-channel PLC)</td>
</tr>
<tr>
<td>Axis</td>
<td>I</td>
<td>INT</td>
<td>Axis number of axis to be tested</td>
</tr>
<tr>
<td>TimerNo</td>
<td>I</td>
<td>TIMER</td>
<td>Timer from user program</td>
</tr>
<tr>
<td>TV_Btactiv</td>
<td>I</td>
<td>S5TIME</td>
<td>Monitoring time value -> brake test active. Check the axis signal DBX71.0</td>
</tr>
<tr>
<td>TV_Bclose</td>
<td>I</td>
<td>S5TIME</td>
<td>Monitoring time value -> close brake. Check the input signal Bclosed after the CloseBrake output was set.</td>
</tr>
<tr>
<td>TV_FeedCommand</td>
<td>I</td>
<td>S5TIME</td>
<td>Monitoring time value -> output traversing command. Check traversing commands after MoveAxis has been set.</td>
</tr>
<tr>
<td>TV_FXSreached</td>
<td>I</td>
<td>S5TIME</td>
<td>Monitoring time value -> fixed endstop reached</td>
</tr>
<tr>
<td>TV_FXShold</td>
<td>I</td>
<td>S5TIME</td>
<td>Monitoring time value -> test brake</td>
</tr>
<tr>
<td>CloseBrake</td>
<td>O</td>
<td>BOOL</td>
<td>Request, close brake</td>
</tr>
<tr>
<td>MoveAxis</td>
<td>O</td>
<td>BOOL</td>
<td>Request, initiate traversing motion</td>
</tr>
<tr>
<td>Done</td>
<td>O</td>
<td>BOOL</td>
<td>Test successfully completed</td>
</tr>
<tr>
<td>Error</td>
<td>O</td>
<td>BOOL</td>
<td>Fault/error has occurred</td>
</tr>
<tr>
<td>State</td>
<td>O</td>
<td>BYTE</td>
<td>Fault status</td>
</tr>
</tbody>
</table>

Fault IDs

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error</td>
</tr>
<tr>
<td>1</td>
<td>Start conditions not fulfilled, e.g. the axis is not in closed-loop control/brake closed/axis inhibited</td>
</tr>
<tr>
<td>2</td>
<td>When the brake test is selected, no NC feedback in the “brake test active” signal</td>
</tr>
<tr>
<td>3</td>
<td>No “Brake applied” checkpoint by input signal Bclosed</td>
</tr>
<tr>
<td>4</td>
<td>No traversing command output (e.g. axis motion has not been started)</td>
</tr>
<tr>
<td>5</td>
<td>Fixed endstop is not reached -> axis RESET was initiated</td>
</tr>
<tr>
<td>6</td>
<td>Traversing inhibit/approach too slow -> fixed endstop cannot be reached. Monitoring time TV_FXSreached has expired.</td>
</tr>
<tr>
<td>7</td>
<td>Brake is not holding at all (the end position is reached)/approach speed is too high</td>
</tr>
<tr>
<td>8</td>
<td>Brake opens during the holding time</td>
</tr>
<tr>
<td>9</td>
<td>Fault when de-selecting the brake test</td>
</tr>
<tr>
<td>10</td>
<td>Internal fault</td>
</tr>
<tr>
<td>11</td>
<td>“PLC-controlled axis” signal not enabled in the user program</td>
</tr>
</tbody>
</table>
Note

The user program must call the block. The user must provide an instance DB with any number for this purpose. The call is multi-instance-capable.

Example of calling FB11

//Set PLC output for the brake
UN M 111.1 //Request close Z axis brake from FB11
= A 52.1 //Control Z axis brake

//Simulation, feedback signal brake is closed (e.g. for an 1FT6 motor)
UN A 52.1 //Control Z axis brake
L S5T#200MS
SE T 109 //Delay, feedback signal brake is closed
= M 109.0 //Feedback signal, close brake initiated
7.4 Safe brake test (SBT)

//Reset and fault acknowledgement for sequence, FB11 and FC18 (local reset)

U E 3.7 //MCP key [/] = M 109.1 //local reset
R M 110.6 //Reset step (1) request neutral axis
R M 110.5 //Reset step (2) request PLC-monitored axis
R M 110.3 //Reset step (3) FB11 sequence
R M 111.7 //Reset step (4) transfer axis to NC, completed without
error

//Open AxisDB for axis
AUF DB 33 //Test, Z axis brake (Ax3)

//===

//Start new test
O E 7.6 //Initiates the brake test, Z axis
O M 109.7 //Brake test running
FP M 110.0
UN M 109.2 //Brake test error (group error)
S M 109.7 //Brake test running

//===

//Request neutral axis (1)
S M 110.6 //Step (1)
L B#16#10 //Set A_NCASpStrobe, and
T DBB 8 //Reset A_NCASpKanal A to D (channel 0)
U DBX 68.6 //Feedback signal, axis is neutral
U M 110.6 //Step (1)
FP M 110.1
R M 110.6 //Reset step (1)

//===

//Request PLC-monitored axis (2)
S M 110.5 //Step (2)
R DBX 8.4 //Reset A_NCASpStrobe
S DBX 28.7 //Request, PLC-monitored axis
U DBX 63.1 //Feedback signal, the PLC is monitoring the axis
U M 110.5 //Step (2)
FP M 110.2
R M 110.5 //Reset step (2)

//===

S M 110.3 //Next step (3)

//Start brake test FB11 (3)
CALL FB 11 , DB104
Start :=M110.3 //Start FB11 (3)
Quit :=M109.1 //local reset here, error acknowledgement FB11
Bclosed :=M109.0 Feedback signal close brake initiated
Axis :=3 //Axis number of axis to be tested, Z axis
TimerNo :=T110 //Timer number
TV_BTactiv :=S5T#200MS//Monitoring time value: Brake test
TV_Bclosed :=S5T#1S //Monitoring time value: Brake closed
TV_FeedCommand :=S5T#1S //Monitoring time value: Traversing command output
TV_FXSreached :=S5T#1S //Monitoring time value: Fixed endstop reached
TV_FXShold :=S5T#2S //Monitoring time value: Test time brake
CloseBrake :=M111.1 //Request, close brake
MoveAxis :=M111.2 //Request, initiate traversing motion
Done :=M111.3 //Test successfully completed
Error :=M111.4 //Error occurred FB11
State :=MB112 //Error status FB11

//Brake test FB11 starts FC18 (3)
CALL FC 18
Start :=M111.2 //Start of traversing motion
Stop :=FALSE
Funct :=B#16#5 //Mode: Axis mode
Mode :=B#16#1 //Move incrementally
AxisNo :=3 //Axis number of the axis to be traversed, Z axis
Pos :=3.000000e+000 //Distance travelled: 3mm
FRate :=1.000000e+003 //Feed rate: 1,000 mm/min
InPos :=M113.0 //Position reached
Error :=M113.1 //Error occurred FC18
State :=MB114 //Error status FC18

//Create DB register
AUF DB 31 //Test, Z axis brake (Ax3)

//Initiate axis reset if FB11 and/or FC18 is active
U M 109.1 //local reset
U M 109.7 //Brake test running
U DBX 28.7 //PLC-monitored axis
= DBX 28.1 //A_AxReset

//Reset, group error
U M 109.1 //local reset
UN DBX 28.7 //PLC-monitored axis
R M 109.2 //Error, brake test (group error)

//Set group error, suppress FC18State==30
L MB 114 //Error, status FC18
L 30 //If FB11 is active, FC18State==30 <>I
U M 113.1 //Error occurred, FC18
O M 111.4 //Error occurred, FB11
S M 109.2 //Brake test error (group error)

//FB11 completed, without error (4), transfer axis to NC
U M 111.3 //Test successful
UN M 109.2 //Brake test error (group error)
U M 110.3 //Step (3)
FP M 110.7
R M 110.3 //Reset step (3)
7.4 Safe brake test (SBT)

S M 111.7 //Step (4)

//Transfer start axis to NC
O M 111.7 //Step (4)
O(U M 109.1 ///(local reset)
U M 109.7 //Brake test running
U DBX 63.0 //E_AxResetDone)

R DBX 28.7 //Transfer axis to NC

//Brake test completed
O M 111.7 //Step (4)
U M 109.1 ///(local reset)
UN DBX 63.1 //Feedback signal, axis not in PLC
UN M 109.2 //Brake test error (group error)
R M 111.7 //Reset step (4)
R M 109.7 //Brake test running

Note
The PLC only releases the axis if, for an FB11 / FC18 error, an axis-specific reset was issued and also acknowledged (in the example using M 109.1 ///(local reset)).
The help flag bit for the current status (step) is cleared with the reset (in the example by M 109.1 ///(local reset)).

7.4.4 Limitations and constraints

During the brake test, traversing to fixed endstop and/or traverse with limited torque FOC may not be active at the same time. In this case, Alarm 20092, “Axis %1 travel to fixed stop still active” is triggered.
The axis should be transferred back from the PLC after the brake test has been completed.

During the brake test, contour monitoring is not active. After the PLC has started traversing motion then there is also no standstill monitoring.
The function test/check of the brake mechanical system cannot be used for gantry axes.

If the parameterization of parameter p1532 (> 5%) deviates from the measured torque at the start of the brake test – then the brake test must be carried-out in the same direction in which the load torque is effective. In the case of an error – Alarm 20097 “Axis %1 incorrect brake test direction” is output.
7.4.5 Activating

The brake test must always be started when the axis is at a standstill. For the entire duration of the brake test, the enable signals of the parameterized axis must be set to enable (e.g. the controller inhibit, feed enable signals). The signal “PLC-controlled axis” (DB “Axis”.DBX28.7) must still be set to 1 by the user program for the entire duration of the test. Prior to activating the signal “PLC controlled axis”, the axis must be set as “neutral axis”, e.g. set byte 8 in the axis DB to channel 0. Set the activating signal in the same byte. The block may not be started until the NC feedback signal has been received via the appropriate bit (DB “Axis”.DBX63.1).

References: /FB2/ P2 “Autonomous single-axis processes”

Warning

The brake test must be carried-out before carrying-out the test stop. If the brake test was not successful (i.e. the brake cannot hold the axis), then it is not permissible that the test stop is carried-out. Users must carefully take this into consideration when configuring the brake test and test stop.

7.4.6 Example

An example of incorrect parameterization that results in Alarm 20095, “Axis %1 impermissible holding torque, measured torque %2” is shown in the following diagram: The torque due to weight in drive parameter p1532 has been parameterized considerably lower than the measured torque mAct. The calculated torque limit mFXS, positioned symmetrically around this MD, would mean that the drive would not be able to produce the required holding torque for this axis (p1532+mFXS is lower than mAct).
If parameter p1532 cannot be sensibly parameterized for all situations where the brake test is to be carried-out, then the automatic determination of the load torque must be activated using MA_SAFE_BRAKETEST_CONTROL.

Commissioning

To support the commissioning of the brake test Alarm 20096, “Axis %1 brake test aborted, additional info %2” can be enabled using bit 5 in machine data $MN_ENABLE_ALARM_MASK. This alarm supplies detailed information if the brake test is interrupted.
Data Description

8.1 Machine data for SINUMERIK 840D sl

8.1.1 Overview of the machine data

Note

The meaning of the symbols used in the table is as follows:

● This data is calculated into SAFE_ACT_CHECKSUM[0].
■ This data is calculated into SAFE_ACT_CHECKSUM[1].
— This data is not calculated into any checksum.

Table 8-1 Overview of machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>Number</th>
<th>Identifier</th>
<th>Name</th>
<th>Checksums MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>General ($MN_...$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10050</td>
<td>SYSCLOCK_CYCLE_TIME</td>
<td>Basic system clock cycle, see /FB1/, G2</td>
<td>●</td>
</tr>
<tr>
<td>10060</td>
<td>POSCTRL_SYSCLK_TIME_RATIO</td>
<td>Factor, position controller clock cycle, see /FB1/, G2</td>
<td>—</td>
</tr>
<tr>
<td>10070</td>
<td>IPO_SYSCLK_CYCLE_TIME_RATIO</td>
<td>Factor, interpolator clock cycle</td>
<td>●</td>
</tr>
<tr>
<td>10090</td>
<td>SAFETY_SYSCLK_TIME_RATIO</td>
<td>Factor for the monitoring clock cycle</td>
<td>—</td>
</tr>
<tr>
<td>10091</td>
<td>INFO_SAFETY_CYCLE_TIME</td>
<td>Display, monitoring clock cycle</td>
<td>—</td>
</tr>
<tr>
<td>10092</td>
<td>INFO_CROSSCHECK_CYCLE_TIME</td>
<td>Displays the clock cycle time for a crosswise data comparison</td>
<td>—</td>
</tr>
<tr>
<td>10093</td>
<td>INFO_NUM_SAFE_FILE_ACCESS</td>
<td>Number of SPL file access operations</td>
<td>—</td>
</tr>
<tr>
<td>10094</td>
<td>SAFE_ALARM_SUPPRESS_LEVEL</td>
<td>Alarm suppression level</td>
<td>—</td>
</tr>
<tr>
<td>10096</td>
<td>SAFE_DIAGNOSIS_MASK</td>
<td>Safety Integrated diagnostic functions</td>
<td>—</td>
</tr>
<tr>
<td>10097</td>
<td>SAFE_SPL_STOP_MODE</td>
<td>Stop response for SPL errors</td>
<td>●</td>
</tr>
<tr>
<td>10098</td>
<td>PROFISAFE_IPO_TIME_RATIO</td>
<td>Factor PROFIsafe communications clock cycle time</td>
<td>●</td>
</tr>
<tr>
<td>10099</td>
<td>INFO_PROFISAFE_CYCLE_TIME</td>
<td>PROFIsafe communications clock cycle time</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 8-1 Overview of machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>Number</th>
<th>Identifier</th>
<th>Name</th>
<th>Checksums MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10200</td>
<td>INT_INCR_PER_MM</td>
<td>Computational resolution for linear positions see /FB1/, G2</td>
<td>—</td>
</tr>
<tr>
<td>10210</td>
<td>INT_INCR_PER_DEG</td>
<td>Computational resolution for angular positions see /FB1/, G2</td>
<td>—</td>
</tr>
<tr>
<td>10385</td>
<td>PROFISAFE_MASTER_ADRESS</td>
<td>PROFIsafe address of the PROFIsafe master module</td>
<td>●</td>
</tr>
<tr>
<td>10386</td>
<td>PROFISAFE_IN_ADRESS</td>
<td>PROFIsafe address of an input module</td>
<td>●</td>
</tr>
<tr>
<td>10387</td>
<td>PROFISAFE_OUT_ADRESS</td>
<td>PROFIsafe address of a PROFIsafe output module</td>
<td>●</td>
</tr>
<tr>
<td>10388</td>
<td>PROFISAFE_IN_ASSIGN</td>
<td>Input assignment, $A_INSE to PROFIsafe input module</td>
<td>●</td>
</tr>
<tr>
<td>10389</td>
<td>PROFISAFE_OUT_ASSIGN</td>
<td>Output assignment, $A_OUTSE to PROFIsafe module</td>
<td>●</td>
</tr>
<tr>
<td>10393</td>
<td>SAFE_DRIVE_LOGIC_ADDRESS</td>
<td>Logical drive addresses, SI</td>
<td>●</td>
</tr>
<tr>
<td>13300</td>
<td>PROFISAFE_IN_FILTER</td>
<td>F useful (net) data filter IN</td>
<td>●</td>
</tr>
<tr>
<td>13301</td>
<td>PROFISAFE_OUT_FILTER</td>
<td>F net (useful) data filter OUT</td>
<td>●</td>
</tr>
<tr>
<td>13310</td>
<td>SAFE_SPL_START_TIMEOUT</td>
<td>Delay, display Alarm 27097</td>
<td>—</td>
</tr>
<tr>
<td>20108</td>
<td>PROG_EVENT_MASK</td>
<td>Event-controlled program call</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>ENC_TYPE</td>
<td>Encoder type of the actual value sensing (position actual value) see /FB1/, G2</td>
<td>—</td>
</tr>
<tr>
<td>30240</td>
<td>IS_ROT_AX</td>
<td>Rotary axis/spindle see /FB1/, R2</td>
<td>—</td>
</tr>
<tr>
<td>30300</td>
<td>DISPLAY_IS_MODULO</td>
<td>Modulo 360 degrees display for rotary axis or spindle see /FB1/, R2</td>
<td>—</td>
</tr>
<tr>
<td>30320</td>
<td>MODULO_RANGE</td>
<td>Size of the modulo range see /FB1/, R2</td>
<td>—</td>
</tr>
<tr>
<td>30330</td>
<td>MA_AX_ACCEL</td>
<td>Axis acceleration see /FB1/, B2</td>
<td>—</td>
</tr>
<tr>
<td>35200</td>
<td>GEAR_STEP_SPEEDCTRL_ACCEL</td>
<td>Acceleration in the open-loop speed controlled mode see /FB1/, S1</td>
<td>—</td>
</tr>
<tr>
<td>35210</td>
<td>GEAR_STEP_POSCTRL_ACCEL</td>
<td>Acceleration in the closed-loop position controlled mode see /FB1/, S1</td>
<td>—</td>
</tr>
<tr>
<td>35410</td>
<td>SPIND_OSCILL_ACCEL</td>
<td>Acceleration when oscillating see /FB1/, S1</td>
<td>—</td>
</tr>
<tr>
<td>36060</td>
<td>STANDSTILL_VELO_TOL</td>
<td>Thresh. velocity/speed “axis/spindle stationary” see /FB1/, A2</td>
<td>—</td>
</tr>
<tr>
<td>36620</td>
<td>SERVO_DISABLE_DELAY_TIME</td>
<td>Shutdown delay controller enable see /FB1/, A2</td>
<td>—</td>
</tr>
<tr>
<td>36901</td>
<td>SAFE_FUNCTION_ENABLE</td>
<td>Enable safety-related functions</td>
<td>●</td>
</tr>
<tr>
<td>36902</td>
<td>SAFE_IS_ROT_AX</td>
<td>Rotary axis</td>
<td>●</td>
</tr>
<tr>
<td>36905</td>
<td>SAFE_MODULO_RANGE</td>
<td>Modulo value, safe cams</td>
<td>●</td>
</tr>
<tr>
<td>36906</td>
<td>SAFE_CTRLOUT_MODULE_NR</td>
<td>SI drive assignment</td>
<td>●</td>
</tr>
</tbody>
</table>
Table 8-1 Overview of machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>Number</th>
<th>Identifier</th>
<th>Name</th>
<th>Checksums MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>36907</td>
<td>SAFE_DRIVE_PS_ADDRESS</td>
<td>PROFIsafe address of the drive</td>
<td>●</td>
</tr>
<tr>
<td>36912</td>
<td>SAFE_ENC_INPUT_NR</td>
<td>Actual value assignment: Drive encoder number</td>
<td>●</td>
</tr>
<tr>
<td>36914</td>
<td>SAFE_SINGLE_ENC</td>
<td>SI single-encoder system</td>
<td>●</td>
</tr>
<tr>
<td>36916</td>
<td>SAFE_ENC_IS_LINEAR</td>
<td>Linear scale</td>
<td>●</td>
</tr>
<tr>
<td>36917</td>
<td>SAFE_ENC_GRID_POINT_DIST</td>
<td>Grid spacing, linear scale</td>
<td>●</td>
</tr>
<tr>
<td>36918</td>
<td>SAFE_ENC_RESOL</td>
<td>Encoder pulses per revolution</td>
<td>●</td>
</tr>
<tr>
<td>36919</td>
<td>SAFE_ENC_PULSE_SHIFT</td>
<td>Shift factor of the encoder multiplication</td>
<td>●</td>
</tr>
<tr>
<td>36920</td>
<td>SAFE_ENC_GEAR_PITCH</td>
<td>Lead screw pitch</td>
<td>●</td>
</tr>
<tr>
<td>36921</td>
<td>SAFE_ENC_GEAR_DENOM[n]</td>
<td>Denominator gearbox ratio encoder/load</td>
<td>●</td>
</tr>
<tr>
<td>36922</td>
<td>SAFE_ENC_GEAR_NUMER[n]</td>
<td>Numerator, gearbox ratio encoder/load</td>
<td>●</td>
</tr>
<tr>
<td>36923</td>
<td>SAFE_INFO_ENC_RESOL</td>
<td>Safety-relevant encoder resolution</td>
<td>—</td>
</tr>
<tr>
<td>36925</td>
<td>SAFE_ENC_POLARITY</td>
<td>Direction reversal actual value</td>
<td>●</td>
</tr>
<tr>
<td>36927</td>
<td>SAFE_ENC_MOD_TYPE</td>
<td>Encoder evaluation type</td>
<td>●</td>
</tr>
<tr>
<td>36928</td>
<td>SAFE_ENC_IDENT</td>
<td>Encoder identification</td>
<td>●</td>
</tr>
<tr>
<td>36930</td>
<td>SAFE_STANDSTILL_TOL</td>
<td>Zero speed tolerance</td>
<td>●</td>
</tr>
<tr>
<td>36931</td>
<td>SAFE_VELO_LIMIT[n]</td>
<td>Limit value for safely-reduced speed</td>
<td>●</td>
</tr>
<tr>
<td>36932</td>
<td>SAFE_VELO_OVR_FACTOR[n]</td>
<td>SG selection values</td>
<td>●</td>
</tr>
<tr>
<td>36933</td>
<td>SAFE_DES_VELO_LIMIT</td>
<td>SG setpoint speed limiting</td>
<td>●</td>
</tr>
<tr>
<td>36934</td>
<td>SAFE_POS_LIMIT_PLUS[n]</td>
<td>Upper limit value for safe limit position</td>
<td>●</td>
</tr>
<tr>
<td>36935</td>
<td>SAFE_POS_LIMIT_MINUS[n]</td>
<td>Lower limit value for safe limit position</td>
<td>●</td>
</tr>
<tr>
<td>36936</td>
<td>SAFE_CAM_POS_PLUS[n]</td>
<td>Plus cams position for safe cams</td>
<td>●</td>
</tr>
<tr>
<td>36937</td>
<td>SAFE_CAM_POS.MINUS[n]</td>
<td>Minus cams position for safe cams</td>
<td>●</td>
</tr>
<tr>
<td>36940</td>
<td>SAFE_CAM_TOL</td>
<td>Tolerance for safe cams</td>
<td>●</td>
</tr>
<tr>
<td>36942</td>
<td>SAFE_POS_TOL</td>
<td>Tolerance, actual value comparison (crosswise)</td>
<td>●</td>
</tr>
<tr>
<td>36944</td>
<td>SAFE_REFP_POS_TOL</td>
<td>Tolerance, actual value comparison (referencing)</td>
<td>●</td>
</tr>
<tr>
<td>36946</td>
<td>SAFE_VELO_X</td>
<td>Speed limit nx</td>
<td>●</td>
</tr>
<tr>
<td>36948</td>
<td>SAFE_STOP_VELO_TOL</td>
<td>Velocity tolerance for the safe braking ramp.</td>
<td>●</td>
</tr>
<tr>
<td>36949</td>
<td>SAFE_SLIP_VELO_TOL</td>
<td>Speed tolerance, slip</td>
<td>●</td>
</tr>
<tr>
<td>36950</td>
<td>SAFE_MODE_SWITCH_TIME</td>
<td>Tolerance time for SGE changeover</td>
<td>●</td>
</tr>
<tr>
<td>36951</td>
<td>SAFE_VELO_SWITCH_DELAY</td>
<td>Delay time, speed changeover</td>
<td>●</td>
</tr>
<tr>
<td>36952</td>
<td>SAFE_STOP_SWITCH_TIME_C</td>
<td>Transition time, STOP C to safe Standstill</td>
<td>●</td>
</tr>
<tr>
<td>36953</td>
<td>SAFE_STOP_SWITCH_TIME_D</td>
<td>Transition time, STOP D to safe Standstill</td>
<td>●</td>
</tr>
</tbody>
</table>
Table 8-1 Overview of machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>Number</th>
<th>Identifier</th>
<th>Name</th>
<th>Checksums MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>36954</td>
<td>SAFE_STOP_SWITCH_TIME_E</td>
<td>Transition time, STOP E to safe Standstill</td>
<td>●</td>
</tr>
<tr>
<td>36955</td>
<td>SAFE_STOP_SWITCH_TIME_F</td>
<td>Transition time STOP F to STOP B</td>
<td>●</td>
</tr>
<tr>
<td>36956</td>
<td>SAFE_PULSE_DISABLE_DELTA</td>
<td>Delay time, pulse cancellation</td>
<td>●</td>
</tr>
<tr>
<td>36957</td>
<td>SAFE_PULSE_DIS_CHECK_TIME</td>
<td>Time to check pulse cancellation</td>
<td>●</td>
</tr>
<tr>
<td>36958</td>
<td>SAFE_ACCEPTANCE_TST_TIMEOUT</td>
<td>Time limit for the acc. test duration</td>
<td>●</td>
</tr>
<tr>
<td>36960</td>
<td>SAFE_STANDSTILL_VELO_TOL</td>
<td>Shutdown speed, pulse cancellation</td>
<td>●</td>
</tr>
<tr>
<td>36961</td>
<td>SAFE_VELO_STOP_MODE</td>
<td>Stop response, safely-reduced speed</td>
<td>●</td>
</tr>
<tr>
<td>36962</td>
<td>SAFE_POS_STOP_MODE</td>
<td>Stop response, safe limit position</td>
<td>●</td>
</tr>
<tr>
<td>36963</td>
<td>SAFE_VELO_STOP_REACTION[n]</td>
<td>Stop response, safely-reduced speed</td>
<td>●</td>
</tr>
<tr>
<td>36964</td>
<td>SAFE_IPO_STOP_GROUP</td>
<td>Grouping, safety IPO response</td>
<td>—</td>
</tr>
<tr>
<td>36965</td>
<td>SAFE_PARK_ALARM_SUPPRESS</td>
<td>Alarm suppression for parking axes</td>
<td>●</td>
</tr>
<tr>
<td>36966</td>
<td>SAFE_BRAKETEST_TORQUE</td>
<td>Holding torque, brake test</td>
<td>●</td>
</tr>
<tr>
<td>36967</td>
<td>SAFE_BRAKETEST_POS_TOL</td>
<td>Position tolerance, brake test</td>
<td>●</td>
</tr>
<tr>
<td>36968</td>
<td>SAFE_BRAKETEST_CONTROL</td>
<td>Sequence check for the brake test</td>
<td>●</td>
</tr>
<tr>
<td>36970</td>
<td>SAFE_SVSS_DISABLE_INPUT</td>
<td>Input assignment, SBH/SG de-selection</td>
<td>●</td>
</tr>
<tr>
<td>36971</td>
<td>SAFE_SS_DISABLE_INPUT</td>
<td>Input assignment, SBH de-selection</td>
<td>●</td>
</tr>
<tr>
<td>36972</td>
<td>SAFE_VELO_SELECT_INPUT[n]</td>
<td>Input assignment, SG selection</td>
<td>●</td>
</tr>
<tr>
<td>36973</td>
<td>SAFE_POS_SELECT_INPUT</td>
<td>Input assignment, SE selection</td>
<td>●</td>
</tr>
<tr>
<td>36974</td>
<td>SAFE_GEAR_SELECT_INPUT[n]</td>
<td>Input assignm., gearbox ratio selection</td>
<td>●</td>
</tr>
<tr>
<td>36977</td>
<td>SAFE_EXT_STOP_INPUT[n]</td>
<td>Input assignm., external brake request</td>
<td>●</td>
</tr>
<tr>
<td>36978</td>
<td>SAFE_OVR_INPUT[n]</td>
<td>Input assignment, SG override</td>
<td>●</td>
</tr>
<tr>
<td>36980</td>
<td>SAFE_SVSS_STATUS_OUTPUT</td>
<td>Output assignment, SBH/SG active</td>
<td>●</td>
</tr>
<tr>
<td>36981</td>
<td>SAFE_SS_STATUS_OUTPUT</td>
<td>Output assignment for SBH active</td>
<td>●</td>
</tr>
<tr>
<td>36982</td>
<td>SAFE_VELO_STATUS_OUTPUT[n]</td>
<td>Output assignment act. SG selection</td>
<td>●</td>
</tr>
<tr>
<td>36985</td>
<td>SAFE_VELO_X_STATUS_OUTPUT</td>
<td>Output assignment for n < n_x</td>
<td>●</td>
</tr>
<tr>
<td>36987</td>
<td>SAFE_REFP_STATUS_OUTPUT</td>
<td>Output assignm. axis safely referenced</td>
<td>●</td>
</tr>
<tr>
<td>36988</td>
<td>SAFE_CAM_PLUS_OUTPUT[n]</td>
<td>Output assignment, SN1+ to SN4+</td>
<td>●</td>
</tr>
<tr>
<td>36989</td>
<td>SAFE_CAM_MINUS_OUTPUT[n]</td>
<td>Output assignment, SN1– to SN4–</td>
<td>●</td>
</tr>
<tr>
<td>36990</td>
<td>SAFE_ACT_STOP_OUTPUT[n]</td>
<td>Output assignment active STOP</td>
<td>●</td>
</tr>
<tr>
<td>36992</td>
<td>SAFE_CROSSCHECK_CYCLE</td>
<td>Displays the axial crosswise comparison clock cycle</td>
<td>—</td>
</tr>
<tr>
<td>36993</td>
<td>SAFE_CONFIG_CHANGE_DATE[n]</td>
<td>Date/time of the last change SI-NCK-MD</td>
<td>—</td>
</tr>
<tr>
<td>36994</td>
<td>SAFE_PREV_CONFIG[n]</td>
<td>Data, previous safety function</td>
<td>—</td>
</tr>
<tr>
<td>36995</td>
<td>SAFE_STANDSTILL_POS</td>
<td>Standstill position</td>
<td>—</td>
</tr>
</tbody>
</table>
8.1 Machine data for SINUMERIK 840D sl

8.1.2 Description of machine data

General information

General information about machine data and an explanation of their contents such as units, data type, protective stage, effectiveness, etc. can be found in the following references:

References: /LIS/, Lists, SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>MD number</th>
<th>$\text{MD} 10090$</th>
<th>$\text{MD} 10091$</th>
<th>$\text{MD} 10092$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD number</td>
<td>$\text{MD} 10090$</td>
<td>$\text{MD} 10091$</td>
<td>$\text{MD} 10092$</td>
</tr>
<tr>
<td>$\text{MD} 10090$</td>
<td>$\text{MD} 10050$</td>
<td>$\text{MD} 10091$</td>
<td>$\text{MD} 10092$</td>
</tr>
</tbody>
</table>

Table 8-1 Overview of machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>Number</th>
<th>Identifier</th>
<th>Name</th>
<th>Checksums MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>36997</td>
<td>SAFE_ACKN</td>
<td>User agreement</td>
<td></td>
</tr>
<tr>
<td>36998</td>
<td>SAFE_ACT_CHECKSUM</td>
<td>Actual checksum</td>
<td></td>
</tr>
<tr>
<td>36999</td>
<td>SAFE_DES_CHECKSUM</td>
<td>Reference checksum</td>
<td></td>
</tr>
<tr>
<td>37000</td>
<td>FIXED_STOP_MODE</td>
<td>Mode, traverse to fixed endstop</td>
<td></td>
</tr>
</tbody>
</table>
10091 $MN_INFO_SAFETY_CYCLE_TIME

MD number

Display, monitoring clock cycle time

<table>
<thead>
<tr>
<th>Default value</th>
<th>Min. input limit</th>
<th>Max. input limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Change becomes effective after: Power ON
Protective stage: 7/–
Units: s

Data type: DOUBLE

Significance:

Display data: Displays the actually effective monitoring clock cycle. This data cannot be written to. The data value is always re-calculated as soon as one of the following data is changed:
- SAFETY_SYSCLK_TIME_RATIO
- POSCTRL_SYSCLK_TIME_RATIO
- SYSCLK_CYCLE_TIME

corresponds with...

MD 10090: $MN_SAFETY_SYSCLK_TIME_RATIO

Additional references

See Section 5.1, "Monitoring clock cycle", Section 5.2 "Crosswise data comparison"

10092 $MN_INFO_CROSSCHECK_CYCLE_TIME

MD number

Displays the clock cycle time for a crosswise data comparison

<table>
<thead>
<tr>
<th>Default value</th>
<th>Min. input limit</th>
<th>Max. input limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Change becomes effective after: Power ON
Protection level: (L/S): 7/–
Units: s

Data type: DOUBLE

Significance:

Display data: Crosswise data comparison in seconds. This is obtained from INFO_SAFETY_CYCLE_TIME and the number of data to be compared crosswise. The data value is always re-calculated as soon as one of the following data is changed:
- SAFETY_SYSCLK_TIME_RATIO
- POSCTRL_SYSCLK_TIME_RATIO
- SYSCLK_CYCLE_TIME

The new value only becomes effective after power on.

corresponds with...

MD 10090: $MN_SAFETY_SYSCLK_TIME_RATIO
MD 36992: $MA_SAFE_CROSSCHECK_CYCLE

Additional references

See Section 5.1, "Monitoring clock cycle", Section 5.2 "Crosswise data comparison"

10093 $MN_INFO_NUM_SAFE_FILE_ACCESS

MD number

Number of SPL file access operations

<table>
<thead>
<tr>
<th>Default value</th>
<th>Min. input limit</th>
<th>Max. input limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Change becomes effective after: Power ON
Protection level: 2/–
Units:

Data type: DWORD

Significance:

Display data: SPL file /_N_CST_DIR/_N_SAFE_SPF has been accessed n-times in the protected state. This MD is only used for service purposes. The value of the MD can only be 0 or 1. The value cannot be changed.

Special cases, errors...
Data Description

8.1 Machine data for SINUMERIK 840D sI

$MN_SAFE_ALARM_SUPPRESS_LEVEL

MD number: 10094
Description: "Safety integrated" alarm suppression

<table>
<thead>
<tr>
<th>Default value: 2</th>
<th>Min. input limit: 0</th>
<th>Max. input limit: 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
<tr>
<td>Data type: BYTE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance:

The monitoring channels NCK and drive display alarms with the same significance in several situations. In order to reduce the size of the alarm screen, this MD is used to specify whether safety alarms with the same significance are to be suppressed. The two-channel stop response is not influenced by the setting.

- **0** = alarms triggered in two channels are displayed to the full extent
 - Two-channel display of all axial safety alarms
 - Alarm 27001, fault code 0 is displayed
 - Alarms 27090, 27091, 27092, 27093 and 27095 are displayed through two channels and a multiple number of times.

- **1** = alarms with the same meaning are only displayed once.
 This involves the following alarms and messages:
 - 27010 = C01707
 - 27011 = C01714
 - 27012 = C01715
 - 27013 = C01706
 - 27020 = C01710
 - 27021 = C01709
 - 27022 = C01708
 - 27023 = C01701
 - 27024 = C01700

 For these alarms, only one of the specified alarms (270xx or C01xxx) is initiated. The alarm of the monitoring channel that then subsequently initiates the alarm with the same significance, is no longer displayed.

 Furthermore, Alarm 27001 with fault code 0 is suppressed. This alarm occurs as a result of drive Alarm F01711. In this particular case, drive machine data r9710[0], r9710[1], r9711[0], r9711[1] provide information regarding the cause of the error.

- **2** = default setting

 Going beyond the functionality with MD value=1, the alarms from the SPL processing (27090, 27091, 27092, 27093 and 27095) are only displayed through one channel and only once. This also applies to alarms of the PROFIsafe communications (27250 and following).

- **3** = axial Alarms 27000 and A01797 are replaced by Alarm message 27100 for all axes/drives. Alarm 27040 is replaced by Alarm 27140 for all axes/drives.

- **12** = going beyond the functionality with MD value = 2, the alarms are assigned priorities. What appears to be apparent follow-on alarms are no longer displayed or are automatically cleared from the display.

 The following alarms may be involved:
 - 27001, 27004, 27020, 27021, 27022, 27023, 27024, 27091, 27101, 27102, 27103, 27104, 27105, 27106, 27107

- **13** = going beyond the functionality with MD value = 3, the alarms are assigned priorities as for MD value 12.

 This machine data must be set to 0 to generate an acceptance report. This allows the system to document all of the alarms that have been initiated.

Special cases, errors,...
8.1 Machine data for SINUMERIK 840D sl

10096 $MN_SAFE_DIAGNOSIS_MASK

MD number

- **Name:** Safety Integrated diagnostic functions
- **Default value:** 1
- **Min. input limit:** 0
- **Max. input limit:** 0x0003
- **Change becomes effective after:** NewConf
- **Protection level:** 7/2
- **Units:** –
- **Data type:** DWORD
- **Significance:**
 - Bit 0=0: SGE differences between NCK and the drive monitoring channels are not displayed
 - Bit 0=1: Default: SGE differences between NCK and the drive monitoring channels are displayed
 - Differences between the following SGEs are detected (the listed bit numbers refer to the axial mapping of the SGEs – these correspond to the following VDI interface assignment):
 - Bit 0: SBH/SG de-selection = DB3<<>.DBX22.0
 - Bit 1: SBH de-selection = DB3<<>.DBX22.1
 - Bit 3: SG selection, bit 0 = DB3<<>.DBX22.3
 - Bit 4: SG selection, bit 1 = DB3<<>.DBX22.4
 - Bit 12: SE selection = DB3<<>.DBX23.4
 - Bit 28: SG correction, bit 0 = DB3<<>.DBX33.4
 - Bit 29: SG correction, bit 1 = DB3<<>.DBX33.5
 - Bit 30: SG correction, bit 2 = DB3<<>.DBX33.6
 - Bit 31: SG correction, bit 3 = DB3<<>.DBX33.7
 - The differences are indicated using message Alarm 27004.
 - Bit 1 = 0:
 - Default: Displays an unsuccessful SPL start after the timer defined in MD SAFE_SPL_START_TIMEOUT has expired with Alarm 27097
 - Bit 1 = 1:
 - Display of Alarm 27097 is suppressed. Alarm 27097 indicates, that in spite of the SPL configuration, SPL was not started after the time set in MD SAFE_SPL_START_TIMEOUT expired. For the cause, refer to the description of Alarm 27097.

10097 $MN_SAFE_SPL_STOP_MODE

MD number

- **Name:** Stop response for SPL errors
- **Default value:** 3
- **Min. input limit:** 3
- **Max. input limit:** 4
- **Change becomes effective after:** Power ON
- **Protection level:** 2/7
- **Units:** –
- **Data type:** BYTE
- **Significance:**
 - Selects the stop response when errors are detected in the crosswise data comparison of NCK and PLC-SPL
 - 3: Stop D
 - 4: Stop E
 - When the value 4 is entered in this MD (Stop E) without enabling the external Stop E in all axes with SI function enable signals ($MA_SAFE_FUNCTION_ENABLE not equal to 0) results in Alarm 27033, “Axis %1 Invalid parameterization of MD MIN_SAFE_SPL_STOP_MODE”. To remedy this, either parameterize Stop D or set bit 4 and bit 6 in $MA_SAFE_FUNCTION_ENABLE for all of the axes involved. If this MD is set to 4, then DBX36.1 in DB18 must also be set to signal the PLC about this parameterization. For a different parameter assignment, Alarm 27090 is output, “Error for crosswise data comparison NCK-PLC”.

Special cases, errors,...
8.1 Machine data for SINUMERIK 840D sl

10098

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MN_PROFISAFE_IPO_TIME_RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 1</td>
<td>Factor PROFIsafe communications clock cycle time</td>
</tr>
<tr>
<td>Min. input limit: 1</td>
<td>Max. input limit: 25</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DWORD</td>
<td></td>
</tr>
</tbody>
</table>

Significance:
Ratio between PROFIsafe communication and interpolation clock cycle. The actual PROFIsafe communication clock cycle is the product of this data and IPO_CYCLE_TIME and is displayed in MD INFO_PROFISAFE_CYCLE_TIME. In this clock cycle, OB40 on the PLC side is initiated from the NCK to enable communication between the F master and F slaves.

The PROFIsafe communications clock cycle may not be greater than 25 ms.

10099

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MN_INFO_PROFISAFE_CYCLE_TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0.000</td>
<td>PROFIsafe communications clock cycle time</td>
</tr>
<tr>
<td>Min. input limit: –</td>
<td>Max. input limit: –</td>
</tr>
<tr>
<td>Change becomes effective after: Power On</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td></td>
</tr>
</tbody>
</table>

Significance:
Display data: Time grid for communications between an F master and F slave. The value is obtained from the interpolator clock cycle and MD $MN_PROFISAFE_IPO_TIME_RATIO. The value cannot be changed. PROFIsafe communications via the OB40 in the PLC use this time grid.

10385

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MN_PROFISAFE_MASTER_ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0</td>
<td>PROFIsafe address of the PROFIsafe master module</td>
</tr>
<tr>
<td>Min. input limit: 0</td>
<td>Max. input limit: 0x0500FA7D</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DWORD</td>
<td></td>
</tr>
</tbody>
</table>

Significance:
Defines the PROFIsafe address for the F master NCK/PLC. This is used to uniquely assign an F master to an F slave. This parameter must be entered in accordance with the "F_source_address" parameter set in S7-ES for the F slaves. An attempt to establish communications is only made for F slaves that have entered this address.
$MN_PROFISAFE_IN_ADDRESS[n]: 0 ... 15

<table>
<thead>
<tr>
<th>MD number</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10386</td>
<td>PROFIsafe address of an input module</td>
</tr>
</tbody>
</table>

Default value: 0
Min. input limit: 0
Max. input limit: 0x0501FFFF
Change becomes effective after: Power ON
Protection level: 7/2
Data type: DWORD

Significance: PROFIsafe target address of an input module
Format: 0s 0x aaaa
- **s:** Bus segment (5 = DP connection on the PLC side)
- **x:** Sub-slot address
- **Value range:** 0...1
 - x = 0 addresses the F net data signals 1...32
 - x = 1 addresses the F net data signals 33...64
- **aaaa:** Hexadecimal PROFIsafe address of the F module

Special cases, errors,...

$MN_PROFISAFE_OUT_ADDRESS[n]: 0 ... 15

<table>
<thead>
<tr>
<th>MD number</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10387</td>
<td>PROFIsafe address of a PROFIsafe output module</td>
</tr>
</tbody>
</table>

Default value: 0
Min. input limit: 0
Max. input limit: 0x0501FFFF
Change becomes effective after: Power ON
Protection level: 7/2
Data type: DWORD

Significance: PROFIsafe target address of an output module
Format: 0s 0x aaaa
- **s:** Bus segment (5 = DP connection on the PLC side)
- **x:** Sub-slot address
- **Value range:** 0...1
 - x = 0 addresses the F net data signals 1...32
 - x = 1 addresses the F net data signals 33...64
- **aaaa:** Hexadecimal PROFIsafe address of the F module

Special cases, errors,...

$MN_PROFISAFE_IN_ASSIGN[n]: 0 ... 15

<table>
<thead>
<tr>
<th>MD number</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10388</td>
<td>Input assignment, $A_INSE to PROFIsafe module</td>
</tr>
</tbody>
</table>

Default value: 0
Min. input limit: 0
Max. input limit: 64064
Change becomes effective after: Power ON
Protective stage: 7/2
Data type: DWORD

Significance: Assignment between an ext. SPL interface $A_INSE and a PROFIsafe input module. The three lower positions indicate the least significant $A_INSE variable to be supplied. The three upper positions indicate the most significant $A_INSE variable to be supplied.
Example:
PROFISAFE_IN_ASSIGN[0] = 4001:
The system variables $A_INSE[1...4] are supplied with the state of the input terminals of the PROFIsafe module that was defined in MD PROFISAFE_IN_ADDRESS[0].

Special cases, errors,...
8.1 Machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>MD number</th>
<th>$\text{MN_PROFISAFE_OUT_ASSIGN}[n]$: 0 ... 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output assignment, A_OUTSE to the PROFIsafe module</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default value: 0</th>
<th>Min. input limit: 0</th>
<th>Max. input limit: 64064</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protective stage: 7/2</td>
<td>Units: –</td>
</tr>
</tbody>
</table>

Data type: DWORD

Significance:
Assignment between an ext. SPL interface A_OUTSE and a PROFIsafe output module. The three lower positions indicate the least significant A_OUTSE variable to be connected.
The three upper positions indicate the most significant A_OUTSE variable to be connected.
Example:
$\text{PROFISAFE_OUT_ASSIGN}[0] = 64061$:
The system variables $A_\text{OUTSE}[61...64]$ are placed at the output terminals of the PROFIsafe module defined in MD $\text{PROFISAFE_OUT_ADDRESS}[0]$.

Special cases, errors,...

<table>
<thead>
<tr>
<th>MD number</th>
<th>$\text{MN_SAFE_DRIVE_LOGIC_ADDRESS}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical drive addresses, SI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Default value: 6700, 6724, 6748, 6772, 6796, 6820, 6844, 6868, 6892, 6916, 6940, 6964, 6988, 7012, 7036, 7060, 7084, 7108, 7132, 7156, 7180, 7204, 7228, 7252, 7276, 7300, 7324, 7348, 7372, 7396, 7420, 7444, 7468, 7492, 7516, 7540, 7564</th>
<th>Min. input limit: 258</th>
<th>Max. input limit: 8191</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
</tbody>
</table>

Data type: DWORD

Significance:
Logical I/O addresses of the SI telegram of drives connected to PROFIBUS. An address is assigned to a drive.

Special cases, errors,...
Machine data for SINUMERIK 840D sl

Data Description

8.1 Machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>MD number</th>
<th>$\text{MN_PROFISAFE_IN_FILTER}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F useful (net) data filter IN</td>
</tr>
</tbody>
</table>

Default value: 0xFFFFFFFF
Min. input limit: –
Max. input limit: –
Change becomes effective after: Power ON
Protection level: 7/2
Units: –
Data type: DWORD

Significance: Filter between F net (useful) data and A_INSE variables

Machine data: $\text{MN_PROFISAFE_IN_FILTER}$ is used to define which F net (useful) data bits of the PROFIsafe modules are accepted for further processing in the SPL.

The filtered F net data bits are pushed together inside the NCK to form a bit array without any gaps (consecutive bit array).

Machine data: $\text{PROFISAFE_IN_ASSIGN}$ is then used to define in which A_INSE variables, the filtered F net data bits are transferred.

Example:
Note: For reasons of simplicity, only 16 bits are taken into consideration.

Parameterization:
- $\text{PROFISAFE_IN_FILTER} = A944H$
- $\text{PROFISAFE_IN_ASSIGN} = 011006$

- $n = 16 \quad 11 \quad 6 \quad 1$
- $1010 \ 1000 \ 0000 \ 0100 \quad $ value at the F net data interface of the PROFIsafe module
- $1010 \ 1001 \ 0100 \ 0100 \quad $MN_PROFISAFE_IN_FILTER
- $00 \ 0000 \ 0001 \ 1100 \quad $internal NCK F net data image
- $xxxx \ x111 \ 001x \ xxxx \quad $INSE[n], x = not relevant

corresponds with...

Additional references
8.1 Machine data for SINUMERIK 840D sl

$MN_PROFISAFE_OUT_FILTER$

<table>
<thead>
<tr>
<th>MD number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13301</td>
<td>F net (useful) data filter OUT</td>
</tr>
</tbody>
</table>

- **Standard value:** 0xFFFFFFFF
- **Min. input limit:** –
- **Max. input limit:** –
- **Change becomes effective after:** Power ON
- **Protection level:** 7/2
- **Units:** –
- **Data type:** DWORD
- **Significance:** Filter between A_OUTSE variables and F net (useful) data

Machine data: PROFISAFE_OUT_ASSIGN is used to define which $A_OUTSE[n]$ variables are transferred into the F net data bits of the PROFIsafe module.

Machine data: PROFISAFE_OUT_FILTER is used to define which F net data bit is transferred to the particular $A_OUTSE[n]$ variable.

Example:
For reasons of simplicity, only 16 bits are taken into consideration.

Parameterization:
- $MN_PROFISAFE_OUT_FILTER = A944H$
- $MN_PROFISAFE_OUT_ASSIGN = 011006$

n = 16 11 6 1

- $xxxx \times 111 111x xxxx$ example value in the $OUTSE$ variables, x not relevant
- $0000 0000 0011 111$ internal NCK F net data image
- $1010 1001 0100 0100$ $MN_PROFISAFE_OUT_FILTER$
- $1010 1001 0100 0100$ F net data of the PROFIsafe module

$MN_SAFE_SPL_START_TIMEOUT$

<table>
<thead>
<tr>
<th>MD number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13310</td>
<td>Delay, display Alarm 27097</td>
</tr>
</tbody>
</table>

- **Standard value:** 20
- **Min. input limit:** 1
- **Max. input limit:** 60
- **Change becomes effective after:** POWER ON
- **Protection level:** 7/2
- **Units:** s
- **Data type:** DOUBLE
- **Significance:** After the control has booted, after the time has expired, Alarm 27097 is displayed if there was no SPL start. It is possible to completely suppress this alarm by changing MD $MN_SAFE_DIAGNOSTIC_MASK$, bit 1.

Additional references
Data Description

8.1 Machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MC_PROG_EVENT_MASK</th>
</tr>
</thead>
</table>

Event-controlled program call

- **Standard value (0x0, 0x0,...)**
- **Min. input limit:** 0
- **Max. input limit:** 0xF
- **Change becomes effective after:** Power ON
- **Protection level:** 7/2
- **Units:** –
- **Data type:** DWORD

Significance:
Parameterizes the event where the user program, set with $MN_PROG_EVENT_NAME (default: _N_PROG_EVENT_SPF) is implicitly called:

- **Bit 0 = 1:** Part program start
- **Bit 1 = 1:** Part program end
- **Bit 2 = 1:** Operator panel reset
- **Bit 3 = 1:** Boot

The user program is called using the following search path:

1. /_N_CUS_DIR/_NPROG_EVENT_SPF
2. /_N_CMA_DIR/_NPROG_EVENT_SPF
3. /_N_CST_DIR/_NPROG_EVENT_SPF

corresponds with...

Additional references
36901 $MA_SAFE_FUNCTION_ENABLE

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_FUNCTION_ENABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enable safety-relevant functions</td>
</tr>
<tr>
<td>Default value: 0</td>
<td>Min. input limit: 0</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DWORD</td>
<td></td>
</tr>
</tbody>
</table>

Significance:

The functions for safe operation can be enabled for one axis/spindle using this machine data. It is only possible to enable – on an axis-specific basis – as many axes/spindles for safe operation as have been enabled by the global option. The more partial functions that are set then the more computing time the safe functions require.

- Bit 0: Enable safely-reduced speed, safe operating stop
- Bit 1: Enable safe limit switch
- Bit 2: Reserved for functions with absolute reference (such as SE/SN)
- Bit 3: Enable actual value synchronization, 2-encoder system
- Bit 4: Enable external ESR activation (STOP E)
- Bit 5: Enable SG correction / SG override
- Bit 6: Enable the external stop requests / external STOPs
- Bit 7: Enable cam synchronization
- Bit 8: Enable safe cam, pair 1, cam+
- Bit 9: Enable safe cam, pair 1, cam–
- Bit 10: Enable safe cam, pair 2, cam+
- Bit 11: Enable safe cam, pair 2, cam–
- Bit 12: Enable safe cam, pair 3, cam+
- Bit 13: Enable safe cam, pair 3, cam–
- Bit 14: Enable safe cam, pair 4, cam+
- Bit 15: Enable safe cam, pair 4, cam–

Special cases, errors,...

- If bit 1 or a higher bit is set, then bit 0 must also be set since the control system switches to a safe operational stop in response to STOP C, D or E (a configuration alarm is output if an error is detected).
- If an insufficient number of axes/spindles have been enabled for safe operation using the global option, then this data may be overwritten with the value 0000 when booting.

corresponds with...

Global option
Additional references Refer to Section: 5.5, "Enabling safety-related functions"

36902 $MA_SAFE_IS_ROT_AX

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_IS_ROT_AX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotary axis</td>
</tr>
<tr>
<td>Default value: FALSE</td>
<td>Min. input limit: –</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: BOOLEAN</td>
<td></td>
</tr>
</tbody>
</table>

Significance:

This data specifies whether the axis for safe operation is a rotary axis/spindle or linear axis.

- 0: Linear axis
- 1: Rotary axis/spindle

The value set in this MD must be the same as the value set in MD: $MA_IS_ROT_AX. If they are not identical a parameterizing error is displayed.

corresponds with...
36905: $MA_SAFE_MODULO_RANGE

MD number: 36905

$MA_SAFE_MODULO_RANGE

Modulo value, safe cams

<table>
<thead>
<tr>
<th>Default value: 0.0</th>
<th>Min. input limit: 0.0</th>
<th>Max. input limit: 737280.0</th>
</tr>
</thead>
</table>

Change becomes effective after: Power ON
Protection level: 7/2
Units: Degrees
Data type: DOUBLE

Significance: Actual value range within which safe cams for rotary axes are calculated. The axis must be a rotary axis ($MA_SAFE_IS_ROT_AX = 1).

- Modulo correction after +/- 2048 revolutions (i.e. after 737,280 degrees)
- > 0 and multiples of 360 Degrees:
- Modulo correction after this value (e.g. value = 360 Degrees: the actual value range lies between 0 and 359.999 Degrees, i.e. a modulo correction is made after every revolution)

Special cases, errors,...

- If the value set in this data is not 0 or a multiple of 360 degrees, then an appropriate alarm is output when the system boots.
- The cam positions are also checked with respect to the parameterized actual value when the system boots. An appropriate alarm is output if parameterization errors are detected.
- Actual value ranges set in $MA_SAFE_MODULO_RANGE and $MA_MODULO_RANGE must be a multiple integer.

corresponds with...

- MD 30330: $MA_MODULO_RANGE
- MD 36935: $MA_SAFE_CAM_POS_PLUS[n]
- MD 36937: $MA_SAFE_CAM_POS_MINUS[n]

Additional references

Refer to Section 6.8: "Safe software cams (SN)"

36906: $MA_SAFE_CTRLOUT_MODULE_NR

MD number: 36906

$MA_SAFE_CTRLOUT_MODULE_NR

Si drive assignment

<table>
<thead>
<tr>
<th>Default value: 1, 2, 3..</th>
<th>Min. input limit: 1</th>
<th>Max. input limit: 31</th>
</tr>
</thead>
</table>

Change becomes effective after: Power ON
Protection level: 7/2
Units: –
Data type: BYTE

Significance: Index in the data array $MN_SAFE_DRIVE_LOGIC_ADDRESS to assign the drive for SI motion monitoring functions. The same drive must be assigned that was also selected using CTRLOUT_MODULE_NR and DRIVE_LOGIC_ADDRESS.

Special cases, errors,...

corresponds with...
$MA_SAFE_DRIVE_PS_ADDRESS

MD number: 36907

PROFIsafe address of the drive

<table>
<thead>
<tr>
<th>Default value: 0</th>
<th>Min. input limit: –</th>
<th>Max. input limit: –</th>
</tr>
</thead>
</table>

Change becomes effective after: Power ON

Protection level: 7/–

Units: –

Data type: DWORD

Significance: This NCK-MD contains the PROFIsafe address of the drive assigned to this axis. When booting, the drive reads-out this MD. The address must be unique across all of the axes. This MD cannot be written to; the PROFIsafe address must be parameterized in the drive.

Special cases, errors,...: corresponds with...

$MA_SAFE_ENC_INPUT_NR

MD number: 36912

Actual value assignment: Drive encoder number

<table>
<thead>
<tr>
<th>Default value: 1</th>
<th>Min. input limit: 1</th>
<th>Max. input limit: 3</th>
</tr>
</thead>
</table>

Change becomes effective after: Power ON

Protection level: 7/2

Units: –

Data type: BYTE

Significance: Number of the actual value input via which the safety-relevant actual values are acquired.

Special cases, errors,...: corresponds with...

$MA_SAFE_SINGLE_ENC

MD number: 36914

SI single-encoder system

<table>
<thead>
<tr>
<th>Default value: TRUE</th>
<th>Min. input limit: –</th>
<th>Max. input limit: –</th>
</tr>
</thead>
</table>

Change becomes effective after: Power ON

Protection level: 7/2

Units: –

Data type: Boolean

Significance: Value = 1:
- Safety Integrated operates with one encoder for NCK and drive monitoring.

Value = 0:
- Safety Integrated operates with different encoders for NCK and drive monitoring.

Special cases, errors,...: corresponds with...
$MA_SAFE_ENC_IS_LINEAR

MD number: Linear scale

<table>
<thead>
<tr>
<th>Default value: FALSE</th>
<th>Min. input limit: –</th>
<th>Max. input limit: –</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
</tbody>
</table>

Data type: BOOLEAN

Significance: This MD specifies whether a linear or a rotary encoder is connected.

