
SIMOTION

SIMOTION SCOUT
SIMOTION LAD/FBD

Programming and Operating Manual

Valid as of version 5.1

07/2017
A5E33438246B

Preface

Fundamental safety
instructions 1

Description 2

LAD/FBD editor 3

LAD/FBD programming 4

Functions 5

Commissioning (software) 6
Debugging Software / Error
Handling 7

Application Examples 8

Appendix A

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in
this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

A5E33438246B
Ⓟ 06/2017 Subject to change

Copyright © Siemens AG 2017.
All rights reserved

Preface

Scope
This document is part of the SIMOTION Programming documentation package.

This document applies to SIMOTION SCOUT, the engineering system of the SIMOTION
product family in product version V5.1 in conjunction with:

● A SIMOTION device with the following versions of a SIMOTION Kernel:

– V5.1

– V4.5

– V4.4

– V4.3

– V4.2

– V4.1 1

– V4.0 1

– V3.2 1

1 V4.5 is the last product version of SIMOTION SCOUT that will support these versions of
the SIMOTION Kernel.

● The relevant version of the following SIMOTION Technology Packages, depending on the
kernel:

– Cam

– Path (Kernel as of V4.1)

– Cam_ext

– TControl

Information in this manual
The following is a list of chapters included in this manual along with a description of the
information presented in each chapter.

● Description (Chapter 1)
This chapter shortly defines the LAD and FBD programming languages.

● LAD/FBD Editor (Chapter 2)
In this chapter you can learn about the various operator control options in the LAD/FBD
Editor.

● Software Programming (Chapter 3)
This chapter shows how to proceed during programming.

● Functions (Chapter 4)
This chapter describes how to apply individual LAD/FBD commands and gives an outline
of their function.

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 3

● Debugging Software / Error Handling (Chapter 5)
This chapter describes how to test a program and find errors in created programs.

● Application Examples (Chapter 6)
You will be given an introduction to the LAD and FBD programming languages using some
simple examples.

● Appendix

– Key combinations
This appendix contains the keystroke combinations for frequently used commands.

● Index
Keyword index for locating information.

SIMOTION Documentation
An overview of the SIMOTION documentation can be found in the SIMOTION Documentation
Overview document.

This documentation is included as electronic documentation in the scope of delivery of
SIMOTION SCOUT. It comprises ten documentation packages.

The following documentation packages are available for SIMOTION product level V5.1:

● SIMOTION Engineering System Handling

● SIMOTION System and Function Descriptions

● SIMOTION Service and Diagnostics

● SIMOTION IT

● SIMOTION Programming

● SIMOTION Programming - References

● SIMOTION C

● SIMOTION P

● SIMOTION D

● SIMOTION Supplementary Documentation

Hotline and Internet addresses

SIMOTION at a glance
We have compiled an overview page from our range of information about SIMOTION with the
most important information on frequently asked topics - which can be opened with only one
click.

Whether beginner or experienced SIMOTION user – the most important downloads, manuals,
tutorials, FAQs, application examples, etc. can be found at

https://support.industry.siemens.com/cs/ww/en/view/109480700

Preface

SIMOTION LAD/FBD
4 Programming and Operating Manual, 07/2017, A5E33438246B

Additional information
Click the following link to find information on the following topics:

● Documentation overview

● Additional links to download documents

● Using documentation online (find and search manuals/information)

https://support.industry.siemens.com/cs/ww/en/view/109479653

My Documentation Manager
Click the following link for information on how to compile documentation individually on the
basis of Siemens content and how to adapt it for the purpose of your own machine
documentation:

https://support.industry.siemens.com/My/ww/en/documentation

Training
Click the following link for information on SITRAIN - Siemens training courses for automation
products, systems and solutions:

http://www.siemens.com/sitrain

FAQs
Frequently Asked Questions can be found in SIMOTION Utilities & Applications, which are
included in the scope of delivery of SIMOTION SCOUT, and in the Service&Support pages in
Product Support:

https://support.industry.siemens.com/cs/de/en/ps/14505/faq

Technical support
Country-specific telephone numbers for technical support are provided on the Internet under
Contact:

https://support.industry.siemens.com/cs/ww/en/sc/2090

Preface

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 5

Preface

SIMOTION LAD/FBD
6 Programming and Operating Manual, 07/2017, A5E33438246B

Table of contents

Preface...3

1 Fundamental safety instructions...17

1.1 General safety instructions...17

1.2 Industrial security...18

1.3 Danger to life due to software manipulation when using removable storage media..............19

2 Description..21

2.1 Description...21

2.2 What is LAD?...21

2.3 What is FBD?...22

2.4 Unit, program organization unit (POU) and program source..22

3 LAD/FBD editor..23

3.1 The LAD/FBD editor in the workbench...23

3.2 Maximizing working area and detail view...24

3.3 Enlarging or reducing the content of the working area...24

3.4 Bringing the LAD/FBD editor to the foreground...24

3.5 Hiding and displaying the declaration table..25

3.6 Enlarging/reducing the declaration table..25

3.7 Operation...25
3.7.1 Operating the LAD/FBD editor...25
3.7.2 Menu bar..26
3.7.3 Context menu...26
3.7.4 Toolbars...26
3.7.5 Key combinations...27
3.7.6 Drag&Drop of variables..27
3.7.7 Drag&drop from the declaration tables..28
3.7.8 Drag&drop within the declaration table..28
3.7.9 Using Drag&Drop for LAD/FBD elements..28
3.7.10 Command call drag&drop..29
3.7.11 Drag&Drop of command names...29
3.7.12 Using drag&drop for elements in a network...29
3.7.13 Using drag&drop for functions and function blocks from other sources.................................30
3.7.14 Automatic completion (Autocomplete)...30

3.8 Settings..33
3.8.1 Settings in the LAD/FBD editor..33
3.8.2 Activating automatic symbol check and type update...34
3.8.3 Example of a type update..36
3.8.4 Example of a symbol check...38

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 7

3.8.5 Deactivating automatic symbol check and type update...38
3.8.6 Perform symbol check and type update at a specified time...39
3.8.7 Setting the data type list of the declaration table...39
3.8.8 Changing fonts...40
3.8.9 Changing colors...40
3.8.10 Calling online help in the LAD/FBD editor..41

4 LAD/FBD programming..43

4.1 Programming software...43

4.2 Managing LAD/FBD source file..43
4.2.1 Inserting a new LAD/FBD source file...43
4.2.2 Opening an existing LAD/FBD source file..46
4.2.3 Saving and compiling a LAD/FBD source file..46
4.2.4 Closing a LAD/FBD source file...47
4.2.5 Cut/copy/delete operations in a LAD/FBD source file..47
4.2.6 Inserting a cut or copied LAD/FBD source file...48
4.2.7 Know-how protection for LAD/FBD source files...48

4.3 Exporting and importing LAD/FBD source files..48
4.3.1 Exporting a LAD/FBD source file in XML format..48
4.3.2 Importing LAD/FBD source files as XML data..49
4.3.3 Exporting a POU in XML format...49
4.3.4 Importing a POU from XML format...50
4.3.5 Exporting a LAD/FBD source file in EXP format..50
4.3.6 Importing EXP data into a LAD/FBD source file...51

4.4 LAD/FBD source files - defining properties..51
4.4.1 Defining the properties of a LAD/FBD source file..51
4.4.2 Renaming a LAD/FBD source file..53
4.4.3 Making settings for the compiler..53
4.4.3.1 Global compiler settings...53
4.4.3.2 Local compiler settings...54

4.5 Managing LAD/FBD programs...59
4.5.1 Inserting a new LAD/FBD program..59
4.5.2 Opening an existing LAD/FBD program...61
4.5.3 Defining the order of the LAD/FBD programs in the LAD/FBD source file.............................62
4.5.4 Copying the LAD/FBD program...62
4.5.5 Saving and compiling a LAD/FBD program...63
4.5.6 Closing a LAD/FBD program..63
4.5.7 Deleting the LAD/FBD program...64

4.6 LAD/FBD programs - defining properties...64
4.6.1 Renaming a LAD/FBD program...65
4.6.2 Changing the LAD/FBD program creation type..66

4.7 Printing source files and programs...66
4.7.1 Printing a declaration table...67
4.7.2 Printing a network area..68
4.7.3 Printing comments...68
4.7.4 Defining print variants..68
4.7.5 Placing networks..69
4.7.6 Blank pages...69

4.8 LAD/FBD networks and elements..69

Table of contents

SIMOTION LAD/FBD
8 Programming and Operating Manual, 07/2017, A5E33438246B

4.8.1 Inserting networks..70
4.8.2 Selecting networks...71
4.8.3 Numbering the networks..71
4.8.4 Enter title/comment..72
4.8.5 Showing/hiding a jump label..73
4.8.6 Copying/cutting/pasting networks..73
4.8.7 Undo/redo actions..74
4.8.8 Deleting networks...74

4.9 Displaying LAD/FBD elements...74
4.9.1 LAD diagram..74
4.9.2 Meaning of EN/ENO...76
4.9.3 FBD diagram..77
4.9.4 Converting between LAD and FBD representation..78

4.10 Editing LAD/FBD elements..80
4.10.1 Inserting LAD/FBD elements..80
4.10.2 Syntax check in LAD..80
4.10.3 Selecting LAD/FBD elements...81
4.10.4 Copy/cut/delete operations in LAD/FBD elements...82
4.10.5 LAD/FBD elements - defining parameters (labeling)..82
4.10.6 Labeling LAD/FBD elements with the symbol input help dialog...82
4.10.7 Setting the LAD/FBD element display..83
4.10.8 Select box type with empty box..83
4.10.8.1 Specify the box type via the editable combo box...84
4.10.8.2 Specify box type via call assistance...86
4.10.9 Setting the call parameter for an individual parameter...88
4.10.10 Setting call parameters..89

4.11 Command library..91
4.11.1 LAD/FBD functions in the command library...91
4.11.2 Inserting elements/functions from the command library...92
4.11.3 Description of PLCopen blocks..92
4.11.4 Special features of the command library..94

4.12 General information about variables and data types ...94
4.12.1 Overview of variable types...94
4.12.2 Scope of the declarations...96
4.12.3 Rules for identifiers..97
4.12.4 Frequently used arrays in declarations..98
4.12.4.1 Reference (as of kernel V4.5)..98
4.12.4.2 Array length and array element..98
4.12.4.3 Initial value...99
4.12.4.4 Comments..101
4.12.5 Sorting in the declaration tables...101

4.13 Data Types ..103
4.13.1 Elementary data types...103
4.13.1.1 Value range limits of elementary data types..105
4.13.1.2 General data types...106
4.13.1.3 Elementary system data types...106
4.13.2 User-defined data types...107
4.13.2.1 Defining user-defined data types (UDT)...107
4.13.2.2 Scope of the data type declaration...107
4.13.2.3 Defining structures...107

Table of contents

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 9

4.13.2.4 Defining enumerations...108
4.13.3 Technology object data types..109
4.13.3.1 Description of the technology object data types...109
4.13.3.2 Inheritance of the properties for axes...110
4.13.4 System data types..111

4.14 Variables..111
4.14.1 Keywords for variable types...111
4.14.2 Defining variables...112
4.14.2.1 Use of global device variables...113
4.14.2.2 Declaring a unit variable in the source file...114
4.14.2.3 Declaring local variables..115
4.14.2.4 Defining variables in the Variable declaration dialog box ("on-the-fly" variable

declaration)..117
4.14.2.5 Pasting pragma lines during variable definition..120
4.14.3 Time of the variable initialization ...123
4.14.3.1 Initialization of retentive global variables..124
4.14.3.2 Initialization of non-retentive global variables..126
4.14.3.3 Initialization of local variables...127
4.14.3.4 Initialization of static program variables...128
4.14.3.5 Initialization of instances of function blocks (FBs) or classes..129
4.14.3.6 Initialization of system variables of technology objects..130
4.14.3.7 Version ID of global variables and their initialization during download................................131
4.14.4 Variables and HMI devices..132

4.15 General references (as of kernel V4.5)..136
4.15.1 Defining general references...136
4.15.2 Forming general references...137
4.15.3 Operations with general references...138

4.16 Access to inputs and outputs (process image, I/O variables) ...140
4.16.1 Overview of access to inputs and outputs..140
4.16.2 Important features of direct access and process image access..141
4.16.3 Direct access and process image of cyclic tasks...144
4.16.3.1 Address range of the SIMOTION devices..146
4.16.3.2 Rules for I/O addresses for direct access and the process image of the cyclical tasks.......147
4.16.3.3 Creating I/O variables for direct access or process image of cyclic tasks...........................148
4.16.3.4 Syntax for entering I/O addresses..150
4.16.3.5 Possible data types of I/O variables...151
4.16.3.6 Detailed status of the I/O variables (as of Kernel V4.2)...151
4.16.4 Access to fixed process image of the BackgroundTask...153
4.16.4.1 Common process image (as of Kernel V4.2)...155
4.16.4.2 Separate process image (up to Kernel V4.1)...157
4.16.4.3 Absolute access to the fixed process image of the BackgroundTask (absolute PI access)....159
4.16.4.4 Syntax for the identifier for an absolute process image access...160
4.16.4.5 Defining symbolic access to the fixed process image of the BackgroundTask....................161
4.16.4.6 Possible data types for symbolic PI access...162
4.16.4.7 Example: Defining symbolic access to the fixed process image of the BackgroundTask....162
4.16.4.8 Creating an I/O variable for access to the fixed process image of the BackgroundTask.....163
4.16.5 Accessing I/O variables..163

4.17 Connections to other program source files or libraries...164
4.17.1 Defining connections..165
4.17.1.1 Procedure for defining connections to other program sources (units)165

Table of contents

SIMOTION LAD/FBD
10 Programming and Operating Manual, 07/2017, A5E33438246B

4.17.1.2 Procedure for defining connections to libraries..166
4.17.2 Using the name space...166

4.18 Subroutine..167
4.18.1 Inserting a function (FC) or function block (FB)...169
4.18.2 Inserting a subroutine call into the LAD/FBD program and assigning parameters..............170
4.18.2.1 Overview of parameters for..171
4.18.3 Example: Function (FC)...174
4.18.3.1 Creating and programming the function (FC) ..175
4.18.3.2 Subroutine call of function (FC)..176
4.18.3.3 Opening the function (FC) directly from the subroutine call...179
4.18.4 Example: Function block (FB)..179
4.18.4.1 Creating and programming the function block (FB)...180
4.18.4.2 Subroutine call of function block (FB)..181
4.18.4.3 Creating a function block instance...181
4.18.4.4 Programming the subroutine call of the function block..183
4.18.4.5 Opening the function block (FB) directly from the subroutine call..186
4.18.4.6 Accessing the output parameters of the function block retrospectively...............................187
4.18.5 Example: Method...188
4.18.5.1 Example: Methods...188
4.18.5.2 Subprogram call of the method..189
4.18.5.3 Creating an instance for the class or the function block...189
4.18.5.4 Programming the subprogram call of the method..190
4.18.5.5 Opening the method directly from the subprogram call...191
4.18.6 Limitations with advance signal switching..192
4.18.7 Interface adjustment with FB/FC..193

4.19 Reference data...197
4.19.1 Cross reference list..197
4.19.1.1 Generating and updating a cross-reference list...197
4.19.1.2 Content of the cross-reference list...198
4.19.1.3 Working with a cross-reference list..200
4.19.1.4 Filtering the cross-reference list...200
4.19.2 Program structure..201
4.19.2.1 Content of the program structure...202
4.19.3 Code attributes...203
4.19.3.1 Code attribute contents..203
4.19.4 Reference to variables...203

4.20 Find and replace..205
4.20.1 Find in LAD/FBD unit or LAD/FBD program...205
4.20.2 Find and replace in LAD/FBD unit or LAD/FBD program...206

4.21 Execution order..208
4.21.1 Non-optimized execution order..208
4.21.2 Optimized execution order...209

5 Functions..211

5.1 LAD bit logic instructions..211
5.1.1 ---| |--- NO contact..212
5.1.2 ---| / |--- NC contact..212
5.1.3 XOR Linking EXCLUSIVE OR...213
5.1.4 ---|NOT|--- Invert signal state...214
5.1.5 ---() Relay coil, output..214

Table of contents

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 11

5.1.6 ---(#)--- Connector (LAD)..215
5.1.7 ---(R) Reset output (LAD)...216
5.1.8 ---(S) Set output (LAD)...217
5.1.9 RS Prioritize reset flipflop...217
5.1.10 SR Prioritize set flipflop..218
5.1.11 --(N)-- Scan edge 1 -> 0 (LAD)...219
5.1.12 --(P)-- Scan edge 0 -> 1 (LAD)...220
5.1.13 NEG edge detection (falling)..221
5.1.14 POS edge detection (rising)...222
5.1.15 Open branch..222
5.1.16 Close branch..223

5.2 FBD bit logic instructions..224
5.2.1 & AND box...225
5.2.2 >=1 OR box..226
5.2.3 XOR EXCLUSIVE OR box...226
5.2.4 --| Inserting a binary input..227
5.2.5 --o| Negating a binary input..227
5.2.6 [=] Assignment...228
5.2.7 [#] Connector (FBD)...229
5.2.8 [R] Reset assignment (FBD)..230
5.2.9 [S] Set assignment (FBD)..231
5.2.10 RS Prioritize reset flipflop...232
5.2.11 SR Prioritize set flipflop..233
5.2.12 [N] Scan edge 1 -> 0 (FBD)..234
5.2.13 [P] Scan edge 0 -> 1 (FBD)..234
5.2.14 NEG edge detection (falling)..235
5.2.15 POS edge detection (rising)...236

5.3 Relational operators...237
5.3.1 Overview of comparison operations...237
5.3.2 CMP Compare numbers..237

5.4 Conversion instructions..240
5.4.1 TRUNC Generate integer...240
5.4.2 Generating numeric data types and bit data types...241
5.4.3 Generating date and time...245

5.5 Edge detection...245
5.5.1 Detection of rising edge R_TRIG...246
5.5.2 Detection of falling edge F_TRIG...246

5.6 Counter operations...247
5.6.1 Overview of counter operations...247
5.6.2 CTU up counter..247
5.6.3 CTU_DINT up counter..248
5.6.4 CTU_UDINT up counter...249
5.6.5 CTD down counter...250
5.6.6 CTD_DINT down counter...251
5.6.7 CTD_UDINT down counter..251
5.6.8 CTUD up/down counter..252
5.6.9 CTUD_DINT up/down counter...254
5.6.10 CTUD_UDINT up/down counter...255

5.7 Jump instructions...256

Table of contents

SIMOTION LAD/FBD
12 Programming and Operating Manual, 07/2017, A5E33438246B

5.7.1 Overview of jump operations..256
5.7.2 ---(JMP) Jump in block if 1 (conditional)...256
5.7.3 ---(JMPN) Jump in block if 0 (conditional)..257
5.7.4 LABEL Jump label..257

5.8 Non-binary logic...258

5.9 Arithmetic operators...259

5.10 Numeric standard functions...260
5.10.1 General numeric standard functions..261
5.10.2 Logarithmic standard functions..261
5.10.3 Trigonometric standard functions...262

5.11 Move..263
5.11.1 MOVE Transfer value...263

5.12 Shifting operations...263
5.12.1 Overview of shifting operations..263
5.12.2 SHL Shift bit to the left...264
5.12.3 SHR Shift bit to the right...264

5.13 Rotating operations..265
5.13.1 Overview of rotating operations...265
5.13.2 ROL Rotate bit to the left..265
5.13.3 ROR Rotate bit to the right...266

5.14 Program control instructions..268
5.14.1 Calling up an empty box...268
5.14.2 RET Jump back..268

5.15 Timer instructions...269
5.15.1 TP pulse...269
5.15.2 TON ON delay..270
5.15.3 TOF OFF delay..271

5.16 Selection functions...273
5.16.1 SEL Binary selection..273
5.16.2 MAX Maximum function...274
5.16.3 MIN Minimum function...274
5.16.4 LIMIT Limiting function...275
5.16.5 MUX Multiplex function..276

6 Commissioning (software)..277

6.1 Commissioning...277

6.2 Assigning programs to a task...277

6.3 Execution levels and tasks in SIMOTION..279

6.4 Task start sequence...280

6.5 Downloading programs to the target system..281

7 Debugging Software / Error Handling...283

7.1 Operating modes for program testing..283
7.1.1 Modes of the SIMOTION devices..283
7.1.2 Important information about the life-sign monitoring..285
7.1.3 Life-sign monitoring parameters...287

Table of contents

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 13

7.2 Editing program sources in online mode..287

7.3 Symbol Browser...288
7.3.1 Characteristics...288
7.3.2 Using the symbol browser..289

7.4 Watch tables..292
7.4.1 Monitoring variables in watch table..292

7.5 Variable status...293

7.6 Trace..295

7.7 Program run...295
7.7.1 Program run: Display code location and call path..295
7.7.2 Program run parameters..296
7.7.3 Program run toolbar...296

7.8 Program status (monitoring program execution)..297
7.8.1 Starting and stopping program status (monitoring program execution)...............................298

7.9 Breakpoints..302
7.9.1 General procedure for setting breakpoints...302
7.9.2 Setting the debug mode...303
7.9.3 Define the debug task group..304
7.9.4 Setting breakpoints..306
7.9.5 Breakpoints toolbar..307
7.9.6 Defining the call path for a single breakpoint...309
7.9.7 Defining the call path for all breakpoints..311
7.9.8 Activating breakpoints..312
7.9.9 Display call stack..315
7.9.10 Resuming program execution..315
7.9.11 Resuming program execution in single steps (as of Kernel V4.4).......................................316

7.10 Task status function bar...317

7.11 Project comparison..318

8 Application Examples...319

8.1 Examples...319

8.2 Creating sample programs...319

8.3 Blinker program..319
8.3.1 Insert LAD/FBD source file...321
8.3.2 Insert LAD/FBD program..324
8.3.3 Entering variables in the declaration table...326
8.3.4 Entering a program title..327
8.3.5 Inserting network..327
8.3.6 Inserting an empty box...328
8.3.7 Selecting box type..329
8.3.8 Parameterizing the ADD call-up...331
8.3.9 Inserting comparator..332
8.3.10 Labeling the comparator..333
8.3.11 Initializing a coil..334
8.3.12 Inserting next network..334
8.3.13 Details view..335

Table of contents

SIMOTION LAD/FBD
14 Programming and Operating Manual, 07/2017, A5E33438246B

8.3.14 Compiling...336
8.3.15 Assigning a sample program to an execution level..337
8.3.16 Starting sample program..338

8.4 Position axis program...340
8.4.1 Insert LAD/FBD source file...341
8.4.2 Insert LAD/FBD program..341
8.4.3 Inserting a TO-specific command..343
8.4.4 Connecting the enable inputs...346
8.4.5 Entering variables in the declaration table...350
8.4.6 Parameterization of the NO contacts...350
8.4.7 Setting call parameters for the _MC_Power command..351
8.4.8 Setting call parameters for the _MC_MoveRelative command..354
8.4.9 Details view..355
8.4.10 Compiling...355
8.4.11 Assigning a sample program to an execution level..356
8.4.12 Starting sample program..356

A Appendix...359

A.1 Key combinations...359

A.2 Protected and reserved identifiers...361

Index...363

Table of contents

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 15

Table of contents

SIMOTION LAD/FBD
16 Programming and Operating Manual, 07/2017, A5E33438246B

Fundamental safety instructions 1
1.1 General safety instructions

WARNING

Danger to life if the safety instructions and residual risks are not observed

The non-observance of the safety instructions and residual risks stated in the associated
hardware documentation can result in accidents with severe injuries or death.
● Observe the safety instructions given in the hardware documentation.
● Consider the residual risks for the risk evaluation.

WARNING

Danger to life caused by machine malfunctions caused by incorrect or changed
parameterization

Incorrect or changed parameterization can cause malfunctions on machines that can result
in injuries or death.
● Protect the parameterization (parameter assignments) against unauthorized access.
● Respond to possible malfunctions by applying suitable measures (e.g. EMERGENCY

STOP or EMERGENCY OFF).

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 17

1.2 Industrial security

Note
Industrial security

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and
networks. Systems, machines and components should only be connected to the enterprise
network or the internet if and to the extent necessary and with appropriate security measures
(e.g. use of firewalls and network segmentation) in place.

Additionally, Siemens’ guidance on appropriate security measures should be taken into
account. For more information about industrial security, please visit http://www.siemens.com/
industrialsecurity.

Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends to apply product updates as soon as available and to always
use the latest product versions. Use of product versions that are no longer supported, and
failure to apply latest updates may increase customer’s exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed under http://www.siemens.com/industrialsecurity..

WARNING

Danger to life as a result of unsafe operating states resulting from software manipulation

Manipulation of the software, e.g. viruses, trojans, malware or worms, can cause unsafe
operating states in your system that may lead to death, serious injury, and property damage.
● Keep the software up to date.
● Incorporate the automation and drive components into a state-of-the-art, integrated

industrial security concept for the installation or machine.
● Make sure that you include all installed products in the integrated industrial security

concept.
● Protect files on removable storage media against malware through appropriate protective

measures, e.g. virus scanners.

Fundamental safety instructions
1.2 Industrial security

SIMOTION LAD/FBD
18 Programming and Operating Manual, 07/2017, A5E33438246B

1.3 Danger to life due to software manipulation when using removable
storage media

WARNING

Danger to life due to software manipulation when using removable storage media

The storage of files on removable storage media involves a high risk of infection, e.g. via
viruses or malware. Incorrect parameter assignment can cause machines to malfunction,
which can lead to injuries or death.
● Protect the files on removable storage media against harmful software through appropriate

protective measures, e.g. virus scanners.

Fundamental safety instructions
1.3 Danger to life due to software manipulation when using removable storage media

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 19

Fundamental safety instructions
1.3 Danger to life due to software manipulation when using removable storage media

SIMOTION LAD/FBD
20 Programming and Operating Manual, 07/2017, A5E33438246B

Description 2
2.1 Description

This chapter will give you a brief overview of ladder logic (LAD) and function block diagram
(FBD).

2.2 What is LAD?
LAD stands for ladder logic. LAD is a graphical programming language. The statement syntax
corresponds to a circuit diagram. LAD enables simple tracking of the signal flow between
conductor bars via inputs, outputs and operations.
LAD statements consist of elements and boxes which are graphically connected to networks
(which are displayed in conformity with the IEC 61131-3 standard). LAD operations follow the
rules of Boolean logic.

Figure 2-1 Representation of a network in LAD

The LAD program can also be displayed as an FBD program.

The LAD programming language
The LAD programming language features all the elements required for the creation of a
complete user program. LAD features an extensive command set. This includes the various
basic operations with a comprehensive range of operands and how to address them. The
design of the functions and function blocks enables you to structure the LAD program clearly.

The program package
The LAD programming package is an integral part of the basic SIMOTION software, so that
after your SIMOTION software has been installed, all editor, compiler and test functions for
LAD are available for use.

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 21

2.3 What is FBD?
FBD stands for function block diagram. FBD is a graphics-based programming language that
uses the same type of boxes used in boolean algebra to represent logic (networks are
displayed in conformity with the IEC 61131-3 standard). In addition, complex functions (e.g.
mathematical functions) can be represented directly in conjunction with the logic boxes.

Figure 2-2 Representation of a network in FBD

The FBD program can usually also be displayed as an LAD program.

The FBD programming language
The FBD programming language features all the elements required for the creation of a
complete user program. FBD features an extensive command set. This includes the various
basic operations with a comprehensive range of operands and how to address them. The
design of the functions and function blocks enables you to structure the FBD program clearly.

The program package
The FBD programming package is an integral part of the basic SIMOTION software, so that
after your SIMOTION software has been installed, all editor, compiler and test functions for
FBD are available for use.

2.4 Unit, program organization unit (POU) and program source
The term "unit" represents a program source.

The terms "program organization unit (POU)" and "LAD/FBD program" are generic terms and
may refer to a program, a function (FC), or a function block (FB).

The term "program source file" is a generic term and may refer to a LAD/FBD unit, an MCC
unit or an ST source file.

Description
2.3 What is FBD?

SIMOTION LAD/FBD
22 Programming and Operating Manual, 07/2017, A5E33438246B

LAD/FBD editor 3
3.1 The LAD/FBD editor in the workbench

The workbench represents the framework for SIMOTION SCOUT. Using the workbench tools,
you can carry out all the steps required to configure, optimize, and program a machine in order
to complete a required task.

Figure 3-1 Elements of the workbench in a LAD/FBD program

The workbench contains the following elements:

● ① Project navigator
The project navigator shows the entire project and its elements as a tree structure.

● ② Menu bar
The menu bar contains menu commands which you can use to control the workbench, call
up tools, etc.

● ③ Toolbars
Many of the available menu commands can be executed by clicking the appropriate icon
in one of the toolbars.

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 23

● ④ Declaration tables
Declaration tables are used for LAD/FBD units and programs. You define variables and
constants in the declaration tables.

● ③ Working area
You carry out job-specific operations in this area. The working area contains an LAD/FBD
program, a declaration table, and an editor for graphical displays.

● ⑥ Detail view
More detailed information about the elements selected in the project navigator are
displayed, e.g. the windows Symbol browsers, Compile/check output.

3.2 Maximizing working area and detail view
The windows working area and detail view can be set to maximum zoom.

The selection is made under the following menu items:

● View > Maximize working area (e.g., when creating programs)
or

● View > Maximized detail view (e.g., monitoring global variables)

3.3 Enlarging or reducing the content of the working area
There are several options available to change the size of the LAD/FBD editor's display, i.e. the
size of the elements in this area.

● Zoom list on the Zoom factor toolbar:
Select a factor from the Zoom list, or enter an integer value of your own choice.
- or -
 View > Zoom in menu command or View > Zoom out.
- or -
Key combination Ctrl+Num+ (enlarge) or Ctrl+Num- (reduce).
- or -
Press the Ctrl key while turning the mouse wheel.

