Legal information

Warning notice system
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

⚠️ DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

⚠️ WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

⚠️ CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

⚠️ WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.
Table of contents

1 Safety information ... 5
 1.1 General safety instructions .. 5
 1.2 Handling electrostatic sensitive devices (ESD) ... 10
2 General .. 11
3 Mechanical installation ... 13
4 Electrical installation .. 15
5 Technical specifications ... 21
1.1 General safety instructions

WARNING

Electric shock and danger to life due to other energy sources

Touching live components can result in death or serious injury.

- Only work on electrical equipment if you are appropriately qualified.
- Always observe the country-specific safety rules for all work.

Generally, the following steps apply when establishing safety:

1. Prepare for disconnection. Notify all those who will be affected by the procedure.
2. Isolate the drive system from the power supply and take measures to prevent it being switched back on again.
3. Wait until the discharge time specified on the warning labels has elapsed.
4. Check that there is no voltage between any of the power connections, and between any of the power connections and the protective conductor connection.
5. Check that every auxiliary circuit is de-energized.
6. Ensure that the motors cannot move.
7. Identify all other dangerous energy sources, e.g. compressed air, hydraulic systems or water. Switch the energy sources to a safe state.
8. Check that the correct drive system is completely locked.

After you have completed the work, restore the operational readiness by following the above steps in the reverse order.

WARNING

Electric shock due to connection to an unsuitable power supply

When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage that might result in serious injury or death.

- Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV (Protective Extra Low Voltage) output voltages for all connections and terminals of the electronics modules.
Safety information
1.1 General safety instructions

WARNING

Electric shock due to equipment damage

Improper handling may cause damage to equipment. For damaged devices, hazardous voltages can be present at the enclosure or at exposed components; if touched, this can result in death or severe injury.

- Ensure compliance with the limit values specified in the technical data during transport, storage and operation.
- Do not use any damaged devices.

WARNING

Electric shock due to unconnected cable shield

Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected cable shields.

- Connect cable shields and unused conductors of power cables (e.g. brake conductors) at least on one side to the grounded housing potential.

WARNING

Electric shock if there is no ground connection

For missing or incorrectly implemented protective conductor connection for devices with protection class I, high voltages can be present at open, exposed parts, which when touched, can result in death or severe injury.

- Ground the device in compliance with the applicable regulations.

WARNING

Arcing when a plug connection is opened during operation

Opening a plug connection when a system is in operation can result in arcing that may cause serious injury or death.

- Only open plug connections when the equipment is in a voltage-free state, unless it has been explicitly stated that they can be opened in operation.

NOTICE

Property damage due to loose power connections

Insufficient tightening torques or vibration can result in loose power connections. This can result in damage due to fire, device defects or malfunctions.

- Tighten all power connections to the prescribed torque.
- Check all power connections at regular intervals, particularly after equipment has been transported.
WARNING

Spread of fire from built-in devices

In the event of fire outbreak, the enclosures of built-in devices cannot prevent the escape of fire and smoke. This can result in serious personal injury or property damage.

- Install built-in units in a suitable metal cabinet in such a way that personnel are protected against fire and smoke, or take other appropriate measures to protect personnel.
- Ensure that smoke can only escape via controlled and monitored paths.

WARNING

Failure of pacemakers or implant malfunctions due to electromagnetic fields

Electromagnetic fields (EMF) are generated by the operation of electrical power equipment, such as transformers, converters, or motors. People with pacemakers or implants in the immediate vicinity of this equipment are at particular risk.

- If you have a heart pacemaker or implant, maintain a minimum distance of 2 m from electrical power equipment.

WARNING

Unexpected movement of machines caused by radio devices or mobile phones

When radio devices or mobile phones with a transmission power > 1 W are used in the immediate vicinity of components, they may cause the equipment to malfunction. Malfunctions may impair the functional safety of machines and can therefore put people in danger or lead to property damage.

- If you come closer than around 2 m to such components, switch off any radio devices or mobile phones.
- Use the "SIEMENS Industry Online Support App" only on equipment that has already been switched off.

WARNING

Motor fire in the event of insulation overload

There is a greater load on the motor insulation as result of a ground fault in an IT system. If the insulation fails, it is possible that death or severe injury can occur as a result of smoke and fire.

- Use a monitoring device that signals an insulation fault.
- Correct the fault as quickly as possible so the motor insulation is not overloaded.
Safety information

1.1 General safety instructions

WARNING

Fire due to inadequate ventilation clearances

Inadequate ventilation clearances can cause overheating of components with subsequent fire and smoke. This can cause severe injury or even death. This can also result in increased downtime and reduced service lives for devices/systems.

- Ensure compliance with the specified minimum clearance as ventilation clearance for the respective component.

WARNING

Unrecognized dangers due to missing or illegible warning labels

Dangers might not be recognized if warning labels are missing or illegible. Unrecognized dangers may cause accidents resulting in serious injury or death.