- **0**: A rotary encoder is connected. $MA_SAFE_ENC_RESOL$ is used to specify its resolution and $MA_SAFE_ENC_GEAR_PITCH$, $MA_SAFE_ENC_GEAR_DENOM[n]$ and $MA_SAFE_ENC_GEAR_NUMERA[n]$ are used to convert it to the load side. The MD: $MA_SAFE_ENC_GRID_POINT_DIST$ has no significance.
- **1**: Linear encoder is connected, $MA_SAFE_ENC_GRID_POINT_DIST$ is used to specify its resolution. The MDs: $MA_SAFE_ENC_RESOL$, $MA_SAFE_ENC_GEAR_PITCH$, $MA_SAFE_ENC_GEAR_DENOM[n]$ and $MA_SAFE_ENC_GEAR_NUMERA[n]$ have no significance.

This MD cannot be written to, the encoder type must be parameterized in the drive.

corresponds with...

- For 0:
 - $MA_SAFE_ENC_RESOL$
 - $MA_SAFE_ENC_GEAR_PITCH$
 - $MA_SAFE_ENC_GEAR_DENOM[n]$
 - $MA_SAFE_ENC_GEAR_NUMERA[n]$

- For 1:
 - $MA_SAFE_ENC_GRID_POINT_DIST$

$MA_SAFE_ENC_GRID_POINT_DIST

MD number: Grid spacing, linear scale

<table>
<thead>
<tr>
<th>Default value: 0.01</th>
<th>Min. input limit: 0.000 01</th>
<th>Max. input limit: 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: mm</td>
</tr>
</tbody>
</table>

Data type: DOUBLE

Significance: This MD specifies the grid spacing of the linear scale used here. Not relevant for rotary encoders.

corresponds with...

$MA_SAFE_ENC_RESOL

MD number: Encoder pulses per revolution

<table>
<thead>
<tr>
<th>Default value: 2 048</th>
<th>Min. input limit: 1</th>
<th>Max. input limit: 100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
</tbody>
</table>

Data type: DWORD

Significance: This MD specifies the number of pulses per revolution for a rotary encoder. Not relevant for a linear encoder.

corresponds with...
Data Description

8.1 Machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>MD number</th>
<th>$\text{MA_SAFE_ENC_PULSE_SHIFT}$</th>
<th>Shift factor of the encoder multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 11</td>
<td>Min. input limit: 2</td>
<td>Max. input limit: 18</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
<tr>
<td>Data type: BYTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance:</td>
<td>Shift factor of the multiplication (resolution) of the encoder, that is used for the Safety Integrated monitoring functions in the NCK. The encoder value must be divided by 2 by this factor in order to obtain the number of encoder pulses. A shift factor of 11 corresponds to an encoder multiplication by a factor of 2048. If the drive provides this information, then this MD is automatically internally assigned a value after the drive has booted. If the value changes then Alarm 27036 is output.</td>
<td></td>
</tr>
<tr>
<td>corresponds with...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MD number</th>
<th>$\text{MA_SAFE_ENC_GEAR_PITCH}$</th>
<th>Lead screw pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 10</td>
<td>Min. input limit: 0.1</td>
<td>Max. input limit: 10 000</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: mm</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance:</td>
<td>Gear ratio of the gearbox (gear) between the encoder and load for a linear axis with rotary encoder.</td>
<td></td>
</tr>
<tr>
<td>corresponds with...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MD number</th>
<th>$\text{MA_SAFE_ENC_GEAR_DENOM}[n]: 0 ... 7$</th>
<th>Denominator gearbox ratio encoder/load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 1</td>
<td>Min. input limit: 1</td>
<td>Max. input limit: 2 147 000 000</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
<tr>
<td>Data type: DWORD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance:</td>
<td>Denominator of the gear between encoder and load, i.e. the denominator of the fraction number of encoder revolutions / number of load revolutions n= 0, 1, …, 7 stands for gearbox stages 1, 2, … 8 The actual value is selected using safety-related input signals (SGE).</td>
<td></td>
</tr>
<tr>
<td>corresponds with...</td>
<td>MD 36922: $\text{MA_SAFE_ENC_GEAR_NUMERA}[n]$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MD number</th>
<th>$\text{MA_SAFE_ENC_GEAR_NUMERA}[n]: 0 ... 7$</th>
<th>Numerator gearbox ratio encoder/load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 1</td>
<td>Min. input limit: 1</td>
<td>Max. input limit: 2 147 000 000</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
<tr>
<td>Data type: DWORD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance:</td>
<td>Numerator of the gear between encoder and load, i.e. the numerator of the fraction number of encoder revolutions / number of load revolutions n= 0, 1, …, 7 stands for gearbox stages 1, 2, … 8 The actual value is selected using safety-related input signals (SGE).</td>
<td></td>
</tr>
<tr>
<td>corresponds with...</td>
<td>MD 36921: $\text{MA_SAFE_ENC_GEAR_DENOM}[n]$</td>
<td></td>
</tr>
</tbody>
</table>
36923 $MA_SAFE_INFO_ENC_RESOL$

MD number: 36923
Name: $MA_SAFE_INFO_ENC_RESOL$
Description: safety-relevant encoder resolution
Default value: 0
Min. input limit: –
Max. input limit: –
Change becomes effective after: Power ON
Protection level: 7/–
Units: POSN
Data type: DOUBLE
Significance: Display data: Resolution of the encoder being used in the particular gear stage for the Safety Integrated monitoring functions. With this accuracy, for a single-encoder system, safety-relevant positions can be monitored. If different encoders are used for the Safety Integrated monitoring functions in the drive and in the NCK, then this MD is 0.

36925 $MA_SAFE_ENC_POLARITY$

MD number: 36925
Name: $MA_SAFE_ENC_POLARITY$
Description: Direction reversal actual value
Default value: 1
Min. input limit: –1
Max. input limit: 1
Change becomes effective after: Power ON
Protection level: 7/2
Units: –
Data type: DWORD
Significance: Using this data, the direction of the actual value can be reversed.
- = –1: Direction of rotation reversal
- = 0 or = 1: no direction reversal

corresponds with...

36927 $MA_SAFE_ENC_MOD_TYPE$

MD number: 36927
Name: $MA_SAFE_ENC_MOD_TYPE$
Description: Encoder evaluation type
Default value: 0
Min. input limit: –
Max. input limit: –
Change becomes effective after: Power ON
Protection level: 7/–
Units: –
Data type: BYTE
Significance: Type of the encoder evaluation of this axis used for Safety Integrated. When booting, the encoder evaluation reads-out this type and compares with the value that was last saved here. This MD is then overwritten.

corresponds with...

36928 $MA_SAFE_ENC_IDENT[n]$

MD number: 36928
Name: $MA_SAFE_ENC_IDENT[n]$
Description: Encoder identification
Default value: 0
Min. input limit: –
Max. input limit: –
Change becomes effective after: Power ON
Protection level: 7/–
Units: –
Data type: DWORD
Significance: Identification of the encoder of this axis used for Safety Integrated. When booting, the encoder evaluation reads-out this identification and compares with the last value saved here. This MD is then overwritten.

corresponds with...
r9881: SI motion Sensor Module Node Identifier control
36930 $\text{MD number: } 36930$

$\text{MD number: } 36930$

$\text{SMASAFE_STANDBIL_TOL}$

Zero speed tolerance

Default value: 1
Min. input limit: 0
Max. input limit: 100

Change becomes effective after: Power ON
Protection level: 7/2
Units: mm, degrees

Data type: DOUBLE

Significance:
This MD specifies the tolerance for a safe operating stop. If the difference between the position limit value and position actual value is greater than the tolerance set here when a safe operating stop is selected, then the control system outputs Alarm 27010 with STOP B. The position limit value is the position actual value at the instant that a safe operating stop is selected.

corresponds with...
MD 36956: $\text{SMA_SAFE_PULSE_DISABLE_DELAY}$

36931 $\text{MD number: } 36931$

$\text{MD number: } 36931$

$\text{SMA_SAFE_VELOLIMIT[n]}$: 0 ... 3

Limit value for safely-reduced speed

Default value: 2000
Min. input limit: –
Max. input limit: –

Change becomes effective after: Power ON
Protection level: 7/2
Units: mm/min, rev/min

Data type: DOUBLE

Significance:
This MD defines the limit values for safely-reduced speeds 1, 2, 3 and 4. When SG1, SG2, SG3 or SG4 is selected and the actual speed exceeds this limit value, then the control system outputs Alarm 27011 with the stop response configured in $\text{SMA_SAFE_VELO_STOP_MODE}$ or $\text{SMA_SAFE_VELO_STOP_REACTION}$.

\(n = 0, 1, 2, 3\) stands for the limit value of SG1, SG2, SG3, SG4

Special cases, errors,...
When SBH/SG is active in a configuration with a 1-encoder system, the speed is monitored against the encoder limit frequency. An appropriate alarm is output if this limit is exceeded.

corresponds with...
MD 36961: $\text{SMA_SAFE_VELO_STOP_MODE}$
MD 36963: $\text{SMA_SAFE_VELO_STOP_REACTION}$

36932 $\text{MD number: } 36932$

$\text{MD number: } 36932$

$\text{SMA_SAFE_VELO_OVR_FACTOR[n]}$: 0 ... 15

SG selection values

Default value: 100
Min. input limit: 1
Max. input limit: 100

Change becomes effective after: Power ON
Protection level: 7/2
Units: %

Data type: DOUBLE

Significance:
Limit value corrections for the safely-reduced speeds 2 and 4 can be selected using SGEs and the associated correction value (percentage value) set using this MD.

\(n = 0, 1, \ldots, 15\) stands for override 0, 1, \ldots, 15

Special cases, errors,...
- The “Override for safely-reduced speed” function is enabled using MD 36901 $\text{SMA_SAFE_FUNCTION_ENABLE}$.
- This correction has no effect for the limit values associated with safely-reduced speeds 1 and 3.

Additional references
MD 36978: $\text{SMA_SAFE_OVR_INPUT[n]}$
MD 36931: $\text{SMA_SAFE_VELO_LIMIT[n]}$

Additional references
Refer to Subsection 6.5.4: “Override for safely-reduced speed”
$\text{MA_SAFE_DES_VELO_LIMIT}$

Description: SG setpoint speed limiting

<table>
<thead>
<tr>
<th>MD number</th>
<th>$\text{MA_SAFE_DES_VELO_LIMIT}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0</td>
<td>Min. input limit: 0</td>
</tr>
<tr>
<td>Change becomes effective after: RESET</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td></td>
</tr>
</tbody>
</table>

Significance: This is an evaluation factor to define the setpoint limit from the actual speed limit. The active SG limit value is evaluated using this factor and is entered into the interpolator as setpoint limit. When SBH is selected, a setpoint of 0 is entered. When 100% is entered, the setpoint is limited to the active SG stage. When 0% is entered, the setpoint speed limiting is not active.

Special cases, errors,...
- This MD may have to be altered several times before an optimum setting for the dynamic response of the drives is found. In order that this operation is not made unnecessarily complex, "reset" has been defined as the criterion for being effective.
- This data is not included in the crosswise data comparison with the drive.
- This data is not included in the axial checksum $\text{MA_SAFE_ACT_CHECKSUM}$, as it is a single-channel function.

Additional references
Refer to Section : 11.1 "Limiting the setpoint speed"
36934
$MA_SAFE_POS_LIMIT_PLUS[n]$: 0 ... 1
Upper limit value for safe limit position

| Default value: 100 000 mm | Min. input limit: –2 147 000 | Max. input limit: 2 147 000 |
| Change becomes effective after: Power ON | Protection level: 7/2 | Units: Degrees |

Data type: DOUBLE

Significance: This MD specifies the upper limit value for safe end positions 1 and 2. When SE1 or SE2 is selected and the actual position exceeds this limit, then the control system outputs Alarm 27012 with the stop response configured in $MA_SAFE_POS_STOP_MODE$ and changes over into the SBH mode. If SBH is violated, STOP B and A are initiated as stop response.

$n = 0, 1$ stand for the upper limit value of SE1, SE2

corresponds with...
- MD 36962: $MA_SAFE_POS_STOP_MODE$
- MD 36935: $MA_SAFE_POS_LIMIT_MINUS[n]$
- MD 36901: $MA_SAFE_FUNCTION_ENABLE$

Special cases, errors...
If a lower or identical value is entered in MD $MD_SAFE_POS_LIMIT_PLUS[n]$ than in MD $MA_SAFE_POS_LIMIT_MINUS[n]$, then a parameterizing error is displayed.

Additional references
Refer to Section 6.7: “Safe software limit switches (SE)”

36935
$MA_SAFE_POS_LIMIT_MINUS[n]$: 0 ... 1
Lower limit value for safe limit position

| Default value: –100 000 mm | Min. input limit: –2 147 000 | Max. input limit: 2 147 000 |
| Change becomes effective after: Power ON | Protection level: 7/2 | Units: Degrees |

Data type: DOUBLE

Significance: This MD specifies the lower limit value for safe end positions 1 and 2. When SE1 or SE2 is selected and the actual position is less than this limit value, then the control system outputs Alarm 27012 with the stop response configured in $MA_SAFE_POS_STOP_MODE$ and changes over into the SBH mode. If SBH is violated, STOP B and A are initiated as stop response.

$n = 0, 1$ stand for the lower limit value of SE1, SE2

corresponds with...
- MD 36901: $MA_SAFE_FUNCTION_ENABLE$
- MD 36962: $MA_SAFE_POS_STOP_MODE$
- MD 36934: $MA_SAFE_POS_LIMIT_PLUS[n]$

Special cases, errors...
If a lower or identical value is entered in MD $MD_SAFE_POS_LIMIT_PLUS[n]$ than in MD $MA_SAFE_POS_LIMIT_MINUS[n]$, then a parameterizing error is displayed.

Additional references
Refer to Section 6.7: “Safe software limit switches (SE)”

36936
$MA_SAFE_CAM_POS_PLUS[n]$: 0 ... 3
Plus cams position for safe cams

| Default value: 10 | Min. input limit: –2 147 000 | Max. input limit: 2 147 000 |
| Change becomes effective after: Power ON | Protection level: 7/2 | Units: mm, degrees |

Data type: DOUBLE

Significance: This MD specifies the plus cam position for safe cams SN1+, SN2+, SN3+ and SN4+. If the actual position is greater than this value when the safe cam function is active, then the appropriate safety-relevant output signal (SGA) is set to 1.

If the actual position falls below this value, SGA is set to 0.

$n = 0, 1, 2, 3$ stand for the plus cam position of SN1+, SN2+, SN3+, SN4+
8.1 Machine data for SINUMERIK 840D sl

36936

MD number

$MA_SAFE_CAM_POS_PLUS[n]$: 0 ... 3

Significance:

Plus cams position for safe cams

corresponds with...

- MD 36901: $MA_SAFE_FUNCTION_ENABLE
- MD 36988: $MA_SAFE_CAM_PLUS_OUTPUT[n]

Additional references

Refer to Section 6.8: “Safe software cams (SN)”

36937

MD number

$MA_SAFE_CAM_POS_MINUS[n]$: 0 ... 3

Default value: –10

Min. input limit: –2 147 000

Max. input limit: 2 147 000

Change becomes effective after: Power On

Protection level: 7/2

Units: mm, degrees

Data type: DOUBLE

Significance:

This MD specifies the minus cam position for safe cams SN1–, SN2–, SN3– and SN4–. If the actual position is greater than this value when the safe cam function is active, then the appropriate safety-relevant output signal (SGA) is set to 1. If the actual position falls below this value, SGA is set to 0.

corresponds with...

- MD 36901: $MA_SAFE_FUNCTION_ENABLE
- MD 36989: $MA_SAFE_CAM_MINUS_OUTPUT[n]

Additional references

Refer to Section 6.8: “Safe software cams (SN)”

36940

MD number

$MA_SAFE_CAM_TOL$

Default value: 0.1

Min. input limit: 0.001

Max. input limit: 10

Change becomes effective after: Power ON

Protection level: 7/2

Units: mm, degrees

Data type: DOUBLE

Significance:

Due to the different mounting locations of the encoders and variations in clock cycle and signal transit (propagation times), the cam signals of the two monitoring channels never switch at precisely the same position and never simultaneously. This data specifies the tolerances for all cams as a load-side distance. The monitoring channels may have different signal states for the same cam within this tolerance bandwidth without generating Alarm 27001.

Recommendation: Enter an identical or slightly higher value than that set in MD 36942.

Special cases, errors,...

Additional references

Refer to Section 6.8: “Safe software cams (SN)”

36942

MD number

$MA_SAFE_POS_TOL$

Default value: 0.1

Min. input limit: 0.001

Max. input limit: 360 degree

Change becomes effective after: Power ON

Protection level: 7/2

Units: mm, degrees

Data type: DOUBLE

Significance:

Due to the fact that encoders are not mounted at identical locations and the effect of backlash, torsion, lead screw errors etc. the actual positions sensed simultaneously by the NCK and drive may differ from one another. The tolerance bandwidth for the crosswise comparison of the actual positions in the two monitoring channels is specified in this machine data.
36942
MD number
$MA_SAFE_POS_TOL$
Tolerance, actual value comparison (crosswise)

Special cases, errors,...
- “Finger protection” (approx. 10 mm) is the primary consideration when setting this tolerance value.
- Stop response STOP F is activated when the tolerance bandwidth is violated.

36944
MD number
$MA_SAFE_REFP_POS_TOL$
Tolerance, actual value comparison (referencing)

<table>
<thead>
<tr>
<th>Default value: 0.01</th>
<th>Min. input limit: 0</th>
<th>Max. input limit: 36 degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: mm, degrees</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance:
This machine data specifies the tolerance for checking the actual values after referencing (for incremental encoders) or when powering-up (for absolute encoders). An absolute actual axis position is determined by referencing. A second absolute actual position is calculated from the last stop position that was saved prior to the control being powered-down and the distance traversed since power-on. The control system checks the actual values after referencing on the basis of the two actual positions, the traversed distance and this machine data.

The following factors must be taken into consideration when calculating tolerance values:
- Backlash, leadscrew errors, compensation (max. compensation values for SSFK, sag and temperature compensation), temperature errors, torsion (2-encoder system), gearbox play for selector gearboxes, coarser resolution (2-encoder system), oscillating distance/range for selector gearboxes.
- If these two actual positions deviate from one another by more than the value set in this data – with a valid user agreement – then Alarm 27001 is output with Fault code 1003 and a new user agreement is required for referencing.

Special cases, errors,...
8.1 Machine data for SINUMERIK 840D sl

MD number $MA_SAFE_VELO_X$

Speed limit n_x

<table>
<thead>
<tr>
<th>Default value: 20.0</th>
<th>Min. input limit: 0.0</th>
<th>Max. input limit: 6 000.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: mm/min, rev/min</td>
</tr>
</tbody>
</table>

Data type: DOUBLE

Significance:
This machine data defines the limit speed n_x for the SGA \\("n < n_x."
If this velocity limit is fallen below, SGA "n < n_x" is set.

Additional references
Refer to Section 6.6: "SGA "n < n_x" and "SG active""

MD number $MA_SAFE_STOP_VELO_TOL$

Velocity tolerance for the safe braking ramp.

<table>
<thead>
<tr>
<th>Default value: 300.0</th>
<th>Min. input limit: 0.0</th>
<th>Max. input limit: 12 000.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: mm/min, rev/min</td>
</tr>
</tbody>
</table>

Data type: DOUBLE

Significance:
Tolerance actual velocity for Safe Braking Ramp (SBR).
After the safe braking ramp has been activated (by initiating a Stop B or C), then this tolerance is applied to the actual velocity.
It is not permissible that the actual velocity is greater than the limit that is therefore specified.
Otherwise, a Stop A is initiated; this means that if the drive accelerates, then this is detected as quickly as possible.

Additional references
Refer to Section 6.4: "Safe braking ramp (SBR)"
(a recommended setting and setting formula are specified in this Chapter).
36949

$MA_SAFE_SLIP_VELO_TOL

<table>
<thead>
<tr>
<th>MD number</th>
<th>Speed tolerance, slip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>6.0</td>
</tr>
<tr>
<td>Min. input limit:</td>
<td>0.0</td>
</tr>
<tr>
<td>Max. input limit:</td>
<td>6000.0</td>
</tr>
<tr>
<td>Change becomes effective after:</td>
<td>Power ON</td>
</tr>
<tr>
<td>Protection level:</td>
<td>7/2</td>
</tr>
<tr>
<td>Units:</td>
<td>mm/min, rev/min</td>
</tr>
<tr>
<td>Data type:</td>
<td>DOUBLE</td>
</tr>
</tbody>
</table>

Significance: Velocity difference that, for a 2-encoder system, is tolerated between the motor and load sides without the crosswise data comparison between the drive and NCK signaling an error. MD 36949 is only evaluated if MD $MA_SAFE_FUNCTION_ENABLE, bit 3 is set.

Additional references Refer to Subsection 5.4.6: Actual value synchronization

36950

$MA_SAFE_MODE_SWITCH_TIME

<table>
<thead>
<tr>
<th>MD number</th>
<th>Tolerance time for SGE changeover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value:</td>
<td>0.5</td>
</tr>
<tr>
<td>Min. input limit:</td>
<td>0</td>
</tr>
<tr>
<td>Max. input limit:</td>
<td>10</td>
</tr>
<tr>
<td>Change becomes effective after:</td>
<td>Power ON</td>
</tr>
<tr>
<td>Protection level:</td>
<td>7/2</td>
</tr>
<tr>
<td>Units:</td>
<td>s</td>
</tr>
<tr>
<td>Data type:</td>
<td>DOUBLE</td>
</tr>
</tbody>
</table>

Significance: SGE changeover operations do not take effect simultaneously owing to variations in run times (propagation times) for SGE data transmission in the two monitoring channels. A crosswise data comparison would, in this case, output an error message. This data is used to specify the period of time after SGE changeover operations during which no crosswise comparison of actual values and monitoring results is carried-out (machine data is still compared). The selected monitoring functions continue to operate unhindered in both monitoring channels. A safety-related function is immediately activated in a monitoring channel if selection or changeover is detected in this channel. The different run time (propagation time) is mainly caused by the PLC cycle time.

Special cases, errors,...

Additional references Refer to Section 7.1: "safety-related input/output signals (SGE/SGA)"
$MA_SAFE_VELO_SWITCH_DEL/V$

MD number: 36951

Delay time, speed changeover

<table>
<thead>
<tr>
<th>Default value: 0.1</th>
<th>Min. input limit: 0</th>
<th>Max. input limit: 60</th>
</tr>
</thead>
</table>

Change becomes effective after: Power ON
Protection level: 7/2
Units: s

Data type: DOUBLE

Significance: A timer with this value is started when changing from a high to a lower safely-reduced speed - or when a safe operating stop is selected when the safely-reduced speed function is active.

While the timer is running, the speed continues to be monitored against the last selected speed limit value. During this period, the axis/spindle can be braked, for example, from the PLC user program, without the monitoring function signaling an error and initiating a stop response.

corresponds with...

1. The timer is immediately interrupted as soon as a higher or identical SG limit (i.e. to that which was previously active) is selected.
2. The timer is immediately interrupted if "non-safe operation" (SGE "de-select SBH/ SG=1) is selected.
3. The timer is re-triggered (restarted) if, while the timer is running, a changeover is made to a lower SG limit than was previously active or to SBH.

$MA_SAFE_STOP_SWITCH_TIME_C$

MD number: 36952

Transition time, STOP C to safe operating stop

<table>
<thead>
<tr>
<th>Default value: 0.1</th>
<th>Min. input limit: 0</th>
<th>Max. input limit: 10</th>
</tr>
</thead>
</table>

Change becomes effective after: Power ON
Protection level: 7/2
Units: s

Data type: DOUBLE

Significance: This machine data defines the time period between the initiation of a STOP C and the activation of a safe operating stop.

The parameterized value must be selected as low as possible.

After the time has expired, the drive is monitored for a safe operating stop. If the axis/spindle was still not able to be stopped, STOP B/A is initiated.

corresponds with...

$MA_SAFE_STOP_SWITCH_TIME_D$

MD number: 36953

Transition time, STOP D to safe operating stop

<table>
<thead>
<tr>
<th>Default value: 0.1</th>
<th>Min. input limit: 0</th>
<th>Max. input limit: 60</th>
</tr>
</thead>
</table>

Change becomes effective after: Power ON
Protection level: /2
Units: s

Data type: DOUBLE

Significance: This machine data defines the time period between the initiation of a STOP D and the activation of a safe operating stop.

The parameterized value must be selected as low as possible.

After the time has expired, the drive is monitored for a safe operating stop. If the axis/spindle was still not able to be stopped, STOP B/A is initiated.

corresponds with...
Machine data for SINUMERIK 840D sl

36954

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_STOP_SWITCH_TIME_E</th>
</tr>
</thead>
<tbody>
<tr>
<td>$MA_SAFE_STOP_SWITCH_TIME_E</td>
<td>Transition time, STOP E to safe standstill</td>
</tr>
<tr>
<td>Default value: 0.1</td>
<td>Min. input limit: 0</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td></td>
</tr>
<tr>
<td>Significance:</td>
<td>Time after which a changeover is made from STOP E to a safe operating stop. The parameterized value must be selected as low as possible.</td>
</tr>
<tr>
<td>Special cases, errors,...</td>
<td></td>
</tr>
<tr>
<td>corresponds with...</td>
<td></td>
</tr>
</tbody>
</table>

36955

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_STOP_SWITCH_TIME_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$MA_SAFE_STOP_SWITCH_TIME_F</td>
<td>Transition time STOP F to STOP B</td>
</tr>
<tr>
<td>Default value: 0</td>
<td>Min. input limit: 0</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td></td>
</tr>
<tr>
<td>Significance:</td>
<td>Time after which, for a STOP F with active monitoring functions, a change is made to STOP B. The parameterized value must be selected as low as possible. During this time, e.g., another braking response can be activated using synchronous actions. The changeover is also made if a STOP C/D/E occurs during this time.</td>
</tr>
<tr>
<td>Special cases, errors,...</td>
<td></td>
</tr>
<tr>
<td>corresponds with...</td>
<td></td>
</tr>
</tbody>
</table>

36956

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_PULSE_DISABLE_DELAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$MA_SAFE_PULSE_DISABLE_DELAY</td>
<td>Delay time, pulse cancellation</td>
</tr>
<tr>
<td>Default setting: 0.1</td>
<td>Min. input limit: 0</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td></td>
</tr>
<tr>
<td>Significance:</td>
<td>For a STOP B, the axis is braked along the current limit with speed setpoint 0. After the delay time defined in this data, the braking mode changes to STOP A for pulse cancellation. The parameterized value must be selected as low as possible. The pulses are cancelled earlier than defined in this machine data if the condition for the pulse cancellation is present via MD 36960: $MA_SAFE_STANDSTILL_VELO_TOL or MD 36620: $MA_SERVO_DISABLE_DELAY_TIME. If the timer in this machine data is set to zero, then an immediate transition is made from STOP B to a STOP A (immediate pulse cancellation).</td>
</tr>
<tr>
<td>Special cases, errors,...</td>
<td></td>
</tr>
<tr>
<td>corresponds with...</td>
<td></td>
</tr>
</tbody>
</table>

© Siemens AG, 2006. All rights reserved

SINUMERIK 840D sl/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition 8-263
$MA_SAFE_PULSE_DIS_CHECK_TIME$

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_PULSE_DIS_CHECK_TIME$</th>
<th>Time to check pulse cancellation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0.1</td>
<td>Min. input limit: 0</td>
<td>Max. input limit: 10</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: s</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td>Significance:</td>
<td>This machine data specifies the time when, after pulse cancellation has been requested, the pulses must be actually cancelled. The time that elapses between setting the SGA "enable pulses" and detecting the SGE "pulses cancelled status" may not exceed the time limit set in this data.</td>
</tr>
<tr>
<td>Special cases, errors,...</td>
<td>If this time is exceeded, a STOP A is initiated.</td>
<td></td>
</tr>
</tbody>
</table>

$MA_SAFE_ACCEPTANCE_TST_TIMEOUT$

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_ACCEPTANCE_TST_TIMEOUT$</th>
<th>Time limit for the acceptance test duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 40</td>
<td>Min. input limit: 5</td>
<td>Max. input limit: 100</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: s</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td>Significance:</td>
<td>On the NCK side, a time limit can be entered for the duration of an acceptance test. If an acceptance test takes longer than the time specified in MD 36958, then the NCK terminates the test. The acceptance test status is set to zero on the NCK side. If the acceptance test has been reset, SI power on alarms are again changed over from being able to be acknowledged with a reset to being able to be acknowledged with power on. Alarm 27007 is deleted. This MD is also used to limit the duration of an acceptance test SE. After the programmed time has expired, the acceptance test SE is interrupted and Alarm 27008 is cleared. The software limit positions are then again effective – the same as they are entered in the machine data.</td>
</tr>
<tr>
<td>corresponds with...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$MA_SAFE_STANDSTILL_VELO_TOL$

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_STANDSTILL_VELO_TOL$</th>
<th>Shutdown speed, pulse cancellation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0</td>
<td>Min. input limit: 0</td>
<td>Max. input limit: 6 000</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: mm/min, rev/min</td>
</tr>
<tr>
<td>Data type: DOUBLE</td>
<td>Significance:</td>
<td>When the axis/spindle speed drops below this limit, it is considered to be at a "standstill". In the STOP B mode the pulses are then cancelled (as a result of the transition to STOP A).</td>
</tr>
<tr>
<td>corresponds with...</td>
<td>MD 36956: $MA_SAFE_PULSE_DISABLE_DELAY$</td>
<td></td>
</tr>
</tbody>
</table>
8.1 Machine data for SINUMERIK 840D sl

36961 $MA_SAFE_VELO_STOP_MODE

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_VELO_STOP_MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>36961</td>
<td>Stop response, safely-reduced speed</td>
</tr>
</tbody>
</table>

- **Default value:** 5
- **Min. input limit:** 0
- **Max. input limit:** 14
- **Change becomes effective after:** Power ON
- **Protection level:** 7/2
- **Units:** –
- **Data type:** BYTE

Significance:

The stop response programmed in this machine data is initiated if a limit value for safely-reduced speed 1, 2, 3 or 4 is exceeded.

- The ones position defines the selection of the stop response when the safely-reduced speed is exceeded.
- The tens position defines the behavior when the drive bus fails if a time greater than 0 was parameterized in $MN_SAFE_PULSE_DIS_TIME_BUSFAIL.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stop A</td>
</tr>
<tr>
<td>1</td>
<td>Stop B</td>
</tr>
<tr>
<td>2</td>
<td>Stop C</td>
</tr>
<tr>
<td>3</td>
<td>Stop D</td>
</tr>
<tr>
<td>4</td>
<td>Stop E</td>
</tr>
<tr>
<td>5</td>
<td>SAFE_VELO_STOP_MODE not valid – the stop response is parameterized using MD $MA_SAFE_VELO_STOP_REACTION</td>
</tr>
<tr>
<td>10</td>
<td>=10: Stop A, in addition when the drive bus fails and SG is active, the pulses are not immediately cancelled</td>
</tr>
<tr>
<td>11</td>
<td>=11: Stop B, in addition when the drive bus fails and SG is active, the pulses are not immediately cancelled</td>
</tr>
<tr>
<td>12</td>
<td>=12: Stop C, in addition when the drive bus fails and SG is active, the pulses are not immediately cancelled</td>
</tr>
<tr>
<td>13</td>
<td>=13: Stop D, in addition when the drive bus fails and SG is active, the pulses are not immediately cancelled</td>
</tr>
<tr>
<td>14</td>
<td>=14: Stop E, in addition when the drive bus fails and SG is active, the pulses are not immediately cancelled</td>
</tr>
</tbody>
</table>

Special cases, errors,...

For a value of 5 in this MD, the stop response for each SG stage is selectively defined in $MA_SAFE_VEL_STOP_REACTION.

corresponds with...

- MD 36931: $MA_SAFE_VELO_LIMIT[n]
- MD 36963: $MA_SAFE_VELO_STOP_REACTION[n]

36962 $MA_SAFE_POS_STOP_MODE

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_POS_STOP_MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>36962</td>
<td>Stop response, safe limit position</td>
</tr>
</tbody>
</table>

- **Default value:** 2
- **Min. input limit:** 2
- **Max. input limit:** 3
- **Change becomes effective after:** Power ON
- **Protection level:** 7/2
- **Units:** –
- **Data type:** BYTE

Significance:

When passing a safe limit position 1 or 2, then the stop response specified in this machine data is initiated.

- 2: STOP C
- 3: STOP D
- 4: STOP E

corresponds with...

- MD 36934: $MA_SAFE_POS_LIMIT_PLUS[n]
- MD 36935: $MA_SAFE_POS_LIMIT_MINUS[n]
8.1 Machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>36963</th>
<th>$MA_SAFE_VELO_STOP_REACTION[n]: 0 ... 3</th>
</tr>
</thead>
</table>

- **MD number**: Stop response, safely-reduced speed
- **Default value**: 2
- **Min. input limit**: 0
- **Max. input limit**: 14
- **Change becomes effective after**: Power ON
- **Protection level**: 7/2
- **Units**: –
- **Data type**: BYTE

Significance:
- The stop response programmed in this machine data is initiated if a limit value for safely-reduced speed 1, 2, 3 or 4 is exceeded.
- \(n \) = 0, 1, 2, 3 stands for SG1, SG2, SG3, SG4
- The ones position defines the SG-specific selection of the stop response when the safely-reduced speed is exceeded.
- The tens position defines the behavior when the drive bus fails on an SG-specific basis if a time greater than 0 was parameterized in $MN_SAFE_PULSE_DIS_TIME_BUSFAIL.
- Value means:
 - 0: Stop A
 - 1: Stop B
 - 2: Stop C
 - 3: Stop D
 - 4: Stop E
 - 10: Stop A, in addition, when the drive bus fails, the pulses are not immediately cancelled if this SG stage is active.
 - 11: Stop B, in addition, when the drive bus fails, the pulses are not immediately cancelled if this SG stage is active.
 - 12: Stop C, in addition, when the drive bus fails, the pulses are not immediately cancelled if this SG stage is active.
 - 13: Stop D, in addition, when the drive bus fails, the pulses are not immediately cancelled if this SG stage is active.
 - 14: Stop E, in addition, when the drive bus fails, the pulses are not immediately cancelled if this SG stage is active.

Special cases, errors,...
- This function is only active when MD 36961 has the value 5.

corresponds with...
- MD 10089: $MA_SAFE_PULSE_DIS_TIME_BUSFAIL
- MD 36961: $MA_SAFE_VELO_STOP_MODE
$MA_SAFE_IPO_STOP_GROUP$

MD number: Grouping, safety IPO response

<table>
<thead>
<tr>
<th>Default value: 0</th>
<th>Min. input limit: 0</th>
<th>Max. input limit: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: RESET</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
</tbody>
</table>

Data type: BYTE

Significance: This MD is only effective for Safety Integrated axes/spindles. It influences the channel-wide IPO response distribution of Safety Integrated.

- **0** = default: All other axes/spindles in the channel are notified of the IPO stop response of this axis.
- **1** = For internal STOPs, the axes and machining spindles, interpolating with the axis involved, are also additionally influenced via the initiated safety alarms. On the other hand, other axes/spindles in the channel continue to operate without any disturbance.

For external STOPs (without alarm) all of the other axes/spindles remain unaffected by the safety axis/spindle stop. This allows, for example, the pulses of the spindle to be safely cancelled (using an external STOP A). This means that the spindle can be manually rotated and the axes can still be safely monitored while it is moving.

If, in some machining situations, the other axes/spindles should stop together with the safety axis/spindle, then the user is responsible in implementing this using PLC or synchronous action logic combinations.

$MA_SAFE_PARK_ALARM_SUPPRESS$

MD number: Alarm suppression for parking axis

<table>
<thead>
<tr>
<th>Default value: FALSE</th>
<th>Min. input limit: –</th>
<th>Max. input limit: –</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
</tbody>
</table>

Data type: BOOLEAN

Significance: This MD is only effective for Safety Integrated axes/spindles.

- **0** = Default: Alarms 27000/A01797 are displayed when selecting parking.
- **1** = Alarms 27000/A01797 are not displayed when selecting parking. This is necessary for axes that are disconnected from one another on the encoder side during the machining process (e.g. dressing axes). Alarms are displayed when parking operation is subsequently de-selected.
36966: $MA_SAFE_BRAKETEST_TORQUE

MD number: Holding torque, brake test

<table>
<thead>
<tr>
<th>Default value: 5</th>
<th>Min. input limit: 0</th>
<th>Max. input limit: 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: %</td>
</tr>
</tbody>
</table>

Data type: DOUBLE

Significance: This MD specifies the torque or force when testing the mechanical brake system. The holding brake must be capable of applying this torque without the axis starting to slip. This MD must be at least 10 % above the actual torque when selecting the brake test, i.e. with the brake open. This guarantees that if the brake is defective, the motor can again brake the axis. If this is not the case, the brake test is aborted with Alarm 20095. If drive parameter p1532 is not correctly parameterized and if bit 0 of MD $MA_SAFE_BRAKETEST_CONTROL is not set, then the required safety margin is increased by twice the difference between the real torque and the parameterization in parameter p1532: Torque limit, offset.

Additional references
Refer to Section 7.4: “Safe brake test (SBT)”

36967: $MA_SAFE_BRAKETEST_POS_TOL

MD number: Position tolerance, brake test

<table>
<thead>
<tr>
<th>Default value: 1</th>
<th>Min. input limit: –</th>
<th>Max. input limit: –</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: mm/degrees</td>
</tr>
</tbody>
</table>

Data type: DOUBLE

Significance: Maximum position tolerance when testing the mechanical brake system. If the axis position deviates from the position by more than this tolerance, when the brake test is selected, then the brake test is aborted. The corresponding test function is enabled using MD $MA_FIXED_STOP_MODE, bit 1

Additional references
Refer to Section 7.4: “Safe brake test (SBT)”

36968: $MA_SAFE_BRAKETEST_CONTROL

MD number: Sequence check for the brake test

<table>
<thead>
<tr>
<th>Default value: 0</th>
<th>Min. input limit: 0</th>
<th>Max. input limit: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
</tbody>
</table>

Data type: DWORD

Significance: Sequence check for the brake test.

- Bit 0: Select the average value for the torque limiting
- 0: Drive parameter p1532: Torque limit offset, is used as the average value of the torque limiting.
- 1: The measured torque at the instant in time that the brake test is selected is used as the average value of the torque limit.

Additional references
Refer to Section 7.4: “Safe brake test (SBT)”
Description of the parameterization of the SGE machine data MD 36970 to MD 36978

This machine data involves eight-digit hexadecimal numbers, where each digit has a different significance that is now explained:

Coding of the input assignment

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
<th>xx</th>
<th>nn</th>
<th>Permissible values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Inversion</td>
<td>0, 8</td>
<td>0: No inversion</td>
<td>8: Inversion before processing</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Segment No.</td>
<td>0, 4</td>
<td>4: Internal image in the system memory (system variable)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>Module No.</td>
<td>01–02</td>
<td>01: Addressing the internal SPL interface A_OUTSI</td>
<td>02: Addressing the external SPL interface (only for input signals, A_INSE)</td>
<td></td>
</tr>
<tr>
<td>xx</td>
<td>Sub-module No.</td>
<td>01–02</td>
<td>Index of the system variable word (each 32 bit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nn</td>
<td>I/O No.</td>
<td>01–20</td>
<td>Bit number in the system variable word $A_OUTSID[xx]$, $A_INSED[xx]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If several output signals are set, then the signal involved is first inverted. The (in some cases inverted) output signals are then AND’ed and the result is output at the terminal.

Note

The maximum input value for all axial NCK_SGE configured machine data is 84020220. An incorrect entry will be detected the next time the system boots and flagged using Alarm 27033.
8.1 Machine data for SINUMERIK 840D sl

36970

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_SVSS_DISABLE_INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significance:</td>
<td>This machine data defines the NCK input to select/de-select the SBH and SG functions</td>
</tr>
</tbody>
</table>
| **Structure:** | Signal Means
= 0 SG or SBH is selected
= 1 SG and SBH are de-selected
Structure: Refer to the coding of the input assignment |
| **Special cases, errors,...** |
* Input value of 0 means: There is no assignment, the input remains fixed at 0, SG and SBH cannot be de-selected
* Input value of 80 00 00 00 means: There is no assignment, the input remains fixed at 1
* If MD bit 31 is set, then the signal is processed inverted (i = 8). |
| **corresponds with...** | MD 36970: $MA_SAFE_SVSS_DISABLE_INPUT |
| **References:** | |

36971

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_SS_DISABLE_INPUT</th>
</tr>
</thead>
</table>
| **Significance:** | Assignment of the NCK input to de-select the safe operating stop function.
Structure: Refer to the coding of the input assignment
Assignment of the terminal signal level to the safe functions if safely-reduced speed or safe operating stop has been activated.
Signal Means
= 0 Safe operating stop is selected
= 1 Safe operating stop is de-selected (only if STOP C, D or E has not been activated by other functions) |
| **Special cases, errors,...** |
* If MD bit 31 is set, then the signal is processed inverted (i = 8).
* This input is of no significance if SG and SBH have been de-selected (refer to $MA_SAFE_SVSS_DISABLE_INPUT). |
| **corresponds with...** | MD 36970: $MA_SAFE_SVSS_DISABLE_INPUT |
| **References:** | |
36972 $MA_SAFE_VELO_SELECT_INPUT[n]$: 0 ... 1

<table>
<thead>
<tr>
<th>MD number</th>
<th>Input assignment, SG selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0</td>
<td>Min. input limit: –</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DWORD</td>
<td></td>
</tr>
</tbody>
</table>

Significance:
This machine data defines the two inputs to select SG1, SG2, SG3 or SG4.
Structure: Refer to the coding of the input assignment
n = 1, 0 stand for bit 1, 0 to select from SG1 to SG4
Assignment of the input bits to the safely-reduced speeds:
<table>
<thead>
<tr>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Selected SG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>SG1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>SG2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>SG3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>SG4</td>
</tr>
</tbody>
</table>

Special cases, errors,...
If the MD bits 31 are set, then the signal is processed inverted (i = 8).
corresponds with... MD 36970: $MA_SAFE_SVSS_DISABLE_INPUT$

36973 $MA_SAFE_POS_SELECT_INPUT$

<table>
<thead>
<tr>
<th>MD number</th>
<th>Input assignment, SE selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0</td>
<td>Min. input limit: –</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DWORD</td>
<td></td>
</tr>
</tbody>
</table>

Significance:
This machine data defines the input to select the safe limit position 1 or 2.
Structure: Refer to the coding of the input assignment
Signal Means
0 SE1 is active
1 SE2 is active

Special cases, errors,...
If MD bit 31 is set, then the signal is processed inverted (i = 8).
corresponds with... MD 36970: $MA_SAFE_SVSS_DISABLE_INPUT$

36974 $MA_SAFE_GEAR_SELECT_INPUT[n]$: 0 ... 2

<table>
<thead>
<tr>
<th>MD number</th>
<th>Input assignment, gearbox ratio selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value: 0</td>
<td>Min. input limit: –</td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
</tr>
<tr>
<td>Data type: DWORD</td>
<td></td>
</tr>
</tbody>
</table>

Significance:
Assignment of the input terminals for selecting the gear ratio (gear stage).
Structure: Refer to the coding of the input assignment
n = 2, 1, 0 stand for bit 2, 1, 0 to select gearbox stages 1 to 8
<table>
<thead>
<tr>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>active gearbox stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Stage 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Stage 2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Stage 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Stage 8</td>
</tr>
</tbody>
</table>

Special cases, errors,...
If the MD bits 31 are set, then the signal is processed inverted (i = 8).
corresponds with... MD 36970: $MA_SAFE_SVSS_DISABLE_INPUT$
36977

MD number: $MA_SAFE_EXT_STOP_INPUT[n]$: 0 ... 3

Input assignment, external brake request

<table>
<thead>
<tr>
<th>Default value: 0</th>
<th>Min. input limit: –</th>
<th>Max. input limit: –</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
</tbody>
</table>

Data type: DWORD

Significance: This data defines the NCK inputs to select/de-select the external brake requests.

- $n = 0$: Assignment for “de-select external STOP A” (SH, pulse cancellation)
- $n = 1$: Assignment for “de-select external STOP C” (braking at the current limit)
- $n = 2$: Assignment for “de-select external STOP D” (braking along a path)
- $n = 3$: Assignment for “de-select external STOP E” (ESR, braking along a path)

Special cases, errors,...

- If the MD bits 31 are set, then the signal is processed inverted ($i = 8$). The signal “de-select external STOP A” can not be parameterized inverted. In the case of an error, a parameterizing error is signaled

Additional references

- MD 36970: $MA_SAFE_SVSS_DISABLE_INPUT$

36978

MD number: $MA_SAFE_OVR_INPUT[n]$: 0 ... 3

Input assignment for SG override

<table>
<thead>
<tr>
<th>Default value: 0</th>
<th>Min. input limit: –</th>
<th>Max. input limit: –</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
</tr>
</tbody>
</table>

Data type: DWORD

Significance: Assigns the NCK inputs for the correction of the limit value of the safely-reduced speeds 2 and 4.

- Structure: Refer to the coding of the input assignment
- $n = 3, 2, 1, 0$ stand for correction selection bits 3, 2, 1, 0

Assigns the input bits to the SG correction values:

<table>
<thead>
<tr>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Correction 0 is selected
- Correction 1 is selected

Special cases, errors,...

- The function “correction, safely-reduced speed” is enabled using MD 36901: $MA_SAFE_FUNCTION_ENABLE$, bit 5.
- If the MD bits 31 are set, then the signal is processed inverted ($i = 8$).

Additional references

- MD 36932: $MA_SAFE_VELO_OVR_FACTOR[n]$

Refer to Subsection 6.5.4: “Override for safely-reduced speed”, refer to MD 36970: $MA_SAFE_SVSS_DISABLE_INPUT$
8.1 Machine data for SINUMERIK 840D sl

Description of the parameterization of the SGA machine data MD 36980 to MD 36990

Coding of the output assignment

<table>
<thead>
<tr>
<th>is</th>
<th>mm</th>
<th>xx</th>
<th>nn</th>
<th>Permissible values</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Inversion</td>
<td></td>
<td></td>
<td>0, 8</td>
<td>0: No inversion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8: Inversion before processing</td>
</tr>
<tr>
<td>s</td>
<td>Segment No.</td>
<td></td>
<td></td>
<td>0, 4</td>
<td>4: Internal image in the system memory (system variable)</td>
</tr>
<tr>
<td>mm</td>
<td>Module No.</td>
<td>01</td>
<td></td>
<td>01: Addressing the internal SPL interface A_{INSI}</td>
<td></td>
</tr>
<tr>
<td>xx</td>
<td>Sub-module No.</td>
<td>01–02</td>
<td></td>
<td>Index of the system variable word (each 32 bit)</td>
<td></td>
</tr>
<tr>
<td>nn</td>
<td>I/O No.</td>
<td>01–20</td>
<td></td>
<td>Bit number in the system variable word $A_{INSI}[xx]$</td>
<td></td>
</tr>
</tbody>
</table>

Note

The maximum input value for all axial NCK_SGA configuring machine data is 84010220. An incorrect entry will be detected the next time the system boots and flagged using Alarm 27033.
8.1 Machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_SVSS_STATUS_OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output assignment, SBH/SG active</td>
</tr>
</tbody>
</table>

- **Default value:** 0
- **Min. input limit:** –
- **Max. input limit:** –
- **Change becomes effective after:** Power ON
- **Protection level:** 7/2
- **Units:** –
- **Data type:** DWORD

Significance:
Assigns the output to signal the status of the functions safely-reduced speed and safe operating stop.

- = 0 SG and SBH are not active
- = 1 SG or SBH is active

Special cases, errors...
- Input value of 0 means: There is no assignment, the output remains unaffected
- Input value of 80 00 00 00 means: There is no assignment, the output remains fixed at 1
- If a single output signal is connected to a terminal, the following applies: If MD bit 31 is set, then the signal is processed inverted (i = 8).
- If several output signals are connected to the same terminal, the following applies: If MD bit 31 is set (i = 8), then the relevant signal is initially inverted. The (in some cases inverted) output signals are then AND’ed and the result is output at the terminal.

Additional references
Refer to MD 36970: $MA_SAFE_SVSS_DISABLE_INPUT
$MA_SAFE_SS_STATUS_OUTPUT$

<table>
<thead>
<tr>
<th>MD number</th>
<th>Description</th>
<th>Default value: 0</th>
<th>Min. input limit: –</th>
<th>Max. input limit: –</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output assignment for SBH active</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance:
This machine data defines the output or the system variable for the “SBH active” signal. Structure: Refer to the coding of the output assignment

- **Signal Means**
 - = 0 SBH is not active
 - = 1 SBH is active

Special cases, errors,...
If MD bit 31 is set, then the signal is processed inverted.

Additional references
Refer to MD 36980: $MA_SAFE_SVSS_DISABLE_OUTPUT$

$MA_SAFE_VELO_STATUS_OUTPUT[n]$: 0 ... 1

<table>
<thead>
<tr>
<th>MD number</th>
<th>Description</th>
<th>Default value: 0</th>
<th>Min. input limit: –</th>
<th>Max. input limit: –</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output assignment active SG selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change becomes effective after: Power ON</td>
<td>Protection level: 7/2</td>
<td>Units: –</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significance:
This machine data defines the outputs or the system variables for the signals “SG active bit 0” and “SG active bit 1”. Structure: Refer to the coding of the output assignment

- **n = 1, 0** stands for SG active, bits 1, 0
- **SG active**
 - Bit 1 = 0 means SG1 active, if SBH/SG are active and SBH is not active
 - Bit 0 = 0 SBH active, if SBH/SG are active and SBH is active
 - Bit 1 = 1 SG2 active
 - Bit 0 = 1 SG3 active
 - Bit 1 = 1 SG4 active

Special cases, errors,...
If MD bit 31 is set, then the signal is processed inverted.

Additional references
Refer to MD 36980: $MA_SAFE_SVSS_DISABLE_OUTPUT$
$MA_SAFE_VELO_X_STATUS_OUTPUT

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_VELO_X_STATUS_OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Min. input limit</td>
<td>–</td>
</tr>
<tr>
<td>Max. input limit</td>
<td>–</td>
</tr>
<tr>
<td>Change becomes effective after</td>
<td>Power ON</td>
</tr>
<tr>
<td>Protection level</td>
<td>7/2</td>
</tr>
<tr>
<td>Data type</td>
<td>DWORD</td>
</tr>
</tbody>
</table>

Significance:
This machine data defines the output or the system variable for the signal “$n < n_x$.”

Structure: Refer to the coding of the output assignment

- **Signal**
 - *Means* the actual speed is higher than the limit speed in $MA_SAFE_VELO_X$.
 - *1* means the actual speed is lower or equal to the limit speed.

corresponds with...

- MD 36946:$MA_SAFE_VELO_X$ - Special cases, errors,...
 - If MD bit 31 is set, then the signal is processed inverted.

Additional references
Refer to MD 36980: $MA_SAFE_SVSS_DISABLE_OUTPUT

$MA_SAFE_REFP_STATUS_OUTPUT

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_REFP_STATUS_OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Min. input limit</td>
<td>0</td>
</tr>
<tr>
<td>Max. input limit</td>
<td>–</td>
</tr>
<tr>
<td>Change becomes effective after</td>
<td>Power ON</td>
</tr>
<tr>
<td>Protection level</td>
<td>7/2</td>
</tr>
<tr>
<td>Data type</td>
<td>DWORD</td>
</tr>
</tbody>
</table>

Significance:
This machine data specifies the output for the "axis safely referenced" signal.

- **Signal**
 - *0* means the axis is not safely referenced (i.e., the safety-relevant end position monitoring is inactive!)
 - *1* means the axis is safely referenced

Special cases, errors,...
If MD bit 31 is set, then the signal is processed inverted.

Additional references
Refer to MD 36980: $MA_SAFE_SVSS_DISABLE_OUTPUT

$MA_SAFE_CAM_PLUS_OUTPUT[n]: 0 ... 3

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_CAM_PLUS_OUTPUT[n]: 0 ... 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default value</td>
<td>0</td>
</tr>
<tr>
<td>Min. input limit</td>
<td>–</td>
</tr>
<tr>
<td>Max. input limit</td>
<td>–</td>
</tr>
<tr>
<td>Change becomes effective after</td>
<td>Power ON</td>
</tr>
<tr>
<td>Protection level</td>
<td>7/2</td>
</tr>
<tr>
<td>Data type</td>
<td>DWORD</td>
</tr>
</tbody>
</table>

Significance:
This machine data specifies the outputs for the cam signals SN1+ to SN4+.

- **n = 0, 1, 2, 3** stands for the assignment of plus cams SN1+, SN2+, SN3+, SN4+
- **Signal**
 - *0* means the axis is located to the left of the cam (actual value < cam position)
 - *1* means the axis is located to the right of the cam (actual value > cam position)

Special cases, errors,...
If MD bit 31 is set, then the signal is processed inverted.

Additional references
Refer to MD 36980: $MA_SAFE_SVSS_DISABLE_OUTPUT
(Also refer to Section 6.8: Safe software cams, output assignment)
Data Description

8.1 Machine data for SINUMERIK 840D sl

<table>
<thead>
<tr>
<th>36989</th>
<th>MD number</th>
<th>$MA_SAFE_CAM_MINUS_OUTPUT[n]$: 0 ... 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output assignment, SN1– to SN4–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default value: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min. input limit: –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. input limit: –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change becomes effective after: Power ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection level: 7/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Units:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data type: DWORD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significance:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This machine data defines the outputs for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the minus cams SN1– to SN4–.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 0, 1, 2, 3 corresponds to the assignment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for minus cams SN1–, SN2–, SN3–, SN4–.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Axis is located to the left of the cam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(actual value < cam position)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>= 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Axis is located to the right of the cam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(actual value > cam position)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special cases, errors,...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>– In order to generate a cam signal to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>identify the range, a cam must be negated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and must be parameterized with another cam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at the same output.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional references</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refer to MD 36980: $MA_SAFE_SVSS_DISABLE_OUTPUT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(also refer to Section 6.8: Safe software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cams, output assignment)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>36990</th>
<th>MD number</th>
<th>$MA_SAFE_ACT_STOP_OUTPUT[n]$: 0...3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output assignment of the active STOPs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default value: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min. input limit: –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. input limit: –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change becomes effective after: Power ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection level: 7/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Units: –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data type: DWORD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significance:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Assignment of the output terminals to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>display the stops that are presently</td>
<td></td>
</tr>
<tr>
<td></td>
<td>active.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index = 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>assignment for “STOP A/B is active”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>assignment for “STOP C is active”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index = 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>assignment for “STOP D is active”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index = 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>assignment for “STOP E is active”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special cases, errors,...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>corresponds with...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional references</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refer to MD 36980: $MA_SAFE_SVSS_DISABLE_OUTPUT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>36992</th>
<th>MD number</th>
<th>$MA_SAFE_CROSSCHECK_CYCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Displays the axial crosswise comparison</td>
<td></td>
</tr>
<tr>
<td></td>
<td>clock cycle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Default value: 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Min. input limit: –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. input limit: –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change becomes effective after: Power ON</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection level: 7/2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Units: s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data type: DOUBLE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Significance:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Display data: Indicates the effective axial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>comparison clock cycle in seconds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>This is obtained from INFO_SAFETY_CYCLE_</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIME and the number of data to be compared</td>
<td></td>
</tr>
<tr>
<td></td>
<td>crosswise.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The displayed axial value depends on the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>associated drive module.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Special cases, errors,...</td>
<td></td>
</tr>
</tbody>
</table>

© Siemens AG, 2006. All rights reserved
SINUMERIK 840D sl/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition 8-277
8.1 Machine data for SINUMERIK 840D sl

Data Description

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_CONFIG_CHANGE_DATE[n]$: n = 0...4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/time of the last change SI-NCK-MD</td>
<td></td>
</tr>
</tbody>
</table>

- **Default value**: STRING
- **Min. input limit**: –
- **Max. input limit**: –
- **Change becomes effective after**: Restart
- **Protection level**: 7/–
- **Units**: –
- **Data type**: STRING
- **Significance**: Display data: Date and time of the last configuration change of safety-related NCK machine data.
- **Special cases, errors,...**

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_PREV_CONFIG[n]$: n = 0...6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data, previous safety configuration</td>
<td></td>
</tr>
</tbody>
</table>

- **Default value**: 0
- **Min. input limit**: 0
- **Max. input limit**: 4294967295
- **Change becomes effective after**: Power ON
- **Protection level**: 7/–
- **Units**: –
- **Data type**: DWORD
- **Significance**: Buffer memory to save previous safety configuration data
 - Index[0]: Status flag bit of the change history
 - Index[1]: Previous value, function enable
 - Index[2]: Previous value, reference checksum
 - Index[3]: Last value, function enable before loading standard data
 - Index[4]: Last value, reference checksum before loading standard data
- **Special cases, errors,...**

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_ST_ANDSTILL_POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standstill position</td>
<td></td>
</tr>
</tbody>
</table>

- **Default value**: 0
- **Min. input limit**: –
- **Max. input limit**: –
- **Change becomes effective after**: Power ON
- **Protection level**: 0/0
- **Units**: –
- **Data type**: DWORD
- **Significance**: The position at which the axis has currently stopped is displayed in this MD.
 - To be able to perform a plausibility check on the axis referencing when the control system is powered-up the next time, the current axis position is permanently saved (in a non-volatile fashion) when the following events take place:
 - When safe operating stop (SBH) is selected
 - Cyclically when SE/SN is active
- **Special cases, errors,...** Any manual changes to the MD are detected the next time that the control is powered-up (plausibility check). A new user agreement is required after referencing.
Data Description

36997

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_ACKN</th>
</tr>
</thead>
<tbody>
<tr>
<td>User agreement</td>
<td></td>
</tr>
</tbody>
</table>

- **Default value:** 0
- **Min. input limit:** –
- **Max. input limit:** –
- **Change becomes effective after:** Power ON
- **Protection level:** 7/2
- **Units:** –
- **Data type:** DWORD
- **Significance:** The status of the user agreement is displayed in this machine data. The user can confirm or cancel his “user agreement” using an appropriate screen. If it is internally detected in the software that the reference to the machine has been lost, then it is automatically cancelled (e.g. when changing over gear ratios or when referencing, the plausibility check when comparing with the saved stop position fails).
- **Special cases, errors,...** Any manual changes to the MD are detected the next time that the control is powered-up (plausibility check). A new user agreement is required after referencing.