This change always applies to the active LAD/FBD editor. The setting is only saved when
saving if changes have been made in the respective editor window.

3.4 Bringing the LAD/FBD editor to the foreground
If several LAD/FBD editors are open in the working area, these are usually overlaid. This means
that only the top LAD/FBD editor is visible. There are several ways to bring the concealed
editors to the foreground.

LAD/FBD editor
3.2 Maximizing working area and detail view

SIMOTION LAD/FBD
24 Programming and Operating Manual, 07/2017, A5E33438246B

To bring the editor to the foreground, proceed as follows:

● Select the appropriate tab below the working window
- or -
Select the appropriate program name in the Window menu.
- or -
Press the Ctrl+Tab key combination as often as required.

3.5 Hiding and displaying the declaration table
If you need more space, you can hide the Interface (exported declaration) declaration area
and/or the declaration area for a LAD/FBD program completely

To hide and display the declaration table, proceed as follows:

1. Double-click the separation line to hide the declaration table.

2. In order to display the declaration line again, double-click the separation line again.

3.6 Enlarging/reducing the declaration table
To change the size of the declaration table, proceed as follows:

1. Move the mouse cursor onto the separation line until the mouse pointer changes to a double
line.

2. Hold down the left mouse button and drag the separation line upwards in order to reduce
the size of the declaration area.
- or -
In order to enlarge the declaration area, move the separation line downwards.

3.7 Operation

3.7.1 Operating the LAD/FBD editor
The LAD/FBD editor provides the programmer with a variety of different operator input options.
Alternatives for executing individual operator inputs include the following:

● The menu bar

● Context menus

● Toolbars

LAD/FBD editor
3.5 Hiding and displaying the declaration table

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 25

● Key combinations

● Texts and variables can be moved to the input field with drag-and-drop:

– From the project navigator

– From the declaration tables

– From the detail view (Symbol browser tab, address list, watch table)

– From the command library

3.7.2 Menu bar
You can start all of the programming functions from the menu bar.

The LAD/FBD program item only appears if a LAD/FBD editor is active in the working area.

3.7.3 Context menu
To use the context menu for an object, proceed as follows:

1. Select the appropriate object with the left mouse button (left click).

2. Briefly click the right mouse button.

3. Left-click the appropriate menu item.

3.7.4 Toolbars
The dynamic toolbars contain icons for important, frequently used functions, e.g. for inserting
or saving elements.

The "dynamic toolbar" changes depending on which workspace is active/selected,
e.g. MCC chart, ST program or LAD/FBD program.

The toolbars can be positioned as required within the Workbench. Once moved, they can be
shown or hidden using View > Toolbars.

The LAD/FBD editor toolbar contains the full range of LAD/FBD commands. The command
list is displayed whenever the workspace for a program is active or open.

1) Accept and compile
2) Insert LAD/FBD program

Figure 3-2 Picture of the toolbar for a LAD/FBD unit

LAD/FBD editor
3.7 Operation

SIMOTION LAD/FBD
26 Programming and Operating Manual, 07/2017, A5E33438246B

1) Accept and compile 7) Insert NO contact
2) Program status 8) Insert NC contact
3) Symbol check and type update 9) Insert coil
4) Switch to FBD 10) Open branch
5) Insert network 11) Close branch
6) Jump label ON/OFF 12) Insert comparator
 13) Insert an empty box

Figure 3-3 View of the LAD editor toolbar

1) Accept and compile 7) Insert AND box
2) Program status 8) Insert OR box
3) Symbol check and type update 9) Insert assignment
4) Switch to LAD 10) Binary input
5) Insert network 11) Negate binary input
6) Jump label ON/OFF 12) Insert comparator
 13) Insert an empty box

Figure 3-4 View of the FBD editor toolbar

3.7.5 Key combinations
Use the key combinations for fast operation in the LAD/FBD editor.

Within an LAD/FBD network, you can switch between LAD/FBD elements, select the required
input/output of an LAD/FBD element and switch to the adjacent LAD/FBD network using the
left/right arrow buttons and the up/down arrow buttons. Using the Return key, you can open
the input field of a selected input/output and make an entry as well as close the field again
using the Return key.

The shortcuts (Page 359)available in the LAD/FBD editor are listed in the Appendix.

3.7.6 Drag&Drop of variables
Variables are dragged from the detail view (Symbol browser, Watch table or Address list tab)
and dropped in the input field.

LAD/FBD editor
3.7 Operation

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 27

To paste in variables using drag&drop, proceed as follows:

1. Left-click the line number of the variable you wish to move.
The line with the variables is highlighted.

2. Keeping the left mouse button pressed, drag the line number into the input field of the
parameter screen form.

3. Release the left mouse button. The variable is pasted in at the selected position.

3.7.7 Drag&drop from the declaration tables
Variable names can be dragged from a declaration table and dropped into an LAD/FBD
network.

To paste in variable names using drag&drop, proceed as follows:

1. Left-click the line number with the name of the variable you wish to move.
The line is shown on a black background.

2. Continue to press the left mouse button as you drag the variable name to any input field.

3. Release the left mouse button.
The variable name is pasted in at the selected position.

3.7.8 Drag&drop within the declaration table
You can change the order of the variable declaration in the declaration table.

To change the order using drag&drop, proceed as follows:

1. Left-click the line number of the variable you wish to move.
The line is shown on a black background.

2. Press the Shift key and continue to press the left mouse button as you drag the line to the
desired position in the declaration table.
A red line indicates the point of insertion.

3. Release the left mouse button.
The line moves to the corresponding position.

Note

To move several adjacent lines together, hold the Shift key down as you select the lines
you wish to move.

3.7.9 Using Drag&Drop for LAD/FBD elements
LAD/FBD elements can be pasted into the LAD/FBD network from the project navigator
(Command library tab) using drag-and-drop.

LAD/FBD editor
3.7 Operation

SIMOTION LAD/FBD
28 Programming and Operating Manual, 07/2017, A5E33438246B

To paste in LAD/FBD elements using drag&drop, proceed as follows:

1. Left-click the required LAD/FBD element.

2. Hold the left mouse button down and drag the LAD/FBD element into the ladder diagram
line of the LAD/FBD network.

3. Release the left mouse button.
The LAD/FBD element is pasted in at the selected position.

3.7.10 Command call drag&drop
The commands in the command library can be inserted into LAD/FBD programs.

To insert command calls using drag&drop, proceed as follows:

1. Left-click the required command call.

2. Continue to hold the left mouse button down as you drag the command call to the LAD/FBD
program.

3. Release the left mouse button.
The command call is inserted at the selected position.

3.7.11 Drag&Drop of command names
Command names can be moved using drag-and-drop from the project navigator (tab
Command library) into the input field of an empty box that has already been generated.

To paste in command names using drag&drop, proceed as follows:

1. Left-click the required command name.

2. Holding the left mouse button down, drag the command name into the input field of an
empty box.

3. Release the left mouse button.
The command name is pasted in at the selected position.

3.7.12 Using drag&drop for elements in a network
To insert elements in a network using drag&drop, proceed as follows:

1. Left-click the required LAD element.

2. To move an element, proceed as follows:
Holding the left mouse button down, drag the element to the required position in the ladder
diagram line.

LAD/FBD editor
3.7 Operation

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 29

3. To copy an element, proceed as follows:
Keeping the CTRL key depressed, drag the element with the left mouse button to the
required position in the ladder diagram line.

4. Release the left mouse button.
The LAD element is inserted at the selected position.

3.7.13 Using drag&drop for functions and function blocks from other sources
Successfully compiled functions and function blocks from other source files can be pasted into
a ladder diagram line from the project navigator. The connection to the "original source" is
automatically entered in the Connections tab of the current source file.

To paste in functions and function blocks using drag&drop, proceed as follows:

1. Left-click the required FC/FB.

2. Holding the left mouse button down, drag the FC/FB into the input field of an empty box.

3. Release the left mouse button.
An FC/FB call box is pasted in.

3.7.14 Automatic completion (Autocomplete)
In the LAD/FBD editor, you can automatically complete identifiers. A drop-down list box with
identifiers that begin with the previously entered characters will be displayed. This operates
on a context-sensitive basis, whereby the expected type for the identifier being sought and its
visibility in the current program context determine which entries are displayed as options in
the drop-down list box.

Depending on the context, the entries displayed in the drop-down list box are filtered and sorted:

● The filtering process may determine, for example, that only structure components are
displayed for a structure.

● Entries are sorted according to their relevance to the context, with the more relevant
identifiers appearing higher in the list (e.g. local variables are listed before global variables).

With LAD/FBD source files and LAD/FBD programs, the identifiers can be completed
automatically in the following input fields/editable drop-down list boxes:

● Declaration table of the LAD/FBD unit

– "Type" column

– "Variable type" column

– "Data type" column

● Declaration table of the LAD/FBD program

– "Variable type" column

– "Data type" column

● Input fields for the inputs of an LAD/FBD element (variables and other symbols for the
expected type)

LAD/FBD editor
3.7 Operation

SIMOTION LAD/FBD
30 Programming and Operating Manual, 07/2017, A5E33438246B

● Input fields for the outputs of an LAD/FBD element (variables for the expected type)

● Input field for the instance variable of a function block (variables for the expected FB type
(box type))

● Input field for the NC contact, NO contact, and coil LAD elements (BOOL type variables)

Figure 3-5 Automatic completion of an identifier at the input for an LAD/FBD element

Procedure
To complete an identifier automatically (Autocomplete), proceed as follows:

1. Write the first characters of the identifier (e.g. the first letters of a word) in the input field/
editable drop-down list box.

2. Press the Ctrl+space key combination.
A drop-down list box opens containing the filtered/sorted identifiers for the current context.
The identifiers listed start with the characters input so far or the characters up to where the
cursor is positioned within an existing identifier.

Note

When the drop-down list box has been expanded and is editable (by clicking the symbol),
automatic completion is already activated.

LAD/FBD editor
3.7 Operation

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 31

3. Expand or refine the options displayed:

– Enter additional characters.

– Delete characters.

– Move the cursor with the left/right arrow keys.

4. Select the required identifier with the up/down arrow keys.

5. Press the Return key.
The identifier is accepted by the input field/editable drop-down list box and the current word
is overwritten.

Note

If only a single identifier is offered for selection, the selection window will not be opened
and the identifier completed immediately.

Functional description
The following identifiers that begin with the specified characters will be offered:

● ST expressions

● ST program sections

● Identifiers from the command library

● Library, unit, POU, or system function names

● For technology objects including their system variables and configuration data

● Identifiers for the relevant LAD/FBD unit or LAD/FBD program:

– Program organization units (POU) and FB instances

– Data types

– Variables and constants

– Structure elements

● Identifiers from imported program sources

Note

Identifiers from the relevant LAD/FBD unit or LAD/FBD program or from imported program
sources will only be displayed correctly if the corresponding program source has been
compiled.

The display operates on a context-sensitive basis, i.e. only those types of identifiers that
are appropriate at the associated location of the LAD/FBD unit or LAD/FBD program are
offered:
● Within a declaration table, data types and variable types only
● Within a program organization unit (POU), no data types
● For a structure (e.g. var_struct.xx), only structure components

LAD/FBD editor
3.7 Operation

SIMOTION LAD/FBD
32 Programming and Operating Manual, 07/2017, A5E33438246B

3.8 Settings

3.8.1 Settings in the LAD/FBD editor
You can define the layout for creating a program in the LAD/FBD programming language:

1. To change the settings, select the Options > Settings menu command.
The Settings dialog box opens.

2. Select the tab LAD/FBD editor.

3. Make the required settings here.

Figure 3-6 LAD/FBD editor settings

4. Click OK or Accept to confirm.

The table below contains a description of the individual parameters.

Table 3-1 LAD/FBD editor parameter settings

Parameter Description
Default language Defines the default graphical programming language for cre‐

ating a new LAD/FBD program in the LAD/FBD editor.
"On-the-fly" variable declaration If activated, a dialog box appears when an unknown symbol

is entered in the LAD or FBD diagram. You can carry out the
variable declaration in this dialog box.
See: Defining variables in the Variable declaration dialog box
("on-the-fly" variable declaration) (Page 117)

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 33

Parameter Description
Only known types if type lists exist If activated, only those function blocks which also have an

entry in the Connections tab appear in the list of data types.
See: Setting the data type list of the declaration table

Automatic symbol check and type up‐
date

If active, an automatic symbol check and type update take
place once changes affecting the LAD/FBD program open in
the LAD/FBD editor have been made in the project.
The automatic symbol check and type update are activated
by default in the LAD/FBD editor.
See:
Activating automatic symbol check and type update
Example of a type update (Page 36)
Example of a symbol check (Page 38)
Deactivating automatic symbol check and type update
Performing symbol check and type update at a specified time

Operand You can change the options for displaying the operand by
entering the number of Characters per line and Number of
lines for the Operand field.
Changes to settings are only applied to LAD/FDB editors that
are opened afterwards.

Comment You can change the options for displaying the comment by
entering the number of Characters per line and Number of
lines for the Comment field.
Changes to settings are only applied to LAD/FDB editors that
are opened afterwards.

Fonts and colors You can change the fonts and colors of the LAD/FBD editor.
See:
Changing fonts
Changing colors
Changes to settings are only applied to LAD/FDB editors that
are opened afterwards.

Format for status display Format in which the values of variables with bit data type are
displayed in program status and variable status.
See:
Starting and stopping the program execution monitoring
(Page 298)
Variable status (Page 293)

3.8.2 Activating automatic symbol check and type update
To enable automatic symbol check and type update, follow these steps:

1. Select the Options > Settings menu item.

2. Select the tab LAD/FBD editor.

3. Activate the checkbox Automatic symbol check and type update.

4. Confirm with OK.

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
34 Programming and Operating Manual, 07/2017, A5E33438246B

Note

The automatic symbol check and type update is activated by default in the LAD/FBD editor.

If the symbol check is activated, the automatic symbol check and type update is performed for
an LAD/FBD program if the following requirements are met:

● changes are made in the project (see list below) which impact upon the LAD/FBD program

● the focus is on the LAD/FBD program, i.e. it is opened in the KOP/FUP editor, or the LAD/
FBD editor from the LAD/FBD program which is already open appears in the foreground
(Page 24)

In the event of subsequent changes within a project, automatic symbol check and type update
is performed for an LAD/FBD program if the change affects the LAD/FBD program:

● A program source is changed, e.g. deleted or renamed.
The changes are only identified for associated program sources and their LAD/FBD
programs when the changed program source is compiled. In other words, to enable the
automatic symbol check and type update to take place, the changed program source must
be compiled before the focus changes to an LAD/FBD program from an associated program
source.

● The declaration tables in the LAD/FBD source file and/or from LAD/FBD programs within
the LAD/FBD source file are changed.
The symbol check/type update takes place for an LAD/FBD program belonging to the LAD/
FBD source file if the changes affect that LAD/FBD program.
The following cases are possible:

– A declaration table is changed within an LAD/FBD program.
The automatic symbol check and type update only takes place after changing from the
declaration table to the network.

– The change within a declaration table takes place within an LAD/FBD program and
affects another LAD/FBD program within the same program source.
The automatic symbol check and type update takes place when the focus is on that
other LAD/FBD program.

– Changes within a declaration table take place within a program source and affect an
LAD/FBD program in another program source.
The automatic symbol check and type update for the LAD/FBD program from another
program source can only take place once the changed program source has been
compiled.

● A technology object (such as an axis) used by the LAD/FBD program is changed.
The automatic symbol check and type update takes place when the focus is on the LAD/
FBD program.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 35

If you click the mouse on the relevant place in the network (box parameter, input field, symbol
highlighted in red) following a symbol check/type update, the tool tip indicates the following:

● the expected data type among the box parameters

● The data type of the variable with labeled input fields

● the cause of trouble in symbols which are highlighted in red whereby the symbol errors may
have the following reasons:

– The specified symbol does not exist

– The specified symbol is not visible in the current context (incorrect or missing entry of
the connections in the declaration table)

– The specified variable does not have the appropriate type

Note

The symbol check is automatically updated as soon as the declaration table has been edited
and left.
All errors, including errors in the declaration table, are displayed in the detail view.

3.8.3 Example of a type update

Introduction
During the type update all the data types used are updated:

● the list of permitted data types in an input field

● an LAD/FBD program's box type, i.e. in terms of the creation type (program, FB or FC)
selected for the LAD/FBD program

● a box's interface in terms of the list of permitted data types per box parameter

● other data types (structures, enumerations, etc.)

For example, a structure AAA {a : BOOL} is used in an LAD/FBD program. If this structure is
changed, e.g. AAA {a : BOOL, b : LREAL}, this change is applied by the LAD/FBD program
during the type update.

Initial situation
The following are present:

● an ST source ST_1 with a function block FB_1

● an ST source ST_2 with a function block FB_2

● an LAD/FBD unit LADFBD_1 with an LAD/FBD program PROGRAM_1

● FB_1 is called within ST_2, i.e. a connection (Page 164) to ST_1 has to be declared in the
ST_2 declaration table

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
36 Programming and Operating Manual, 07/2017, A5E33438246B

● FB_1 is called within PROGRAM_1, i.e. a connection (Page 164) to ST_1 has to be declared
in the LADFBD_1 declaration table

● FB_2 is called within PROGRAM_1, i.e. a connection (Page 164) to ST_2 has to be declared
in the LADFBD_1 declaration table

How the type update works
This is a special scenario where a program source (in this case LADFBD_1) imports another
program source (in this case ST_1) both explicitly and by means of inheritance. Inheritance
takes place via another imported program source (in this case ST_2) which, in turn, imports
other sources (in this case ST_1).

① LADFBD_1 explicitly imports ST_1
② LADFBD_1 imports ST_1 by means of inheritance (ST_1 → ST_2 → LADFBD_1)

Figure 3-7 Special scenario of explicit import and inheritance

Changes are now made at the interface of the FB_1, for example one or more input/output
parameters are added (see also interface adjustment in FB/FC (Page 193)) and ST_1 is
recompiled.

When PROGRAM_1 is opened in the LAD/FBD editor, the FB_1 call is automatically updated,
i.e. a type update occurs via which the changed interface is updated.

Despite the fact that the type update runs error-free, the compiler issues an error message
during the compilation of LADFBD_1 because the import of ST_1 by inheritance via the
imported ST_2 presupposes that ST_2 is also recompiled.

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 37

In order to recompile ST_2 without errors, the changed interface of the FB_1 call must be
updated manually within ST_2.

Note

If program sources are imported which import other program sources themselves (inheritance),
an error message may be output by the compiler during the compilation of the program source
which is being imported, even if the type update runs error-free.

3.8.4 Example of a symbol check

Introduction
During the symbol check, the symbols used in the network are checked in context.

For example, the network includes a box with a BOOL-type input. An LREAL-type variable is
now assigned to this input. The symbol check determines that this variable cannot be used in
this context and, therefore, flags up this variable in red.

Initial situation
The following are present:

● an ST source ST_1 with the unit variable VAR_1

● an LAD/FBD unit LADFBD_1 with an LAD/FBD program PROGRAM_1

● the unit variable VAR_1 is used within PROGRAM_1, i.e. a connection (Page 165) to ST_1
has to be declared in the LADFBD_1 declaration table

How the symbol check works
The unit variable VAR_1 is now changed, e.g. the name is changed.

If ST_1 is recompiled after this change, the unit variable VAR_1 is invalid in LADFBD_1.

When PROGRAM_1 is opened in the LAD/FBD editor, an automatic symbol check is
performed, i.e. the changed variable is highlighted in red lettering.

The changed variable must be updated manually in PROGRAM_1.

3.8.5 Deactivating automatic symbol check and type update
The automatic update of the symbol check and type database should only be deactivated if
computation speed is unduly reduced, e.g. if a large project is being processed on a slow
computer and the hourglass is displayed after any change in the declaration table or in
referenced external units.

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
38 Programming and Operating Manual, 07/2017, A5E33438246B

To deactivate automatic symbol check and type update, proceed as follows:

1. Select the Options > Settings menu item.

2. Select the LAD/FBD editor tab.

3. Deactivate the Automatic symbol check and type update checkbox.

4. Confirm with OK.

Note

If the automatic symbol check is deactivated, the display may sometimes be inaccurate, e.g.
after an external call has been inserted, the call box interface may be incorrectly displayed
(i.e. not updated), or not displayed at all. This is because the current information only becomes
available to the LAD/FBD editor after the "Symbol check and type update at a specified time"
(Page 39) has been called.

3.8.6 Perform symbol check and type update at a specified time
To perform a symbol check at a specified time, proceed as follows:

● Select the LAD/FBD program > Symbol check and type update menu item (shortcut Ctrl+T).
- or -
Click the Symbol check and type update icon.

Note

The symbol check at a specified time can only be performed when the "Automatic symbol
check and type update" (Page 34) is deactivated.

3.8.7 Setting the data type list of the declaration table
In the declaration area, all function blocks of the project not used in the program are stated in
the list of data types by default.

To improve clarity, it is possible to set that only those function blocks are displayed for which
an entry in the Connections tab exists.

To set the data type display, proceed as follows:

1. Select the Options > Settings menu item.

2. Select the tab LAD/FBD editor.

3. Click the Only known types if type lists exist check box.

4. Confirm with OK.

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 39

3.8.8 Changing fonts
Use the following procedure to change the font of the LAD/FBD editor:

1. Select the Options > Settings menu item.

2. Select the tab LAD/FBD editor.

3. Click the Fonts and colors button.
The Fonts and colors dialog box with the Fonts tab appears.

4. Select the font, font size, type, or display you require.

Figure 3-8 Fonts and colors dialog box

5. Confirm with OK.

Changes to settings are only applied to LAD/FDB editors that are opened afterwards.

3.8.9 Changing colors
Use the following procedure to change the colors of the LAD/FBD editor:

1. Select the Options > Settings menu item.

2. Select the tab LAD/FBD editor.

3. Click the Fonts and colors button.
The Fonts and colors dialog box appears.

4. Click the Colors tab.

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
40 Programming and Operating Manual, 07/2017, A5E33438246B

5. Choose a color.

Figure 3-9 Fonts and colors dialog box

6. Confirm with OK.

Changes to settings are only applied to LAD/FDB editors that are opened afterwards.

3.8.10 Calling online help in the LAD/FBD editor
The online help can provide assistance for many of the operating steps. Call up the online help
using either the:

● Help menu

– Help topics

– Context-sensitive help

– Getting Started

● General help with the F1 key

● Help button, which appears in an open dialog box

● Context-sensitive help with the Shift+F1 key combination or the arrow with question mark
icon (also for LAD/FBD elements in a network).

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 41

LAD/FBD editor
3.8 Settings

SIMOTION LAD/FBD
42 Programming and Operating Manual, 07/2017, A5E33438246B

LAD/FBD programming 4
4.1 Programming software

This chapter describes the various operator control options in the LAD/FBD editor and the
basic procedure for LAD/FBD programming.

4.2 Managing LAD/FBD source file
LAD/FBD units are assigned to the SIMOTION device on which the LAD/FBD programs
contained in the unit will subsequently be run (e.g. SIMOTION D455-2). They are stored in the
project navigator under the SIMOTION device in the PROGRAMS folder.

The individual program organization units (POU, LAD/FBD programs) are stored under a LAD/
FBD unit.

Note

ST source files, MCC units and DCC charts are also stored in the PROGRAMS folder under
the SIMOTION device.

For a description of the SIMOTION ST (Structured Text) programming language, refer to the
SIMOTION ST Programming and Operating Manual.

For a description of the SIMOTION MCC (Motion Control Chart) programming language, refer
to the SIMOTION MCC Programming and Operating Manual.

4.2.1 Inserting a new LAD/FBD source file
LAD/FBD units are assigned to the SIMOTION device on which the LAD/FBD programs
contained in the unit will subsequently be run (e.g. SIMOTION D455-2).

There are several ways of inserting a new LAD/FBD unit.

● In the project navigator: in the PROGRAMS folder using the Insert LAD/FBD unit element

● Select the PROGRAMS folder in the project navigator and choose the command Insert >
Program > LAD/FBD unit in the menu.

● Select the PROGRAMS folder in the project navigator and choose the command Insert new
object > LAD/FBD unit in the context menu.

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 43

Procedure
To insert a new LAD/FBD unit using the context menu:

1. Open the appropriate SIMOTION device in the project navigator.

2. Select the PROGRAMS folder.

3. Select the Insert new object > Insert LAD/FBD unit context menu.

4. Enter the name of the LAD/FBD unit.
The names of program sources must comply with the rules for identifiers (Page 97): They
are made up of letters (A … Z, a … z), numbers (0 … 9), or single underscores (_) in any
order, whereby the first character must be a letter or underscore. No distinction is made
between upper- and lower-case letters.
The permissible length of the name depends on the SIMOTION Kernel version:

– SIMOTION Kernel as of version V4.1: a maximum of 128 characters.

– SIMOTION Kernel up to version V4.0: a maximum of 8 characters.

Names must be unique within the SIMOTION device. Protected or reserved identifiers
(Page 361) are not permitted.
Existing program sources (e.g. LAD/FBD units, ST source files) are displayed.

5. You can also enter an author, version, and a comment.

6. Activate the Open editor automatically checkbox.

7. If necessary, select the Compiler tab and make any local compiler settings; see Local
compiler settings (Page 54).

8. Confirm with OK.

Note

When you click OK, the LAD/FBD unit is transferred to the project only. The data, together with
the project, is only saved to the data carrier if you select, for example, Project > Save, Project >
Save and compile changes, or Project > Save and recompile all.

LAD/FBD programming
4.2 Managing LAD/FBD source file

SIMOTION LAD/FBD
44 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-1 Insert LAD/FBD Unit dialog box

Figure 4-2 New LAD/FBD unit (declaration table for the interface and implementation sections)

LAD/FBD programming
4.2 Managing LAD/FBD source file

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 45

4.2.2 Opening an existing LAD/FBD source file

Procedure
To open an existing LAD/FBD unit, proceed as follows:

1. Open the subtree of the appropriate SIMOTION device in the project navigator.

2. Open the PROGRAMS folder.

3. Select the required LAD/FBD unit.

4. Select the Open context menu.

5. Only for LAD/FBD units with know-how protection (Page 48):
If the LAD/FBD unit (or a program of this unit) is not already open and the login assigned
to the LAD/FBD unit is not yet logged in:

– Enter the corresponding password for the displayed login.
The know-how protection for this unit is temporarily canceled (until the unit and all its
programs are closed).

– If required, activate the "Use login as a standard login" checkbox.
You will be logged in with this login and can now open additional units to which the same
login is assigned without having to re-enter the password.

The LAD/FBD unit (declaration table) opens in the workspace. Multiple units can be opened.

Note

You can also double-click the required LAD/FBD unit to open it.

4.2.3 Saving and compiling a LAD/FBD source file

Requirements:
Ensure that the LAD/FBD unit or one of the associated LAD/FBD programs is the active window
in the workbench.

To save a LAD/FBD unit and all its associated LAD/FBD programs in the project and start the
compiler:

● Select the Save and compile icon in the LAD/FBD editor toolbar.
- or -
Select the LAD/FBD unit > Save and compile menu item.
- or -
Select the LAD/FBD unit or a LAD/FBD program in the project navigator and select Save
and compile in the context menu.
- or -
Shortcut Ctrl+B.

LAD/FBD programming
4.2 Managing LAD/FBD source file

SIMOTION LAD/FBD
46 Programming and Operating Manual, 07/2017, A5E33438246B

Note

Save and compile only applies the changes to LAD/FBD units and associated LAD/FBD
programs in the project. The data is only saved to the data carrier, together with the project, if
you select Project > Save or Project > Save and compile changes.

A LAD/FBD unit can also be saved outside the project (exported).

Error messages and warnings relating to compilation are displayed in the Compile/check
output tab in the detail view.

4.2.4 Closing a LAD/FBD source file
To close a LAD/FBD unit opened in the working window, proceed as follows:

1. Click the x button (cross) in the title bar of the dialog box of the LAD/FBD unit.
- or -
Select the LAD/FBD unit > Close menu item.
- or -
Select Windows > Close all windows menu item.
- or -
Shortcut Ctrl+F4.
If the changes have not yet been saved in the project, you can save or cancel them, or
abort the close operation.

4.2.5 Cut/copy/delete operations in a LAD/FBD source file
A LAD/FBD source file can be cut or copied together with all its associated LAD/FBD programs
and pasted into the same or another SIMOTION device.

It is not possible to paste in a LAD/FBD source file that has been deleted.

To cut, copy or delete, proceed as follows:

1. In the project navigator, select the required LAD/FBD source file.

2. In the context menu, select the appropriate item (Cut, Copy, or Delete).

3. Change the name, if necessary (refer to "See also").

See also
Renaming a LAD/FBD source file (Page 53)

LAD/FBD programming
4.2 Managing LAD/FBD source file

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 47

4.2.6 Inserting a cut or copied LAD/FBD source file
To paste in a cut or copied LAD/FBD source file:

1. Under the SIMOTION device, select the PROGRAMS folder.

2. In the context menu, select Paste.
The LAD/FBD source file is pasted in under a new name.

3. If required, amend the name.

4.2.7 Know-how protection for LAD/FBD source files
You can protect LAD/FBD units against being accessed by unauthorized third parties.
Protected LAD/FBD units and all associated LAD/FBD programs can only be opened or
exported in EXP format when the password is entered.

The SIMOTION online help provides additional information on know-how protection.

Note

If you export in XML format, the LAD/FBD units are exported in an encrypted format. When
importing the encrypted XML files, the know-how protection, including login and password, is
retained.

4.3 Exporting and importing LAD/FBD source files
The export and import functions offer you the option of saving a LAD/FBD source file outside
the project on your hard disk so that you can copy it from there into another project.