- Check that the warning labels are complete based on the documentation.
- Attach any missing warning labels to the components, where necessary in the national language.
- Replace illegible warning labels.

NOTICE

Device damage caused by incorrect voltage/insulation tests

Incorrect voltage/insulation tests can damage the device.

- Before carrying out a voltage/insulation check of the system/machine, disconnect the devices as all converters and motors have been subject to a high-voltage test by the manufacturer, and therefore it is not necessary to perform an additional test within the system/machine.

WARNING

Unexpected movement of machines caused by inactive safety functions

Inactive or non-adapted safety functions can trigger unexpected machine movements that may result in serious injury or death.

- Observe the information in the appropriate product documentation before commissioning.
- Carry out a safety inspection for functions relevant to safety on the entire system, including all safety-related components.
- Ensure that the safety functions used in your drives and automation tasks are adjusted and activated through appropriate parameterizing.
- Perform a function test.
- Only put your plant into live operation once you have absolutely guaranteed that the functions relevant to safety are operating correctly.
Note

Important safety instructions for Safety Integrated functions

If you want to use Safety Integrated functions, you must observe the safety instructions in the Safety Integrated manuals.
1.2 Handling electrostatic sensitive devices (ESD)

Electrostatic sensitive devices (ESD) are individual components, integrated circuits, modules or devices that may be damaged by either electric fields or electrostatic discharge.

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damage through electric fields or electrostatic discharge</td>
</tr>
<tr>
<td>Electric fields or electrostatic discharge can cause malfunctions through damaged individual components, integrated circuits, modules or devices.</td>
</tr>
<tr>
<td>- Only pack, store, transport and send electronic components, modules or devices in their original packaging or in other suitable materials, e.g. conductive foam rubber or aluminum foil.</td>
</tr>
<tr>
<td>- Only touch components, modules and devices when you are grounded by one of the following methods:</td>
</tr>
<tr>
<td>- Wearing an ESD wrist strap</td>
</tr>
<tr>
<td>- Wearing ESD shoes or ESD grounding straps in ESD areas with conductive flooring</td>
</tr>
<tr>
<td>- Only place electronic components, modules or devices on conductive surfaces (table with ESD surface, conductive ESD foam, ESD packaging, ESD transport container).</td>
</tr>
</tbody>
</table>

The necessary ESD protective measures are clearly illustrated in the following diagram:

- a = conductive floor surface
- b = ESD table
- c = ESD shoes
- d = ESD overall
- e = ESD wristband
- f = cabinet ground connection
- g = contact with conductive flooring

```
Figure 1-1 ESD protective measures
```
Description

The TB30 Terminal Board supports the addition of digital inputs/digital outputs and analog inputs/analog outputs to the Control Unit.

The following are located on the TB30 Terminal Board:

- Power supply for digital inputs/digital outputs
- 4 digital inputs
- 4 digital outputs
- 2 analog inputs
- 2 analog outputs

The TB30 Terminal Board plugs into the option slot on the Control Unit.

A shield connection for the signal cable shield is located on the Control Unit.

![Figure 2-1 Terminal Board TB30](image)
Mechanical installation

NOTICE

Damage or malfunctions to the Option Board by inserting and withdrawing in operation

Withdrawing and inserting Option Boards during operation can damage them or cause the Option Boards to malfunction.
- Only withdraw or insert Option Boards when the Control Unit is in a current-free state.

Figure 3-1 Installing an Option Board on a CU320-2 DP

1. release and remove the protective cover

2. Insert and secure the Option Board

Torx T10
Fixing screws M3/0.8 Nm
Mechanical installation

Figure 3-2 Installing an Option Board on a CU320-2 PN

1. Release and remove the protective cover

2. Insert and secure the Option Board

Torx T10
Fixing screws M3/0.8 Nm
Electrical installation

Interface overview

Figure 4-1 Interface description of the TB30

X424
Power supply for Digital outputs

X481
Digital inputs/outputs

X482
Analog inputs/outputs
Connection overview

Figure 4-2 Connection overview TB30
X424 power supply, digital outputs

Table 4-1 Terminal block X424

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Function</th>
<th>Technical specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Power supply</td>
<td>Voltage: 24 VDC (20.4 V – 28.8 V)</td>
</tr>
<tr>
<td>+</td>
<td>Power supply</td>
<td>Current consumption: Max. 4 A (per digital output max. 0.5 A)</td>
</tr>
<tr>
<td>M</td>
<td>Ground</td>
<td>Max. current via jumper in connector: 20 A at 55° C</td>
</tr>
<tr>
<td>M</td>
<td>Ground</td>
<td>Max. connectable cross-section: 2.5 mm²</td>
</tr>
</tbody>
</table>

Note
The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

This power supply is required for the digital outputs only.
The electronics power supply and the power supply for the analog inputs/outputs are taken from the option slot of the Control Unit.