36998

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_ACT_CHECKSUM[0,1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual checksum</td>
<td></td>
</tr>
</tbody>
</table>

- **Default value:** 2
- **Min. input limit:** –
- **Max. input limit:** –
- **Change becomes effective after:** Power ON
- **Protection level:** 7/–
- **Units:** –
- **Data type:** DWORD
- **Significance:** The actual checksum – calculated after power on or a reset – over the current values of safety-related machine data is entered here.

0: Axial monitoring functions and global NC machine data

1: HW component IDs

36999

<table>
<thead>
<tr>
<th>MD number</th>
<th>$MA_SAFE_DES_CHECKSUM[0,1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference checksum</td>
<td></td>
</tr>
</tbody>
</table>

- **Default value:** 0
- **Min. input limit:** –
- **Max. input limit:** –
- **Change becomes effective after:** Restart
- **Protection level:** 7/2
- **Units:** –
- **Data type:** DWORD
- **Significance:** This machine data contains the reference checksum over the actual values of safety-related machine data that was saved during the last machine acceptance test.

0: Axial monitoring functions and global NC machine data

1: HW component IDs
$MA_\text{FIXED_STOP_MODE}$

<table>
<thead>
<tr>
<th>MD number</th>
<th>Description</th>
<th>Default value</th>
<th>Min. input limit</th>
<th>Max. input limit</th>
<th>Change becomes effective after</th>
<th>Protection level</th>
<th>Units</th>
<th>Data type</th>
<th>Significance</th>
</tr>
</thead>
</table>
| 37000 | Travel to fixed endstop mode | 0 | 0 | 3 | Power ON | 7/2 | – | BYTE | This machine data defines how the "Travel to fixed stop" function can be started.
0: Travel to fixed endstop not available (option missing).
1: Travel to fixed stop can be started from the NC program with command FXS[0,1] =1.
2: The function is only controlled from the PLC
3: NCK and PLC are peers [same priority] (user ensures synchronization) |
8.2 Parameters for SINAMICS S120

The following parameters are available:

- Safety parameters for the Control Unit
- Safety parameters for the Motor Modules

Parameter numbers

The parameter number consists of a “p” or “r” as suffix, followed by the parameter number and the index (optional).

Examples of how the number is represented in the parameter list:

- p... Setting parameters (can be read and written to)
- r... Visualization parameters (read-only)
- p0918 Setting parameter 918
- p0099[0...3] Setting parameter 99, indices 0 to 3
- p1001[0...n] Setting parameter 1001, indices 0 to n (n = configurable)
- r0944 Visualization parameter 944

Other examples of the notation used in the documentation:

- p1070[1] Setting parameter 1070, index 1
- p2098[1].3 Setting parameter 2098, index 1, bit 3
- r0945[2](3) Visualization parameter 945, index 2 of drive object 3
- p0795.4 Setting parameter 795, bit 4

The possible data types of parameter values are as follows:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I8</td>
<td>Integer8 8 Bit integer number</td>
</tr>
<tr>
<td>I16</td>
<td>Integer16 16 Bit integer number</td>
</tr>
<tr>
<td>I32</td>
<td>Integer32 32 Bit integer number</td>
</tr>
<tr>
<td>U8</td>
<td>Unsigned8 8 Bit without sign</td>
</tr>
<tr>
<td>U16</td>
<td>Unsigned16 16 Bit without sign</td>
</tr>
<tr>
<td>U32</td>
<td>Unsigned32 32 Bit without sign</td>
</tr>
<tr>
<td>Float</td>
<td>Floating point Floating point number</td>
</tr>
</tbody>
</table>

For a complete list of the parameters in the SINAMICS S120 drive system, refer to:

References: /LH1/ SINAMICS S List Manual
8.2 Parameters for SINAMICS S120

8.2.1 Parameter overview

When copying, the parameters with grey background are not taken into consideration. The machine manufacturer must manually enter this data.

Table 8-2 Parameters for SINAMICS S120

<table>
<thead>
<tr>
<th>No.</th>
<th>Designators for SINAMICS S120</th>
<th>Equivalent MD for 840D sl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>p9500</td>
<td>SI motion, monitoring clock cycle</td>
<td>10090 MN_SAFETY_SYSCLK_TIME_RATIO</td>
</tr>
<tr>
<td>p9501</td>
<td>SI motion, enable safety-relevant functions</td>
<td>36901 SMA_SAFE_FUNCTION_ENABLE</td>
</tr>
<tr>
<td>p9502</td>
<td>SI motion, axis type</td>
<td>36902 SMA_SAFE_IS_ROT_AX</td>
</tr>
<tr>
<td>p9505</td>
<td>SI motion, modulo value for SN</td>
<td>36905 SMA_SAFE_MODULE_RANGE</td>
</tr>
<tr>
<td>p9516</td>
<td>SI motion, motor encoder configuration, safety-relevant functions</td>
<td>36916 SMA_SAFE_ENC_IS_LINEAR</td>
</tr>
<tr>
<td>p9517</td>
<td>SI motion, linear scale, grid division</td>
<td>36917 SMA_SAFE_ENC_GRID_POINT_DIST</td>
</tr>
<tr>
<td>p9518</td>
<td>SI motion, encoder pulses per revolution</td>
<td>36918 SMA_SAFE_ENC_RESOL</td>
</tr>
<tr>
<td>p9519</td>
<td>SI motion, fine resolution G1_XIST1</td>
<td>36919 SMA_SAFE_ENC_PULSE_SHIFT</td>
</tr>
<tr>
<td>p9520</td>
<td>SI motion, spindle pitch</td>
<td>36920 SMA_SAFE_ENC_GEAR_PITCH</td>
</tr>
<tr>
<td>p9521</td>
<td>SI motion, denominator, gearbox ratio encoder/load</td>
<td>36921 SMA_SAFE_ENC_GEAR_DENOM[n]</td>
</tr>
<tr>
<td>p9522</td>
<td>SI motion, numerator, gearbox ratio encoder/load</td>
<td>36922 SMA_SAFE_ENC_GEAR_NUMER[A][n]</td>
</tr>
<tr>
<td>p9526</td>
<td>SI motion, encoder assignment control</td>
<td></td>
</tr>
<tr>
<td>p9530</td>
<td>SI motion, standstill (stop) tolerance</td>
<td>36930 SMA_SAFE_STANDSTILL_TOL</td>
</tr>
<tr>
<td>p9531</td>
<td>SI motion, SG limit values</td>
<td>36931 SMA_SAFE_VELO_LIMIT[n]</td>
</tr>
<tr>
<td>p9532</td>
<td>SI motion, SG override factor</td>
<td>36932 SAFE_VELO_OVR_FACTOR[n]</td>
</tr>
<tr>
<td>p9534</td>
<td>SI motion, SE upper limit values</td>
<td>36934 SMA_SAFE_POS_LIMIT_PLUS[n]</td>
</tr>
<tr>
<td>p9535</td>
<td>SI motion, SE lower limit values</td>
<td>36935 SMA_SAFE_POS_LIMIT_MINUS[n]</td>
</tr>
<tr>
<td>p9536</td>
<td>SI motion, SN plus cams position</td>
<td>36936 SMA_SAFE_CAM_POS_PLUS[n]</td>
</tr>
<tr>
<td>p9537</td>
<td>SI motion, SN minus cams position</td>
<td>36937 SMA_SAFE_CAM_POS_MINUS[n]</td>
</tr>
<tr>
<td>p9540</td>
<td>SI motion, SN tolerance</td>
<td>36940 SMA_SAFE_CAM_TOL</td>
</tr>
<tr>
<td>p9542</td>
<td>SI motion, actual value compar. toler. (crosswise)</td>
<td>36942 SMA_SAFE_POS_TOL</td>
</tr>
<tr>
<td>p9544</td>
<td>SI motion, actual value com. tolera. (referencing)</td>
<td>36944 SMA_SAFE_REFP_POS_TOL</td>
</tr>
<tr>
<td>p9546</td>
<td>SI motion, velocity limit n_x</td>
<td>36946 SMA_SAFE_VELO_X</td>
</tr>
<tr>
<td>p9548</td>
<td>SI motion, SBR actual speed tolerance</td>
<td>36948 SMA_SAFE_STOP_VELO_TOL</td>
</tr>
<tr>
<td>p9549</td>
<td>SI motion, slip velocity tolerance</td>
<td>36949 SMA_SAFE_SLIP_VELO_TOL</td>
</tr>
<tr>
<td>p9550</td>
<td>SI motion, SGE changeover, tolerance time</td>
<td>36950 SMA_SAFE_MODE_SWITCH_TIME</td>
</tr>
<tr>
<td>p9551</td>
<td>SI motion, delay time for SGE changeover</td>
<td>36951 SMA_SAFE_VELO_SWITCH_DELAY</td>
</tr>
<tr>
<td>p9552</td>
<td>SI motion, transition time STOP C to SBH</td>
<td>36952 SMA_SAFE_STOP_SWITCH_TIME_C</td>
</tr>
<tr>
<td>p9553</td>
<td>SI motion, transition time STOP D to SBH</td>
<td>36953 SMA_SAFE_STOP_SWITCH_TIME_D</td>
</tr>
<tr>
<td>p9554</td>
<td>SI motion, transition time STOP E to SBH</td>
<td>36954 SMA_SAFE_STOP_SWITCH_TIME_E</td>
</tr>
<tr>
<td>p9555</td>
<td>SI motion, transition time STOP F to SBH</td>
<td>36955 SMA_SAFE_STOP_SWITCH_TIME_F</td>
</tr>
<tr>
<td>p9556</td>
<td>SI motion, pulse cancellation delay time</td>
<td>36956 SMA_SAFE_PULSE_DISABLE_DELAY</td>
</tr>
<tr>
<td>p9557</td>
<td>SI motion, pulse cancellation check time</td>
<td>36957 SMA_SAFE_PULSE_DIS_CHECK_TIMEOUT</td>
</tr>
<tr>
<td>p9558</td>
<td>SI motion, acceptance test mode time limit</td>
<td>36958 SMA_SAFE_ACCEPTANCE_TST_TIMEOUT</td>
</tr>
<tr>
<td>p9560</td>
<td>SI motion, pulse cancellation shutdown speed</td>
<td>36960 SMA_SAFE_STANDSTILL_VELO_TOL</td>
</tr>
<tr>
<td>p9561</td>
<td>SI motion, SG stop response</td>
<td>36961 SMA_SAFE_VELO_STOP_MODE</td>
</tr>
<tr>
<td>p9562</td>
<td>SI motion, SE stop response</td>
<td>36962 SMA_SAFE_POS_STOP_MODE</td>
</tr>
<tr>
<td>p9563</td>
<td>SI motion, SG-specific stop response</td>
<td>36963 SMA_SAFE_VELO_STOP_REACTION[n]</td>
</tr>
<tr>
<td>p9570</td>
<td>SI motion, acceptance test mode</td>
<td>Corresponds to BTSS variables for NCK</td>
</tr>
</tbody>
</table>
Table 8-2 Parameters for SINAMICS S120

<table>
<thead>
<tr>
<th>Name</th>
<th>No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>p9571 SI motion, acceptance test status</td>
<td></td>
<td>Corresponds to BTSS variables for NCK</td>
</tr>
<tr>
<td>p9580 SI motion, pulse cancellation delay time after bus failure</td>
<td>10089</td>
<td>SMN_SAFE_PULSE_DIS_TIME_BUSFAIL</td>
</tr>
<tr>
<td>p9590 SI motion, version safety-relevant motion monitoring functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters for CU functions integrated in the drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9601 SI enable safety functions (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9602 SI enable safe brake control (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9620 BI: Signal source for safe standstill (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9650 SI SGE changeover tolerance time (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9658 SI transition time STOP F to STOP A (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9659 SI forced checking procedure, timer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General diagnostic parameters on the CU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9710 SI motion, diagnostics result list 1</td>
<td></td>
<td>Not available for NCK</td>
</tr>
<tr>
<td>r9711 SI motion, diagnostics result list 2</td>
<td></td>
<td>Not available for NCK</td>
</tr>
<tr>
<td>r9718 CO/BO: SI motion, control signals 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9718 CO/BO: SI motion, control signals 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9725 SI motion, diagnostics STOP F</td>
<td></td>
<td>For 840D, integrated into the alarm text</td>
</tr>
<tr>
<td>r9726 SI motion, user agreement, select/de-select</td>
<td></td>
<td>Corresponds to BTSS variables for NCK</td>
</tr>
<tr>
<td>r9727 SI motion, user agreement, drive-internal</td>
<td>36997</td>
<td>SMN_SAFE_ACKN</td>
</tr>
<tr>
<td>r9728 SI motion, actual checksum, SI parameters</td>
<td>36998</td>
<td>SMN_SAFE_ACT_CHECKSUM</td>
</tr>
<tr>
<td>p9729 SI motion, reference checksum, SI parameters</td>
<td>36999</td>
<td>SMN_SAFE_DES_CHECKSUM</td>
</tr>
<tr>
<td>r9744 SI message buffer changes, counter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9747 SI message code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9748 SI message time received in milliseconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9749 SI message value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9752 SI message cases, counter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9753 SI message value for float values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9754 SI message time received in days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9755 SI message time removed in milliseconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9756 SI message time removed in days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9759 SI acknowledge messages, drive object</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9761 SI password input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9762 SI new password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9763 SI password acknowledgment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9770 SI version, safety functions integrated in the drive (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9771 SI common functions (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9772 CO/BO: SI status (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9773 CO/BO: SI status (Control Unit+Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9774 CO/BO: SI status (safe standstill group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9780 SI monitoring clock cycle (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9794 SI crosswise comparison list (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9795 SI diagnostics, STOP F (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9798 SI actual checksum SI parameters (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9799 SI reference checksum SI parameters (Control Unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters for MM functions integrated in the drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9801 SI enable safety functions (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9802 SI enable safe brake control (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9810 SI PROFIsafe address (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9850 SI SGE changeover tolerance time (Motor Module)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2 Parameters for SINAMICS S120

Table 8-2 Parameters for SINAMICS S120

<table>
<thead>
<tr>
<th>Name</th>
<th>No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>p9858 SI transition time STOP F to STOP A (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9870 SI version (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9871 SI common functions (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9872 CO/BO: SI status (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9880 SI monitoring clock cycle (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9881 SI Sensor Module Node Identifier control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9890 SI version (Sensor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9894 SI crosswise comparison list (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9895 SI diagnostics, STOP F (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r9898 SI actual checksum SI parameters (Motor Module)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9899 SI reference checksum SI parameters (Motor Module)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Downloading standard motor data

When standard motor data is downloaded some drive parameters are overwritten. If another type of motor is installed (e.g. after repairs have been carried-out) and the associated motor default data is downloaded, then the encoder data must be changed back to its original value.
8.2.2 Description of parameters

Parameters for motion monitoring functions

<table>
<thead>
<tr>
<th>p9500</th>
<th>SI motion, monitoring clock cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sets the monitoring clock cycle for safety motion monitoring functions.</td>
</tr>
<tr>
<td></td>
<td>Checksum: Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Data type:</th>
<th>Effective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td>12</td>
<td>0.5</td>
<td>25</td>
<td>REAL32</td>
<td>Power ON</td>
</tr>
</tbody>
</table>

Using p9500, the monitoring clock cycle for safety-relevant operation with a higher-level control is defined. p9500 must be an integer multiple of the position controller clock cycle. If a value is entered into p9500 that is not an integer multiple of the position controller clock cycle, then the value entered is rounded-off to the next multiple (integer multiple) of the position controller clock cycle and Fault F01652 (“SI CU:Monitoring clock cycle not permissible”) is output with fault value 101.

Each time that a new connection is established for the clock-cycle synchronous PROFIBUS, the PROFIBUS master can specify a new position controller clock cycle; this is the reason that the check “p9500 multiple integer of the position controller clock cycle” is repeated. Fault F01652 is output if an error occurs.

The Safety Integrated monitoring clock cycle is, just like all other SI drive parameters, a drive-specific monitoring clock cycle. However, different SI monitoring clock cycles within a drive system are not supported.
8.2 Parameters for SINAMICS S120

p9501 SI motion, enable safety-relevant functions

Sets the enable signals for the safety-relevant motion monitoring functions

<table>
<thead>
<tr>
<th>Bit</th>
<th>Enable Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enable SBH/SG</td>
</tr>
<tr>
<td>1</td>
<td>Enable SE</td>
</tr>
<tr>
<td>3</td>
<td>Enable actual value synchronization</td>
</tr>
<tr>
<td>4</td>
<td>Enable STOP E</td>
</tr>
<tr>
<td>5</td>
<td>Enable override SG</td>
</tr>
<tr>
<td>6</td>
<td>Enable external Stops</td>
</tr>
<tr>
<td>7</td>
<td>Enable cam synchronization</td>
</tr>
<tr>
<td>8</td>
<td>Enable SN1+</td>
</tr>
<tr>
<td>9</td>
<td>Enable SN1–</td>
</tr>
<tr>
<td>10</td>
<td>Enable SN2+</td>
</tr>
<tr>
<td>11</td>
<td>Enable SN2–</td>
</tr>
<tr>
<td>12</td>
<td>Enable SN3+</td>
</tr>
<tr>
<td>13</td>
<td>Enable SN3–</td>
</tr>
<tr>
<td>14</td>
<td>Enable SN4+</td>
</tr>
<tr>
<td>15</td>
<td>Enable SN4–</td>
</tr>
</tbody>
</table>

The individual SI monitoring functions for a drive are enabled using p9501.

If one of the bits from bit 1 is set, then bit 0 must also be set. This is because for a STOP C/D/E, the system changes into a safe operating stop. If this is not the case, Fault F01683 ("SI motion: SBH/SG enable missing") is output.

p9502 SI motion, axis type

Sets the axis type (linear axis or rotary axis/spindle)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Axis Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Linear axis</td>
</tr>
<tr>
<td>1</td>
<td>Rotary axis/spindle</td>
</tr>
</tbody>
</table>

p9505 SI motion, MODULO VALUE for SN

Sets the actual value range in mDegrees for the function "safe software cams" SN for rotary axes.

p9516 SI motion, motor encoder configuration, safety-relevant functions

Sets the configuration for motor encoders and position actual value

<table>
<thead>
<tr>
<th>Bit</th>
<th>Encoder Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Encoder rotary/linear</td>
</tr>
<tr>
<td>1</td>
<td>Position actual value, sign change</td>
</tr>
</tbody>
</table>
8.2 Parameters for SINAMICS S120

p9517 SI motion, linear scale, grid division

Sets the grid division for a linear motor encoder

| Units: nm | Default value: 10 000 | Minimum value: 0 | Maximum value: 250 000 000 | Data type: REAL32 | Effective: Power ON |

Grid spacing of the linear motor encoder (this only applies to linear motor encoders). Corresponds to p0407.

p9518 SI motion, encoder pulses per revolution

Sets the number of encoder pulses per revolution for rotary motor encoders

| Units: – | Default value: 2048 | Minimum value: 0 | Maximum value: 100 000 | Data type: U32 | Effective: Power ON |

Number of pulses per encoder revolution for motor encoders (only applies to rotary motor encoders). Corresponds to p0408.

p9519 SI motion, fine resolution G1_XIST1

Sets the fine resolution for G1_XIST1 in bits

| Units: – | Default value: 11 | Minimum value: 2 | Maximum value: 18 | Data type: U32 | Effective: Power ON |

The following applies to safety-relevant functions that have not been enabled (p9501 = 0): when booting, p9519 is automatically set the same as p0418.
The following applies to safety-relevant functions that have been enabled (p9501 > 0): p9519 is checked to ensure that it coincides with p0418.

Sets the fine resolution in bits of incremental position actual values for the PROFINET encoder interface. Corresponds to p0418.

Comments regarding minimum and maximum value:

- The minimum value is 2 so that the complete segment information is always included in the position actual value and the check with the redundant coarse position can always be made with the full 16-bit resolution.
- The maximum value is 16 so that at least 16 bits of coarse position information are always included in the position actual value and the check with the redundant coarse position can always be made with the full 16-bit resolution.

p9520 SI motion, spindle pitch

Sets the ratio between the encoder and load in mm/rev for a linear axis with rotary encoder

| Units: mm/rev | Default value: 10 | Minimum value: 0.1 | Maximum value: 8388 | Data type: REAL32 | Effective: Power ON |

© Siemens AG, 2006. All rights reserved
SINUMERIK 840D sl/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition 8-287
8.2 Parameters for SINAMICS S120

p9521[0...7] SI motion, gearbox, encoder/load, denominator

Sets the denominator for the gearbox between the encoder and load. The actual stage is selected using safety-relevant inputs (SGE).

- **Units:** –
- **Default value:** 1
- **Minimum value:** 1
- **Maximum value:** \(2 \times 10^{8}\)
- **Data type:** U32
- **Effective:** Power ON
- **Checksum:** Yes
- **Protection level:** 4

Denominator of the fraction “number of encoder revolutions / number of load revolutions”.

There are a total of 8 values (8 indices of p9521), whereby, the actual value is selected using SGEs.

p9522[0...7] SI motion, gearbox encoder/load, numerator

Sets the numerator for the gearbox between the encoder and load. The actual stage is selected using safety-relevant inputs (SGE).

- **Units:** –
- **Default value:** 1
- **Minimum value:** 1
- **Maximum value:** \(2 \times 10^{8}\)
- **Data type:** U32
- **Effective:** Power ON
- **Checksum:** Yes
- **Protection level:** 4

Numerator of the fraction “number of encoder revolutions / number of load revolutions”.

There are a total of 8 values (8 indices of p9522), whereby, the actual value is selected using SGEs.

p9526 SI motion, encoder assignment control

Sets the number of the encoder that the control uses for the safety-relevant motion monitoring functions.

- **Units:** –
- **Default value:** 1
- **Minimum value:** 1
- **Maximum value:** 3
- **Data type:** U32
- **Effective:** Power ON
- **Checksum:** Yes
- **Protection level:** 4

Note:
If a 1 is parameterized (the control uses an encoder for the speed control), then a single-encoder system is being used.

For safety-relevant motion monitoring functions the redundant safety position actual value sensing must be activated in the appropriate encoder data set (p0430.19 = 1).
See also: p0187, p0188, p0189, p0430

p9530 SI motion, standstill (stop) tolerance

Sets the tolerance in mm or Degrees for the function “safe operating stop” (SBH)

- **Units:** mm
- **Default value:** 1
- **Minimum value:** 0
- **Maximum value:** 100
- **Data type:** Real32
- **Effective:** Power ON
- **Checksum:** Yes
- **Protection level:** 4

If safe operating stop (SBH) is selected, and the difference between the position setpoint and the position actual value is greater than the tolerance set in this parameter, the drive initiates a fault F01707 (“SI motion: Tolerance for safe operating stop exceeded”) and activates the stop response STOP B/A.
8.2 Parameters for SINAMICS S120

p9531[0...3] SI motion, SG limit values

Sets the limit values in mm/min or rpm for the function “safely reduced speed” (SG).

<table>
<thead>
<tr>
<th>Units: mm/min</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Checksum: Yes</th>
<th>Protection level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0] = limit value SG1</td>
<td>2000</td>
<td>0</td>
<td>1 000 000</td>
<td>Data type: Real32</td>
<td>Effective: Power ON</td>
</tr>
<tr>
<td>[1] = limit value SG2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2] = limit value SG3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3] = limit value SG4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If one of the monitoring functions SG1, SG2, SG3 or SG4 is selected then the actual velocity exceeds the limit value set in this parameter, the drive initiates fault C01714 (“SI motion: Safely reduced speed exceeded”) and activates the stop response parameterized in p9563.

p9532[0...15] SI motion, SG override factor

Sets the override factor for the limit value for SG2 and SG4 of the function “safely reduced speed” (SG).

<table>
<thead>
<tr>
<th>Units: %</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Checksum: Yes</th>
<th>Protection level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0] = SG override factor 0</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>Data type: REAL32</td>
<td>Effective: Power ON</td>
</tr>
<tr>
<td>[1] = SG override factor 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2] = SG override factor 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3] = SG override factor 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[4] = SG override factor 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[5] = SG override factor 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[6] = SG override factor 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[7] = SG override factor 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[8] = SG override factor 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[9] = SG override factor 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[10] = SG override factor 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[12] = SG override factor 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[13] = SG override factor 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[14] = SG override factor 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15] = SG override factor 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The actual override factor for SG2 and SG4 is selected using safety-relevant inputs (SGE).

p9534[0...1] SI motion, SE upper limit values

Sets the upper limit values in mm or Degrees for the function “safe software limit switch” (SE).

<table>
<thead>
<tr>
<th>Units: mm, degrees</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Checksum: Yes</th>
<th>Protection level: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0] = limit value SE1</td>
<td>100 000</td>
<td>-2 147 000</td>
<td>2 147 000</td>
<td>Data type: REAL32</td>
<td>Effective: Power ON</td>
</tr>
<tr>
<td>[1] = limit value SE2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The following applies when setting the SE limit values: p9534 > p9535.

See also: p9501, p9535, p9562 and C01715 “SI motion: Safe limit position exceeded”.
8.2 Parameters for SINAMICS S120

p9535[0...1] SI motion, SE lower limit values

<table>
<thead>
<tr>
<th>Description</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the lower limit values in mm or Degrees for the function “safe software limit switch” (SE)</td>
<td>–100 000</td>
<td>–2 147 000</td>
<td>2 147 000</td>
<td>REAL32</td>
<td>Power ON</td>
</tr>
</tbody>
</table>

Units: mm, degrees

Checksum: Yes
Protection level: 4

Note: The following applies when setting the SE limit values: p9534 > p9535.

See also: p9501, p9534, p9562 and C01715 “SI motion: Safe limit position exceeded”.

p9536[0...3] SI motion, SN plus cams position

<table>
<thead>
<tr>
<th>Description</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the plus cams position in mm or Degrees for the function “safe software cams” (SN)</td>
<td>10</td>
<td>–2 147 000</td>
<td>2 147 000</td>
<td>REAL32</td>
<td>Power ON</td>
</tr>
</tbody>
</table>

[0] = cam position SN1+
[1] = cam position SN2+
[2] = cam position SN3+
[3] = cam position SN4+

Checksum: Yes
Protection level: 4

See also: p9501, p9537

p9537[0...3] SI motion, SN minus cams position

<table>
<thead>
<tr>
<th>Description</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the minus cams position in mm or Degrees for the function “safe software cams” (SN)</td>
<td>–10</td>
<td>–2 147 000</td>
<td>2 147 000</td>
<td>REAL32</td>
<td>Power ON</td>
</tr>
</tbody>
</table>

[0] = cam position SN1–
[1] = cam position SN2–
[2] = cam position SN3–
[3] = cam position SN4–

Checksum: Yes
Protection level: 4

See also: p9501, p9537

p9540 SI motion, SN tolerance

<table>
<thead>
<tr>
<th>Description</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the tolerance in mm or Degrees for the function “safe software cams” (SN) Within this tolerance, both monitoring channels may signal different signal states of the same safe software cam.</td>
<td>0.1</td>
<td>0.001</td>
<td>10 mm or 10 degree</td>
<td>REAL32</td>
<td>Power ON</td>
</tr>
</tbody>
</table>

Units: mm

Checksum: Yes
Protection level: 4
Data Description

8.2 Parameters for SINAMICS S120

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p9542</td>
<td>SI motion, actual value comparison tolerance (crosswise)</td>
</tr>
<tr>
<td>Sets the tolerance in mm or degrees for the crosswise comparison of the actual position between the two monitoring channels.</td>
<td>Checksum: Yes, Protection level: 4</td>
</tr>
<tr>
<td>Units: mm</td>
<td>Default value: 0.1, Minimum value: 0.001, Maximum value: 360 mm</td>
</tr>
<tr>
<td></td>
<td>Data type: REAL32, Effective: Power ON</td>
</tr>
</tbody>
</table>

See also: C01711 “SI motion: Defect in a monitoring channel”.

p9544 | **SI motion, actual value comparison tolerance (referencing)** |
Sets the tolerance in mm or degrees to check the actual values after referencing (incremental encoder) or when powering-up (absolute encoder). | Checksum: Yes, Protection level: 4 |
| Units: mm | Default value: 0.01, Minimum value: 0, Maximum value: 36 mm |
| | Data type: REAL32, Effective: Power ON |

See also: C01711 “SI motion: Defect in a monitoring channel”.

p9546 | **SI motion, velocity limit nx** |
Sets the velocity limit nx in mm/min or rpm to detect zero speed. When this limit value is fallen below, SGA “n < nx” is set. | Checksum: Yes, Protection level: 4 |
| Units: mm/min rpm | Default value: 20, Minimum value: 0, Maximum value: 6000 |
| | Data type: REAL32, Effective: Power ON |

p9548 | **SI motion, SBR actual velocity tolerance** |
Sets the velocity tolerance in mm/min or rpm for the “safe braking ramp” (SBR) | Checksum: Yes, Protection level: 4 |
| Units: mm/min rpm | Default value: 300, Minimum value: 0, Maximum value: 120 000 |
| | Data type: REAL32, Effective: Power ON |

See also: C01706 “SI motion: Safe braking ramp exceeded”.

After initiating the safe braking ramp (SBR) for the stop responses STOP B and STOP C, the actual velocity plus the tolerance value parameterized in p9548 may not exceed the actual velocity sensed in the last monitoring clock cycle. If p9548 > 0, then the value converted into the internal format is limited to greater than or equal to 1.

p9549 | **SI motion, slip velocity tolerance** |
Sets the velocity tolerance in mm/min or rpm, that is used for a 2-encoder system in a crosswise comparison between the drive and control. If the “actual value synchronization” is not enabled (p9501 3 = 0), then the value parameterized in p9542 is used as tolerance in the crosswise data comparison. | Checksum: Yes, Protection level: 4 |
| Units: mm/min rpm | Default value: 6, Minimum value: 0, Maximum value: 6000 |
| | Data type: REAL32, Effective: Power ON |
Because of the different runtimes of the two monitoring channels – drive and control – a SGE changeover is not effective at the same time. After a SGE changeover, a crosswise data comparison of the dynamic data is not carried out during this tolerance time (actual values, result lists, ...). However, the monitoring functions remain active during this time.
p9556 SI motion, pulse cancellation delay time

<table>
<thead>
<tr>
<th>Sets the delay time for the safe pulse cancellation after STOP B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checksum: Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value: 100</th>
<th>Minimum value: 0</th>
<th>Maximum value: 10 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STOP B causes the drive to be braked along the current limit with speed setpoint 0. After the time parameterized in p9556 has expired or after the speed threshold, parameterized in p9560 has been fallen below, a STOP A stop response is initiated.

See also: C01701 “SI motion, STOP B initiated”.

p9557 SI motion, pulse cancellation check time

<table>
<thead>
<tr>
<th>Sets the time after which the pulses must have been cancelled after initiating the test stop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checksum: Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value: 100</th>
<th>Minimum value: 0</th>
<th>Maximum value: 10 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the pulses have been correctly cancelled via the shutdown path of the drive monitoring channel after the time parameterized in p9557, then this is communicated to the user by setting SGA “pulses are cancelled”. If an error occurred while testing the shutdown path, stop response STOP A is initiated.

See also: C01798 “SI motion: “Test stop running”.

p9558 SI motion, acceptance test mode, time limit

<table>
<thead>
<tr>
<th>Sets the maximum time for the acceptance test mode. If the acceptance test mode lasts longer than the selected time limit, then the mode is automatically exited.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checksum: Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value: 40 000</th>
<th>Minimum value: 5 000</th>
<th>Maximum value: 100 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See also: C01799 “SI motion: Acceptance test mode is active”.

p9560 SI motion, pulse cancellation shutdown speed

<table>
<thead>
<tr>
<th>Sets the speed below which the axis is considered to be at a “stand-still”, and for STOP B the pulses are cancelled (as a result of a transition to STOP A).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checksum: Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value: 0</th>
<th>Minimum value: 0</th>
<th>Maximum value: 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm/min, rpm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STOP B causes the drive to brake along the current limit with speed setpoint 0. After the time, parameterized in p9556, has expired or the speed threshold, parameterized in p9560, has expired, stop response STOP A is initiated.
8.2 Parameters for SINAMICS S120

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
<th>Data Type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>p9561</td>
<td>SI motion, SG stop response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sets the stop response for the monitoring function “safely reduced speed” (SG). This setting applies to all SG limit values. An input value of less than 5 signifies protection for personnel, from 10 and onwards, machine protection.</td>
<td>-</td>
<td>5</td>
<td>0</td>
<td>14</td>
<td>U16</td>
<td>Power ON</td>
</tr>
<tr>
<td>Units:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checksum: Yes</td>
<td>Protection level: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9562</td>
<td>SI motion, SE stop response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sets the stop response for the monitoring function “safe software limit switch” (SE)</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>U16</td>
<td>Power ON</td>
</tr>
<tr>
<td>Units:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checksum: Yes</td>
<td>Protection level: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2: STOP C, 3: STOP D, 4: STOP E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9563[0...3]</td>
<td>SI motion, SG-specific stop response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sets the stop response for the function “safely reduced speed” (SG, SG-specific). These settings apply to the individual SG limit values.</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>U16</td>
<td>Power ON</td>
</tr>
<tr>
<td>Units:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checksum: Yes</td>
<td>Protection level: 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0] = limit value SG1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[1] = limit value SG2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2] = limit value SG3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[3] = limit value SG4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See also: p9536, p9537
Parameters for SINAMICS S120

8.2 Parameters for SINAMICS S120

<table>
<thead>
<tr>
<th>p9570</th>
<th>SI motion, acceptance test mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting to select/de-select the acceptance test mode</td>
<td>Checksum: No</td>
</tr>
<tr>
<td>0: [00hex] de-select acceptance test mode</td>
<td>Protection level: 4</td>
</tr>
<tr>
<td>172: [AChex] select acceptance test mode</td>
<td></td>
</tr>
<tr>
<td>Units:</td>
<td>Default value: 0000 hex</td>
</tr>
<tr>
<td></td>
<td>Minimum value: 0000 hex</td>
</tr>
<tr>
<td></td>
<td>Maximum value: 00AC hex</td>
</tr>
<tr>
<td></td>
<td>Data type: U16</td>
</tr>
<tr>
<td></td>
<td>Effective: Immediately</td>
</tr>
</tbody>
</table>

r9571 | SI motion, acceptance test status |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the status of the acceptance test mode</td>
<td>Checksum: No</td>
</tr>
<tr>
<td></td>
<td>Protection level: 4</td>
</tr>
<tr>
<td>Units:</td>
<td>Default value: 0</td>
</tr>
<tr>
<td></td>
<td>Minimum value: 0</td>
</tr>
<tr>
<td></td>
<td>Maximum value: 0xAC</td>
</tr>
<tr>
<td></td>
<td>Data type: U16</td>
</tr>
<tr>
<td></td>
<td>Effective:</td>
</tr>
<tr>
<td>0: [00 hex] accept_mode inactive</td>
<td></td>
</tr>
<tr>
<td>12: [0C hex] accept_mode not possible due to power on fault</td>
<td></td>
</tr>
<tr>
<td>13: [0D hex] accept_mode not possible due to incorrect ID in p9570</td>
<td></td>
</tr>
<tr>
<td>15: [0F hex] accept_mode not possible due to expired accept_timer</td>
<td></td>
</tr>
<tr>
<td>172: [AC hex] accept_mode active</td>
<td></td>
</tr>
</tbody>
</table>

See also: C01799 “SI motion, acceptance test mode active”

p9580 | SI motion, pulse cancellation delay time after bus failure |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the delay time after which the pulses are safely cancelled after bus failure.</td>
<td>Checksum: Yes</td>
</tr>
<tr>
<td></td>
<td>Protection level: 4</td>
</tr>
<tr>
<td>Units:</td>
<td>Default value: 0</td>
</tr>
<tr>
<td></td>
<td>Minimum value: 0</td>
</tr>
<tr>
<td></td>
<td>Maximum value: 800</td>
</tr>
<tr>
<td></td>
<td>Data type: REAL32</td>
</tr>
<tr>
<td></td>
<td>Effective: Power ON</td>
</tr>
</tbody>
</table>

r9590[0...2] | SI motion, version safe motion monitoring functions |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the Safety Integrated version for the safe motion monitoring functions.</td>
<td>Checksum:</td>
</tr>
<tr>
<td>[0] = Safety Version (major release)</td>
<td>Protection level: 4</td>
</tr>
<tr>
<td>[1] = Safety Version (minor release)</td>
<td></td>
</tr>
<tr>
<td>[2] = Safety Version (baselevel or patch)</td>
<td></td>
</tr>
<tr>
<td>Units:</td>
<td>Default value:</td>
</tr>
<tr>
<td></td>
<td>Minimum value:</td>
</tr>
<tr>
<td></td>
<td>Maximum value:</td>
</tr>
<tr>
<td></td>
<td>Data type: U16</td>
</tr>
<tr>
<td></td>
<td>Effective:</td>
</tr>
</tbody>
</table>

Parameters for functions integrated in the drive

These parameters are also relevant for the motion monitoring functions as the safe standstill is carried-out by monitoring functions integrated in the drive. See Section 6.1 “Safe standstill (SH)”.
Data Description

8.2 Parameters for SINAMICS S120

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Units</th>
<th>Default Value</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
<th>Data Type</th>
<th>Checksum</th>
<th>Protection Level</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>p9601</td>
<td>SI enable safety functions (Control Unit)</td>
<td></td>
<td>–</td>
<td>Default value: 0000 bin</td>
<td>Minimum value: 0000 bin</td>
<td>Maximum value: 0001 bin</td>
<td>U32</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sets the enable signals for safety functions on the Control Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0 Safe standstill via terminals enabled (Control Unit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bit 0 Safe standstill via terminals enabled (Control Unit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Checksum: Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection level: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9602</td>
<td>SI enable safe brake control (Control Unit)</td>
<td></td>
<td>–</td>
<td>Default value: 0</td>
<td>Minimum value: 0</td>
<td>Maximum value: 1</td>
<td>I16/I32</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sets the enable signal for the function safe brake control (SBC) on the Control Unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0: Inhibit SBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Enable SBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The safe brake control function only becomes active if at least one safety monitoring function is enabled (i.e. p9601 not equal to 0).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If a motor holding brake is not being used then it does not make any sense to enable the parameterization “no motor holding brake available” and “safe brake control” (p1215 = 0, p9602 = p9802 = 1).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Checksum: Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection level: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9620</td>
<td>BI: Signal source for safe standstill (Control Unit)</td>
<td></td>
<td>–</td>
<td>Default value: 0</td>
<td>Minimum value: –</td>
<td>Maximum value: –</td>
<td>U32</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sets the signal source for the function “safe standstill” (SH) on the Control Unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following signal sources are permitted:– fixed zero (standard setting)– digital inputs (DI 0 to DI 7 on the Control Unit– or DI 0 to 3 on the CX32It is not permitted to logically combine/interlock with a digital input that is in simulation mode.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Checksum: No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection level: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p9650</td>
<td>SI SGE changeover tolerance time (Control Unit)</td>
<td></td>
<td>ms</td>
<td>Default value: 500</td>
<td>Minimum value: 0</td>
<td>Maximum value: 2 000.00</td>
<td>Real32</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Sets the tolerance time to change over the safety–relevant inputs (SGE) on the Control Unit. An SGE changeover is not simultaneously effective due to the different runtimes in the two monitoring channels. After an SGE changeover, dynamic data is not subject to a crosswise data comparison during this tolerance time.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Checksum: Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection level: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For a crosswise data comparison between p9650 and p9850, a difference of one safety monitoring clock cycle is tolerated. The parameterized time is internally rounded-off to an integer multiple of the monitoring clock cycle.
p9658 SI transition time STOP F to STOP A (Control Unit)

Sets the transition time from STOP F to STOP A on the Control Unit.

For a crosswise data comparison between p9658 and p9659, a difference of one safety monitoring clock cycle is tolerated. The parameterized time is internally rounded-off to an integer multiple of the monitoring clock cycle.

STOP F: Defect in a monitoring channel (error in the crosswise data comparison)

STOP A: Pulse cancellation via the safety shutdown path

<table>
<thead>
<tr>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td>0</td>
<td>0</td>
<td>30000</td>
<td>Real32</td>
<td>When exiting the SI commissioning mode</td>
</tr>
</tbody>
</table>

Checksum: Yes
Protection level: 3

p9659 SI forced checking procedure, timer

Sets the time to carry-out the dynamic update and testing the safety shutdown paths (forced checking procedure).

Within the parameterized time, safe standstill must have been de-selected at least once. The monitoring time is reset each time that SH is de-selected.

<table>
<thead>
<tr>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>8</td>
<td>0</td>
<td>9000</td>
<td>Real32</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

Checksum: Yes
Protection level: 3

Within the parameterized time grid, the user must subject the safety shutdown paths to a forced checking procedure and test them; this means he must carry-out an SH selection/de-selection. If the user does not do this, then after this time using the Alarm A01699 ("SI CU: Necessary to test the shutdown paths") he will be requested to test the shutdown paths, i.e. select/de-select SH. In so doing, r9773, bit 31 is set to 1.
General diagnostic parameters on the CU

<table>
<thead>
<tr>
<th>r9710[0...1]</th>
<th>SI motion, diagnostics result list 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays result list 1 where for a crosswise data comparison with the control, led to an error.</td>
<td></td>
</tr>
<tr>
<td>[0]: Result list (control)</td>
<td></td>
</tr>
<tr>
<td>[1]: Result list (drive)</td>
<td></td>
</tr>
<tr>
<td>Checksum: No</td>
<td></td>
</tr>
<tr>
<td>Protection level: 4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Data type:</th>
<th>Effective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Actual value > Upper limit SBH</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Actual value > Lower limit SBH</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>Actual value > Upper limit SE1</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Actual value > Lower limit SE1</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>Actual value > Upper limit SE2</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>Actual value > Lower limit SE2</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Actual value > Upper limit SG1</td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>Actual value > Lower limit SG1</td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>Actual value > Upper limit SG2</td>
<td></td>
</tr>
<tr>
<td>09</td>
<td>Actual value > Lower limit SG2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Actual value > Upper limit SG3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Actual value > Lower limit SG3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Actual value > Upper limit SG4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Actual value > Lower limit SG4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Actual value > Upper limit SBR</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Actual value > Lower limit SBR</td>
<td></td>
</tr>
</tbody>
</table>

See also: C01711 “SI motion: Defect in a monitoring channel”.
r9711[0...1] SI motion, diagnostics result list 2

Displays result list 2 that for a crosswise data comparison led to an error.

- [0]: Result list (control)
- [1]: Result list (drive)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Signal name</th>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Actual value > Upper limit SN1+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>01</td>
<td>Actual value > Lower limit SN1+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>02</td>
<td>Actual value > Upper limit SN1–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>03</td>
<td>Actual value > Lower limit SN1–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>04</td>
<td>Actual value > Upper limit SN2+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>05</td>
<td>Actual value > Lower limit SN2+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>06</td>
<td>Actual value > Upper limit SN2–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>07</td>
<td>Actual value > Lower limit SN2–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>08</td>
<td>Actual value > Upper limit SN3+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>09</td>
<td>Actual value > Lower limit SN3+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>Actual value > Upper limit SN3–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>Actual value > Lower limit SN3–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>Actual value > Upper limit SN4+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>13</td>
<td>Actual value > Lower limit SN4+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>Actual value > Upper limit SN4–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>Actual value > Lower limit SN4–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>16</td>
<td>Actual value > Upper limit nx+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>17</td>
<td>Actual value > Lower limit nx+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>18</td>
<td>Actual value > Upper limit nx–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>19</td>
<td>Actual value > Lower limit nx–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>20</td>
<td>Actual value > Upper limit, modulo</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
<tr>
<td>21</td>
<td>Actual value > Lower limit, modulo</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
</tbody>
</table>

See also: C01711 “SI motion: Defect in a monitoring channel”

r9718 CO/BO: SI motion, control signals 1

Control signals 1 for the safe motion monitoring functions. Bit 23: Set the offset for travel to fixed endstop to the actual torque.

<table>
<thead>
<tr>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
</tbody>
</table>

r9719 CO/BO: SI motion, control signals 2

Control signals 2 for the safe motion monitoring functions. Bit 13: Close brake control signal from the control

<table>
<thead>
<tr>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
</tbody>
</table>
A value of 0 means: STOP F was signaled from the control.

A value of 1 ... 999 means: Number of the incorrect crosswise compared data between the drive and control.

A value >= of 1000 means: Additional diagnostic values of the drive.

Note: The significance of the individual values is described in Alarm 27001 of the higher-level control.

<table>
<thead>
<tr>
<th>Table 8-3</th>
<th>Diagnostic values for STOP F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Error description</td>
</tr>
<tr>
<td>1000</td>
<td>Check (watchdog) timer has expired</td>
</tr>
<tr>
<td>1001</td>
<td>Check (watchdog) timer initialization error</td>
</tr>
<tr>
<td>1002</td>
<td>User agreement expired</td>
</tr>
<tr>
<td>1003</td>
<td>Reference tolerance violated</td>
</tr>
<tr>
<td>1004</td>
<td>Violated plausibility, user agreement</td>
</tr>
<tr>
<td>1005</td>
<td>Select test stop if the pulses have already been cancelled</td>
</tr>
<tr>
<td>1006</td>
<td>Reserved</td>
</tr>
<tr>
<td>1007</td>
<td>Communications failure between the PLC and drive</td>
</tr>
<tr>
<td>1008</td>
<td>Data transfer error between the PLC and drive</td>
</tr>
</tbody>
</table>
Table 8-3 Diagnostic values for STOP F

<table>
<thead>
<tr>
<th>Value</th>
<th>Error description</th>
<th>Explanation</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1011</td>
<td>Acceptance test status different</td>
<td>The acceptance test status between the drive and control is different.</td>
<td>End the acceptance test mode and select again</td>
</tr>
<tr>
<td>1012</td>
<td>Plausibility violation of the actual value for the control</td>
<td>The redundant coarse position does not match the actual value.</td>
<td>Upgrade Sensor Module SW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Replace the Sensor Module</td>
</tr>
<tr>
<td>1016</td>
<td>Telegram has failed three times with the same crosswise data comparison data</td>
<td>In the crosswise comparison clock cycle (= monitoring clock cycle * number of crosswise comparison data) the comparison of the same list data was missed three times in a row due to telegram failures.</td>
<td>Check communications between the drive and control</td>
</tr>
<tr>
<td>1020</td>
<td>Telegram has failed twice</td>
<td>An incorrect sign of life was identified in the safety data two times in a row.</td>
<td>Check communications between the drive and control</td>
</tr>
<tr>
<td>1021</td>
<td>Sign of life error in the communications with the Sensor Module</td>
<td>Communications failure with the Sensor Module was identified two times in a row.</td>
<td>Check communications between the Sensor Module and the drive</td>
</tr>
</tbody>
</table>

r9726 SI motion, user agreement, select/de-select

Setting to select/de-select the user agreement
0: (00 hex) select user agreement
172: (AC hex) select user agreement

Checksum: No Protection level: 4

Units: – Default value: 0000 hex Minimum value: 0000 hex Maximum value: 00AC hex Data type: I16 Effective: Power ON

r9727 SI motion, internal drive user agreement

Displays the internal status of the user agreement
Value = 0: User agreement is not set
Value = AC hex: User agreement is set

Checksum: No Protection level: 4

r9728[0...1] SI motion, actual checksum, SI parameters

Displays the checksum over the checked Safety Integrated parameters of the motion monitoring functions (actual checksum).
[0]: Checksum over SI parameters for motion monitoring
[1]: Checksum over SI parameters for actual values

Checksum: No Protection level: 4

See also: F01680 “SI motion: Checksum error safe monitoring functions”.

8.2 Parameters for SINAMICS S120

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
</table>
| **r9729[0...1]** | **SI motion, reference checksum, SI parameters** | Sets the checksum over the checked Safety Integrated parameters of the motion monitoring functions (reference checksum).
[0]: Checksum over SI parameters for motion monitoring
[1]: Checksum over SI parameters for actual values
Checksum: No
Protection level: 4 |
| Units | Default value:
Minimum value:
Maximum value: | Data type:
Effective: |
| - | 0
0xFFFF FFFF | U32
Power ON |

See also: F01680 “SI motion: Checksum error safe monitoring functions”.

| **r9744** | **SI message buffer changes, counter** | Displays the changes of the safety message buffer. This counter is incremented every time that the safety message buffer changes.
This is used to check whether the safety message buffer has been read-out consistently.
See also r9747, r9748, r9749, p9752, r9753, r9754, r9755, r9756, r9759 |
| Checksum: | Protection level: 3 |
| Units: | Default value:
Minimum value:
Maximum value: | Data type:
Effective: |
| - | -
- | U16 |

| **r9747[0...63]** | **SI message code** | Displays the number of the safety messages that have occurred.
See also r9744, r9748, r9749, r9754, p9752, r9753, r9754, r9755, r9756, r9759 |
| Checksum: | Protection level: 3 |
| Units: | Default value:
Minimum value:
Maximum value: | Data type:
Effective: |
| - | -
- | U16 |

| **r9748[0...63]** | **SI message time received in milliseconds** | Displays the relative system runtime in milliseconds when the safety message occurred.
See also r9747, r9748, r9749, p9752, r9753, r9754, r9755, r9756, r9759 |
| Checksum: | Protection level: 3 |
| Units: | Default value:
Minimum value:
Maximum value: | Data type:
Effective: |
| ms | -
- | U32 |

| **r9749[0...63]** | **SI message value** | Displays the additional information about the safety message that occurred (as integer number).
See also r9744, r9747, r9748, p9752, r9753, r9754, r9755, r9756, p9759 |
| Checksum: | Protection level: 3 |
| Units: | Default value:
Minimum value:
Maximum value: | Data type:
Effective: |
| - | -
- | I32 |
8.2 Parameters for SINAMICS S120

p9752 SI message cases, counter

Number of safety message cases that have occurred since the last reset. The safety message buffer is cleared by resetting the parameter to 0. The parameter is automatically reset to 0 at power on.

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Data type:</th>
<th>Effective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>0</td>
<td>0</td>
<td>65535</td>
<td>U16</td>
<td>Power ON</td>
</tr>
</tbody>
</table>

r9753[0...63] SI message value for float values

Displays additional information about the safety message that has occurred for float values.

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Data type:</th>
<th>Effective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>REAL32</td>
<td>–</td>
</tr>
</tbody>
</table>

r9754[0...63] SI message time received in days

Displays the relative system runtime in days when the safety message occurred.

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Data type:</th>
<th>Effective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>days</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U16</td>
<td>–</td>
</tr>
</tbody>
</table>

r9755[0...63] SI message time removed in milliseconds

Displays the relative system runtime in milliseconds when the safety message was removed.

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Data type:</th>
<th>Effective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
</tbody>
</table>

r9756[0...63] SI message time removed in days

Displays the relative system runtime in days when the safety message was removed.

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Data type:</th>
<th>Effective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>days</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>U8</td>
<td>–</td>
</tr>
</tbody>
</table>

p9759 SI messages, acknowledge drive object

Acknowledges all safety messages present for a drive object. Parameter should be set from 0 to 1 to acknowledge. After acknowledgement, the parameter is automatically reset to 0.

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Data type:</th>
<th>Effective:</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>U8</td>
<td>–</td>
</tr>
</tbody>
</table>
8.2 Parameters for SINAMICS S120

p9761 SI password input

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters the Safety Integrated password. It is not permissible to change Safety Integrated parameter settings until the Safety Integrated password has been entered.</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>0000 hex</td>
<td>0000 hex</td>
<td>FFFF FFFF hex</td>
<td>U32</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

p9762 SI password, new

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enters a new Safety Integrated password. If the Safety Integrated password is changed it must be acknowledged in the following parameter: See also: p9763</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>0000 hex</td>
<td>0000 hex</td>
<td>FFFF FFFF hex</td>
<td>U32</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

p9763 SI password acknowledgment

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledges the new Safety Integrated password. The new password entered into p9762 must be re-entered in order to acknowledge. After successfully acknowledged, the new Safety Integrated password is set with p9762=p9763=0. See also: p9762</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>0000 hex</td>
<td>0000 hex</td>
<td>FFFF FFFF hex</td>
<td>U32</td>
<td>Immediately</td>
</tr>
</tbody>
</table>

r9770[0...2] SI version, safety-relevant functions integrated in the drive (Control Unit)

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the Safety Integrated version on the Control Unit. Index 0: Safety Version (major release) Index 1: Safety Version (minor release) Index 2: Safety Version (baselevel or patch) Example: r9770[0]=2, r9770[1]=3, r9770[2]=1—> Safety Version V02.03.01</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U16</td>
<td>–</td>
</tr>
</tbody>
</table>

r9771 SI common functions (Control Unit)

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the Safety Integrated monitoring functions supported on the Control Unit and Motor Module. The Control Unit determines this display. Bit 0: SH supported via terminal Bit 1: SBC supported Bit 2: SI motion supported</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>Default value</th>
<th>Minimum value</th>
<th>Maximum value</th>
<th>Data type</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>U32</td>
<td>–</td>
</tr>
</tbody>
</table>
r9772 CO/BO: SI status (Control Unit)
Displays the Safety Integrated status on the Control Unit.

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Checksum:</th>
<th>Protection level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td></td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>2</td>
</tr>
</tbody>
</table>

Bit 0: SH selected on Control Unit
Bit 1: SH on the Control Unit active
Bit 4: SBC requested
Bit 9: STOP A cannot be acknowledged active
Bit 10: STOP A active
Bit 15: STOP F active

r9773 CO/BO: SI status (Control Unit + Motor Module)
Displays the Safety Integrated status on the drive (Control Unit + Motor Module).

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Checksum:</th>
<th>Protection level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td></td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>2</td>
</tr>
</tbody>
</table>

Bit 0: SH selected in the drive
Bit 1: SH active in the drive
Bit 4: SBC requested
Bit 31: Shutdown paths test required
This status is formed from the AND operation of the relevant status of the two monitoring channels.

r9774 CO/BO: SI status (safe standstill group)
Displays the status for Safety Integrated of the group to which this drive belongs.

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Checksum:</th>
<th>Protection level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td></td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>2</td>
</tr>
</tbody>
</table>

Bit 0: SH in the group selected
Bit 1: SH active in the group
Bit 4: SBC requested
Bit 31: Shutdown paths of the group must be tested
A group is formed by appropriately grouping the terminals for “safe standstill”.

The status of a group of n drives is, for drives 1 to n –1 displayed with a delay of one monitoring clock cycle; this is a system-related effect.

r9780 SI monitoring clock cycle (Control Unit)
Displays the clock cycle time for the safety functions integrated in the drive on the Control Unit.
See also: r9880

<table>
<thead>
<tr>
<th>Units:</th>
<th>Default value:</th>
<th>Minimum value:</th>
<th>Maximum value:</th>
<th>Checksum:</th>
<th>Protection level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td></td>
<td>–</td>
<td>–</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

Data type: REAL32
Effective: –
8.2 Parameters for SINAMICS S120

r9794[0...19] SI crosswise comparison list (Control Unit)

<table>
<thead>
<tr>
<th>Crosswise comparison ID</th>
<th>Crosswise comparison data</th>
<th>Associated parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SI monitoring clock cycle, integrated in the drive</td>
<td>r9780</td>
</tr>
<tr>
<td>1</td>
<td>SI enable parameter (CU/MM)</td>
<td>p9601/p9801</td>
</tr>
<tr>
<td>2</td>
<td>Tolerance time changeover, safety-relevant input signals (CU/MM)</td>
<td>p9650/p9850</td>
</tr>
<tr>
<td>3</td>
<td>Transition time from STOP F to STOP A (CU/MM)</td>
<td>p9658/p9858</td>
</tr>
<tr>
<td>4</td>
<td>Safe brake control (CU/MM)</td>
<td>p9602/p9802</td>
</tr>
<tr>
<td>5</td>
<td>Enable, safe motion monitoring</td>
<td>p9501/p29822</td>
</tr>
</tbody>
</table>

The list of crosswise compared data is obtained depending on the particular application.