4.3.1 Exporting a LAD/FBD source file in XML format
You can use an XML export to save an LAD/FBD unit in a directory outside the project,
independently of any particular version or platform.

To export a LAD/FBD unit in XML format:

1. In the project navigator, select the required LAD/FBD unit.

2. Select the Expert > Save project and export object context menu or the Project > Save and
export menu.

3. Select the directory for the XML export and confirm with OK.

Note

Structures (e.g. several POUs in one unit, advance binary switching) can be used with
SIMOTION Kernel as of version V4.1. These structures may not be supported by previous
versions.

LAD/FBD programming
4.3 Exporting and importing LAD/FBD source files

SIMOTION LAD/FBD
48 Programming and Operating Manual, 07/2017, A5E33438246B

Note

LAD/FBD units with know-how protection can also be exported in XML format. The LAD/FBD
units are exported in encrypted format. When importing the encrypted XML files, the know-how
protection, including login and password, is retained.

4.3.2 Importing LAD/FBD source files as XML data
To import a LAD/FBD source file in XML format:

1. In the project navigator, select the PROGRAMS entry or a LAD/FBD source file.

2. In the context menu, select Import object or Expert > Import object.

3. Select the XML data to be imported and click OK to confirm.
The LAD/FBD source file is inserted.

4.3.3 Exporting a POU in XML format

Note

Structures (e.g. several POUs in one unit, advance binary switching) can be used with
SIMOTION Kernel as of version V4.1. These structures may not be supported by previous
versions.

You can use an XML export to save individual program organization units in a directory outside
the project, independently of any particular version or platform.

To export a POU in XML format, proceed as follows:

1. In the project navigator in the LAD/FBD unit, select the POU you want to export.

2. In the context menu, select Export as XML.

3. Only for POUs in LAD/FBD units with know-how protection and which are not already open:
If the associated LAD/FBD unit (or a POU of this unit) is not already open and the login
assigned to the LAD/FBD unit is not yet logged in:

– Enter the corresponding password for the displayed login.
The know-how protection for this chart is temporarily canceled (for this export).

– If required, activate the Use login as a standard login checkbox.
You will be logged in with this login and can now export or open additional units to which
the same login is assigned without having to re-enter the password.

4. Select the directory for the XML export and confirm with OK.

5. Enter the path and file name for the XML export and click Save to confirm.

LAD/FBD programming
4.3 Exporting and importing LAD/FBD source files

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 49

The POU is saved as XML format; the file name is given the default extension *.xml

Note

A POU with know-how protection is exported without protection.

4.3.4 Importing a POU from XML format
To import a POU in XML format, proceed as follows:

1. In the project navigator, select the PROGRAMS entry or a LAD/FBD unit.

2. In the context menu, select Import object.

3. Select the XML data to be imported and click OK to confirm.
The POU is inserted.

4.3.5 Exporting a LAD/FBD source file in EXP format
With the export in the EXP format, you can save an LAD/FBD unit in a format that can also be
interpreted by third-party controllers.

To export an LAD/FBD unit in EXP format, proceed as follows:

1. Select the LAD/FBD unit in the project navigator.

2. Select the context menu Expert > Export as .EXP.

3. Only for LAD/FBD units with know-how protection (Page 48) and which are not already
open:
If the LAD/FBD unit (or a program of this unit) is not already open and the login assigned
to the LAD/FBD unit is not yet logged in:

– Enter the corresponding password for the displayed login.
The know-how protection for this unit is temporarily canceled (for this export).

– If required, activate the Use login as a standard login checkbox.
You will be logged in with this login and can now export or open additional units to which
the same login is assigned without having to re-enter the password.

4. Enter the path and file name for the EXP export and click Save to confirm.

The LAD/FBD unit is saved in EXP format and given the file extension *.exp by default.

Note

The export of an LAD/FBD unit in EXP format and subsequent import of the EXP data can
change the structure of the networks in the LAD/FBD programs. The compilation result remains
unchanged.

An LAD/FBD unit with know-how protection is exported without protection.

LAD/FBD programming
4.3 Exporting and importing LAD/FBD source files

SIMOTION LAD/FBD
50 Programming and Operating Manual, 07/2017, A5E33438246B

4.3.6 Importing EXP data into a LAD/FBD source file
With the import of EXP data, you can create an LAD/FBD unit from third-party programs that
are available EXP format.

To import EXP data into a LAD/FBD unit:

1. Select the LAD/FBD unit in the project navigator.

2. Select the context menu Expert > Import from .EXP.

3. Select the EXP file to be imported.

4. Select the program sources to which Connections (Page 164) care to be created.

5. Confirm with OK.

The EXP file is imported into the LAD/FBD unit and the corresponding LAD/FBD programs
created. The connections to the selected program sources are also created.

Note

Note the following when importing EXP data:
● It is possible to import from XOR to FBD.
● Preconnection with simple data types (signal connection) is not generally supported.
● The original structure is retained when you import data from EXP files. If the structure cannot

be compiled due to type conflicts, the relevant parameters are highlighted in red.
A type conflict can be resolved by manual revision.

4.4 LAD/FBD source files - defining properties

4.4.1 Defining the properties of a LAD/FBD source file

Procedure
1. Under the SIMOTION device, open the PROGRAMS folder.

2. Select the required LAD/FBD unit.

LAD/FBD programming
4.4 LAD/FBD source files - defining properties

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 51

3. Select the Edit > Object Properties menu command.

4. If necessary, select further tabs to make local settings (only valid for this LAD/FBD unit):

– General tab: General details for the LAD/FBD unit, e.g. timestamp of the last change
and the storage location of the project (see figure).

– Compiler tab: Local settings of the compiler (Page 54) for code generation and message
display.

– Additional settings tab: Display of the compiler options in accordance with the current
compiler settings (see the SIMOTION ST Programming and Operating Manual).

– Compilation tab: Display of the compiler options during the last compilation of the LAD/
FBD unit (see the SIMOTION ST Programming and Operating Manual).

– Object address tab: Set the internal object address of the LAD/FBD unit. The object
addresses of the other program sources are displayed.

Figure 4-3 Properties of a LAD/FBD source file

LAD/FBD programming
4.4 LAD/FBD source files - defining properties

SIMOTION LAD/FBD
52 Programming and Operating Manual, 07/2017, A5E33438246B

4.4.2 Renaming a LAD/FBD source file
To rename a LAD/FBD source file:

1. Open the Properties window of the LAD/FBD source file.

2. Click .

3. Confirm the message with OK and enter the new name in the New name input field of the
Change Name dialog box.

4. Acknowledge the entries with Apply.

4.4.3 Making settings for the compiler

You can define the compiler settings as follows:

● globally for the SIMOTION project, always applicable to all programming languages, see
Global compiler settings (Page 53)

● locally for an individual LAD/FBD source within the SIMOTION project, see Local compiler
settings (Page 54)

4.4.3.1 Global compiler settings
The global settings are always valid for all programming languages within the SIMOTION
project. If there are global settings which only apply to specific programming languages, this
is specified on the Compiler tab.

Procedure
1. Select the menu Options > Settings.

2. Select the Compiler tab.

3. Make the settings in accordance with the parameter description in the SIMOTION ST
Programming and Operating Manual.

4. Confirm with OK.

LAD/FBD programming
4.4 LAD/FBD source files - defining properties

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 53

Figure 4-4 Global compiler settings

Parameter
For a description of the parameters of the global compiler settings, refer to SIMOTION ST
Programming and Operating Manual.

4.4.3.2 Local compiler settings
Local settings are configured individually for each LAD/FBD unit; local settings overwrite global
settings.

Procedure
To select the compiler options, proceed as follows:

1. Open the Properties window for the LAD/FBD unit (see Defining the properties of an LAD/
FBD unit (Page 51)).

2. Select the Compiler tab.

3. Define the settings according to the following table.

4. Click OK to confirm.

LAD/FBD programming
4.4 LAD/FBD source files - defining properties

SIMOTION LAD/FBD
54 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-5 Local compiler settings for LAD/FBD units in the Properties window

The current compiler options (the combination of global and local compiler settings which
currently applies) for the program source are displayed on the Additional settings tab. The
compiler options used the last time the program source was compiled can be seen on the
Compilation tab.

The SIMOTION ST Programming and Operating Manual contains further information on what
the compiler options mean.

Table 4-1 Local compiler settings

Parameter Description
Exclude the source from the
compilation

Active: This source is not compiled upon compilation of the project, the device or the library
(e.g. Menu Project > Save and recompile all). The source is marked accordingly in the project
navigator. Corresponding information is provided upon compilation.
Inactive (standard): The source is compiled upon compilation of the project, the device or the
library.

Use global settings This checkbox is available for every parameter which also has a global setting. This is where
you define whether the global settings are adopted or whether the local settings will apply.
See the description under Effectiveness of global or local settings in the SIMOTION ST Pro‐
gramming and Operating Manual.
Use the second checkbox or the other checkboxes for the relevant parameters (described
below) to define the local settings.

Selective linking1 Active: Unused code is removed from the executable program.
Inactive: Unused code is retained in the executable program.
Gray background (display only): The global setting displayed is adopted (when "Use global
settings" = active).

LAD/FBD programming
4.4 LAD/FBD source files - defining properties

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 55

Parameter Description
Use preprocessor1 Active: Preprocessor is used, see SIMOTION ST Programming and Operating Manual.

Inactive: Preprocessor is not used.
Gray background (display only): The global setting displayed is adopted (when "Use global
settings" = active).

Enable program status1 Active: Additional program code is generated to enable monitoring of program variables (in‐
cluding local variables).
Inactive: Program status not possible.
Gray background (display only): The global setting displayed is adopted (when "Use global
settings" = active).
See Program status (Page 297).

Permit language extensions1 Active: Language elements are permitted that do not comply with IEC 61131-3.
● Direct bit access to variables of a bit data type, see the SIMOTION ST Programming and

Operating Manual.
● Accessing the input parameter of a function block when outside the function block, see

the SIMOTION ST Programming and Operating Manual.
● Calling a program while in a different program, see the SIMOTION ST Programming and

Operating Manual.
Inactive: Only language elements are permitted that comply with IEC 61131-3.
Gray background (display only): The global setting displayed is adopted (when "Use global
settings" = active).

Only create program in‐
stance data once1

Active: The local variables of a program are only stored once in the user memory of the unit.
This setting is required when calling a program while in a different program, see the SIMO‐
TION ST Programming and Operating Manual.
Inactive: The local variables of a program are stored according to the task assignment in the
user memory of the associated task.
Gray background (display only): The global setting displayed is adopted (when "Use global
settings" = active).
See Memory areas for the variable types in the SIMOTION ST Programming and Operating
Manual.
For further information, refer to the SIMOTION Basic Functions Function Manual.

LAD/FBD programming
4.4 LAD/FBD source files - defining properties

SIMOTION LAD/FBD
56 Programming and Operating Manual, 07/2017, A5E33438246B

Parameter Description
Permit language extensions,
IEC61131 3rd edition1

Active: Additional language elements can be used in accordance with IEC 61131‑3 3rd edi‐
tion. The corresponding keywords are locked as reserved or protected identifiers.
● Nested block comments (ST)
● CONTINUE statement (ST)
● Standard-compliant system functions LOWER_BOUND and UPPER_BOUND for

determining the limits of a dynamic ARRAY
● Additional system functions:

– FROM_BIG_ENDIAN
– FROM_LITTLE_ENDIAN
– IS_VALID
– TO_BIG_ENDIAN
– TO_LITTLE_ENDIAN

Inactive: The additional language elements cannot be used. The corresponding keywords
are not locked.
Gray background (display only): The global setting displayed is adopted (when "Use global
settings" = active).
Note
When saving the project in the old project format: Projects in which language elements that
require this compiler option are used cannot be compiled correctly in SIMOTION SCOUT
versions earlier than V4.5.

Permit object-oriented pro‐
gramming1

Active: The keywords for object-oriented programming according to IEC 61131‑3 3rd edition
are locked as reserved or protected identifiers. General references (Page 136) can also be
formed.
Inactive (standard): The keywords for object-oriented programming are not locked.
Gray background (display only): The global setting displayed is adopted (when "Use global
settings" = active).
Note
Independently of the setting the program organization units created in ST sources using
object-oriented programming (e.g. classes, methods) can be used in this source.
No program organization units can be created in LAB/FBD using object-oriented program‐
ming.
When saving the project in the old project format: Projects in which language elements that
require this compiler option are used cannot be compiled correctly in SIMOTION SCOUT
versions earlier than V4.5.

LAD/FBD programming
4.4 LAD/FBD source files - defining properties

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 57

Parameter Description
Issue warnings
Warning classes1

In addition to error messages, the compiler can issue warnings and information. You can set
the scope of the warning messages to be issued.
"Issue warnings" checkbox:
Active: The compiler issues the warnings and information according to the warning class
selection that follows.
Inactive: The compiler suppresses all warnings and information concerning this source file.
The checkboxes for the warning classes are hidden.
Gray background (display only): Operating on a global setting basis, the compiler always
issues warnings and information in accordance with the global warning class selection shown
below (if "Use global settings" = active).
"Warning classes" checkboxes (only if "Issue warnings" = active):
Active: The compiler issues warnings and information for the selected class.
Inactive: The compiler suppresses warnings and information for the associated class.
Gray background (display only): The global setting displayed is adopted (when "Use global
settings" = active).
See also Meaning of the warning classes in the SIMOTION ST Programming and Operating
Manual.

Permit forward declarations Forward declarations enable you to use program organization units (POUs) before they are
completely defined. See the SIMOTION ST Programming and Operating Manual.
This setting is always active. Forward declarations are always permitted for the LAD/FBD
programming language.

Permit OPC‑UA / ‑XML (load
symbols to RT)

Active: Symbol information for the unit variables of the LAD/FBD unit is available in the SI‐
MOTION device.
This is required for:
● The _exportUnitDataSet and _importUnitDataSet functions; see the SIMOTION Basic

Functions Function Manual
● The watch function of IT DIAG
Inactive: Symbol information is not created.

Exclude the source from the
compilation

Active: This source is not compiled upon compilation of the project, the device or the library
(e.g. Menu Project > Save and recompile all). The source is marked accordingly in the project
navigator. Corresponding information is provided upon compilation.
Inactive (standard): The source is compiled upon compilation of the project, the device or the
library.

Ignore global compiler set‐
tings
(The program is not compiled
again if the global settings are
changed or extended.)

Active: The global settings of the compiler are ineffective for all parameters. The "Use global
settings" checkboxes cannot be selected and are grayed out. When changing the global
compiler settings, the LAD/FBD unit is not recompiled.
Inactive: The checkboxes "Use Global Settings" can be selected for all parameters and are
presented against a white background. These checkboxes specify whether the global prop‐
erties are taken over for the corresponding parameters.
See the description under Effectiveness of global or local settings in the SIMOTION ST Pro‐
gramming and Operating Manual.

1 Global setting is also possible (Options > Settings > Compiler menu), see Global compiler settings (Page 53). See also
the description on Effectiveness of global or local compiler settings in the SIMOTION ST Programming and Operating Manual.

LAD/FBD programming
4.4 LAD/FBD source files - defining properties

SIMOTION LAD/FBD
58 Programming and Operating Manual, 07/2017, A5E33438246B

4.5 Managing LAD/FBD programs
LAD/FBD programs are the individual program organization units (program, function, function
block) in a LAD/FBD source file. They are stored under the LAD/FBD source file in the project
navigator.

4.5.1 Inserting a new LAD/FBD program
You can insert a new LAD/FBD program as program organization unit (POU) for an existing
LAD/FBD source as follows (see Inserting a new LAD/FBD source (Page 43)):

● In the project navigator: Below an LAD/FBD unit using the element Insert LAD/FBD program

● Select the required LAD/FBD unit in the project navigator followed by Insert > Program >
LAD/FBD program

● Open the required LAD/FBD unit and select the Insert LAD/FBD program icon in the LAD/
FBD unit toolbar

Procedure
To insert a new LAD/FBD program, proceed as follows:

1. Open the appropriate SIMOTION device in the project navigator.

2. Open the PROGRAMS folder and a LAD/FBD unit.

3. Double-click the entry Insert LAD/FBD program.

4. Enter the name of the program in the Insert LAD/FBD program dialog box.
Names for LAD/FBD programs must comply with the Rules for identifiers (Page 97): They
are made up of letters (A … Z, a … z), numbers (0 … 9), or single underscores (_) in any
order, whereby the first character must be a letter or underscore. No distinction is made
between uppercase and lowercase letters. Protected or reserved identifiers (Page 361) are
not allowed.
The permissible length of the name is 25 characters.
The names must be unique within the LAD/FBD source. The names of all exportable
program organization units (POUs) must also be unique within the SIMOTION device. The
names of all LAD/FBD programs of the program source as well as the names of all
exportable POUs of the device are displayed.

5. Select Program, Function, or Function block as the Creation type. See also Changing the
LAD/FBD program creation type (Page 66).

6. For the Function creation type only:
Select Return value data type as the Return type
(<--> for no return value).

7. Activate the Exportable checkbox if you want the LAD/FBD program to be accessible from
other program sources (LAD/FBD unit, MCC source files, or ST source files) or from the
execution system.

8. You can also enter an author, version, and a comment.

LAD/FBD programming
4.5 Managing LAD/FBD programs

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 59

9. Activate the Open editor automatically checkbox.

10.Click OK to confirm.

Note

When you click OK, the LAD/FBD program is transferred to the project only. The data is only
saved to the data carrier, together with the project, if you select, for example, Project > Save,
Project > Save and compile changes, or Project > Save and recompile all.

Figure 4-6 Insert LAD/FBD program dialog box

LAD/FBD programming
4.5 Managing LAD/FBD programs

SIMOTION LAD/FBD
60 Programming and Operating Manual, 07/2017, A5E33438246B

① Name of the LAD/FBD unit
② Name of the LAD/FBD program

Figure 4-7 Displaying the unit and program name in the project navigator

4.5.2 Opening an existing LAD/FBD program
All LAD/FBD programs belonging to an LAD/FBD unit are located in the project navigator
underneath the LAD/FBD unit.

Procedure
To open an available program, proceed as follows:

1. Open the subtree of the appropriate SIMOTION device in the project navigator.

2. Open the PROGRAMS folder.

3. Open the LAD/FBD unit containing the required LAD/FBD program.

4. Select the required LAD/FBD program.

5. Select the Open context menu.

6. Only for programs below LAD/FBD units with know-how protection (Page 48):
If the LAD/FBD unit (or a program of this unit) is not already open and the login assigned
to the LAD/FBD unit is not yet logged in:

– Enter the corresponding password for the displayed login.
The know-how protection for this unit is temporarily canceled (until the unit and all its
programs are closed).

– If required, activate the "Use login as a standard login" checkbox.
You will be logged in with this login and can now open additional units to which the same
login is assigned without having to re-enter the password.

LAD/FBD programming
4.5 Managing LAD/FBD programs

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 61

The LAD/FBD program opens in the working area. Several LAD/FBD programs can be opened
at the same time.

Note

You can also double-click the required LAD/FBD program to open it.

4.5.3 Defining the order of the LAD/FBD programs in the LAD/FBD source file
As of Version V4.2 of SIMOTION SCOUT, the user no longer needs to respect the POU order
in the LAD/FBD unit, as this no longer has any role to play in terms of compilability. The user
may wish to change the POU order so that the POUs are arranged in a more logical way from
his or her own perspective.

Exception
When a project is saved in a format older than Version V4.2 of SIMOTION SCOUT, the order
of the LAD/FBD programs in the LAD/FBD source file is of relevance as far as compilation is
concerned. A subroutine (function, function block, or program ("program in program")) must
be defined before it is used. This is the case when the LAD/FBD program of the subroutine
appears in the project navigator above the LAD/FBD program in which it is used. If necessary,
reorder the charts (see Subroutine call of function (FC) (Page 176)).

Prior to saving a project in a project format earlier than version 4.2, you can test the project
for downward compatibility (i.e. the correct POU order, etc.) via Project > Old project format >
Test the project for downward compatibility.

Procedure
To change the order:

1. Select a LAD/FBD program in the project navigator.

2. In the context menu, select Up / Down

4.5.4 Copying the LAD/FBD program
To copy a LAD/FBD program:

1. In your LAD/FBD unit, select the POU you want to copy.

2. In the context menu, select Copy.

3. Select the LAD/FBD unit which is to be inserted in the POU.

4. In the context menu, select Insert.
The LAD/FBD program is inserted.

LAD/FBD programming
4.5 Managing LAD/FBD programs

SIMOTION LAD/FBD
62 Programming and Operating Manual, 07/2017, A5E33438246B

4.5.5 Saving and compiling a LAD/FBD program
An asterisk is appended in the title bar of the project to the name of a program which has been
modified but not yet saved.

Note

The entire unit and its POUs are saved and compiled

To save the LAD/FBD program and start the compilation:

1. Click the Save and compile icon in the LAD/FBD editor toolbar.
- or -
Select the LAD/FBD program > Save and compile menu item.
- or -
Select the LAD/FBD program in the project navigator and select Save and compile in the
context menu.
- or -
Shortcut Ctrl+B.
- or -
If you want to save and compile all the available LAD/FBD programs, select the Project >
Save and compile changes menu command.
If any errors occur during compilation, the error locations are displayed in the Detail
view.

2. To fix an error, double-click an error message in the detail view in the Compile / check
output tab.
The faulty element is selected and positioned in the window.

Note
Backward compatibility

This SCOUT program version supports structures (e.g. several POUs in one unit, advance
binary switching) which may not be able to be processed by previous versions.

4.5.6 Closing a LAD/FBD program
To close a LAD/FBD program opened in the working window, proceed as follows:

1. Click the x button (cross) in the title bar of the dialog box of the LAD/FBD program.
- or -
Select the LAD/FBD program > Close menu item.
- or -
Select the Windows > Close all menu item.
- or -
Shortcut Ctrl+F4.
If the changes have not yet been saved, you can save or cancel them, or abort the close
operation.

LAD/FBD programming
4.5 Managing LAD/FBD programs

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 63

4.5.7 Deleting the LAD/FBD program
To delete a LAD/FBD program:

1. In the project navigator, select the required LAD/FBD program.

2. In the context menu, select Delete.

Note

It is not possible to insert a LAD/FBD program that has been deleted.

4.6 LAD/FBD programs - defining properties
The properties of a LAD/FBD program are specified when it is inserted.

However, these properties can be viewed and modified by doing the following:

1. Open the PROGRAMS folder under the SIMOTION device in the project navigator.

2. Open the required LAD/FBD unit.

3. Select the required LAD/FBD program.

4. From the context menu, select Properties.
The LAD/FBD program properties dialog box opens.

LAD/FBD programming
4.6 LAD/FBD programs - defining properties

SIMOTION LAD/FBD
64 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-8 Properties of an LAD/FBD program

4.6.1 Renaming a LAD/FBD program
To rename a LAD/FBD program:

1. Open the property view for the LAD/FBD program.

2. Click .

3. Confirm the message with OK and enter the new name in the New name input field of the
Change Name dialog box.

4. Acknowledge the entries with Apply.

LAD/FBD programming
4.6 LAD/FBD programs - defining properties

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 65

4.6.2 Changing the LAD/FBD program creation type
To change the LAD/FBD program creation type:

1. Select the new creation type:
Program
Programs can be compared with function blocks. Local variables can be stored here either
statically or temporarily. In contrast to FBs or FCs, programs can be assigned to a task or
an execution level in SIMOTION SCOUT.
Programs cannot be called up with parameters. Therefore, unlike FBs and FCs, programs
do not have any formal parameters.
Function block (FB)
A function block (FB) is a program with static data, i.e. all local variables retain their values
after the function block has been executed. Only variables explicitly declared as temporary
variables lose their value between two calls.
Before an FB is used, an instance must be defined: Define a variable (VAR or
VAR_GLOBAL) and enter the name of the FB as data type. The FB static data is saved in
this instance. You can define multiple instances of an FB, with each instance being
independent of the others.
The static data of an FB instance are retained until the next time the instance is called; the
static data are reinitialized when the variable type of the FB instance is reinitialized.
Data transfer to the FB takes place via input or input/output parameters, and the data return
from the FB takes place via input/output parameters or output parameters.
Function (FC)
A function (FC) is a function block without static data, that is, all local variables lose their
value when the function has been executed. They are reinitialized the next time the function
is started.
Data transfer to the function takes place by means of input parameters; output of a function
value (return value) is possible.

4.7 Printing source files and programs
You can print general information about the LAD/FBD source files and programs. Various print
options can be set for the printout.

LAD/FBD programming
4.7 Printing source files and programs

SIMOTION LAD/FBD
66 Programming and Operating Manual, 07/2017, A5E33438246B

To print LAD/FBD units and programs, proceed as follows:

1. Select a LAD/FBD source file or program in the project navigator.

2. From the context menu, select Print or Print preview.
The Print dialog box will appear, enabling you to set various print options.

Figure 4-9 Dialog box for setting print options

3. Click the Print button.
The source file or LAD/FBD program is printed with the selected options. General
information, the declaration table and diagram all appear in the printout.

4.7.1 Printing a declaration table
To print a declaration table, proceed as follows:

1. Activate the Print declaration table check box.

2. Select Column widths by screen.
The contents of the declaration table are printed with the set column widths.
- or -
Select Default column widths.

LAD/FBD programming
4.7 Printing source files and programs

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 67

4.7.2 Printing a network area
To print a network area, proceed as follows:

1. Activate the Print network area check box.

2. Select All networks.
- or -
Select Selected networks only.
Prints only the networks selected in the editor (blue selection mark on the left side).

4.7.3 Printing comments
You can only select this option if you have already selected the Print network area option.

To print comments, proceed as follows:

1. Activate the Print comments check box.

2. To obtain a shorter, more concise print image, unselect the Print comments option.

4.7.4 Defining print variants
To define the print variant, proceed as follows:

1. Activate the check box.

2. Select Scale graphics to page width.
The print image is scaled so that the widest LAD/FBD network fits on one page width. The
print image is one page in width and one or more pages in length, depending on the size
of the program.
- or -
Select Scale graphics to page height.
The print image is scaled so that the entire graphic fits on one page height. The print image
is one page in length and takes up one or more page widths, depending on the width of the
networks.
- or -
Select Scale graphics to one page.
The print image is reduced so that all networks fit on one page.
- or -
Select Graphic at 100%.
The image is printed in its original size. The print image can consist of more than one page
vertically or horizontally.
- or -
Select Save screen zoom factor.
The image is printed according to the zoom factor set in the editor. The print image can
consist of more than one page vertically or horizontally.

Note

If the print image consists of more than one page, an index page is printed to give an
overview.

LAD/FBD programming
4.7 Printing source files and programs

SIMOTION LAD/FBD
68 Programming and Operating Manual, 07/2017, A5E33438246B

4.7.5 Placing networks
With Placing networks you define how the networks are distributed over the pages for printing.

To place networks, proceed as follows:

1. Activate the Place networks check box.

2. Select Continuous.
The networks are printed one after another. Page breaks are not taken into account in this
case.
- or -
Select All on new page.
All networks are printed beginning on a new page. If a network is longer than one page, it
is printed on the next page.
- or -
Select Optimized.
This minimizes the horizontal break between networks to save more space. E.g.: If a
network does not fit on the current page and is not longer than one page, this network will
be printed on the next page. If the network is longer, then a page break must be inserted.

4.7.6 Blank pages
You can select how blank pages are printed out. The layout is displayed on the index page.
Pages marked with an X are omitted.

To set the printing of blank pages, proceed as follows:

1. Activate the Blank pages checkbox.

2. Select Print all.
All blank pages are printed.
- or -
Select Omit at end.
Blank pages at the end are not printed. Blank pages in the middle are retained.
- or -
Select Omit all.
Blank pages in the middle and at the end are omitted.

4.8 LAD/FBD networks and elements
The LAD/FBD program is organized in networks which are displayed in the editor area. A
network contains a logic circuit representing the ladder diagram line.

The rules for the structure of a network according to IEC standard 61131-3 apply to the display
of a network. Several LAD/FBD elements and boxes can be inserted, copied or deleted in a
network.

Note

Use the key combinations (Page 27)for fast operation in the LAD/FBD editor.

LAD/FBD programming
4.8 LAD/FBD networks and elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 69

① Name of program and comment field ⑤ Network 2
② Call box ⑥ Selected LAD element
③ LAD element ⑦ Name of network and comment field
④ Network 1 ⑧ Selected network

Figure 4-10 Display of the networks in the LAD/FBD editor

See also
Numbering the networks (Page 71)

4.8.1 Inserting networks
To paste in a network:

1. Select an existing network or click in the working window of the open LAD/FBD program.

2. From the context menu, select Insert network.
- or -
Select LAD/FBD program > Insert network.
- or -
Click the Insert network icon.
The new network is pasted in directly after the network which is currently selected. If no
network is selected, the new network is pasted in at the front.

See also
LAD/FBD networks and elements (Page 69)

LAD/FBD programming
4.8 LAD/FBD networks and elements

SIMOTION LAD/FBD
70 Programming and Operating Manual, 07/2017, A5E33438246B

4.8.2 Selecting networks
The relevant networks have to be selected before they can be copied.

To select networks:

1. Select the desired network.
The network is selected (see figure).
- or -
If you want to select several adjacent networks, click the first required network and then,
keeping the Shift key depressed, click the last one required.
- or -
If you want to select several networks which are not adjacent to one another, hold the Ctrl
key down and click each network you need.

Selected networks are indicated by a light blue edge on their left-hand side. You can choose
the selection color in the LAD/FBD editor tab of the Settings dialog box.

Figure 4-11 Selected network

See also
Settings in the LAD/FBD editor (Page 33)

4.8.3 Numbering the networks
When a network is pasted in, it is automatically given the next consecutive number. This
number is unique and is used to identify the network.

