

FAQ about WinCC Connectivity Pack

How Can Archived WinCC Data Be Accessed
with a C# Windows Application?

FAQ

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 2/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

Table of Contents

Table of Contents ... 2

Question .. 3
How can archived WinCC data be accessed with a C# Windows application? 3

1 Introduction... 4
1.1 Necessity .. 4
1.2 Overview... 4

2 Visual C# Sample Program Installation .. 6
2.1 Requirements ... 6
2.2 Downloading, extracting and calling the sample project 7

3 Functional Description of the Visual C# Sample Program 8
3.1 Detailed description of the screen objects .. 8
3.1.1 Menu bar... 9
3.1.2 “Connection” group ... 11
3.1.3 “Data selection” group .. 14
3.1.4 “Export data” group... 16
3.1.5 “Time Interval” group .. 17
3.1.6 Tab for the Runtime data display.. 18
3.2 Reading out, displaying and exporting WinCC process value archives.......... 19
3.3 Reading out and displaying WinCC message archive.................................... 22
3.4 Reading out and displaying WinCC User Archive .. 25

4 C# Program Code Description... 28
4.1 C# code for evaluating the process value archives .. 28
4.1.1 Definition for the connection setup ... 28
4.1.2 Definition for the data selection .. 28
4.1.3 Setting up the connection to the database and reading data 30
4.1.4 Providing data for DataGrid and/or Crystal Report: .. 30
4.1.5 Data connection of the DataGrid: ... 32
4.1.6 Data connection of the Crystal Report: ... 33
4.1.7 Closing the connection to the archive... 33
4.1.8 Exporting the archive values to a CSV file.. 34
4.2 C# code for evaluating the alarms and messages.. 34
4.2.1 Definition for the connection setup ... 34
4.2.2 Definition for the data selection .. 34
4.2.3 Setting up the connection to the database and reading data: 35
4.2.4 Providing data for DataGrid and/or Crystal Report: .. 35
4.2.5 Data connection of the DataGrid: ... 35
4.2.6 Data connection of the Crystal Report: ... 36
4.2.7 Closing the connection to the archive... 36
4.3 C# code for evaluating the User Archives .. 36

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 3/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

4.3.1 Definition for the connection setup ... 36
4.3.2 Definition of the data selection.. 36
4.3.3 Setting up the connection to the database and reading data: 37
4.3.4 Providing data for DataGrid and/or Crystal Report: .. 37
4.3.5 Data connection of the DataGrid: ... 37
4.3.6 Data connection of the Crystal Report: ... 37
4.3.7 Closing the connection to the archive... 37

5 Creating a Report in Crystal Reports.. 38

This entry is from the Internet offer of Siemens AG, Automation and Drives,
Service & Support. The link below takes you directly to the download page
of this document.

http://support.automation.siemens.com/WW/view/en/26697936

Question

How can archived WinCC data be accessed with a C# Windows application?

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 4/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

1 Introduction

1.1 Necessity

The WinCC Runtime database of WinCC V6.0 or higher is segmented;
this means that the data is stored in several archive segments (several
databases). The storing of the data is partly compressed in a binary form.
The “WinCC Connectivity Pack” WinCC option provides the WinCC
OleDBProvider with which the Tag and Alarm Logging Runtime data can
be read directly. The WinCC OleDBProvider provides the data from the
corresponding archive segments in decompressed (decoded) form. When
accessing the Tag and Alarm Logging data, the WinCC Connectivity Pack
user does not have to worry about the segmentation of the archives and
their encoding.

1.2 Overview

This entry describes how the archived WinCC Runtime data of the Tag
Logging (process data archiving), of the Alarm Logging (archived
messages and alarms) and of the User Archives are accessed with a
separate C Sharp Windows application and with the aid of the WinCC
Connectivity Pack.

It is described how the Runtime data of the Tag Logging, of the Alarm
Logging and of the User Archives can be read, displayed and output via
Crystal Reports or to a CSV file.

This document does not focus on creating and describing a C# Windows
application but on the necessary mechanisms to access the WinCC archive
data. These mechanisms are:

– Setting up the database connection

– Preparing the data (adjusting the time-of-day format, local time and
universal time)

– Using the MS OleDB interface to read the WinCC archive
configuration and the WinCC User Archives

Note:
This example uses only read accesses to the data. When using the
MS OleDB interface, write accesses to the data are technically
possible by means of corresponding SQL commands (for example,
update, insert, delete ...). Attention! However, write accesses have
only been tested and released for the data of the User Archives.

– Using the WinCC OleDBProvider to read out the archived process
values (WinCC Tag Logging) and alarms and messages (WinCC
Alarm Logging).

– Tabular display of the data with the “DataGrid” control element

– Output of the data to a CSV file

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 5/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

– Output of the data via Crystal Reports

This entry includes a complete Visual C# sample program that illustrates
the access mechanisms listed above by means of a runnable Windows
application.