- **r9794[0]** = 1 (monitoring clock cycle)
- **r9794[1]** = 2 (enable safety-related functions)
- **r9794[2]** = 3 (SGE changeover, tolerance time)
- **r9794[3]** = 4 (transition time, STOP F to STOP A)

r9795 SI diagnostics, STOP F (Control Unit)

<table>
<thead>
<tr>
<th>Crosswise comparison ID</th>
<th>Crosswise comparison data</th>
<th>Associated parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SI monitoring clock cycle, integrated in the drive</td>
<td>r9780</td>
</tr>
<tr>
<td>1</td>
<td>SI enable parameter (CU/MM)</td>
<td>p9601/p9801</td>
</tr>
<tr>
<td>2</td>
<td>Tolerance time changeover, safety-relevant input signals (CU/MM)</td>
<td>p9650/p9850</td>
</tr>
<tr>
<td>3</td>
<td>Transition time from STOP F to STOP A (CU/MM)</td>
<td>p9658/p9858</td>
</tr>
<tr>
<td>4</td>
<td>Safe brake control (CU/MM)</td>
<td>p9602/p9802</td>
</tr>
<tr>
<td>5</td>
<td>Enable, safe motion monitoring</td>
<td>p9501/p29822</td>
</tr>
</tbody>
</table>

Additional diagnostic values (from 1000 onwards):

<table>
<thead>
<tr>
<th>Value</th>
<th>Error description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Check (watchdog) timer has expired</td>
<td>Change timer in the MM has been active too long.</td>
</tr>
<tr>
<td>1001</td>
<td>Change timer initialization error</td>
<td>When starting the change timer, MM has not set the “timer running bit”.</td>
</tr>
<tr>
<td>1002</td>
<td>Check (watchdog) timer initialization error</td>
<td>The CU had not started the check (watchdog) timer although in MM the change timer is presently running.</td>
</tr>
<tr>
<td>2000</td>
<td>Error when comparing the SH terminals</td>
<td>Status of the SH terminals on the Control Unit and Motor Module are different.</td>
</tr>
<tr>
<td>2001</td>
<td>Error when comparing the feedback signals DIAG_U and DIAG_L</td>
<td>Status of the feedback signals of the safety shutdown paths on the Control Unit and Motor Module are different.</td>
</tr>
</tbody>
</table>
8.2 Parameters for SINAMICS S120

r9798 SI actual checksum SI parameters (Control Unit)

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the checksum over the checked Safety Integrated parameters on the</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>Control Unit (actual checksum).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units:

- Default value: –
- Minimum value: –
- Maximum value: –

Data type: U32

Effective: –

r9799 SI reference checksum SI parameters (Control Unit)

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the checksum for the checked Safety Integrated parameters on the Control Unit (reference checksum).</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

Units:

- Default value: 0000 hex
- Minimum value: 0000 hex
- Maximum value: FFFF FFFF hex

Data type: U32

Effective:

The actual checksum (r9798) calculated by the CU must be entered into the reference checksum p9799. This therefore acknowledges the safety commissioning on the Control Unit.

Parameters for functions integrated in the drive MM

p9801 SI enable safety functions (Motor Module)

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the enable signals for safety functions on the Motor Module</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>Bit 0, SH enabled via terminals (Motor Module)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units:

- Default value: 0000 bin
- Minimum value: 0000 bin
- Maximum value: 0001bin

Data type: U32/U16

Effective:

p9802 SI enable safe brake control (Motor Module)

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the enable signal for the “safe brake control” function (SBC) on the Motor Module.</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>0: Inhibit SBC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1: Enable SBC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The safe brake control function only becomes active if at least one safety monitoring function is enabled (i.e. p9801 not equal to 0).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If a motor holding brake is not being used then it does not make any sense to enable the parameterization “no motor holding brake available” and “safe brake control” (p1215 = 0, p9602 = p9802 = 1).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units:

- Default value: 0
- Minimum value: 0
- Maximum value: 1

Data type: I32

Effective:

p9810 SI PROFIsafe address (Motor Module)

<table>
<thead>
<tr>
<th>Description</th>
<th>Checksum</th>
<th>Protection level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets the PROFIsafe address of the Motor Module.</td>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

Units:

- Default value: 0000 hex
- Minimum value: 0000 hex
- Maximum value: FFFF hex

Data type: U16

Effective:
Data Description

8.2 Parameters for SINAMICS S120

<table>
<thead>
<tr>
<th>p9850</th>
<th>SI SGE changeover, tolerance time (Motor Module)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sets the tolerance time to changeover the safety-relevant inputs (SGE) on the Motor Module. An SGE changeover is not simultaneously effective due to the different runtimes in the two monitoring channels. After an SGE changeover, dynamic data is not subject to a crosswise data comparison during this tolerance time.</td>
</tr>
<tr>
<td>Units:</td>
<td>μs</td>
</tr>
<tr>
<td>Default value:</td>
<td>500 000</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>2 000 000</td>
</tr>
<tr>
<td>Data type:</td>
<td>Real32</td>
</tr>
<tr>
<td>Checksum:</td>
<td>Yes</td>
</tr>
<tr>
<td>Protection level:</td>
<td>3</td>
</tr>
</tbody>
</table>

For a crosswise data comparison between p9650 and p9850, a difference of one safety monitoring clock cycle is tolerated. The parameterized time is internally rounded-off to an integer multiple of the monitoring clock cycle.

<table>
<thead>
<tr>
<th>p9858</th>
<th>SI transition time STOP F to STOP A (Motor Module)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sets the transition time from STOP F to STOP A on the Motor Module. STOP F: Defect in a monitoring channel (error in the crosswise data comparison) STOP A: Pulse cancellation via the safety shutdown path</td>
</tr>
<tr>
<td>Units:</td>
<td>μs</td>
</tr>
<tr>
<td>Default value:</td>
<td>0</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>0</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>30 000 000</td>
</tr>
<tr>
<td>Data type:</td>
<td>Real32</td>
</tr>
<tr>
<td>Checksum:</td>
<td>Yes</td>
</tr>
<tr>
<td>Protection level:</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r9870[0...2]</th>
<th>SI version (Motor Module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the Safety Integrated version on the Motor Module. [0]: Safety Version (major release) [1]: Safety Version (minor release) [2]: Safety Version (baselevel or patch) Example: r9870[0]=2, r9870[1]=3, r9870[2]=1—> Safety Version V02.03.01</td>
<td></td>
</tr>
<tr>
<td>Units:</td>
<td>–</td>
</tr>
<tr>
<td>Default value:</td>
<td>–</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>–</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>–</td>
</tr>
<tr>
<td>Data type:</td>
<td>U16</td>
</tr>
<tr>
<td>Checksum:</td>
<td>No</td>
</tr>
<tr>
<td>Protection level:</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r9871</th>
<th>SI common functions (Motor Module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays the Safety Integrated monitoring functions supported on the Control Unit and Motor Module. The Motor Module determines this display. Bit 0: SH supported via terminal Bit 1: SBC is supported Bit 2: SI motion supported</td>
<td></td>
</tr>
<tr>
<td>Units:</td>
<td>–</td>
</tr>
<tr>
<td>Default value:</td>
<td>–</td>
</tr>
<tr>
<td>Minimum value:</td>
<td>–</td>
</tr>
<tr>
<td>Maximum value:</td>
<td>–</td>
</tr>
<tr>
<td>Data type:</td>
<td>U32</td>
</tr>
<tr>
<td>Checksum:</td>
<td>No</td>
</tr>
<tr>
<td>Protection level:</td>
<td>3</td>
</tr>
</tbody>
</table>
8.2 Parameters for SINAMICS S120

r9872 CO/BO: SI status (Motor Module)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SH selected on Motor Module</td>
</tr>
<tr>
<td>1</td>
<td>SH active on Motor Module</td>
</tr>
<tr>
<td>4</td>
<td>SBC requested</td>
</tr>
<tr>
<td>9</td>
<td>STOP A cannot be acknowledged active</td>
</tr>
<tr>
<td>10</td>
<td>STOP A active</td>
</tr>
<tr>
<td>15</td>
<td>STOP F active</td>
</tr>
</tbody>
</table>

Units: –

Default value: –

Minimum value: –

Maximum value: –

Data type: U32

Effective: –

Checksum: No

Protection level: 2

r9880 SI monitoring clock cycle (Motor Module)

Displays the cycle time for the safety functions on the Motor Module.

Units: ms

Default value: –

Minimum value: –

Maximum value: –

Data type: REAL32

Effective: –

Checksum: No

Protection level: 3

r9881[0...11] SI motion Sensor Module Node Identifier control

Displays the Node Identifier of the Sensor Module that is used by the control for the motion monitoring functions.

Units: –

Default value: –

Minimum value: –

Maximum value: –

Data type: U8

Effective: –

Checksum: No

Protection level: 4

r9890[0...2] SI version (Sensor Module)

Displays the Safety Integrated version on the Sensor Module.

[0]: Safety Version (major release)

[1]: Safety Version (minor release)

[2]: Safety Version (baselevel or patch)

Example: r9890[0]=2, r9890[1]=3, r9890[2]=1 → Safety Version V02.03.01

Units: –

Default value: –

Minimum value: –

Maximum value: –

Data type: U16

Effective: –

Checksum: No

Protection level: 3

r9894[0...19] SI crosswise comparison list (Motor Module)

Displays the number of the data that are being presently compared crosswise on the Motor Module.

Example:

`r9894[0] = 1` (monitoring clock cycle)

`r9894[1] = 2` (enable safety-related functions)

`r9894[2] = 3` (SGE changeover, tolerance time)

`r9894[3] = 4` (transition time, STOP F to STOP A)

... The list of crosswise compared data depends on the particular application.

Units: –

Default value: –

Minimum value: –

Maximum value: –

Data type: U16

Effective: –

Checksum: No

Protection level: 2

© Siemens AG, 2006. All rights reserved

SINUMERIK 840D sl/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition
8.2 Parameters for SINAMICS S120

SI diagnostics, STOP F (Motor Module)

<table>
<thead>
<tr>
<th>Crosswise comparison ID</th>
<th>Crosswise comparison data</th>
<th>Associated parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SI monitoring clock cycle</td>
<td>r9880</td>
</tr>
<tr>
<td>2</td>
<td>SI enable parameters (CU/MM)</td>
<td>p9601/p9801</td>
</tr>
<tr>
<td>3</td>
<td>Tolerance time changeover, safety-relevant input signals (CU/MM)</td>
<td>p9650/p9850</td>
</tr>
<tr>
<td>4</td>
<td>Transition time from STOP F to STOP A (CU/MM)</td>
<td>p9658/p9858</td>
</tr>
<tr>
<td>5</td>
<td>Safe brake control (CU/MM)</td>
<td>p9602/p9802</td>
</tr>
<tr>
<td>6</td>
<td>Enable, safe motion monitoring</td>
<td>p9501/p29822</td>
</tr>
</tbody>
</table>

Additional diagnostic values (from 1000 onwards):

<table>
<thead>
<tr>
<th>Value</th>
<th>Error description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>Check (watchdog) timer has expired</td>
<td>Change timer in the CU has been active too long</td>
</tr>
<tr>
<td>1001</td>
<td>Change timer initialization error</td>
<td>When starting the change timer, the CU had not set the "timer running bit"</td>
</tr>
<tr>
<td>1002</td>
<td>Check (watchdog) timer initialization error</td>
<td>The MM had not started the check (watchdog) timer although the change timer is currently running in the CU</td>
</tr>
<tr>
<td>2000</td>
<td>Error when comparing the SH terminals</td>
<td>Status of the SH terminals on the Control Unit and Motor Module are different.</td>
</tr>
<tr>
<td>2001</td>
<td>Error when comparing the feedback signals DIAG_U and DIAG_L</td>
<td>Status of the feedback signals of the safety shutdown paths on the Control Unit and Motor Module are different.</td>
</tr>
</tbody>
</table>

SI actual checksum SI parameters (Motor Module)

<table>
<thead>
<tr>
<th>Checksum: No</th>
<th>Protection level: 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checksum: No</td>
<td>Protection level: 3</td>
</tr>
</tbody>
</table>

Diagnostics data that provides more information on Fault F30611 ("SI MM: Defect in a monitoring channel").
SI reference checksum Si parameters (Motor Module)

<table>
<thead>
<tr>
<th>r9899</th>
<th>Description</th>
<th>Checksum:</th>
<th>Protection level:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sets the checksum for the checked Safety Integrated parameters on the Motor</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Module (reference checksum).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td>Default value: 0000 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum value: 0000 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum value: FFFF FFFF hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units</td>
<td></td>
<td>Default value: U32</td>
<td></td>
</tr>
</tbody>
</table>

The actual checksum (r9898) calculated by the MM must be entered into the reference checksum p9899. This therefore acknowledges the safety commissioning on the Motor Module.
8.3 Interface signals

General information

The safety-relevant input and output signals (SGEs and SGAs) are signals that are sent to and received from the system through two channels.

Caution
An error in the crosswise data comparison (STOP F, displayed using Alarms 27001, 27101 and onwards or F01711) only results in a subsequent STOP B/A response, if at least one of the safety-relevant functions SBH, SG, SE or SN is active. If only the function “n < nx” is active, this results in a crosswise comparison error, but not in a subsequent STOP B/A response.

Note
The SGEs/SGAs in the drive monitoring channel are mapped in an area of the NC/PLC interface (signals to/from the drive) and must be supplied in the PLC user program.
As a result of the two-channel structure of Safety Integrated, the machine manufacturer must supply the SGEs and SGAs in both the NCK monitoring channel and the drive monitoring channel.
Unused SGEs must be set to a defined state.
8.3.1 Interface signals for SINUMERIK 840Dsl

Table 8-4 Interface signals for 840Dsl

<table>
<thead>
<tr>
<th>DB 31...</th>
<th>Signals from/to the drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte</td>
<td>Bit 7</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBB 22</th>
<th>Test stop Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>Close brake</td>
</tr>
<tr>
<td></td>
<td>SE selection</td>
</tr>
<tr>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>Gear ratio selection</td>
</tr>
<tr>
<td></td>
<td>Bit 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBB 32</th>
<th>De-select ext. STOP_E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>De-select ext. STOP_D</td>
</tr>
<tr>
<td></td>
<td>De-select ext. STOP_C</td>
</tr>
<tr>
<td></td>
<td>De-select ext. STOP_A</td>
</tr>
<tr>
<td>r</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBB 33</th>
<th>SG correction select/override</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bit 3</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBB 108</th>
<th>Axis safely referenced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Status, pulses are cancelled</td>
</tr>
<tr>
<td></td>
<td>SBH/SG active</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBB 109</th>
<th>SN4 – Cam signals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SN3 – Cam position</td>
</tr>
<tr>
<td></td>
<td>SN3 +</td>
</tr>
<tr>
<td></td>
<td>SN2 –</td>
</tr>
<tr>
<td></td>
<td>SN2 +</td>
</tr>
<tr>
<td></td>
<td>SN1 –</td>
</tr>
<tr>
<td></td>
<td>SN1+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBB 110</th>
<th>SG active</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bit 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DBB 111</th>
<th>STOP_E active</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STOP_D active</td>
</tr>
<tr>
<td></td>
<td>STOP_C active</td>
</tr>
<tr>
<td></td>
<td>STOP_A/B active</td>
</tr>
</tbody>
</table>

Note: DB 31 / 32 / 33 ... contains the interface signals for axis/spindle 1 / 2 / 3 ...
8.3.2 Description of the interface signals

Description of the signals sent to the monitoring channel

SGE, SBH/SG de-selection, SBH de-selection

The SBH and SG functions are selected/de-selected using these signals.

Table 8-5 Selecting/de-selecting SBH and SG

<table>
<thead>
<tr>
<th>SBH/SG de-selection</th>
<th>SGE SBH de-selection</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 1</td>
<td>x</td>
<td>SBH and SG are de-selected</td>
</tr>
<tr>
<td>= 0</td>
<td>= 0</td>
<td>SBH is selected</td>
</tr>
<tr>
<td>= 0</td>
<td>= 1</td>
<td>SG is selected</td>
</tr>
</tbody>
</table>

x: Signal state is optional

SGE – SG selection, bits 1, 0

By combining these signals when the SG function is activated it is possible to select the speed limit value for SG1, 2, 3 or 4.

Table 8-6 Selecting the speed limit values for SGn

<table>
<thead>
<tr>
<th>SG selection Bit 1</th>
<th>SGE</th>
<th>SG selection Bit 0</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>= 0</td>
<td>=0</td>
<td>=0</td>
<td>Speed limit value for SG1 is selected</td>
</tr>
<tr>
<td>= 0</td>
<td>=1</td>
<td>=1</td>
<td>Speed limit value for SG2 is selected</td>
</tr>
<tr>
<td>= 1</td>
<td>=0</td>
<td>=1</td>
<td>Speed limit value for SG3 is selected</td>
</tr>
<tr>
<td>=1</td>
<td>=1</td>
<td>=1</td>
<td>Speed limit value for SG4 is selected</td>
</tr>
</tbody>
</table>

SGE gearbox ratio selection, bits 2, 1, 0

The combination of these signals determines the selected gearbox ratio 1, 2, ..., 8.

Table 8-7 Gearbox ratio selection

<table>
<thead>
<tr>
<th>SGE gearbox ratio selection</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Gearbox stage 1 is selected</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Gearbox stage 2 is selected</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Gearbox stage 3 is selected</td>
</tr>
</tbody>
</table>
Table 8-7 Gearbox ratio selection, continued

<table>
<thead>
<tr>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td>Gearbox stage 8 is selected</td>
</tr>
</tbody>
</table>

SGE SE selection

When this signal is appropriately activated, and the SE function is activated, either SE1 or SE2 is selected.

0 signal: SE1 is selected
1 signal: SE2 is selected

SGE SG correction selection/override, bits 3, 2, 1, 0

16 overrides for the limit value of safely-reduced speeds 2 and 4 can be defined using the SGEs. This means that the limit values for SG2 and SG4 can be more finely graduated.

An override factor of between 1 and 100% can be assigned to the selected override using the following machine data:

for 840D sl:
MD 36932: $MA_SAFE_VELO_OVR_FACTOR[n]

for SINAMICS S120:
p9532[n]: SI motion, override factor
SGE test stop selection

This signal is used to initiate the shutdown path test for the drive monitoring channel (see Subsection 6.1.1 “Shutdown paths”).

The test stop is also carried-out at the same time in the NCK monitoring channel (see Subsection 6.1.2 “Testing the shutdown paths”).

Test stop for external STOPs

See Subsection 6.3.8 “Forced checking procedure of the external STOPs”.

SGE de-select ext. STOP A

“Pulse cancellation” can be requested and executed using this SGE.

The safe functions currently active (SG/SBH/SN/SE) are not influenced by this SGE.

If one of the currently active limits is violated, an appropriate alarm is triggered. The associated shutdown response cannot be activated because the pulses have already been cancelled. As soon as the stop request is cancelled via the SGE “de-select ext. STOP A” any queued shutdown responses become active.

If a stop request is active, SGA “STOP A/B is active” is set in the same way as it would be for an internally triggered STOP A.

0 signal: “Pulse cancellation” is requested
1 signal: “Pulse cancellation” is not requested
SGE de-select ext. STOP C

This SGE requests “braking with $n_{set} = 0$” (braking at the current limit). When this stopping type is initiated, the safe braking ramp (SBR) is activated. In addition, the timer set in MD36952/p9552: $MA_SAFE_STOP_SWITCH_TIME_C / \text{“SI motion transition time STOP C to SBH”}$ is started. After this time has elapsed, the system automatically changes over to SBH.

If a stop request is active, SGA “STOP C is active” is set in the same way as it would be for an internally triggered STOP C.

0 signal: “Braking with $n_{set} = 0$” is requested
1 signal: No request for “braking with $n_{set} = 0$”

Note

Stopping with an external STOP A (pulse cancellation) has a higher priority and can interrupt an external STOP C (braking at the current limit).

SGE de-select ext. STOP D

“Braking along a path” can be requested using this SGE.

When ext. STOP D is triggered, the timer set using MD 36953/p9553 $MA_SAFE_STOP_SWITCH_TIME_D / \text{“SI motion transition time STOP D to SBH”}$ is started. After this time has elapsed, the system automatically changes over to SBH.

If a stop request is active, SGA “STOP D is active” is set in the same way as it would be for an internally triggered STOP D.

0 signal: “Braking along a path” is requested
1 signal: “Braking along the path” is not requested

Note

Stopping with an external STOP A (pulse cancellation) and external STOP C (braking at the current limit) have a higher priority and can interrupt an external STOP D (braking along a path).
SGE de-select ext. STOP E

This SGE can be used to request a stop via the function “extended stopping and retraction” (ESR). When an external STOP E is initiated, the timer set using MD 36954: $MA_SAFE_STOP_SWITCH_TIME_E / p9554: “SI motion transition time STOP E to SBH” is started. After this time has elapsed, the system automatically changes over to SBH.

If a stop request is active, SGA “STOP E is active” is set in the same way as it would be for an internally triggered STOP E.

0 signal: “Stop/retraction” is requested
1 signal: “Stop/retraction” is not requested

Note

Stopping with an ext. STOP A (pulse cancellation), ext. STOP C (braking at the current limit) and ext. STOP D (braking along a path) have a higher priority and can interrupt an ext. STOP E.

STOP E only produces a different response than STOP D if the user has configured the ESR function – extended stop and retract – and initiation of the ESR is programmed depending on $VA_STOPSI or $A_STOPESI. If no ESR is active, the STOP E behaves like a STOP D. However, if the ESR was incorrectly configured, there is a delay up to the time $MC_ESR_DELAY_TIME1 and $MC_ESR_DELAY_TIME2 compared to STOP D until the braking operation is initiated.

After these times have expired, braking is initiated at the current limit.

Close SGE brake (only the drive)

Using this SGE, a mechanical brake, that is controlled from the drive brake control, is closed. It is used to check brake closing while testing the mechanical brake system.

- If this SGE is set, the brake is closed.
- If this SGE is set, then the brake assumes the status of the drive brake control – i.e. it is not forcibly opened (no positive opening).

Note

This SGE must be connected to the brake control using a BiCo interconnection in the drive (p0858 to source r9719, bit 13). This connection is parameterized as standard.
SGA SBH/SG active

This signal is used to signal the drive monitoring channel the status of the SBH and SG functions as follows:

0 signal: SBH/SG is not active
1 signal: SBH/SG is active

SGA status, pulses are cancelled (drive only)

After the shutdown path test has been initiated using the SGE test stop selection or if a limit value is violated with a resulting STOP A response, this signal is output to indicate that the drive pulses have been internally cancelled (refer to Subsection 6.1.1, “Shutdown paths”).

0 signal: Pulses are enabled
1 signal: Pulses are cancelled

SGA axis safely referenced

This indicates as to whether the relevant axis/spindle has been safely referenced (see Subsection 5.4.3, “Axis states”).

0 signal: Axis is not safely referenced
1 signal: Axis is safely referenced

SGA SN1+, SN1−, SN2+, SN2−, SN3+, SN3−, SN4+, SN4−

These signals are used to indicate which of the plus or minus cams of cam pair 1, 2, 3 or 4 is “actuated”.

0 signal: Axis/spindle is located to the left of the cam (actual value < cam position)
1 signal: Axis/spindle is located to the right of the cam (actual value > cam position)

SGA SBH active

The signal indicates the status of the safe operating stop (SBH).

1 signal: SBH is active
0 signal: SBH is not active

SGA STOP A/B is active

This signal indicates that STOP A/B is active. The signal must be used for the forced checking procedure for external STOPs.

0 signal: STOP A/B is not active
1 signal: STOP A/B is active
SGA STOP C is active
This signal indicates that STOP C is active.
The signal must be used for the forced checking procedure for external STOPs.
0 signal: STOP C is not active
1 signal: STOP C is active

SGA STOP D is active
This signal indicates that STOP D is active.
The signal must be used for the forced checking procedure for external STOPs.
0 signal: STOP D is not active
1 signal: STOP D is active

SGA STOP E is active
This signal indicates that STOP E is active.
The signal must be used for the forced checking procedure for external STOPs.
0 signal: STOP E is not active
1 signal: STOP E is active

SGA “n < n_x”
This SGA indicates whether the absolute value of the actual speed is above or below a speed specified in the machine data.

![Diagram](image)

Fig. 8-2 Signal n < n_x, dependent on the speed characteristic
Caution
An error in the crosswise data comparison (STOP F, displayed using Alarms 27001, 27101 and onwards or F01711) only results in a subsequent STOP B/A response, if at least one of the safety-relevant functions SBH, SG is active. If only the function “n < n_x” is active, then a crosswise data comparison error does not result in a subsequent STOP B/A response.

Note
If the axis/spindle runs at a speed n_x, then as a result of actual differences in the two monitoring channels, the SGA “n < n_x” can have different states. This must be taken into account in the safe processing of the SGAs.

SG active, bits 1, 0
The SGAs “SG active bits 1, 0” display which safely-reduced speed and therefore which speed limit value is actively monitored. The SGAs are only updated if the function “SBH/SG” is enabled and SG is active (SGE “SBH/SG de-selection” = 0 and “SBH de-selection” = 1).

Table 8-8 Display of the active safely-reduced speed

<table>
<thead>
<tr>
<th>SG Active Bit 1</th>
<th>SG Active Bit 0</th>
<th>SBH/SG active Bit 1</th>
<th>SBH active</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>=0</td>
<td>=0</td>
<td>1</td>
<td>1</td>
<td>SBH is active (safely-reduced speed is not active)</td>
</tr>
<tr>
<td>=0</td>
<td>=0</td>
<td>1</td>
<td>0</td>
<td>Speed limit value for SG1 active</td>
</tr>
<tr>
<td>=0</td>
<td>=1</td>
<td>1</td>
<td>0</td>
<td>Speed limit value for SG2 active</td>
</tr>
<tr>
<td>=1</td>
<td>=0</td>
<td>1</td>
<td>0</td>
<td>Speed limit value for SG3 active</td>
</tr>
<tr>
<td>=1</td>
<td>=1</td>
<td>1</td>
<td>0</td>
<td>Speed limit value for SG4 active</td>
</tr>
<tr>
<td>=0</td>
<td>=0</td>
<td>0</td>
<td>0</td>
<td>Neither SBH nor SG is active</td>
</tr>
</tbody>
</table>

Note:
The state “SG active bits 1, 0” = “0” has different meanings. A clear interpretation can be obtained by additionally evaluating the SGAs “SBH active” and “SBH/SG active”.

© Siemens AG, 2006. All rights reserved
SINUMERIK 840D sl/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition 8-321
8.3.3 PLC data block (DB 18)

Parameterization part

<table>
<thead>
<tr>
<th>DB 18</th>
<th>Signals for safety SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Block</td>
<td>Interface PLC ———> PLC</td>
</tr>
<tr>
<td>Byte</td>
<td>Bit 7</td>
</tr>
<tr>
<td>DBB 0</td>
<td>8th input byte</td>
</tr>
<tr>
<td>DBB1</td>
<td></td>
</tr>
<tr>
<td>DBB 2</td>
<td>8th output byte</td>
</tr>
<tr>
<td>DBB 3</td>
<td></td>
</tr>
<tr>
<td>DBW4</td>
<td></td>
</tr>
<tr>
<td>DBW6</td>
<td></td>
</tr>
<tr>
<td>DBW8</td>
<td></td>
</tr>
<tr>
<td>DBW10</td>
<td></td>
</tr>
<tr>
<td>DBW12</td>
<td></td>
</tr>
<tr>
<td>DBW14</td>
<td></td>
</tr>
<tr>
<td>DBW16</td>
<td></td>
</tr>
<tr>
<td>DBW18</td>
<td></td>
</tr>
<tr>
<td>DBW20</td>
<td></td>
</tr>
<tr>
<td>DBW22</td>
<td></td>
</tr>
</tbody>
</table>

- **INSEP Valid** (valid bit)
- **OUTSEPValid** (valid bit)
- **INSEP_ADDR** (address 1st input byte)
- **INSEP_ADDR** (address 2nd input byte)
- **INSEP_ADDR** (address 3rd input byte)
- **INSEP_ADDR** (address 4th input byte)
- **INSEP_ADDR** (address 5th input byte)
- **INSEP_ADDR** (address 6th input byte)
- **INSEP_ADDR** (address 7th input byte)
- **INSEP_ADDR** (address 8th input byte)
- **OUTSEP_ADDR** (address 1st output byte)
- **OUTSEP_ADDR** (address 2nd output byte)
Signals for safety SPL

<table>
<thead>
<tr>
<th>DB 18</th>
<th>Signals for safety SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBW24</td>
<td>OUTSEP_ADDR (address 3rd output byte)</td>
</tr>
<tr>
<td>DBW26</td>
<td>OUTSEP_ADDR (address 4th output byte)</td>
</tr>
<tr>
<td>DBW28</td>
<td>OUTSEP_ADDR (address 5th output byte)</td>
</tr>
<tr>
<td>DBW30</td>
<td>OUTSEP_ADDR (address 6th output byte)</td>
</tr>
<tr>
<td>DBW32</td>
<td>OUTSEP_ADDR (address 7th output byte)</td>
</tr>
<tr>
<td>DBW34</td>
<td>OUTSEP_ADDR (address 8th output byte)</td>
</tr>
<tr>
<td>DBB36</td>
<td>Stop E</td>
</tr>
<tr>
<td>DBB37</td>
<td>SPL_REA DY</td>
</tr>
</tbody>
</table>

Data area/errors

<table>
<thead>
<tr>
<th>DB 18</th>
<th>Signals for safety SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Block</td>
<td>Interface PLC ——> NCK</td>
</tr>
<tr>
<td>Byte</td>
<td>Bit 7</td>
</tr>
<tr>
<td>Data area of SPL inputs/outputs</td>
<td></td>
</tr>
<tr>
<td>DBD 38</td>
<td>SPL_DATA.INSEP[1...32]</td>
</tr>
<tr>
<td>DBD 42</td>
<td>SPL_DATA.INSEP[33...64]</td>
</tr>
<tr>
<td>DBD 46</td>
<td>SPL_DATA.OUTSEP[1...32]</td>
</tr>
<tr>
<td>DBD 50</td>
<td>SPL_DATA.OUTSEP[33...64]</td>
</tr>
<tr>
<td>Data area for user SPL</td>
<td></td>
</tr>
<tr>
<td>DBD 54</td>
<td>SPL_DATA.INSIP[1...32]</td>
</tr>
<tr>
<td>DBD 58</td>
<td>SPL_DATA.INSIP[33...64]</td>
</tr>
<tr>
<td>DBD 62</td>
<td>SPL_DATA.OUTSIP[1...32]</td>
</tr>
</tbody>
</table>
8.3 Interface signals

<table>
<thead>
<tr>
<th>DB 18</th>
<th>Signals for safety SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPL_DATA.OUTSIP[33...64]</td>
</tr>
<tr>
<td>DBD 66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPL_DATA.MARKERSIP[1...32]</td>
</tr>
<tr>
<td>DBD 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPL_DATA.MARKERSIP[33...64]</td>
</tr>
<tr>
<td>DBD 74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Difference in signal level NCK – PLC for diagnostics</td>
</tr>
<tr>
<td>DBD 78</td>
<td>SPL_DELTA.INSEP[1 ...32]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DBD 82</td>
<td>SPL_DELTA.INSEP[33 ...64]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DBD 86</td>
<td>SPL_DELTA.OUTSEP[1 ...32]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DBD 90</td>
<td>SPL_DELTA.OUTSEP[33 ...64]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DBD 94</td>
<td>SPL_DELTA.INSIP[1 ...32]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DBD 98</td>
<td>SPL_DELTA.INSIP[33 ...64]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DBD 102</td>
<td>SPL_DELTA.OUTSIP[1 ...32]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DBD 106</td>
<td>SPL_DELTA.OUTSIP[33 ...64]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DBD 110</td>
<td>SPL_DELTA.MARKERSIP[1 ...32]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DBD 114</td>
<td>SPL_DELTA.MARKERSIP[33 ...64]</td>
</tr>
<tr>
<td>DBB 118</td>
<td>CMDSI</td>
</tr>
<tr>
<td>DBB 119</td>
<td>COMM_TO</td>
</tr>
<tr>
<td>DBD 120</td>
<td>Error number</td>
</tr>
<tr>
<td></td>
<td>0 = no error</td>
</tr>
<tr>
<td></td>
<td>1 – 320 = signal number starting from SPL_DATA.INSEP[1]</td>
</tr>
<tr>
<td>DBD 124</td>
<td>Crosswise data comparison stack level display</td>
</tr>
<tr>
<td></td>
<td>(diagnostics capability: How many SPL signals currently have different levels)</td>
</tr>
</tbody>
</table>
Additional data areas

<table>
<thead>
<tr>
<th>DB 18</th>
<th>Signals for safety SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Block</td>
<td>Interface PLC ———> NCK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PLCSIOUT[1 ..8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPL status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROFIsafe module(s) for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB138</td>
<td>8th input byte</td>
<td>7th input byte</td>
<td>6th input byte</td>
<td>5th input byte</td>
<td>4th input byte</td>
<td>3rd input byte</td>
<td>2nd input byte</td>
<td>1st input byte</td>
</tr>
<tr>
<td>DBB139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB140</td>
<td>8th output byte</td>
<td>7th output byte</td>
<td>6th output byte</td>
<td>5th output byte</td>
<td>4th output byte</td>
<td>3rd output byte</td>
<td>2nd output byte</td>
<td>1st output byte</td>
</tr>
<tr>
<td>DBB141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB142</td>
<td>up to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBB149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.3 Interface signals

SPL status signals for DB18.DBW136

<table>
<thead>
<tr>
<th>DB18</th>
<th>Signals for safety SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NCK-SPL interfaces parameterized</td>
</tr>
<tr>
<td></td>
<td>NCK-SPL program file exists</td>
</tr>
<tr>
<td></td>
<td>NCK waits for the PLC to boot</td>
</tr>
<tr>
<td></td>
<td>NCK and PLC in cyclic operation</td>
</tr>
<tr>
<td></td>
<td>Call FB4 processing for SPL</td>
</tr>
<tr>
<td></td>
<td>End FB4 processing on NCK</td>
</tr>
<tr>
<td></td>
<td>Call FC9 processing for SPL</td>
</tr>
<tr>
<td></td>
<td>End FC9 processing on NCK</td>
</tr>
<tr>
<td></td>
<td>SPL start implemented using PROG_EVENT mechanism</td>
</tr>
<tr>
<td></td>
<td>Crosswise data comparison started, NCK</td>
</tr>
<tr>
<td></td>
<td>Crosswise data comparison started, PLC</td>
</tr>
<tr>
<td></td>
<td>NCK-SPL checksum checking active</td>
</tr>
<tr>
<td></td>
<td>All SPL protective mechanisms active</td>
</tr>
<tr>
<td></td>
<td>End of SPL program reached</td>
</tr>
<tr>
<td></td>
<td>not assigned</td>
</tr>
<tr>
<td></td>
<td>not assigned</td>
</tr>
</tbody>
</table>

Table 8-9 Overview of DB 18 signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>r – read</th>
<th>w – write</th>
<th>Type</th>
<th>Range of values</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSEP_VALID[1..8] (no significance)</td>
<td>r/w</td>
<td>Bool</td>
<td>0 = INSEP[1..8] No automatic transfer, can be supplied from the user program (AWP) 1 = Transfer of input byte, specified in INSEP_ADDR[1..8] to INSEP[1..8] by the basic program</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 8-9 Overview of DB 18 signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Type</th>
<th>Range of values</th>
<th>Comment</th>
</tr>
</thead>
</table>
| OUTSEP_VALID[1..8] | Bool | | 0 = OUTSEP[1..8] No automatic transfer, can be retrieved from the user program (AWP)
| | | 1 = Transfer to output byte defined in OUTSEP[1..8] from OUTSET_ADDR[1..8] by the basic program | |
| INSEP_ADDR[1..8] | Int | 1..EB max | Address, input byte |
| OUTSEP_ADDR[1..8] | Int | 1..AB max | Address, output byte |
| SPL_READY | Bool | | 0 = commissioning phase
| | | 1 = commissioning completed
| | | (for a crosswise data comparison error, STOP D is not initiated)
| | | (for a crosswise data comparison error, STOP D is initiated) |
| STOP E | | | If DB18, DBX36.1 was set to 1, for a crosswise data comparison error, instead of an external STOP D, an external STOP E is transferred to the drive |

Data area/status

<table>
<thead>
<tr>
<th>SPL_DATA</th>
<th>Net (useful) data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSEP[1..64]</td>
<td>r</td>
</tr>
<tr>
<td>OUTSEP[1..64]</td>
<td>r/w</td>
</tr>
<tr>
<td>INSIP[1..64]</td>
<td>r</td>
</tr>
<tr>
<td>OUTSIP[1..64]</td>
<td>r</td>
</tr>
<tr>
<td>MARKERSIP[1..64]</td>
<td>r/w</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPL_DELTA</th>
<th>Signal differences for diagnostics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSEP[1..64]</td>
<td>r</td>
</tr>
<tr>
<td>OUTSEP[1..64]</td>
<td>r</td>
</tr>
<tr>
<td>INSIP[1..64]</td>
<td>r</td>
</tr>
<tr>
<td>OUTSIP[1..64]</td>
<td>r</td>
</tr>
<tr>
<td>MARKERSIP[1..64]</td>
<td>r</td>
</tr>
<tr>
<td>CMDSI</td>
<td>r/w</td>
</tr>
<tr>
<td>COMM_TO</td>
<td>r</td>
</tr>
</tbody>
</table>
Table 8-9: Overview of DB 18 signals

<table>
<thead>
<tr>
<th>Signal</th>
<th>r – read</th>
<th>Type</th>
<th>Range of values</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATSI</td>
<td>r</td>
<td>Dint</td>
<td>1 – 320</td>
<td>Status: 0 – no error 1 – 320 error No. corresponds to signal from SPL_DATA whose signal level difference resulted in a crosswise data comparison error</td>
</tr>
<tr>
<td>LEVELSI</td>
<td>r</td>
<td>Dint</td>
<td></td>
<td>Crosswise data comparison stack level display (diagnostics capability: How many SPL signals currently have different levels)</td>
</tr>
<tr>
<td>PLCSIIN</td>
<td>r/w</td>
<td>Bool</td>
<td>1 – 32</td>
<td>Single-channel signals from the PLC to NCK</td>
</tr>
<tr>
<td>PLCSIOUT</td>
<td>r</td>
<td>Bool</td>
<td>1 – 32</td>
<td>Single-channel signals from the NCK to the PLC</td>
</tr>
<tr>
<td>SPL_STATUS</td>
<td>r</td>
<td>Bool</td>
<td></td>
<td>Status signals from NCK to PLC</td>
</tr>
<tr>
<td>INSEP_PROFISAFE</td>
<td>r</td>
<td>Bool</td>
<td></td>
<td>0 = no assignment from PROFIsafe F modules to INSEP [1..8] 1 = transfer from PROFIsafe F module to INSEP [1..8] using the basic program</td>
</tr>
<tr>
<td>OUTSEP_PROFISAFE</td>
<td>r</td>
<td>Bool</td>
<td></td>
<td>0 = no assignment from PROFIsafe F modules to OUTSEP [1..8] 1 = transfer from OUTSEP [1..8] to PROFIsafe F module using the basic program</td>
</tr>
</tbody>
</table>
8.4 System variables

8.4.1 System variables for SINUMERIK 840DsI

System variables

Table 8-10 Overview of system variables

<table>
<thead>
<tr>
<th>System variables</th>
<th>Meaning</th>
<th>Range of values</th>
<th>Data type</th>
<th>Possible access for Part program</th>
<th>Synchronized action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>l</td>
</tr>
<tr>
<td>Actual position</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$VA.IS[axis]$</td>
<td>Safe act. po. for Safety Integrated</td>
<td>$n = 1, 2, \ldots 64$ stand for the No. of the input</td>
<td>DOUBLE</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$VA.IM[axis]$</td>
<td>Ac. pos. of the closed-loop control</td>
<td>$n = 1, 2$</td>
<td>DOUBLE</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$VA.IM[axis]$</td>
<td>Encoder actual value in the machine coordinate system</td>
<td>$n = 1, 2$</td>
<td>DOUBLE</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Internal inputs/outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_INSI[n]$</td>
<td>NCK input</td>
<td>$n = 1, 2, \ldots 64$ stand for the No. of the input</td>
<td>BOOL</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$A_INSID[n]$</td>
<td>NCK inputs</td>
<td>$n = 1, 2$</td>
<td>INT</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_INSIP[n]$</td>
<td>Image, PLC input</td>
<td>$n = 1, 2, \ldots 64$</td>
<td>BOOL</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$A_INSIPD[n]$</td>
<td>Image of the PLC – SPL inputs from the drive monitoring channel</td>
<td>$n = 1, 2$</td>
<td>INT</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_OUTSI[n]$</td>
<td>NCK output</td>
<td>$n = 1, 2, \ldots 64$ stand for the No. of the output</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_OUTSID[n]$</td>
<td>NCK outputs</td>
<td>$n = 1, 2$</td>
<td>INT</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_OUTSIP[n]$</td>
<td>Image, PLC output</td>
<td>$n = 1, 2, \ldots 64$</td>
<td>BOOL</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$A_OUTSIPD[n]$</td>
<td>Image of the PLC – SPL outputs from the drive monitoring channel</td>
<td>$n = 1, 2$</td>
<td>INT</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>External inputs/outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_INSE[n]$</td>
<td>NCK input</td>
<td>$n = 1, 2, \ldots 64$ stands for the No. of the input</td>
<td>BOOL</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$A_INSED[n]$</td>
<td>NCK inputs</td>
<td>$n = 1, 2$</td>
<td>INT</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$A_INSEP[n]$</td>
<td>Image of a PLC-SPL input from the PLC HW I/O</td>
<td>$n = 1, 2, \ldots 64$ stand for the No. of the input</td>
<td>BOOL</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$A_INSEPD[n]$</td>
<td>Image of the PLC – SPL inputs from PLC HW I/O</td>
<td>$n = 1, 2$</td>
<td>INT</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>$A_OUTSE[n]$</td>
<td>NCK output</td>
<td>$n = 1, 2, \ldots 64$ stands for the No. of the output</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$A_OUTSED[n]$</td>
<td>NCK outputs</td>
<td>$n = 1, 2$</td>
<td>INT</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Table 8-10 Overview of system variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Type</th>
<th>l</th>
<th>s</th>
<th>i</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>$A_OUTSEP[n]</code></td>
<td>Image of a PLC – SPL output from the PLC HW I/O</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>$A_OUTSEPD[n]</code></td>
<td>Image of PLC – SPL outputs from PLC HW I/O</td>
<td>INT</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>$A_MARKERSI[n]</code></td>
<td>Flag bits</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td><code>$A_MARKERSIP[n]</code></td>
<td>Image of the PLC markers</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>$A_MARKER-SIPD[n]</code></td>
<td>Image of the PLC markers</td>
<td>INT</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>$A_TIMERSI[n]</code></td>
<td>Timers</td>
<td>REAL</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td><code>$A_STATSID</code></td>
<td>Crosswise data comparison error triggered if the value is not equal to 0</td>
<td>INT</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>$A_CMDSI</code></td>
<td>10x change timer timeout value for long forced checking procedure pulses and/or single-channel test stop logic</td>
<td>BOOL</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td><code>$A_LEVELSID</code></td>
<td>Crosswise data comparison stack level display: Number of signals for which NCK and PLC detect different signal levels</td>
<td>INT</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- r -> read, w -> write
- An implicit preliminary stop is generated
- Only permitted in the commissioning phase

1) The number of these system variables depends on the option SI Basic or SI Comfort. For SI Basic, the following applies:
 - 4 INSE[1..4]
 - 4 OUTSE[1..4]
 - 4 INSED[1]
 - 4 OUTSED[1]
System variables

<table>
<thead>
<tr>
<th>System variables</th>
<th>Meaning</th>
<th>Range of values</th>
<th>Data type</th>
<th>Possible access for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Part program</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Actual position</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_XFAULTSI</td>
<td>Bit 0=0: In the crosswise data comparison between NCK and drive of any axis, an actual-value error has been detected. Bit 1=1: In the crosswise data comparison between NCK and drive of any axis, an error was detected and the delay time until STOP B is initiated for this axis is either running or has already expired.</td>
<td>[0,3]</td>
<td>INT</td>
<td>x</td>
</tr>
<tr>
<td>$VA_XFAULTSI[axis]</td>
<td>Bit 0=0: The crosswise data comparison for this axis between NCK and drive has detected an actual value error. Bit 1=1: In the crosswise data comparison between NCK and drive of any axis, an error was detected and the delay time until STOP B is initiated for this axis is either running or has already expired.</td>
<td>[0,3]</td>
<td>INT</td>
<td>x</td>
</tr>
<tr>
<td>$VA_STOPSI[axis]</td>
<td>Actual Safety Integrated stop of the relevant axis. [-1: No stop] [0: Stop A] [1: Stop B] [2: Stop C] [3: Stop D] [4: Stop E] [5: Stop F] [10: Test stop] [11: Test, external pulse cancelation]</td>
<td>[−1,11]</td>
<td>INT</td>
<td>x</td>
</tr>
<tr>
<td>$A_STOPESI</td>
<td>Actual Safety Integrated Stop E for any axis. [0: No stop] otherwise: For one of the axes, a Stop E is present</td>
<td>[0,MAX_INT]</td>
<td>INT</td>
<td>x</td>
</tr>
</tbody>
</table>
8.4 System variables

8.4.2 Description of the system variables

System variable $VA_IS

The safe actual value, used by SI, can be read and further processed by the NC part program for every axis/spindle.

Example:
When an NC part program is started, Safety Integrated checks whether axis X would move into the vicinity of shutdown limits as a result of the zero offsets when a program is processed. The part program can be programmed as follows, for example:

```plaintext
IF ($VA_IS[X] < 10000) GOTOF POS_OK ; if the actual value is too high,
MESG ("Axis has nearly reached limit switch!") ; then the following message,
POS_OK: ; otherwise, continue here
...
```

The variable can also be used in synchronous actions in order to reduce the over-ride when the axis is nearly at the limit switch.

Difference between $VA_IS and $AA_IM

Both variable $VA_IS and variable $AA_IM can be used to read actual values.
System variables $A_XFAULTSI$ and $VA_XFAULTSI$

For crosswise data comparison errors between the NCK and SINAMICS S120, the response depends on the actual operating state:

- **SBH, SG, SE or SN active:** A crosswise data comparison error causes a transition from Stop F to Stop B – which in turn initiates the fastest possible braking of the axis. A Stop A is then initiated and the pulse enable is cancelled.

- **SBH and SG are not active and SE/SN is not used or Stop C/D/E has already been activated:** In this case, a Stop F due to a crosswise data comparison error does not result in any further action – only Alarm 27001 is output that provides information. Processing then continues.

This chain of responses is not altered to ensure the appropriate level of safety for personnel.

To allow responses to a crosswise data comparison error, system variable $A_XFAULTSI$ is used to display that a crosswise data comparison error has occurred on a particular SI axis. Retraction can then be initiated as a response to this system variable.

Further, an axis-specific system variable $VA_XFAULTSI[X]$ has been introduced so that, if necessary, axis-specific responses can be applied.

The system variables are updated independent of whether SI monitoring functions are active or inactive.

$A_XFAULTSI$

Information about Stop F for a safety axis:

- **Bit 0 = 1:** In a crosswise data comparison between NCK and drive of any particular safety axis, an actual value error was detected.

- **Bit 1 = 1:** In the crosswise data comparison between NCK and drive of any axis, an error was detected and the delay time until Stop B is initiated for this axis is either running or has already expired. ($MA_SAFE_STOP_SWITCH_TIME_F$)

$VA_XFAULTSI[X]$ (X = axis identifier)

Information about Safety Integrated Stop F for this axis

Table 8-11: Difference between VA_IS and AA_IM

<table>
<thead>
<tr>
<th>Variable</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA_IS</td>
<td>Reading the actual value used by SI</td>
</tr>
<tr>
<td>AA_IM</td>
<td>Reading the actual value used by the closed-loop control (setpoint for the closed-loop position control)</td>
</tr>
</tbody>
</table>

8.4 System variables

Bit 0 set In the crosswise data comparison between NCK and drive an actual value error was detected.
Bit 1 set In the crosswise data comparison between NCK and drive – an error was detected and the delay time – up until a STOP B ($MA_SAFE_STOP_SWITCH_TIME_F) is initiated – is either running or has expired.

System variable $VA_STOPSI
Axial system variable that contains the present stop. For a value of 2, a Stop E is active for this axis.

System variable $A_STOPESI
Global system variable that with a value not equal to 0 indicates that a Stop E is active for one particular axis.

System variables $A_INSI[1...64]
The status signals of the NCK monitoring channel can be used in the NCK-SPL using these system variables. Each of the system variables $A_INSI[1...64] can be assigned any safety-related output signal or the AND logic operation of several signals using axial MD $MA_SAFE_xxx_OUTPUT. These system variables can only be read by the user program.

Parameterizing example:
– $MA_SAFE_CAM_PLUS_OUTPUT[0] = 04010101H => the SGA “SN1+” can be evaluated in the SPL using the system variable $A_INSI[1].

Programming example:
; Copying an SGA from the internal SPL interface into the external SPL interface
These system variables can only be read by the user program.

System variable $A_INSE[1...64]
The system variables $A_INSE contain the input circuit of the NCK-SPL.
System variables $A_INSED[1,2]$

Image of the safety input signals (external NCK interface).

System variables $A_INSID[1,2]$

The status signals of the NCK monitoring channel can be evaluated in the NCK-SPL in a double-word-serial fashion using this system variable:

$A_INSID[1]$ corresponds to $A_INSI[1...32]$
$A_INSID[2]$ corresponds to $A_INSI[33...64]$

These system variables can only be read by the user program.

System variables $A_OUTSE[1...64]$

The system variables A_OUTSE contain the outputs of the NCK-SPL.

System variables $A_OUTSI[1...64]$

The control signals of the NCK monitoring channel can be addressed from the NCK-SPL using these system variables. Each of the system variables $A_OUTSI[1...64]$ can be simultaneously assigned any one or several safety-related input signals by using the axial MD $MA_SAFE_xxx_INPUT$.

Parameterizing example:

$_MA_SAFE_ VeLO_SELECT_INPUT[0] = 04010204H$

$=>$ The SGE “SG selection, bit 0” is controlled in the SPL using the system variable $A_OUTSI[36]$.

Programming example:

`; SGA “cam 1+” (refer above) controls the SG selection

N1020 IDS = 02 DO $A_OUTSI[36] = A_INSI[1]$

These system variables can be read by the user program and written into by SAFE.SPF.

System variables $A_OUTSID[1,2]$

The control signals of the NCK monitoring channel can be addressed in the NCK-SPL in a double-word-serial fashion using these system variables:

$A_OUTSID[1]$ corresponds to $A_OUTSI[1...32]$
$A_OUTSID[2]$ corresponds to $A_OUTSI[33...64]$

These system variables can be read by the user program and written into by SAFE.SPF.
System variables $A_{OUTSED}[1,2]$

The external status signals can be addressed by the NCK-SPL in a double-word-serial fashion using these system variables:

$A_{OUTSED}[1]$ corresponds to $A_{OUTSE}[1...32]$
$A_{OUTSED}[2]$ corresponds to $A_{OUTSE}[33...64]$

These system variables can be read by the user program and written into by SAFE.SPF.

System variables $A_{MARKERSI}[1...64]$

Up to 64 status bits of the SPL can be flagged using these system variables. The markers are read and written directly into the NCK-SPL.

Programming example:
N1030 IDS = 03 DO $A_{MARKERSI}[2] = A_{OUTSI}[1] AND A_{INSI}[2]$
N1040 IDS = 04 DO $A_{OUTSE}[1] = A_{MARKERSI}[2]$

System variables $A_{MARKERSID}[1,2]$

The SPL status bits can be addressed in a word-serial fashion using these system variables.

$A_{MARKERSID}[1]$ corresponds to $A_{MARKERSI}[1...32]$
$A_{MARKERSID}[2]$ corresponds to $A_{MARKERSI}[33...64]$

System variables $A_{TIMERSI}[1...16]$

Up to sixteen timers can be programmed using these system variables.

Programming example:
; Set marker once after two seconds, reset the timer value and stop the timer.
N1050 IDS = 05 WHENEVER $A_{TIMERSI}[1] > 2.0$ DO
 $A_{TIMERSI}[1] = 0.0$ $A_{TIMERSI}[1] = -1.0$
 $A_{MARKERSI}[2] = 1$

System variable $A_{STATSID}$

This system variable can be using in the NCK-SPL to evaluate whether, in the crosswise data comparison between NCK and PLC, an error was detected in the two-channel control/processing of the control and status signals. This gives the user the opportunity to respond to this error with specific synchronous actions.
Bit 0...27: Crosswise data comparison error in the input/output signals or markers.

Bit 28: Crosswise data comparison error “SPL protection status” (status $MN_PREVENT_SYNACT_LOCK$ not equal to DB18.DBX36.0).

Bit 29: Time error in the communications between NCK and PLC (in 5 s, all ext. NCK-SPL outputs are set to zero, the PLC goes to stop).

Bit 30: PLC signals a stop to the NCK.

Programming example:

```plaintext
; For a crosswise data comparison error, set ext. output
N1060 IDS = 06 WHENEVER $A\_STATSID <> 0 DO $A\_OUTS[1] = 1
```

These system variables can only be read by the user program.

System variable $A_CMDSI[1]

This system variable can be used to increase the time up to 10 s monitoring the signal changes in the crosswise data comparison between NCK and PLC.

This means that signal differences between the NCK and PLC system variables can be tolerated for up to 10s without Alarm 27090 being output.

This system variable can be read and written into by the user program.

System variable $A_LEVELSID

This system variable is used to display the stack level of the signal change monitoring in the crosswise data comparison between NCK and PLC. This variable indicates the current number of signals to be checked by the crosswise data comparison function.

Commissioning SPL

Images (mapping) of the PLC-SPL interface and markers are provided to make it easier to commission the SPL. Access to these variables is no longer allowed in the final NCK-SPL program – this means that they are only permitted in the commissioning phase!

System variables $A_INSIP[1...64]

Images of the PLC-side internal SPL input signals (status signals from the drive monitoring channel) can be read using these system variables.

Associated DB18 values: DB18.DBX54.0 ... DBX61.7
8.4 System variables

System variables $\textit{SA_INSIPD}[1,2]$

Images of the PLC-side internal SPL input signals (status signals from the drive monitoring channel) can be read in a double-word-serial fashion (32 bit) using these system variables.

Associated DB18 values: DB18.DBD54, DBD58

System variables $\textit{SA_OUTSIP}[1...64]$

Images of the PLC-side internal SPL output signals (control signals to the drive monitoring channel) can be read using these system variables.

Associated DB18 values: DB18.DBX62.0 ... DBX69.7

System variables $\textit{SA_OUTSIPD}[1,2]$

Images of the PLC-side internal SPL output signals (control signals to the drive monitoring channel) can be read in a double-word-serial fashion (32 bit) using these system variables.

Associated DB18 values: DB18.DBD62, DBD66

System variables $\textit{SA_INSEP}[1...64]$

Images of the PLC-side external SPL input signals (control signals to the PLC-SPL) can be read using these system variables.

Associated DB18 values: DB18.DBX38.0 ... DBX45.7

System variables $\textit{SA_INSEPD}[1,2]$

Images of the PLC-side external SPL input signals (control signals to the PLC-SPL) can be read in a double-word-serial fashion (32 bit) using these system variables.

Associated DB18 values: DB18.DBD38, DBD42

System variables $\textit{SA_OUTSEP}[1...64]$

Images of the PLC-side external SPL output signals (status signals from the PLC-SPL) can be read using these system variables.

Associated DB18 values: DB18.DBX46.0 ... DBX53.7
System variables \$A_OUTSEPD[1,2]

Images of the PLC-side external SPL output signals (status signals from the PLC-SPL) can be read in a double-word-serial fashion (32 bit) using these system variables.

Associated DB18 values: DB18.DBD46, DBD50

System variables \$A_MARKERSIP[1..64]

Images of the PLC-side SPL markers can be read using these system variables.

Associated DB18 values: DB18.DBX70.0 ... DBX77.7

System variables \$A_MARKERSIPD[1,2]

Images of the PLC-side SPL markers can be read in a double-word-serial fashion (32 bit) using these system variables.

Associated DB18 values: DB18.DBD70, DBD74

System variable \$A_PLCSIIN[1..32]

Direct single-channel communications between the NCK and PLC-SPL. Signals can be written by the PLC and read by the NCK.

System variable \$A_PLCSIOUT[1..32]

Direct single-channel communications between the NCK and PLC-SPL. Signals can be read by the PLC and read and written by the NCK.