Note

You cannot change the numbering. When a network is deleted, the numbering is automatically
adjusted.

See also
LAD/FBD networks and elements (Page 69)

LAD/FBD programming
4.8 LAD/FBD networks and elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 71

4.8.4 Enter title/comment

Titles and comments
By default, the LAD/FBD program and/or the network contain a title and a comment field. The
title and comment texts are language-dependent.

Language-dependent texts
You can use the Project > Language-dependent texts menu item to import and export ASCII
files containing translations of LAD/FBD network comments and symbol browser comments
(I/O variables, global device variables).

The exported files (Export button) can be re-imported into the project using the import function
(Import button) once they have been translated.

After a language change, the user-defined comments in the project are available in the
respective compiled languages.

Assigning a title
The title/name is used for the documentation of the LAD/FBD program or network. It is
initialized with the name "Title".

To enter a title, proceed as follows:

1. Click in the title line.

2. Enter a different title/name in the window which appears.
There is no maximum text length. The length of text visible on the screen depends on the
font, font size and screen resolution.

Entering/modifying comments
You can enter a comment in every program or network.

To enter a comment, proceed as follows:

1. Click in the comment line.

2. Enter the text of the comment in the window which appears.

3. To change an existing comment, double-click the existing comment.

4. Overwrite the now selected text.

Showing/hiding a comment line
In every program/network, you can hide a comment that has been entered:

LAD/FBD programming
4.8 LAD/FBD networks and elements

SIMOTION LAD/FBD
72 Programming and Operating Manual, 07/2017, A5E33438246B

To hide and show comments, proceed as follows:

1. Click in the working window of the open LAD/FBD program.

2. From the context menu, select Display > Comments on/off.
- or -
Select the LAD/FBD program > Display > Comments on/off menu item.
- or -
Shortcut Ctrl+Shift+K.

This change always applies to the active LAD/FBD editor. The setting is only saved when
saving if changes have been made in the respective editor window.

4.8.5 Showing/hiding a jump label
You can paste a jump label in every network.

To paste in or hide jump labels, proceed as follows:

1. Select the network in which the jump label is to be pasted.

2. From the network context menu, select Jump label ON/OFF.

3. Enter the text of the jump label in the window that appears.
Only alphanumeric characters and underscores are allowed during input. The text length
of a label must not exceed 480 characters.

Note

The jump label is deleted if it contains an error and cannot be corrected.

4. If you want to hide a jump label, select the required jump label and select Jump label ON/
OFF in the context menu.

See also
Overview of jump operations (Page 256)

4.8.6 Copying/cutting/pasting networks
If a network is copied or cut, and then pasted in again, all LAD/FBD elements in the network
are taken with it.

To copy a network, proceed as follows:

1. Select the required network.

2. In the context menu, select Copyor Cut.
- or -
Select the Edit > Copy or Edit > Cut menu item.
The copied network can be pasted again at any place or even in other LAD/FBD programs.
A new/copied or cut network is always pasted in after the selected network. If no network
is selected, the new network is placed as the first network.

LAD/FBD programming
4.8 LAD/FBD networks and elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 73

4.8.7 Undo/redo actions

Note

The following actions cannot be undone:

- Save

- Save and compile

To undo or redo actions, proceed as follows:

1. Select the Edit > Undo menu command or the Undo symbol.
The actions are undone in reverse order.

2. If you want to redo one or more undone actions, select the Edit > Redo menu item or the
Redo icon.

4.8.8 Deleting networks
To delete a network:

1. Click in a network in the open LAD/FBD program.

2. From the context menu, select Delete network.

4.9 Displaying LAD/FBD elements

4.9.1 LAD diagram

LAD diagram
The LAD diagram complies with Standard IEC 61131-3 and is organized around the binary
ladder diagram line. The ladder diagram line begins with a vertical line (conductor bar) and
ends with a coil, call-up (box) or with a jump to another network. In between, there are special
LAD elements (NO contacts, NC contacts, connectors), general logical elements (SR, RS
flipflop), system components call-ups (e.g arithmetic operations), and user functions or function
blocks.

LAD/FBD programming
4.9 Displaying LAD/FBD elements

SIMOTION LAD/FBD
74 Programming and Operating Manual, 07/2017, A5E33438246B

Rules for entering LAD statements
● Start of a LAD network

The left conductor bar is the network's starting point. Crossed lines are not permitted in a
LAD diagram. The following elements are not permitted at the beginning of a network: (P),
(N), (#).

● LAD network termination
Every LAD network must terminate with a coil or a box. Multiple outputs are possible.
The following LAD elements may not be used to terminate a network:

– (P),

– (N),

– POS,

– NEG,

– Comparator.

● Placement of empty boxes
Empty boxes can be placed anywhere in a network except on the right-hand edge or in a
parallel branch. Preconnection at binary inputs is supported.

● Placement of coils
Coils are automatically placed on the right-hand edge of the network, where they are used
to terminate a branch.

LAD/FBD programming
4.9 Displaying LAD/FBD elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 75

● Parallel branches
Parallel branches are

– opened downward and closed upward.

– opened behind the selected LAD element.

– closed behind the selected LAD element.

Another branch can be inserted between two parallel branches.
To delete a parallel branch, you must delete all LAD elements of this branch.
When the last LAD element is removed from the branch, the rest of the branch is also
removed.
The following elements are not permitted in the parallel branch:

– (P),

– (N),

– (#),

– Empty box.

The following elements are permitted in the parallel branch:

– Contacts,

– Comparators,

– Edge detection (POS, NEG).

Parallel branches which branch directly off the power rail are an exception to these
placement rules: All elements can be placed in these branches.

● Constants and enums
Binary operations can also be assigned constants (e.g. TRUE or FALSE).
FB/FC parameters can be connected with constants that reflect the parameter data type.
If a parameter is connected with an enum value that is not unique project-wide, preface the
enum value with the enum type separated by #.

4.9.2 Meaning of EN/ENO

Enable input (EN) and enable output (ENO) of the LAD box
The LAD box enable input (EN) and enable output (ENO) parameters function according to
the following principles:

● If EN is not enabled (i.e., the signal is set to "0"), then the box will not execute its function,
and ENO is not enabled (i.e., the signal is also "0").

● If EN is enabled (i.e., the signal is set to "1"), then the appropriate box executes its function,
and then ENO is also enabled (i.e., the signal is also "1").

LAD/FBD programming
4.9 Displaying LAD/FBD elements

SIMOTION LAD/FBD
76 Programming and Operating Manual, 07/2017, A5E33438246B

4.9.3 FBD diagram

FBD diagram
An FBD diagram complies with IEC standard 61131-3.
The main binary signal line begins with a logic box (top left) and ends with an assignment, call
(box), or with a jump to another network. In between, there are logic elements (AND, OR box),
general logic elements (SR, RS flip-flop), system component call-ups (e.g. arithmetic
operations), and user function or function block call-ups.

Rules for entering FBD statements
● Placement of boxes

Empty boxes (flipflops, counters, timers, arithmetic operations, device-specific commands,
TO-specific commands, etc.) can be attached to boxes with binary connections (&, =1,
XOR).
Preconnections on binary inputs (e.g. S input on flipflop) are allowed.
Separate connections with separate outputs cannot be programmed in a network. Junctions
are not supported.

Figure 4-12 FBD with binary preconnection

● &, >=1, XOR boxes
Binary inputs can be inserted, deleted, or negated in these boxes.

● Enable input/enable output
Connection of the enable input EN and/or the enable output ENO of boxes is possible.

● Constants and enums
Binary operations can also be assigned constants (e.g. TRUE or FALSE).
FB/FC parameters can be connected with constants that reflect the parameter data type.
If a parameter is connected with an enum value that is not unique project-wide, preface the
enum value with the enum type separated by #.

LAD/FBD programming
4.9 Displaying LAD/FBD elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 77

4.9.4 Converting between LAD and FBD representation

Converting from LAD to FBD representation
To switch from LAD to FBD representation, proceed as follows:

1. Open an existing LAD project.

2. Select the LAD/FBD program > Switch to FBD menu item.
- or -
Click the button for "Switch to FBD" (Ctrl+3 shortcut) in the LAD editor toolbar.
The project is now displayed in the FBD programming language.

Figure 4-13 Switching from LAD to FBD

Note

A conversion sequence of LAD - FBD - LAD always produces the original network.

Anything generated in LAD can always be displayed in FBD.

LAD/FBD programming
4.9 Displaying LAD/FBD elements

SIMOTION LAD/FBD
78 Programming and Operating Manual, 07/2017, A5E33438246B

Converting from FBD to LAD representation
To switch from FBD to LAD representation, proceed as follows:

1. Open an existing FBD project.

2. Select the LAD/FBD program > Switch to LAD menu command.
- or -
Click the button for "Switch to LAD" (Ctrl+1 shortcut) in the FBD editor toolbar.
The project is now displayed in the LAD programming language.

Figure 4-14 Switching from FBD to LAD, example with OR box

Note

A conversion sequence of FBD- LAD- FBD only produces the original LAD network if the FBD
structure can be converted to LAD.

Something generated in FBD cannot always be displayed in LAD.

Example of a non-convertible FBD structure

Figure 4-15 FBD structure with binary XOR box

LAD/FBD programming
4.9 Displaying LAD/FBD elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 79

4.10 Editing LAD/FBD elements

4.10.1 Inserting LAD/FBD elements
LAD/FBD elements are usually inserted to the right of the selected position in the network.

FBD elements are usually inserted at a boolean input of a block or at an assignment (left).

Special case:

If the right-hand edge of a network or a coil (LAD) or an assignment (FBD) is selected, the
next element is added in the network on the left-hand side of it.

To insert an LAD/FBD elements:

1. Select the position in a network behind which you want to insert an LAD/FBD element.

2. Insert an LAD/FBD element:

– Via the icons on the toolbar

– Using the menu item, e.g. LAD/FBD program > Insert element > Empty box

– With a drag and drop operation from the Command library tab

– By double-clicking the element in the Command library tab

– By selecting the element in the Command library tab and confirming with the Enter key

The selected LAD/FBD element is inserted and the placeholders and ... are inserted for
variables and parameters.

Note

A red ??? symbol indicates mandatory parameters that must be connected.

A black ... character string indicates optional parameters that can be connected.

Move the cursor over the parameter name to display the expected data type.

4.10.2 Syntax check in LAD
An automatic syntax check during input prevents the incorrect placement of elements.

● NOT in parallel branch

● FB/FC call in parallel branch

● Connector in parallel branch

● Check 0 -> 1 edge and 1 -> 0 edge in parallel branch

● XOR in parallel branch

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
80 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-16 Syntax check

4.10.3 Selecting LAD/FBD elements
LAD/FBD networks must be selected before they can be deleted, for example.

To select an individual LAD/FBD element:

● Click the required LAD/FBD element.
The LAD/FBD element is selected (see figure below).

To select several consecutive LAD/FBD elements, proceed as follows:

1. Click the first LAD/FBD element to select it.

2. Then, keeping the Shift key pressed, click the last LAD/FBD element to be selected.
The consecutive LAD/FBD elements are selected.

To select several specific LAD/FBD elements, proceed as follows:

1. Click the first LAD/FBD element to select it.

2. Keeping the Ctrl key pressed, click all the other LAD/FBD elements to be selected.
The specific LAD/FBD elements are selected.

Selected LAD/FBD elements have a light blue background. You can choose the selection color
in the LAD/FBD editor tab of the Settings dialog box.

Figure 4-17 Selected LAD/FBD elements

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 81

4.10.4 Copy/cut/delete operations in LAD/FBD elements
To copy/cut/delete, proceed as follows:

1. Select a LAD/FBD element.

2. In the context menu or in the Edit menu, select e.g. Copy.
The copied/cut LAD/FBD element can be inserted into other LAD/FBD programs.
If you delete an FB/FC box with binary preconnections, this results in several open branches
(in LAD) or sub-networks (in FBD) which can be further connected.

4.10.5 LAD/FBD elements - defining parameters (labeling)
To label the elements, proceed as follows:

1. Click the parameter.

2. Label the parameter:

– Select the corresponding parameter from the pull-down menu (for box-type only).
- or -

– Enter the appropriate variable.
- or -

– Drag the corresponding variable from the declaration table using a drag-and-drop
operation.

3. Confirm the entry with the Return key.

See also
Setting call parameters (Page 89)

Defining variables in the Variable declaration dialog box ("on-the-fly" variable declaration)
(Page 117)

4.10.6 Labeling LAD/FBD elements with the symbol input help dialog
To label the element with the Symbol input help, proceed as follows:

1. Select the parameter you want to label.

2. Right-click to open the context menu.

3. Click the Symbol input help menu.
- or -
Call the symbol input help with the key shortcut Ctrl+Alt+H.
The Symbol input help dialog box opens. The tree structure shows all variables which exist
in the project and which can be used.

4. Select the desired variable and click OK to confirm.
The label is entered in the selected parameter. If the variable is defined in another program
source or in a library, a Connection (Page 164) is created automatically.

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
82 Programming and Operating Manual, 07/2017, A5E33438246B

4.10.7 Setting the LAD/FBD element display
In order to ensure a manageable view of relatively large call boxes, you can set the display
mode of LAD/FBD elements.

To set the LAD/FBD element display, proceed as follows:

1. Click in the editor area of the LAD/FBD program.

2. Select the required display mode:

– In the context menu, select View > No box parameters or the LAD/FBD program > View
> No box parameters menu item.
- or -

– In the context menu, select View > Only assigned box parameters or the LAD/FBD
program > View > Only assigned box parameters menu item.
- or -

– In the context menu, select View > Mandatory and assigned box parameters or the LAD/
FBD program > View > Mandatory and assigned box parameters menu item.
- or -

– In the context menu, select View > All box parameters or the LAD/FBD program > View
> All box parameters menu item.
This box parameter setting is also saved when storing.

Note

If a call box has non-represented parameters, this is indicated by ... at the bottom of the box.

4.10.8 Select box type with empty box

Requirement
You have inserted an empty box into the network, e.g. via the LAD/FBD program > Insert
element > Empty box menu.

Figure 4-18 Empty box

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 83

Specify empty box
There are two alternatives for specifying the box type:

● Via an editable combo box (Page 84)

● Via the call assistance (Page 86)

4.10.8.1 Specify the box type via the editable combo box

Requirement
Empty box is inserted.

Procedure
How to open the editable combo box at the empty box (alternatives):

● Select Empty box and press Enter.

● Click on the ??? field.

The editable combo box opens.

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
84 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-19 Drop-down menu for the combo box

The following are available for selection in the drop-down menu:

● The standard functions and function blocks, see Functions (Page 211)

● The functions and function blocks of the own LAD/FBD source

● The functions and function blocks exported into connected program sources or libraries

● The public methods of exported classes (as of Kernel V4.5) and function blocks defined in
connected ST source files or libraries.

Select the required box type. Alternatively, you may enter the box type into the combo box.

The empty box is replaced by the appropriate box for selection.

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 85

4.10.8.2 Specify box type via call assistance

Requirement
The empty box is inserted.

Procedure
How to open the call assistance:

● Double-click the ??? field.

The “Call assistance” window opens.

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
86 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-20 Call assistance

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 87

The following are displayed as roots in a tree topology:

● User functions
All program sources for the SIMOTION device and for the libraries for the project are
displayed beneath this. You can select the following program organization unit (POE):

– All functions and function blocks of the own LAD/FBD source

– The functions and function blocks exported into program sources or libraries

– The public methods of exported classes (as of Kernel V4.5) and function blocks defined
in ST source files or libraries.

● System functions
The standard functions and function blocks, see Functions (Page 211)

Information about the selected POE can be found in the window footnote. This information can
be hidden with the Details <<< button.

Selecting the required POE (alternatives):

● Select the desired POE and click OK.

● Double-click the desired program organization unit.

The “Call assistance” window closes and the empty box is replaced by the appropriate box for
selection.

4.10.9 Setting the call parameter for an individual parameter
To set an individual call parameter, proceed as follows:

1. Double-click the parameter input/output you want to set.
The Enter call parameter for individual parameter dialog box appears.

Figure 4-21 Dialog box for setting an individual call parameter

2. Assign a variable or value to the parameter from the Values list.

3. Confirm your selection twice with the Enter key to close the dialog box again.

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
88 Programming and Operating Manual, 07/2017, A5E33438246B

4.10.10 Setting call parameters
To set the call parameters, proceed as follows:

1. Label the type parameters of the box.

2. Double-click the box.
- or -
In the shortcut menu, select Call parameters
The Enter call parameters dialog box appears.
Only variables which have already been declared and symbols/variables offered by the
system are displayed.

Figure 4-22 Dialog box for setting call parameters

3. Enter:

– Instance
Here, you enter the instance of the function block or the class.

– Return value
Here you assign the function or method return value to a variable of the calling program.

– Value
Here, you can assign current variables or values to the parameters.

See also Overview of subprogram call parameters (Page 171).

4. Confirm with OK.

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 89

Note

The Value list includes all visible symbols in the current target (variables, Enum values, etc.)
whose type matches the data type of the parameter. Implicit data type conversion is taken into
consideration here. You can select a symbol from the list or enter one yourself.

The value of string constants must be entered in inverted commas
(e.g. 'st_until')

LAD/FBD programming
4.10 Editing LAD/FBD elements

SIMOTION LAD/FBD
90 Programming and Operating Manual, 07/2017, A5E33438246B

4.11 Command library

4.11.1 LAD/FBD functions in the command library
The command library appears automatically as a tab in the project navigator. The command
library stays open after the programming window is closed.

Figure 4-23 Command library tab of the project navigator

LAD/FBD programming
4.11 Command library

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 91

4.11.2 Inserting elements/functions from the command library
To paste elements/functions into a programming window:

1. Left-click the desired function in the command library, drag the function onto the editor
window while keeping the left mouse button depressed and then release the left mouse
button.
- or -
Double-click the desired function.
- or -
Select the desired function and press the Enter key.

LAD/FBD elements are usually pasted in to the right of the selected position in the network.
FBD elements are usually pasted in at a boolean input of a block or at an assignment (left).

4.11.3 Description of PLCopen blocks
PLCopen blocks are preferably used for the programming of motion control tasks in the LAD/
FBD programming language. The PLCopen blocks are intended for use in cyclic programs/
tasks.

The following standard function blocks are available in the command library in SIMOTION.
They are certified in accordance with "PLCopen Compliance Procedure for Motion Control
Library V1.1".

The details and the use of the PLCopen blocks are described in the PLCopen Blocks Function
Manual.

An example for the use of the PLCopen blocks is contained in Section "Positioning axis
program (Page 340)".

Table 4-2 Single-axis function blocks for the axis

Function block Description
_MC_Power() Enabling/disabling axis
_MC_Stop() Stopping the axis
_MC_Home() Homing axis/clearing absolute value encoder offset
_MC_MoveAbsolute() Absolutely positioning axis
_MC_MoveRelative() Relatively positioning axis
_MC_MoveVelocity() Traversing axis at defined velocity
_MC_MoveAdditive() Positioning relative to current target position (traversing axis using

an additional, defined path, relative to current position setpoint)
_MC_MoveSuperimposed() Superimposed positioning (traversing axis relative to current mo‐

tion)
_MC_PositionProfile() Traveling through position/time profile (traversing axis along a

predefined, fixed position/time profile)
_MC_VelocityProfile() Traveling through velocity/time profile (traversing axis along a

predefined, fixed velocity/time profile)
Basic functions
_MC_Reset() Resetting errors/alarms on the axis or triggering a restart
_MC_ReadActualPosition() Reading the actual position of axis

LAD/FBD programming
4.11 Command library

SIMOTION LAD/FBD
92 Programming and Operating Manual, 07/2017, A5E33438246B

Function block Description
_MC_ReadStatus() Reading the status of an axis
_MC_ReadAxisError() Reading the error of an axis
_MC_ReadParameter() Reading axis parameter and outputting in data type LREAL
_MC_ReadBoolParameter() Reading axis parameter and outputting in data type BOOL
_MC_WriteParameter() Writing axis parameter of data type LREAL
_MC_WriteBoolParameter() Writing axis parameter of data type BOOL
In addition to the standard function blocks, the following function block is available for an axis:
_MC_Jog() Continuous or incremental jogging

Table 4-3 Multi-axis function blocks for the axis

Function Description
_MC_GearIn() Starting gearing (synchronizing master and slave axis while tak‐

ing into account a positional relationship described by a fixed gear
ratio)

_MC_GearOut() Terminating gearing (desynchronizing master and slave axis)
_MC_CamIn() Starting camming (synchronizing master and slave axis while tak‐

ing into account a positional relationship described by a cam)
_MC_CamOut() Terminating camming (desynchronizing master and slave axis)
_MC_Phasing() Changing phase shift between the leading axis and following axis

Table 4-4 Function blocks for the external encoder

Function Description
_MC_Power() Enabling external encoder
_MC_Reset() Resetting external encoder
_MC_Home() Homing external encoder
_MC_ReadActualPosition() Reading actual position of external encoder
_MC_ReadStatus() Reading external encoder status
_MC_ReadAxisError() Reading external encoder error
_MC_ReadParameter() Reading external encoder parameter and outputting in data type

LREAL
_MC_ReadBoolParameter() Reading external encoder parameter and outputting in data type

BOOL

LAD/FBD programming
4.11 Command library

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 93

4.11.4 Special features of the command library

Special features
The following ST commands have no corresponding function that can be used with LAD/FBD:

● BOOL := _checkequaltask([IN]TASK, [IN]TASK)
Two StructTaskID or two StructAlarmID can be compared to one comparator.

● StructAlarmID := _getalarmid([IN]ALARM)
These alarm commands can be found in the _alarm name space (_alarm.myalarm).

● StructTaskID := _gettaskid([IN]TASK id:=TaskIdThis)
The task commands can be found in the _task name space (_task.backgroundtask).

Examples for parameters of type _alarmid and _starttaskid

Figure 4-24 Examples for StructAlarmID

Figure 4-25 Example for StructTaskID

4.12 General information about variables and data types

4.12.1 Overview of variable types
The following table shows all the variable types available for programming with ST.

● System variables of the SIMOTION device and the technology objects

● Global user variables (I/O variables, device-global variables, unit variables)

● Local user variables (variables within a program, a function, or a function block)

LAD/FBD programming
4.12 General information about variables and data types

SIMOTION LAD/FBD
94 Programming and Operating Manual, 07/2017, A5E33438246B

System variables

Variable type Meaning
System variables of the SI‐
MOTION device

Each SIMOTION device and technology object has specific system variables. These can be
accessed as follows:
● Within the SIMOTION device from all programs
● From HMI devices
You can monitor system variables in the symbol browser.

System variables of technol‐
ogy objects

Global user variables

Variable type Meaning
I/O variables You can assign symbolic variable names to the I/O addresses of the SIMOTION device or

the peripherals. This allows you to have the following direct accesses to the I/O:
● Within the SIMOTION device from all programs
● From HMI devices
You create these variables in the symbol browser after you have selected the I/O element in
the project navigator.
You can monitor I/O variables in the symbol browser.

Global device variables User-defined variables which can be accessed by all SIMOTION device programs and HMI
devices.
You create these variables in the symbol browser after you have selected the GLOBAL DE‐
VICE VARIABLES element in the project navigator.
Global device variables can be defined as retentive. This means that they will remain stored
even when the SIMOTION device power supply is disconnected.
You can monitor global device variables in the symbol browser.

Unit variables User-defined variables that all programs (programs, function blocks, and functions) can ac‐
cess within a unit (source file).
You declare these variables in the declaration table of the source file:
● In the interface section:

These variables are exported and can be used in other units (e.g. ST source files, MCC
source files, LAD/FBD source files) after a connection has been defined (Page 165). They
are also available on HMI devices as standard.

● In the implementation section:
You can only access these variables within the source file.

You can declare unit variables as retentive. This means that they will remain stored even
when the SIMOTION device power supply is disconnected.
You can monitor unit variables in the symbol browser.

LAD/FBD programming
4.12 General information about variables and data types

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 95

Local user variables

Variable type Meaning
 User-defined variables that can only be accessed within the program/chart (program, func‐

tion, function block) in which they were defined.
Variable of a program (pro‐
gram variable)

Variable is declared in a program. The variable can only be accessed within this program. A
differentiation is made between static and temporary variables:
● Static variables are initialized according to the memory area in which they are stored.

Specify this memory area by means of a compiler option. By default, the static variables
are initialized depending on the task to which the program is assigned (see SIMOTION
Basic Functions Function Manual).
You can monitor static variables in the symbol browser.

● Temporary variables are initialized every time the program in a task is called.
Temporary variables cannot be monitored in the symbol browser.

Variable of a function
(FC variable)

Variable is declared in a function (FC). The variable can only be accessed within this function.
FC variables are temporary; they are initialized each time the FC is called. They cannot be
monitored in the symbol browser.

Variable of a function block
(FB variable)

Variable is declared in a function (FB). The variable can only be accessed within this function
block. A differentiation is made between static and temporary variables:
● Static variables retain their value when the FB terminates. They are initialized only when

the instance of the FB is initialized; this depends on the variable type with which the
instance of the FB was declared.
You can monitor static variables in the symbol browser.

● Temporary variables lose their value when the FB terminates. The next time the FB is
called, they are reinitialized.
Temporary variables cannot be monitored in the symbol browser.

4.12.2 Scope of the declarations

Scope of variable and data type declarations according to location of declaration

Location of declaration What can be declared here Scope
Symbol browser ● Global device variables

● I/O variables
The declared variables are valid in all units (e.g., ST
source files, MCC source files, LAD/FBD source files)
of the SIMOTION device. All programs, function
blocks, and functions in all units of the device can ac‐
cess the variables.

Interface section of the unit1 ● Unit variables
● Data types
● Symbolic accesses to the fixed

process image of the
BackgroundTask

The declared variables, data types, etc., are valid in the
entire unit (e.g., ST source file, MCC source file, LAD/
FBD source file); all programs, function blocks, and
functions within the unit can access them.
In addition, they are also available in other units after
connection (see Define connections (Page 165)).

LAD/FBD programming
4.12 General information about variables and data types

SIMOTION LAD/FBD
96 Programming and Operating Manual, 07/2017, A5E33438246B

Location of declaration What can be declared here Scope
Implementation section of the
unit1

● Unit variables
● Data types
● Symbolic accesses to the fixed

process image of the
BackgroundTask

The declared variables, data types, etc., are valid in the
entire unit (e.g., ST source file, MCC source file, LAD/
FBD source file); all programs, function blocks, and
functions within the source file can access them.

POU (program/
function block/
function)2

● Local variables
● Data types
● Symbolic accesses to the fixed

process image of the
BackgroundTask

The declared variables, data types, etc., can only be
accessed within the POU in which they were declared.

1 MCC and LAD/FBD programming languages: in the declaration table of the respective source file.
2 MCC and LAD/FBD programming languages: in the declaration table of the respective chart/program.

4.12.3 Rules for identifiers
Names for variables, data types, charts/programs must comply with the following rules for
identifiers:

1. They are made up of letters (A to Z, a to z), numbers (0 to 9), and underscores (_).

2. The first character must be a letter or underscore.

3. This can be followed by as many letters, digits or underscores as needed in any order.

4. Exception: You must not use more than one underscore in succession.

5. Both upper- and lower-case letters are allowed. No distinction is made between upper- and
lower-case notation (thus, for example, Anna and AnNa are regarded as identical).

Note
Reserved identifiers

Reserved identifiers may only be used as predefined. You may not declare a variable or data
type with the name of a reserved identifier.

There is no distinction between upper- and lower-case notation.

You can find a list of all the identifiers whose meanings are predefined in SIMOTION in the
SIMOTION Basic Functions Function Manual.

Note
Identifiers for SIMOTION devices

Identifiers for SIMOTION devices do not have to comply with rules specified above. When
used in SIMOTION SCOUT they must be enclosed in double inverted commas (", ASCII code
$22). See the SIMOTION ST Programming and Operating Manual.

LAD/FBD programming
4.12 General information about variables and data types

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 97

4.12.4 Frequently used arrays in declarations

4.12.4.1 Reference (as of kernel V4.5)
References can be formed as of version V4.5 SIMOTION Kernel. The compiler option
(Page 53) "Object-oriented programming" must also be activated.

By activating the Reference checkbox, you specify that the declared variable (or the component
of a structure) contains the reference to the specified data type. This means that the variable
can contain address information for a variable of the specified data type.

The following are permitted as data types to which references can be formed:

● Elementary data types (e.g. INT, DINT, REAL, WORD, TIME, STRING)

● User-defined data types (UDT)

● System data types

● Function blocks, provided they contain at least one static variable

● Classes (from ST sources)

No references can be formed to the following data types because references exist already:

● Technology object data types

● Object-oriented interfaces (from ST sources)

● General references

● I/O references (from ST sources)

4.12.4.2 Array length and array element
A field is a chain of variables of the same type that can be addressed with the same name and
different indices.

You can define the variable as a field [0...N-1] by entering a field length N.

You have the following options for entering the field length:

● You can enter a constant positive integer value.

● You can enter a value range with ".." separating the min. and max. values.

● You can enter a constant expression of data type DINT (or of a data type that is implicitly
convertible to DINT).

If the field is empty, a single variable is set up rather than a field.

LAD/FBD programming
4.12 General information about variables and data types

SIMOTION LAD/FBD
98 Programming and Operating Manual, 07/2017, A5E33438246B

Example definition of a field in the declaration table

Figure 4-26 Defining the length of a field

Example of use of field elements in a variable assignment

Figure 4-27 Use of field elements in a variable assignment

4.12.4.3 Initial value
You can specify an initialization value in this column. You can specify this initialization value
as a constant or an expression. The following are permissible:

● Constants

● Arithmetic operations

● Bit slice and data conversion functions

Variables of a technology object data type cannot be assigned an initialization value. They are
always initialized by the compiler with TO#NIL.