Note:
The entry http://support.automation.siemens.com/WW/view/en/22578952

provides an overview of further options for accessing WinCC archives.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 6/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

2 Visual C# Sample Program Installation

2.1 Requirements

Two separate computers (WinCC server and Connectivity Pack client)
were used for this example. The WinCC server performs the archiving in
the WinCC Runtime database. The Connectivity Pack client reads the data
of the WinCC Runtime database. The following configurations were used
for the systems:

WinCC server:
Table 2-1

Hardware Intel Pentium 4 CPU 2.4 GHz, 2GB RAM
Operating system MS Windows XP Professional SP2

WinCC software SIMATIC WinCC V6.2 (includes SQL Server 2005 SP1)

Connectivity Pack client:
Table 2-2

Hardware Intel Pentium 4 CPU 2.4 GHz, 1GB RAM
Operating system MS Windows XP Professional SP2

Note:

The “Microsoft Message Queuing” Windows component
must be installed. You can install this component in “Control
Panel > Add or Remove Programs > Add/Remove Windows
Components > Message Queuing”.

Development
environment

MS Visual Studio 2005 Professional; (Visual C#)

WinCC software SIMATIC WinCC/ConnectivityPack V6.2 (client) for using the
WinCC OleDBProvider

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 7/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

2.2 Downloading, extracting and calling the sample project

Download the sample program available as a download and extract the
received zip archive. The “WinCCcopack” folder is generated during this
process. The “WinCCcopack > appCopack” subfolder contains the C#
project created with Visual Studio 2005.

Notes:
Depending on whether the MS Visual Studio development environment is
installed on your computer, you can use the sample program as follows:

• Visual Studio development environment is installed

If Visual Studio is installed on your computer, you can open the project by
double-clicking the “appCopack.sln” file. After the project has been
opened in Visual Studio, you can edit the sources, compile the program
and run it using the “Debug > Start Without Debugging” menu command.

• Visual Studio development environment is not installed

If Visual Studio is not installed on your computer, you can run the program
by double-clicking the “.WinCCcopack >
appCopack\obj\Debug\appCopack.exe” file.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 8/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

3 Functional Description of the Visual C#
Sample Program

3.1 Detailed description of the screen objects

After the Windows application has been started, the following
“appCopack (Form1)” program window appears.

Figure 3-1

The program consists of a program window. The following table describes
its components.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 9/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

3.1.1 Menu bar

Figure 3-2

The menu bar contains menu commands for changing the data sources.
The following menu items (data sources) are available:

“Tag Logging”,

“Alarm Logging” or

“User Archives”

By selecting a data source, the user can decide which type of data is to be
read.

When a menu item is selected, the blue font color indicates the selection,
another menu item is deselected. Only one menu item can be selected at a
specific time.

When starting the program, the “Tag Logging” menu item is selected by
default.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 10/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

Table 3-1

Screen objects (object name) Description

“Tag Logging”
menu item
Type: ToolStripLabel
Name: toolStripLblTagLogging

By selecting the “Tag Logging” menu item,
“WinCC Tag Logging” is used as a data
source for the following data query. When this
item is selected, the Tag Logging Runtime
data is displayed in the “DataGrid” control
element or in the CrystalReportViewer.

Note:
• The screen objects of the “Data

selection” and “Export Data” groups
can only be operated or activated when
the “Tag Logging” menu item is selected.

• The Tag Logging data is automatically
(when displaying the data) exported to the
configured CSV file

After starting the program or after selecting
the “...” button of the “Data selection” group,
the available (configured) archive tags are
displayed in the “DataGrid” control element.
The archive data of the selected archive tags
is only displayed in the “DataGrid” control
element after selecting the “read archives”
button.

“Alarm Logging”
menu item
(toolStripLblAlarmLogging)

By selecting the “Alarm Logging” menu item,
“WinCC Alarm Logging” is used as a data
source for the following data query. When this
item is selected, the Alarm Logging Runtime
data is displayed in the “DataGrid” control
element or in the CrystalReportViewer.

Notes:
• The screen objects of the “Data

selection” and “Export Data” groups
cannot be operated.

• The Alarm Logging data is not exported to
a CSV file.

• On the one hand, the
CrystalReportViewer provides the
functions for exporting the data. On the
other hand, you can expand this sample
program so that the Alarm Logging
Runtime data is automatically exported to
a CSV file.

“User Archives”
menu item
(toolStripLblUserArchives)

By selecting the “User Archives” menu item, a
“WinCC User Archive” is used as a data
source for the following data query. When this
item is selected, the Runtime data of the
“Products” User Archive is displayed in the

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 11/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

Screen objects (object name) Description
“DataGrid” control element or in the
CrystalReportViewer.

Notes:
• The screen objects of the “Data

selection” and “Export Data” groups
cannot be operated.

• The User Archive data is not exported to
a CSV file.