General information about system variables \$A_xxxP(D)

The system variables are updated in the same clock cycle as the crosswise data comparison between the NCK and the PLC.

These system variables can only be accessed reading.

These system variables may only be used in the commissioning phase.

As soon as commissioning has been signaled as completed, access to these system variables is blocked. If these program commands are processed, Alarm 17210 is output to indicate an error condition.
Note
Write access operations to all named system variables $A_OUT.../$A_MARKER... and $A_TIMERSI is only possible from the program saved in program file "/N_CST_DIR/_N_SAFE_SPF reserved for the SPL. Access operations from other programs are flagged as an error with Alarm 17070.
Commissioning

Warning
After hardware and/or software components have been changed or replaced, it is only permissible to boot the system and activate the drives when the protective devices are closed. Personnel may not be in the hazardous area.

Depending on the change or replacement, it may be necessary to carry-out a new, partial or complete acceptance test (refer to Section 9.5 Acceptance report). Before persons may re-enter the hazardous area, the drives should be tested to ensure that they exhibit stable behavior by briefly moving them in both the plus and minus directions (+/–).

Note
The function “safe software limit switch” (SE) is also called “safe limit positions” and the function “safe software cams” (SN) is also called “safe cams”.

Note
If SI functions SH, SBH or SG have been enabled, then they become operational after the control system has booted (basic display on screen). For the SE and SN functions safety-relevant position evaluation is only possible after safety-relevant referencing has been successfully completed.

Warning
Protection of operating personnel must be the primary consideration when configuring machine data for SINUMERIK Safety Integrated. This is this reason that the parameterizable tolerances, limit values and delay times should be determined and optimized during the commissioning phase dependent on the machine design and arrangement.
9.1 HMI screens and softkeys

Configuring safety-related functions

When selecting “Commissioning/NC/Safety-Integrated” you reach the starting screen for the Safety Integrated commissioning support. The following screen is displayed 9-1:

![Diagram](image)

View of the axes (horizontal softkey)

Softkey, safe axes

All of the axes are listed in this screen that were activated for Safety Integrated.

Soft key: All axes

Here, defined axes are listed independent of whether it involves a safety axis or not.
Softkey Copy SI data

When the softkey is pressed, all NC machine data, relevant for the SI functions, is transferred into the corresponding drive parameters.

The SI machine data/parameters to define the encoder mounting arrangement must be separately entered for the NCK and drive by the commissioning engineer. The copy function has no effect for the drive parameters marked in the Table 8-2 “Parameters for SINAMICS S120”.

Drive data is automatically saved after data has been copied.
Softkey Confirm SI data

After an drive/NCK RESET, the actual checksum is saved by pressing the softkey Confirm SI data in the “Commissioning/NC/Safety-Integrated” screen and acknowledging the following dialog box with “OK”. From now on, SI data will be monitored for any changes. Drive data is automatically saved after data has been acknowledged.
9.1 HMI screens and softkeys

Fig. 9-4: Softkey Confirm SI data for 840D sl

Softkey Activate drive commissioning

Value "95" is entered in drive parameter p0010 to commission the SI drives.

Softkey De-activate drive commissioning

A value of "0" is entered into drive parameter p0010 to commission SI drives; this exits the drive commissioning state.

Softkey Drive/NCK RESET

The drives are reset and then a power on carried-out for the NCK.
9.1 HMI screens and softkeys

View Settings: (horizontal softkey)

Softkey Display SBH/SG (starting screen)

The configured values for SBH and the SG stages are displayed in the Fig. 9-5. You can scroll between the SI axes using the softkeys “Axis+” and “Axis–”.

Fig. 9-5 Softkey Display SBH/SG for 840D sl

General MDs
The general machine data is listed here and can be changed.

Axis MDs
The axis machine data are listed here and can be changed.

Control Unit SI MD
The Control Unit parameters are listed here and can be changed.

Drive MDs
The drive parameters are listed here and can be changed.
9.2 Procedure when commissioning the drive for the first time

This Chapter describes the steps that are necessary to commission the safety functions integrated in the system. For the safety functions integrated in the system, the “safe standstill” (SH) safety function integrated in the drive can also be used. This is the reason that a minimum configuration of the safety functions integrated in the drive is always necessary. The SH function itself does not have to be enabled, but possibly a required brake control (SBC) must be parameterized.

Commissioning SH/SBC via the terminal control is described in detail in Chapter 4 “Safety functions integrated in the drive”.

It is advisable to commission the machine so that at least the axes can be moved. The safety monitoring functions can then be immediately tested after SI data has been entered. This type of test is absolutely essential in order to detect any data entry errors.

The following steps must be taken in the specified sequence to commission SI functions:

Note

If only the SH and SBC functions are used, then commissioning is carried-out as described in the Section 4.4 “Commissioning the SH and SBC functions”.

Step 1:

Enable option

- Starting screen “Commissioning/NC/Safety-Integrated”: Set the password (at least the machinery construction OEM password)
- “General machine data” screen:
 - Set the options

Step 2:

Commissioning PROFlsafe (Subsection 7.2.4 “Parameterizing PROFlsafe communications (NCK)”).

Commissioning the safety programmable logic (Subsection 7.3.3 “Starting the SPL”).

Step 3:

In the screen “Axis-specific machine data” set the function enable bits (MD 36901: $MA_SAFE_FUNCTION_ENABLE) of all axes for which the safety-relevant motion monitoring functions are to be used.
9.2 Procedure when commissioning the drive for the first time

Enter the monitoring clock cycle and check.

- **“General machine data” screen:**
 Enter the factor for the monitoring clock cycle in data $MN_SAFETY_SYS_CLOCK_TIME_RATIO (see Section 5.1 “Monitoring clock cycle” and Section 5.2 “Crosswise data comparison”).

- The actual monitoring time is immediately displayed in data $MN_INFO_SAFETY_CYCLE_TIME.

Note

Before the next NCK RESET is initiated, you must copy the actual monitoring clock cycle to parameter p9500 “SI motion monitoring clock cycle” of the drive using softkey “Copy SI data” in the “Drive configuration” screen.

Step 4:

Commissioning the SH/SBC functions integrated in the drive

The parameters of the safety functions integrated in the drive have their own password protection that is however de-activated before commissioning.

In the SINUMERIK environment we recommend that this password protection is not activated as the complete commissioning area is password protected. The procedure to change the SI password is described in Subsection 4.4.2 “Procedure when commissioning SH and SBC”

- In the drive, the SI commissioning mode must be selected. If an attempt is made to change the SI parameters integrated in the drive without being in the commissioning mode, then the drive rejects this with a message. A prerequisite for the commissioning mode is that the pulses have been cancelled for all of the drives. For all drives, the commissioning mode is selected using the softkey “Activate drive commissioning” in the screen “Safety Integrated”. When pressing this softkey, from the HMI, 95 is written into every drive parameter p0010, if:
 - in the associated NC axis in MD 36901: $MA_SAFE_FUNCTION_ENABLE has a value not equal to 0, or
 - in drive parameter p9501: “SI enable safety-relevant functions” there is a value not equal to 0.

- In the “General machine data” screen: Parameterize the parameters for the SH/SBC functions integrated in the drive. These especially include:
 - Function enable for SH and SBC via terminals
 - PROFIsafe address
 - CRC via the parameters integrated in the drive

Setting the CRC and saving the parameterization that was just made is simultaneously carried-out for all drives using the softkey “Activate drive commissioning”.

9.2 Procedure when commissioning the drive for the first time

Step 5:

Set the monitoring function for all of the axes to be safely monitored.

Enter the following in the specified sequence in the “axis-specific machine data” screen:

1. Axis characteristics (rotary or linear axis)
2. Measuring-circuit assignment, i.e. which encoder will supply the safety actual value, what are the characteristics of this encoder and how it is mechanically mounted.
3. Monitoring limit values and tolerances
4. Changeover and monitoring times
5. Stop responses after a monitoring function has responded
6. Assignment of safety-relevant inputs and outputs, i.e. which sources are supplying the control signals for the NC monitoring channel and where do the feedback signals go (for the drive monitoring channel, this interlocking/logical assignment must be programmed in the PLC).

Step 6:

Set the monitoring and save the data for all of the associated drives.

Here, almost all data entered under Step 5 are again entered in the “Drive machine data” screen. When the softkey “Copy SI data” in the “Safety Integrated” screen is pressed, the settings from Step 5 are automatically entered, with the exception of Points 2 and 6. Point 2 cannot be copied because the drive always operates with the motor encoder and for a two-encoder system, has other characteristic data than the encoder evaluated from the NC. The 6th point is not applicable on the drive side. The following operating steps are therefore involved:

1. Press the softkey “Copy SI data” in the screen “Safety Integrated”.
2. Enter the mechanical mounting arrangement of the encoder for each drive in the “Drive machine data” screen. At the same time, the data, copied under Point 1 in Step 5 can be subject to a visual check.
3. Initiate an NCK and drive reset using the appropriate softkey. In this case, component IDs are also transferred from the drive to the NCK.
4. Press the softkey “Acknowledge SI data” in the “Drive configuration” screen. A dialog box describing the function of the softkey then appears: After acknowledging with “OK”, the actual checksum of the safety-relevant data is then saved in both monitoring channels and monitored for changes from this point onwards. Further, drive data is automatically saved in a non-volatile fashion.
5. A dialog box is displayed on the screen requesting you to perform an acceptance test. You must acknowledge this dialog box. Now carry-out the NCK reset and drive reset that are listed.
9.2 Procedure when commissioning the drive for the first time

Step 7:
Issue a user agreement (see Subsection 5.4.4, “User agreement”)

- The safe limit positions and safe cams are now activated (provided that they have been enabled, see Section 5.5, “Enabling safety-related functions”). This step can be omitted if you do not wish to use either of these functions.
- The key-operated switch must be set to position 3 in order to issue a user agreement.

Step 8:
Carry-out the acceptance test and enter in the logbook.

- A function test must be carried-out for all of the enabled safe monitoring functions and for each axis/spindle. For suggestions on how to test activated SI functions, please refer to Subsection 9.5.2, “Acceptance test” and 9.5 “Acceptance report”.

Step 9:
Save machine data.

- Save all machine data using the “Services” area. This data can be used to commission series equipment.

Caution

After the acceptance test has been completed, all illegal (old) MD files must be removed from the Flashcard (to avoid confusion between old and new data). Data that corresponds to the acceptance test data must be backed-up (archived).

Step 10:
Delete (clear) the password in order to prevent the unauthorized change of machine data.
9.3 Series commissioning

The setting for the safety monitoring functions is automatically transferred with other data in the course of a normal series commissioning process. The following steps need to be taken in addition to the normal commissioning procedure:

1. Enter a user agreement
2. Carry-out an acceptance test
 (individual monitoring functions must be randomly tested)

Sequence of operations for series commissioning

The following sequence of operations is recommended when commissioning series equipment:

- Download the data set for the series machine into the control.
- Adjust the absolute encoder.
- Carry-out a power on.
 This ensures that any errors – i.e. deviations in the data content that may exist between the NCK and drive – will be detected by the checksum check and crosswise data comparison.
 Data must be checked if an error is detected. Cross check errors on the hardware-related cross checksums (Alarm 27032 with ID 1) or Alarm 27035 are normal if the series commissioning data come from another machine.
 If an error is not detected, then data has not been changed and is identical to the acceptance test data. The copy function may be used if data is subsequently altered.
- Carry-out random function tests.
 The tests are required for acceptance of the new machine.

Software/hardware upgrade

Caution

Please carefully read the instructions in the relevant Update Manual before updating the software.
9.4 Changing data

The user must enter the correct password before he can change the machine data for SI functions to the system. After data for SI functions has been altered, a new acceptance test must be carried-out on the SI function(s) involved and then recorded and confirmed in the acceptance report.

Change report

Changes made to NCK machine data important for Safety Integrated are recorded in a display data. The times that these changes were made are displayed in axial MD 36996: $MA_SAFE_CONFIG_CHANGE_DATE[0...4].

This MD can neither be overwritten by manual entry nor by loading an MD archive. It can only be deleted by booting the control from the general reset mode (switch position 1).

This data is updated when the following changes are made to the NCK machine data:

- When a modified safety MD configuration is activated (NCK safety MD have been changed and acknowledged by correction of $MA_SAFE_DES_CHECKSUM).
- When MD $MA_SAFE_FUNCTION_ENABLE is changed from values not equal to zero to zero, or from zero to values not equal to zero. These changes mean that the safety functionality of an axis is completely enabled/disabled. Other changes to MD $MA_SAFE_FUNCTION_ENABLE always change MD $MA_SAFE_ACT_CHECKSUM, which themselves have to be acknowledged by changes to MD $MA_SAFE_DES_CHECKSUM.
- When MD $MA_SAFE_FUNCTION_ENABLE is changed by reducing the safety option. If the scope of axial safety functions is enabled for more axes than are set in the safety option data, the function enable for the excess number of axes is automatically cancelled again when the control boots.
- Loading an MD archive that is different to the currently active NCK-MD set.
- When upgrading (corresponds to downloading an MD archive)
- Series commissioning (corresponds to downloading an MD archive)

Limitations and constraints

Changes to the MD configuration are only noted when the change becomes active, i.e. after altering MD $MA_SAFE_DES_CHECKSUM and a subsequent power on. This MD is calculated - also for axes that were not released for Safety Integrated.
9.5 Acceptance test

9.5.1 General information

The requirements associated with an acceptance test can be derived from the EU Machinery Directive. Presently IEC 22G WG 10 is working on a standard for “functional safety”. This also includes a specific description of the requirements for an acceptance test. Accordingly, the machinery construction (OEM) is responsible for the following:

- to carry-out an acceptance test for safety-related functions and machine parts,
- and
- to issue an “Acceptance certificate” that includes the results of the test.

When using the Safety Integrated function, the acceptance test is used to check the functionality of the SI monitoring functions used in the NCK, PLC and drive. In this case, the correct implementation of the defined safety functions is investigated, the implemented test mechanisms checked (forced checking procedure measures) as well as the response of individual monitoring functions, provoked by individually violating the tolerance limit. This should be carried-out for the safety functions that were implemented using SPL as well as all of the axial monitoring functions of the axes that are monitored with SI.

Note

Some of the standard NC monitoring functions, such as zero speed monitoring, software limit switches, etc. must be de-activated (monitoring limits must be made less sensitive) before the acceptance test is carried out.

The function sequences can be acquired and listed using the servo trace function or using the D/A converter output.

Note

If machine data for SI functions is changed, a new acceptance test must be carried-out for the modified SI function and recorded in the acceptance report.
Note
The acceptance is used to check that the safety functions have been correctly parameterized. The measured values are used to check the plausibility of the configured safety functions. The measured values that are determined are typical and are not worst-case values. They represent the behavior of the machine and the instant in time that the measurement is carried-out. These measurements cannot be used to derive maximum values for run-on distances.

Authorized person, acceptance report

All SI functions must be acceptance-tested by an authorized person and the test results recorded in a test report. The report must be signed by the person who carried-out the acceptance tests. The acceptance test report must be kept in the log-book of the particular machine.

After the SPL has been commissioned the access authorization for the NCK-SPL (SAFE.SPF) via the HMI interface must be reduced to the manufacturer or service level and documented in the acceptance report.

An authorized person in the above sense is a person authorized by the machine manufacturer who on account of his or her technical qualifications and knowledge of the safety functions has the necessary skill sets to perform the acceptance test in the correct manner.

Note
- Please refer to the information in Section 9.2, “Procedure when commissioning for the first time”.
- The acceptance report presented below is both an example and recommendation. The specified values apply to the system chosen for this particular example.
- Template for the acceptance report:
 An electronic template for the acceptance report is available:
 – in the toolbox for SINUMERIK 840D sl
 – on DOCONCD for SINUMERIK 840D sl
 – on the service CD for SINUMERIK 840D sl
- The acceptance report comprises checking the alarm displays and including the alarm reports in the overall acceptance report. In order to obtain reproducible and comparable alarm displays, during the acceptance test, MD 10094: $MN_SAFE_ALARM_SUPPRESS_LEVEL must be set to 0 in order to avoid suppressing alarm outputs.
Necessity of an acceptance test

A full acceptance test (as described in this Chapter) must always be carried out when the functionality of Safety Integrated is commissioned for the first time on a machine.

Extended safety-related functionality, transferring the commissioned software to additional series machines, modifications to the hardware, software upgrades etc. make it necessary to carry-out the acceptance test – possibly with a reduced test scope. The conditions prescribing the necessity for, or giving suggestions for the required test scope, are provided below.

Overview/definitions for performing the acceptance test

In order to define a partial acceptance test it is first necessary to describe the individual parts of the acceptance test and then define logical groups that represent the components of the acceptance test.

Contents of the full acceptance test

DOCUMENTATION

Documentation of the machine incl. safety functions

1. Machine description (with overview)
2. Details about the control system
3. Configuration diagram
4. Function table
 - Active monitoring functions depending on the operating mode, the protective doors and other sensors
 - Ideally, this table should be the objective and result of the configuring work.
5. SI functions per axis
6. Information about the safety equipment

FUNCTION TEST PART 1

General function check incl. checking the wiring/programming

7. Test the shutdown paths
 - (test the forced checking procedure of the shutdown paths)
8. Test the external stops
9. Test the forced checking procedure of the inputs and outputs
10. Test the crosswise data comparison of the basic Safety Integrated functions and Safety Integrated SPL system variables
11. Test the Emergency Stop and the safety circuits
12. Test the changeover of SI functions
FUNCTION TEST PART 2
Detailed function test incl. checking the values of the individually used SI functions

13. Test the SI function “safe operating stop” – SBH
 (in each case with evaluated measurement diagram and measured values)

14. Test the SI function “safely-reduced speed” – SG
 (in each case with evaluated measurement diagram and measured values)

15. Test the SI function “safety-related output n < n_k”
 (in each case with evaluated measurement diagram and measured values)

16. Test the SI function “safe software limits” – SE
 (in each case with evaluated measurement diagram and measured values)

17. Test the SI function “safe cams” – SN
 (check using the diagnostics display or assigned SGAs or with the evaluated
 measuring diagrams and measured values)

18. If necessary, test the SI function “external stops”
 (in each case with evaluated measurement diagram and measured values)

19. Test the SI function “SBC/SBT”
 (in each case with evaluated measurement diagram and measured values)

COMPLETION OF THE REPORT
A report of the commissioning status that was checked is generated with the appropriate counter-signatures

20. Check the SI machine data

21. Log the checksums (axis MD / SPL)

22. Completing the NCK commissioning (protect synchronous actions)

23. Completing the commissioning of the PLC

24. Verify the data backup

25. Have the report countersigned

APPENDIX
Reports/measurement records for FUNCTION TEST PART 1/2

Alarm logs/servo trace measurements
Effect of the acceptance test for specific measures

Table 9-1 Scope of the acceptance test depending on specific measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Documentation</th>
<th>Function test Part 1</th>
<th>Function test Part 2</th>
<th>Report completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>The encoder system has been replaced (refer to Chap. 9.6)</td>
<td>No</td>
<td>No</td>
<td>Check of safe actual values and function of SE/SE (axis-specific)</td>
<td>Supplement, possibly new checksums and counter-signature</td>
</tr>
<tr>
<td>Replace an SMC, SME module (refer to Chap. 9.6)</td>
<td>Supplement, hardware data/configuration</td>
<td>No</td>
<td>Check of safe actual values and function of SE/SE (axis-specific)</td>
<td>Supplement, possibly new checksums and counter-signature</td>
</tr>
<tr>
<td>Replace a motor with DRIVE-CLiQ (refer to Chap. 9.6)</td>
<td>Supplement, hardware data/configuration</td>
<td>No</td>
<td>Check of safe actual values and function of SE/SE (axis-specific)</td>
<td>Supplement, possibly new checksums and counter-signature</td>
</tr>
<tr>
<td>Replace the NCU, Nx motor module hardware</td>
<td>Supplement, hardware data/configuration</td>
<td>No</td>
<td>Partially, if the system clock cycles or dynamic response have been changed (axis-specific)</td>
<td>Supplement, possibly new checksums and counter-signature</td>
</tr>
<tr>
<td>Replace the hardware of SI-relevant I/O</td>
<td>Supplement, hardware data/configuration</td>
<td>Yes</td>
<td>With comment, limited to replaced components</td>
<td>No</td>
</tr>
<tr>
<td>The software has been upgraded (NCU/drive/PLC)</td>
<td>Supplement, version data</td>
<td>Yes</td>
<td>Yes with note about the new function</td>
<td>Supplement, possibly new checksums and counter-signature</td>
</tr>
<tr>
<td>The software has been upgraded (HMI)</td>
<td>Possible supplement, SW version</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>An individual limit value has been changed (e.g. SG limit)</td>
<td>Supplement, SI functions per axis</td>
<td>No</td>
<td>Partial test of the changed limit value</td>
<td>Supplement, possibly new checksums and counter-signature</td>
</tr>
</tbody>
</table>
Table 9-1 Scope of the acceptance test depending on specific measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Documentation</th>
<th>Function test Part 1</th>
<th>Function test Part 2</th>
<th>Report completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function expanded (e.g. additional actuator, additional SG stage)</td>
<td>Supplement, SI functions per axis or function table</td>
<td>Yes with note if relevant - limited to adapted parts</td>
<td>Partial test of possible additional limit values</td>
<td>Supplement, possibly new checksums and counter-signature</td>
</tr>
<tr>
<td>Data transferred to additional machines with series commissioning</td>
<td>Possibly supplement, machine description (check the SW version)</td>
<td>Yes with note</td>
<td>No if data are not identical</td>
<td>No, if identical data (check the checksums)</td>
</tr>
</tbody>
</table>

The acceptance report is included as a Word file in the toolbox supplied and is made up of the following parts:

- System description
- Description of the safety functions
- Test of safety functions

9.5.2 Conventional acceptance test

Note

The acceptance test is used to check that the safety functions have been correctly parameterized. The measured values (e.g. distance, time) and the system behavior determined (e.g. initiating a specific stop) when carrying-out the acceptance test are used to check the plausibility of the configured safety functions. Using the acceptance test, potential configuring errors are to be identified and the correct configuring documented.

Procedure of the conventional acceptance test

<table>
<thead>
<tr>
<th>Safety function</th>
<th>Test initiated by</th>
<th>Function checked using</th>
<th>Represented using</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forced checking procedure of the shutdown paths</td>
<td>A test stop is initiated, e.g. by reducing the test stop time or a separate key</td>
<td>Alarm log</td>
<td>27002 axis Test stop running</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnostics display</td>
<td>C01798 test stop running</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Servo trace SGE/SGA</td>
<td>Diagnostics screen SI status</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>De-coded using servo trace bit graphics</td>
</tr>
<tr>
<td>Safety function</td>
<td>Test initiated by</td>
<td>Function checked using</td>
<td>Represented using</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Sequence of the test stop routine for external stops</td>
<td>Test stop initiated e.g. by reducing the test stop time or separate key</td>
<td>Servo trace SGE/SGA, Diagnostics display, Drive interface PLC</td>
<td>De-coded using servo trace bit graphics, Diagnostics screen SI status, Trace Sinucorn NC trace</td>
</tr>
<tr>
<td>Forced checking procedure of the input/output peripherals (e.g. Emergency Stop)</td>
<td>Test stop initiated e.g. by reducing the test stop time or separate key</td>
<td>Disconnect the feedback signal contacts or jumper an SPL input</td>
<td>User error message, Stop D is initiated</td>
</tr>
<tr>
<td>Test the safety-relevant functions (according to the function table)</td>
<td>Use the safety-relevant sensors</td>
<td>Diagnostics display</td>
<td>Diagnostics screen SI status</td>
</tr>
<tr>
<td>Safe operating stop (SBH)</td>
<td>Exceed the SBH limit by setting MD 36933 to 0% operating mode, JOG traversing keys</td>
<td>Servo trace: (actual speed, active encoder / and actual value, active encoder)</td>
<td>the marker functionality of the servo trace</td>
</tr>
<tr>
<td>Safely-reduced speed (SG)</td>
<td>Exceed the SG limit by setting MD 36933 to 0% operating mode, JOG traversing keys</td>
<td>Servo trace: (actual speed, active encoder / and actual value, active encoder)</td>
<td>the marker functionality of the servo trace</td>
</tr>
<tr>
<td>SGA “n < nx”</td>
<td>Exceed the speed nx</td>
<td>Servo trace: (SGE/SGA and actual speed, active encoder)</td>
<td>the marker functionality of the servo trace, De-coded using bit graphics, Trace Sinucorn NC trace</td>
</tr>
<tr>
<td>Safe software limit switches (SE)</td>
<td>Pass the positive and negative limit switches, Change the SW limit switch</td>
<td>Servo trace: (actual speed, active encoder / and actual value, active encoder)</td>
<td>the marker functionality of the servo trace</td>
</tr>
<tr>
<td>Safe software cams (SN)</td>
<td>Pass individual cam positions</td>
<td>Servo trace (SGE/SGA), Diagnostics display, Drive interface PLC</td>
<td>the marker functionality of the servo trace, De-coding using bit graphics, Trace Sinucorn NC trace</td>
</tr>
<tr>
<td>SBC / SBT</td>
<td>Test stop initiated e.g. by reducing the test stop time or separate key</td>
<td>Servo trace: (actual value active encoder, torque)</td>
<td></td>
</tr>
</tbody>
</table>
Recommendation to measure the stopping distance/speed increase for the acceptance test

\[\text{Stopping distance} = \text{response distance} + \text{braking distance} \]

Fig. 9-6 Exceeding SBH

Fig. 9-7 Exceeding SG
9.5 Acceptance test

Stopping distance = response distance + braking distance

Fig. 9-8 Exceeding SE
9.6 Replacing a motor or encoder

Warning
After hardware and/or software components have been changed or replaced, it is only permissible to boot the system and activate the drives when the protective devices are closed. Personnel may not be in the hazardous area.

Depending on the change or replacement, it may be necessary to carry-out a new, partial or complete acceptance test (see Section 9.5 Acceptance test).

Before persons may re-enter the hazardous area, the drives should be tested to ensure that they exhibit stable behavior by briefly moving them in both the plus and minus directions (+/−).

Warning
After the measuring system has been replaced – regardless of whether it is a direct or an indirect system – the relevant axis must be re-calibrated.

Description
The following information essentially refers to replacing a motor encoder. The limitations that apply as well as the procedures are essentially the same when replacing a direct measuring system.

When service is required (motor defective or encoder defective), it might be necessary to completely replace the motor or just the motor encoder.
In this case, the motor encoder must be re-calibrated. This influences the behavior of Safety Integrated if the functionality “safe limit positions” or “safe cams” have been activated for the axis in question, i.e. the axis has the status “safely referenced”. Depending on which motor measuring system is used, it might be necessary to select a different procedure.

The procedure for replacing a motor with absolute value encoder and to replace a motor with incremental encoder are described in the following text. The end of the Chapter discusses 2-encoder systems and encoder modules.

Limitations and constraints

As mentioned above, the functionality “safe limit positions” or “safe cams” is active for the axis in question.

The user agreement is set for the axis, i.e. the axis has had the status “safely referenced” at least once – the actual position value of the NC and the SI actual values (axis/drive) have been appropriately calibrated.

“Safe limit positions” or “Safe cams” have been able to be used.
A motor or motor encoder has to be replaced under these limitations/conditions.

Replacing a motor with absolute value encoder

In order to set-up the encoder, the offset between the machine zero and the zero of the absolute encoder was determined.

The calibrated state is identified by the control using MD 34210: ENC_REFP_STATE = 2.

The important factor when replacing a motor (also without Safety Integrated) is that a defined position reference can be established with respect to the mechanical parts of the machine. For example, by mounting and removing the motor at a defined mechanical position or appropriately re-calibrating the system after the motor has been replaced.

After the old motor has been removed and the new motor installed, another actual position value is read by the new absolute value encoder (there is no longer a defined reference to the correctly calibrated actual position value).

Therefore the following error profile appears when the control boots:

Alarm 27001 Axis <name of the axis> fault in a monitoring channel, Code 1003, values: NCK x, drive y.

The comparison between the saved stop position and the actual position indicates a larger deviation than that specified in MD 36944: $MA_SAFE_REFP_POS_TOL or parameter p9544: “SI motion, actual value comparison tolerance (referencing)”

The alarm results in a STOP B followed by a STOP A (safe pulse cancellation) for the axis involved.
The user agreement is also cancelled. This means that the axis loses the status “safely referenced” in connection with the Alarms 27000/C01797 axis <name of the axis> not safely referenced.

The actual position value supplied by the new motor encoder has no reference to the mechanical system. This means that the absolute value encoder must be realigned and set-up at this point.

Note

A safety acceptance report is generally not required after a motor has been replaced.

Re-calibration procedure

1. Carry-out an NCK reset

Note

After the NCK-Reset, the axis can be traversed again. Alarms 27000/C01797 “Axis not safely referenced” are still present and indicate that the functions “safe limit positions” and “safe cams” are not active in this state. **For example, if “safe limit positions” is being used as a substitute for hardware limit switches, then it is important to note that at this time, the safe limit positions are not functional!**

2. Move the axis to the reference position after first setting MD 34010 REFP_CAM_DIR_IS_MINUS according to the approach direction. (34010 should be set to 1 if the axis is moved in the negative (minus) direction to the reference position.)

3. MD 34100: Set REFP_SET_POS to the actual value of the reference position.

4. MD 34210: Set ENC_REFP_STATE = 1 to activate the calibration.

5. Select the axis that is to be calibrated on the machine control panel and press the RESET key on the machine control panel.

6. Select the JOG/REF mode, enable the axis feed.

7. The calibration process must be initiated with traversing key + or – according to MD 34010: REFP_CAM_DIR_IS_MINUS and the approach direction to the reference position. (Backlash has been moved through).

8. The axis does not traverse. Instead, the offset between the correct actual value (reference position) and the actual value – supplied by the encoder – is entered in MD 34090: REFP_MOVE_DIST_CORR. The actual value appears in the basic screen and the axis signals “referenced”. The value 2 is entered in MD 34210 as result.

Example:

MD 34010=1 (minus) and the reference position was approached in the negative (minus) direction. This means that the “–” key must also be pressed on the machine control panel.
9. When the absolute value encoder has been re-calibrated (MD 34210 from 1 -> 2), the axis changes over into the “referenced” state. At this time, the new valid actual position is accepted as the safe actual values (axis and drive).

10. Finally, with the JOG/REF machine mode active, on the HMI the “user agreement” softkey must be pressed and the user agreement for the axis involved must be reset. Alarms 27000/C01797 disappear and the functions “safe limit position” and “safe cams” are safely active again.

Replacing a motor with incremental encoder

The same conditions apply as when replacing a motor with absolute encoder.

To calibrate the encoder, a reference point approach has been set up, e.g. with reference point cams. This means that after the zero mark has been passed when leaving the cam, the reference point is approached according to the offsets in 34080 REFP_MOVE_DIST and 34090 REFP_MOVE_DIST_CORR – and the value of the reference point is set in MD 34100: REFP_SET_POS. After the referencing operation, Alarm messages 27000/C01797 “axis not safely referenced” disappear and the functions “safe limit positions” and “safe cams” are safely active.

The important factor when replacing a motor (also without Safety Integrated) is that a defined position reference can be established with respect to the mechanical parts of the machine. For example, by mounting and removing the motor at a defined mechanical position or appropriately re-calibrating the system after the motor has been replaced. At this instant in time, Alarms 27000/C01797 still do not disappear; they only disappear after the user agreement has been set.

After the old motor has been removed and the new motor installed, the following procedure is recommended:

Re-calibration procedure

1. Boot the control or carry-out an NCK reset

2. If the JOG/REF machine mode is active on the HMI, the “user agreement” soft-key must be pressed and the user agreement for the axis involved is withdrawn to avoid Alarm 27001 Axis <name of the axis> fault in a monitoring channel, Code 1003, values: NCK x, drive y

3. After the system has booted, the JOG/REF mode is selected and the feed enable for the axis is issued. Carry-out a reference point approach for the axis involved.
9.6 Replacing a motor or encoder

Note

The error at a reference point approach is no more than one revolution of the motor (difference between two zero marks). This offset is usually not critical for the mechanical parts of the machine. If problems arise with the traversing limits because of the type of reference point approach, then for example, set the offset values in MD 34080 /34090 to non-critical values.

Alarms 27000/C01797 “Axis not safely referenced” are still present and indicate that the functions “safe limit positions” and “safe cams” are not active in this state. **For example, if “safe limit positions” is being used as a substitute for hardware limit switches, then it is important to note that at this time, the safe limit positions are not functional!**

After completion of the reference point approach, the axis goes into the “referenced” status. However, because of the zero mark offset between the encoders, the reference position still has to be calibrated, i.e. the position reference with respect to the mechanical system must be re-established. The system is calibrated after measuring the difference – usually in MD 34080 REFP_MOVE_DIST or 34090 REFP_MOVE_DIST_CORR.

4. After the reference point has been re-calibrated, the reference point approach must be re-initiated. The axis changes over into the “referenced” state. At this time, the reference point value is taken over as the safe actual value for the axis and drive.

5. Finally, with the JOG/REF machine mode active, on the HMI the “user agreement” softkey must be pressed and the user agreement for the axis involved must be reset. Alarms 27000/C01797 disappear and the functions “safe limit position” and “safe cams” are safely active again.

Comments about 2-encoder systems

Case A
1st measuring system: Incremental motor measuring system
2nd measuring system: Absolute direct measuring system
The 2nd position measuring system (DBAx 1.5 = 0, DBAx 1.6 =1) is selected via the axis interface as the active measuring system.

In this case, motor replacement is straightforward because the NC reference point position is only supplied with values from the 2nd measuring system (DMS).

Case B
1st measuring system: Absolute motor measuring system
2nd measuring system: Incremental direct measuring system
The 1st position measuring system (DBAx1.5 = 1, DBX 1.6 =0) is selected as the active measuring system via the axis interface when the system boots. This is for monitoring purposes. A changeover is then made to the 2nd position measuring system (DBAx 1.5 = 0, DBX 1.6 =1).
In this case, the motor must be replaced carefully observing the **Description, motor with absolute value encoder**. This is because it is necessary to re-calibrate the absolute value encoder. When re-calibrating the system, we recommend that you permanently select the 1st position measuring system and the axis is only traversed using the motor measuring system.

Replacing the encoder modules

When replacing the encoder modules (SMC, SME) or when replacing motors with integrated encoders (motor with DRIVE-CLIQ), a change to the configuration of the safety-relevant components is detected, and a request is made that a service person acknowledges this.

After replacing at least one of these components, Alarm 27032 is output “Axis %1 checksum error %2 safety monitoring. Acknowledgement and acceptance test required!” – with alarm ID 1 (changed CRC in index 1 of $MA_SAFE_ACT_CHECKSUM[] —> hardware IDs changed).

If, when this error message is output, an encoder module has just been replaced, this error message can be acknowledged using the softkey “Acknowledge SI data” and the softkey “Drive/NCK reset”.

The user can suppress the automated internal actual value check by resetting the “user agreement” – therefore requesting that the axis is re-calibrated with the appropriate user agreement.
Notes
10.1 Troubleshooting procedure

- The alarms that have been activated in response to an error are output in the “DIAGNOSIS – ALARMS” display.
- For Alarm 27090 “Error for crosswise data comparison NCK-PLC”, the cause of the error (the incorrect SPL variable) is displayed in the alarm output.
- For Alarm 27254 “PROFIsafe: F module, error on channel”, the input/output channel with error for modules belonging to the ET 200 series, is displayed in the alarm output.
- For Alarm 27001 “Defect in a monitoring channel”, the fine error code is also displayed in the alarm output.
- For Alarm C01711 “SI motion defect in a monitoring channel” the fine error code is displayed in the alarm output. In the screen “Commissioning – machine data – drive MD”, using parameter r9725: “SI motion diagnostics STOP F”, the cause of the alarm can be read-out.
- The actual crosswise data comparison error code of the drive monitoring channel is displayed in the diagnostics screen “Status SI” in line “Stop F code value”.
- For Alarms F01611/F30611 “Defect in a monitoring channel”, the fine error code is displayed in the alarm output. The actual error search of this alarm is additionally displayed in parameters r9795/r9895.

Note
Different error codes may be displayed for the NCK and drive monitoring channels.

10.1.1 Service displays

- Upon activation of the “Service SI” softkey, three information blocks about SI-related data are displayed on the HMI for the selected axis:
 - Status SI (selected per default)
 - SGE/SGA
 - SPL
The axis +, axis – vertical softkeys or direct selection are used to set the desired axis. The active axis is displayed in the top right half of the table.

The vertical softkeys “SGE/SGA” and “SPL” can be used to select two additional screens, which show the situation for the safety-related inputs/outputs and the safe programmable logic.
Fig. 10-2 Status display of SGE/SGA

The available signals are shown in the diagram above. The vertical softkey Status SI accesses the SI status screen, the SPL softkey accesses the screen for safe programmable logic.

Fig. 10-2 shows the status display of the safe input/output signals.
"**Axis**": NCK monitoring channel

"**Drive**": Drive monitoring channel

Fig. 10-3 Significance of the status display of the safety-relevant input and output signals
In the “Variable” selection box, you can select:

$A_{INSE}(P)$ corresponds to simultaneous selection of

A_{INSE} upper line, origin of the NCK and

A_{INSEP} lower line, origin of the PLC

and effectively the same for the other variables:

$A_{OUTSE}(P)$

$A_{INSI}(P)$

$A_{OUTSI}(P)$

$A_{MARKERSI}(P)$

The variables that have been selected and the associated bit areas are saved and are taken into account when subsequently selecting the screen.

Using the select key, the following formats can be selected in the variable rows

- **B** Binary
- **H** Hexadecimal
- **D** Decimal, can be selected.

The selected format is applicable for the particular variable, as each variable can be assigned an individual display format.
10.1.2 Diagnostics support by configuring your own extended alarm text

In order to upgrade the level of diagnostics information when an error occurs, certain Safety Integrated system alarms can be supplemented by a freely-definable user text. For instance, for hardware-related faults, supplementary information such as input designation, circuit diagram identification number or similar can be included in the system alarm that is output.

This extended alarm text is based on the interaction between the NCK system software (that specifies the parameter that addresses the supplementary information for the alarm text) and the HMI software (that has to appropriately process this parameter).

Dedicated extended alarm texts can be defined for the following Safety Integrated system alarms:

- General SPL crosswise data comparison errors (different status of the SPL variables) Alarm 27090, error for crosswise data comparison, NCK-PLC
- Channel-related errors on the PROFIsafe module (only when using the ET 200 PROFIsafe I/O) Alarm 27254 PROFIsafe: F module, error on channel

Prerequisites, HMI Advanced

The following entry is in the configuration file for the alarm server (file MBDDE.INI) in the section [Text files]:

File excerpt: mbdde.ini

[Textfiles]
NCK=f:\dh\mb.dir\aln_ ; Example : Standard entry

This means that all of the NCK alarms are defined in the file referenced after the NCK entry. The processing of an extended alarm text for the above specified alarms is prepared as part of this definition.

File excerpt: aln_gr.com

027090 0 0 "Error for crosswise data comparison NCK-PLC, %1[%2], NCK: %3; %4<ALSI>"

027254 0 0 "PROFIsafe: F module %1, error in channel %2; %3<ALSI>"

Using the supplement %4<ALSI> (Alarm 27090) and %3<ALSI> (Alarm 27254), the possibility of providing an alarm text extension is defined for the alarm.
Principle of operation – extended alarm text

If Alarm 27090 or Alarm 27254 occurs, the NCK transfers an additional parameter value to the HMI software (27090: %4; 27254: %3). This parameter has a defined value range. Each value can be uniquely assigned an extended alarm text.

Value range of the transfer parameter

000
Parameterizing error detected when booting (different state active)
Crosswise data comparison error, SPL protective mechanism: MD 11500 – DB18.DBX36.0
Crosswise data comparison error, stop response for SPL error: MD 10097 – DB18.DBX36.1

001...064
Error in system variables $A_INSE(P)[01...64]$ (Alarm 27090/Alarm 27254)
The index value then results from a channel error signaled from the PROFIsafe module
(Alarm 27254), that is assigned the appropriate $A_INSE(P)$ variable (e.g. discrepancy error)

065...128
Error in the system variables $A_OUTSE(P)[01...64]$ (Alarm 27090/Alarm 27254).
This means, Alarm 27090 signals an internal logic error ($A_OUTSE(P)$ variables differ) and Alarm 27254 signals a channel error signaled from the PROFIsafe module that is assigned to the appropriate $A_OUTSE(P)$ variable (e.g. short-circuit fault).

129...192
Error in system variables $A_INSI(P)[01...64]$ (only alarm 27090)

193...256
Error in system variables $A_OUTSI(P)[01...64]$ (only alarm 27090)

257...320
Error in system variables $A_MARKERSI(P)[01...64]$ (only alarm 27090)
Definition of the extended text

The file, in which the extended texts are defined, is also declared in the configuration file for the alarm server (file MBDE.INI) in the section [IndexTextFiles].

File excerpt: mbdde.ini

[IndexTextfiles]
ALSI=f:\dh\mb.dir\alsi_ ; Example : Standard entry

We recommend that this file for the extended text is located in the HMI user directory.

Every parameter can be assigned a dedicated text in this file, whereby the text entry is located in front of the associated parameter value (refer to the following file excerpt).

File excerpt: alsi_gr.com

000000 0 0 "Parameterizing error MD11500/DB18.DBX36.0 or MD10097/DB18.DBX36.1"

000001 0 0 "User text $A_INSE(P)[01]"

..

000064 0 0 "User text $A_INSE(P)[64]"

000065 0 0 "User text $A_OUTSE(P)[01]"

..

000128 0 0 "User text $A_OUTSE(P)[64]"

000129 0 0 "User text $A_INSI(P)[01]"

000192 0 0 "User text $A_INSI(P)[64]"

000193 0 0 "User text $A_OUTSI(P)[01]"

000256 0 0 "User text $A_OUTSI(P)[64]"

000257 0 0 "User text $A_OUTSI(P)[01]"

000320 0 0 "User text $A_OUTSI(P)[64]"

The assigned user text is then displayed when Alarms 27090 or 27254 occur, referred to the associated SPL variable.
10.1.3 Servo trace bit graphics for Safety Integrated

General

The servo trace function is one of the measuring functions in the start-up area. Using the servo trace, for drive signals and NCK signals, measurements can be started by entering a measuring time and trigger conditions. The results of the measurements are then graphically displayed. Two curves can be displayed in 2 graphics. The results of the measurements can be saved in files. Further, the graphics can be saved as bitmap file in the HMI data manager – or directly printed out.

Starting the servo trace

The servo trace is called in the operator area “Commissioning/optimization test/servo trace”.

Signal selection

When selecting signals, axes and signal names can be selected from the appropriate lists for a maximum of 4 trace channels (trace 1 to trace 4). Trace 1 has a special significance – a signal must be selected in trace 1 otherwise when the PI service is started using the vertical “start” softkey, this is negatively acknowledged from the NCK.
Measuring parameters

For the measuring parameters, the measuring time, the trigger time, specific thresholds and various trigger signals can be set (e.g. a trigger from the part program). These settings are used to parameterize the PI services at the NCK using the vertical “start” softkey. A measurement that has already been started can be interrupted using the vertical “stop” softkey. In this case, the NCK does not supply any measured values.

Physical address

If the physical address entry is selected in the signal selection list, the vertical softkey having the same name is activated. Using the input masks under this softkey, segment values and offset values of NCK system variables etc. can be specified and then measured.

It is possible to scroll over the axes and spindles in the application using the vertical "Axis +" and "Axis −" softkeys. The axis name or spindle name is included in the selected selection list for the axis/spindle names.

Selecting SGE drive

The selection of the SI signal SGE drive (from the PLC) is shown in the following:
After the vertical “start” softkey is pressed, the measurement is started on the NCK side. An appropriate note is output in the message line.

If the measurement cannot be started, appropriate error information is output. This information can be used to pinpoint the problem.

Display

Once the measurement has been completed, the results of the measurement can be graphically displayed using the horizontal “display” softkey:

Graphics

Two graphics (graphic 1 and graphic 2) are displayed. Each graphic can include up to two measured value curves that are color-coded (trace 1 in graphic 1: green, trace 2 in graphic 1: blue, trace 3 in graphic 2: green, trace 4 in graphic 2: blue)

Trace 1 and trace 2 are displayed in graphic 1, trace 3 and trace 4 in graphic 2. The X axis of the graphics is the time axis and the Y axis is scaled in the physical units of the particular signal.
File functions

Measurement settings and the measured values of the servo trace functions can be saved, downloaded or deleted using the horizontal “file functions” softkey.

10.1.4 Bit graphics for SI signals in the servo trace

Using the servo trace, individual bits can be selected from bit-coded SI signals and the characteristic over time can be graphically displayed similar to a logic analyzer. Bit characteristics can be displayed as a function of time for 10 character channels (tracks).

Bit-coded SI signals

The bit-coded SI signals are principally sub-divided into two groups:

- SI signals where the system allocates the names of the bits (signals: SGE-NCK, SGA-NCK, SGE-PLC and SGA-PLC)
- SI signals where the user can freely select their names and default names are entered into an Ini file (F:\hmi_adv\ibsvtsi.ini). If the user wishes to change the default assignment, he can do this in the file hmi_adv\ibsvtsi.ini or using the appropriate forms in the operator interface.

These different bit-coded SI signals are parameterized on the operator interface. The settings do not modify the measurement but only how the results of the measurement are actually displayed in the graphic.

No bit graphics are generated for SI signals that are not bit-coded.
Bit selection

The setting options are accessed using the vertical “Bit selection...” softkey:

The following screen appears after pressing the vertical “Bit selection...” softkey:
10.1 Troubleshooting procedure
The vertical “Bit selection trace 1...”, “Bit selection trace 2...”, “Bit selection trace 3...” and “Bit selection trace 4...” softkeys provided allow, for the SI signals selected in trace channels trace 1 to trace 4, bit names of these SI signals to be assigned a possible 10 character channels (tracks) in the bit graphics for these signals. A dedicated graphic is displayed for trace 1, trace 2, trace 3 and trace 4.

If a bit-coded SI signal is not selected in a trace channel, then when the corresponding softkey is pressed, it has no effect; information is output in the dialog line to signal that it does not involve a bit-coded SI signal.

Bit selection, trace 1

In the example, the signal *SGE-NCK* has been read-in to graphic 1 for trace 1. The following screen is displayed when the vertical “Bit selection trace 1...” softkey is pressed:

The bits of this signal are consecutively numbered. Every bit is permanently assigned an associated bit name. In the input box “track”, by assigning a value in the range between 0..9 it is possible to define in which of the 10 character channels (tracks) the bit should be graphically displayed. In the example, for trace 1, bit 0 *SBH/SD de-selection NCK* is displayed in track 0 of the bit graphic. *Bit 19 de-selection ext. Stop C NCK* is displayed in track 9 of the bit graphic for trace 1.
The user is shown which track numbers have already been allocated (in the label “track number:” they have a blue background) If a track number is allocated twice, an error message is displayed. All of the signal bits are listed; bits that are not available are either designated as free or reserved. Using the scrollbar, it is possible to scroll over the bit range from 0 to bit 31.

Starting values for the track assignments have been entered into the file F:\hmi_adv\bsvtlsi.ini. If the user does not like these, then he can make the appropriate changes. These changes to the bit graphics become effective by pressing the vertical “Accept” softkey and are also transferred into the file hmi_adv\bsvtlsi.ini as new starting values. This means that they also apply for new measurements with this signal as default settings.

Using the vertical “Abort” softkey, the screen is exited without accepting possible changes made to values.

Bit selection, trace 2... to trace 4...

A similar procedure is also obtained for trace 2.. to trace 4 that, in this particular example, contains the following signals:

- Trace 2 SGE drive (from PLC)
- Trace 3 SGA-NCK
- Trace 4 SG drive (from PLC)

The handling is the same as described under bit selection, trace 1.

Mixing traces...

Using the vertical softkey “Mix traces...”, the user can select individual bits of SI signals from 4 traces and display these in the tracks as bit graphics for comparison purposes. This means that especially inputs and outputs of various SI signals can be combined.
Result of the bit selection

<table>
<thead>
<tr>
<th>Spur 0</th>
<th>Spur 1</th>
<th>Spur 2</th>
<th>Spur 3</th>
<th>Spur 4</th>
<th>Spur 5</th>
<th>Spur 6</th>
<th>Spur 7</th>
<th>Spur 8</th>
<th>Spur 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN/SIG Abwahl NCX</td>
<td>Programm abgebrochen</td>
<td>Fehler: Anwahl Bit 0 NCX</td>
<td>Fehler: Anwahl Bit 1 NCX</td>
<td>Spur wurde nicht selektiert</td>
<td>Abwahl von "Spur 8 NCX"</td>
</tr>
</tbody>
</table>

0.0000 Lin/ma 6000.0000
10.2 NCK safety alarms for Sinumerik 840D sl

Alarms for SINUMERIK 840D / SINAMICS S120

Detailed explanations of all alarms that are not described here can be found in the following references for the SINUMERIK 840D system with SINAMICS S120:

Reference: /DA/ Diagnostics instructions SINUMERIK 840D
/LH1/ SINAMICS S List Manual

Alarms for SINUMERIK Safety Integrated

The alarms that can occur in connection with the SI option are listed below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Response</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>20095</td>
<td>Axis %1 illegal torque, current torque %2</td>
<td>Alarm display</td>
<td>Check the parameterization for the brake test function: The torque for weight equalization in drive parameter p1532 should be approximately the same as the actual holding torque. The specified torque for the brake test in MD $MA_SAFE_BRAKETEST_TORQUE must be set higher than the actual holding torque.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Response</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1 = axis name, spindle number</td>
<td>The actually measured holding torque cannot be provided with the existing parameterization of the brake test.</td>
<td>Clear the alarm with the Clear key or with NC-START.</td>
<td></td>
</tr>
<tr>
<td>%2 = measured holding torque when selecting the brake test</td>
<td>Alarm display</td>
<td>The function test of the mechanical brake system is aborted, The PLC block FB11 for the sequence control to test the mechanical brake system is exited with a fault (fault detection = 2). This means that the request – “start brake test” – isn’t even effective for the axis.</td>
<td></td>
</tr>
</tbody>
</table>

Parameter continuation
20096 **Axis %1 brake test aborted, additional info %2**

Parameter
- %1 = axis name, spindle number
- %2 = fault information, based on $VA_FXS_INFO

Explanation
The brake test has detected a problem. The additional information provides details of the cause of the alarm. An explanation is provided in the documentation about the system variables $VA_FXS_INFO

Supplementary info:
- 0: No additional information available
- 1: Axis type is neither a PLC nor a command axis
- 2: Limit position reached, motion stopped
- 3: Abort using NC-RESET (key reset)
- 4: Monitoring window exited
- 5: Torque reduction rejected by drive
- 6: PLC has withdrawn the enable signal

Response
- Alarm display
- Interface signals are set.

Remedy
- Note the supplementary conditions of the brake test, refer to supplementary info.

Program continuation
- Clear the alarm with the Clear key or with NC-START.

20097 **Axis %1 incorrect traversing direction brake test**

Parameter
- %1 = axis name, spindle number

Explanation
As a result of the selected traversing direction, the brake test is carried-out for the existing load torque with an incorrect torque.

Response
- Alarm display

Remedy
- Carry-out the brake test in the other traversing direction
- Adapt drive parameter p1532 more precisely to the actual situation.
 - This alarm only occurs – with the brake open – if the actual torque deviates by more than 5% of parameter p1532
 - Using MD $MA_SAFE_BRAKETEST_CONTROL, bit 0 = 1, activate the automatic load torque determination at the beginning of the brake test.

Program continuation
- Clear the alarm with the Clear key or with NC-START.

27000 **Axis %1 is not safely referenced**

Parameter
- %1 axis number

Explanation
There are two reasons for this alarm:
- the user has still not acknowledged the machine position,
- the machine position has not yet been verified through follow-up referencing.

Even if the axis is already referenced there is no acknowledgement that referencing has supplied the correct result.
For example, incorrect results can occur if the axis was moved after the control was powered-down – with the result that the stop position saved prior to powering-down is no longer correct. To ensure that this does not happen, the user must acknowledge the displayed actual position after the first referencing operation.

After the user agreement has been set for the first time, the axis must be subsequently referenced each time that the control is booted (with absolute encoders, this subsequent referencing is automatically executed). This procedure is carried-out to verify the stop position saved prior to powering-down the control. The alarm display can be set using MD $MN_SAFE_ALARM_SUPPRESS_LEVEL (MD>=3) so that the group alarm 27100 is displayed for all SI axes.

Response

Alarm display

The SGA “axis safely referenced” is not set. SE is disabled if the safety actual position has not yet been acknowledged by the user agreement. If the user agreement is set, SE remains active. The safe cams are calculated and output, but their significance is limited because referencing has not been acknowledged.

Remedy

Move the axis to a known position, change to the “referencing” mode and press the softkey “Agreement”. Check the positions in the agreement screen at the machine. If these correspond to those expected at the known position, confirm this using the toggle key. If the user agreement has already been set, re-reference the axis. The user agreement can only be changed in key-actuated switch setting 3 or after entering a password.

The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required.

If the axis has not been safely referenced and the user has not issued a user agreement, then the following applies:

– the safe cams are still not safe.
– the safe limit positions are still not active

27001
Axis %1 error in a monitoring channel, Code %2, values:
NCK %3, drive %4

Parameter

%1 = axis number
%2 = supplementary information, crosswise data comparison index
%3 = supplementary information, comparison value, NCK
%4 = supplementary information, comparison value, drive

Explanation

The status of the safety-related monitoring functions are cyclically and mutually compared between the two monitoring channels (NCK and drive). The comparison is carried-out separately for each NCK/drive combination.
A criterion in a comparison list is compared between the NCK and drive in each monitoring clock cycle (MD 10091); the next criterion is compared in the next monitoring clock cycle etc. Once the complete comparison list has been processed, the comparisons are processed again from the start. The total comparison time to process the list is displayed in MD 10092 (factor x MD 10091 – the factor can differ depending on the SW version).

The “Error in a monitoring channel” Alarm is only output if the mutual comparison of the two monitoring channels detects a difference between the input data or results of the monitoring. One of the monitoring functions no longer operates reliably.

The crosswise comparison index, output under %2, is also known as STOP F code. The STOP F code is also output in Alarm 27001 where the NCK detected a crosswise comparison error for the first time. The STOP F code of the drive (belonging to Alarm F01711) can be taken from the diagnostics screen or the drive parameter r9725. If a difference is detected at several comparison steps, then also several STOP F code values can be displayed, alternating, at these positions. There are fault profiles that are identified as a result of several comparison operations of the comparison list. This means that the displayed STOP F code value doesn’t always provide a clear statement regarding the cause of the fault. The associated procedure is then explained for each of the individual fault codes.

The following fault codes are possible on the NCK side:

– 0
No fault/error has been detected in this monitoring channel.
For Alarm 27001 this means that it was one of the subsequent alarms (follow-on alarms) of Alarm F01711 – and the valid STOP F code value is to be determined using the diagnostics display or the drive MD.

– 1
For the monitoring functions SBH, SG or SE, a different state has occurred between the NCK and drive. The actual status image (result list 1) is output from the NCK as supplementary input %3 (comparison value, NCK) and the actual status image from the drive is output as supplementary info %4 (comparison value, drive). The two supplementary infos are also saved in drive parameters r9710[0] (NCK) and r9710[1] (drive).
An example for evaluating the bit-coded result list is provided in the description of the drive machine data.

Remedy
The difference in the states between the drive and NCK should be determined and the function involved should be investigated in more detail.

Example
State, NCK: SBH is active and ok
State, drive: SG1 is active and ok
The fault is caused due to the fact that the SGE “SBH de-selection” is controlled differently. The signal source should be checked on both the NCK and drive sides. Generally, the different control (in operation) is a result of a hardware failure associated with the sensor signal involved. In the commissioning phase, the cause can also be parameterization or programming errors.

- **2**
 For the monitoring function SN or \(n < n_x \), a different state has occurred between the NCK and drive.
 The actual status image of the NCK (result list 2) is output as supplementary info %3 (comparison value NCK) and the actual status image from the drive is output as supplementary info %4 (comparison value, drive). The two result lists are also written into as parameter r9711[0] (NCK) and r9711[1] (drive). An example for evaluating the bit-coded result list is provided in the description of the drive parameter.

Remedy
The difference in the states between the drive and NCK should be determined and the function involved should be investigated in more detail.

- **3**
The difference between the safe actual value NCK and drive is greater than that set in MD 36942 $MA_SAFE_POS_TOL.
 When using the actual value synchronization, the difference of the speed (determined based on the safety actual values) is greater than that set in MD 36949 $MA_SAFE_SLIP_VELO_TOL.