Initialization of arrays
Per default, the compiler assigns all array elements the initialization value of the data type.
The initialization values can be changed by specifying an array initialization list according to
the following example.

Table 4-5 Preassignment of array elements

10(1) 10 array elements [0..9] are pre-assigned the same value "1".
1,2,3,4,5 5 array elements [0..4] are pre-assigned different values "1", "2", "3", "4" and

"5".
5(3),10(99),3(7),2(1) The following array elements are pre-assigned the following values:

● Five array elements [0..4] with the same value "3".
● 10 array elements [5..14] with the same value "99".
● 3 array elements [15..17] with the same value "7".
● 2 array elements [18..19] with the same value "1".

LAD/FBD programming
4.12 General information about variables and data types

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 99

Definition of these initialization values in the declaration table:

Figure 4-28 Definition of the initialization values of an array

Initialization of structures
Per default, the compiler assigns all components of a structure the initialization value of their
data type. By specifying an initial value for a component, their initialization can be changed.

When using the structure in another declaration (e.g. variable or structure definition), the
initialization values of individual components can be changed by assigning a structure
initialization list, enclosed in round brackets (), in accordance with the following example.

Figure 4-29 Definition of the initialization values of a structure

Instance-specific initialization of classes and function blocks
For the instance formation of classes and function blocks created during the object-oriented
programming, variables declared as VAR OVERRIDE or VAR PUBLIC can be initialized
instance-specific. The initialization values specified for the definition of the associated program
organization unit (POU) are overwritten.

If instance-specific initializable variables exist in a class or function block, the Start value field
cannot be edited for the instance formation. The … button is displayed instead.

Proceed as follows to initialize the instance variables instance-specific:

1. Click the … button.
A window opens.
In this window, all initializable variables are present as a structure initialization list of the
Structured Text (ST) programming language. A differentiation is made between necessary
and optional initializations.

2. Enter the initialization values of the associated variables.
Also adapt the comment characters appropriately (e.g. "//").

3. Click OK to confirm.

LAD/FBD programming
4.12 General information about variables and data types

SIMOTION LAD/FBD
100 Programming and Operating Manual, 07/2017, A5E33438246B

4.12.4.4 Comments
A comment can be entered in this column. It may contain any characters or special characters.

4.12.5 Sorting in the declaration tables
You can specify a sorting order for a column in the declaration tables. The lines of the
declaration table are arranged so that the entries (character strings) of the relevant column
are sorted according to the sorting criterion. The characters are sorted according to their ANSI
code; the sorting is not case-sensitive.

The following sorting criteria are available:

● Sort in ascending order
Alphabetic sorting is ascending order (0 … 9, a …z).

● Sort in descending order
Alphabetic sorting is descending order (z … a, 9 … 0).

● Original order
No sorting. The lines of the declaration table are arranged in the order of declaration.

As long as the sorting order is not accepted (see below), the following applies:

● The sorting only affects the display. The data storage remains unchanged.

● The declaration table is saved in the original order.

● The compiler processes the declaration table in the original order.

Special features when sorting structures and enumerations
When sorting structures (Page 107) and enumerations (Page 108), the following applies:

● When sorting according to the Structure name or Enumeration name column:

– The structures or enumerations are sorted according to their names.

– The elements of these structures and enumerations remain in their original order.

● When sorting according to the other columns:

– The structures and enumerations remain in their original order.

– The elements within the structures and enumerations are sorted.

Special feature of pragma lines
For the declaration tables of a unit (interface section and implementation section), the following
applies:

LAD/FBD programming
4.12 General information about variables and data types

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 101

If in the declaration of unit variables (Page 114) (Parameters tab), pragma lines (Page 120)
are available, the lines are sorted between the individual pragma lines.

Note

In the sorted view of a declaration table, the following is not possible:
● Insertion of new elements (e.g. variables, structures, enumerations as well as elements of

structures and enumerations).
● Insertion of new or copied lines.
● Insertion of pragma lines.

Procedure
To sort the entries of the declaration table:

● Double-click the appropriate column header.
The sorting changes between the sorting criteria.
A double-click in another column header results sorting in ascending order according to
this column.

● Or alternatively:

– Move the cursor to the appropriate column header.

– Select the sorting criterion in the context menu

The sorting is performed according to the selected sorting criterion.
The original order can only be selected in the context menu of a sorted column.

Accepting the sorting order
Proceed as follows:

1. Move the cursor to an arbitrary column header.

2. Select Accept sorting order in the context menu.

The sorting order is taken over as original order.

Note

Observe the following when accepting the sorting order in a declaration table:
● No "Undo" possible.
● The data storage and the declaration order are changed.
● The corresponding unit is changed and must be compiled again.
● The compiler processes the declaration table in the changed order.
● The relevant variable blocks are initialized during the download of the unit.
● HMI-relevant data is no longer consistent.

LAD/FBD programming
4.12 General information about variables and data types

SIMOTION LAD/FBD
102 Programming and Operating Manual, 07/2017, A5E33438246B

4.13 Data Types
A data type is used to determine how the value of a variable or constant in a program source
is to be used.

The following data types are available to the user:

● Elementary data types (Page 103)

● User-defined data types (UDT) (Page 107)

– Enumerations

– Structures (Struct)

● Technology object data types (Page 109)

● System data types (Page 111)

4.13.1 Elementary data types

Elementary data types define the structure of data that cannot be broken down into smaller
units. An elementary data type describes a memory area with a fixed length and stands for bit
data, integers, floating-point numbers, duration, time, date and character strings.

All the elementary data types are listed in the table below:

Table 4-6 Bit widths and value ranges of the elementary data types

Type Reserv. word Bit width Range of values
Bit data type
Data of this type uses either 1 bit, 8 bits, 16 bits, or 32 bits. The initialization value of a variable of this data type is 0.
 Bit BOOL 1 0, 1 or FALSE, TRUE

Byte BYTE 8 16#0 to 16#FF
Word WORD 16 16#0 to 16#FFFF
Double word DWORD 32 16#0 to 16#FFFF_FFFF

Numeric types
These data types are available for processing numeric values. The initialization value of a variable of this data type is 0 (all
integers) or 0.0 (all floating-point numbers).

LAD/FBD programming
4.13 Data Types

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 103

Type Reserv. word Bit width Range of values
 Short integer SINT 8 -128 to 127 (-2**7 to 2**7-1)

Unsigned short integer USINT 8 0 to 255 (0 to 2**8-1)
Integer INT 16 -32_768 to 32_767 (-2**15 to 2**15-1)
Unsigned integer UINT 16 0 to 65_535 (0 to 2**16-1)
Double integer DINT 32 -2_147_483_648 to 2_147_483_647 (-2**31 to 2**31-1)
Unsigned double inte‐
ger

UDINT 32 0 to 4_294_967_295 (0 to 2**32-1)

Floating-point number
(per IEEE -754)

REAL 32 -3.402_823_466E+38 to -1.175_494_351E-38,
0.0,
+1.175_494_351E-38 to +3.402_823_466E+38
Accuracy:
23-bit mantissa (corresponds to 6 decimal places), 8-bit ex‐
ponent, 1-bit sign.

Long floating-point
number
(in accordance with
IEEE-754)

LREAL 64 -1.797_693_134_862_315_7E+308 to
-2.225_073_858_507_201_4E-308,
0.0,
+2.225_073_858_507_201_4E-308 to
+1.797_693_134_862_315_7E+308
Accuracy:
52-bit mantissa (corresponds to 15 decimal places), 11-bit
exponent, 1-bit sign.

Time types
These data types are used to represent various date and time values.
 Duration in increments

of 1 ms
TIME 32 T#0d_0h_0m_0s_0ms to T#49d_17h_2m_47s_295ms

Maximum of 2 digits for the values day, hour, minute, second
and a maximum of 3 digits for milliseconds
Initialization with T#0d_0h_0m_0s_0ms

Date in increments of 1
day

DATE 32 D#1992-01-01 to D#2200-12-31
Leap years are taken into account, year has four digits,
month and day are two digits each
Initialization with D#0001-01-01

Time of day in incre‐
ments of 1 ms

TIME_OF_DAY
(TOD)

32 TOD#0:0:0.0 to TOD#23:59:59.999
Maximum of two digits for the values hour, minute, second
and maximum of three digits for milliseconds
Initialization with TOD#0:0:0.0

Date and time DATE_AND_TI
ME
(DT)

64 DT#1992-01-01-0:0:0.0 to DT#2200-12-31-23:59:59.999
DATE_AND_TIME consists of the data types DATE and TIME
Initialization with DT#0001-01-01-0:0:0.0

String type
Data of this type represents character strings, in which each character is encoded with the specified number of bytes.
The length of the string can be defined at the declaration. Indicate the length in "[" and "]", e.g. STRING[100]. The default
setting consists of 80 characters.
The number of assigned (initialized) characters can be less than the declared length.
 String with 1 byte/char‐

acter
STRING 8 You may use all the characters in the extended ASCII char‐

acter set (ASCII code $00 to $FF).
Default ’ ’ (empty string)

LAD/FBD programming
4.13 Data Types

SIMOTION LAD/FBD
104 Programming and Operating Manual, 07/2017, A5E33438246B

Note

During variable export to other systems, the value ranges of the corresponding data types in
the target system must be taken into account.

See also
Value range limits of elementary data types (Page 105)

General data types (Page 106)

Elementary system data types (Page 106)

4.13.1.1 Value range limits of elementary data types
The value range limits of certain elementary data types are available as constants.

Table 4-7 Symbolic constants for the value range limits of elementary data types

Symbolic constant Data type Value Hex notation
SINT#MIN SINT -128 16#80
SINT#MAX SINT 127 16#7F
INT#MIN INT -32768 16#8000
INT#MAX INT 32767 16#7FFF
DINT#MIN DINT -2147483648 16#8000_0000
DINT#MAX DINT 2147483647 16#7FFF_FFFF
USINT#MIN USINT 0 16#00
USINT#MAX USINT 255 16#FF
UINT#MIN UINT 0 16#0000
UINT#MAX UINT 65535 16#FFFF
UDINT#MIN UDINT 0 16#0000_0000
UDINT#MAX UDINT 4294967295 16#FFFF_FFFF
T#MIN
TIME#MIN

TIME T#0ms 16#0000_00001

T#MAX
TIME#MAX

TIME T#49d_17h_2m_47s_295ms 16#FFFF_FFFF1

TOD#MIN
TIME_OF_DAY#MIN

TOD TOD#00:00:00.000 16#0000_00001

TOD#MAX
TIME_OF_DAY#MAX

TOD TOD#23:59:59.999 16#0526_5BFF1

1 Internal display only

LAD/FBD programming
4.13 Data Types

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 105

4.13.1.2 General data types
General data types are often used for the input and output parameters of system functions
and system function blocks. The subroutine can be called with variables of each data type that
is contained in the general data type.

The following table lists the available general data types:

Table 4-8 General data types

General data type Data types contained
ANY_BIT BOOL, BYTE, WORD, DWORD
ANY_INT SINT, INT, DINT, USINT, UINT, UDINT
ANY_REAL REAL, LREAL
ANY_NUM ANY_INT, ANY_REAL
ANY_DATE DATE, TIME_OF_DAY (TOD), DATE_AND_TIME (DT)
ANY_ELEMENTARY ANY_BIT, ANY_NUM, ANY_DATE, TIME, STRING
ANY ANY_ELEMENTARY, user-defined data types (UDT), system data types,

data types of the technology objects

Note

You cannot use general data types as type identifiers in variable or type declarations.

The general data type is retained when a user-defined data type (UDT) is derived directly from
an elementary data type (only possible with the SIMOTION ST programming language).

4.13.1.3 Elementary system data types
In the SIMOTION system, the data types specified in the table are treated in a similar way to
the elementary data types. They are used with many system functions.

Table 4-9 Elementary system data types and their use

Identifier Bit width Use
StructAlarmId 32 Data type of the alarmId for the project-wide unique identification of

the messages. The alarmId is used for the message generation.
Please refer to the SIMOTION Basic Functions Function Manual.
Initialization with STRUCTALARMID#NIL

StructTaskId 32 Data type of the taskId for the project-wide unique identification of the
tasks in the execution system.
Please refer to the SIMOTION Basic Functions Function Manual.
Initialization with STRUCTTASKID#NIL

LAD/FBD programming
4.13 Data Types

SIMOTION LAD/FBD
106 Programming and Operating Manual, 07/2017, A5E33438246B

Table 4-10 Symbolic constants for invalid values of elementary system data types

Symbolic constant Data type Meaning
STRUCTALARMID#NIL StructAlarmId Invalid AlarmId
STRUCTTASKID#NIL StructTaskId Invalid TaskId

4.13.2 User-defined data types

4.13.2.1 Defining user-defined data types (UDT)
You can create user-defined data types in units and programs/charts:

● Structures (Page 107)

● Enumerations (Page 108)

The scope of the data type declaration (Page 107) depends on the location of the declaration.

4.13.2.2 Scope of the data type declaration
You create derived data types in the declaration tables of the source file or the program/chart.
The scope of the data type declaration depends on the location of the declaration.

● In the declaration table of the unit, Interface (exported declaration) section:
The data type is valid for the entire source file; all programs/charts (programs, function
blocks, and functions) within the source file can access the data type.
These variables are also available, if appropriately connected (see Define connections
(Page 165)), in other source files (or other units).

● In the declaration table of the unit, Implementation (unit-internal declaration) section:
The data type is valid in the source file; all programs/charts (programs, function blocks, and
functions) within the source file can access the data type.

● In the declaration table of the program/chart:
The data type can only be accessed within the program/chart in which it is declared.

4.13.2.3 Defining structures
You define structures in the declaration tables of the unit or the program/chart. The scope
(Page 107) of the structures depends on the location of the declaration.

To define structures, proceed as follows:

1. Select the declaration table and, if applicable, the section of the declaration table for the
desired scope.

2. Select the Structures tab.

3. Enter the name of the structure.

LAD/FBD programming
4.13 Data Types

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 107

4. In the same line, enter:

– The name of the first component in the Element name field.

– Data type of the component.
You can select already defined data types.
See also:
Elementary data types (Page 103).
User-defined data types (Page 107).
Technology object data types (Page 109).
System data types (Page 111).

– Activating the optional Reference checkbox to declare a general reference to the data
type.
See also: Reference (Page 98).

– Optional array length (to define the array size).
See also: Array length and array element (Page 98).

– Optional initial value (initialization value).
See also: Initial value (Page 99).

– Optional comment.
See also: Comment (Page 101).

5. Enter additional elements of the structure in the following lines; leave the Structure name
field empty.

6. Begin the definition of the new structure by entering a new name in the Structure name
field.

Example
This example shows the definition of a structure with three components:

Figure 4-30 Definition of a structure

4.13.2.4 Defining enumerations
You define enumerations in the declaration tables of the unit or the program/chart. The
scope (Page 107) of the enumerations depends on the location of the declaration.

To define enumerations, proceed as follows:

1. Select the declaration table and, if applicable, the section of the declaration table for the
desired scope.

2. Select the Enumerations tab.

3. Enter the name of the enumeration.

LAD/FBD programming
4.13 Data Types

SIMOTION LAD/FBD
108 Programming and Operating Manual, 07/2017, A5E33438246B

4. In the same line, enter:

– The name of the first element

– Optionally, the initialization value of the enumeration data type

5. Enter additional elements of the enumeration in the following lines; leave the Enumeration
name field empty.

6. You begin the definition of the new enumeration by entering a new name in the Enumeration
name field.

Example
This example shows the definition of an enumeration data type with the name Color and the
enumeration elements Red, Blue, and Green, as well as the initialization value (initial value)
Green.

If no initialization value is entered during the enumeration definition (data type declaration),
the first value of the enumeration is assigned to the data type. In this example, this means Red
would be used for the initialization because it is defined as the first enumeration element.

Figure 4-31 Definition of an enumeration data type

4.13.3 Technology object data types

4.13.3.1 Description of the technology object data types
You can declare variables with the data type of a technology object (TO). The following table
shows the data types for the available technology objects in the individual technology
packages.

For example, you can declare a variable with the data type posaxis and assign it an appropriate
instance of a position axis. Such a variable is often referred to as a reference.

Table 4-11 Data types of technology objects (TO data type)

Technology object Data type Contained in the technology pack‐
age

Drive axis DriveAxis CAM, PATH1, CAM_EXT
External encoder ExternalEncoderType CAM, PATH1, CAM_EXT
Measuring input MeasuringInputType CAM, PATH1, CAM_EXT
Output cam OutputCamType CAM, PATH1, CAM_EXT

LAD/FBD programming
4.13 Data Types

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 109

Technology object Data type Contained in the technology pack‐
age

Cam track _CamTrackType CAM, PATH1, CAM_EXT
Position axis PosAxis CAM, PATH1, CAM_EXT
Following axis FollowingAxis CAM, PATH1, CAM_EXT
Following object FollowingObjectType CAM, PATH1, CAM_EXT
Cam CamType CAM, PATH1, CAM_EXT
Path axis1 _PathAxis PATH1, CAM_EXT
Path object1 _PathObjectType PATH1, CAM_EXT
Fixed gear _FixedGearType CAM_EXT
Addition object _AdditionObjectType CAM_EXT
Formula object _FormulaObjectType CAM_EXT
Sensor _SensorType CAM_EXT
Controller object _ControllerObjectType CAM_EXT
Temperature channel TemperatureControllerType TControl
General data type,
to which every TO can be as‐
signed

ANYOBJECT

1 Available as of version V4.1.

You can access the elements of technology objects (configuration data and system variables)
via structures (see SIMOTION Basic Functions Function Manual).

Table 4-12 Symbolic constants for invalid values of technology object data types

Symbolic constant Data type Meaning
TO#NIL ANYOBJECT Invalid technology object

See also
Inheritance of the properties for axes (Page 110)

4.13.3.2 Inheritance of the properties for axes
Inheritance for axes means that all of the data types, system variables and functions of the TO
driveAxis are fully included in the TO positionAxis. Similarly, the position axis is fully included
in the TO synchronizedAxis, the following axis in the TO pathAxis. This has, for example, the
following effects:

● If a function or a function block expects an input parameter of the driveAxis data type, you
can also use a position axis or a synchronized axis or a path axis when calling.

● If a function or a function block expects an input parameter of the posAxis data type, you
can also use a synchronized axis or a path axis when calling.

LAD/FBD programming
4.13 Data Types

SIMOTION LAD/FBD
110 Programming and Operating Manual, 07/2017, A5E33438246B

4.13.4 System data types
There are a number of system data types available that you can use without a previous
declaration. And, each imported technology packages provides a library of system data types.

Additional system data types (primarily enumeration and STRUCT data types) can be found

● In parameters for the general standard functions (see SIMOTION Basic Functions Function
Manual)

● In parameters for the general standard function blocks (see SIMOTION Basic Functions
Function Manual)

● In system variables of the SIMOTION devices (see relevant parameter manuals)

● In parameters for the system functions of the SIMOTION devices (see relevant parameter
manuals)

● In system variables and configuration data of the technology objects (see relevant
parameter manuals)

● In parameters for the system functions of the technology objects (see relevant parameter
manuals)

4.14 Variables
Variables are an important component of programming and provide structure to programs.
They are placeholders which can be assigned values that can be accessed several times in
the program.

Variables have:

● A specific initialization behavior and scope of validity

● A data type and operations which are defined for that data type

User and system variables are differentiated. User variables can be defined by the user.
System variables are provided by the system.

4.14.1 Keywords for variable types
The various keywords for variable types are shown in the following table.

Description of keywords for variable types

Keyword Description Use
Global user variables (declared in the interface or implementation section of the unit1)
VAR_GLOBAL Unit variable; can be accessed by all POUs within the source file.

If the variable was declared in the interface section, it can be used in
another source file once a connection has been defined in its declaration
table (see Define connections (Page 165)).

FB, FC, program

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 111

Keyword Description Use
VAR_GLOBAL RETAIN Retentive unit variable; retained during power outage. FB, FC, program
VAR_GLOBAL CONSTANT Unit constant; cannot be changed from the program. FB, FC, program
Local user variables (declared within a POU2)
VAR Local variable (static for FB and program, temporary for FC) FB, FC, program
VAR_TEMP Temporary local variable FB, FC, program
VAR_INPUT Input parameters: Local variable; value is supplied from external source

and can only be read in the FB or FC.
FB, FC

VAR_OUTPUT Output parameters: Local variable; value is sent to an external destination
by the FB. It can be read as an instance variable after being called by the
FB (FB instance name.variable name).

FB, FC

VAR_IN_OUT In/out parameter; the FB or FC accesses this variable directly (by means
of a reference) and can change it directly.

FB, FC

VAR OVERRIDE Static variable whose initialization value can be overwritten for an instance
formation.
The compiler option (Page 53) "Permit object-oriented programming" must
be activated.

FB

VAR CONSTANT Local constant; cannot be changed from the program. FB, FC, program
1 MCC and LAD/FBD programming languages: in the declaration table of the associated source file.
2 MCC and LAD/FBD programming languages: in the declaration table of the associated chart/program.

4.14.2 Defining variables

Variables are defined in the symbol browser or in the declaration table of the source file or
chart/program. The following table provides an overview of where the relevant variable is
defined.

Definition of variables

Variable type Defined in...
Global device user var‐
iables

Symbol browser

unit variable Declaration table of the source file as VAR_GLOBAL, VAR_GLOBAL RETAIN
or VAR_GLOBAL CONSTANT

Local variable Declaration table of the program/chart as:
● VAR, VAR_TEMP, or VAR CONSTANT
● Additionally for function blocks as VAR_INPUT, VAR_OUTPUT,

VAR_IN_OUT
● Additionally for functions as VAR_INPUT, VAR_IN_OUT

I/O variable Symbol browser
Symbolic access to the
fixed process image of
the BackgroundTask

● Declaration table of the source file
● Declaration table of the program/chart (programs and FB only)

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
112 Programming and Operating Manual, 07/2017, A5E33438246B

4.14.2.1 Use of global device variables
Global device variables are user-defined variables that you can access from all program
sources (e.g. ST source files, MCC source files) of a SIMOTION device.

Global device variables are created in the symbol browser tab of the detail view; to do this,
you must be working in offline mode.

Here is a brief overview of the procedure:

1. In the project navigator of SIMOTION SCOUT, select the GLOBAL DEVICE VARIABLES
element in the SIMOTION device subtree.

2. In the detail view, select the Symbol browser tab and scroll down to the end of the variable
table (empty row).

3. In the last (empty) row of the table, enter or select the following:

– Name of variable

– Data type of variable (only elementary data types are permitted)

4. Optionally, you can make the following entries:

– Activation of Retain checkbox (This declares the variable as retentive, so that its value
will be retained after a power failure.)

– Field length (array size)

– Initial value (if array, for each element)

– Display format (if array, for each element)

You can now access this variable using the symbol browser or any program of the SIMOTION
device.

In ST source files, you can use a global device variable, just like any other variable.

Note

If you have declared unit variables or local variables of the same name (e.g. var-name), specify
the global device variable with _device.var-name.

An alternative to global device variables is the declaration of unit variables in a separate unit,
which is imported into other units. This has the following advantages:
1. Variable structures can be used.
2. The initialization of the variables during the STOP-RUN transition is possible (via Program

in StartupTask).
3. For newly created global unit variables, a download in RUN is also possible.

Please refer to the SIMOTION Basic Functions Function Manual.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 113

4.14.2.2 Declaring a unit variable in the source file
The unit variable is declared in the unit. The scope of validity of the variable is dependent on
the section of the declaration table in which the variable is declared:

● In the interface section of the declaration table (INTERFACE):
The unit variable is valid for the entire unit; all programs/charts (programs, function blocks,
and functions) within the unit can access the unit variable. It is exported and can be used
in other source files or units (e.g. ST source files, MCC units, LAD/FBD units) after a
connection has been defined (Page 165). It is also available on HMI devices as standard.
The total size of the unit variables that can be exported to HMI devices is limited to 64 KB
per unit.

● In the implementation section of the declaration table (IMPLEMENTATION):
The unit variable is valid in the unit only; all programs/charts (programs, function blocks,
and functions) within the unit can access the unit variable.

If you insert pragma lines (Page 120) into the declaration table, you can split the unit variables
into data blocks with a separate version code (Page 131). You can also use the pragma lines
to define a separate initialization behavior (Page 126) for each of these data blocks and change
the defaults for HMI export (Page 132).

Proceed as follows; the unit (declaration table) is open, see Open existing program source
(Page 46):

1. In the declaration table, select the section for the desired scope.

2. Then select the Parameters tab.

3. Enter:

– Name of the variable.

– Variable type.
See also: Keywords for variable types (Page 111).

– Data type of the variables.
You can select already defined data types.
See also: Data types (Page 103).

– Activating the optional Reference checkbox to declare a general reference to the data
type.
See also: Reference (Page 98).

– Optional array length (to define the array size).
See also: Array length and array element (Page 98).

– Optional initial value (initialization value).
See also: Initial value (Page 99).

– Optional comment.
See also: Comment (Page 101).

The variable is then declared and can be used immediately within the unit.

Note

Outside the unit (e.g. in the symbol browser), the variable is only available after the unit has
been compiled.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
114 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-32 Example: Declaring a unit variable in the unit

Note

The declaration table of the unit is read each time parameters are assigned for a command.
Inconsistent data within the declaration table may, therefore, cause unexpected error
messages during parameter assignment.

4.14.2.3 Declaring local variables
A local variable can only be accessed within the program/chart (program, function, function
block) in which it is declared.

We distinguish between the following:

● Static variables:
Static variables retain their value over all passes of the unit section (block memory).

● Temporary variables:
Temporary variables are initialized each time the unit section is called again.

See also: Initialization of local variables (Page 127).

If you insert a pragma line (Page 120) at the start of the declaration table, you can influence
the initialization of static variables of programs (Page 128).

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 115

Proceed as follows; the program/chart with the declaration table is open (see Open existing
program source (Page 46)):

1. In the declaration table, select the Parameters/Variables tab.

2. Enter:

– Name of the variable.

– Variable type for variables.
See also: Keywords for variable types (Page 111).

– Data type of the variables.
You can select already defined data types.
See also: Data types (Page 103).

– Activating the optional Reference checkbox to declare a general reference to the data
type.
See also: Reference (Page 98).

– Optional array length (to define the array size).
See also: Array length and array element (Page 98).

– Optional initial value (initialization value).
See also: Initial value (Page 99).

– Optional comment.
See also: Comment (Page 101).

The variable is now declared and can be used immediately.

Figure 4-33 Example: Declaring a local variable in the chart/program

Note

The declaration table of the program/chart is read each time parameters are assigned for a
command. Inconsistent data within the declaration table may, therefore, cause unexpected
error messages during parameter assignment.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
116 Programming and Operating Manual, 07/2017, A5E33438246B

4.14.2.4 Defining variables in the Variable declaration dialog box ("on-the-fly" variable declaration)
As soon as you enter an unknown variable in the parameter screen form for an MCC command
or an LAD/FBD graphic, the Variable declaration dialog box appears.

Figure 4-34 Variable declaration dialog box

Note

In order for the Variable declaration dialog box to appear, the on-the-fly variable declaration
checkbox must be activated in the Settings dialog box.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 117

Procedure
To define variables "on-the-fly" in the Variable declaration dialog box, proceed as follows:

1. Enter only the name of the variables in an input field of the parameter screen for an MCC
command or LAD/FBD graphic and press the Return key.
If the entered identifier is not a valid variable name, the dialog box Variable declaration
appears.

2. Enter:

– Another variable name, if required.

– The Data type of the variables
Available for selection are all elementary data types (Page 103) and, where appropriate,
the data type suitable for the input field.
Select the data type or enter the identifier of a data type.

– The variable type.
Available for selection are all permitted keywords for variable types (Page 111).
Select the variable type.
If you select a global variable type (e.g. VAR_GLOBAL), the checkbox Exportable
becomes active.

– The Absolute identifier for access to the fixed process image of the background task
(Page 153).
You can only enter the identifier for the absolute access to the fixed process image of
the background task if you have selected a data type that is included in the general data
types (Page 106) ANY_BIT or ANY_INT.
Enter the absolute identifier according to the Syntax (Page 160).
The variable is displayed in the register I/O symbols of the declaration table.

– Optional array length.
Here, you specify the size of the array.
Not available if an absolute identifier is entered.
See also: Array length and array element (Page 98).

– Optional initial value (initialization value).
Not available if an absolute identifier is entered.
See also: Initial value (Page 99).

– Optional comment.
See also:Comment (Page 101).

– Activating the optional Reference checkbox to declare a general reference to the data
type.
See also: Reference (Page 98).

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
118 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-35 Example: Variable declaration

Figure 4-36 Example: Variable declaration (absolute name)

3. Confirm with OK.

Result
The variable is defined and entered in the declaration table of the source or the MCC chart or
the LAD/FBD program, depending on the selected variable type and the Exportable checkbox:

● With local variables (e.g. VAR), the Exportable checkbox has a gray background and the
new variable is entered in the declaration table of the MCC chart or the LAD/FBD program.

● With global variables (e.g. VAR_GLOBAL), the Exportable checkbox is shown activated:

– If the Exportable checkbox is activated, the new variable is entered in the implementation
section of the unit's declaration table.

– If the Exportable checkbox is not activated, the new variable is entered in the interface
section of the unit's declaration table.

Note

If you leave the Variable declaration dialog box by clicking Cancel, your input remains as it is,
and the variable is not created.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 119

4.14.2.5 Pasting pragma lines during variable definition
Pragma lines in declaration tables have the following function:

● In declaration tables of units (declaration of unit variables):
Pragma lines in the interface section or implementation section of the declaration table split
the variables of the respective section into different subsections:

– The 1st subsection begins at the start of the relevant table and finishes at the 1st Pragma
line.