• On the one hand, the
CrystalReportViewer provides the
functions for exporting the data. On the
other hand, you can expand this sample
program so that the User Archive data is
automatically exported to a CSV file.

3.1.2 “Connection” group

Type: GroupBox

Name: grpConnection

Figure 3-2

The input boxes of this group are used to parameterize the connection
setup to the data source. When starting the program, the boxes are
initialized with default values. The user can change the connection
parameters in Runtime and perform the data query.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 12/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

Screen objects (object name) Description
“Source” input box
Type: TextBox
Name: txtSource

This input box includes the WinCC server
name, followed by the instance name of the
SQL server whose Runtime data is to be
accessed.
<computer name>\WINCC

When starting the program, the default input
for this box is “ESJPG\WINCC”.

“Catalog” input box
Type: TextBox
Name: lblCatalog

In this input box, the user has to specify the
Data Source Name (DSN) of the Runtime
database whose data is to be accessed.

Notes:
• In WinCC Runtime, the internal

“@DatasourceNameRT” WinCC tag
contains the “Data Source Name” of the
WinCC Runtime database. You can read
out this tag to determine the desired Data
Source Name. The entry
http://support.automation.siemens.com/W
W/view/en/9061684
provides detailed information on this topic.

• When starting the program, the default
input for this box is the value
“CC_OS_1__0710_10_13_38_39R”.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 13/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

Screen objects (object name) Description
“Provider” input box
Type: TextBox
Name: txtProvider

In this input box, the user has to specify the
name of the WinCC OleDBProvider.

Notes:
• The WinCC OleDBProvider is provided by

the Connectivity Pack and used for
reading the Runtime data of Tag and
Alarm Logging.

• In the program, the “SQLOLEDB” provider
is permanently used for accesses to
WinCC Runtime data (e.g., archive
configuration or User Archives) with the
MS OleDB interface.

• When starting the program, the default
input for this box is the value
“WinCCOLEDBProvider.1”

“ Uid ” input box
Type: TextBox
Name: txtUid

In this input box, the user must enter the
name of the database user for the Runtime
database access.

Notes:
• This user name is only used for database

accesses with the aid of the MS OleDB
interface. This box is not relevant for
database accesses with the aid of the
WinCC OleDBProvider.

• Create a separate user for the MS OleDB
accesses in the WinCC Runtime
database and assign a password and
user rights. The entry
http://support.automation.siemens.com/W
W/view/en/27147643
provides detailed information on how to
create a user.

• When starting the program, the default
input for this box is the value
“WinCCcopack”

“ Pwd ” input box
Type: TextBox
Name: txtPwd

In this input box, the user has to enter the
password of the database user for the
Runtime database access. The input of the
password is hidden, i.e. stars “***” are
displayed.

Notes:
• The password is only used for database

accesses with the aid of the MS OleDB
interface. This box is not relevant for
database accesses with the aid of the
WinCC OleDBProvider.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 14/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

• When starting the program, the default
input for this box is the value
“WinCCcopack”

3.1.3 “Data selection” group

Type: GroupBox

Name: grpDataSelection

Figure 3-4

The objects of this group are only used to parameterize the accesses to the
Tag Logging Runtime data. In this group, an available archive tag of the
WinCC Tag Logging can be selected and special parameters for data
reduction can be specified.

Screen objects (object name) Description
 “Archive Tag” drop-down list
Type: ComboBox
Name: cmbTags

The “Archive Tag” drop-down list includes the
archive tags configured in the Runtime
database. By clicking, you can open the
drop-down list and select an archive tag
whose values are to be read from the
Runtime database.

Notes:
• Before the actual data query the archive

tag ID is transferred to the WinCC
OleDBProvider instead of the archive tag
name for performance reasons.

• When starting the program, the first
available archive tag is selected in the
drop-down list.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 15/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

Screen objects (object name) Description
“Aggreg. Typ” button
Type: ComboBox
Name: cmbInterpol

The “Aggreg. Typ” drop-down list includes the
aggregation types that are supported by the
WinCC Connectivity Pack. You can select an
aggregation type to combine (compress)
several successive archive values of the Tag
Logging Runtime in the specified time
interval during the data query.

When starting the program, the value “Without
Aggreg.” is entered in the drop-down list.
When this value is selected, the values are
not combined with the WinCC OleDBProvider
during the query.

“Interval” input box
Type: TextBox
Name: txtStep

In this input box, you enter the time interval in
seconds in which the values are combined
(compressed). The value entered in this box
is only of importance if a value not equal to
“Without Aggreg.” is selected in the
“Aggreg. Typ” drop-down list.

When starting the program, the default input
for this box is the value 60 (seconds).

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 16/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

3.1.4 “Export data” group

Type: GroupBox

Name: grpExport

Figure 3-5

The objects of this group are used to configure the export of the read Tag
Logging Runtime data to a CSV file.