Remedy
Commissioning phase:
The encoder evaluation for the NCK and drive is not correctly set → correct the encoder evaluation.
In operation:
The actual values differ due to mechanical faults (transmission belts, traversing to mechanical limit, wear and tolerance windows that have been set too narrow, encoder faults...)
→ check the mechanical design and the encoder signals

- **4**
 Not assigned.

- **5**
The setting in MD 36901 $MA_SAFE_FUNCTION_ENABLE does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data

- **6**
The setting in MD 36931 $MA_SAFE_VELO_LIMIT[0] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data
– 7
The setting in MD 36931 $MA_SAFE_VELO_LIMIT[1] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 8
The setting in MD 36931 $MA_SAFE_VELO_LIMIT[2] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 9
The setting in MD 36931 $MA_SAFE_VELO_LIMIT[3] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 10
The setting in MD 36930 $MA_SAFE_STANDSTILL_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 11
The setting in MD 36934 $MA_SAFE_POS_LIMIT_PLUS[0] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 12
The setting in MD 36935 $MA_SAFE_POS_LIMIT_MINUS[0] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 13
The setting in MD 36934 $MA_SAFE_POS_LIMIT_PLUS[1] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 14
The setting in MD 36935 $MA_SAFE_POS_LIMIT_MINUS[1] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 15
The setting in MD 36936 $MA_SAFE_CAM_POS_PLUS[0] + MD 36940 $MA_SAFE_CAM_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 16
The setting in MD 36936 $MA_SAFE_CAM_POS_PLUS[0] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 17
The setting in MD 36937 $MA_SAFE_CAM_POS_MINUS[0] + MD 36940 $MA_SAFE_CAM_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 18
The setting in MD 36937 $MA_SAFE_CAM_POS_MINUS[0] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 19
The setting in MD 36936 $MA_SAFE_CAM_POS_PLUS[1] + MD 36940 $MA_SAFE_CAM_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 20
The setting in MD 36936 $MA_SAFE_CAM_POS_PLUS[1] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 21
The setting in MD 36937 $MA_SAFE_CAM_POS_MINUS[1] + $MA_SAFE_CAM_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 22
The setting in MD 36937 $MA_SAFE_CAM_POS_MINUS[1] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 23
The setting in MD 36936 $MA_SAFE_CAM_POS_PLUS[2] + MD 36940 $MA_SAFE_CAM_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 24
The setting in MD 36936 $MA_SAFE_CAM_POS_PLUS[2] does not correspond with the associated drive parameter assignment.
– 25
The setting in MD 36937 $MA_SAFE_CAM_POS_MINUS[2] + MD 36940 $MA_SAFE_CAM_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 26
The setting in MD 36937 $MA_SAFE_CAM_POS_MINUS[2] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 27
The setting in MD 36936 $MA_SAFE_CAM_POS_PLUS[3] + MD 36940 $MA_SAFE_CAM_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 28
The setting in MD 36936 $MA_SAFE_CAM_POS_PLUS[3] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 29
The setting in MD 36937 $MA_SAFE_CAM_POS_MINUS[3] + MD 36940 $MA_SAFE_CAM_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 30
The setting in MD 36937 $MA_SAFE_CAM_POS_MINUS[3] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 31
The settings in MD 36942 $MA_SAFE_POS_TOL. and MD 36949 $MA_SAFE_SLIP_VELO_TOL do not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 32
The setting in MD 36944 $MA_SAFE_REFP_POS_TOL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

– 33
The setting in MD 36951 $MA_SAFE_VELO_SWITCH_DELAY does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 34
The setting in MD 36950 $MA_SAFE_MODE_SWITCH_TIME does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 35
The setting in MD 36956 $MA_SAFE_PULSE_DISABLE_DELAY does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 36
The setting in MD 36957 $MA_SAFE_PULSE_DIS_CHECK_TIME does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 37
The setting in MD 36952 $MA_SAFE_STOP_SWITCH_TIME_C does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 38
The setting in MD 36953 $MA_SAFE_STOP_SWITCH_TIME_D does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 39
The setting in MD 36954 $MA_SAFE_STOP_SWITCH_TIME_E does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 40
The setting in MD 36961 $MA_SAFE_VELO_STOP_MODE does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 41
The setting in MD 36962 $MA_SAFE_POS_STOP_MODE does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 42
The setting in MD 36960 $MA_SAFE_STANDSTILL_VELO_TOL does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 43
Stop response, memory test.
44 – 57
Explanation
Fault codes 44–57 cannot be clearly assigned to a fault cause. For the monitoring functions that run internally (e.g. SG), monitoring limits are internally generated that are referred to a monitoring clock cycle.
Example:
SG1 = 2000 mm/min, monitoring clock cycle = 12 ms
If SG1 is active, then a check is made in every monitoring clock cycle (MCC) as to whether SG1 was exceeded. This means that in MCC[n], based on the actual value, a positive and negative actual value limit is defined that may not be exceeded in MCC[n+1] in order to still comply with SG1.
SG1 = 2000 mm/min = 33.33 mm/s = 0.4 mm/MCC (for each 12 ms) If the axis moves more than 0.4 mm in a monitoring clock cycle, then SG1 would be violated.
The limit values, specified above, in MCC[n+1] are then positive: position actual value (MCC[n]) + 0.4 mm negative: position actual value (MCC[n]) –0.4 mm
The resulting monitoring limits (positive and negative) that are, in turn determined independently for both monitoring channels (NCK and drive) are also compared just like the safe actual positions (refer to fault code 3). The comparison is for a difference < MD 36942 $MA_SAFE_POS_TOL.
If the difference is greater than MD 36942 $MA_SAFE_POS_TOL, then the appropriate fault code is output.
The limit values are then re-generated and compared in every monitoring cycle independently of whether the associated monitoring function is active or not.
This means that there are three possible causes for this fault code group.
Causes and remedy
Possible cause 1 (only when commissioning or changing the MD)
The tolerance value for the monitoring function is set differently for the NCK and drive. This situation actually only occurs when commissioning the system or making changes and is generally already covered by the previous fault codes.
To correct or avoid errors: Set the relevant machine data the same.
Possible cause 2 (in operation)
The limit values are determined based on the actual value. This means that when the safe actual values of the NCK and drive differ then the limit values are also different by the defined clearance — i.e. the fault code corresponds to the fault image of fault code 3. This can be determined by checking the safe actual positions.
To correct or avoid errors: Refer to fault code 3.
Possible cause 3 (in operation)
The associated monitoring function is already active in a monitoring channel – while in the other monitoring channel another monitoring function is still active.
This is the case if the safe actual positions of the NCK and drive do not differ but instead there is an entry in drive parameters r9710/r9711 (and the 1 appears in parameter r9725) → i.e. the fault code corresponds to the fault profile of fault code 1. This can also be identified using the fault message if for %3 = supplementary info comparison value NCK or %4 = supplementary info comparison value drive no real limit value is output but only the value of the calculated tolerance (refer to the example above (SG1 = 2000 mm/min = 0.4 mm/monitoring clock cycle), a value of 400 would be displayed as 4%).

Remedy: Refer to fault code 1.

- 44
 Upper limit value for SG1 = position actual value + MD 36931 $MA_SAFE_VELO_LIMIT[0]$ referred to a monitoring clock cycle
 Remedy
 Refer to Section 44–57 (hidden fault code 3 or 1)

- 45
 Lower limit value for SG1 = position actual value – MD 36931 $MA_SAFE_VELO_LIMIT[0]$ referred to a monitoring clock cycle
 Remedy
 Refer to Section 44–57 (hidden fault code 3 or 1)

- 46
 Upper limit value for SG2 = position actual value + MD 36931 $MA_SAFE_VELO_LIMIT[1]$ referred to a monitoring clock cycle
 Remedy
 Refer to Section 44–57 (hidden fault code 3 or 1)

- 47
 Lower limit value for SG2 = position actual value – MD 36931 $MA_SAFE_VELO_LIMIT[1]$ referred to a monitoring clock cycle
 Remedy
 Refer to Section 44–57 (hidden fault code 3 or 1)

- 48
 Upper limit value for SG3 = position actual value + MD 36931 $MA_SAFE_VELO_LIMIT[2]$ referred to a monitoring clock cycle
 Remedy
 Refer to Section 44–57 (hidden fault code 3 or 1)

- 49
 Lower limit value for SG3 = position actual value – MD 36931 $MA_SAFE_VELO_LIMIT[2]$ referred to a monitoring clock cycle
 Remedy
 Refer to Section 44–57 (hidden fault code 3 or 1)

- 50
 Upper limit value for SG4 = position actual value + MD 36931 $MA_SAFE_VELO_LIMIT[3]$ referred to a monitoring clock cycle
 Remedy
 Refer to Section 44–57 (hidden fault code 3 or 1)

- 51
 Lower limit value for SG4 = position actual value – MD 36931 $MA_SAFE_VELO_LIMIT[3]$ referred to a monitoring clock cycle
Remedy
Refer to Section 44–57 (hidden fault code 3 or 1)
– 52
Upper limit value for SBH
Position actual value (when SBH is activated) + MD 36930 $MA_SAFE_STANDSTILL_TOL.

Remedy
Refer to Section 44–57 (hidden fault code 3 or 1)
– 53
Lower limit value for SBH
Position actual value (when SBH is activated) – MD 36930 $MA_SAFE_STANDSTILL_TOL.

Remedy
Refer to Section 44–57 (hidden fault code 3 or 1)
– 54
Upper limit value for n < nx (plus tolerance)
Position actual value + MD 36946 $MA_SAFE_VELO_X (referred to a monitoring clock cycle) + MD 36942 $MA_SAFE_POS_TOL.

Remedy
Refer to Section 44–57 (hidden fault code 3 or 1)
– 55
Lower limit value for n<nx
Position actual value – MD 36946 $MA_SAFE_VELO_X (referred to a monitoring clock cycle).

Remedy
Refer to Section 44–57 (hidden fault code 3 or 1)
– 56
Upper limit value for n < nx (plus tolerance)
Position actual value + MD 36946 $MA_SAFE_VELO_X (referred to a monitoring clock cycle) – MD 36942 $MA_SAFE_POS_TOL.

Remedy
Refer to Section 44–57 (hidden fault code 3 or 1)
– 58
There is a difference in the active request for an external STOP. Two factors determine the resulting external STOP request for a monitoring channel.
• The STOP requested via the SGE interface
• The STOP passed-through from the other monitoring channel
The STOP of the active request is specified as detailed fault code for the NCK and drive.
The following values are possible:
0 = No Stop
2 = Stop E
3 = Stop D
4 = Stop C
7 = Stop A

The setting in MD 36932 $MA_SAFE VELO OVR_FACTOR[0] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE VELO OVR_FACTOR[1] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE VELO OVR_FACTOR[2] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE VELO OVR_FACTOR[3] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE VELO OVR_FACTOR[4] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE VELO OVR_FACTOR[5] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE VELO OVR_FACTOR[6] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE VELO OVR_FACTOR[7] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
The setting in MD 36932 $MA_SAFE_VELO_OVR_FACTOR[8] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE_VELO_OVR_FACTOR[9] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE_VELO_OVR_FACTOR[10] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE_VELO_OVR_FACTOR[11] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE_VELO_OVR_FACTOR[12] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE_VELO_OVR_FACTOR[13] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE_VELO_OVR_FACTOR[14] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

The setting in MD 36932 $MA_SAFE_VELO_OVR_FACTOR[15] does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

The setting in MD 36946 $MA_SAFE_VELO_X does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.

The setting in MD 36963 $MA_SAFE_VELO_STOP_REACTION[0] does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 77
The setting in MD 36963 $MA_SAFE_VELO_STOP_REACTION[1]
does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 78
The setting in MD 36963 $MA_SAFE_VELO_STOP_REACTION[2]
does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 79
The setting in MD 36963 $MA_SAFE_VELO_STOP_REACTION[3]
does not correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 81
The setting in MD 36948 $MA_SAFE_STOP_VELO_TOL does not
correspond with the associated drive parameter assignment.
Remedy
Copy SI data.
– 82
When controlling the SG correction factor-SGEs[0..3] to select the SG
correction factor a difference has occurred. If, as supplementary info
for a monitoring channel, –1 is output this means that the SG-override
function isn’t even active.
• SG2 and SG4 are not active.
• Function hasn’t even been enabled using the function enable MD
 36901/ parameter p9501.
Remedy
Control the SG stage and check the SG-override signals and align the control.
– 83
The setting in MD 36958 $MA_SAFE_ACCEPTANCE_TST_TIMEOUT does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 84
The setting in MD 36955 $MA_SAFE_STOP_SWITCH_TIME_F does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 85
The setting in MD 10089 $MN_SAFE_PULSE_DIS_TIME_BUSFAIL does not correspond with the associated drive parameter assignment.

Remedy
Copy SI data.
– 86
Single-encoder system $MA_SAFE_SINGLE_ENC.

Remedy
Align machine data $MA_SAFE_SINGLE_ENC and drive parameter p9526.
– 87
Encoder assignment $MA_SAFE_ENC_INPUT_NR.

Remedy
Set $MA_SAFE_ENC_INPUT_NR and drive parameter p9526 so that they are equal.
– 88
Cam enable $MA_SAFE_CAM_ENABLE.
– 89
The settings for the encoder limit frequency do not match in the two monitoring channels.

Remedy
Replace the hardware.
– 1000
The check timer has expired while the change timer has still not expired. If, in a monitoring channel, an SGE change (e.g. SBH is selected), then the so-called change timer is started (timer value = MD 36950/p9550).
In addition, a so-called checking timer is started in the other channel (timer value = 10xMD 36950).
While the change timer is running, if the same SGE is changed again, the timer value is extended and the check timer in the other channel only runs once.
If the change timer is extended so often that the run time is greater than for the check timer then the fault is output.
Too many signal changes were detected during the checking timer runtime.
Remedy
Determine the SGE involved and the associated hardware signal and investigate the situation. There may be contact problems at the sensor (e.g. poor contact) or there were too many switching operations. If necessary, the behavior can be improved by changing the timer setting.

– 1001
Only in the drive: Initialization error of the check timer.

– 1002
The user agreement is not consistent: The status of the user agreement is, after 2 s has expired, different for both monitoring channels.
%3 = status of the user agreement, NCK.
%4 = status of the user agreement, drive.
This effect can occur if the user agreement is only set or reset through one channel.
An additional fault cause is that if the F code 1003 only occurs in one monitoring channel and then the user agreement is only withdrawn through one channel. This means that code 1002 is then the result of a code 1003 only in one channel.

– 1003
With the user agreement is set, the difference between the newly determined reference point (NC actual value) after booting (absolute value encoder) or reference point approach [homing] (distance-coded or incremental measuring system) and the safe actual position (saved value + traversing distance) is greater than the reference tolerance MD 36944/p9544. In this case, the user agreement is withdrawn.

Remedy
Check the mechanical system of the axis – it is possible that the axis was moved when powered-down and the actual value last saved by the control no longer corresponds with the new value the next time the system is booted. It is also possible that the tolerance window for the check has been set too narrow. The cause should be determined and after checking the actual values the user agreement can be again reset after an NCK-RESET.

– 1004
Violated plausibility, user agreement
• Although the user agreement was already set, an attempt was made to set it again.
• The user agreement is set although the axis has still not been referenced.

– 1005
When activating the SGEs test stop selection, the shutdown path test cannot be carried-out because the pulses have already been cancelled.

Remedy
Check the starting conditions for carrying-out the test and if required, correct. In the commissioning phase, it is also possible that there is incorrect parameterization (or wiring) for the feedback signal regarding pulse cancellation (MD 36975).
– **1006**
Only in the drive:
A fault has occurred while cyclically checking the read, write access to the SGA interface of the drive.
Remedy
Replace the hardware, drive control

– **1007**
Only in the drive:
Cyclic communications between the PLC and drive have failed.
Remedy
If required, replace the hardware, drive control.
Check the drive bus and PLC

– **1008**
Only in the drive:
Data transfer error between the PLC and drive.
Remedy
If required, replace the hardware, drive control.
Check the drive bus and PLC

– **1009**
After activating the SGEs test stop selection, the pulses have still not been cancelled after timer MD 36957/p9557 has elapsed.
Remedy
Check the parameterization for the timer – it is possible that the value has been selected too low.

– **1011**
The internal status “acceptance test status” when using the acceptance test support indicates different states for the NCK/drive for at least 2 seconds.

– **1012**
Only in the drive:
The actual value has violated the plausibility for the higher-level control. The redundant coarse position does not match the actual value.
Remedy
Upgrade the Sensor Module software.

– **1013**
only in the control:
NCK user agreement from the PLC-SRAM does not match the NCK user agreement determined when the NCK booted.
Remedy
Re-establish data consistency using a power on.

– **1014**
only control:
The NCK axis number from the PLC-SRAM does not match the NCK axis number determined when the NCK booted.
Remedy
Re-establish data consistency using a power on.

– **1016**
Telegram has failed several times with the same crosswise data comparison data.
In the crosswise comparison clock cycle (= monitoring clock cycle * number of crosswise comparison data) the comparison of the same list data was not carried-out several times in a row due to telegram failures.

Remedy
Check communications between the drive and control.

– 1020
Cyclic communications between the NCK and drive no longer functions.

Remedy
Analyze the other fault/error messages. Restart using power on.

– 1021
Only in the drive:
The telegram failed several times in the DRIVE-CLiQ communications between the Sensor Module and drive. A sign-of-life error in the status word of the Sensor Module was detected several times in a row.

Remedy
Check communications between the Sensor Module and the drive.

– 1024
NCK stop position from the PLC-SRAM and NCK stop position from the NCK machine data are different.

Remedy
Re-establish data consistency using a power on.

– 1025
The drive or encoder signaled “parking active” – however the control had not requested “parking axis”.

Remedy
Check the control signals to select the “parking” state.

Response
NC start inhibit in this channel
Alarm display
If a safety monitoring function was active (SBH, SG, SE, SN), then a STOP B was also automatically initiated. It is necessary to power-down the control and power it up again (power on).

Program continuation
Clear the alarm with the RESET key. Restart the part program.
If a STOP B was initiated, then the control must be power-down/powered-up (power on).

27002
Axis %1 Test stop in progress

Parameter
%1 = axis number

Explanation
The proper and correct functioning of the shutdown path is presently being tested by setting the SGE “test stop selection”.

Response
Alarm display

Remedy
This message only provides information for the user.
The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required. The alarm automatically disappears after the delay time has expired that is defined in MD $MA_SAFE_PULSE_DIS_CHECK_TIME – and the withdrawal of the SGE “test stop selection” if the control detects that the drive pulses have been cancelled – i.e. the test has been successfully completed. An unsuccessful test can be recognized as a result of Alarm 27001 with fault code 1005 or Alarm 27024.

27003 **Checksum error occurred %1 %2**

| Parameter | %1 = reference to the code section or table
%2 = table number |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation</td>
<td>Checksum error in safety-related code or safety-related data. The safety monitoring functions (Safety Integrated) in the NCK could be corrupted.</td>
</tr>
<tr>
<td>Response</td>
<td>Alarm display</td>
</tr>
<tr>
<td>Remedy</td>
<td>Please take extreme caution when continuing with any work. Re-load code and data as soon as possible (power on). If this fault occurs again, contact the service department.</td>
</tr>
<tr>
<td>Program continuation</td>
<td>Power-down the control system and power-up again.</td>
</tr>
</tbody>
</table>
27004

Axis %1 difference safe input %2, NCK %3, drive %4

Parameter
- %1 = axis number
- %2 = monitoring function involved
- %3 = interface identifier, NCK input
- %4 = interface identifier, drive input

Explanation
A difference has been detected at the specified safe input. The state of the specified input signal differs in the two monitoring channels NCK and drive during the time set in $MA_SAFE_MODE_SWITCH_TIME.

- **Monitoring function involved (%2):**
 - SS/SV Difference in SGE “de-select safe operating stop / safely-reduced speed”
 - SS Difference in SGE “de-select safe operating stop”
 - SV Difference in SGE “select safely-reduced speed”
 - SP Difference in SGE “select safe limit positions”
 - SVOVR Difference in SGEs “select SG correction”

For the case that SGE is parameterized at the SPL interface,
- <io> = parameterized system variable range (01=$A_INSID, 02=$A_INSED)
- <dword> = system variable - double word (1,2)
- <bit> = bit number in the system variable - double word (1...32)
- <value> = value of the NCK-SGE (0,1)

- **Interface identifier, drive input (%4):**
 - DBX<byte><bit>=<value>
 - <byte> = byte number in the axial DB (22, 23, 32, 33)
 - <bit> = bit number in the byte (0...7)
 - <value> = value of the drive SGE (0,1)

This alarm can be suppressed using the MD $MN_SAFE_DIAGNOSIS_MASK, bit 0=0.

Response
Alarm display

Remedy
Check the interface of the safety-relevant input signals (SPL parameterization, PLC-DB supply).

Program continuation
Clear the alarm with the RESET key. Restart the part program.
27005
Axis %1 error for crosswise data comparison: Static actual value difference

Parameter
%1 = axis number

Explanation
A difference in the actual values was detected using the crosswise data comparison between NCK and drive monitoring channel. This difference is greater than the maximum tolerance defined in MD $MA_SAFE_POS_TOL. This can be checked using the safe position actual values of the two monitoring channels displayed in the service screen.

The alarm is only displayed, if monitoring with absolute reference (SE/SN) has been enabled for the specified axis and if the user agreement has been set. As soon as the user agreement is deleted or the actual difference between the two monitoring channels again drops below the maximum permissible difference, the alarm is cleared.

Response
Alarm display

Remedy
The user agreement must be deleted if the alarm is present as a steady-state alarm. When the control is then rebooted, the machine can be brought into the safe state again and operation resumed by a new referencing process and setting the user agreement. Prior to setting the user agreement, the actual position of the axis displayed in the “User enable” screen must be compared with the current machine position. This is absolutely necessary to ensure proper functioning of the safe limit positions (SE) and safe cams (SN). The user agreement can only be changed in key-actuated switch setting 3 or after entering a password.

Program continuation
The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required.
27007 Axis %1 acceptance test mode is active
Parameter %1 = axis number
Explanation An SI acceptance test has been started with the acceptance test wizard at the operator panel. The acceptance test mode is activated for the NCK and drive for the duration of this acceptance test. In the acceptance test mode, SI power on alarms can be acknowledged with the reset key.
Response Alarm display
Remedy De-select the acceptance test, e.g. using the acceptance test Wizard or wait until it has been completed (the duration of the acceptance test can be parameterized using MD $MA_SAFE_ACCEPTANCE_TST_TIMEOUT).
Program continuation The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required.

27008 Axis %1 SW limit switch deactivated
Parameter %1 = axis number
Explanation An SI acceptance test safe end position has been started with the acceptance test wizard at the operator panel. For these acceptance tests, the single-channel SW limit switches are de-activated for the axis/spindle in order to ensure that the safe limit positions can be approached.
Response Alarm display
Remedy De-select the acceptance test, e.g. using the acceptance test Wizard or wait for the end of the test.
Program continuation The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required.

27010 Axis %1 tolerance for safe operating stop exceeded
Parameter %1 = axis number
Explanation The axis has moved too far away from the reference position. It has moved farther away than permitted in MD $MA_SAFE_STANDSTILL_TOL. The alarm can be re-configured in the MD $MN_ALARM_REACTION_CHAN_NOREADY (channel not ready).
Response Stop the axis with speed setpoint = 0 (STOP B). As soon as the speed actual value is less than that defined in the MD $MA_SAFE_STANDSTILL_VELO_TOL, at the latest however, after the time in MD $MA_SAFE_PULSE_DISABLE_DELAY expires, the pulses are cancelled (STOP A).
10.2 NCK safety alarms for Sinumerik 840D sl

Response

Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm
Channel not ready

Remedy

Check the tolerance for the standstill monitoring; does the value match the precision and control dynamic performance of the axis?
If not, increase the tolerance. If yes, check the machine for damage and repair it.

Program continuation

Power-down the control and power-up again

27011 Axis %1 safely-reduced speed exceeded

Parameter

%1 = axis number

Explanation

The axis has moved too quickly and faster than that specified in MD $MA_SAFE_VELO_LIMIT.
When SBH/SG is active in a configuration with a 1-encoder system, the speed that corresponds to the encoder limit frequency was exceeded.
The axis is stopped with STOP A, C, D or E, depending on what has been configured in MD $MA_SAFE_VELO_STOP_MODE or MD $MA_SAFE_VELO_STOP_REACTION.

Response

NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy

If no obvious operator error has occurred: Check the value entered into the MDs, check the SGEs: Was the correct safely-reduced speed selected? If the MDs and SGEs are o.k., check the machine for any damage and rectify.

Program continuation

Clear the alarm with the RESET key. Restart the part program.

27012 Axis %1 safe limit position exceeded

Parameter

%1 = axis number

Explanation

The axis has passed the limit position entered in MD $MA_SAFE_POS_LIMT_PLUS or MD $MA_SAFE_POS_LIMIT_MINUS.
This axis is stopped with STOP C,D or E, according to the configuration in MD $MA_SAFE_POS_STOP_MODE.

Response

NC start inhibit in this channel
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm
If no obvious operator error has occurred: Check the value entered in the machine data, check the SGEs: Was the correct one of 2 limit positions selected? If the MDs and SGEs are o.k., check the machine for any damage and repair.

Clear the alarm with the RESET key. Restart the part program. Withdraw the user agreement for this axis. Then press the RESET key. The program is aborted and the alarm reset. Move the axis – in the JOG mode – to the valid traversing range. After the NC program error has been eliminated and the position of this axis carefully checked, the user agreement can be re-issued and the program can be restarted.

27013
Axis %1 safe braking ramp exceeded

Parameter
%1 = axis number

Explanation
After the initiation of STOP B or C, the speed exceeded the tolerance value entered in MD $MA_SAFE_STOP_VELO_TOL. The pulses are locked by initiating a STOP A.

Response
Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy
Check the MD $MA_SAFE_STOP_VELO_TOL. Check the braking characteristics of the drive involved.

Program continuation
Power-down the control and power-up again

27020
Axis %1 STOP E activated

Parameter
%1 = axis number

Explanation
This alarm comes with Alarms 27011 “Safely-reduced speed exceeded” or 27012 “Safe limit position exceeded” (according to the configuration in MD 36961: $MA_SAFE_VELO_STOP_MODE, MD 36963: $MA_SAFE_VELO_STOP_REACTION or MD 36962: $MA_SAFE_POS_STOP_MODE) or Alarm 27090 after an SPL crosswise data comparison error occurs. A LIFTFAST-ASUB (sub-routine) is initiated and the safe operating stop (SBH) is internally activated after the time set in MD 36954: $MA_SAFE_STOP_SWITCH_TIME_E has expired.

Response
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm
Remedy

Remove the causes for “safely-reduced speed exceeded” or “safe limit position exceeded” alarm (refer to a description of the alarms).

Program continuation

Clear the alarm with the RESET key. Restart the part program.

27021

Axis %1 STOP D activated

Parameter

%1 = axis number

Explanation

This alarm comes with Alarms 27011 “Safely-reduced speed exceeded” or 27012 “Safe limit position exceeded” (according to the configuration in MD 36961: $MA_SAFE_VELO_STOP_MODE, MD 36963: $MA_SAFE_VELO_STOP_REACTION or MD 36962: $MA_SAFE_POS_STOP_MODE).

“Braking along the path” is initiated and the safe operating stop (SBH) is internally activated after the time set in MD 36953 $MA_SAFE_STOP_SWITCH_TIME_D has expired.

Response

NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy

Remove the causes for “safely-reduced speed exceeded” or “safe limit position exceeded” alarm (refer to a description of the alarms).

Program continuation

Clear the alarm with the RESET key. Restart the part program.

27022

Axis %1 STOP C activated

Parameter

%1 = axis number

Explanation

This alarm comes with Alarms 27011 “Safely-reduced speed exceeded” or 27012 “Safe limit position exceeded” (according to the configuration in MD 36961: $MA_SAFE_VELO_STOP_MODE, MD 36963: $MA_SAFE_VELO_STOP_REACTION or MD 36962: $MA_SAFE_POS_STOP_MODE).

“Braking at the current limit” is initiated and the safe operating stop (SBH) is internally activated after the time, set in MD 36952: $MA_SAFE_STOP_SWITCH_TIME_C has expired.

Response

NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy

Remove the causes for “safely-reduced speed exceeded” or “safe limit position exceeded” alarm (refer to a description of the alarms).

Program continuation

Clear the alarm with the RESET key. Restart the part program.
27023 Axis %1: STOP B activated

Parameter %1 = axis number

Explanation This alarm comes with the Alarm 27010 “Tolerance for safe operating stop exceeded” or after the Alarm 27001 “STOP F initiated”. The alarm can be re-configured in the MD ALARM_REACTION_CHAN_NOREADY (channel not ready).

Response Mode group not ready
 Channel not ready
 NC start inhibit in this channel
 Interface signals are set
 Alarm display
 NC stop for alarm
 “Braking at the current limit” is initiated and the timer for changeover to STOP A is activated (refer to MD $MA_SAFE_PULSE_DISABLE_DELAY).

Remedy Remove the cause for “tolerance for safe standstill exceeded” or for “STOP F initiated” (refer to the description of the alarms).

Program continuation Power-down the control and power-up again

27024 Axis %1 STOP A activated

Parameter %1 = axis number

Explanation This alarm is output as a result of
 – Alarm 27011 “safely-reduced speed exceeded” (for the appropriate configuring in $MA_SAFE_VELO_STOP_MODE, $MA_SAFE_VELO_STOP_REACTION),
 – Alarm 27013 “safe braking ramp exceeded”
 – Alarm 27023 “Stop B initiated”
 – Unsuccessful test stop.
 The alarm can be re-configured in the MD ALARM_REACTION_CHAN_NOREADY (channel not ready).

Response Mode group not ready
 Channel not ready
 NC start inhibit in this channel
 Interface signals are set
 Alarm display
 NC stop for alarm
 “Pulse cancellation” initiated.

Remedy Remove the causes of
 – Alarm “safely-reduced speed exceeded”,
 – Alarm “safe braking ramp exceeded”,
 – Alarm “Stop B initiated”
 – Unsuccessful test stop.
 (refer to the description of the alarms).

Program continuation Power-down the control and power-up again
27032 **Axis %1 checksum error %2 safety-relevant monitoring functions.**
Acknowledgement and acceptance test required!

Parameter
- %1 = axis number
- %2 = index of $MA_SAFE_ACT_CHECKSUM

Explanation
The relevant MDs $MN_SAFE_..., $MN_PROFISAFE_..., $MA_SAFE...
are protected by a checksum. The alarm indicates that the current checksum is no longer the same as the reference checksum that has been saved, i.e. this means that an MD value has either been changed illegally or data is corrupted. The 2nd index specifies in which field entry of $MA_SAFE_ACT_CHECKSUM the error was detected.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Check MDs. Have the checksum re-calculated. Safety functions should be subject to a new acceptance test.

Program continuation
Power-down the control and power-up again

27033 **Axis %1 parameterization of the MD %2[%3] not valid**

Parameter
- %1 = axis number
- %2 = machine data identifier
- %3 = machine data index

Explanation
The parameterization of machine data %2 is incorrect. An additional indication is the field index of the machine data. If the machine data is a single machine data, a zero is specified as array index. This alarm occurs in the following contexts:
- The conversion of the specified MD into the internal computation format resulted in an overflow.
- Error when parameterizing the input/output assignments for the SGEs/SGAs.
- One of the activated cam positions is outside the actual value modulo range.
- The function "actual value synchronization 2-encoder system" (slip) is selected for a single-encoder system or a function with absolute reference (SE/SN) is simultaneously selected.
- $MA_SAFE_FUNCTION_ENABLE
 A safety function was enabled without the safety function SBH/SG having been enabled.
 An axial SGE/SGA was parameterized at the SPL interface (segment number = 4) and the function enable for the external stops (bit 6) is missing.
 The cam synchronization was activated via bit 7 without the cams having been enabled via bit 8... bit 15 or via $MA_SAFE_CAM_ENABLE.
- $MA_SAFE_STANDSTILL_VELO_TOL
 For a linear axis, a value greater than 1000 mm/min was entered.
- MD $MA_SAFE_STOP_VELO_TOL
 For a linear axis, a value greater than 20000 mm/min was entered.
- MD $MA_SAFE_SLIP_VELO_TOL
 For a linear axis, a value greater than 1000 mm/min was entered.
- MD $MA_SAFE_POS_TOL
 For a linear axis, a value greater than 10 mm was entered.
- MD $MA_SAFE_REFP_POS_TOL
 For a linear axis, a value greater than 1 mm was entered.
- $MA_SAFE_VELO_X
 For a linear axis, a value greater than 1000 mm/min was entered.
- $MA_SAFE_ENC_GRID_POINT_DIST
 A zero was entered.
- MD $MA_SAFE_ENC_RESOL
 A zero was entered.
- $MA_SAFE_MODULO_RANGE
 The parameterized cam modulo range is not an integral multiple of 360 Degrees.
- $MA_SAFE_EXT_STOP_INPUT[0]
 An axial SGE/SGA was parameterized at the SPL interface (segment number = 4) and the SGE “Deselect ext. Stop A” was parameterized inverted (bit 31 = 1) or the SGE “Deselect ext. Stop A” was not parameterized at the SPL interface $A_OUTSI.
- $MN_SAFE_SPL_STOP_MODE
 Value 4 (Stop E) was parameterized without the external Stop E having been enabled in all axes where the SI function was enabled (MD $MA_SAFE_FUNCTION_ENABLE not equal to 0).
- $MA_SAFE_DRIVE_PS_ADDRESS
 An invalid value was parameterized or the same address was assigned for several axes.
- $MA_SAFE_ENC_PULSE_SHIFT
 It was not possible to internally pre-assign from the drive parameterization as the values must have been entered outside the permissible range. Adapt the encoder parameterization in the drive.
- $MA_SAFE_VELO_OVR_FACTOR
 It was parameterized with decimal places.
- $MA_SAFE_POS_LIMIT_PLUS / $MA_SAFE_POS_LIMIT_MINUS
 – the entered values have been interchanged. The upper limit is less than or equal to the lower limit.
- $MA_IS_ROT_AX / $MA_SAFE_IS_ROT_AX
 Different settings were made in both MD.
– The limit values for the “n<n_x” monitoring function, calculated from MD $MA_SAFE_VELO_X and MD $MA_SAFE_POS_TOL are the same magnitude.

– The parameterized cam modulo range MD $MA_SAFE_MODULO_RANGE and the modulo range in MD $MA_MODULO_RANGE cannot be divided by one another to result in an integral number.

– The cam is enabled both via $MA_SAFE_FUNCTION_ENABLE as well as also via $MA_SAFE_CAM_ENABLE.

– The mechanical brake system test was enabled in MD $MA_FIXED_STOP_MODE (bit 1 = 1), without safe operation having been enabled for this axis in MD $MA_SAFE_FUNCTION_ENABLE. The mechanical brake system test is only permissible in this axis with safety functions.

– An illegal value was parameterized in MD $MA_SAFE_VELO_STOP_MODE or MD $MA_SAFE_VELO_STOPREACTION.

– The function “Save actual value with incremental encoder” is enabled in MD $MA_ENC_REFP_STATE for the parameterizable incremental encoder, and a monitoring function with absolute reference (SE/SN) is enabled in MD $MA_SAFE_FUNCTION_ENABLE. This combination of functions is not permitted.

– The Alarms 27000/C01797 should be suppressed when parking (MD $MA_SAFE_PARK_ALARM_SUPPRESS!=0). In this case, the SGA “axis safely referenced” must be parameterized using the MD $MA_SAFE_REFP_STATUS_OUTPUT.

Response

| Mode group not ready |
| Channel not ready |
| NC start inhibit in this channel |
| Interface signals are set |
| Alarm display |
| NC stop for alarm |

Remedy

Check and modify the MD named in the alarm text. Have the checksum re-calculated. Safety functions should be subject to a new acceptance test.

Program continuation

Power-down the control and power-up again

27034
Parameterization of MD %1 invalid

Parameter

%1 = machine data identifier

Explanation

The parameterization of machine data %1 is incorrect. This alarm occurs in conjunction with the following:

– An invalid value was set for MD $MN_SAFE_ALARM_SUPPRESS_LEVEL.
10.2 NCK safety alarms for Sinumerik 840D sl

Response

Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy

Check and correct the specified machine data.

Program continuation

Power-down the control and power-up again

27035 Achse %1 new HW component, acknowledgement and acceptance required

Parameter

%1 = axis number

Explanation

The IDs for the associated HW components (encoder, motor, module) read-out of the drive do not match the NCK parameterization.

Response

Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy

Continue commissioning, correct checksums.

Program continuation

Clear the alarm with the RESET key. Restart the part program.

27036 Axis %1 encoder parameterization MD %2[%3]

Parameter

%1 = axis number
%2 = machine data identifier
%3 = machine data index

Explanation

The encoder parameterization of the encoder for the SI monitoring functions, read-out of the drive, does not match the NCK parameterization displayed in the MD. The appropriate NCK-MD was adapted.

Response

Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

In addition, a STOP F is initiated that can lead to the subsequent Alarm 27001 with fault ID 0, 27023 and 27024. Alarm 27001 with fault ID 0 can be prevented using the alarm reduction ($MA_SAFE_ALARM_SUPPRESS_LEVEL greater than or equal to 1).

Remedy

Continue commissioning, correct checksums.
27037 **Axis %1 and %2 with the same PROFIsafe address %3**

Parameter

%1 = axis number
%2 = axis number
%3 = PROFIsafe address

Explanation

The PROFIsafe address read-out from the drive is identical for these two axes.

Response

Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy

Correctly set the PROFIsafe address of the drive.

Program continuation

Power-up and power-down the control

27040 **Axis %1 waiting for the Motor Module**

Parameter

%1 = axis name, spindle number

Explanation

Alarm when booting as long as the Motor Module is still not ready for SI. Communications to the Motor Module when booting have still not been established – the safety functions are still not available (also refer to 27140).

Response

Alarm display
Interface signals are set

Remedy

The alarm is continuously active when booting if the drive does not communicate (e.g. Profibus connector removed). Otherwise, the alarm is only briefly present and is then automatically cleared again. During commissioning, it is possible that the alarm is also continually present if the safety-relevant motion monitoring functions were only activated in $MA_SAFE_FUNCTION_ENABLE – but however not in the appropriate drive parameters (p9501). The alarm can also occur if the assignment axis -> drive via SAFE_CRTLOUT_MODULE_NR is incorrect.

Program continuation

The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required.

27050 **Axis %1 failure SI communications**

Parameter

%1 = axis number

Explanation

Communications with the drive for the Safety Integrated motion monitoring functions is additionally monitored. This monitoring function has detected an error.
Response
Alarm display
Interface signals are set
NC start inhibit in this channel
NC stop for alarm

Remedy
Check the connections between the NCK and drive.
Check and ensure that the EMC conditions are complied with.

Program continuation
Clear the alarm with the RESET key. Restart the part program.

27090 Error in crosswise data comparison NCK-PLC %1 [%2], NCK: %3; %4<ALSI>

Parameter
- %1 = name of the system variable in which the error was detected
- %2 = supplementary info, system variables – field index
- %3 = supplementary information, comparison value, NCK
- %4 = supplementary information, crosswise data comparison – field index

Explanation
For the cyclic crosswise data comparison between NCK and PLC, differences have occurred in the data being compared. Parameter %1 specifies the incorrect system variable ($A_INSI, $A_OUTSI, $A_INSE, $A_OUTSE or $A_MARKERSI) with field index %2.

Special cases:
- Display “Error for crosswise data comparison NCK-PLC, $MN_PREVENT_SYNACT_LOCK[0], ...” means that the SPL commissioning status is set differently in the NCK and PLC.
- Display “Error for crosswise data comparison NCK-PLC, $MN_SPL_STOP_MODE[0], ...” means that the SPL stop response (Stop D or E) is set differently in the NCK and PLC.
- Display “Error for crosswise data comparison NCK-PLC, TIMEOUT[0], NCK: 0” means that there is a critical communications error between the NCK and PLC and no crosswise data comparison can be carried-out.

Using parameter %4, a specific alarm message can be configured on the HMI for each of the listed system variables:
- %4 = 0: Error SPL commissioning status ($MN_PREVENT_SYN-ACT_LOCK[0,1] – DB18.DBX36.0) or different stop response
- $MN_SSAFE_SPL_STOP_MODE – DB18.DBX36.1)
- %4 = 1.... 64: Error in system variables $A_INSE[1...64]
- %4 = 65...128: Error in system variables $A_OUTSE[1...64]
- %4 = 129...192: Error in system variables $A_INS[1...64]
- %4 = 193...256: Error in system variables $A_OUTS[1...64]
- %4 = 257...320: Error in system variables $A_MARKERSI[1...64]

In order to parameterize Alarm 27090, file ALSI_xx.com must be incorporated in the data management and communicated to the HMI via MBDDE.INI in Section [IndexTextFiles] ALNX=f:\dh\mb.dir\alsi_.

The machinery construction OEM can re-define this file in order to incorporate sensible supplementary texts in the alarm for his particular machine/system. If the file is to be re-defined, the new file to be created must be made known to the system via MBDDE.INI.
The display of Alarm 27090 can be influenced using the MD $MN_SAFE_ALARM_SUPPRESS_LEVEL: MD $MN_SAFE_ALARM_SUPPRESS_LEVEL = 2 : Alarm 27090 is only displayed for the first data difference found.

Response

Alarm display
A STOP D/E is initiated (this can be set using MD $MN_SPL_STOP_MODE) on all of the axes with safety functionality if the SPL commissioning phase (MD $MN_PREVENT_SYNACT_LOCK[0,1] not equal to 0) has been completed.

Remedy

Analyze the displayed value and evaluate DB18: SPL_DELTA on the PLC side.
Find the difference between the monitoring channels.
Possible causes:
- Incorrect wiring
- Incorrect SPL
- The axial SGEs have been incorrectly assigned to the internal interface $A_OUTSI
- The axial SGAs have been incorrectly assigned to the internal interface $A_INSI
- Different SPL commissioning status has been set in the NCK and PLC
- Different SPL stop response has been set in the NCK and PLC

Clear the alarm with the RESET key. Restart the part program.

Program continuation

27091 Error in crosswise data comparison, NCK-PLC, STOP of %1

Parameter
%1 = supplementary information about the monitoring channel that has initiated the stop

Explanation
The monitoring channel specified in %1 (NCK or PLC) has initiated a STOP D or E (depending on the parameterization in MD $MN_SAFE_SPL_STOP_MODE). Alarm 27090 provides additional information about the reason for the Stop D/E.

Response

Alarm display
A STOP D/E is initiated (this can be set using MD $MN_SPL_STOP_MODE) on all of the axes with safety functionality if the SPL commissioning phase (MD $MN_PREVENT_SYNACT_LOCK[0,1] not equal to 0) has been completed.

Remedy

Evaluate the alarm parameters of Alarm 27090 and correct the SPL, or check the I/O modules/wiring or the internal SPL interfaces to the safety monitoring channels in the NCK and drive.

Clear the alarm with the RESET key. Restart the part program.

Program continuation

27092 Communications interrupted for crosswise data comparison NCK-PLC, error detected by %1

Parameter
%1 = supplementary information about the detecting monitoring channel
Explanations
The delay stage (1 s) for the communication monitoring has been exceeded in the monitoring channel specified in %1 (NCK or PLC). The other monitoring channel did not send new data within this time.

Response
Alarm display
A STOP D/E is initiated (this can be set using MD $MN_SPL_STOP_MODE) on all of the axes with safety functionality if the SPL commissioning phase (MD $MN_PREVENT_SYNACT_LOCK[0,1] not equal to 0) has been completed.
A timer of 5 s is started – after it has expired
 - The external NCK-SPL outputs are deleted (cleared)
 - the PLC goes to stop.

Remedy
Do not start the SPL anymore. Check the system components (PLC must have the correct version of FB15 and have DB18).

Program continuation
Power-down the control and power-up again

27093
Checksum error NCK-SPL, %1, %2, %3

Parameter
%1 = supplementary information about the type of error
%2 = supplementary information about the reference size
%3 = supplementary information about the current size

Explanation
The checksum error in the NCK SPL. The file /_N_CST_DIR/_N_SAFE_SPF was subsequently modified.
The safe programmable logic (SPL) in the NCK may be corrupted.
Parameter %1 provides further information about the type of change:
%1 = FILE_LENGTH: The file length has changed.
%1 = FILE_CONTENT: The file contents have changed.
%2 specifies the variable calculated as the reference (file length, checksum over file contents),
%3 specifies the current size calculated cyclically.

Response
Alarm display

Remedy
Check the file and when the file was last changed. Reload the original file and start the monitoring system again with a power on.

Program continuation
Power-down the control and power-up again

27094
Write access to system variable %1 only allowed from NCK-SPL

Parameter
%1 = name of the safety system variable involved

Explanation
It is only possible to write access one of the safety system variables from the part program /_N_CST_DIR/_N_SAFE_SPF. If this error occurs, an instruction from another part program was detected.

Response
Alarm display

© Siemens AG. 2006. All rights reserved
Remedy
Check the part program used to write access safety system variables.

Program continuation
Clear the alarm with the RESET key. Restart the part program.

27095
%1 SPL protection not activated

Parameter
%1 = name of the component for which the protection is not activated (NCK or PLC)

Explanation
The protective mechanisms for the SPL have not been activated. The commissioning phase of the SPL has not yet been completed. For an error in the crosswise data comparison between NCK and PLC, a stop response (Stop D or E) is not initiated.

Response
Alarm display

Remedy
Remedy for NCK: Activate the protective mechanisms by writing to MD $MN_PREVENT_SYNACT_LOCK [0,1]. The number range of the synchronous action IDs used in the SPL must be entered in this MD.
Remedy for the PLC: Activate the protective mechanisms by setting the appropriate data bit in DB18.

Program continuation
Clear the alarm with the RESET key. Restart the part program.

27096
SPL start not allowed

Explanation
To start the SPL in the protected state ($MN_PREVENT_SYNACT_LOCK[0,1] not equal to 0), at least one axis must have safety integrated functionality activated (via MD $MA_SAFE_FUNCTION_ENABLE) beforehand. Without this functionality it is only possible to operate the SPL in the commissioning state.

Response
Mode group not ready
Channel not ready
NC start inhibit in this channel
NC stop for alarm
Alarm display
Interface signals are set

Remedy
Commissioning the axial Safety Integrated functionality or cancellation of the SPL protection using MD $MN_PREVENT_SYNACT_LOCK[0,1]

Program continuation
Power-down the control and power-up again
Diagnostics

10.2 NCK safety alarms for Sinumerik 840D sl

27097

SPL not started

Explanation

After the time defined in MD SAFE_SPL_START_TIMEOUT expired, the SPL had not started. Please note MDs 13310:
$MN_SAFE_SPL_START_TIMEOUT and 10096
$MN_SAFE_DIAGNOSIS_MASK, bit 1.

Response

Alarm display

Remedy

Find the reason why SPL did not start. Possible causes could be:
- There is either an NC or drive fault (e.g. after replacing an encoder, Emergency Stop, PROFIsafe alarms)
- There is a syntax error in the SPL itself
- A safety alarm is present (e.g. “safe end position exceeded”)
- At PROG_EVENT start, the name or path of the SPL was not correctly written to; observe upper and lower case letters
- Simultaneous start of an ASUB and PROG_EVENT, parameterizing MD 11602 (stop reasons, read-in inhibit)
- Problems when calling FB4/FC9

Program continuation

Clear the alarm with the reset key. Restart the part program

27100

At least one axis is not safely referenced

Explanation

There are two reasons for this alarm:
- the machine position of at least one of the axes monitored with SI has not been acknowledged by the user or
- the machine position of at least one of the axes monitored with SI has still not been verified by subsequent referencing

Even if the axis is already referenced there is no acknowledgement that referencing has supplied the correct result. For example, incorrect results can occur if the axis was moved after the control was powered-down – with the result that the stop position saved prior to powering-down is no longer correct. To ensure that this does not happen, the user must acknowledge the displayed actual position after the first referencing process.

When the user agreement has been set for the first time, the axis must be subsequently referenced each time that the control is booted (when absolute encoders are used, this subsequent referencing is automatically executed). This procedure is carried-out to verify the stop position saved prior to powering-down the control.

The alarm display can be set in MD $MN_SAFE_ALARM_SUPPRESS_LEVEL (MD<3) in such a way that incorrect referencing is displayed separately for each axis.
10.2 NCK safety alarms for Sinumerik 840D sl

Response
Alarm display
The SGA “axis safely referenced” is not set. SE is disabled if the safe actual position has not yet been acknowledged by the user agreement. If the user agreement is set, SE remains active. The safe cams are calculated and output, but their significance is limited because referencing has not been acknowledged.

Remedy
Move all of the SI axes to the known positions and change into the “Referencing” mode. Check the positions on the machine displayed in the user agreement screen and set the “User agreement” using the selection/toggle key.
If the user agreement has already been set for the axis, then re-reference the axes. It is only possible to change the user agreement in the key-operated switch position 3 or after entering a password.

Program continuation
The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required.

27101 Axis %1, difference in function safe operating stop, NCK: %2, drive: %3

Parameter
%1 = axis number
%2 = monitoring status, safe operating stop
%3 = monitoring status, safe operating stop

Explanation
In the crosswise data comparison of result list 1 between the NCK and drive monitoring channels, a difference was detected in the state of the safe operating stop monitoring.
Safe operating stop: Bit 0,1 in result list 1
Monitoring state (%2, %3):
– OFF = monitoring inactive in this monitoring channel
– OK = monitoring active in this monitoring channel, limit values not violated
– L+ = monitoring active in this monitoring channel, upper limit value violated
– L– = monitoring active in this monitoring channel, lower limit value violated

Response
Alarm display
If a safety monitoring function was active (SBH, SG, SE, SN), then a STOP B was also automatically initiated. It is necessary to power-down the control and power it up again (power on).

Remedy
Check that the safe inputs in both monitoring channels have switched into the same state within the permissible time tolerance.
For further diagnostics refer to the drive parameters r9710[0], r9710[1] and the servo-trace signals “result list 1 NCK” and “result list 1 drive”.

Program continuation
Clear the alarm with the RESET key. Restart the part program.
27102

Axis %1, difference in function safely-reduced speed %2, NCK: %3, drive: %4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1</td>
<td>axis number</td>
</tr>
<tr>
<td>%2</td>
<td>SG stage for which the difference was detected</td>
</tr>
<tr>
<td>%3</td>
<td>monitoring status, safely-reduced speed</td>
</tr>
<tr>
<td>%4</td>
<td>monitoring status, safely-reduced speed</td>
</tr>
</tbody>
</table>

Explanation

In the crosswise data comparison of result list 1 between the NCK and drive monitoring channels, a difference in the monitoring state of the safely-reduced speed monitoring was detected.

- Safely-reduced speed 1: Bits 6, 7 in result list 1
- Safely-reduced speed 2: Bits 8, 9 in result list 1
- Safely-reduced speed 3: Bits 10, 11 in result list 1
- Safely-reduced speed 4: Bits 12, 13 in result list 1

Monitoring state (%3, %4):

- **OFF** = monitoring inactive in this monitoring channel
- **OK** = monitoring active in this monitoring channel, limit values not violated
- **L+** = monitoring active in this monitoring channel, upper limit value violated
- **L–** = monitoring active in this monitoring channel, lower limit value violated

Response

Alarm display

If a safety monitoring function was active (SBH, SG, SE, SN), then a STOP B was also automatically initiated. It is necessary to power-down the control and power it up again (power on).

Remedy

Check that the safe inputs in both monitoring channels have switched into the same state within the permissible time tolerance.

For further diagnostics refer to the drive parameters r9710[0], r9710[1] and the servo-trace signals “result list 1 NCK” and “result list 1 drive”.

Program continuation

Clear the alarm with the RESET key. Restart the part program.
Diagnostics

10.2 NCK safety alarms for Sinumerik 840D sl

27103 **Axis %1, difference in function safe limit position %2, NCK: %3, drive: %4**

Parameter
%1 = axis number
%2 = number of the SE limit
%3 = monitoring status, safe limit position
%4 = monitoring status, safe limit position

Explanation
In the crosswise data comparison of result list 1 between the NCK and drive monitoring channels, a difference was detected in the monitoring state of the safe limit position monitoring.
– Safe limit position 1: Bits 2, 3 in result list 1
– Safe limit position 2: Bits 4, 5 in result list 1

Monitoring state (%3, %4):
– OFF = monitoring inactive in this monitoring channel
– OK = monitoring active in this monitoring channel, limit values not violated
– L+ = monitoring active in this monitoring channel, upper limit value violated
– L– = monitoring active in this monitoring channel, lower limit value violated

Response
Alarm display
If a safety monitoring function was active (SBH, SG, SE, SN), then a STOP B was also automatically initiated. It is then necessary to power-down/power-up the control (power on).

Remedy
Check that the safe inputs in both monitoring channels have switched into the same state within the permissible time tolerance.
For further diagnostics refer to the drive parameters r9710[0], r9710[1] and the servo-trace signals “result list 1 NCK” and “result list 1 drive”.

Program continuation
Clear the alarm with the RESET key. Restart the part program.

27104 **Axis %1, difference in function safe cam plus %2, NCK: %3, drive: %4**

Parameter
%1 = axis number
%2 = number of the cam
%3 = monitoring status, safe cam plus
%4 = monitoring status, safe cam plus
During the crosswise comparison of result list 2 between the NCK and drive monitoring channels, a difference was detected in the monitoring state of the safe cam plus monitoring.

- Safe cam 1+: Bits 0, 1 in result list 2
- Safe cam 2+: Bits 4, 5 in result list 2
- Safe cam 3+: Bits 8, 9 in result list 2
- Safe cam 4+: Bits 12, 13 in result list 2

Monitoring state (%3, %4):
- OFF = monitoring inactive in this monitoring channel
- OK = monitoring active in this monitoring channel, limit values not violated
- L+ = monitoring active in this monitoring channel, upper limit value violated
- L– = monitoring active in this monitoring channel, lower limit value violated

Alarm display

If a safety monitoring function was active (SBH, SG, SE, SN), then a STOP B was also automatically initiated. It is necessary to power-down the control and power it up again (power on).

Check that the safe actual values in both monitoring channels match.

For further diagnostics refer to the drive parameters r9711[0], r9711[1] and the servo-trace signals “result list 2 NCK” and “result list 2 drive”.

Clear the alarm with the RESET key. Restart the part program.

27105
Axis %1, difference in function safe cam minus %2, NCK: %3, drive: %4

%1 = axis number
%2 = number of the cam
%3 = monitoring status, safe cam minus
%4 = monitoring status, safe cam minus
10.2 NCK safety alarms for Sinumerik 840D sl

Diagnostics

Explanation

In the crosswise comparison of result list 2 between the NCK and drive monitoring channels, a difference was detected in the monitoring state of the safe cam minus monitoring:

- Safe cam 1: Bits 2, 3 in result list 2
- Safe cam 2: Bits 6, 7 in result list 2
- Safe cam 3: Bits 10, 11 in result list 2
- Safe cam 4: Bits 14, 15 in result list 2

Monitoring state (%3, %4):

- OFF = monitoring inactive in this monitoring channel
- OK = monitoring active in this monitoring channel, limit values not violated
- L+ = monitoring active in this monitoring channel, upper limit value violated
- L– = monitoring active in this monitoring channel, lower limit value violated

Response

Alarm display

If a safety monitoring function was active (SBH, SG, SE, SN), then a STOP B was also automatically initiated. It is necessary to power-down the control and power it up again (power on).

Remedy

Check that the safe actual values in both monitoring channels match. For further diagnostics refer to the drive parameters r9711[0], r9711[1] and the servo-trace signals “result list 2 NCK” and “result list 2 drive”.

Program continuation

Clear the alarm with the RESET key. Restart the part program.

27106 Axis %1, difference for the function safely-reduced speed n_x, NCK: %2, drive: %3

Parameter

%1 = axis number
%2 = monitoring status, safely-reduced speed n_x
%3 = monitoring status, safely-reduced speed n_x

Explanation

In the crosswise data comparison of result list 2 between the NCK and drive monitoring channels, a difference was detected in the monitoring state of the safely-reduced speed n_x monitoring:

- Safely-reduced speed n_x+: Bits 16, 17 in result list 2
- Safely-reduced speed n_x–: Bits 18, 19 in result list 2

Monitoring state (%2, %3):

- OFF = monitoring inactive in this monitoring channel
- OK = monitoring active in this monitoring channel, limit values not violated
- L+ = monitoring active in this monitoring channel, upper limit value violated
- L– = monitoring active in this monitoring channel, lower limit value violated
10.2 NCK safety alarms for Sinumerik 840D sl

Response

Alarm display

If a safety monitoring function was active (SBH, SG, SE, SN), then a STOP B was also automatically initiated. It is necessary to power-down the control and power it up again (power on).

Remedy

Check that the safe actual values in both monitoring channels match. For further diagnostics drive parameters r9711[0], r9711[1] and the servo-trace signals “result list 2 NCK” and “result list 2 drive”.