– All the other subsections start at one pragma line and finish at the next (or at the end of
the table if starting at the last pragma line).

Within these subsections of the table, each of the variables declared with VAR_GLOBAL
or VAR_GLOBAL RETAIN forms a data block with a separate version code (Page 131). If
the version code is changed, only the data block concerned will be initialized during a
download.
Configure the pragma line in order to change the initialization behavior or the HMI export
of the next data block (see following Section Pragmas in the declaration tables of the unit
variables).

● In the declaration table of a program/chart (declaration of local variables):
Line 1 may only contain one pragma line for changing the initialization behavior of programs'
static variables (see the section titled Pragmas in the declaration tables for local variables
later in this document).

Note

The SIMOTION Kernel version partially determines the effectiveness of pragma lines. This is
specified for individual parameters.

Inserting a pragma line
To insert a pragma line into the declaration table, proceed as follows:

1. Select the Parameters tab (for unit variables) or Parameters/variables tab (for local
variables).

2. In the declaration table, set the cursor to the number of the line at which a new data block
is to be started.
Only line 1 can be used in the declaration table for local variables.

3. Select the Insert pragma line context menu.
A new line containing the Pragmas button only is inserted above the line.

4. Left-click the Pragmas button.
A window containing configuration options for the relevant declaration table opens.

5. Enter the settings.

6. Confirm with OK.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
120 Programming and Operating Manual, 07/2017, A5E33438246B

Pragmas in the declaration tables for unit variables
A pragma line has been inserted into the declaration table for unit variables. If you click the
"Pragmas" button in the table, the following window appears:

Figure 4-37 Pragma settings in the declaration table for unit variables (e.g. interface section)

This window is for making the settings below. These influence the data block following the
pragma line:

Table 4-13 Parameters for pragma settings in the declaration table for unit variables

Parameter Description
Initialization of unit data
 Initialization of VAR_GLOB‐

AL during STOP‑RUN transi‐
tion

Only as of version V4.1 of the SIMOTION Kernel.
This setting determines whether the next data block of the non-retentive unit variables
is initialized during the transition from STOP to RUN operating state.
Setting on the device (standard):
● As of version V4.2 of the SIMOTION Kernel: The setting made on the SIMOTION

device applies.
● Up to version V4.1 of the SIMOTION Kernel: Variables are not initialized.
Always: Variables are initialized.
Never: Variables are not initialized.

 Initialization of VAR_GLOB‐
AL during a change

This setting determines whether a download for the next data block of the non-retentive
unit variables can be performed in RUN if the version code has changed.
Active: A download in RUN is possible.
Inactive (standard): A download in RUN is not possible.

 Initialization of VAR_GLOB‐
AL RETAIN during a change

This setting determines whether a download for the next data block of the retentive unit
variables can be performed in RUN if the version code has changed.
Active: A download in RUN is possible.
Inactive (standard): A download in RUN is not possible.

HMI data connection

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 121

Parameter Description
 Use the settings below to change which unit variables are available on which HMI

devices by default.
Detailed description of the HMI export, in particular the effect of the settings depending
on SIMOTION Kernel version: see Variables and HMI devices (Page 132).

 VAR_GLOBAL for HMI devi‐
ces

Active (standard in the interface section):
The next data block of the non-retentive unit variables is available on HMI devices.
Inactive (standard in the implementation section):
The next data block of the non-retentive unit variables is not available on HMI devices.

 VAR_GLOBAL RETAIN for
HMI devices

Active (standard in the interface section):
The next data block of the retentive unit variables is available on HMI devices.
Inactive (standard in the implementation section):
The next data block of the retentive unit variables is not available on HMI devices.

Pragmas in the declaration tables for local variables
A pragma line has been inserted into line 1 of the declaration table for local variables. If you
click the "Pragmas" button in the table, the following window appears:

Figure 4-38 Pragma settings in the declaration table for local variables

You can make the following settings in this window:

Note

These settings only take effect in the following scenarios:
1. The "Only create program instance data once" compiler option is active on the higher-level

unit.
2. The creation type of the program/chart is "Program".

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
122 Programming and Operating Manual, 07/2017, A5E33438246B

Table 4-14 Parameters for pragma settings in the declaration table for local variables

Parameter Description
Initialization of VAR during a change This setting determines whether a download for the next static variables can be per‐

formed in RUN if the version code has changed.
Active: A download in RUN is possible.
Inactive (standard): A download in RUN is not possible.

Initialization of VAR during
STOP‑RUN transition

Only as of version V4.1 of the SIMOTION Kernel.
This setting determines whether the next static variables are initialized during the tran‐
sition from STOP to RUN operating state.
Setting on the device (standard):
● As of version V4.2 of the SIMOTION Kernel: The setting made on the SIMOTION

device applies.
● Up to version V4.1 of the SIMOTION Kernel: Variables are not initialized.
Always: Variables are initialized.
Never: Variables are not initialized.

4.14.3 Time of the variable initialization

The timing of the variable initialization is determined by:

● Memory area to which the variable is assigned

● Operator actions (e.g. source file download to the target system)

● Execution behavior of the task (sequential, cyclic) to which the program was assigned.

All variable types and the timing of their variable initialization are shown in the following tables.
You will find basic information about tasks in the SIMOTION Basic Functions Function Manual.

The behavior for variable initialization during download can be set: To do this, as a default
setting select the Options > Settings menu and the Download tab or define the setting during
the current download.

Note

You can upload values of unit variables or global device variables from the SIMOTION device
into SIMOTION SCOUT and save them in XML format.
1. Save the required data segments of the unit variables or global device variables as a data

set with the function _saveUnitDataSet.
2. Use the Save variables function in SIMOTION SCOUT.

You can use the Restore variables function to download these data sets and variables back
to the SIMOTION device.

For more information, refer to the SIMOTION SCOUT Configuration Manual.

This makes it possible, for example, to obtain this data, even if it is initialized by a project
download or if it becomes unusable (e.g. due to a version change of SIMOTION SCOUT).

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 123

4.14.3.1 Initialization of retentive global variables
Retentive variables retain their last value after a loss of power. All other data is reinitialized
when the device is switched on again.

Retentive global variables are initialized:

● When the backup or buffer for retentive data fails.

● When a memory reset (MRES) is performed.

● With the restart function (Del. SRAM) in SIMOTION P320 or P350.

● By applying the _resetUnitData function, possible selectively for different data segments of
the retentive data.

● When a download is performed according to the following description.

● With a firmware update (upgrade) or activation of a kernel in accordance with the following
description.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
124 Programming and Operating Manual, 07/2017, A5E33438246B

Behavior during download

Table 4-15 Initializing retentive global variables during download

Variable type Time of the variable initialization
Retentive global de‐
vice variables

The behavior during the download depends on the Initialization of retentive program data and re‐
tentive global device variables setting1:
● Yes2: All retentive global device variables are initialized.
● No3: The retentive global device variables are only initialized if their version code is changed.
See: Version code of global variables and their initialization during download (Page 131).

Retentive unit variables The behavior during the download depends on the Initialization of retentive program data and re‐
tentive global device variables setting1:
● Yes2: All retentive unit variables (all units) are initialized.
● No3: A data block (= declaration block)4 of the retentive unit variables in the interface or

implementation section is only initialized5 if its version code is changed.
See: Version code of global variables and their initialization during download (Page 131).

1 Default setting in the Options > Settings menu, Download tab, or the current setting for the download.
2 The corresponding check box is active.
3 The corresponding check box is inactive.
4 With the SIMOTION ST programming language:
A data block of the retentive unit variables corresponds to a VAR_GLOBAL RETAIN/END_VAR declaration block in the
interface section or implementation section.
With the SIMOTION MCC and SIMOTION LAD/FBD programming languages:
A data block of the retentive unit variables is formed as follows from the variables declared with VAR_GLOBAL RETAIN in
the interface section or implementation section of the declaration table: Pragma lines (Page 120) within a section of the
declaration table separate the variables into different data blocks.
5 Initialization of a changed data block also occurs during a download in RUN mode, provided the following condition is fulfilled:
With the SIMOTION ST programming language
The following attribute has been specified within a pragma: { BlockInit_OnChange := TRUE; }.
With the SIMOTION MCC or SIMOTION LAD/FBD programming languages:
A pragma line (Page 120) is inserted in the declaration table with the following check box enabled in this line: Initialization
of VAR_GLOBAL RETAIN during a change. All the variables declared with VAR_GLOBAL RETAIN up to the next pragma
line or the end of the table form a data block accordingly.
For information on the general conditions for a download in RUN, see the SIMOTION Basic Functions Function Manual.

Behavior during upgrade or configuration change
When the SIMOTION device is upgraded to a new version of the SIMOTION Kernel or if the
configuration is changed, the retentive variables are initialized as described below:

Table 4-16 Initialization of retentive global variables during upgrade or configuration change

Variable type Time of the variable initialization
Retentive global de‐
vice variables

This data is always initialized.

Retentive unit variables This data can be retained.
See section "Retaining retentive data" in the "Basic Functions for Modular Machines" Function
Manual.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 125

4.14.3.2 Initialization of non-retentive global variables
Non-retentive global variables lose their value during power outages. They are initialized:

● During the initialization of retentive global variables (Page 124), e.g. during a firmware
update or overall reset (MRES).

● During switch-on.

● By applying the _resetUnitData function, possible selectively for different data segments of
the non-retentive data.

● During a download as described in the following table.

● During the transition from STOP to RUN mode as described at the end of the section.

Behavior during download

Table 4-17 Initializing non-retentive global variables during download

Variable type Time of the variable initialization
Non-retentive global
device variables

The behavior during the download depends on the Initialization of non-retentive program data and
non-retentive global device variables setting1:
● Yes2: All non-retentive global device variables are initialized.
● No3: The non-retentive global device variables are only initialized if their version code is changed.
See: Version code of global variables and their initialization during download (Page 131).

Non-retentive unit vari‐
ables

The behavior during the download depends on the Initialization of non-retentive program data and
non-retentive global device variables setting1:
● Yes2: All non-retentive unit variables (all units) are initialized.
● No3: A data block (= declaration block)4 of the non-retentive unit variables in the interface or

implementation section is only initialized5 if its version code is changed.
See: Version code of global variables and their initialization during download (Page 131).

1 Default in the Options > Settings menu, Download tab, or the current setting for the download.
2 The corresponding check box is active.
3 The corresponding check box is inactive.
4 With the SIMOTION ST programming language:
A data block of the non-retentive unit variables corresponds to a VAR_GLOBAL/END_VAR declaration block in the interface
section or implementation section.
With the SIMOTION MCC or SIMOTION LAD/FBD programming languages:
A data block of the non-retentive unit variables is formed as follows from the variables declared with VAR_GLOBAL in the
interface section or implementation section of the declaration table: Pragma lines (Page 120) within a section of the decla‐
ration table separate the variables into different data blocks.
5 Initialization of a changed data block also occurs during a download in RUN, provided the following condition is fulfilled:
With the SIMOTION ST
 programming language: The following attribute has been specified within a pragma in the relevant declaration block: { Block‐
Init_OnChange := TRUE; }.
With the SIMOTION MCC or SIMOTION LAD/FBD programming languages:
A pragma line (Page 120) has been pasted into the declaration table and the following check box is activated: Initialization
of VAR_GLOBAL during a change. All the variables declared with VAR_GLOBAL up to the next pragma line or the end of
the table form a data block accordingly.
For information on the general conditions for a download in RUN, see SIMOTION Basic Functions Function Manual.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
126 Programming and Operating Manual, 07/2017, A5E33438246B

Behavior during STOP-RUN transition
The values of non-retentive global variables are retained by default during the transition from
STOP to RUN mode.

You can, however, make a setting whereby the non-retentive global variables are initialized
during the STOP-RUN transition:

● As of Version V4.2 of the SIMOTION Kernel, by activating the Initialization of non-retentive
global variables and program data during STOP-RUN transition checkbox on the
SIMOTION device.
With non-retentive unit variables, this setting can be overwritten by a pragma or pragma
line (Page 120) in the relevant data blocks of the program sources.

● As of Version V4.1 of the SIMOTION Kernel, by a pragma or pragma line in the relevant
data blocks of the program sources (only with non-retentive unit variables):

– With the SIMOTION ST programming language:
Specify the following attribute within a pragma in the relevant VAR_GLOBAL/END_VAR
declaration block: { BlockInit_OnDeviceRun := ALWAYS; }

– With the SIMOTION MCC or SIMOTION LAD/FBD programming languages:
Paste a pragma line (Page 120) with the following setting into the declaration table:
"Initialization during STOP-RUN transition = Always". All the variables declared with
VAR_GLOBAL up to the next pragma line or the end of the table form a data block which
is initialized during the STOP-RUN transition.

Note

With SIMOTION devices up to SIMOTION Kernel Version V4.0, non-retentive global variables
are never initialized during the STOP-RUN transition.

4.14.3.3 Initialization of local variables
Local variables are initialized:

● For the initialization of retentive unit variables (Page 124).

● For the initialization of non-retentive unit variables (Page 126).

● Also, according to the following description:

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 127

Table 4-18 Initialization of local variables

Variable type Time of the variable initialization
Local program varia‐
bles

Local variables of programs are initialized differently:
● Static variables (VAR) are initialized according to the memory area in which they are stored.

See: Initialization of static program variables (Page 128).
● Temporary variables (VAR_TEMP) are initialized every time the program of the task is called.

Local variables of func‐
tion blocks (FB)

Local variables of function blocks are initialized differently:
● Static variables (VAR, VAR_IN, VAR_OUT) are only initialized when the FB instance is initialized.

See: Initialization of instances of function blocks (FBs) (Page 129).
● Temporary variables (VAR_TEMP) are initialized every time the FB instance is called.

Local variables of func‐
tions (FC)

Local variables of functions are temporary and are initialized every time the function is called.

Note

You can obtain information about the memory requirements of a POU in the local data stack
using the Program Structure (Page 201) function.

4.14.3.4 Initialization of static program variables
The following versions affect the following static variables:

● Local variables of a unit program declared with VAR

● Function block instances declared with VAR within a unit program, including the associated
static variables (VAR, VAR_INPUT, VAR_OUTPUT).

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
128 Programming and Operating Manual, 07/2017, A5E33438246B

The initialization behavior is determined by the memory area in which the static variables are
stored. This is determined by the "Only create program instance data once" (Page 53) compiler
option.

● For the deactivated "Only create program instance data once" compiler option (default):
The static variables are stored in the user memory of each task which is assigned to the
program.
The initialization of the variables thus depends on the execution behavior of the task to
which the program is assigned (see SIMOTION Basic Functions Function Manual):

– Sequential tasks (MotionTasks, UserInterruptTasks, SystemInterruptTasks,
StartupTask, ShutdownTask): The static variables are initialized every time the task is
started.

– Cyclic tasks (BackgroundTask, SynchronousTasks, TimerInterruptTasks): The static
variables are only initialized only during the transition from STOP to RUN operating state.

● For the activated "Only create program instance data once" compiler option:
This setting is necessary, for example, if a program is to be called within a program.
The static variables of all programs from the program source (unit) involved are only stored
once in the user memory of the unit.
They are thus initialized together with the non-retentive unit variables, see Initialization of
non-retentive global variables (Page 126).
They are not initialized by default during the transition from STOP to RUN operating state.
You can, however, make a setting whereby they are initialized during the STOP-RUN
transition:

– As of version V4.2 of the SIMOTION Kernel, by activating the Initialization of non-
retentive global variables and program data during STOP-RUN transition checkbox on
the SIMOTION device.
This setting can be overwritten by a pragma or pragma line (Page 120) in the data block
of the relevant program organization unit (POU).

– As of version V4.1 of the SIMOTION Kernel, by a pragma or pragma line in the data
block of the relevant program organization unit (POU):
With the SIMOTION ST programming language:
Specify the following attribute within a pragma in the VAR/END_VAR declaration block:
{ BlockInit_OnDeviceRun := ALWAYS; }
With the SIMOTION MCC or SIMOTION LAD/FBD programming languages:
The declaration table starts with a pragma line (Page 120) containing the following
setting: "Initialization during STOP-RUN transition = Always". All the variables declared
with VAR in the table are initialized during the STOP-RUN transition.

4.14.3.5 Initialization of instances of function blocks (FBs) or classes
The initialization of a function block instance (Page 181) or a class instance (as of version V4.5
of the SIMOTION Kernel) is determined by the location of its declaration:

● Global declaration (within VAR_GLOBAL/END_VAR in the interface of implementation
section):
Initialization as for a non-retentive unit variable, see Initialization of non-retentive global
variables (Page 126).

● Local declaration in a program (within VAR / END_VAR):
Initialization as for static variables of programs, see Initialization of static variables of
programs (Page 128).

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 129

● Local declaration in a function block (within VAR / END_VAR):
Initialization as for an instance of this function block.

● Declaration as in/out parameter in a function block or a function (within
VAR_IN_OUT / END_VAR):
For the initialization of the POU, only the reference (pointer) will be initialized with the
instance of the function block remaining unchanged.

Note

You can obtain information about the memory requirements of a POU in the local data stack
using the Program Structure (Page 201) function.

4.14.3.6 Initialization of system variables of technology objects
The system variables of a technology object are usually not retentive. Depending on the
technology object, a few system variables are stored in the retentive memory area (e.g.
absolute encoder calibration).

The initialization behavior (except in the case of download) is the same as for retentive and
non-retentive global variables. See Initialization of retentive global variables (Page 124) and
Initialization of non-retentive global variables (Page 126).

The behavior during the download is shown below for:

● Non-retentive system variables

● Retentive system variables

Table 4-19 Initializing technology object system variables during download

Variable type Time of the variable initialization
Non-retentive system
variables

Behavior during download, depending on the Initialization of all non-retentive data for technology
objects setting1:
● Yes2: All technology objects are initialized.

– All technology objects are restructured and all non-retentive system variables are initialized.
– All technological alarms are cleared.

● No3: Only technology objects changed in SIMOTION SCOUT are initialized.
– The technology objects in question are restructured and all non-retentive system variables

are initialized.
– All alarms that are pending on the relevant technology objects are cleared.
– If an alarm that can only be acknowledged with Power On is pending on a technology object

that will not be initialized, the download is aborted.
Retentive system vari‐
ables

Only if a technology object was changed in SIMOTION SCOUT, will its retentive system variables
be initialized.
The retentive system variables of all other technology objects are retained (e.g. absolute encoder
calibration).

1 Default in the Options > Settings menu, Download tab, or the current setting for the download.
2 The corresponding checkbox is active.
3 The corresponding checkbox is inactive.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
130 Programming and Operating Manual, 07/2017, A5E33438246B

4.14.3.7 Version ID of global variables and their initialization during download

Table 4-20 Version code of global variables and their initialization during download

Data segment Description of version code
Global device variables
 Retentive global de‐

vice variables
● Separate version code for each data segment of the global device variables.
● The version code of the data segment changes for:

– Add or remove a variable within the data segment
– Change of the identifier or the data type of a variable within the data segment

● This version code does not change on:
– Changes in the other data segment
– Changes to initialization values1

● During downloading2, the rule is: This data segment is only initialized when the version
code of a data segment is changed.

Non-retentive global
device variables

Unit variables of a unit
 Retentive unit varia‐

bles in the interface
section

● Several data blocks (= declaration blocks)3 are possible in each data segment.
● Separate version code for each data block.
● The version code of the data block changes for:

– Add or remove a variable in the associated declaration block
– Change of variable sequence in the relevant declaration block
– Change of the identifier or the data type of a variable in the associated declaration

block
– Change of a data type definition (from a separate or imported4 unit) used in the

associated declaration block
– Add or remove declaration blocks within the same data segment before the associated

declaration block
● This version code does not change on:

– Add or remove declaration blocks in other data segments
– Add or remove declaration blocks within the same data segment after the associated

declaration block
– Changes in other data blocks
– Changes to initialization values1

– Changes to data type definitions that are not used in the associated data block
– Changes to functions

● During downloading2, the rule is: This data block is only initialized when the version code
of a data block is changed5.

● Functions for data backup and initialization take into account the version code of the data
blocks.

Retentive unit varia‐
bles in the implementa‐
tion section
Non-retentive unit vari‐
ables in the interface
section
Non-retentive unit vari‐
ables in the implemen‐
tation section

Retentive variables of function blocks and classes (The instances are declared as non-retentive unit variables)

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 131

Data segment Description of version code
 Non-retentive unit vari‐

ables in the interface
section

Only as of version V4.5 of the SIMOTION Kernel.
● The retentive variables of all instances within a declaration block

(VAR_GLOBAL / END_VAR) are summarized as a separate retentive data block
● to which a separate version code is assigned.
● The version code of this retentive data block changes:

– The data structure of the retentive local variables for the instances within the
declaration block changes.

– The sequence of the declaration blocks (VAR_GLOBAL / END_VAR) within the
program source changes.

● During downloading2, the rule is: This data block is only initialized when the version code
of a data block is changed5.

● Functions for data backup and initialization take into account the version code of the data
blocks.

Non-retentive unit vari‐
ables in the implemen‐
tation section

1 Changed initialization values are not effective until the data block or data segment in question is initialized.
2 If Initialization of retentive program data and retentive global device variables = No and Initialization of non-retentive program
data and non-retentive global device variables = No.
In the case of other settings: See the sections "Initialization of retentive global variables (Page 124)" and "Initialization of
non-retentive global variables (Page 126)".
3 With the SIMOTION ST programming language:
A data block corresponds to a VAR_GLOBAL/END_VAR or VAR_GLOBAL RETAIN/END_VAR declaration block in the
interface section or implementation section.
With the SIMOTION MCC or SIMOTION LAD/FBD programming languages:
A data block of the non-retentive unit variables is formed as follows from the variables declared with VAR_GLOBAL or
VAR_GLOBAL RETAIN in the interface section or implementation section of the declaration table: Pragma lines (Page 120)
within a section of the declaration table separate the variables into different data blocks.
4 The use of units depends on the programming language, refer to the relevant section (Page 165).
5 Initialization of a changed data block also occurs during a download in RUN mode, provided that the following condition is
fulfilled:
With the SIMOTION ST programming language
The following attribute has been specified within a pragma: { BlockInit_OnChange := TRUE; }.
With the SIMOTION MCC or SIMOTION LAD/FBD programming languages:
A pragma line (Page 120) is inserted in the declaration table with the following check box enabled in this line: Initialization
of VAR_GLOBAL during a change. All the variables declared with VAR_GLOBAL up to the next pragma line or the end of
the table form a data block accordingly.
For information on the general conditions for a download in RUN, see SIMOTION Basic Functions Function Manual.

4.14.4 Variables and HMI devices

Exported variables
The following variables are exported to HMI devices where they are available:

● System variables of the SIMOTION device

● System variables of technology objects

● I/O variables

● Global device variables

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
132 Programming and Operating Manual, 07/2017, A5E33438246B

● Retentive and non-retentive unit variables of the interface section (default setting).
Change this default as follows:

– In the SIMOTION ST programming language:
For each declaration block with the following pragma: { HMI_Export := FALSE; }.
See also Controlling compiler with attributes.

– In the SIMOTION MCC and SIMOTION LAD/FBD programming languages:
For the variable declarations following a pragma line (Page 120), if you deactivate the
VAR_GLOBAL for HMI devices or VAR_GLOBAL RETAIN for HMI devices parameters
in this pragma line.

The unit variables of a data block identified in this way are not exported to HMI devices.
The HMI consistency check is also omitted for them during the download.

● Non-retentive static variables (VAR) of programs provided that the compiler option "Only
create program instance data once" is activated

● Non-retentive static variables (VAR) of function blocks
This is the default setting when the compiler option "Permit object-oriented programming"
is enabled. Change this default as follows:

– In the SIMOTION ST programming language:
For each declaration block with the following pragma: { HMI_Export := FALSE; }.
See also Controlling compiler with attributes.

The variables of a data block identified in this way are not exported to HMI devices. The
HMI consistency check is also omitted for them during the download.
The pragma is not evaluated if the compiler option "Permit object-oriented programming"
is not activated. The export behavior cannot be changed.

● Non-retentive public variables (VAR PUBLIC) of classes (default setting, as of version V4.5
of the SIMOTION Kernel)
Change this default as follows:

– In the SIMOTION ST programming language:
For each declaration block with the following pragma: { HMI_Export := FALSE; }.
See also Controlling compiler with attributes.

The variables of a data block identified in this way are not exported to HMI devices. The
HMI consistency check is also omitted for them during the download.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 133

Note

The total size of the unit variables that can be exported to HMI devices is limited to 64 KB per
unit.

The effect of the { HMI_Export := FALSE; } / { HMI_Export := TRUE; } pragma
(or the VAR_GLOBAL for HMI devices or VAR_GLOBAL RETAIN for HMI devices settings in
a pragma line) depends on the SIMOTION Kernel version:
● As of Version V4.1 of the SIMOTION Kernel:

The pragma affects the export of the corresponding declaration block to HMI devices and
the structure of the HMI address space:
– Only those variables in declaration blocks exported to HMI devices occupy the HMI

address space.
– Within the HMI address space, the variables are arranged according to order of their

declaration.
● Up to Version V4.0 of the SIMOTION Kernel:

The pragma affects only the export of the corresponding declaration block to HMI devices.
The HMI address space is also occupied by unit variables of the interface section whose
declaration blocks are not assigned to HMI devices.
Within the HMI address space, the variables are sorted in the following order:
– Retentive unit variables of the interface section (exported and not exported).
– Retentive unit variables of the implementation section (only exported).
– Non-retentive unit variables of the interface section (exported and not exported).
– Non-retentive unit variables of the implementation section (only exported).
Within these segments, the variables are arranged according to order of their declaration.

Non-exported variables
The following variables are not exported to HMI devices and are not available there:

● Retentive and non-retentive unit variables of the implementation section (default setting)
Change this default as follows:

– In the SIMOTION ST programming language:
For each declaration block with the following pragma: { HMI_Export := TRUE; }
See also Controlling compiler with attributes.

– In the SIMOTION MCC and SIMOTION LAD/FBD programming languages:
For the variable declarations following a pragma line (Page 120), if you activate the
VAR_GLOBAL for HMI devices or VAR_GLOBAL RETAIN for HMI devices parameters
in this pragma line.

The unit variables of a data block identified in this way are exported to HMI devices.
Consequently, they undergo the HMI consistency check during downloading.

● Local variables (VAR, VAR_TEMP) of functions or methods

● Temporary variables (VAR_TEMP) of programs, function blocks or classes

● Retentive local variables (VAR RETAIN) of programs (as of version 4.5 of the SIMOTION
Kernel)

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
134 Programming and Operating Manual, 07/2017, A5E33438246B

● Retentive local variables (VAR RETAIN) of function blocks (as of version 4.5 of the
SIMOTION Kernel)
This is the default setting when the compiler option "Permit object-oriented programming"
is enabled. Change this default as follows:

– In the SIMOTION ST programming language:
For each declaration block with the following pragma: { HMI_Export := TRUE; }.
See also Controlling compiler with attributes.

The variables of a data block identified in this way are exported to HMI devices.
Consequently, they undergo the HMI consistency check during downloading.
The pragma is not evaluated if the compiler option "Permit object-oriented programming"
is not activated. The export behavior cannot be changed.

● Retentive local variables (VAR RETAIN) of classes (default setting, as of version 4.5 of the
SIMOTION Kernel)
Change this default as follows:

– In the SIMOTION ST programming language:
For each declaration block with the following pragma: { HMI_Export := TRUE; }.
See also Controlling compiler with attributes.

The variables of a data block identified in this way are exported to HMI devices.
Consequently, they undergo the HMI consistency check during downloading.

● Non-retentive static variables (VAR) of programs provided that the compiler option "Only
create program instance data once" is not activated

● Non-retentive protected or private variables (VAR, VAR PROTECTED, VAR PRIVATE) of
classes (default setting, as of version V4.5 of the SIMOTION Kernel)
Change this default as follows:

– In the SIMOTION ST programming language:
For each declaration block with the following pragma: { HMI_Export := TRUE; }.
See also Controlling compiler with attributes.

The variables of a data block identified in this way are exported to HMI devices.
Consequently, they undergo the HMI consistency check during downloading.

LAD/FBD programming
4.14 Variables

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 135

Example for the SIMOTION ST programming language

Table 4-21 Example for the control of the HMI export with the corresponding pragma

INTERFACE
 VAR_GLOBAL
 // HMI export
 x1 : DINT;
 END_VAR
 VAR_GLOBAL
 { HMI_Export := FALSE; }
 // No HMI export
 x2 : DINT;
 END_VAR
 // ...
END_INTERFACE

IMPLEMENTATION
 VAR_GLOBAL
 // No HMI export
 y1 : DINT;
 END_VAR
 VAR_GLOBAL
 { HMI_Export := TRUE; }
 // HMI export
 y2 : DINT;
 END_VAR
 // ...
END_IMPLEMENTATION

4.15 General references (as of kernel V4.5)

4.15.1 Defining general references
General references contain the address assignment to a variable or an instance of a function
block or class:

General references require a SIMOTION Kernel as of version V4.5. The compiler option
(Page 53) "Permit object-oriented programming" also must be activated.

References can be defined as variables or elements of structures.

To do this, activate the Reference checkbox in the Parameters/variables or Structures tab in
the declaration table of the program source or program organization unit. The declaration is
also possible as array element. See also the description for the "Reference (Page 98)"
checkbox.

This creates the "Reference to data type" (REF_TO data_type) that can contain the address
to an existing data type (reference data type).