Screen objects (object name) Description
“ExportPath” input box
Type: TextBox
Name: txtExportPath

In this input box, enter the directory in which
the CSV file with the Tag Logging Runtime
data is to be created.

Note:
Please note that the path entered here must
exist, since otherwise no CSV file is created.
Missing directories are not automatically
generated by the program.

When starting the program, the default input
for this box is the following path:
“C:\data\tmp”.

“ExportFile” input box
Type: TextBox
Name: txtExportFile

Enter the file name of the CSV file.

When selecting an archive tag or when
starting the program, the default input value
assigned to this box is the name of the
selected archive tag followed by the “txt”
string.

“<ARCHIV_TAGNAME>.txt”

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 17/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

3.1.5 “Time Interval” group

Type: GroupBox

Name: grpTimeInterval

Figure 3-6

The objects of this group are used to specify a time interval that is used as
a filter criterion for the query of the Tag and Alarm Logging Runtime data.

Notes:

• The time is specified in local time-of-day format. When querying the
data, the time interval specified here is converted to UTC time and then
transferred to the WinCC OleDBProvider as a filter criterion.

• When querying the user archives, the time interval is not used.

• When starting the program or when changing the data source by
selecting the menu items in the menu bar, the time interval is set to the
last hour.

Screen objects (object name) Description
“Local Time from”
DateTime list box
Type: DateTimePicker
Name: dtpFrom

With this list box you specify the start time for
the time interval of the query.

“Local Time to”
DateTime list box
Type: DateTimePicker
Name: dtpTo

With this list box you specify the end time for
the time interval of the query.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 18/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

3.1.6 Tab for the Runtime data display

Type: TabControl

Name: tabView

Figure 3-7

The result of the data query is displayed in a tab. The “DataGrid” tab is
available for a tabular display and the “CrystalReports” tab is available for
a formatted display (e.g., printable version).

Screen objects (object name) Description
“DataGrid” tab
Type: TabPage
Name: tabPageDataGrid

includes

DataGrid control element
Type: DataGridView
Name: myGrid

The “DataGrid” control element is used for
tabular display of the data.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 19/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

Screen objects (object name) Description
“CrystalReports” tab
Type: TabPage
Name: tabPageCrystalReports

includes

Report control element
Type: CrystalReportViewer
Name: crystalReportViewer1

The CrystalReportViewer is used for
formatted display of the data.

“Rows found” display text
Type: Label
Name: lblAnz

This display text indicates the number of
result data records supplied by the database
request.

“read archives” button
Type: Button
Name: btnRead

By selecting the “read archives” button, the
database query is performed. The supplied
data is shown in tabular or formatted form.

When displaying Tag Logging Runtime data,
the CSV file is written. If the CSV file already
exists, it is overwritten.

3.2 Reading out, displaying and exporting WinCC process value
archives

The following figures show how the Tag Logging Runtime data is displayed
in the “DataGrid” control element or in the Crystal Reports Viewer and
output to a CSV file.

To display the archived values of a process tag, proceed as follows:

• Select the “Tag Logging” menu item.

• In the “data selection” group, use the “...” button to select an archive
tag.

• Select the time interval.

• Select the “read archives” button.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 20/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

The figure below shows the tabular display of the Tag Logging archive
data.

Figure 3-3

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 21/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

The following figure shows the formatted display of the Tag Logging archive
data in the Crystal Reports Viewer.
Figure 3-4

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 22/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

The figure below shows an excerpt of the CSV file with the exported Tag
Logging archive data.

Figure 3-5

Notes:

• By default, the WinCC OleDBProvider supplies the data with a time
stamp in UTC format. To display the data, this time stamp is converted
to local time.

• The values “Quality” and “Flags” are displayed as hexadecimal values.

3.3 Reading out and displaying WinCC message archive

The following figures show how the Alarm Logging Runtime data is
displayed in the “DataGrid” control element or in the Crystal Reports
Viewer.

To display the archived alarms and messages, proceed as follows:

• Select the “Alarm Logging” menu item.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 23/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

• Select the time interval.

• Select the “read archives” button.

The figure below shows the tabular display of the Alarm Logging archive
data.

Figure 3-6

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 24/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

The following figure shows the formatted display of the Alarm Logging
archive data.

Figure 3-7

Notes:

• By default, the WinCC OleDBProvider supplies the data with a time
stamp in UTC format. To display the data, this time stamp is converted
to local time.

• By default, the “State” message status is supplied as a decimal value by
the WinCC OleDBProvider. The message status is converted to a string
for display. The characters are used that are configured in the Alarm
Logging Editor to form a message class.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 25/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

3.4 Reading out and displaying WinCC User Archive

The following figures show how the Runtime data of a User Archive is
displayed in the “DataGrid” control element or in the Crystal Reports
Viewer.

This application displays the data of the “Products” User Archive. This
requires that the User Archive is configured in the WinCC project as
follows:

Figure 3-8

To display the data of the “Products” User Archive, proceed as follows:

• Select the “UserArchives” menu item.