Program continuation

Clear the alarm with the RESET key. Restart the part program.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1 = axis number</td>
<td>In the crosswise data comparison of result list 2 between the NCK and drive monitoring channels, a difference was detected in the monitoring status of the cam modulo range monitoring. Safe cam modulo range: Bits 20, 21 in result list 2</td>
</tr>
<tr>
<td>%2 = monitoring status, safe cam modulo range</td>
<td>Monitoring state (%2, %3):</td>
</tr>
<tr>
<td>%3 = monitoring status, safe cam modulo range</td>
<td>– OFF = monitoring inactive in this monitoring channel</td>
</tr>
<tr>
<td></td>
<td>– OK = monitoring active in this monitoring channel, limit values not violated</td>
</tr>
<tr>
<td></td>
<td>– L+ = monitoring active in this monitoring channel, upper limit value violated</td>
</tr>
<tr>
<td></td>
<td>– L– = monitoring active in this monitoring channel, lower limit value violated</td>
</tr>
</tbody>
</table>

Example

27107
Axis %1, difference with cam modulo monitoring function, NCK:
%2, drive: %3

- **Parameter**
 - %1 = axis number
 - %2 = monitoring status, safe cam modulo range
 - %3 = monitoring status, safe cam modulo range

- **Response**
 - Alarm display
 - If a safety monitoring function was active (SBH, SG, SE, SN), then a STOP B was also automatically initiated. It is necessary to power-down the control and power it up again (power on).

- **Remedy**
 - Check that the safe actual values in both monitoring channels match. For further diagnostics refer to the drive parameters r9711[0], r9711[1] and the servo-trace signals “result list 2 NCK” and “result list 2 drive”.

- **Program continuation**
 - Clear the alarm with the RESET key. Restart the part program.
27110 **Axis %1 data transfer error, index %2**

Parameter
- %1 = axis number
- %2 = index in the crosswise data comparison

Explanation
Communication errors between the NCK and drive have meant that for three times in a row, the crosswise data comparison of the data with the specified index was not able to be carried-out.

Response
In addition, a STOP F is initiated, that can result in the subsequent Alarm 27001 with fault IDs 0, 27023 and 27024. Alarm 27001 with fault ID 0 can be prevented using the alarm reduction ($MA_SAFE_ALARM_SUPPRESS_LEVEL greater than or equal to 1).

Remedy
Check and ensure that the EMC conditions are complied with.
Replace the hardware

Program continuation
Clear the alarm with the RESET key. Restart the part program.

27111 **Axis %1 encoder evaluation error of the safety-relevant actual value**

Parameter
- %1 = axis number

Explanation
The redundantly determined safety-relevant actual value does not match the actual value - with fine resolution - of the same encoder.

Response
In addition, a STOP F is initiated, that can result in the subsequent Alarm 27001 with fault IDs 0, 27023 and 27024. Alarm 27001 with fault ID 0 can be prevented using the alarm reduction ($MA_SAFE_ALARM_SUPPRESS_LEVEL greater than or equal to 1).

Remedy
Check and ensure that the EMC conditions are complied with.
Replace the hardware

Program continuation
Clear the alarm with the RESET key. Restart the part program.

27112 **Axis %1 CRC error of the safety-relevant actual value**

Parameter
- %1 = axis number

Explanation
When checking the data consistency of the safety-relevant actual value (CRC), an error was detected. This can also occur when commissioning the system.

Response
In addition, a STOP F is initiated, that can result in the subsequent Alarm 27001 with fault IDs 0, 27023 and 27024. Alarm 27001 with fault ID 0 can be prevented using the alarm reduction ($MA_SAFE_ALARM_SUPPRESS_LEVEL greater than or equal to 1).
27113 Axis %1 hardware encoder fault of the safety-relevant actual value

Parameter
%1 = axis number

Explanation
The encoder evaluation signals a hardware fault. Causes could be dirt in the optical encoder evaluation or problems associated with the signal transfer.

Response
Alarm display
In addition, a STOP F is initiated, that can result in the subsequent Alarm 27001 with fault IDs 0, 27023 and 27024. Alarm 27001 with fault ID 0 can be prevented using the alarm reduction ($MA_SAFE_ALARM_SUPPRESS_LEVEL greater than or equal to 1).

Remedy
Check and ensure that the EMC conditions are complied with.
Replace the hardware

Program continuation
Clear the alarm with the RESET key. Restart the part program.

27124 Stop A initiated for at least one axis

Explanation
This alarm only indicates that Stop A has been initiated in at least one axis and power on is required to acknowledge the alarm. The alarm is output if the alarm priority function was activated in MD $MN_SAFE_ALARM_SUPPRESS_LEVEL.

Response
Alarm display
Interface signals are set
“Pulse cancellation” is initiated for the axis involved.

Remedy
Locate the cause of the error by evaluating additional alarm messages

Program continuation
Power-down the control and power-up again

27140 Wait for Motor Module for at least one axis

Explanation
Alarm when booting as long as the Motor Module of at least one axis is still not ready for SI. When booting, communications to the Motor Module have still not been established as the safety functions for at least one axis are still not available.
The alarm display can be set in MD $MN_SAFE_ALARM_SUPPRESS_LEVEL (MD < 3) in such a way that it can be individually displayed as to whether communications have already been established for each axis.

Response
Alarm display
Interface signals are set
Remedy

The alarm is continuously active when booting if at least one drive does not communicate (e.g. Profibus connector removed). Otherwise, the alarm is only briefly present and is then automatically cleared again. The alarm can occur during commissioning if the safety monitoring functions were only activated in $MA_SAFE_FUNCTION_ENABLE – however not in the appropriate drive parameters (p9501).

Program continuation

The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required.

27200

PROFIsafe: Cycle time %1 [ms] is too long

Parameter

%1 = parameterized cycle time

Explanation

The PROFIsafe communication cycle time resulting from MD $MN_PROFISAFE_IPO_TIME_RATIO and $MN_IPO_CYCLE_TIME exceeds the permissible limit value of 25 ms.

Response

Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy

Correct the cycle time.

Program continuation

The alarm is initiated when booting if parameterized too long. No program can be started. Only delete the alarm with a power on.

27201

PROFIsafe: MD %1[%2]: Bus segment %3 error

Parameter

%1 = MD name
%2 = MD field index
%3 = parameterized bus segment

Explanation

An incorrect bus segment was entered in the specified machine data. The value must be 5.

Response

Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy

Correct the specified MD.

Program continuation

The alarm is initiated when booting. No program can be started. Only delete the alarm with a power on.
27202
PROFIsafe: MD %1[%2]: Address %3 error

Parameter
\%1 = MD name
\%2 = MD field index
\%3 = parameterized PROFIsafe address

Explanation
The PROFIsafe address, parameterized in the specified MD is incorrect.

Response
Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy
Correct the MD.

Program continuation
The alarm is initiated when booting. No program can be started. Only delete the alarm with a power on.

27203
PROFIsafe: MD %1[%2]: Incorrect SPL assignment

Parameter
\%1 = MD name
\%2 = MD field index

Explanation
The parameterization in the specified MD for the connection between the SPL interface and a PROFIsafe module is incorrect. The reasons for this are as follows:
- Bit limits interchanged (upper bit value < lower bit value)
- Bit values greater than in the definition of the SPL interface (bit value> 64)
- Number of bits too high for this PROFIsafe module (upper bit value – lower bit value > 8)
- No SPL assignment was parameterized (both bit values are equal to zero)
- Incorrect SPL assignment (bit value equal to zero)

Response
Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy
Correct the displayed MD.

Program continuation
The alarm is initiated when booting. No program can be started. Only delete the alarm with a power on.
27204 PROFIsafe: Double assignment MD %1[%2] – MD %3[%4]

Parameter
- %1 = MD name 1
- %2 = MD field index for MD name 1
- %3 = MD name 2
- %4 = MD field index for MD name 2

Explanation
A double assignment has been illegally parameterized in the specified machine data.
A_INSE are parameterized on several PROFIsafe modules.
MDs involved:
- MD $MN_PROFISAFE_IN_ASSIGN$

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Correct the displayed MD.

Program continuation
The alarm is initiated when booting. No program can be started. Only delete the alarm with a power on.

27205 PROFIsafe: Number of signals in MD %1[%2] < > MD %3[%4]

Parameter
- %1 MD name 1
- %2 MD field index to the MD name 1
- %3 MD name 2
- %4 MD field index to the MD name 2

Explanation
The parameterized number of signals used must be the same in both machine data.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Correct the MD.

Program continuation
The alarm is initiated when booting. No program can be started. Only delete the alarm with a power on.
27206 PROFIsafe: MD %1[%2] max. number of F net data (%3 bits) exceeded

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1 MD name</td>
<td>Data parameterized in the specified machine data lie outside the F net (useful) data area of the F module.</td>
</tr>
<tr>
<td>%2 MD field index to the MD name</td>
<td></td>
</tr>
<tr>
<td>%3 F net data bits</td>
<td></td>
</tr>
</tbody>
</table>

Note
- When displaying machine data PROFISAFE_IN/OUT_ADDRESS, the sub-slot address parameterized in the machine data exceeds the F net data area of the F module.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
- Correct the MD.

Program continuation
- Switch control system OFF and ON again.

27207 PROFIsafe: MD %1[%2] max. sub-slot number: %3 exceeded

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%1 MD name</td>
<td>The sub-slot parameterized in the specified machine data exceeds the max. permissible number of sub slots per PROFIsafe module.</td>
</tr>
<tr>
<td>%2 MD field index to the MD name</td>
<td></td>
</tr>
<tr>
<td>%3 max. number of sub-slots</td>
<td></td>
</tr>
</tbody>
</table>

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
- Reduce the number of sub-slots by changing the F net (useful) data distribution of the PROFIsafe module.

Program continuation
- Switch control system OFF and ON again.
27208 PROFIsafe: MD %1[%2] max. sub-slot address %3 exceeded

Parameter
- %1 MD name
- %2 MD field index to the MD name
- %3 address, sub-slots

Explanation
An excessively high sub-slot address was entered in the specified MD. The entered value may not exceed the displayed maximum sub-slot address.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Correct the MD

Program continuation
Switch control system OFF and ON again.

27220 PROFIsafe: Number of NCK F modules (%1) <> number of S7-F modules (%2)

Parameter
- %1 = number of parameterized NCK-F modules
- %2 = number of parameterized S7-F modules

Explanation
The number of F modules parameterized using the NCK machine data $MN_PROFISAFE_IN/OUT_ADDRESS is:
- greater than the number of PROFIBUS slaves in the configured S7 PROFIBUS
- less than the number of F modules in the configured S7 PROFIBUS
- greater than the number of F modules in the configured S7 PROFIBUS

If the alarm parameter %2 = 0, then none of the F modules, configured in the S7-PROFIBUS configuration were found.
Generally, the cause of this alarm is an error in the parameterization of the PROFIsafe master address.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Check the F parameterization in the MD $MN_PROFISAFE_IN/OUT_ADDRESS.
Check the F configuration in the S7 PROFIBUS configuration.
Check the parameterized PROFIsafe master address in MD $MN_PROFISAFE_MASTER_ADDRESS and S7 PROFIBUS configuration.

Program continuation
Switch the control OFF – ON.
27221

PROFIsafe: NCK F module MD %1[%2] unknown

Parameter
- %1 = MD name
- %2 = MD field index

Explanation
The F module parameterized in the specified machine data is unknown under this PROFIsafe address in the S7 configuration.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Check the PROFIsafe addresses in the NCK-MD and S7-DP configuration.

Program continuation
Switch control system OFF and ON again.

27222

PROFIsafe: S7 F module PROFIsafe address %1 unknown

Parameter
- %1 = PROFIsafe address

Explanation
The F module with the specified PROFIsafe address has not been parameterized as an F module in the NCK MD.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Check the S7 PROFIBUS configuration. Register the module in the NCK MD.

Program continuation
Switch control system OFF and ON again.

27223

PROFIsafe: NCK F module MD %1[%2] is not a %3 module

Parameter
- %1 = MD name
- %2 = MD field index
- %3 = module type

Explanation
The F module parameterized in the specified NCK MD has not been designated as an appropriate input/output module in the S7 PROFIBUS configuration.

- %3 = INPUT: NCK F parameterization expects an INPUT module
- %3 = OUTPUT: NCK F parameterization expects an OUTPUT module
- %3 = IN/OUT: NCK F parameterization expects an INPUT/OUTPUT module
10.2 NCK safety alarms for Sinumerik 840D sl

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Check the module in the S7 PROFIBUS configuration

Program continuation
Switch control system OFF and ON again.

Parameter
- \%1 = MD name 1
- \%2 = MD field index 1
- \%3 = MD name 2
- \%4 = MD field index 2

Explanation
In the NCK MD or in the S7 F parameters, the same PROFIsafe address has been parameterized for the F modules parameterized in the specific machine data. This means that a clear communications relationship between the F master and F slave is not possible.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Check and correct the S7 F parameterization and NCK-MD.

Program continuation
Switch control system OFF and ON again.
27225 PROFIsafe: Slave %1, configuration error, %2
Parameter %1 = PROFIBUS slave address
%2 = configuration error
Explanation An error has occurred during the evaluation of the S7 PROFINET configuration for the specific slave. This is further specified in alarm parameter %2.
%2 = PRM header: The PRM telegram for this slave could not clearly be interpreted.
Response Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm
Remedy Check the S7 PROFIBUS configuration and correct.
Program Switch control system OFF and ON again.
continuation

27240 PROFIsafe: DP M has not run-up, DP info: %1
Parameter %1 = actual information from the DP interface NCK-PLC
Explanation There is no DP configuration available to the NCK after the time specified using the MD $MN_PLC_RUNNINGUP_TIMEOUT.
Response Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm
Remedy increase MD $MN_PLC_RUNNINGUP_TIMEOUT
check the PLC operating state
check the PLC operating system software release
delete the F parameterization in the NCK-MD
Program Switch control system OFF and ON again.
continuation

27241 PROFIsafe: DP M version different, NCK: %1, PLC: %2
Parameter %1 = version of the DP interface on the NCK side
%2 = version of the DP interface on the PLC side
Explanation The DP interface has been implemented differently for the NCK and PLC components. The F communications cannot be initialized
10.2 NCK safety alarms for Sinumerik 840D sl

Response
Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy
Check the PLC operating system and correct NCK software versions.
Upgrade the PLC operating system.
Delete NCK F parameterization.

Program continuation
Switch control system OFF and ON again.

27242 PROFIsafe: F module %1, %2 faulty

Parameter
%1 = PROFIsafe address
%2 = F parameter error

Explanation
An error was detected while evaluating F parameters.
%2 = CRC1: CRC error, F parameters.
%2 = F_WD_Timeout: The monitoring time parameterized in Step 7 is too short for the PROFIsafe cycle time defined by the NCK-MD \$MN_PROFI SAFE_IPO_TIME_RATIO.
%2 = CRC2_Len: Incorrect length of the telegram CRC.
%2 = F_Data_Len: Incorrect telegram length has been defined for the stated module.

Response
Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy
%2 = CRC1: General PLC reset, reload the S7 F configuration.
%2 = F_WD_Timeout: Re-parameterize the PROFIsafe clock cycle time or F monitoring time.
%2 = CRC2_Len: General PLC reset, reload the S7 F configuration.

Program continuation
Switch control system OFF and ON again.

27250 PROFIsafe: Configuration in DP-M changed; error code %1 – %2

Parameter
%1 = NCK project number
%2 = current PLC project number

Explanation
The DP master indicates a modified S7 PROFIBUS configuration. Error-free operation can no longer be guaranteed.
10.2 NCK safety alarms for Sinumerik 840D sl

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
- Restart the PLC/NCK

Program continuation
- Switch control system OFF and ON again.

27251

PROFIsafe: F module %1, %2 reports error %3

Parameter
- %1 = PROFIsafe address
- %2 = signaling components (master/slave)
- %3 = error detection

Explanation
An error has occurred in the PROFIsafe communications between the F master and the specified F module which was detected by the component (master/slave) displayed in parameter %2.
The error code provides information as to which type of error is involved:
- %3 = TO: The parameterized communications timeout has been exceeded
- %3 = CRC: A CRC error was detected
- %3 = CN: An error was detected in the sequence (timing) of the F telegrams
- %3 = SF: F master error, NCK/PLC are no longer in synchronism
- %3 = EA: Communications error, slave sends empty telegrams

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
- Check the DP wiring. Restart the F slave modules. Restart the NCK/PLC.

Program continuation
- Clear the alarm with the RESET key. Restart the part program.

27252

PROFIsafe: Slave %1, sign-of-live error

Parameter
- %1 = DP slave address

Explanation
The specified DP slave no longer communicates with the master.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm
Remedy

Check the DP wiring. Restart the F slave modules. Restart the NCK/PLC.

Program continuation

Clear the alarm with the RESET key. Restart the part program.

27253

PROFIsafe: Communications fault F master component %1, error %2

Parameter

%1 = faulty components (NCK/PLC)
%2 = error detection

Explanation

The F master signals a communications error between the NCK and PLC.
The cause of the error is indicated in error code %1:
- %1 = NCK: Link between PROFIsafe and SPL interface is interrupted.
- %1 = PLC: The PLC no longer executes the OB40 request.
- %1 = PLC-DPM: DP master is no longer in the OPERATE state.

Parameter %2 provides additional information about the reason for the error:
- %2 = 0: NCK-internal sequence error (refer to %1=NCK).
- %2 = 1,2,4: PLC processing of the OB40 not finished.

Response

Mode group not ready
Channel not ready
NC start inhibit in this channel
Interface signals are set
Alarm display
NC stop for alarm

Remedy

Extend the PROFIsafe cycle time using MD $MN_PROFISAFE_IPO_TIME_RATIO.

Program continuation

Clear the alarm with the RESET key. Restart the part program.

27254

PROFIsafe: F module %1, error on channel %2; %3<ALSi>

Parameter

%1 = PROFIsafe address
%2 = channel number
%3 = supplementary info, system variables – field index

Explanation

The F module signals that an error has occurred in the interface of the specified drive. This alarm is only initiated for ET200 F modules. The type of channel (input or output channel is displayed in %2 using the IN and OUT abbreviation).

Using parameter %3, a specific alarm message can be configured on the HMI for each of the listed system variables:
- %3 = 1....64: Error in system variables $A_INSE[1...64]
- %3 = 65...128: Error in system variables $A_OUTSE[1...64]
- %3 = –1: Error in the input or output channel for which there is no SPL assignment.
10.2 NCK safety alarms for Sinumerik 840D sl

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Check the wiring. Wiring OK: Replace the F module.

Program continuation
Remove the error and press RESET.

27255 PROFIsafe: F module %1, general error

Parameter
%1 = PROFIsafe address

Explanation
The specified PROFIsafe module signals an error: Additional information on the cause of the error cannot be made without further resources.
This alarm is initiated for all types of PROFIsafe slaves.

Response
- Mode group not ready
- Channel not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Check the wiring

Program continuation
Remove the error and press RESET.

27256 PROFIsafe: Actual cycle time %1 [ms] > parameterized cycle time

Parameter
%1 = actual PROFIsafe communications cycle time

Explanation
The actual PROFIsafe communication cycle time is greater than the value set using MD $MN_PROFISAFE_IPO_TIME_RATIO. The parameterized PROFIsafe communication cycle time is continually exceeded on the PLC side.

Response
- Mode group not ready
- NC start inhibit in this channel
- Interface signals are set
- Alarm display
- NC stop for alarm

Remedy
Adapt the cycle time using MD $MN_PROFISAFE_IPO_TIME_RATIO. At least the value, displayed in %1 must be set.
The selected cycle time has an effect on the runtime utilization of the PLC module. This must be taken into account in the setting.

Program continuation
Remove the error and press RESET.
27299 PROFIsafe: Diagnostics %1 %2 %3 %4
Parameter %1 error ID 1
%2 error ID 2
%3 error ID 3
%4 error ID 4
Explanation Internal error in the NCK PROFIsafe implementation.
Response Alarm display
Remedy Please contact the Siemens A&D MC, Hotline with the error text
– Tel 0180 / 5050 – 222 (Germany)
– Fax 0180 / 5050 – 223
– Tel +49 – 180 / 5050 – 222 (outside Germany)
– Fax +49 – 180 / 5050 – 223
– email techsupport@ad.siemens.de
Program continuation Power-down the control and power-up again

27900 Profibus-DP: SI fault, axis %1, code %2, value %3, time %4
Explanation SINAMICS drive fault.
Response Alarm display
Remedy Fault codes/fault values, refer to the drive documentation.
Program continuation The alarm is no longer displayed when the alarm cause has been removed. No other operator actions are required.

27901 Profibus-DP: SI fault, axis %1, code %2, value %3, time %4
Explanation SINAMICS drive fault.
Response Alarm display
Remedy Fault codes/fault values, refer to the drive documentation.
Program continuation Remove the error and press RESET.
10.3 Safety messages for SINAMICS S120

10.3.1 General information

Note
In the HMI environment, faults and alarms are displayed by specifying a six-digit number that always starts with 2. This means, e.g. F01600 then 201600. In this Chapter, faults and alarms are described with numbers from the SINAMICS environment.

In the HMI environment, faults and alarms are treated like alarms.

Differences between faults and alarms

Table 10-1 Differences between faults and alarms

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faults</td>
<td>What happens when a fault occurs?</td>
</tr>
<tr>
<td></td>
<td>• The appropriate fault response is initiated.</td>
</tr>
<tr>
<td></td>
<td>• Status signal ZSW1.3 is set.</td>
</tr>
<tr>
<td></td>
<td>• The fault is entered in the fault buffer.</td>
</tr>
<tr>
<td></td>
<td>How are the faults eliminated?</td>
</tr>
<tr>
<td></td>
<td>• Remove the cause of the fault.</td>
</tr>
<tr>
<td></td>
<td>• Acknowledge the fault.</td>
</tr>
<tr>
<td>Warnings</td>
<td>What happens when an alarm occurs?</td>
</tr>
<tr>
<td></td>
<td>• Status signal ZSW1.7 is set.</td>
</tr>
<tr>
<td></td>
<td>• The warning is entered in the warning buffer.</td>
</tr>
<tr>
<td></td>
<td>How are alarms removed?</td>
</tr>
<tr>
<td></td>
<td>• Alarms are self acknowledging, that is, they are reset automatically when the cause of the alarm has been eliminated.</td>
</tr>
</tbody>
</table>

Fault responses

The standard fault responses according to PROFIdrive, that are used for safety, are described in the Table 10-2. The OFF 2 fault response is used as additional stopping measure while the pulses are safely cancelled via the safety-relevant shutdown paths.
Table 10-2 Fault responses

<table>
<thead>
<tr>
<th>Fault response</th>
<th>Response</th>
<th>Description</th>
<th>Safety stop response</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF 2 (OFF 2)</td>
<td>Internal/external pulse cancellation</td>
<td>• Immediate pulse cancellation, the drive “coasts” to a standstill.</td>
<td>STOP A, Test stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The motor holding brake (if parameterized) is closed immediately.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Power-on disable is activated.</td>
<td></td>
</tr>
<tr>
<td>OFF 3</td>
<td>Brakes along the OFF 3 down ramp and then the pulses are cancelled</td>
<td>• The drive is braked along the OFF 3 down ramp (p1135) by immediately entering (n_{set} = 0).</td>
<td>STOP B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are cancelled when the brake application time (p1217) expires.</td>
<td>(after (r_{9556}) has expired or (p_{9560}) is fallen below, STOP A is initiated)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Zero speed is detected if the actual speed drops below the threshold in (p_{1226}) or if the monitoring time (p1227) started when speed setpoint (\leq) speed threshold (p1226) has expired.</td>
<td></td>
</tr>
<tr>
<td>STOP 2 (Halt 2)</td>
<td>(n_{set} = 0)</td>
<td>• The drive is braked along the OFF 3 down ramp (p1135) by immediately entering (n_{set} = 0).</td>
<td>STOP C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The drive remains in closed-loop speed control mode.</td>
<td></td>
</tr>
</tbody>
</table>
Acknowledging faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been removed.

Table 10-3 Acknowledging faults

<table>
<thead>
<tr>
<th>List</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER ON</td>
<td>The fault is acknowledged by a POWER ON process (switch drive unit off and on again). Note: If the cause of the fault has not been removed the fault is immediately displayed after booting.</td>
</tr>
<tr>
<td>IMMEDIATELY</td>
<td>Starting from a drive object, the fault can be acknowledged by the following methods:</td>
</tr>
<tr>
<td></td>
<td>1. Acknowledging by setting a parameter: p3981 = 0 → 1</td>
</tr>
<tr>
<td></td>
<td>2. Acknowledging via binector inputs:</td>
</tr>
<tr>
<td></td>
<td>p2103 BI: 1. Acknowledging faults</td>
</tr>
<tr>
<td></td>
<td>p2104 BI: 2. Acknowledging faults</td>
</tr>
<tr>
<td></td>
<td>p2105 BI: 3. Acknowledging faults</td>
</tr>
<tr>
<td></td>
<td>3. Acknowledging via a PROFIBUS control signal:</td>
</tr>
<tr>
<td></td>
<td>STW1.7 = 0 → 1 (edge)</td>
</tr>
<tr>
<td></td>
<td>Note: This fault can also be acknowledged using POWER ON.</td>
</tr>
<tr>
<td></td>
<td>If the cause of the fault has not been removed the fault is not cleared after acknowledgement.</td>
</tr>
<tr>
<td></td>
<td>Faults from SH/SBC</td>
</tr>
<tr>
<td></td>
<td>The safe standstill (SH) function must be de-selected</td>
</tr>
<tr>
<td>READY</td>
<td>The fault can only be acknowledged in the READY state.</td>
</tr>
<tr>
<td></td>
<td>In this state, the DC link is charged and the pulses are inhibited.</td>
</tr>
</tbody>
</table>

How faults and alarms are represented

<table>
<thead>
<tr>
<th>Axxxxx</th>
<th>Alarm xxxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axxxxx (F, N)</td>
<td>Alarm xxxx (message type can be changed into F or N)</td>
</tr>
<tr>
<td>Fxxxxx</td>
<td>Fault xxxx</td>
</tr>
<tr>
<td>Fxxxxx (A, N)</td>
<td>Fault xxxx (message type can be changed to A or N)</td>
</tr>
<tr>
<td>Nxxxxx</td>
<td>No message</td>
</tr>
<tr>
<td>Nxxxxx (A)</td>
<td>No message (message type can be changed to A)</td>
</tr>
<tr>
<td>Cxxxxx</td>
<td>Safety message (dedicated message buffer)</td>
</tr>
</tbody>
</table>

A message comprises a letter as suffix followed by the number.
The letters have the following meanings:

- A means “Alarm”
- F means “Fault”
- N means “No message” or “Internal message”
- C means “safety message”

The optional brackets indicates whether the type specified for this message can be changed and which message types can be selected via parameter.

Information about the response and acknowledgement are independently specified for a message with adjustable message type (e.g. response to F, acknowledgement for F).

10.3.2 List of faults and alarms

Note

- In the HMI environment, faults and alarms are displayed specifying a six-digit number that always starts with 2. This means, e.g. F01600 then 201600. In this Chapter, faults and alarms are described with numbers from the SINAMICS environment.
- In the HMI environment, faults and alarms are treated like alarms.

List of faults (Control Unit)

<table>
<thead>
<tr>
<th>Fault Code</th>
<th>Description</th>
<th>Response</th>
<th>Acknowledgement</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| F01600 | SI CU: STOP A initiated | OFF2 | IMMEDIATELY (POWER ON) | The “Safety Integrated” function integrated in the drive on the Control Unit has detected a fault and initiated a STOP A (pulse cancellation via the safety shutdown path of the Control Unit).
 - Forced checking procedure of the safety shutdown path of the Control Unit unsuccessful.
 - Subsequent response to fault F01611 (defect in a monitoring channel).
 Note:
 - If motion monitoring is not enabled (p9501 = 0) then the fault results in a STOP A that can be acknowledged.
 - If the motion monitoring is enabled (p9501 > 0) then the fault results in a STOP A that cannot be acknowledged (POWER ON fault).
 Fault value (r0949, decimal): |
10.3 Safety messages for SINAMICS S120

0: Stop request from the Motor Module
1005: Pulses cancelled although SH not selected and there is not internal STOP A present.
1010: Pulses enabled although SH is selected or an internal STOP A is present.
1015: Feedback of the safe pulse cancellation for Motor Modules connected in parallel are different.
9999: Subsequent response to fault F01611.

Remedy
Select safe standstill and then deselect again.
- Replace the Motor Module involved.
Re fault value = 9999:
- Carry-out diagnostics for fault F01611 that is present.

F01611

SI CU: Defect in a monitoring channel

Response NONE (OFF1, OFF2, OFF3)

Acknowledgement IMMEDIATELY (POWER ON)

Explanation The “Safety Integrated” function integrated in the drive on the Control Unit has detected a fault in the crosswise data comparison between CU and Motor Module (MM) and has initiated a STOP F.
As a result of this fault, after the parameterized transition has expired (p9658), fault F01600 (SI CU: STOP A initiated) is output.
Fault value (r0949, decimal):

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stop request from the Motor Module</td>
</tr>
<tr>
<td>1 to 999</td>
<td>Number of the crosswise compared data that resulted in this fault.</td>
</tr>
<tr>
<td>1</td>
<td>SI monitoring clock cycle (r9780, r9880).</td>
</tr>
<tr>
<td>2</td>
<td>SI enable safety functions (p9601, p9801).</td>
</tr>
<tr>
<td>3</td>
<td>SI SGE changeover tolerance time (p9650, p9850).</td>
</tr>
<tr>
<td>4</td>
<td>SI transition time STOP F to STOP A (p9658, p9858).</td>
</tr>
<tr>
<td>5</td>
<td>SI enable safe brake control (p9602, p9802).</td>
</tr>
<tr>
<td>1000</td>
<td>Check (watchdog) timer has expired. Within the time of approx. 5 * p9650 too many switching operations have occurred at terminal EP of the Motor Module.</td>
</tr>
<tr>
<td>1001, 1002</td>
<td>Initialization error, change timer / check timer.</td>
</tr>
<tr>
<td>2000</td>
<td>Status of the SH terminals on the Control Unit and Motor Module are different.</td>
</tr>
<tr>
<td>2001</td>
<td>Feedback signal for safe pulse cancellation on the Control Unit and Motor Module are different.</td>
</tr>
<tr>
<td>2004</td>
<td>Status of the SH selection for modules connected in parallel are different.</td>
</tr>
<tr>
<td>2005</td>
<td>Feedback signal of the safe pulse cancellation on the Control Unit and Motor Modules connected in parallel are different.</td>
</tr>
</tbody>
</table>
Remedy

Re fault value = 1 to 999:
– Check the crosswise compared data that resulted in a STOP F.
– Carry-out a POWER ON (power off/on) for all components.
– Upgrade the Motor Module software.
– Upgrade the Control Unit software.

Re fault value = 1000:
– Check the EP terminal at the Motor Module (contact problems).

Re fault value = 1001, 1002:
– Carry-out a POWER ON (power off/on) for all components.
– Upgrade the Motor Module software.
– Upgrade the Control Unit software.

– Check the tolerance time SGE changeover and if required, increase the value (p9650, p9850).
– Check the wiring of the safety-relevant input signals (contact problems).
– Replace the Motor Module involved.
N01620 (F, A) SI CU: Safe standstill active

Response NONE
Acknowledgement NONE
Explanation The “safe standstill” function has been selected on the Control Unit (CU) and is active.
Note: This message does not result in a safety stop response.
Remedy None necessary.
Response as for F OFF2
Acknowledgement for F IMMEDIATELY (POWER ON)
Response for A NONE
Acknowledgement for A NONE

F01625 SI CU: Sign-of-life error in safety data

Response: IMMEDIATELY (POWER ON)
Acknowledgement The “Safety Integrated” function integrated in the drive on the Control Unit (CU) has detected an error in the sign-of-life of the safety data between the CU and Motor Module (MM) and initiated a STOP A.
- There is either a DRIVE-CLIQ communications error or communications have failed.
- A time slice overflow of the safety software has occurred.
Fault value (r0949, decimal): Only for internal Siemens troubleshooting.
Remedy Select safe standstill and then deselect again.
- Carry-out a POWER ON (power off/on) for all components.
- Check whether there is a DRIVE-CLIQ communications error between the Control Unit and the Motor Module involved and if required, carry-out a diagnostics routine for the faults identified.
- De-select all drive functions that are not absolutely necessary.
- Reduce the number of drives.
- Check the electrical cabinet design and cable routing for EMC compliance.
F01630
SI CU: Brake control defective

| Response: | OFF2 |
| Acknowledgement: | IMMEDIATELY (POWER ON) |

Explanation

The “Safety Integrated” function integrated in the drive on the Control Unit (CU) has detected a brake control fault and initiated a STOP A.

- No motor holding brake connected.
- The motor holding brake control on the Motor Module is faulty.
- A DRIVE-CLiQ communications error has occurred between the Control Unit and the Motor Module involved.

Fault value (r0949, decimal):

- **10**: No brake connected or fault in the Motor Module brake control circuit ("open brake" operation).
- **11**: Defect in the brake control circuit of the Motor Module ("brake open" operation).
- **20**: Short-circuit in the brake winding or fault in the brake control circuit of the Motor Module ("brake open" state).
- **30**: No brake connected, short-circuit in the brake winding or fault in the Motor Module brake control circuit ("close brake" operation).
- **31**: Defect in the brake control circuit of the Motor Module ("close brake" operation).
- **40**: Defect in the brake control circuit of the Motor Module ("brake closed" state).
- **50**: Defect in the brake control circuit of the Motor Module or communications fault between the Control Unit and the Motor Module (brake control diagnostics).

Remedy

Select safe standstill and then deselect again

- Check the motor holding brake connection.
- Check the function of the motor holding brake.
- Check whether there is a DRIVE-CLiQ communications error between the Control Unit and the Motor Module involved and if required, carry-out a diagnostics routine for the faults identified.
- Check the electrical cabinet design and cable routing for EMC compliance.
- Replace the Motor Module involved.
F01649 SI CU: Internal software error
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation An internal error in the Safety Integrated software on the Control Unit has occurred.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, hexadecimal):
Only for internal Siemens troubleshooting.
Remedy Carry-out a POWER ON (power off/on) for all components
– Re-commission the Safety Integrated function and carry-out a POWER ON.
– Upgrade the Control Unit software.
– Contact the Hotline.
– Replace the Control Unit.

F01650 SI CU: Acceptance test required
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The “Safety Integrated” function integrated in the drive on the Control Unit requires an acceptance test.
Note: This fault results in a STOP A that can be acknowledged.
Fault value (r0949, decimal)
130: No safety parameters available for the Motor Module.
1000: Reference and actual checksum on the Control Unit are not identical (when booting).
 – At least one checksum-checked piece of data is defective.
2000: Reference and actual checksum on the Control Unit are not identical (commissioning mode).
 – Reference checksum incorrectly entered into the Control Unit (p9799 not equal to r9798).
2001: Reference and actual checksum on the Motor Module are not identical (commissioning mode).
 – Reference checksum incorrectly entered into the Motor Module (p9899 not equal to r9898).
2002: Enable of safety-related functions between the Control Unit and Motor Module differ (p9601 not equal to p9801).
2003: Acceptance test is required as a safety parameter has been changed.
2004: Acceptance test required due to a project download with enabled safety functions.
2010: Safe brake control is enabled differently the Control Unit and Motor Module (p9602 not equal to p9802).
2020: Error when saving the safety parameters for the Motor Module.
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
10.3 Safety messages for SINAMICS S120

Remedy

Re fault value = 130:
- Carry-out safety commissioning routine.

Re fault value = 1000:
- Re-commission safety.
- Replace the CompactFlash Card.

Re fault value = 2000:
- Check the safety parameters in the Control Unit and adapt the reference checksum (p9799).

Re fault value = 2001:
- Check the safety parameters on the Motor Module and adapt the reference checksum (p9899).

Re fault value = 2002:
- Safety-related functions on the Control Unit and on the Motor Module are enabled differently (p9601 not equal to p9801).

Re fault value = 2003:
- Acceptance test is required as a safety parameter has been changed.

Re fault value = 2004:
- Acceptance test required due to a project download with enabled safety functions.

Re fault value = 2010:
- Enable the safe brake control in the Control Unit and check on the Motor Module (p9602 = p9802).

Re fault value = 2020:
- Re-commission safety.
- Replace the CompactFlash Card.

Re fault value = 9999:
- Carry-out diagnostics for the other safety-related fault that is present.

F01651

SI CU: Synchronization, safety time slices unsuccessful

Response: OFF2

Acknowledgement: IMMEDIATELY (POWER ON)

Explanation: The Safety Integrated function requires synchronization of the safety time slices on the Control Unit (CU) and on the Motor Module (MM) and between the Control Unit and the higher-level control. This synchronization routine was not successful.

Note:
- This fault results in a STOP A that cannot be acknowledged.
- Fault value (r0949, decimal):
- Only for internal Siemens troubleshooting.

Remedy: Carry-out a POWER ON (power off/on) for all components
- Upgrade the Motor Module software.
- Upgrade the Control Unit software.
- Upgrade the software of the higher-level control.
F01652 SI CU: Monitoring clock cycle not permissible
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The Safety Integrated monitoring clock cycle is not permissible:
- The monitoring clock cycle integrated in the drive cannot be maintained due to the communication conditions requested in the system.
- The monitoring clock cycle for the safety-relevant motion monitoring functions with the higher-level control is not permissible (p9500).
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, decimal):
- When the SI monitoring, integrated in the drive is enabled (p9601/p9801 > 0): Minimum setting for the monitoring clock cycle (in µs).
- When motion monitoring is enabled (p9501 > 0):
 100: It was not possible to find an appropriate monitoring clock cycle.
 101: The monitoring clock cycle is not an integer multiple of the position controller clock cycle.
 102: An error has occurred when transferring the DP clock cycle to the Motor Module (MM).
 103: An error has occurred when transferring the DP clock cycle to the Sensor Module.
Remedy
When the SI monitoring, integrated in the drive is enabled (p9601/p9801 > 0):
- Upgrade the Control Unit software.
When the motion monitoring is enabled (p9501 > 0):
- Correct the monitoring clock cycle (p9500) and carry-out a POWER ON.

F01655 SI CU: Align the monitoring functions
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation An error has occurred when aligning the Safety Integrated monitoring functions on the Control Unit (CU) and Motor Module (MM). Control Unit and Motor Module were not able to determine a common set of supported SI monitoring functions.
- DRIVE-CLIQ communications has an error or failed.
- Safety Integrated software releases on the Control Unit and the Motor Module are not compatible with one another.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, hexadecimal):
Only for internal Siemens troubleshooting.
Remedy

Carry-out a POWER ON (power off/on) for all components
– Upgrade the Motor Module software.
– Upgrade the Control Unit software.
– Check the electrical cabinet design and cable routing for EMC compliance.

F01656

SI CU: Incorrect Motor Module parameter

Response: OFF2

Acknowledgement IMMEDIATELY (POWER ON)

Explanation

When accessing the Safety Integrated parameters for the Motor Module (MM) on the CompactFlash Card, an error has occurred.

Note:
This fault results in a STOP A.

Fault value (r0949, decimal):

129: Safety parameters for the Motor Module corrupted.
131: Internal Motor Module software error.
132: Communication errors when uploading or downloading the safety parameters for the Motor Module.
255: Internal software error on the Control Unit.

Remedy

Re-commission the safety functions.
– Upgrade the Control Unit software.
– Upgrade the Motor Module software.
– Replace the CompactFlash Card.
Re fault value = 132:
– Check the electrical cabinet design and cable routing for EMC compliance.

F01659

SI CU: Write task for parameter rejected

Response: OFF2

Acknowledgement IMMEDIATELY (POWER ON)

Explanation

The write task for one or several Safety Integrated parameters on the Control Unit (CU) was rejected.

Note:
This fault does not result in a safety stop response.

Fault value (r0949, decimal):

1: The Safety Integrated password is not set.
2: A parameter reset was selected - however, the Safety Integrated parameters cannot be reset as Safety Integrated is presently enabled.
3: The interlocked SH input is in the simulation mode.
10: An attempt was made to enable the SH function although this cannot be supported.
11: An attempt was made to enable the SBC function although this cannot be supported.
12: An attempt was made to enable the SBC function although this cannot be supported for a parallel circuit configuration.

13: An attempt was made to enable the safe motion monitoring with the higher-level control although this cannot be supported.

See also: p0970, p3900, r9771, r9871

Remedy
Re fault value = 1:
– Set the Safety Integrated password (p9761).
Re fault value = 2:
– Inhibit Safety Integrated and again reset the drive parameters.
Re fault value = 3:
– Simulation mode for the digital input ended (p0795).
Re fault value = 10, 11, 12, 13:
– Check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry-out diagnostics for the faults involved.
– Use a Motor Module that supports the function “safe standstill” or “safe brake control”.
– Upgrade the Motor Module software.
– Upgrade the Control Unit software.
See also: p9501, p9601, p9761, p9801

F01660 SI CU: Safety-related functions not supported
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The Motor Module (MM) does not support the safety-related functions (e.g. the Motor Module version is not the correct one). Safety Integrated cannot be commissioned.
Note: This fault results in a STOP A that cannot be acknowledged.
Remedy Use a Motor Module that supports the safety-related functions.
– Upgrade the Motor Module software.

F01670 SI motion: Invalid Sensor Module parameterization
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The parameterization of a Sensor Module used for Safety Integrated is not permissible.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, decimal):
1: No encoder was parameterized for Safety Integrated.
2: An encoder was parameterized for Safety Integrated that does not have a track A/B (sine/cosine).
3: The encoder data set selected for Safety Integrated is still not valid.
4: The communications error with the encoder has occurred.
10: For an encoder used for Safety Integrated, not all of the drive data sets (DDS) are assigned to the same encoder data set (EDS) (p0187 ...p0189).

Remedy

Re fault value = 1, 2:
– Use and parameterize an encoder that Safety Integrated supports (encoder with A/B track, sinusoidal, p0404.4 = 1)
Re fault value = 3:
– Check whether the device or drive commissioning is active and if required, initiate this (p0009 = p0010 = 0), save the parameters (p0971 = 1) and carry-out a power on.
Re fault value = 4:
– Check whether there is a DRIVE-CLiQ communications error between the Control Unit and the Sensor Module involved and if required, carry-out a diagnostics routine for the faults identified.
Re fault value = 10:
– Align the EDS assignment for all encoders used for Safety Integrated (p0187 ...p0189).

F01671 SI motion: Encoder parameterizing error
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The parameterization of the encoder used for Safety Integrated is not the same as the parameterization of the standard encoder.
Fault value (r0949, decimal):
Parameter number of the non-corresponding safety parameter.
Remedy Align the encoder parameterization between the safety encoder and the standard encoder.

F01672 SI motion: Motor Module software not compatible
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The existing Motor Module software does not support the safety-relevant motion monitoring with the higher-level control.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, decimal):
Only for internal Siemens troubleshooting.
Check whether there are errors in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry-out diagnostics for the errors involved.

- Use a Motor Module that supports the safety-relevant motion monitoring functions.
- Upgrade the Motor Module software.

F01673
SI motion: Sensor Module software not compatible

Response: OFF2

Acknowledgement
IMMEDIATELY (POWER ON)

Explanation
The existing Sensor Module software does not support the safety-relevant motion monitoring with the higher-level control.

Note:
This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, decimal):
Only for internal Siemens troubleshooting.

Remedy
Use a Sensor Module that supports the safety-relevant motion monitoring functions.
- Upgrade the Sensor Module software.

F01680
SI motion: Checksum error, safety-relevant monitoring functions

Response: OFF2

Acknowledgement
IMMEDIATELY (POWER ON)

Explanation
The actual checksum calculated by the drive and entered into r9728 over the safety-relevant parameters does not match the reference checksum in p9729 saved when the machine was accepted the last time. The safety-relevant parameters have been changed or there is an error.

Note:
This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, decimal):
0: Checksum error for SI parameters for motion monitoring
1: Checksum error for SI parameters for actual values

Remedy
Check the safety-relevant parameters and if required correct.
- Carry-out a power on
- Carry-out an acceptance test.
C01681
SI motion: Incorrect parameter value
Response: NONE
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The parameter value may not be parameterized with this value.
Fault value (r0949, decimal): Parameter number with the incorrect value
Remedy Correct the parameter value.

F01682
SI motion: Monitoring function is not supported
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The monitoring function enabled in p9501 is not supported in this firmware version.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, decimal):
1: Monitoring function SE (p9501.1)
2: Monitoring function SN (p9501.7 and p9501.8 – 15 and p9503)
3: Monitoring function SG override (p9501.5)
10: Monitoring functions only supported in the servo mode.
Remedy De-select monitoring function involved (p9501, p9503).

F01683
SI motion: SBH/SG enable missing
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation In p9501, the safety-relevant basic function SBH/SG has not been enabled although other safety-relevant monitoring functions have been enabled.
Note: This fault results in a STOP A that cannot be acknowledged.
Remedy Enable SBH/SG (p9501.0) and carry-out a power on.

F01684
SI motion: Safe software limit switch limits interchanged
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation For the function “safe software limit switch” (SE), in p9534 there is a value less than that in p9535.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, decimal):
1: Limit values SE1 interchanged
2: Limit values SE2 interchanged

Remedy
Correct the limit values in p9534 and p9535 and carry-out a power on.

F01685 SI motion: Safely-reduced speed limit value too high
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The limit value for the function “safely-reduced speed” (SG) is greater than the speed that corresponds to an encoder limit frequency of 500 kHz.
Fault value (r0949, decimal):
Maximum permissible speed
Remedy Correct the limit values for SG and carry-out a power on.

F01686 SI motion: Cam position parameterization not permissible
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation At least one enabled “safe software cam” (SN) is parameterized in p9536 or p9537 too close to the tolerance range around the modulo position.
Fault value (r0949, decimal):
Number of the “safe software cam” with an illegal position
Remedy Correct the cam position and carry-out a power on.

F01687 SI motion: Illegal parameterization of modulo value SN
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The parameterized modulo value for the function “safe software cams” (SN) is not a multiple of 360 000 mGrad.
Remedy Correct the modulo value for SN and carry-out a power on.

F01688 SI motion: Actual value synchronization not permissible
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation It is not permissible to enable the actual value synchronization and simultaneously a monitoring function with absolute reference (SE/SN). This alarm is also output if only a single-encoder system is being used.
<table>
<thead>
<tr>
<th>Remedy</th>
<th>Explanation</th>
<th>Response</th>
<th>Acknowledgement</th>
<th>Message</th>
<th>Parameter</th>
<th>Note</th>
<th>See also</th>
</tr>
</thead>
<tbody>
<tr>
<td>Either de-select the monitoring functions with absolute reference (SE/SN) or the function “actual value synchronization” and carry-out a power on.</td>
<td>The axis configuration was changed. Parameter p0108. 13 is internally set to the corrected value. Fault value (r0949, decimal): Parameter number that initiated the change.</td>
<td>OFF2</td>
<td>POWER ON</td>
<td>C01689 SI motion: Axis re-configured</td>
<td>p0108.13</td>
<td>This message does not result in a safety stop response.</td>
<td>p0010</td>
</tr>
<tr>
<td>Either de-select the monitoring functions with absolute reference (SE/SN) or the function “actual value synchronization” and carry-out a power on.</td>
<td>The commissioning of the “Safety Integrated” function is selected. This message is withdrawn after the safety functions have been commissioned. Note: This message does not result in a safety stop response. See also: p0010</td>
<td>NONE</td>
<td>NONE</td>
<td>A01698 (F) SI CU: Commissioning mode active</td>
<td>p0010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None necessary</td>
<td>None necessary</td>
<td>NONE (OFF1, OFF2, OFF3)</td>
<td>IMMEDIATELY (POWER ON)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A01699 (F) SI CU: Shutdown paths must be tested
Response: NONE
Acknowledgement NONE
Explanation The time set in p9659 for the forced checking procedure of the safety shutdown paths has been exceeded. The safety shutdown paths must be re-tested. After the next time that the function “safe standstill” (SH) is de-selected, the message is withdrawn and the monitoring time is reset.
Note: This message does not result in a safety stop response. See also: p9659
Remedy Select safe standstill and then deselect again
Response: NONE (OFF1, OFF2, OFF3)
Acknowledgement for F IMMEDIATELY (POWER ON)

C01700 SI motion: STOP A initiated
Response OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The drive is stopped using a STOP A (the pulses are cancelled via the safety shutdown path of the Control Unit).
– Stop request from the higher-level control.
– Pulses have not been cancelled after a parameterized time (p9557) after the test stop was selected.
– Subsequent response of message C01706 “SI motion: Safe braking ramp exceeded”.
– Subsequent response of message C01714 “SI motion: Safely-reduced speed exceeded”.
– Subsequent response of message C01701 “SI motion: STOP B initiated”.
Remedy Remove the cause of the fault on the control and carry-out a power on.
– Check the value in p9557 – if required increase the value and carry-out a power on.
– Check the shutdown path of the Control Unit (check DRIVE-CLiQ communications).
– Carry-out diagnostics for message C01706.
– Carry-out diagnostics for message C01714.
– Carry-out diagnostics for message C01701.
– Replace the module.
– Replace the Control Unit
C01701
SI motion: STOP B activated

Response OFF3
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The drive is stopped using STOP B (braking along the current limit). As a result of this fault, after the time parameterized in p9556 has expired or the speed threshold parameterized in p9560 has been fallen below, message C01700 “STOP A initiated” is output.
Possible causes
– Stop request from the higher-level control.
– Subsequent response of message C01714 “SI motion: Safely-reduced speed exceeded”.
– Subsequent response of message C01711 “SI motion: Defect in a monitoring channel”.
Remedy Remove the cause of the fault on the control and carry-out a power on.
– Carry-out diagnostics for message C01714.
– Carry-out diagnostics for message C01711.

C01706
SI motion: Safe braking ramp exceeded

Response NONE
Acknowledgement IMMEDIATELY (POWER ON)
Explanation After the initiation of STOP B or STOP C, the speed exceeded the selected tolerance value. The drive is stopped by the message C01700 “STOP A initiated”.
Remedy Check the braking behavior and if required adapt the tolerance for “safe braking ramp” (SBR).

C01707
SI motion: Tolerance for safe operating stop exceeded

Response NONE
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The actual position has moved further away from the setpoint position than permitted in the stop tolerance. The drive is stopped with the message C01701 “SI motion: STOP B initiated”.
Remedy Check whether additional safety faults are present and if required, carry-out the diagnostics for the faults involved.
– Check whether the stop tolerance matches the accuracy and dynamic performance of the axis.
– Carry-out a power on.
C01708 SI motion: STOP C activated
Response STOP2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The drive is stopped using STOP C (braking along the current limit). “Safe operating stop” (SBH) is activated after the parameterized timer has expired.
Possible causes:
 – Stop request from the higher-level control
 – Subsequent response of message C01714 “SI motion: Safely-reduced speed exceeded”.
 – Subsequent response of message C01715 “SI motion: Safe limit position exceeded”.
See also: p9552
Remedy Remove the cause of the fault on the control and carry-out a power on.
 – Carry-out diagnostics for message C01714.

C01709 SI motion: STOP D is activated
Response NONE
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The drive is stopped using STOP C (braking along the path). “Safe operating stop” (SBH) is activated after the parameterized timer has expired.
Possible causes:
 – Stop request from the higher-level control
 – Subsequent response of message C01714 “SI motion: Safely-reduced speed exceeded”.
 – Subsequent response of message C01715 “SI motion: Safe limit position exceeded”.
See also: p9553
Remedy Remove the cause of the fault on the control and carry-out a power on.
 – Carry-out diagnostics for message C01714.

C01710 SI motion: STOP E activated
Response NONE
Acknowledgement IMMEDIATELY (POWER ON)
10.3 Safety messages for SINAMICS S120

Explanation

The drive is stopped using STOP C (retraction motion). “Safe operating stop” (SBH) is activated after the parameterized timer has expired. Possible causes:

- Stop request from the higher-level control
- Subsequent response of message C01714 “SI motion: Safely-reduced speed exceeded”.
- Subsequent response of message C01715 “SI motion: Safe limit position exceeded”.

See also: p9554

Remedy

Remove the cause of the fault on the control and carry-out a power on.
- Carry-out diagnostics for message C01714.

C01711 SI motion: Defect in a monitoring channel

Response

NONE

Acknowledgement

IMMEDIATELY (POWER ON)

Explanation

For a crosswise comparison, the drive found a difference between input data or results of the monitoring functions and initiated a STOP F. One of the monitoring functions no longer functions reliably, i.e. safe operation is no longer possible.

If at least one monitoring function is active, then after the parameterized timer has expired, message C01701 “SI motion: STOP B initiated” is output.

The message value that resulted in a STOP F is displayed in r9725.

Message value: (r9749, decimal):
- Value that resulted in the STOP F.

See also: p9555, r9725

Remedy

The message value contained in r9725 is described in message 27001 of the higher-level control.
C01714
SI motion: Safely-reduced speed exceeded

Response
NONE

Acknowledgement
IMMEDIATELY (POWER ON)

Explanation
The drive has moved faster than that specified by the speed limit value (p9531). The drive is stopped by the configured stop response (p9563).
Message value: (r9749, decimal):

- 100: SG1 exceeded
- 200: SG2 exceeded
- 300: SG3 exceeded
- 400: SG4 exceeded
- 1000: Encoder limit frequency exceeded.

Remedy
Check the traversing program on the control.

- Check the limits for “safely-reduced speed” (SG) and if required adapt (p9531).

C01715
SI motion: Safe end position exceeded

Response
NONE

Acknowledgement
IMMEDIATELY (POWER ON)

Explanation
The axis has passed a parameterized end position that is monitored by the function “safe software limit switch” (SE).
Message value: (r9749, decimal):

- 10: SE1– fallen below
- 11: SE1+ exceeded
- 20: SE2– fallen below
- 21: SE2+ exceeded

Remedy
Check the traversing program on the control.

- Check the limits for “safe software limit switch” (SE) and if required adapt (p9534, p9535).

C01797
SI motion: Axis not safely referenced

Response
NONE

Acknowledgement
IMMEDIATELY (POWER ON)

Explanation
The stop position saved before powering-down does not coincide with the actual position that is determined when powering-up.
Message value: (r9749, decimal):

- 1: Axis not referenced
- 2: User agreement missing

Remedy
If the axis cannot be automatically and safely referenced, then the user must enter a user agreement for the new position using the appropriate softkey. This therefore designates this position as being a safety-relevant position.
10.3 Safety messages for SINAMICS S120

C01798 SI motion: Test stop running
Response NONE
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The test stop is active.
Message value: (r9749, decimal):
Remedy None necessary.
The message is withdrawn when the test stop is completed.

C01799 SI motion: Acceptance test mode is active
Response NONE
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The acceptance test mode is active. The power on messages of the
safety-relevant motion monitoring functions can be acknowledged
during the acceptance test using the RESET key of the higher-level
control.
Remedy None necessary.
The message is withdrawn when exiting the acceptance test mode.

List of faults and alarms (Motor Module)

F30600 SI MM: STOP A initiated
Response OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The “Safety Integrated” function integrated in the drive on the Motor
Module (MM) has detected a fault and initiated STOP A (pulse
cancellation via the safety shutdown path of the Motor Module).
– Forced checking procedure of the safety shutdown path of the
Motor Module unsuccessful.
– Subsequent response to fault F30611 (defect in a monitoring
channel).
Fault value (r0949, decimal):
0: Stop request from the Control Unit
1005: Pulses cancelled although SH not selected and there is not
internal STOP A present.
1010: Pulses enabled although SH is selected or an internal STOP A
is present.
9999: Subsequent response to fault F30611
Remedy Select safe standstill and then deselect again.
– Replace the Motor Module involved.
Re fault value = 9999:
– Carry-out diagnostics for fault F30611.
F30611

SI MM: Defect in a monitoring channel

Response: NONE (OFF1, OFF2, OFF3)

Acknowledgement IMMEDIATELY (POWER ON)

Explanation The “Safety Integrated” function integrated in the drive on the Motor Module (MM) has detected a fault in the crosswise data comparison between the Control Unit (CU) and MM and initiated a STOP F. As a result of this fault, after the parameterized transition has expired (p9858), fault F30600 (SI MM: STOP A initiated) is output.

Fault value (r0949, decimal):
0: Stop request from the Control Unit
1 to 999: Number of the crosswise compared data that resulted in this fault.
1: SI monitoring clock cycle (r9780, r9880)
2: SI enable safety functions (p9601, p9801)
3: SI SGE changeover, tolerance time (p9650, p9850)
4: SI transition time STOP F to STOP A (p9658, p9858)
5: SI enable safe brake control (p9602, p9802)
6: SI motion, enable safety functions (p9501, internal value). This number is also displayed in r9895.
1000: Check (watchdog) timer has expired. Within the time of approx. 5 * p9850 too many switching operations have occurred at the safety-relevant inputs of the Control Unit.
1001, 1002: Initialization error, change timer / check timer.
2000: Status of the SH terminals on the Control Unit and Motor Module are different.
2001: Feedback signal for safe pulse cancellation on the Control Unit and Motor Module are different.
10.3 Safety messages for SINAMICS S120

Remedy

Re fault value = 1 to 999:
– Check the crosswise compared data that resulted in a STOP F.
– Carry-out a POWER ON (power off/on) for all components.
– Upgrade the Motor Module software.
– Upgrade the Control Unit software.