LAD/FBD programming
4.15 General references (as of kernel V4.5)

SIMOTION LAD/FBD
136 Programming and Operating Manual, 07/2017, A5E33438246B

The following are permitted as data types to which references can be formed:

● Elementary data types (e.g. INT, DINT, REAL, WORD, TIME, STRING)

● User-defined data types (UDT)

● System data types

● Function blocks, provided they contain at least one static variable

● Classes (from ST sources)

No references can be formed to the following data types because references exist already:

● Technology object data types

● Object-oriented interfaces (from ST sources)

● General references

● I/O references (from ST sources)

Variables of general references can be declared in the interface and implementation sections
as well as in all program organization units and classes. The data type to be referenced must
be declared beforehand and lie within the scope of the POU. The declaration as element of a
structure or an ARRAY is also possible.

All variable types for the relevant program organization unit are permitted with the exception
of:

● VAR_IN_OUT.
Arrays, structures, function blocks or classes that contain general references may
nonetheless be transferred as VAR_IN_OUT.

● VAR RETAIN or VAR_GLOBAL RETAIN is not permitted.
However, structures that contain at least one element other than reference types (general
references, data types of the technology objects, object-oriented interfaces), can be stored
retentive.

● VAR CONSTANT or VAR_GLOBAL CONSTANT is not meaningful.
General references must be initialized with "NULL".

4.15.2 Forming general references
A reference to a variable is formed with the REF standard function (in := var_name). This
function is described in detail in the "SIMOTION Basic Functions" Function Manual.

LAD/FBD programming
4.15 General references (as of kernel V4.5)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 137

The REF function can be used on the following variables:

● Retentive and non-retentive unit variables or instances of classes or function blocks or their
elements declared as such.

● In methods within classes or function blocks:

– Static variables (VAR) of the higher-level class or function block (including instance
variables for classes or function blocks).

– The THIS keyword. Enables access to the instance variable of the higher-level class or
function block.

● In function blocks:

– Static variables (VAR) of the function block (including instance variables of classes or
function blocks).

– The THIS keyword. Permits access to the instance variable of the function block.

The variable must be able to be read and written.

Not permitted are:

● Variables of technology object data types

● Variables of object-oriented interfaces

● Variables of general references

● Retentive local variables within classes or function blocks

● I/O variables

● Global device variables

● Constants

The return value has the data type "Reference to the data type of the input parameter in". The
return value can be assigned with the assignment operator ":=" to a variable that has REF_TO
type data type. A data type conversion is not possible.

Note

Note for instances of function blocks that are passed as in/out parameter (VAR_IN_OUT):
● The REF function cannot be used for static variables (VAR) of function blocks imported

from technology packages or device-independent libraries.

The restriction does not apply to class instances.

4.15.3 Operations with general references

Assignment operator ":="
For the assignment of a reference variable, the address of the variable rather than the variable
value is passed. Consequently, the reference data types must be identical on both sides of
the operator. No implicit data type conversion is possible.

LAD/FBD programming
4.15 General references (as of kernel V4.5)

SIMOTION LAD/FBD
138 Programming and Operating Manual, 07/2017, A5E33438246B

The only exception is for references to classes. A reference to a derived class of a reference
to the base class can be assigned here.

For the assignment, no check is made for the validity of the reference; the assignment is always
possible.

An explicit assignment with NULL is also possible.

The validity of references should be checked by comparing with NULL before use.

Dereferencing with operator "^"
The reference content can be accessed with the postfix operator "^", e.g. ref_var^.

If the reference does not contain a valid value at runtime, the processing task is aborted and
the ExecutionFaultTask called.

Before access, a check for validity by comparison with NULL is recommended.

Multilevel dereferencing is possible, e.g. reference to a structure that contains further
references. Dereferenced variables can be used anywhere in expressions.

If a method is called via a reference to a class or function block, the class or function block
must be dereferenced.

Dereferenced values cannot be used as actual parameters for the _releaseSemaphore() and
_testandSetSemaphore() system functions.

Dynamic type conversion with the operator "?="
The operator "?=" can be used for dynamic type conversion only with references to classes
and with interface variables (variables for object-oriented interfaces). It supports the following
variants:

● Assignment between references to classes.

● Assignment of a reference to a class for an interface variable.
Whereby, the reference to a class must be specified with the dereferencing operator "^".

● Assignment of an interface variable for a reference to a class.

● Assignment between interface variables

A dynamic type conversion is performed if the following two conditions are satisfied:

1. The variable to the right of the operator contains the reference to the instance of a class.

2. For the variable to the left of the operator, the following applies:

– The variable is an interface variable:
The object-oriented interface that this variable has as data type must implement the
class on the right-hand side.

– The variable is a reference to a class:
This class corresponds to the class on the right-hand side or is a base class for this
class.

In this case, the reference on the right-hand side is converted and transferred to the left-hand
side.

If the type conversion fails, the variable on the left-hand side contains the "NULL" value.

LAD/FBD programming
4.15 General references (as of kernel V4.5)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 139

Comparison operators
Only the comparison operators "=" and "<>" can be used to check for equality or inequality.

The operators ">", "<", ">=", "<=" as well as the MIN and MAX standard functions are not
permitted.

4.16 Access to inputs and outputs (process image, I/O variables)

4.16.1 Overview of access to inputs and outputs
SIMOTION provides several possibilities to access the device inputs and outputs of the
SIMOTION device as well as the central and distributed I/O:

● Via direct access with I/O variables
Direct access is used to access the corresponding I/O address directly.
Define an I/O variable (name and I/O address) without assigning a task to it. The entire
address space of the SIMOTION device can be used.
It is preferable to use direct access with sequential programming (in MotionTasks); access
to current input and output values at a particular point in time is especially important in this
case.
Further information: Direct access and process image of the cyclic tasks (Page 144).

● Via the process image of cyclic tasks using I/O variables
The process image of the cyclic tasks is a memory area in the RAM of the SIMOTION
device, on which the whole I/O address space of the SIMOTION device is mirrored. The
mirror image of each I/O address is assigned to a cyclic task and is updated using this task.
The task remains consistent throughout the whole cycle. This process image is used
preferentially when programming the assigned task (cyclic programming).
Define an I/O variable (name and I/O address) and assign a task to it. The entire address
range of the SIMOTION device can be used.
Direct access to this I/O variable is still possible: Specify direct access with _direct.var-
name.
Further information: Direct access and process image of the cyclic tasks (Page 144).

● Using the fixed process image of the BackgroundTask
The process image of the BackgroundTask is a memory area in the RAM of the SIMOTION
device, on which a subset of the I/O address space of the SIMOTION device is mirrored.
The mirror image is refreshed with the BackgroundTask and is consistent throughout the
entire cycle. This process image is used preferentially when programming the
BackgroundTask (cyclic programming).
The address range 0 .. 63 can be used. Exception: I/O addresses that are accessed using
the process image of the cyclic task can only be used with the setting “Common process
image” (Page 155) (as of Kernel V4.2).
Further information: Access to the fixed process image of the BackgroundTask (Page 153).

A comparison of the most important properties is contained in "Important properties of direct
access and process image" (Page 141).

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
140 Programming and Operating Manual, 07/2017, A5E33438246B

You can use I/O variables like any other variable, see "Access I/O variables" (Page 163).

Note

An access via the process image is more efficient than direct access.

4.16.2 Important features of direct access and process image access

Table 4-22 Important properties of direct access and process image access

 Direct access Access to process image of cy‐
clic tasks

Access to fixed process image
of the BackgroundTask

Permissible address
range

Entire address range of the SIMOTION device
Exception: I/O variables comprising more than one byte must not
contain addresses 63 and 64 contiguously (example: PIW63 or
PQD62 are not permitted).

Addresses 0 .. 63.
Exception:
Up to version V4.1 of the SI‐
MOTION Kernel or the "Sepa‐
rate process image" setting,
addresses used for the proc‐
ess image of the cyclic tasks
are not permitted.

Address configuration Necessary. The addresses used must be present in the I/O and
appropriately configured.
The "Rules for I/O addresses for direct access and the process
image of the cyclic tasks" (Page 147) must be observed.

Not necessary. Addresses that
are not present in the I/O or
have not been configured can
also be used.

Assigned task None. Cyclic task for selection:
● SynchronousTasks,
● TimerInterruptTasks,
● BackgroundTask.

BackgroundTask.

Memory area for proc‐
ess images

- Depends on the SIMOTON Kernel version:
● Up to version V4.1:

Separate memory areas in all cases
● As of version V4.2:

Option to select a common memory area

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 141

 Direct access Access to process image of cy‐
clic tasks

Access to fixed process image
of the BackgroundTask

Update ● Onboard I/O of SIMOTION
devices C230-2, C240, and
C240 PN:
Update occurs in a cycle
clock of 125 µs.

● With I/O devices
– via PROFIBUS DP or

PROFINET on an
isochronous SIMOTION
device1

– via DRIVE-CLiQ
– Onboard I/O of

SIMOTION D devices:
The update is performed in
the position control cycle
clock2.

● With I/O devices
– via PROFIBUS DP or

PROFINET on a non-
isochronous SIMOTION
device1

– via P‑Bus:
The update is performed in
the interpolation cycle2 3.

Inputs are read at the start of the
cycle clock.
Outputs are written at the end of
the cycle clock.

Update occurs with the as‐
signed task:
● Inputs are read before the

assigned task is started and
transferred to the process
input image.

● Process output image is
written to the outputs after
the assigned task has been
completed.

An update is made with the
BackgroundTask:
● Inputs are read before the

BackgroundTask is started
and is transferred to the
process input image.

● Process output image is
written to the outputs when
the BackgroundTask is
complete.

Consistency – During the entire cycle of the as‐
signed task.
Exception: Direct access to out‐
put occurs.

During the entire cycle of the
BackgroundTask.
Exception: Direct access to
output occurs.

Consistency is only ensured for elementary data types.
When using arrays, the user is responsible for ensuring data con‐
sistency.

Use Preferred in MotionTasks Preferred in the assigned task Preferred in the Background‐
Task

Declaration as variable Necessary, for the entire device as an I/O variable in the symbol
browser.
Each byte of the address range may only be assigned to a single
I/O variable.
Syntax of I/O address: e.g. PIW1022, PQ63.3.

Possible, but not necessary:
● For the entire device as I/O

variable in the symbol
browser

● As unit variable
● As local static variable in a

program
Download of new or
changed I/O variables

Only possible in STOP mode. -

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
142 Programming and Operating Manual, 07/2017, A5E33438246B

 Direct access Access to process image of cy‐
clic tasks

Access to fixed process image
of the BackgroundTask

Use the absolute ad‐
dress

Not supported. Possible, with the following
syntax: E.g. %IW62, %Q63.3.

Byte order when form‐
ing the process image

- As supplied by the I/O Depends on the SIMO‐
TION Kernel version and the
memory area setting for the
process images:
● Up to version V4.1 or the

"Separate process image"
setting:
Always Big Endian

● As of version V4.2 and the
"Common process image"
setting:
As supplied by the I/O

Byte order during ac‐
cess

Depends on I/O Always Big Endian

Writeability of inputs No Depends on the SIMOTION Ker‐
nel version:
● Up to version V4.1:

No
● As of version V4.2:

Yes

Yes

Write protection for out‐
puts

Possible; Read only status can
be selected.

Not supported. Not supported.

Declaration of arrays Possible. Not supported.
Further information Direct access and process image of the cyclic tasks (Page 144). Access to the fixed process im‐

age of the BackgroundTask
(Page 153).

Responses in the
event of an error

Error during access from user
program, alternative reactions
available:
● CPU Stop4

● Substitute value
● Last value
See SIMOTION Basic Func‐
tions Description of Functions.

Error during generation of proc‐
ess image, alternative reactions
available:
● CPU stop5

● Substitute value
● Last value

Error during generation of proc‐
ess image, reaction: CPU stop5

Exception: If a direct access
has been created at the same
address, the behavior set
there applies.

See SIMOTION Basic Functions Description of Functions.

Access
● In the RUN

operating state
Without any restrictions. Without any restrictions. Without any restrictions.

● During the
StartupTask

Possible with restrictions:
● Inputs can be read.
● Outputs are not written until

StartupTask is complete.

Possible with restrictions:
● Inputs are read at the start

of the StartupTask.
● Outputs are not written until

StartupTask is complete.

Possible with restrictions:
● Inputs are read at the start

of the StartupTask.
● Outputs are not written

until StartupTask is
complete.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 143

 Direct access Access to process image of cy‐
clic tasks

Access to fixed process image
of the BackgroundTask

● During the
ShutdownTask

Without any restrictions. Possible with restrictions:
● Inputs retain status of last

update
● Outputs are no longer

written.

Possible with restrictions:
● Inputs retain status of last

update
● Outputs are no longer

written.
1 A SIMOTION device is considered isochronous if at least one PROFIBUS DP or PROFINET interface is operated isochro‐
nously (constant bus cycle time). For SIMOTION D there is an exception with the DP Integrated interface to which the
SINAMICS Integrated is connected.
2 The following SIMOTION devices are updated in the Servo_fast cycle or IPO_fast cycle, if the cycles are configured:
D445‑2 DP/PN, D455‑2 DP/PN (as of version V4.2) and D435‑2 DP/PN (as of version V4.3).
3 IPO or IPO_2 adjustable, see “Setting system cycle clocks" section in the Basic Functions Function Manual.
4 Call the ExecutionFaultTask.
5 Call the PeripheralFaultTask.

4.16.3 Direct access and process image of cyclic tasks

Property
Direct access to inputs and outputs and access to the process image of the cyclic task always
take place via I/O variables. The entire address range of the SIMOTION device (Page 146)
can be used.

A comparison of the most important properties, including in comparison to the fixed process
image of the BackgroundTask (Page 153) is contained in "Important properties of direct access
and process image" (Page 141).

Note

Observe the rules for I/O addresses for direct access and the process image of the cyclical
tasks (Page 147).

It is particularly important that every address used in an I/O variable is available in the I/O and
configured; each byte in the address range may be assigned to no more than one I/O variable
(does not apply to access with data type BOOL).

A detailed status of I/O variables (Page 151) can be read as of version V4.2 of the
SIMOTION Kernel, for example, in order to check the availability of the I/O variables.

Direct access
Direct access is used to access the corresponding I/O address directly. Direct access is used
primarily for sequential programming (in MotionTasks). The access to the current value of the
inputs and outputs at a specific time is particularly important.

For direct access, you define an I/O variable (Page 148) without assigning it a task.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
144 Programming and Operating Manual, 07/2017, A5E33438246B

Process image of the cyclic task
The process image of the cyclic tasks is a memory area in the RAM of the SIMOTION device,
on which the whole I/O address space of the SIMOTION device is mirrored. The mirror image
of each I/O address is assigned to a cyclic task and is updated using this task. The task remains
consistent throughout the whole cycle. This process image is used preferentially when
programming the assigned task (cyclic programming). The consistency during the complete
cycle of the task is particularly important.

For the process image of the cyclical task you define an I/O variable (Page 148) and assign it
a task.

Direct access to this I/O variable is still possible: Specify direct access with _direct.var-name.

Note

An access via the process image is more efficient than direct access.

Additional properties as of version V4.2 of the SIMOTION Kernel
As of version V4.2 of the SIMOTION Kernel, direct access to inputs/outputs and the process
image of the cyclic tasks offers additional properties:

● As far as the process image of the cyclic tasks is concerned, a common memory area with
the fixed process image of the BackgroundTask can be set (standard with newly created
devices)

● As far as the process image of the cyclic tasks is concerned, I/O variables for inputs can
be written to (i.e. they can be assigned values).

● A detailed status of I/O variables (Page 151) can be read, for example, in order to check
the availability of the I/O variables.

Memory area with the fixed process image of the BackgroundTask
● As of version V4.2 of the SIMOTION Kernel, selecting a "Common process image" setting

on the device ensures the memory area for the fixed process image of the BackgroundTask
is a subset of the memory area for the process image of the cyclic tasks.

● Up to version V4.1 of the SIMOTION Kernel or the "Separate process image" setting on
the device (as of version V4.2 of the SIMOTION Kernel), the fixed process image of the
BackgroundTask and the process image of the cyclic tasks occupy different memory areas.

Note

If (and only if) you are also using the fixed process image of the BackgroundTask, it is important
to consider the effects of the "Common process image" or "Separate process image" settings
on the fixed process image of the BackgroundTask (Page 153).

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 145

Table 4-23 Effect of "Common process image" or "Separate process image" settings on the process image of the cyclic
tasks

 Common process image Separate process image
Availability Only available as of version V4.2 of the

SIMOTION Kernel:
● Setting available for selection
● Standard for newly created devices

Up to version V4.1 of the SIMO‐
TION Kernel applies:
● System characteristic, not

configurable.
The following applies as of version V4.2
of the SIMOTION Kernel:
● Setting available for selection
● Standard with device upgrades

Download of new or changed I/O varia‐
bles

Only possible in STOP mode. Only possible in STOP mode.

Byte order when forming the process
image and during access

Depends on connected I/O

Effects on the fixed process image of the
BackgroundTask

See the relevant table in "Access to the fixed process image of the Background‐
Task" (Page 154).

Further information Common process image (Page 155) Separate process image (Page 157)

4.16.3.1 Address range of the SIMOTION devices
The address range of the SIMOTION devices is specified in the following table according to
the version of the SIMOTION Kernel concerned. The complete address range can be used for
direct access and process image of the cyclical tasks.

Table 4-24 Address range of the SIMOTION devices according to the version of the SIMOTION Kernel

SIMOTION
device

Address range for SIMOTION Kernel version
V3.2 V4.0 V4.1 4.2 V4.3 V4.4 V4.5

C230‑2 0 .. 2047 3 0 .. 2047 3 0 .. 2047 3 – – – –
C240 – 0 .. 4095 3 0 .. 4095 3 0 .. 4095 3 0 .. 4095 3 0 .. 4095 3 0 .. 4095 3

C240 PN 1 – – 0 .. 4095 4 0 .. 4095 4 0 .. 4095 4 0 .. 4095 4 0 .. 4095 4

D410 DP – – 0 .. 8191 3 0 .. 8191 3 0 .. 8191 3 – –
D410 PN – – 0 .. 8191 4 0 .. 8191 4 0 .. 8191 4 – –
D410‑2 – – – – 0 .. 8191 3 4 0 .. 8191 3 4 0 .. 8191 3 4

D425 0 .. 4095 3 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4 – –
D425‑2 – – – – 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4

D435 0 .. 4095 3 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4 – –
D435‑2 – – – – 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4

D445 0 .. 4095 3 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4 – – –
D445‑1 1 – – 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4 – –
D445‑2 – – – 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4

D455‑2 – – – 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4 0 .. 16383 3 4

P320 2 – – 0 .. 4095 3 0 .. 4095 3 0 .. 4095 3 – –

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
146 Programming and Operating Manual, 07/2017, A5E33438246B

SIMOTION
device

Address range for SIMOTION Kernel version
V3.2 V4.0 V4.1 4.2 V4.3 V4.4 V4.5

P320‑4 – – – – – 0 .. 4095 3 0 .. 4095 3

P350 0 .. 2047 3 0 .. 4095 3 0 .. 4095 3 0 .. 4095 3 0 .. 4095 3 – –
1 Available as of V4.1 SP2 HF4
2 Available as of V4.1 SP5
3 For distributed I/O (over PROFIBUS DP), the transmission volume is restricted to 1024 bytes per PROFIBUS DP line.
4 For distributed I/O (over PROFINET), the transmission volume is restricted to 4,096 bytes per PROFINET segment.

4.16.3.2 Rules for I/O addresses for direct access and the process image of the cyclical tasks

Note

You must observe the following rules for the I/O variable addresses for direct access and the
process image of the cyclic task (Page 144). Compliance with the rules is checked during the
consistency check of the SIMOTION project (e.g. during the download).
1. Addresses used for I/O variables must be present in the I/O and configured appropriately

in the HW Config.
2. I/O variables comprising more than one byte must not contain addresses 63 and 64

contiguously.
 The following I/O addresses are not permitted:
– Inputs: PIW63, PID61, PID62, PID63
– Outputs: PQW63, PQD61, PQD62, PQD63

3. All addresses of an I/O variable comprising more than one byte (e.g. WORD, ARRAY data
type) must be within a continuous address range configured in HW Config, e.g. within the
address range (slot or subslot) of one I/O module.

4. An I/O address (input or output) can only be used by a single I/O variable of data type BYTE,
WORD or DWORD or an array of these data types. Access to individual bits with I/O
variables of data type BOOL is possible.

5. If several processes (e.g. I/O variable, technology object, PROFIdrive telegram) access an
I/O address, the following applies:
– Only a single process can have write access to an I/O address of an output (BYTE,

WORD or DWORD data type).
Read access to an output with an I/O variable that is used by another process for write
access, is possible.

– All processes must use the same data type (BYTE, WORD, DWORD or ARRAY of these
data types) to access this I/O address. Access to individual bits is possible irrespective
of this.
Please be aware of the following, for example, if you wish to use an I/O variable to read
the PROFIdrive telegram transferred to or from the drive: The length of the I/O variable
must match the length of the telegram.

– Write access to different bits of an address is possible from several processes; however,
write access with the data types BYTE, WORD or DWORD is then not possible.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 147

Note

These rules do not apply to accesses to the fixed process image of the BackgroundTask
(Page 153). These accesses are not taken into account during the consistency check of the
project (e.g. during download).

4.16.3.3 Creating I/O variables for direct access or process image of cyclic tasks
Create I/O variables for direct access or a process image of the cyclic tasks in the address list
of the detail view.

This is only possible in offline mode.

Here is a brief overview of the procedure:

1. Select the "Address list" tab in the detail view and choose the SIMOTION device
or
In the project navigator of SIMOTION SCOUT, double-click the "ADDRESS LIST" element
in the SIMOTION device subtree.

2. Select the line before which you want to insert the I/O variable and, from the context menu,
select Insert new line
or
Scroll to the end of the table of variables (empty line).

3. In the empty row of the table, enter or select the following:

– Names of the I/O variables

– I/O address
Select the "IN" or "OUT" entries if you wish to assign symbols to the I/O variable (input
or output). As of Version V4.2 of the SIMOTION Kernel the symbolic assignment must
be activated, menu Project > Use symbolic assignment.
Or enter a fixed address according to "Syntax for entering I/O addresses" (Page 150).

– Optional for outputs:
Activate the Read only checkbox if you only want to have read access to the output.
You can then read an output that is already being written by another process (e.g. output
of an output cam, PROFIdrive telegram).
A read-only output variable cannot be assigned to the process image of a cyclic task.

– Data type of the variables in accordance with "Possible data types of the I/O variables"
(Page 151).

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
148 Programming and Operating Manual, 07/2017, A5E33438246B

4. Optionally, you can also enter or select the following (not for data type BOOL):

– Array length (array size).

– Process image or direct access:
Can only be assigned if the Read only checkbox is deactivated.
For process image, select the cyclic task to which you want to assign the I/O variable.
To select a task, it must have been activated in the execution system.
For direct access, select the blank entry.

– Strategy for behavior in the event of an error, see SIMOTION Basic Functions Function
Manual.

– Display format (if array, for each element), when you monitor the variable in the address
list

– Substitute value (if array, for each element).

5. Only if you have selected "IN" or "OUT" as the I/O address (symbolic assignment).

– In the Assignment column, click the […] button.
A window opens displaying the possible assignment targets of the SIMOTION device
and, if necessary, of SINAMICS Integrated. Only those assignment targets are displayed
that match the data direction (input/output) and data type.

– Select the assignment target.
The Assignment status column indicates whether the assignment was successful or not.

For details regarding symbolic assignment, refer to the SIMOTION Basic Functions
Function Manual.

You can now access this variable using the address list or any program of the SIMOTION
device.

Details on how to manage the address list can be found in the online help.

Note

Note the following for the process image for cyclic tasks:
● A variable can only be assigned to one task.
● Each byte of an input or output can only be assigned to one I/O variable.

In the case of data type BOOL, please note:
● The process image for cyclic tasks and a strategy for errors cannot be defined. The behavior

defined via an I/O variable for the entire byte is applicable (default: direct access or CPU
stop).

● The individual bits of an I/O variable can also be accessed using the bit access functions.

Take care when making changes within the I/O variables (e.g. inserting and deleting I/O
variables, changing names and addresses):
● In some cases the internal addressing of other I/O variables may change, making all I/O

variables inconsistent.
● If this happens, all program sources that contain accesses to I/O variables must be

recompiled.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 149

Note

I/O variables can only be created in offline mode. You create the I/O variables in SIMOTION
SCOUT and then use them in your program sources (e.g. ST sources, MCC sources, LAD/
FBD sources).

Outputs can be read and written to, but inputs can only be read.

Before you can monitor and modify new or updated I/O variables, you must download the
project to the target system.

You can use I/O variables like any other variable, see "Access I/O variables" (Page 163).

4.16.3.4 Syntax for entering I/O addresses

Syntax
For the input of the I/O address for the definition of an I/O variable for direct access or process
image of cyclical tasks (Page 144), use the following syntax. This specifies not only the
address, but also the data type of the access and the mode of access (input/output).

Table 4-25 Syntax for the input of the I/O addresses for direct access or process image of the cyclic tasks

Data type Syntax for Permissible address range
Input Output Direct access Process image e.g. direct access

D435 V4.1
BOOL PIn.x PQn.x n:

x:
0 .. MaxAddr
0 .. 7

 -1 n:
x:

0 .. 16383
0 .. 7

BYTE PIBn PQBn n: 0 .. MaxAddr n: 0 .. MaxAddr n: 0 .. 16383
WORD PIWn PQWn n: 0 .. 62

64 .. MaxAddr - 1
n: 0 .. 62

64 .. MaxAddr - 1
n: 0 .. 62

64 .. 16382
DWORD PIDn PQDn n: 0 .. 60

64 .. MaxAddr - 3
n: 0 .. 60

64 .. MaxAddr - 3
n: 0 .. 60

64 .. 16380
n = logical address
x = bit number
MaxAddr = Maximum I/O address of the SIMOTION device depending on the SIMOTION Kernel version, see Address

range of the SIMOTION devices (Page 146).
1 For data type BOOL, it is not possible to define the process image for cyclic tasks. The behavior defined via an I/O variable
for the entire byte is applicable (default: direct access).

Examples
Input at logic address 1022, WORD data type: PIW1022.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
150 Programming and Operating Manual, 07/2017, A5E33438246B

Output at logical address 63, bit 3, BOOL data type: PQ63.3.

Note

Observe the rules for I/O addresses for direct access and the process image of the cyclical
tasks (Page 147).

4.16.3.5 Possible data types of I/O variables
The following data types can be assigned to the I/O variables for direct access and process
image of the cyclical tasks (Page 144). The width of the data type must correspond to the data
type width of the I/O address.

If you assign a numeric data type to the I/O variables, you can access these variables as integer.

Table 4-26 Possible data types of the I/O variables for direct access and the process image of the
cyclical tasks

Data type of I/O address Possible data types for I/O variables
BOOL (PIn.x, PQn.x) BOOL
BYTE (PIBn, PQBn) BYTE, SINT, USINT
WORD (PIWn, PQWn) WORD, INT, UINT
DWORD (PIDn, PQDn) DWORD, DINT, UDINT

For details of the data type of the I/O address, see also "Syntax for entering I/O addresses"
(Page 150).

4.16.3.6 Detailed status of the I/O variables (as of Kernel V4.2)
As of version V4.2 of the SIMOTION Kernel, the status of an I/O variable can be queried using
_quality.var-name, for example, in order to check the availability of the I/O variables. It is
supplied as an OR logic operation of the following status values in the DWORD data type and
can be assigned to an appropriate variable, for example. The value 16#0000_0000 indicates
the connected I/O are operating without error.

The same value is supplied for every I/O variable within an address range (slot or subslot)
configured in HW Config.

Table 4-27 Meanings of status values of I/O variables

Value (DWORD) Bit x = 1 Meaning
16#0000_0000 - No error occurred.
16#0000_0001 0 Maintenance required

The connected module signals that it requires maintenance. The component needs to be
checked within a foreseeable period (e.g. the printer cartridge must be changed within a
period of several days).

16#0000_0002 1 Maintenance demanded
The connected module demands maintenance. The component needs to be checked soon
(e.g. the printer cartridge must be changed immediately).

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 151

Value (DWORD) Bit x = 1 Meaning
16#0000_0004 2 Warning pending (drive warning, TM17 warning, etc.)

The connected module has signaled a warning. This has been entered in the diagnostics
buffer. The precise cause can be determined from the documentation for the relevant module.

16#0000_0008 3 Fault pending (diagnostic interrupt, drive fault, TM17 fault, etc.)
The connected module has signaled an error. This has been entered in the diagnostics buffer.
The precise cause can be determined from the documentation for the relevant module.

16#0000_0010 4 This parameter assignment does not match the parameter assignment being compared.
A difference was detected when this parameter assignment was compared with the param‐
eter assignment of the connected module. As such, the required functionality cannot be
guaranteed.
Remedy: Save the project and compile changes, reload both application and counterpart.

16#0000_0020 5 Application and counterpart are not isochronous (error involving the dynamic life-sign).
Certain telegrams (axis, synchronous operation, output cam, measuring input telegrams) are
synchronized by exchanging cyclic life-signs. Errors are detected when the cyclic life-sign is
checked. This invalidates the data in the telegram.
Remedy: Await synchronization, check the parameter assignment (e.g. does the master ap‐
plication cycle set on the device in HW Config match the position control cycle clock), save
the project and compile changes, reload both application and counterpart.

16#0000_0040 6 I/O cannot be used synchronously in all cycles.
A fast application cycle (Servo_fast) and a slow application cycle (Servo) are running asyn‐
chronously in relation to one another. The I/O can only be used synchronously in the cycles
associated with the bus cycle. Access from other cycles is asynchronous and inconsistent.
Remedy: Call the _synchronizeDpInterfaces() function.