Note
The power supply of the digital outputs and the electronics power supply of the Control Unit are optically isolated.

Note
If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.
Digital inputs/outputs X481

Table 4-2 Terminal strip X481

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Designation 1)</th>
<th>Technical specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DI 0</td>
<td>Voltage: -3 ... 30 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current consumption, typical: 10 mA at 24 VDC</td>
</tr>
<tr>
<td>2</td>
<td>DI 1</td>
<td>Ground reference: X424.M</td>
</tr>
<tr>
<td>3</td>
<td>DI 2</td>
<td>Input delay:</td>
</tr>
<tr>
<td>4</td>
<td>DI 3</td>
<td>- For "0" to "1": 20 µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for "1" to "0": 100 µs</td>
</tr>
<tr>
<td>5</td>
<td>DO 0</td>
<td>Level (incl. ripple):</td>
</tr>
<tr>
<td>6</td>
<td>DO 1</td>
<td>- High level: 15 ... 30 V</td>
</tr>
<tr>
<td>7</td>
<td>DO 2</td>
<td>Low level: -3 ... 5 V</td>
</tr>
<tr>
<td>8</td>
<td>DO 3</td>
<td>Voltage: 24 V DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. load current per output: 500 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ground reference: X424.M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continued-short-circuit-proof</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output delay:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- for "0" to "1": Typ. 150 µs at 0.5 A resistive load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (500 µs maximum)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For "1" to "0": Typically 50 µs at 0.5 A resistive load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switching frequency:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For resistive load: Max. 100 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For inductive load: Max. 0.5 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For lamp load: Max. 10 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum lamp load: 5 W</td>
</tr>
</tbody>
</table>

Max. connectable cross-section: 0.5 mm²

1) DI: digital input, DO: digital output

Note

An open input is interpreted as "low".

The power supply and the digital inputs/outputs are optically isolated from the Control Unit.

Note

If a the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.
Analog inputs/outputs X482

Table 4-3 Terminal strip X482

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Designation</th>
<th>Technical specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AI 0+</td>
<td>Analog inputs (AI)</td>
</tr>
<tr>
<td>2</td>
<td>AI 0-</td>
<td>Voltage: -10 … +10 V; R: 65 kΩ</td>
</tr>
<tr>
<td>3</td>
<td>AI 1+</td>
<td>Common mode range: ±30 V</td>
</tr>
<tr>
<td>4</td>
<td>AI 1-</td>
<td>Resolution: 13 bits + sign</td>
</tr>
<tr>
<td>5</td>
<td>AO 0+</td>
<td>Analog outputs (AO)</td>
</tr>
<tr>
<td>6</td>
<td>AO 0-</td>
<td>Voltage range: -10 … +10 V</td>
</tr>
<tr>
<td>7</td>
<td>AO 1+</td>
<td>Load current: max. -3 … +3 mA</td>
</tr>
<tr>
<td>8</td>
<td>AO 1-</td>
<td>Resolution: 11 bits + sign</td>
</tr>
</tbody>
</table>

Continuous short-circuit proof

Max. connectable cross-section: 0.5 mm²

1) AI: Analog input, AO: Analog output

Note

Permissible voltage values

In order to avoid incorrect results of the analog-digital conversion, the analog differential voltage signals can have a maximum offset voltage of +/-30 V with respect to ground potential.

Note

An open input is interpreted as approximately "0 V".

The power supply of the analog inputs/outputs is taken from the option slot of the Control Unit and not from X424.

The shield is connected to the Control Unit.
Shield connection of the TB30 on the Control Unit CU320

The permissible bending radii for the cables must not be exceeded when the cables are being installed.

Figure 4-3 TB30 shield connection
Technical specifications

General technical data

Table 5-1 General technical data

| Product standard | EN 61800-5-1 |

Technical data

Table 5-2 Technical data

<table>
<thead>
<tr>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic power supply</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>V<sub>DC</sub></td>
</tr>
<tr>
<td>Current via the option slot of the CU (without digital outputs)</td>
<td>A<sub>ADC</sub></td>
</tr>
<tr>
<td>Power loss</td>
<td>W</td>
</tr>
<tr>
<td>Response time</td>
<td>The reaction time of digital inputs/outputs and analog inputs/outputs depends on the evaluation on the Control Unit (see function diagrams FP 9100 - FP 9106) in the SINAMICS List Manual.</td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
</tr>
</tbody>
</table>
Additional information

Siemens:
www.siemens.com

Industry Online Support (service and support):
www.siemens.com/online-support

IndustryMall:
www.siemens.com/industrymall

Siemens AG
Process Industries and Drives
Large Drives
Postbox 4743
90025 Nuremberg
Germany