• Use the “read archives” button.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 26/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

The figure below shows the content of the “Products” User Archive in
tabular form.

Figure 3-9

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 27/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

The following figure shows the content of the “Products” User Archive in the
Crystal Reports Viewer.

Figure 3-10

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 28/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

4 C# Program Code Description

This sample program was created with the “New Project” wizard in the
Microsoft Visual Studio development environment. The “Windows
Application” template available in Visual Studio was used. The runnable
program was generated by the wizard. The generated program was then
expanded with regard to the graphical screen objects (user interface) and
the associated program code.

This section describes the program code to access the WinCC archive
data.

4.1 C# code for evaluating the process value archives

4.1.1 Definition for the connection setup

The “myConnectionString” “string” variable is initialized with the necessary
information for the connection setup to the archive database. The basic
string structure for the connection setup is shown below:

string myConnectionString =
 "Provider = WinCCOLEDBProvider.1; ////WinCC OleDBProvider
 Data Source = <computer name>\WINCC>;
 Catalog = <Data Source Name>“;

In the program, the objects of the “Connection” group (“txtSource”,
“txtCatalog” and “txtProvider”) are used to initialize the string for the
connection setup.

4.1.2 Definition for the data selection

The “mySelectQuery” “string” variable is initialized with the necessary
information for the actual SQL data query. The string structure for the data
selection is shown below:
string mySelectQuery = "TAG:R,(id1;id2;idn), //id=ident. process
value archive
’yyyy-mm-dd hh:mm:ss’, //start time stamp
’yyyy-mm-dd hh:mm:ss’, //end time stamp
’TIMESTEP=n,Typ’"; //n=step size in seconds
 //Typ=compression type(e.g., AVG
 //for the average value)

In the program, the objects of the “Data selection” (“cmbTags”,
“cmbInterpol” and “txtStep”) and “Time Interval” (“dtpFrom” and “dtpTo”)
groups are used to initialize the string for the data selection.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 29/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

Notes:

– The WinCCOLEDBProvider supports the specification of several
archive tags in one query. The archive tags can be specified with
name or archive tag ID.

This sample program reads the data of only one archive tag. The
values of the archive tag selected in the “cmbTags” drop-down list
box are read.

– The archive tags are stored in the Runtime database with the
universal time stamp (UTC). The query period has to be specified to
the WinCCOLEDBProvider in universal time format (UTC) to ensure
that the supplied data does not have a time offset to the local time.
For this reason, the time stamps specified in the “dtpFrom” and
“dtpTo” objects are converted from local time to universal time
before they are used for the data query. The following program code
shows the conversion of the time stamp to universal time format and
the preparation of the time stamp for the data selection. The “tfrom”
and “tto” “string” variables are used to set up the string for the data
selection.

//covert to universal time (utc)
localDateTimeFrom = dtpFrom.Value;
localDateTimeFrom =
 System.DateTime.Parse(localDateTimeFrom.ToString());
univDateTimeFrom = localDateTimeFrom.ToUniversalTime();
string tfrom = dtpFrom.Value.Year.ToString() + "-"
 + string.Format("{0:MM}",univDateTimeFrom.Month.ToString())
 + "-"
 + string.Format("{0:dd}",univDateTimeFrom.Day.ToString())
 + " "
 + string.Format("{0:HH}",univDateTimeFrom.Hour.ToString())
 + ":"
 +
string.Format("{0:mm}",univDateTimeFrom.Minute.ToString())
 + ":"
 +
string.Format("{0:ss}",univDateTimeFrom.Second.ToString());

//covert to universal time (utc)
localDateTimeTo = dtpTo.Value;
localDateTimeTo =
 System.DateTime.Parse(localDateTimeTo.ToString());
univDateTimeTo = localDateTimeTo.ToUniversalTime();
string tto = dtpTo.Value.Year.ToString() + "-"
 + string.Format("{0:MM}",univDateTimeTo.Month.ToString())
 + "-"
 + string.Format("{0:dd}",univDateTimeTo.Day.ToString())
 + " "
 + string.Format("{0:HH}",univDateTimeTo.Hour.ToString())
 + ":"
 + string.Format("{0:mm}",univDateTimeTo.Minute.ToString())
 + ":"
 + string.Format("{0:ss}",univDateTimeTo.Second.ToString());

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 30/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

4.1.3 Setting up the connection to the database and reading data

The following program code shows the connection setup to the database
and the access to the data.

OleDbConnection myConnection;
OleDbCommand myCommand;
OleDbDataAdapter myAdapter;

.
.
.
// Connection Archive Database
myConnection=new OleDbConnection(myConnectionString);
myCommand = new OleDbCommand(mySelectQuery)
myCommand.Connection = myConnection;
myAdapter = new OleDbDataAdapter (myCommand); //connect and access

Note:
In this example, the data is read in via OleDbDataAdapter. Alternatively,
OleDbDataReader can also be used. This does not influence the actual
transfer of the SQL query but the further data processing. By means of
OleDbDataAdapter the information can be directly provided in the
DataGridView without having to be concerned with the rows and columns.