Re fault value = 1000:
– Check the wiring of the safety-relevant inputs (SGE) on the Control Unit (contact problems).

Re fault value = 1001, 1002:
– Carry-out a POWER ON (power off/on) for all components.
– Upgrade the Motor Module software.
– Upgrade the Control Unit software.

Re fault value = 2000, 2001:
– Check the tolerance time SGE changeover and if required, increase the value (p9650, p9850).
– Check the wiring of the safety-relevant inputs (SGE) (contact problems).
– Replace the Motor Module involved.

N30620 (F, A) SI MM: Safe standstill active

Response: NONE
Acknowledgement NONE
Explanation The “safe standstill” function was selected on the Motor Module (MM) and is active.
Note: This message does not result in a safety stop response.

Remedy None necessary.
Response: OFF2
Acknowledgement for F IMMEDIATELY (POWER ON)
Response: NONE
Acknowledgement for A NONE
F30625 SI MM: Sign-of-life error in safety data

Response: OFF2

Acknowledgement IMMEDIATELY (POWER ON)

Explanation The “Safety Integrated” function integrated in the drive on the Motor Module (MM) has detected an error in the sign-of-life of the safety data between the Control Unit (CU) and MM and initiated a STOP A.

– There is either a DRIVE-CLIQ communications error or communications have failed.

– A time slice overflow of the safety software has occurred.

Fault value (r0949, decimal): Only for internal Siemens troubleshooting.

Remedy Select safe standstill and then deselect again.

– Carry-out a POWER ON (power off/on) for all components.

– Check whether there is a DRIVE-CLiQ communications error between the Control Unit and the Motor Module involved and if required, carry-out a diagnostics routine for the faults identified.

– Reduce the number of drives.

– Check the electrical cabinet design and cable routing for EMC compliance.
F30630

SI MM: Brake control defective

Response: OFF2

Acknowledgement IMMEDIATELY (POWER ON)

Explanation
The “Safety Integrated” function integrated in the drive on the Motor Module (MM) has detected a brake control fault and initiated a STOP A.

– No motor holding brake connected.
– The motor holding brake control on the Motor Module or the Control Unit is faulty.
– A DRIVE-CLiQ communications error has occurred between the Control Unit and the Motor Module.

Fault value (r0949, decimal):

10: No brake connected or fault in the Motor Module brake control circuit (“open brake” operation).
30: Short-circuit in the brake winding or fault in the Motor Module brake control circuit (“close brake” operation).
40: Defect in the brake control circuit of the Motor Module (“brake closed” state).
60, 70: Fault in the brake control of the Control Unit or communications fault between the Control Unit and Motor Module (brake control).

Remedy
Select safe standstill and then deselect again.

– Check the motor holding brake connection.
– Check the function of the motor holding brake.
– Check whether there is a DRIVE-CLiQ communications error between the Control Unit and the Motor Module involved and if required, carry-out a diagnostics routine for the faults identified.
– Check the electrical cabinet design and cable routing for EMC compliance.
– Replace the Motor Module involved.

F30640

SI MM: Fault in the shutdown path of the control

Response: OFF2

Acknowledgement IMMEDIATELY (POWER ON)

Explanation
The Motor Module has a detected a communications error with the higher-level control to transfer information to shutdown.

Note:
This fault results in a STOP A that cannot be acknowledged.

Fault value (r0949, decimal):

Only for internal Siemens troubleshooting.
Remedy

Check the PROFIsafe address in the higher-level control and Motor Module.
- Carry-out a POWER ON (power off/on) for all components
- Upgrade the Motor Module software.

F30649

SI MM: Internal software error

Response: OFF2

Acknowledgement IMMEDIATELY (POWER ON)

Explanation
An internal error in the Safety Integrated software on the Motor Module has occurred.

Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, hexadecimal):
Only for internal Siemens troubleshooting.

Remedy
Carry-out a POWER ON (power off/on) for all components
- Re-commission the Safety Integrated function and carry-out a power on.
- Upgrade the Motor Module software.
- Contact the Hotline.
- Replace the Motor Module.

F30650

SI MM: Acceptance test required

Response: OFF2

Acknowledgement IMMEDIATELY (POWER ON)

Explanation
The “Safety Integrated” function on the Motor Module requires an acceptance test.

Note:
This fault results in a STOP A.
Fault value (r0949, decimal)
130: No safety parameters available for the Motor Module.
1000: Reference and actual checksum in the Motor Module are not identical (boot).
 - At least one checksum-checked piece of data is defective.
2000: Reference and actual checksum on the Motor Module are not identical (commissioning mode).
 - Reference checksum incorrectly entered into the Motor Module (p9899 not equal to r9898).
2003: Acceptance test is required as a safety parameter has been changed.
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
10.3 Safety messages for SINAMICS S120

Remedy

Re fault value = 130:
– Carry-out safety commissioning routine.
Re fault value = 1000:
– Repeat safety commissioning.
– Replace the CompactFlash Card.
Re fault value = 2000:
– Check the safety parameters on the Motor Module and adapt the
 reference checksum (p9899).
Re fault value = 2003:
– Carry-out an acceptance test.
Re fault value = 9999:
– Carry-out diagnostics for the other safety-related fault that is
 present.

F30651 SI MM: Synchronization with the Control Unit unsuccessful

Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The “Safety Integrated” function integrated in the drive is requesting
synchronization of the safety time slices on the Control Unit and Motor
Module. This synchronization routine was not successful.
Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, decimal):
Only for internal Siemens troubleshooting.
Remedy
Carry-out a POWER ON (power off/on) for all components
– Upgrade the Motor Module software.
– Upgrade the Control Unit software.

F30652 SSI MM: Monitoring clock cycle not permissible

Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation The Safety Integrated monitoring clock cycle cannot be maintained due
to the communication conditions requested in the system.
Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, decimal):
Only for internal Siemens troubleshooting.
Remedy
Upgrade the Motor Module software.
F30655 SI MM: Align the monitoring functions
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation An error has occurred when aligning the Safety Integrated monitoring functions on the Control Unit (CU) and Motor Module (MM). Control Unit and Motor Module were not able to determine a common set of supported SI monitoring functions.
– DRIVE-CLIQ communications has an error or failed.
– Safety Integrated software releases on the Control Unit and the Motor Module are not compatible with one another.
Note: This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, hexadecimal):
Only for internal Siemens troubleshooting.
Remedy Carry-out a POWER ON (power off/on) for all components
– Upgrade the Motor Module software.
– Upgrade the Control Unit software.
– Check the electrical cabinet design and cable routing for EMC compliance.

F30656 SI MM: Incorrect Motor Module parameter
Response: OFF2
Acknowledgement IMMEDIATELY (POWER ON)
Explanation When accessing the Safety Integrated parameters for the Motor Module (MM) on the CompactFlash Card, an error has occurred.
Note: This fault results in a STOP A.
Fault value (r0949, decimal):
129: Safety parameters for the Motor Module corrupted.
131: Internal software error on the Control Unit.
255: Internal Motor Module software error.
Remedy Re-commission the safety functions.
– Upgrade the Control Unit software.
– Upgrade the Motor Module software.
– Replace the CompactFlash Card.
F30659

SI MM: Write task for parameter rejected

Response: OFF2

Acknowledgement IMMEDIATELY (POWER ON)

Explanation
The write task for one or several Safety Integrated parameters on the Motor Module (MM) was rejected.

Note: This fault does not result in a safety stop response.

Fault value (r0949, decimal):
- 10: An attempt was made to enable the SH function although this cannot be supported.
- 11: An attempt was made to enable the SBC function although this cannot be supported.

See also: r9771, r9871

Remedy
- Re fault value = 10, 11:
 - Check whether there are faults in the safety function alignment between the Control Unit and the Motor Module involved (F01655, F30655) and if required, carry-out diagnostics for the faults involved.
 - Use a Motor Module that supports the function safe standstill or safe brake control.
 - Upgrade the Motor Module software.
 - Upgrade the Control Unit software.
10.4 Safety PLC alarms

400253 PLC-STOP due to an SPL system error

Explanation
After an interruption in the communications between NCK and PLC regarding the SPL crosswise data comparison, the PLC was switched into the STOP state with a delay of 5 s.

Response
Alarm display

Remedy
Do not start the SPL anymore. Check the system components (the PLC must have the correct version of the FB 15 and have DB18).

Program continuation
Remove the fault. Power-down the control and power-up again

411101 FB11, illegal axis number

Explanation
Parameter axis not in the permissible range

Response
Alarm display
PLC stop

Remedy
PLC general reset, use the basic program with the correct version.

Program continuation
Remove the fault. Power-down the control and power-up again
10.5 Reducing the number of alarms

In some cases, alarms having the same significance are initiated by the NCK, PLC and SINAMICS S120 monitoring channels. In order to make the alarm screen more transparent, the alarms that were initiated sometime later - but have the same significance – are suppressed or even an alarm that occurred earlier is cleared again if it apparently involves a subsequent (follow-on) fault/error.

Alarm suppression and alarm priority are not involved when it comes to initiating a stop through two channels. This functionality is implemented independently of the alarm being initiated and is still maintained.

10.5.1 Alarm suppression

When the alarm suppression function is active, the alarm of the monitoring channel is displayed that first detected the fault/error that initiated the alarm.
This only applies to some of the alarms. Alarms whose information content differs depending on the monitoring channels are still separately displayed.

All of the NCK and SINAMICS S120 safety alarms are shown in the following table, that can be suppressed with the appropriate parameterization of $MN_SAFE_ALARM SUPPRESS_LEVEL.

<table>
<thead>
<tr>
<th>NCK alarm number</th>
<th>SINAMICS S120 alarm number</th>
<th>Alarm suppression using the following values n $MN_SAFE_ALARM_SUPPRESS_LEVEL, several values are alternatively possible.</th>
</tr>
</thead>
<tbody>
<tr>
<td>27000</td>
<td>C01797</td>
<td>3, 13, replaced by Alarm 27100</td>
</tr>
<tr>
<td>27010</td>
<td>C01707</td>
<td>1, 2, 3, 12, 13</td>
</tr>
<tr>
<td>27011</td>
<td>C01714</td>
<td>1, 2, 3, 12, 13</td>
</tr>
<tr>
<td>27012</td>
<td>C01715</td>
<td>1, 2, 3, 12, 13</td>
</tr>
<tr>
<td>27013</td>
<td>C01706</td>
<td>1, 2, 3, 12, 13</td>
</tr>
<tr>
<td>27020</td>
<td>C01710</td>
<td>1, 2, 3, 12, 13</td>
</tr>
<tr>
<td>27021</td>
<td>C01709</td>
<td>1, 2, 3, 12, 13</td>
</tr>
<tr>
<td>27022</td>
<td>C01708</td>
<td>1, 2, 3, 12, 13</td>
</tr>
<tr>
<td>27023</td>
<td>C01701</td>
<td>1, 2, 3, 12, 13</td>
</tr>
<tr>
<td>27024</td>
<td>C01700</td>
<td>1, 2, 3, 12, 13</td>
</tr>
</tbody>
</table>

All of the NCK alarms are listed in the following table which can be prevented from being initiated twice due to a PLC request.
10.5 Reducing the number of alarms

<table>
<thead>
<tr>
<th>NCK alarm number</th>
<th>Alarm suppression using the following values n $MN_SAFE_ALARM_SUPPRESS_LEVEL, several values are alternatively possible.</th>
</tr>
</thead>
<tbody>
<tr>
<td>27090</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27091</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27092</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27095</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27250</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27251</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27252</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27253</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27254</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27255</td>
<td>2, 3, 12, 13</td>
</tr>
<tr>
<td>27256</td>
<td>2, 3, 12, 13</td>
</tr>
</tbody>
</table>

Activating

The alarm is suppressed using MD 10094 $MN_SAFE_ALARM_SUPPRESS_LEVEL. When standard data is loaded, the function is already active. This means that a reduced number/scope of alarms is displayed. Alarms 27000 and C01797 can be replaced by Alarm 27100 using MD 10094.

Boundary condition

The MD is not incorporated in the axial safety MD checksum. This means that the function can be enabled/disabled at any time by changing the MD. In the acceptance test, the alarm suppression should be internally de-activated so that the two-channel fault/error detection can be checked. It can then be subsequently activated in order to reduce the number of alarms that end users have to cope with.

10.5.2 Assigning priorities to alarms

Especially for machines with an extremely high number of axes, the previously described alarm suppression function is not adequate in order to obtain a display of the real fault/error codes.

Just one single input signal fault Alarm 27001 (or 27101 to 27107) can occur for many axes if this input signal is configured as SGE on several axes. The cause of the fault/error can be hidden as a result of the large alarm list.
This is the reason that priorities are assigned to Alarms 27090, 27004, 27001 and 27101 to 27107. For these alarms

- a subsequent (follow-on) alarm that occurs afterwards is no longer displayed. This alarm is also not visible in the alarm log.
- a subsequent alarm that already occurred beforehand is cleared again. This alarm is then visible in the alarm log.

Assigning priorities to Alarm 27090 only becomes effective if it occurs due to differences in the $A_INSE system variables. Only then will this alarm be initiated as a result of different input signals. For Alarms 27004, 27001 and 27101 to 21107, no additional condition is required, as

- Alarms 27001 and 27101 to 21107 cannot occur if a STOP B or a STOP A is already present. When the SI functionality is active, STOP B and STOP A always occur as subsequent error and do not provide the user with any additional information about the cause of the fault or error.
- Alarm 27004 only occurs if differences are determined in the input signals.

Subsequent alarm for Alarm 27090

If Alarm 27090 is output, the following alarms are no longer displayed:

- 27001 defect in a monitoring channel
- 27004 difference, safety inputs
- 27020 STOP E initiated
- 27021 STOP D initiated
- 27022 STOP C initiated
- 27023 STOP B initiated
- 27024 STOP A initiated
- 27091 error for crosswise data comparison, NCK-PLC
- 27101 difference for the function, safe operating stop
- 27102 difference for the function, safely-reduced speed
- 27103 difference for the function, safe end position
- 27104 difference for the function, safe cam plus
- 27105 difference for the function, safe cam minus
- 27106 difference for the function, safely-reduced speed n_x
- 27107 difference for the function, cam modulo monitoring

Subsequent alarm for Alarm 27004

- 27001 defect in a monitoring channel
- 27023 STOP B initiated
- 27024 STOP A initiated
- 27101 difference for the function, safe operating stop
- 27102 difference for the function, safely-reduced speed
- 27103 difference for the function, safe end position
- 27104 difference for the function, safe cam plus
- 27105 difference for the function, safe cam minus
- 27106 difference for the function, safely-reduced speed n_x
- 27107 difference for the function, cam modulo monitoring
Subsequent alarms for Alarms 27001 and 27101 to 27107

- 27023 STOP B initiated
- 27024 STOP A initiated

Activating

Priorities are assigned to alarms by appropriately parameterizing MD 10094 $MN_SAFE_ALARM_SUPPRESS_LEVEL. When this MD is set to either 12 or 13, in addition to the alarm suppression, set with values 2 and 3, the function that assigns priorities to alarms is also activated.

Alarm 27124

By assigning priorities to alarms, alarms with the power on clear criterion are also cleared or no longer displayed. In spite of this, the system is in a state in which a power on is required. If only Alarm 27024 “Stop A initiated” has occurred, but is no longer displayed, then at least group Alarm 27124 “Stop A for at least 1 axis” is displayed.
Interaction with Other Functions

11. Limiting the speed setpoint

The setpoint speed is parameterized as a function of the active safety monitoring in MD 36933: $\text{MA_SAFE_DES_VELO_LIMIT}$. This machine data is not included in the axial checksum MD 36998: $\text{MA_SAFE_ACT_CHECKSUM}$, so that changes can be made to the MD for the acceptance test without having to again change the checksum.

- **MD = 0%:**
 - Setpoint limiting not active

- **MD > 0%:**
 - Setpoint limiting = active SG limit multiplied by the MD value
 - For SBH, setpoint limit = 0

- **MD = 100%:**
 - Setpoint limit = active SG limit
 - For SBH, setpoint limit = 0

 - The function is effective in one channel in the NCK interpolator. The safety monitoring channel provides a limit value that corresponds to the selected safety monitoring type.

 - This function influences both axes and spindles.

 - The active setpoint limit can be viewed in the safety service screen:
 - Display value $=-1$. corresponds to “setpoint limiting not active”
 - Display value ≥ 0. corresponds to “setpoint limiting active”

 - The setpoint limit is changed-over when the SGE is changed-over:
 - SGE “SBH/SG de-selection”
 - SGE “SBH de-selection”
 - SGEs “Active SG stage, bit 0,1”
 - SGEs “SG override, bit 0, 1, 2, 3”

 Further, internal changeover operations in SBH have an effect as a result of a stop response (STOP D, C, E).
• For the changeover via SGEs, the states from both monitoring channels are taken into consideration to take into account differences in the times. This results in the following rules:

1. Changing-over from non-safe operation in SG/SBH
 There is no delay (VELO_SWITCH_DELAY), so that this changeover must always be performed at zero speed or below the enabled SG limit.

2. Changing-over from SGx to SGy
 A) SGx > SGy (braking): A lower setpoint is entered as soon as changeover is detected in one of the two channels.
 B) SGx < SGy (acceleration): A higher setpoint is only entered if both channels have changed-over.

3. Changing-over from SG to SBH (braking)
 A lower setpoint (= 0) is entered as soon as the changeover has been detected in one of the two channels.

4. Changing-over from SBH to SG (accelerating)
 A higher setpoint is only entered if both channels have changed-over.

5. Changing-over from SBH/SG into non-safe operation (accelerating)
 A higher setpoint is only entered if both channels have changed-over.

• Effect of the function in the NCK interpolator:
 – Setpoint limiting is active in both the AUTO as well as in the JOG modes.
 – When changing-over while moving to higher safely-reduced speeds, the position control loop should be set so that it does not overshoot. This means that a sudden setpoint limit change does not cause the monitoring to respond on the actual value side.
 – When transformation is active, safety setpoint limits, axially effective in the interpolator are reduced by the transformation itself depending on the actual position.

Note
There are no restrictions for motion from synchronous actions.

11.2 Measuring system changeover

When measuring systems are changed-over (selected) via interface signals
“Position measuring system 1” (DB 31..., DBX1.5)
“Position measuring system 2” (DB 31..., DBX1.6)
the following applies:

The encoder used by the position controller is changed-over.
11.3 Gantry axes

Stop responses Stop A, B, C for gantry axes are initiated as fast as possible for all of the axes in the group. However, if unacceptable offsets result because of the differing braking behavior of the axes, then stop response Stop D should be configured.

11.4 Parking axis

When the park state is activated (using the interface signal “parking”), then the system automatically cancels the pulses using an external STOP A. After the park state has been removed, the external STOP A is automatically de-activated again.

When the “parking” function is selected, actual value acquisition and the position measuring system monitoring are de-activated for an axis/spindle. The NCK actual value is frozen and mechanical actual value changes are no longer detected. This also applies to the actual value acquisition of the two safety monitoring channels NCK and SINAMICS S120.

The user can align the actual value acquisition of the safety monitoring channels after re-selecting parking by again referencing/synchronizing to the machine position.

Parking an axis with absolute reference (SE/SN)

As a result of the fact that the actual value sensing of the two safety monitoring channels NCK and SINAMICS S120 has been disabled, then the absolute reference of the axis is no longer detected in a safety-relevant fashion. The safety monitoring channels then respond as follows:

- Alarms 27000/C01797 are displayed “Axis no longer safely referenced”
- SGA “Axis safely referenced” cancelled on NCK and drive side

These alarms are only displayed for axes for which safety monitoring functions with absolute reference are activated, i.e. for SE and SN. Alarms are not displayed for axes that do not have these monitoring functions.

Machine data SAFE_PARK_ALARM_SUPPRESS can be used to suppress Alarms 27000/C01797 until parking has been withdrawn.
11.5 OEM applications

Information for HMI-OEM users

If SINUMERIK Safety Integrated (SI) and OEM applications (for HMI) are used at the same time, the following points must be observed.

Caution

1. The PLC interface signals (DB31, ...) with safety-related drive inputs and outputs may not be written into using the variable service (utility) of the NCDDE/CAP server.

2. Write machine data using variable service
 An acceptance test must be carried if the SI machine data were changed using the variable service of the NCDDE/CAP server.

3. Changing alarm priorities
 The alarm priorities selected for SI must be retained.

4. Changing alarm tests
 The alarm texts of the SI alarms can be modified: This must be clearly documented for the user.

5. Carry-out “acceptance test” message box
 The “carry-out acceptance test” may not be modified!

6. User agreement
 Functions relating to the user agreement (e.g. call, protective mechanism) may not be altered.

Information for NCK-OEM users

SINUMERIK Safety Integrated can also be used for NCK-OEM applications.

Note

System memory change
System memory changes caused by the OEM application result in Alarm 27003 “Checksum error occurred”.

Note

If “parking axis” was not requested, however “parking active” is signaled from the drive or encoder, then Alarm 27001 is output with fine code 1025.
11.6 Behavior of Safety Integrated when Profibus fails

When the drive bus fails, then communications between the drive and NCK required for SI also fail. The pulses are immediately cancelled from both channels.
Notes

A.1 Customer Support

The Centre of Competence Service (CoCS) – Sinumerik Safety Integrated® offers users a wide range of services.

Contact addresses

Hotline: Tel.: 0180-5050-222
Fax: 0180-5050-223
Email: ad.support@siemens.com
Enquiry with subject 840D Safety Integrated

Contact: Tel.: +49 (0)9131 98 4386
Fax: +49 (0)9131 98 1359

Table A-1 Range of services for machinery construction OEMs and end customers

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Description of the services available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept development</td>
<td>The safety functions are adapted to the machine based on the hazard analysis and the customer’s operating philosophy. This includes e.g.:</td>
</tr>
<tr>
<td></td>
<td>• Planned operating modes</td>
</tr>
<tr>
<td></td>
<td>• Safety functions when the protective doors are closed</td>
</tr>
<tr>
<td></td>
<td>• Safety functions when the protective doors are open</td>
</tr>
<tr>
<td></td>
<td>• Emergency stop concept</td>
</tr>
<tr>
<td></td>
<td>• A study of the safety-related external signals and elements</td>
</tr>
<tr>
<td>Standard engineering</td>
<td>Based on the concept developed, the standard functions</td>
</tr>
<tr>
<td></td>
<td>• Safe standstill (SH), safe operating stop (SBH)</td>
</tr>
<tr>
<td></td>
<td>• Safely-reduced speed (SG)</td>
</tr>
<tr>
<td></td>
<td>are integrated into the circuit diagram of the machine. External safety elements (e.g. door interlocking, Emergency Stop button, ...) are either configured conventionally or logically combined using the “safe programmable logic” (SPL) function.</td>
</tr>
<tr>
<td>SPL configuration</td>
<td>Based on the standard configuration, the following objects are created:</td>
</tr>
<tr>
<td></td>
<td>• Function diagram</td>
</tr>
<tr>
<td></td>
<td>• Logic program for the PLC area</td>
</tr>
<tr>
<td></td>
<td>• Logic program for the NC area</td>
</tr>
<tr>
<td></td>
<td>• Data blocks required (e.g. DB 18)</td>
</tr>
<tr>
<td></td>
<td>These objects are incorporated/linked into the complete system.</td>
</tr>
</tbody>
</table>
Table A-1 Range of services for machinery construction OEMs and end customers

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>Description of the services available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissioning</td>
<td>The safety functions are commissioned based on the configuration that has been created. The customer provides the machine so that the drives can be traversed and the control cabinet is wired according to the configuration.</td>
</tr>
</tbody>
</table>
| Acceptance report | Based on the submitted configuration documentation and commissioning, an acceptance report for the safety functions is drawn-up. This includes:
- Description of the machine (name, type, ...)
- Description of the safety and operator concept
- Description of the axis-specific safety functions
- All of the safety functions are tested including the SPL logic
- The test results are recorded
The customer receives the acceptance report as hard copy and on an electronic data medium. |
| Approval procedure | Support with processing and line of argument for the approval procedure by certified bodies (e.g. regulatory bodies) or large end customers. |
| Workshop | Workshops are held on the subject of machine safety adapted to customer-specific requirements; if required, these workshops can be held at the customer's site. Possible contents:
- Machinery Directive, Standards in general
- C Standards (machine-specific)
- Hazard analysis, risk analysis
- Control categories (acc. to EN 954-1)
- SINUMERIK Safety Integrated® – function and system description
- Configuration, machine data
- Commissioning
- Acceptance report |
| Hotline | An expert for “SINUMERIK Safety Integrated®” can be reached at the Hotline number should series errors or problems occur during installation and commissioning (start-up). |
| On-site service (local) | Experts analyze problems that are encountered on-site. The causes are eliminated or counter-measures are drawn-up and implemented where necessary. |
A.2 Fault analysis tables

Based on the appropriate Directives and Standards, a detailed fault analysis is carried-out using SINUMERIK Safety Integrated®. The subsequently listed brief summary lists the various disturbances and system faults controlled by SINUMERIK Safety Integrated with an extremely low residual risk; whereby the basis was disturbances that are already known.

Table A-2 Fault analysis in the setting-up mode

<table>
<thead>
<tr>
<th>Assumed fault</th>
<th>Fault causes</th>
<th>Fault control</th>
<th>MDIR, Appendix ¹</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle speed too high</td>
<td>Defect in the drive or control system, encoder fault in 2-encoder operation, operator error etc.</td>
<td>Safe limitation of speed or axis velocity with SG; configurable stop functions according to Cat. 2</td>
<td>Chap. 1.2.4</td>
<td>According to currently applicable standards (TC143), the SG function – depending on the technology – is only permissible in combination with agreement, jog mode, start button and Emergency Stop</td>
</tr>
<tr>
<td>Axis speed too high</td>
<td></td>
<td></td>
<td>Chap. 1.2.7</td>
<td>According to currently applicable standards (TC143), the SG function is – depending on the technology – only permissible in combination with jog mode, start button and Emergency Stop</td>
</tr>
<tr>
<td>Axis or spindle has inadmissibly moved away from standstill position</td>
<td>Defect in the drive or control system, operator error etc.</td>
<td>Safe standstill monitoring for position control with SBH; configurable stop functions acc. to Cat. 0/1 (acc. to EN 60204)</td>
<td>Chap. 1.2.6</td>
<td>Low-wear safe disconnection of the energy feed to the drive, This function does not replace the main machine breaker/switch regarding electrical isolation</td>
</tr>
<tr>
<td>Axes have inadmissibly exited operating range</td>
<td>Defect in the drive or control system, operator error, etc.</td>
<td>configurable stop functions according to Cat. 2 (acc. to EN 60204)</td>
<td>Chap. 1.2.4</td>
<td>essentially used for machinery protection. It can also be used to restrict working zones in conjunction with personnel protection.</td>
</tr>
</tbody>
</table>
Table A-2 Fault analysis in the setting-up mode

<table>
<thead>
<tr>
<th>Assumed fault</th>
<th>Fault causes</th>
<th>Fault control</th>
<th>MDIR, Appendix 1)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response of machine control to incorrect position signal</td>
<td>Defect in the control, operator error, etc.</td>
<td>safe signal and position data output</td>
<td>Chap. 1.2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.4.3</td>
<td></td>
</tr>
<tr>
<td>Error relating to the input/output of process data</td>
<td>Defective cable, incorrect information, or similar</td>
<td>Two-channel input/output of safety-related signals (SGE/SGA), crosswise data comparison; initiation of stop functions according to Cat. 1 (acc. to EN 60204)</td>
<td>Chap. 1.2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.4.3</td>
<td></td>
</tr>
</tbody>
</table>

1) Refer to: Attachment, References, General /1/

Table A-3 Error analysis in the test mode

<table>
<thead>
<tr>
<th>Assumed fault</th>
<th>Fault causes</th>
<th>Fault control</th>
<th>MDIR, Appendix 1)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle speed too high</td>
<td>Defect in the drive or control system, encoder fault for 2-encoder operation, operator error, part program error, or similar</td>
<td>Safe limitation of speed or axis velocity with SG; configurable stop functions according to Cat. 2</td>
<td>Chap. 1.2.4</td>
<td>According to currently applicable standards (TC143), the SG function – depending on the technology – is only permissible in combination with agreement, jog mode, start button and Emergency Stop</td>
</tr>
<tr>
<td>Axis speed too high</td>
<td>or similar</td>
<td></td>
<td>Chap. 1.2.7</td>
<td></td>
</tr>
<tr>
<td>Axis or spindle has inadmissibly moved away from standstill position</td>
<td>Defect in the drive or control system, operator error, part program error, or similar</td>
<td>Safe standstill monitoring for position control with SBH; configurable stop functions acc. to Cat. 0/1</td>
<td>Chap. 1.2.6</td>
<td>Wear-free safe disconnection of energy feed to the drive to allow manual intervention in danger zone; function does not replace the main machine breaker</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.4.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chap. 1.4.3</td>
<td></td>
</tr>
</tbody>
</table>

According to currently applicable standards (TC143), the function – depending on the technology – is only permissible in combination with agreement, jog mode, start button and Emergency Stop.
Table A-3 Error analysis in the test mode, continued

<table>
<thead>
<tr>
<th>Assumed fault</th>
<th>Fault causes</th>
<th>Fault control</th>
<th>MDIR, Appendix 1)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe standstill with SH</td>
<td>Stop function Cat. 0</td>
<td>regarding electrical isolation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axes have inadmissibly exited operating range</td>
<td>Defect in the drive or control system, operator error, part program error, or similar</td>
<td>configurable stop functions according to Cat. 2</td>
<td>Chap. 1.2.4 Chap. 1.2.7 Chap. 1.3.7 Chap. 1.3.8</td>
<td>Wear-free safe limit switch, essentially used for machinery protection. It can also be used to restrict working zones in conjunction with personnel protection.</td>
</tr>
<tr>
<td>Response of machine control to incorrect position signal</td>
<td>Defect in the control, operator error, part program error, or similar</td>
<td>safe signal and position data output</td>
<td>Chap. 1.2.4 Chap. 1.2.7 Chap. 1.3.8 Chap. 1.4.2 Chap. 1.4.3</td>
<td></td>
</tr>
<tr>
<td>Error relating to the input/output of process data</td>
<td>Defective cable, incorrect information, or similar</td>
<td>Two-channel input/output of safety-related signals (SGE/SGA), crosswise data comparison, initiation of stop functions according to Cat. 1</td>
<td>Chap. 1.2.5 Chap. 1.3.8 Chap. 1.4.2 Chap. 1.4.3</td>
<td>External two-channel inputs or further processing required if function is intended to protect operating personnel</td>
</tr>
</tbody>
</table>

1) Refer to: Attachment, References, General /1/
<table>
<thead>
<tr>
<th>Assumed fault</th>
<th>Fault causes</th>
<th>Fault control</th>
<th>MDIR, Appendix 1)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle or axis speed/velocity too high</td>
<td>Defect in the drive or control system, Encoder fault in 2-encoder operation, operator error, part program error, or similar</td>
<td>Safe limitation of speed or axis velocity with SG; configurable stop functions according to Cat. 2</td>
<td>Chap. 1.2.4</td>
<td>According to the status (TC143), the SG function is only permissible with protective safety devices/guards (e.g. protective doors)</td>
</tr>
<tr>
<td>Axis or spindle has inadmissibly moved away from standstill position</td>
<td>Defect in the drive or control system, operator error, part program error, or similar</td>
<td>Safe standstill monitoring for position control with SBH; configurable stop functions Cat. 0/1</td>
<td>Chap. 1.2.6</td>
<td>Low-wear safe disconnection of the energy feed to the motor to allow manual interventions in the hazardous zone (safe location), This function does not replace the main machine breaker/switch regarding electrical isolation</td>
</tr>
<tr>
<td>Axes have inadmissibly exited operating range</td>
<td>Defect in the drive or control system, operator error, part program error, or similar</td>
<td>configurable stop functions according to Cat. 2</td>
<td>Chap. 1.2.4</td>
<td>Wear-free safe limit switch, essentially used for machinery protection. It can also be used to restrict working zones in conjunction with personnel protection.</td>
</tr>
<tr>
<td>Response of machine control to incorrect position signal</td>
<td>Defect in the control, operator error, part program error, or similar</td>
<td>safe signal and position data output</td>
<td>Chap. 1.2.4</td>
<td>Wear-free “safe software cams” for safety-related detection of axis positions, can be used to demarcate physical areas</td>
</tr>
<tr>
<td>Error relating to the input/output of process data</td>
<td>Defective cable, incorrect information, or similar</td>
<td>Two-channel input/output of safety-related signals (SGE/SGA), crosswise data comparison, initiation of stop functions according to Cat. 1</td>
<td>Chap. 1.2.5</td>
<td>External two-channel inputs or further processing required if function is intended to protect operating personnel</td>
</tr>
</tbody>
</table>

1) Refer to: Attachment, References, General /1/
A.2 Fault analysis tables

Table A-5 General fault analysis

<table>
<thead>
<tr>
<th>Assumed fault</th>
<th>Fault causes</th>
<th>Fault control</th>
<th>MDIR, Appendix 1</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error has not been detected because function is not active</td>
<td>Defect in the drive or control system, or similar</td>
<td>Time-controlled request or automatic forced-checking procedure and crosswise data comparison, initiation of stop functions according to Cat. 0</td>
<td>Chap. 1.2.7</td>
<td>Forced-checking procedure must be supported by the user depending on the process</td>
</tr>
<tr>
<td>Incorrect safety machine data (MD)</td>
<td>Incorrect information, operator error, or similar</td>
<td>Visual check with Accept softkeys, crosswise data comparison, checksum, initiation of stop functions according to Cat. 0/1</td>
<td>Chap. 1.2.7</td>
<td>Must be confirmed using acceptance test during start-up</td>
</tr>
<tr>
<td>Incorrect absolute position of axis or spindle</td>
<td>Incorrect information, axis mechanically influenced, or similar</td>
<td>User agreement after referencing or after power-up</td>
<td>Chap. 1.2.7 Chap. 1.3.8</td>
<td>The assignment to machine zero must be carried-out during start-up</td>
</tr>
</tbody>
</table>

1) Refer to: Attachment, References, General /1/

Fault control enables easy and cost-effective implementation of the requirements of Machinery Directive 98/37EC (MDIR column, Appendix 1).

Topics and Chapter headings of MDIR, Appendix 1

1.2.4\(^1\) Stopping, normal stopping and stopping in an emergency
1.2.5\(^1\) Mode selector switches
1.2.6\(^1\) Power supply fault
1.2.7\(^1\) Control circuit fault
1.3.6\(^1\) Risks relating to variations in tool speeds
1.3.7\(^1\) Preventing risks relating to moving parts
1.3.8\(^1\) Selecting protective equipment against risks relating to moving parts
1.4.2\(^1\) Special requirements placed on isolating protective equipment
1.4.3\(^1\) Special requirements placed on non-isolating protective equipment

1) Refer to: Attachment, References, General /1/
A.3 References

/ASI/

Low-Voltage Switchgear and Systems
Catalog 1995/1996
Siemens Drives and Standard Products
Order No.: E20002-K1002-A101-A6

/1/

Richtlinie 89/392/EWG (Maschinenrichtlinie) Bundesanzeigeverlag, 1993.

/2/

Positionspapier des AK 226.03 im DKE: Sicherheitsgerichtete Funktionen elektrischer Antriebssysteme in Maschinen.

/3/

/4/

/5/

/6/

/7/

A.3 References

/SHB/

Safety Integrated: Safety Integrated: The Safety System for Industry,
Order No.: 6ZB5 000-0AA02-0BA0

Documentation

An overview of publications that is updated monthly is provided in a number of lan-
guages in the Internet at:

http://www.siemens.com/motioncontrol

Follow menu items —> “Support” —> “Technical Documentation” —> “Overview of
Documents” or “DOConWEB”.

A.4 Abbreviations

\[\beta \] Susceptibility to common cause failure
\[\lambda \] Failure rate
A... Alarm
ASIC Application Specific Integrated Circuit (semiconductor module developed for special applications)
ASUB Asynchronous subroutine
BAG Mode group
BAG-STOP Stop in corresponding mode group
BG Professional association (in Germany)
BGIA German statutory industrial accident insurance institution
BiCo Binector-Connector (technology)
BO Binector Output
CCF Common Cause Failure
CFG Configuration telegram
CO Connector Output
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CU Control Unit
DAC Digital-to-Analog Converter
DB Data Block
DC Diagnostic Coverage
DDS DRIVE DATA SET
DI Digital Input
DKE-AK German Electrotechnical Working Committee
DL Data Left
DMS Direct Measuring System
DO Digital Output
DP Decentralized Peripherals
DPM DP Master
DPR Dual Port RAM
DR Data Right
DRIVE-CLiQ “DRIVE Component Link with IQ” (official name for DSA-Link or SA-Link: Serial bus to connect A&D drive components)
DW Data Word
EMF Electromagnetic Force
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>European Standard</td>
</tr>
<tr>
<td>ENDAT</td>
<td>Encoder Data (interface for absolute encoder)</td>
</tr>
<tr>
<td>EP</td>
<td>Pulse enable</td>
</tr>
<tr>
<td>EQN/ERN</td>
<td>Part of an order code for absolute/incremental encoders made by Heidenhain</td>
</tr>
<tr>
<td>ESD</td>
<td>ElectroStatic Discharge</td>
</tr>
<tr>
<td>ESR</td>
<td>Extended Stop and Retract</td>
</tr>
<tr>
<td>F...</td>
<td>Fault (F)</td>
</tr>
<tr>
<td>F–...</td>
<td>Failsafe...</td>
</tr>
<tr>
<td>FD</td>
<td>Feed Drive</td>
</tr>
<tr>
<td>F-DI</td>
<td>Failsafe input module</td>
</tr>
<tr>
<td>F-DO</td>
<td>Failsafe output module</td>
</tr>
<tr>
<td>FOC</td>
<td>Travel with limited torque/force (force control)</td>
</tr>
<tr>
<td>FV</td>
<td>Failsafe Values</td>
</tr>
<tr>
<td>FXS</td>
<td>Travel to fixed stop</td>
</tr>
<tr>
<td>GSTR</td>
<td>Number of encoder pulses</td>
</tr>
<tr>
<td>HHU</td>
<td>Handheld Unit</td>
</tr>
<tr>
<td>HMS</td>
<td>High-resolution Measuring System</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IB</td>
<td>Input Byte</td>
</tr>
<tr>
<td>IBN</td>
<td>Commissioning</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IMP</td>
<td>Pulse inhibit</td>
</tr>
<tr>
<td>IMS</td>
<td>Indirect Measuring System</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>IPO</td>
<td>Interpolator</td>
</tr>
<tr>
<td>I/R</td>
<td>Infeed/Regenerative Feedback Unit</td>
</tr>
<tr>
<td>IS</td>
<td>Interface Signal</td>
</tr>
<tr>
<td>KDV</td>
<td>Crosswise data comparison</td>
</tr>
<tr>
<td>LEC</td>
<td>Leadscrew Error Compensation</td>
</tr>
<tr>
<td>LIFTFAST</td>
<td>Fast retraction from contour</td>
</tr>
<tr>
<td>LL</td>
<td>Lower Limit</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>MAKSIP</td>
<td>Machine Coordinate System Actual Position</td>
</tr>
<tr>
<td>MD</td>
<td>Machine Data or Marker Doubleword</td>
</tr>
<tr>
<td>MDD</td>
<td>Machine Data Dialog</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MDIR</td>
<td>Machinery Directive</td>
</tr>
<tr>
<td>Mixed-IO</td>
<td>I/O module with analog and digital signals</td>
</tr>
<tr>
<td>MLFB</td>
<td>Machine-readable product designation</td>
</tr>
<tr>
<td>MM</td>
<td>Motor Module (power unit/power module)</td>
</tr>
<tr>
<td>MMC</td>
<td>Man Machine Communication (operator interface for man-machine communication)</td>
</tr>
<tr>
<td>Mod.</td>
<td>Module</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>MSD</td>
<td>Main Spindle Drive</td>
</tr>
<tr>
<td>MTTFd</td>
<td>Mean time to dangerous failure</td>
</tr>
<tr>
<td>N...</td>
<td>No message or internal message</td>
</tr>
<tr>
<td>NC</td>
<td>NC contact</td>
</tr>
<tr>
<td>NC</td>
<td>Numerical Control</td>
</tr>
<tr>
<td>NCK</td>
<td>NC Kernel</td>
</tr>
<tr>
<td>NE</td>
<td>Line infeed</td>
</tr>
<tr>
<td>Node Id</td>
<td>Node-Identification Code (unique ID of each DRIVE-CLiQ node)</td>
</tr>
<tr>
<td>OA</td>
<td>Operator Acknowledge</td>
</tr>
<tr>
<td>OB</td>
<td>Output Byte</td>
</tr>
<tr>
<td>OB</td>
<td>Organization Block</td>
</tr>
<tr>
<td>OI</td>
<td>Operator Interface</td>
</tr>
<tr>
<td>OP</td>
<td>Operator Panel</td>
</tr>
<tr>
<td>p...</td>
<td>Adjustable parameters</td>
</tr>
<tr>
<td>PFHD</td>
<td>Probability of dangerous failure per hour</td>
</tr>
<tr>
<td>PL</td>
<td>Performance Level</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>PM-E F</td>
<td>Power Module Electronic Failsafe</td>
</tr>
<tr>
<td>PNO</td>
<td>PROFIBUS User Organization</td>
</tr>
<tr>
<td>PSC</td>
<td>PROFIsafe clock cycle</td>
</tr>
<tr>
<td>QVK</td>
<td>Peer-to-peer data transfer</td>
</tr>
<tr>
<td>RPM</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>SA link</td>
<td>Sensor-Actuator-Link</td>
</tr>
<tr>
<td>SBC</td>
<td>Safe Brake Control</td>
</tr>
<tr>
<td>SBH</td>
<td>Safe operating stop</td>
</tr>
<tr>
<td>SBM</td>
<td>Safe Brake Management</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SBR</td>
<td>Safe Braking Ramp</td>
</tr>
<tr>
<td>SBT</td>
<td>Safe Brake Test</td>
</tr>
<tr>
<td>SG</td>
<td>Safely-reduced speed</td>
</tr>
<tr>
<td>SGA</td>
<td>Safety-relevant output</td>
</tr>
<tr>
<td>SGE</td>
<td>Safety-relevant input</td>
</tr>
<tr>
<td>SH</td>
<td>Safe stop</td>
</tr>
<tr>
<td>SI</td>
<td>SINUMERIK Safety Integrated® (integrated safety technology)</td>
</tr>
<tr>
<td>SIL</td>
<td>Safety Integrity Level</td>
</tr>
<tr>
<td>SILCL</td>
<td>SIL claim limit</td>
</tr>
<tr>
<td>SK</td>
<td>Softkey</td>
</tr>
<tr>
<td>SMC</td>
<td>Sensor Module Cabinet Mounted: External adapter box to connect an encoder to DRIVE-CLiQ</td>
</tr>
<tr>
<td>SME</td>
<td>Sensor Module Externally Mounted: Sensor Module with a high degree of protection for mounting outside the electrical/control cabinet</td>
</tr>
<tr>
<td>SMI</td>
<td>Sensor Module Integrated: External adapter box to connect an encoder to DRIVE-CLiQ, integrated in the motor</td>
</tr>
<tr>
<td>SMM</td>
<td>Safe Motion Monitoring</td>
</tr>
<tr>
<td>SPL</td>
<td>Safe Programmable Logic</td>
</tr>
<tr>
<td>STOP A, B, C, D, E, F</td>
<td>Stop response: In the event of a fault, the system responds corresponding to the configured stop response</td>
</tr>
<tr>
<td>SV</td>
<td>Power supply</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>T1</td>
<td>Lifetime</td>
</tr>
<tr>
<td>T2</td>
<td>Diagnostic test interval</td>
</tr>
<tr>
<td>TCP</td>
<td>Tool Center Point</td>
</tr>
<tr>
<td>TEA</td>
<td>Testing Data Active</td>
</tr>
<tr>
<td>Ü</td>
<td>Gear Ratio</td>
</tr>
<tr>
<td>UL</td>
<td>Upper Limit</td>
</tr>
<tr>
<td>WZM</td>
<td>Machine tool</td>
</tr>
</tbody>
</table>
A.5 Terminology

Actuator
Converter that converts electrical signals into mechanical or other non-electrical quantities.

Category
Used in EN 954-1 to “Classify safety-relevant parts of control with reference to their immunity to faults and their behavior when a fault condition exists as a result of the structural arrangement of the parts/components and/or their reliability”.

Channel
Element or group of elements that execute function(s) independently of one another.

2-channel structure
This is a structure that is used to achieve fault tolerance. For instance, a 2-channel protective door control can only be implemented if at least two enable circuits are available and the main circuit is redundantly shut down or a sensor (e.g. Emergency Stop switch) with two contacts is interrogated and these are separately routed to the evaluation unit.

Note: “Failure” is an event and “fault” is a condition.

Fail-safe
The ability of a control system, also when faults occur (failure), to maintain a safe condition of the controlled equipment (e.g. machine, process), or to bring the equipment into a safe condition.

Failure/fault

Failure
A piece of equipment or device can no longer execute the demanded function.

Fault
Undesirable condition of a piece of equipment or a device, characterized by the fact that it is unable to execute the demanded function.

Fault tolerance
Fault tolerance N means that a piece of equipment can still execute the required task even if N faults are present. For N+1 faults, the equipment can no longer execute the required function.

Redundancy
Availability of more than the necessary equipment to execute the required tasks.
Requirement Class

Measure for the safety-relevant performance of control equipment, defined in DIN V 19250 and DIN VDE 0801.

Risk

Combination of the probability of damage occurring and the extent of the damage.

Safety

Free from any unacceptable risk.

Functional safety

The part of the safety of a piece of equipment (e.g. machine, plant) that depends on the correct function.

Safety function

Function, (e.g. of a machine or a control) whose failure can increase the risk/risks.

Safety functions of controls (EN 954)

A function “initiated by an input signal and processed by the safety-relevant parts of controls, that allows the machine (as system) to reach a safe condition”.

Safety goal

To keep the potential hazards for personnel and the environment as low as possible without restricting more than absolutely necessary, industrial production, the use of machines or the manufacture of chemical products.

Safety Integrity Level (SIL)

Measure, defined in IEC 61508, for the safety-relevant performance of an electrical or electronic control device.

Stop

Function that is intended to avoid or reduce impending or existing hazards for personnel, damage to the machine or the execution of work. This has priority over all operating modes.

Stop Category

Term used in EN 60204-1 to designate three different stopping functions.
Notes
Index

Symbols

$A_STOPESI, 6-125
$MN_INFO_PROFI_SAFE_CYCLE_TIME, 7-184
$VA_STOPESI, 6-125

Numbers

3–terminal concept, 7-170

A

Absolute encoder, 5-83
Acceptance report, 4-66
Acceptance test, 4-66, 9-350
Actual value synchronization, 5-94
Actuator, A-500
Adjusting the motor encoder, 5-87
Assigning priorities to alarms, 10-478
Axis not referenced, 5-88
Axis referenced (homed), 5-88
Axis safely referenced, 5-89

B

Basic Standards, 1-18
Brake test, 7-223

C

Calibrating the machine, 5-87
Cam signals, 6-155
Category, A-500
Changing SI data, 9-352
Changing–over the speed limit values, 6-139
Channel, A-500
Clock cycle overruns, 7-183
CNC controllers, 2-33
Commissioning 840D sl
 First commissioning, 9-347
 Series commissioning, 9-351
Communication, NCK and PLC-SPL, 7-221
Comparison clock cycle, for 840D, 8-240
Control category 3, A-493
Correction factor, safely reduced speed, 8-315
Crosswise data comparison, 4-45, 5-80, 7-197
Cut–off frequency, 6-137

D

D/A converter output, 9-353
Data, changing, 9-352
Defining the cam positions, 6-156
Delete (clear) the password, 9-350
Different channel run times, 7-167
Diverse structure, 2-36
Downloading standard motor data, 8-284

E

Electrical safety, 1-25
EMC Directive, 1-17
Enable option, for 840D, 9-347
Enabling, functions, 8-249
Enabling functions, 5-96
Encoder limit frequency, 6-137
Encoder limit frequency, parameterizable, 6-137
Encoder type combinations, 5-83
Encoder types, 5-83
 2–encoder system, 5-85
ESR, 6-125
EU Directives, 1-16

F

F master, 7-184
F net data filter, 7-186, 7-189
Fail–safe, A-500
Failure/fault, A-500
Fault tolerance, A-500
Forced checking procedure, 4-44, 7-168
Forced checking procedure, safety relay, 7-213

G

Gantry axis, 11-483
Group Standards, 1-18

I

Incremental encoder, 5-83
Initialization, Safety relay, 7-210
Interface signals, to the drive, 8-314
Interrupts, for 840D, 10-386

© Siemens AG, 2006. All rights reserved
SINUMERIK 840D sl/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition I-503
Index

L
- Limiting the speed setpoint 11-481
- Linear motors 2-34
- Logbook 9-350

M
- Machine data for 840D
 - Description 8-239
 - Overview 8-235
- Machinery Directive A-493
- Macros 4-58
- Measuring system changeover 11-482
- Modulo display 6-158
- Modulo value, safe cams 8-250
- Monitoring channel 7-161
- Monitoring clock cycle 5-79
 - For 840D 8-239
 - Integrated in the drive 4-46
- Monitoring clock cycle integrated in the drive 4-46
- Monitoring functions – standard 3-39
- Motor encoder 5-83
- Multiple assignment 7-176
- Multiple distribution 7-175

N
- NCK–SPL programming 7-200
- NCK–SPL SGEs/SGAs 7-165

O
- OEM applications 11-484

P
- Parking an axis 11-483
- Parking an axis with absolute reference 11-483
- Password for Safety Integrated 4-47
- Powering–up 5-98
- Product Standards 1-19
- PROFIBUS–DP 7-178
- PROFIsafe clock cycle overruns 7-183
- PROG_EVENT mechanism 7-203
- PROG_EVENT.SPF 7-203
- Protective mechanisms 7-201

R
- Redundancy A-500
- Reference point reached 5-88
- Replacing a motor 9-362
- Replacing an encoder 9-362
- Requirement Class A-501
- Risk A-501
- Risk analysis 1-25
- Risk assessment 1-25
- Rotary axis 8-249
 - Cam actual value range 6-158
 - Endlessly turning 6-158
 - Modulo display 6-158
 - Safe software cams 6-158

S
- Safe Brake Management 7-223
- Safe braking ramp 6-132
- Safe cams 6-155
- Safe limit switches 6-151
- Safe operating stop 6-106
 - Deselection 6-109
 - Features 6-106
 - Preconditions 6-107
 - Selection 6-107
- Safe software cams
 - Defining the cam positions 6-156
 - Features 6-155
 - Preconditions 6-155
 - Special case 6-156
 - Tolerance 6-156
 - Hysteresis 6-157
- Safe software limit switches
 - Configurable stop responses 6-152
 - Features 6-151
 - Limit values 6-151
 - Preconditions 6-152
- Safe stop
 - Features 6-100
 - Selecting/de–selecting 6-100
- Safely–reduced speed 6-136
 - Changing–over the limit values 6-139
 - Configured stop responses 6-141
 - Features 6-136
 - Override for 6-144
 - Tolerance 6-136
 - Selection 6-138
- Safety A-501

© Siemens AG, 2006. All rights reserved

SINUMERIK 840D si/SINAMICS S120 SINUMERIK Safety Integrated (FBSI sl) – 03.2006 Edition

I-504
Safety function, A-501
Safety goal, A-501
Safety Integrated
 Acknowledging faults, 4-63
 Function diagram overview, 4-65
 Parameter overview, 4-64
 Stop responses, 4-62
Safety integrated, Password, 4-47
Safety Integrity Level (SIL) A-501
Safety relay, 7-209
Safety relay, test, 7-213
Safety–relevant input signals, 4-45
Save data, 9-350
Save machine data, with 840D sl, 9-343
Save stop position, 5-89
Saved stop position, 5-89
SBH, 6-106
SBR, 6-132
SBT, 7-223
SE, 6-151
Selecting speed limit values, 6-138
Series commissioning, 9-351
Service display, 7-163
Service display for 840D, 10-369
Servo trace, 9-353, 10-377
Set axis monitor, 9-349
Set the password, 9-347
SG, 6-136
SG override, 6-144, 8-315
SG specific STOPs, 6-143
SGA, SBH active, 6-110
SGE/SGA
 Signal run times, 7-167
 How many are required as a minimum?, 7-165
SGE/SGA assignment, with 840D sl, 9-349
SGEs, Standstill via STOP, 6-117
Shutdown paths
 Stop responses, 6-113
 Test, 6-104
 SI relay, 7-209
SIRELAY, 7-212
Slip for 2–encoder system, 5-94
SN, 6-155
Softkey
 Acknowledge SI data, 9-344
 Copy SI data, 9-343
 Speed setpoint, 11-481
Speed/standstill monitoring, 2-33
SPL data on the PLC side, 7-219
SPL start without axial safety enable, 7-203
SPL system errors, 7-198
SPL–SGA, PROFIsafe, 7-190
SPL–SGE, PROFIsafe, 7-187
Standstill via SGEs, 6-117
Start SPL, 7-206
Stop, A-501
STOP A, Description, 6-120
STOP B, Description, 6-122
STOP C, Description, 6-123
Stop Category, A-501
STOP D, Description, 6-124
STOP E, Description, 6-125
STOP F, Description, 6-127
Stop response
 SG specific, 6-143
 STOP A, 4-62
 STOP F, 4-62
Stop responses
 Assignment table, 6-116
 Operational sequence, 6-117
 Priority, 6-116
Stop responses, configurable, 6-115
Sub–slot, 7-184, 7-188
Synchronizing cam signals, Enable, 6-157
System variable $VA_SIA, 8-332
System variables, 7-216
System variables $VA_XFAULTSI,
 $VA_XFAULTSI, 8-333
T
Test stop
 Time, 6-104
 For external STOPs, 6-130
Testing the shutdown paths, 4-44
Tolerance for SN, 6-156
Troubleshooting, with 840D sl, 10-369
Two–channel structure, 2-36
Two–encoder system, 5-85
U
User agreement, 5-90, 9-350
User agreement Interlock, 5-92
V
Velocities and speeds, 6-137
Z
Zero speed tolerance, 6-106
To
SIEMENS AG
A&D MC MS
Postfach 3180
91050 ERLANGEN, GERMANY
(Tel. +49 (0) 180 / 5050 – 222 [Hotline]
Fax +49 (0) 9131 / 98 – 63315 [Documentation]
email: motioncontrol.docu@siemens.com)

Suggestions
Corrections
For document:
SINUMERIK 840D sl/
SINAMICS S120
SINUMERIK Safety Integrated
(FBSI sl)

Order number 6FC5397-4BP10-0BA0
Edition: 03.2006

Suggestions and/or corrections

Should you come across any printing errors when reading this publication, please notify us on this sheet.
Suggestions for improvement are also welcome.
Overview of SINUMERIK 840D sl/840Di sl Documentation (03/2006)

General Documentation

- SINUMERIK
 - B40D sl
 - B40Di sl
- SINAMICS
 - S120

Catalog NC 61 *)

Catalog D21.2 Servo Control *)

User Documentation

- SINUMERIK
 - B40D sl
 - B40Di sl
- SINAMICS
 - S120

Operator's Guide
 - HMI Embedded *)
 - ShopMill
 - ShopTurn

Operator’s Guide
 - HMI Advanced *)
 - Programming compact

Programming Guide
 - Fundamentals *)
 - Advanced *)
 - Programming
 - Lists System Variables
 - ISO Turning/Milling

Programming Guide
 - Cycles
 - Measuring Cycles

Diagnostics Guide *)

Manufacturer/Service Documentation

- SINUMERIK
 - B40D sl
 - B40Di sl
- SINAMICS
 - S120

Equipment Manual
 - NCU *)

Equipment Manual
 - Operator Components *)

Commissioning Manual
 - Part 1 NCK, PLC, Drive
 - Part 2 HMI
 - Part 3 ShopMill
 - Part 4 ShopTurn
 - Part 5 Basic Software

Commissioning Manual
 - Part 1
 - Part 2

List Manual *

- SINUMERIK
 - B40D sl
 - B40Di sl

Description of Functions
 - Basic Machine *)
 - Extended Functions
 - Special Functions

Description of Functions
 - Synchronized Actions
 - Iso Dialects

Description of Functions
 - Drive Functions

Description of Functions
 - Safety Integrated

EMC Guidelines

Electronic Documentation

- SINUMERIK
 - SINAMICS
 - Motors

DOCONCD *)

DOCONWEB

*) These documents are a minimum requirement