4.1.4 Providing data for DataGrid and/or Crystal Report:

The sample program uses the DataGridView control element for tabular
display of the data and the CrystalReportViewer for formatted output of the
data. An object of the DataTable type is used as a data source for both
displays. The “myTableTags” DataTable object is supplied with the read
data of the SQL query by the OleDBDataAdapter by means of the “Fill()”
method.

DataTable myTableTags;
.
.
.
myTableTags = new DataTable();
.
.
.
myTableTags.TableName = "myTableTags";
myAdapter.Fill(myTableTags);

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 31/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

The data of the “myTableTags” DataTable are read row-by-row (data
record-by-data record), prepared for display and written into another
“myTableTagsModify” DataTable. The data of the modified
“myTableTagsModify” DataTable are used for display.

The following program code shows the data preparation:

In this case, the structure (columns) of the “myTableTagsModify” DataTable
has to be “manually” created. The following code shows the creation of the
first three columns of the “myTableTagsModify“ DataTable.

//===
//
//Adding Columns and Rows to Data Table myTableTagsModify
//
//===
DataColumn newColumn = new DataColumn ("localTimestamp",
 System.Type.GetType("System.String"));
newColumn.Caption = "localTimestamp";
newColumn.DefaultValue = string.Empty;
myTableTagsModify.Columns.Add(newColumn);
//
newColumn = new DataColumn ("RealValue",
 System.Type.GetType("System.String"));
newColumn.Caption = "RealValue";
newColumn.DefaultValue = string.Empty;
myTableTagsModify.Columns.Add(newColumn);
//
newColumn = new DataColumn ("Quality",
 System.Type.GetType("System.String"));
newColumn.Caption = "Quality";
newColumn.DefaultValue = string.Empty;
myTableTagsModify.Columns.Add(newColumn);
.
.
.
The following code shows the “filling” of the “myTableTagsModify”
DataTable. Compared to the “myTableTags” DataTable, the DataTable is
adapted as follows:

The time stamp is converted from universal time format (UTC) to local time
format for display.

The value of the archive tag is displayed with 3 places after the decimal
point.

The display of quality code and tag status is hexadecimal.

In this section, the “ValueName”, “localDateTimeFrom”, “localDateTimeTo”,
“univDateTimeFrom” and “univDateTimeTo” columns are additionally
created and supplied with values. These columns are accessed in the
report.

–

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 32/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

//modify DataTable
myTableTagsModify.Clear();
foreach (DataRow row in myTableTags.Rows)
{
DataRow newRow = myTableTagsModify.NewRow();
//covert to local time
localDateTime =
System.DateTime.Parse(row["Timestamp"].ToString());
localDateTime = localDateTime.ToLocalTime();
newRow["localTimestamp"] = localDateTime.ToString();
newRow["RealValue"] =
 (String.Format("{0:F3}",row["RealValue"])).PadLeft(20);
newRow["Quality"] = String.Format("0x{0:X}",
 row["Quality"]).PadLeft(10);
newRow["Flags"] = String.Format("0x{0:X}",row["Flags"]).PadLeft(10);
newRow["ValueID"] = row["ValueID"];
newRow["ValueName"] = szValueName;
newRow["localDateTimeFrom"] = localDateTimeFrom;
newRow["localDateTimeTo"] = localDateTimeTo;
newRow["univDateTimeFrom"] = univDateTimeFrom;
newRow["univDateTimeTo"] = univDateTimeTo;
myTableTagsModify.Rows.Add(newRow);
}//foreach(DataRow)

myGrid.DataSource = myTableTagsModify;

4.1.5 Data connection of the DataGrid:

The name of the DataTable to be displayed is assigned to the
“.DataSource” property of the DataGridView control element.

myGrid.DataSource = myTableTagsModify;

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 33/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

4.1.6 Data connection of the Crystal Report:

In this example, a separate report was generated for each report (Tag
Logging, Alarm Logging and User Archives). For each report, Visual Studio
creates a separate report class of the same name.

The figure below shows the reports created in this project and the existing
report classes.
Figure 4-1

The data pool of the generated instance is connected to DataTable via
SetDataSource.
In our example, there is only one Crystal Reports Viewer. Which report it is
to display is determined by the .ReportSource connection and the desired
report instance, here myDataReportAlarms.

// Activating Crystal Report
CRTagLogging myDataReportTags = new CRTagLogging();
myDataReportTags.SetDataSource(myTableTagsModify);
crystalReportViewer1.ReportSource = myDataReportTags;

4.1.7 Closing the connection to the archive

myConnection.Close();

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 34/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

4.1.8 Exporting the archive values to a CSV file

The “myTableTagsModify“ DataTable is read row-by-row
(data record-by-data record) and the content is written into a CSV file.
StreamWriter streamTagLogging = null;

string strLine = "";

string strExportFile = "";
.
.
.
//
//Loop through DataTable by DataRow
//
//text file open
strExportFile = String.Format("{0}\\{1}", txtExportPath.Text,
 txtExportFile.Text);
streamTagLogging = File.CreateText(strExportFile);
strLine = "strExportFile=" + txtExportFile.Text;
streamTagLogging.WriteLine(strLine);
streamTagLogging.WriteLine(myConnectionString);
strLine = String.Format("mySelectQuery=\"{0}\"", mySelectQuery);
streamTagLogging.WriteLine(strLine);
strLine = "localTimestamp; RealValue; Quality; Flags";
streamTagLogging.WriteLine(strLine);

foreach (DataRow row in myTableTagsModify.Rows)
{
 strLine = String.Format("{0}; {1}; {2}; {3}",
 row["localTimestamp"], row["RealValue"], row["Quality"],
 row["Flags"]);
 streamTagLogging.WriteLine(strLine);
}//DataRow
if (streamTagLogging != null)streamTagLogging.Close();

4.2 C# code for evaluating the alarms and messages

4.2.1 Definition for the connection setup

Proceed as described in section 4.1.

4.2.2 Definition for the data selection

The “mySelectQuery” “string” variable is initialized with the necessary
information for the actual SQL data query. The basic string structure for the
data selection is shown below:

string mySelectQuery = "ALARMVIEW:SELECT * FROM AlgViewDeu
 Where DateTime>'2007-08-10 12:00:00’
 AND DateTime<'2007-08-10 14:00:00’";

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 35/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

In the program, the objects of the “Time Interval” group (“dtpFrom” and
“dtpTo”) are used to initialize the string for the data selection.

Note:
The messages are stored in the Runtime database with the universal time
stamp (UTC). As in the data selection for the process archive values (see
4.1.2), the local time stamp is converted to the universal time stamp.

4.2.3 Setting up the connection to the database and reading data:

Proceed as described in section 4.1.1.

4.2.4 Providing data for DataGrid and/or Crystal Report:

Proceed as described in section 4.1.4.

The following program code shows how the status of a message can be
displayed as a string (as in WinCC Alarm Control) instead of a numerical
value. The numerical value of the status of a message is evaluated in a
switch statement and the corresponding string is assigned in the different
case branches. For information on the possible numerical values the
“status” of a message can take, please refer to the entry 24842903 or to the
WinCC Information System in “Working with WinCC > ANSI-C for Creating
Functions and Actions > ANSI-C function descriptions > Appendix >
Structure definitions > Structure definition MSG_RTDATA_STRUCT”.
//szState = String.Format("0x{0:X}", row["State"]).PadLeft(10);

iState = (short)(row["State"]);
switch (iState){
 case 1:
 szState = row["TxtCame"].ToString();
 break;

case 2:
 szState = row["TxtWent"].ToString();
 break;
 case 3:
 szState = row["TxtAck"].ToString();
 break;
 case 16://0x10 (Quit System)
 szState = row["TxtAck"].ToString();
 break;
 default:
 szState = String.Format("0x{0:X}", row["State"]).PadLeft(10);
 break;
}//switch row["State"]

newRow["State"] = szState;

4.2.5 Data connection of the DataGrid:

The name of the DataTable to be displayed is assigned to the
“.DataSource” property of the DataGridView control element.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 36/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

myGrid.DataSource = myTableAlarmsModify;

4.2.6 Data connection of the Crystal Report:

Proceed as described in section 4.1.6.
// Activating Crystal Report
CRAlarmLogging myDataReportAlarms = new CRAlarmLogging();
myDataReportAlarms.SetDataSource(myTableAlarmsModify);
crystalReportViewer1.ReportSource = myDataReportAlarms;

4.2.7 Closing the connection to the archive

myConnection.Close();

4.3 C# code for evaluating the User Archives

4.3.1 Definition for the connection setup

The “myConnectionString” “string” variable is initialized with the necessary
information for the connection setup to the archive database. The basic
string structure for the connection setup is shown below:

string myConnectionString =
 "Provider =SQLOLEDB; //Microsoft OleDBProvider
 Data Source = <Rechnername>\WINCC>;
 uid = <username>
 pwd = <password>
 Initial Catalog = <Data Source Name>“;

In the program, the objects of the “Connection” group (“txtSource”,
“txtCatalog”, “txtProvider”, “txtUid” and “txtPwd”) are used to initialize the
string for the connection setup.

4.3.2 Definition of the data selection

The “mySelectQuery” “string” variable is initialized with the necessary
information for the actual SQL data query. The string structure for the data
selection is shown below:

mySelectQuery = "SELECT iID,szName, iCount, fWeight FROM
UA#Products" ;

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 37/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

4.3.3 Setting up the connection to the database and reading data:

Proceed as described in section 4.1.1.

4.3.4 Providing data for DataGrid and/or Crystal Report:

Proceed as described in section 4.1.4.
// Providing data for data grid

myTableProducts.TableName = "myTableProducts";
myAdapter.Fill(myTableProducts);

4.3.5 Data connection of the DataGrid:

The name of the DataTable to be displayed is assigned to the
“.DataSource” property of the DataGridView control element

myGrid.DataSource = myTableProducts;

4.3.6 Data connection of the Crystal Report:

Proceed as described in section 4.1.6.

// Activating Crystal Report
CRProducts myDataProducts = new CRProducts ();
myDataProducts.SetDataSource(myTableProducts);
crystalReportViewer1.ReportSource = myDataProducts;

4.3.7 Closing the connection to the archive

myConnection.Close();

–

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 38/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

5 Creating a Report in Crystal Reports

The following table describes how to create a Crystal Report in a form in
MS Visual Studio 2005.
Table 5-1

No. Procedure

1 Adding DataSet
In this step, you create the Dataset via which the read-in data is provided to
the report:
• In Solution Explorer, right-click the context menu of the project and

select the “Add > New Item” menu command.
A window with a list of templates opens.

• Select the “DataSet” item.

Assign the final name.

• Select the “Add” button to create the DataSet in the project.

2 DataSet > Adding DataTable
• In Solution Explorer, double-click the previously created DataSet. The

Dataset Designer opens.
• Right-click in a “free” field within the Dataset Designer. The context

menu opens. In this window, select the “Add > DataTable” menu item.

An empty DataTable is provided.

• Adapt the name of the just created DataTable.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 39/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

No. Procedure

3 DataSet > DataTable > Adding Columns
• Use the right mouse button to select the DataTable header within the

DataSet. A context menu opens. Select the “Add > Column” menu item.
A new column is added.

• Adapt the column name according to the archive data to be read in
later. Create an associated DataTable column of the DataSet for each
column of a database table to be read in.

4 Inserting Crystal Report

• In Solution Explorer, right-click the context menu of the project and
select the “Add > New Item” menu command.
A window with a list of templates opens.

• Select the “Crystal Report” item.

• Assign the final name for the report. (This name is used for the report
class generation.)

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 40/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

No. Procedure
• Select the “Add” button to create the report in the project.

5 Crystal Report with DataSet > Connecting DataTable
• Opening report template

Open a report in the Report Designer. To do this, you can double-click
a “<Reportname>.rpt” report in Solution Explorer.

• Opening Database Expert
Right-click in a free section of the report. The context menu opens.
Select the “Database > Database Expert...” item. To open the Database
Expert, you can also use the “Crystal Reports > Database > Database
Expert…” menu item. The Database Expert opens.

• DataSet > Adding DataTable
In the “Available Data Sources” list, the previously set up DataSet can
be found in the “ADO.NET (XML)” item. Click the desired DataSet to
show the included DataTable. Double-click the DataTable or use the “>”
button to add the DataTable to the “Selected Tables” list.

From this moment on, the table columns are available for use in the
Crystal Reports Designer.

Access to WinCC Archives with a

C# Windows Application

 ID Number: 26697936

V1.1 06/12/2007 Page 41/41

C
op

yr
ig

ht
 ©

 S
ie

m
en

s
A

G
 2

00
7

A
ll

rig
ht

s
re

se
rv

ed

W
in

C
C

_C
op

ac
kC

sh
ar

p_
en

.d
oc

No. Procedure

6 Configuring Crystal Reports with available Database Fields
Click in a free section of the report. The context menu opens. Select the
“Field Explorer” menu item. You can also use the “Crystal Reports > Field
Explorer” menu command to open Field Explorer. In Field Explorer, the
previously connected DataTable is listed with the previously set up
columns. Using the mouse, you can now “drag” the columns to the report. A
column that is used in the report is marked with a green checkmark in “Field
Explorer > Database Fields”.

7 Inserting CrystalReportViewer into a Form
To use a Crystal Report in an application, insert the CrystalReportViewer
into a form of your application. The CrystalReportViewer is available in the
toolbox in “Crystal Reports > CrystalReportViewer”.
This ensures that previewing, printing and exporting the report is possible in
Runtime.

Notes:
• The class of the report to be displayed is only assigned to the

“.ReportSource” property of the inserted CrystalReportViewer object in
Runtime. (see, for example, 4.1.6).

• In the default setting, toolbar and status bar are not displayed. To
display toolbar and status bar, set the “.DisplayStatusbar” and
“DisplayToolbar” properties to the value “true”.

The toolbar (menu bar in the top area) provides functions for
exporting/printing/paging/zooming and searching. The status bar
(display in the footer area) provides information on page and zoom
factor.