16#0000_0080 7 I/O cannot be used synchronously
The SIMOTION control is the sync slave on a bus. The bus connection is running synchro‐
nously in relation to the sync master, but is not yet running synchronously in relation to the
application cycles of the SIMOTION control. Access to the I/O is asynchronous and incon‐
sistent.
Remedy: Call the _synchronizeDpInterfaces() function.

16#0000_0100 8 Bus connection (sync slave) is not isochronous in relation to the sync master.
The SIMOTION control is the sync slave on a bus and has not yet synchronized its bus
connection with the sync master.
The isochronous I/O on this bus cannot be used yet.
Remedy: Switch on/connect the sync master.

16#0000_0200 9 DP station is deactivated.
The partner module has been deactivated.
Remedy: Activate the partner module (_activateDpSlave() function).

16#0000_0400 10 The partner of the inputs (e.g. I-device, I-slave) is in STOP.
The connected module is in STOP mode and not sending any new data as a result.
Remedy: Switch the connected module to RUN.

16#0000_0800 11 PROFINET: Failure detected by submodule (e.g. channel error)
The connection to the connected device is OK. The error must be searched for in the con‐
nected device.
Troubleshooting: Diagnostics buffer, device diagnostics with HW Config

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
152 Programming and Operating Manual, 07/2017, A5E33438246B

Value (DWORD) Bit x = 1 Meaning
16#0000_1000 12 PROFINET: Failure detected by module (e.g. submodule failed, removed, etc.)

The connection to the connected device is OK. The error must be searched for in the con‐
nected device.
Troubleshooting: Diagnostics buffer, device diagnostics with HW Config

16#0000_2000 13 PROFINET: Failure detected by device (e.g. device in STOP, module removed, etc.)
The connection to the connected device is OK. The error must be searched for in the con‐
nected device.
Troubleshooting: Diagnostics buffer, device diagnostics with HW Config

16#0000_4000 14 PROFINET: Failure detected by controller (e.g. not connected, etc.)
There is no connection to a partner on PROFINET.
Possible cause: Partner is switched off, cable pulled out, incorrect parameter assignment for
connection
Troubleshooting: Best to use the PROFINET topology editor in HW Config.

16#0000_8000 15 Slot/subslot is not connected (disconnection alarm).
The connection to the connected device is OK. The error must be searched for in the con‐
nected device (e.g. module/submodule removed).
Troubleshooting: Diagnostics buffer, device diagnostics with HW Config

16#0001_0000 16 Device is not connected (station failure).
There is no connection to a partner.
Possible cause: Partner is switched off, cable pulled out.

16#0002_0000 17 Substitute value behavior during access
There is no connection to the counterpart (sum signal from bits 9 to 16), i.e. there is no valid
input data or the output data is not reaching the terminal. The substitute value behavior set
(substitute value, last value) takes effect during direct access to this address or during proc‐
ess image updates.

16#4000_0000 30 Diagnostics address only
No cyclic I/O data is configured for this address. It is possible, however, to query submodule
diagnostic information.

16#8000_0000 31 Address gap
There is no hardware configured for this logical address.

4.16.4 Access to fixed process image of the BackgroundTask

The fixed process image of the BackgroundTask is a memory area in the RAM of the
SIMOTION device on which a subset of the I/O address space of the SIMOTION device is
mirrored. Preferably, it should be used for programming the BackgroundTask (cyclic
programming) as it is consistent throughout the entire cycle.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 153

The size of the fixed process image of the BackgroundTask for all SIMOTION devices is
64 bytes (address range 0 .. 63).

Note

The fixed process image of the BackgroundTask can be used to access addresses that are
not available in the I/O or not configured in HW Config. These are treated like normal memory
addresses.

Memory area
● As of Version V4.2 of the SIMOTION Kernel, selecting a "Common process image" setting

on the device ensures the memory area for the fixed process image of the BackgroundTask
is a subset of the memory area for the process image of the cyclic tasks.
I/O addresses can be read and written to using both the fixed process image of the
BackgroundTask and the process image of the cyclic tasks.

● With Version V4.1 and lower of the SIMOTION Kernel or the "Separate process image"
setting on the device (as of Version V4.2 of the SIMOTION Kernel), the fixed process image
of the BackgroundTask and the process image of the cyclic tasks occupy different memory
areas.
I/O addresses accessed using the process image of the cyclic tasks cannot be read or
written to using the fixed process image of the BackgroundTask. They are treated like
normal memory addresses.

Table 4-28 Effect of "Common process image" or "Separate process image" settings on the fixed process image of the
BackgroundTask

 Common process image Separate process image
Availability Only available as of Version V4.2 of the

SIMOTION Kernel:
● Setting available for selection
● Standard for newly created devices

Version V4.1 and lower of the SIMO‐
TION Kernel applies:
● System characteristic, not

configurable
The following applies as of Version V4.2
of the SIMOTION Kernel:
● Setting available for selection
● Standard with device upgrades

Memory area Subset of the memory area for the proc‐
ess image of the cyclic tasks

Separate memory area for the process
image of the cyclic tasks

Using I/O addresses accessed using
the process image of the cyclic tasks

Possible.
Updates use the configured cyclic tasks.

Not supported.
The addresses are treated like normal
memory addresses.

Byte order when forming the process
image

As supplied by the I/O Always Big Endian

Byte order when accessing the process
image

Always Big Endian Always Big Endian

Access to I/O operating in the Little En‐
dian byte order

Same result as during direct access or
for the process image of cyclic tasks
(apart from WORD or DWORD data
types).

Results differ depending on the I/O var‐
iables created for direct access.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
154 Programming and Operating Manual, 07/2017, A5E33438246B

 Common process image Separate process image
Effects on the process image of the cy‐
clic tasks

See the relevant table in "Direct access and process image of the cyclic tasks
(Page 146)".

Further information Common process image (Page 155) Separate process image (Page 157)

For information on the order of the Little Endian and Big Endian bytes, please refer to the SIMOTION Basic Functions Function
Manual.

A comparison of the most important properties in comparison to the direct access and process
image of the cyclic tasks (Page 144) is contained in "Important properties of direct access and
process image" (Page 141).

Note

The rules for I/O addresses for direct access and the process image of the cyclical tasks
(Page 147) do not apply. Access to the fixed process image of the BackgroundTask is not
taken into account during the consistency check of the project (e.g. during download).

Addresses not present in the I/O or not configured in HW Config are treated like normal memory
addresses.

You can access the fixed process image of the BackgroundTask by means of:

● Using an absolute PI access (Page 159): The absolute PI access identifier contains the
address of the input/output and the data type.

● Using a symbolic PI access (Page 161): You declare a variable that references the relevant
absolute PI access:

– A unit variable

– A static local variable in a program.

● Using an I/O variable (Page 163): In the symbol browser, you define a valid I/O variable for
the entire device that references the corresponding absolute PI access.

4.16.4.1 Common process image (as of Kernel V4.2)
As of Version V4.2 of the SIMOTION Kernel, the "Common process image" setting can be
selected on the SIMOTION device. This means addresses 0 .. 63 of the process image of the
cyclic tasks and the fixed process image of the BackgroundTask occupy the same memory
area.

This is the default for SIMOTION devices newly created in the project as of Version V4.2.

Property of the common process image
1. The memory area for the fixed process image of the BackgroundTask (Page 153) is a

subset of the memory area for the process image of the cyclic tasks (Page 144).

2. This means I/O addresses already accessed using the process image of the cyclic tasks
may also continue to be used for the fixed process image of the BackgroundTask. Updates,
however, use the configured cyclic tasks.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 155

3. The following applies when forming the fixed process image of the BackgroundTask:
The byte order is the same as supplied by the I/O:

– Big Endian, e.g. for I/O via PROFIBUS DP, PROFINET, P‑Bus, DRIVE‑CLiQ

– Little Endian, e.g. for onboard I/O of C240, C240 PN SIMOTION devices

Any I/O variable created for the relevant addresses for the purpose of direct access or the
process image of the cyclic tasks has no effect on the byte order.

4. Access to the fixed process image of the BackgroundTask always takes place using the
Big Endian byte order.

5. These last two properties (nos. 3 and 4) affect access to inputs and outputs operating with
the Little Endian byte order (e.g. onboard I/O of C240, C240 PN SIMOTION devices).
If the fixed process image of the BackgroundTask is used for access, this leads to the
following behavior, regardless of whether I/O variables have been created for the relevant
addresses for the purpose of direct access or the process image of the cyclic tasks:

– Access to individual bytes always supplies the same result via an I/O variable or the
fixed process image of the BackgroundTask.

– With the fixed process image of the BackgroundTask, bytes only change places if data
type WORD is used for access.

Please also refer to the example below.

For information on the order of the Little Endian and Big Endian bytes, please refer to the
SIMOTION Basic Functions Function Manual.

Example for common process image: Access to I/O operating with the Little Endian byte order
The digital inputs of the C240 SIMOTION device operate with the Little Endian byte order and
occupy addresses 66 (bits 0 ..7) and 67 (bits 0.. 3) by default. The start address is changed
to 60 in HW Config to ensure it is in the range occupied by the fixed process image of the
BackgroundTask. Addresses 60 and 61 are now accessed using various I/O variables and the
process image of the BackgroundTask.

The following three scenarios are considered, which differ in terms of whether and which I/O
variables are created for direct access or the process image of the cyclic tasks:

1. Scenario A:
No I/O variables are created for addresses 60 and 61.

2. Scenario B:
Two I/O variables with data type BYTE are created for addresses 60 and 61: io_byte_60
(PIB60) and io_byte_61 (PIB61).

3. Scenario C:
For adresss 60, one I/O‑Variable with data type WORD is created; this also covers
address 61: io_word_60 (PIW60).

Two additional I/O variables are also created in each of the three scenarios, making it possible
to access bit 3: io_bit_60_3 (PI60.3) and io_bit_61_3 (PI61.3).

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
156 Programming and Operating Manual, 07/2017, A5E33438246B

The table below lists which values are generated with the following access types:

● Direct access or access to the process image of the cyclic tasks:

– Access to individual bytes or the word using the relevant I/O variables

– Access to each individual byte using the _getInOutByte function (direct access only)

– Access to the respective bit 3 using the relevant I/O variables

● Access to the fixed process image of the BackgroundTask:

– Access to individual bytes using an absolute name

– Access to the word using an absolute name

– Access to the respective bit 3 using an absolute name

Table 4-29 "Common process image" setting (as of Kernel V4.2): Different types of access to the
process images of an input operating with the Little Endian byte order

 Access using Scenario A 1 Scenario B 1 Scenario C 1

Direct access or access
to the process image of
the cyclic tasks

io_byte_60 (PIB60) - 16#08 -
io_byte_61 (PIB61) - 16#00 -
io_word_60 (PIW60) - - 16#0008
_getInOutByte (IN, 60) 16#08 16#08 16#08
_getInOutByte (IN, 61) 16#00 16#00 16#00
io_bit_60_3 (PI60.3) TRUE TRUE TRUE
io_bit_61_3 (PI61.3) FALSE FALSE FALSE

Access to the fixed proc‐
ess image of the Back‐
groundTask

%IB60 16#08 16#08 16#08
%IB61 16#00 16#00 16#00
%IW60 16#0800 2 16#0800 2 16#0800 2

%I60.3 TRUE TRUE TRUE
%I61.3 FALSE FALSE FALSE

1 Scenarios A, B, or C determine whether and which I/O variables are created for direct access or the
process image of the cyclic tasks; see the explanation provided in the body of the document.

2 The two bytes in the word change places, as a value saved in the Little Endian byte order is being
read using Big Endian.

4.16.4.2 Separate process image (up to Kernel V4.1)
With Version V4.1 and below of the SIMOTION Kernel, the process image of the cyclic task
and the fixed process image of the BackgroundTask are stored in different memory areas
(separate process image).

As of Version V4.2 of the SIMOTION Kernel, the "Separate process image" setting can be
selected on the SIMOTION device. This setting ensures there is compatibility with earlier
Kernel versions.

It is the default for SIMOTION devices upgraded to Version V4.2 or higher.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 157

Property of the separate process image
1. The fixed process image of the BackgroundTask (Page 153) and the process image of the

cyclic tasks (Page 144) are stored in different memory areas.

2. This means I/O addresses that are already accessed using the process image of the cyclic
tasks cannot be read or written to using the fixed process image of the BackgroundTask.
They are treated like normal memory addresses.

3. I/O variables for direct access influence the fixed process image of the BackgroundTask:

– The fixed process image of the BackgroundTask is always formed for the relevant
addresses in the Big Endian byte order.

4. Access to the fixed process image of the BackgroundTask always takes place using the
Big Endian byte order.

5. These last two properties (nos. 3 and 4) affect access to inputs and outputs operating with
the Little Endian byte order (e.g. onboard I/O of C230‑2, C240, C240 PN
SIMOTION devices).
If an I/O variable is created for the relevant addresses for the purpose of direct access using
data type WORD and access takes place using the fixed process image of the
BackgroundTask, this leads to the following behavior:

– Access with the data type WORD supplies the same result via the I/O variable and the
fixed process image of the BackgroundTask.

– Access to individual bytes using the _getInOutByte function (see SIMOTION Basic
Functions Function Manual) supplies these in the Little Endian order.

– Access to the individual bytes or bits with the fixed process image of the
BackgroundTask supplies these in the Big Endian order.

Please also refer to the example below.

For information on the order of the Little Endian and Big Endian bytes, please refer to the
SIMOTION Basic Functions Function Manual.

Example for separate process image: Access to I/O operating with the Little Endian byte order
The digital inputs of the C240 SIMOTION device operate with the Little Endian byte order and
occupy addresses 66 (bits 0 ..7) and 67 (bits 0.. 3) by default. The start address is changed
to 60 in HW Config to ensure it is in the range occupied by the fixed process image of the
BackgroundTask. Addresses 60 and 61 are now accessed using various I/O variables and the
process image of the BackgroundTask.

The following three scenarios are considered, which differ in terms of whether and which I/O
variables are created for direct access:

1. Scenario A:
No I/O variables are created for addresses 60 and 61.

2. Scenario B:
Two I/O variables with data type BYTE are created for addresses 60 and 61: io_byte_60
(PIB60) and io_byte_61 (PIB61).

3. Scenario C:
For adresss 60, one I/O‑Variable with data type WORD is created; this also covers
address 61: io_word_60 (PIW60).

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
158 Programming and Operating Manual, 07/2017, A5E33438246B

Two additional I/O variables are also created in each of the three scenarios, making it possible
to access bit 3: io_bit_60_3 (PI60.3) and io_bit_61_3 (PI61.3).

The table below lists which values are generated with the following access types:

● Direct access:

– Access to individual bytes or the word using the relevant I/O variables

– Access to each individual byte using the _getInOutByte function

– Access to the respective bit 3 using the relevant I/O variables

● Access to the fixed process image of the BackgroundTask:

– Access to individual bytes using an absolute name

– Access to the word using an absolute name

– Access to the respective bit 3 using an absolute name

Table 4-30 "Separate process image" setting or Kernel up to Version V4.1: Different types of access
to the process images of an input operating with the Little Endian byte order

 Access using Scenario A 1 Scenario B 1 Scenario C 1

Direct access

io_byte_60 (PIB60) - 16#08 -
io_byte_61 (PIB61) - 16#00 -
io_word_60 (PIW60) - - 16#0008
_getInOutByte (IN, 60) 16#08 16#08 16#08
_getInOutByte (IN, 61) 16#00 16#00 16#00
io_bit_60_3 (PI60.3) TRUE TRUE TRUE
io_bit_61_3 (PI61.3) FALSE FALSE FALSE

Access to the fixed proc‐
ess image of the Back‐
groundTask

%IB60 16#08 16#08 16#00 3

%IB61 16#00 16#00 16#08 3

%IW60 16#0800 2 16#0800 2 16#0008
%I60.3 TRUE TRUE FALSE 3

%I61.3 FALSE FALSE TRUE 3

1 Scenarios A, B, or C determine whether and which I/O variables are created for direct access; see
the explanation provided in the body of the document.

2 The two bytes in the word change places, as a value saved in the Little Endian order is being read
using Big Endian.

3 The two adjacent bytes change places, as the relevant word is saved in the Big Endian order.

4.16.4.3 Absolute access to the fixed process image of the BackgroundTask (absolute PI access)
You make absolute access to the fixed process image of the BackgroundTask (Page 153) by
directly using the identifier for the address (with implicit data type). The syntax of the
identifier (Page 160) is described in the following section.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 159

You can use the identifier for the absolute PI access in the same manner as a normal variable.

Note

Outputs can be read and written to, but inputs can only be read.

4.16.4.4 Syntax for the identifier for an absolute process image access
For the absolute access to the fixed process image of the BackgroundTask (Page 159), use
the following syntax. This specifies not only the address, but also the data type of the access
and the mode of access (input/output).

You also use these identifiers:

● For the declaration of a symbolic access to the fixed process image of the
BackgroundTask (Page 161).

● For the creation of an I/O variables for accessing the fixed process image of the
BackgroundTask (Page 163).

Table 4-31 Syntax for the identifier for an absolute process image access

Data type Syntax for Permissible address range
Input Output

BOOL %In.x
or
%IXn.x 1

%Qn.x
or
%QXn.x1

n:
x:

0 .. 63 2

0 .. 7

BYTE %IBn %QBn n: 0 .. 63 2

WORD %IWn %QWn n: 0 .. 63 2

DWORD %IDn %QDn n: 0 .. 63 2

n = logical address
x = bit number
1 The syntax %IXn.x or %QXn.x is not permitted when defining I/O variables.
2 For a separate process image (Page 157), the following applies: No addresses that are used in the
process image of the cyclic tasks. See note below.

Examples
Input at logic address 62, WORD data type: %IW62.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
160 Programming and Operating Manual, 07/2017, A5E33438246B

Output at logical address 63, bit 3, BOOL data type: %Q63.3.

Note

Up to Version V4.1 of the SIMOTION Kernel or the "Separate process image" (Page 157)
setting on the device (as of Version V4.2 of the SIMOTION Kernel), the following applies:
● Addresses accessed using the process image of the cyclic tasks cannot be read or written

to using the fixed process image of the BackgroundTask.

This restriction no longer applies as of Version V4.2 of the SIMOTION Kernel or with the
"Common process image" (Page 155) setting on the device.

Note

The rules for I/O addresses for direct access and the process image of the cyclical tasks
(Page 147) do not apply. Access to the fixed process image of the BackgroundTask is not
taken into account during the consistency check of the project (e.g. during download).

Addresses not present in the I/O or not configured in HW Config are treated like normal memory
addresses.

4.16.4.5 Defining symbolic access to the fixed process image of the BackgroundTask
You create symbolic access to the fixed process image of the BackgroundTask in the
declaration tables of the source file, MCC chart, or LAD/FBD program (only in the case of
programs). The scope of the symbolic process image access is dependent on the location of
the declaration:

● In the interface section of the declaration table of the source file (INTERFACE):
Symbolic process image access behaves like a unit variable; it is valid for the entire source
file; all MCC charts or LAD/FBD programs (programs, function blocks, and functions) within
the source file can access the process image.
In addition, these variables are available on HMI devices and, once connected, in other
source files (or other units), as well.
The total size of all unit variables in the interface section is limited to 64 Kbytes.

● In the implementation section of the declaration table of the source file
(IMPLEMENTATION):
Symbolic process image access behaves like a unit variable; it is only valid in the source
file; all MCC charts or LAD/FBD programs (programs, function blocks, and functions) within
the source file can access it.

● In the declaration table for the MCC chart or LAD/FBD program (only in the case of
programs):
Symbolic process image access behaves like a local variable; it can only be accessed within
the MCC chart or LAD/FBD program in which it is declared.
No symbolic process image access can be declared in functions or function blocks.

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 161

Proceed as follows; the source file or the MCC chart or LAD/FBD program (in the case of
programs only) with the declaration table is opened:

1. Select the declaration table and, if applicable, the section of the declaration table for the
desired scope.

2. Select the I/O Symbols tab.

3. Enter:

– Name of symbol (variable name)

– For Absolute ID, the identifier of the absolute process image access (Page 160).

– Data type of symbol (Page 162) (this must agree with the length of the process image
access).

4.16.4.6 Possible data types for symbolic PI access
In the following cases, a data type that differs from that of the absolute PI access can be
assigned to the fixed process image of the BackgroundTask (Page 153). The data type width
must correspond to the data type width of the absolute PI access.

● For the declaration of a symbolic PI access (Page 161).

● For the creation of an I/O variable (Page 163).

If you assign a numeric data type to the symbolic PI access or to the I/O variables, you can
access these variables as integer.

Table 4-32 Possible data types for symbolic PI access

Data type of the
absolute PI access

Possible data types of the
symbolic PI access

BOOL (%In.x, %IXn.x, %Qn.x. %QXn.x) BOOL
BYTE (%IBn, %QBn) BYTE, SINT, USINT
WORD (%IWn, %QWn) WORD, INT, UINT
DWORD (%IDn, %PQDn) DWORD, DINT, UDINT

For the data type of the absolute PI access, see also "Syntax for the identifier for an absolute
PI access (Page 160)".

4.16.4.7 Example: Defining symbolic access to the fixed process image of the BackgroundTask

Figure 4-39 Example: Defining symbolic access to the fixed process image of the BackgroundTask

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
162 Programming and Operating Manual, 07/2017, A5E33438246B

4.16.4.8 Creating an I/O variable for access to the fixed process image of the BackgroundTask
You create I/O variables for access to the fixed process image for the background task in the
symbol browser in the detail view; you must be in offline mode to do this.

Here is a brief overview of the procedure:

1. Select the "Address list" tab in the detail view and choose the SIMOTION device
or
In the project navigator of SIMOTION SCOUT, double-click the "ADDRESS LIST" element
in the SIMOTION device subtree.

2. Select the line before which you want to insert the I/O variable and, from the context menu,
select Insert new line
or
Scroll to the end of the table of variables (empty line).

3. In the detail view, select the Symbol browser tab and scroll down to the end of the variable
table (empty row).

4. In the empty row of the table, enter or select the following:

– Name of variable.

– Under I/O address, the absolute PI access according to the "Syntax for the identifier for
an absolute PI access" (Page 160)
 (exception: The syntax %IXn.x or %QXn.x is not permitted for data type BOOL).

– Data type of the I/O variables according to the "Possible data types of the symbolic PI
access" (Page 162).

5. Select optionally the display format used to monitor the variable in the symbol browser.

You can now access this variable using the address list or any program of the SIMOTION
device.

Note

I/O variables can only be created in offline mode. You create the I/O variables in SIMOTION
SCOUT and use them in your program sources.

Note that you can read and write outputs but you can only read inputs.

Before you can monitor and modify new or updated I/O variables, you must download the
project to the target system.

You can use I/O variables like any other variable, see "Access I/O variables" (Page 163).

4.16.5 Accessing I/O variables
You have created an I/O variable for:

● Direct access or process image of the cyclic tasks (Page 144).

● Access to the fixed process image of the BackgroundTask (Page 153).

LAD/FBD programming
4.16 Access to inputs and outputs (process image, I/O variables)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 163

You can use this I/O variable just like any other variable.

Note

Consistency is only ensured for elementary data types.

When using arrays, the user is responsible for ensuring data consistency.

Note

If you have declared unit variables or local variables of the same name (e.g. var-name), specify
the I/O variable using _device.var-name (predefined name space, see the "Predefined name
spaces" table in "Name spaces").

It is possible to directly access an I/O variable that you created as a process image of a cyclic
task. Specify direct access with _direct.var-name or _device._direct.var-name.

If you want to deviate from the default behavior when errors occur during variable access, you
can use the _getSafeValue and _setSafeValue functions (see SIMOTION Basic Functions
Function Manual).

For Errors associated with access to I/O variables, see SIMOTION Basic Functions Function
Manual.

4.17 Connections to other program source files or libraries
In the declaration table of a unit, you can define connections to:

● LAD/FBD units under the same SIMOTION device

● MCC units under the same SIMOTION device

● ST source files under the same SIMOTION device

● Libraries

LAD/FBD programming
4.17 Connections to other program source files or libraries

SIMOTION LAD/FBD
164 Programming and Operating Manual, 07/2017, A5E33438246B

This will then allow you to access the following in this unit:

● For connected program sources (Page 165), the following items which are defined there

– Functions

– Function blocks

– Programs (optional)

– Unit variables

– User-defined data types (structures, enumerations)

– Symbolic accesses to the fixed process image of the BackgroundTask

● For connected libraries (Page 166), the following items which are defined there

– Functions

– Function blocks

– Programs (optional)

– User-defined data types (structures, enumerations)

Program sources and libraries must be compiled beforehand.

For information about the library concept, see also the SIMOTION ST Programming Manual.

Note

Libraries can be created in all programming languages (MCC, ST, or LAD/FBD).

4.17.1 Defining connections

4.17.1.1 Procedure for defining connections to other program sources (units)
Connections to other units (program sources) are defined in the declaration table of the source
file. The mode of action of a connection is dependent on the section of the declaration table
in which it is defined.

● In the interface section of the declaration table:
The imported functions, variables, etc., will continue to be exported to other units and to
HMI devices. This can lead to name conflicts.
This setting is necessary, for example, if unit variables are declared in the interface section
of the source file with a data type that is defined in the imported program source.

● In the implementation section of the declaration table:
The imported functions, variables, etc. will no longer be exported.
This setting is usually sufficient.

Proceed as follows; the source file (declaration table) is open (see Open existing program
sources (Page 46)):

1. In the declaration table, select the section for the desired mode of action.

2. Select the Connections tab.

LAD/FBD programming
4.17 Connections to other program source files or libraries

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 165

3. For the connection type, select: Program/Unit

4. In the same line, select the name of the unit to be connected:
Units (program sources) must be compiled beforehand.

4.17.1.2 Procedure for defining connections to libraries
Connections to libraries are defined in the declaration table of the source file.

Proceed as follows; the unit (declaration table) is open, see Open existing program sources
(Page 46):

1. In the interface section of the declaration table, select the Connections tab.

2. For the connection type, select: Library.

3. In the same line, select the name of the library to be connected.
Libraries must be compiled beforehand.

4. Optionally, you can define a name space for libraries, see Using name space (Page 166):
To do this, enter a name under Name space.

Note

When programming the "Subprogram call" command (see Inserting and parameterizing
subroutine calls (Page 170)) with a library function or a library function block, the connection
to the library is automatically entered into the declaration table of the program source.

4.17.2 Using the name space
You can optionally assign a name space to every connected library. You define the designation
of the name space when connecting the library (see How to define connections to libraries
(Page 166)).

It is important to specify the name space if the current LAD/FBD program/MCC chart or
program source contains variables, data types, functions, or function blocks with the same
name as the connected library. The name space will then allow you specific access to the
variables, data types, functions, or function blocks in the library. This can also resolve naming
conflicts between connected libraries.

If you wish to use variables, data types, functions, or function blocks from the connected library
in a command in the LAD/FBD program or MCC chart, insert the designation of the name space
in front of the variable name, etc., from the library and separate them with a period (for example,
namespace.var_name, namespace.fc_name).

Name spaces are predefined for device-specific and project-specific variables, direct accesses
to I/O variables, and variables of TaskId and AlarmId in the following table: If necessary, write

LAD/FBD programming
4.17 Connections to other program source files or libraries

SIMOTION LAD/FBD
166 Programming and Operating Manual, 07/2017, A5E33438246B

their designation before the variable name, separated by a period, e.g. _device.var_name or
_task.task_name.

Table 4-33 Predefined name spaces

Name space Description
_alarm For AlarmId: The _alarm.name variable contains the AlarmId of the message with

the name identifier – see SIMOTION Basic Functions Function Manual.
_device For device-specific variables (global device user variables, I/O variables, system

variables, and system variables of the SIMOTION device)
_direct For direct access to I/O variables – see Direct access and process image of the cyclic

tasks (Page 144).
Local name space for _device. Nesting as in _device._direct.name is permitted.

_project For names of SIMOTION devices in the project; only used with technology objects
on other devices.
With unique project-wide names of technology objects, used also for these names
and their system variables

_quality As of Version V4.2 of the SIMOTION Kernel: For the detailed status of I/O varia‐
bles (Page 151). A value with data type DWORD is supplied.
Local name space for _device. Nesting as in _device._quality.name is permitted.

_task For TaskID: The _task.name variable contains the TaskId of the task with the name
identifier – see SIMOTION Basic Functions Function Manual.

_to For technology objects configured on the SIMOTION device and their system varia‐
bles and configuration data
Not for system functions and data types of the technology objects. In this case, use
the user-defined name space for the imported technology package, if necessary.

4.18 Subroutine
Universal, reusable sections of a program can be created in the form of subroutines.

When a subroutine is called, the program branches from the current task into the subroutine.
The commands in the subroutine are executed. The program then jumps back to the previously
active task.

Subroutines can be called repeatedly, as required, by one or more LAD/FBD programs of the
SIMOTION device.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 167

Subroutine as a function (FC), function block (FB), or program
The creation type of a subroutine can be a function (FC), a function block (FB) or, as an option,
a program ("program in program").

● Function
A function (FC) is a subroutine without static data, that is, all local variables lose their value
when the function has been executed. They are re-initialized when the function is next
started.
Data are transferred to the function using input or in/out parameters; the output of a function
value (return value) is also possible.

● Function block
A function block (FB) is a subroutine with static data, that is, local variables retain their value
after the function block has been executed. Only variables that have been explicitly declared
as temporary lose their value.
An instance has to be defined before using an FB: Define a variable (VAR or VAR_GLOBAL)
and enter the name of the FB as data type. The FB static data is saved in this instance.
You can define several FB instances; each instance is independent from the others.
The static data of an FB instance remain stored until the instance is next called; they are
reinitialized when the variable type of the FB instance is initialized again (see Initialization
of instances of function blocks (FB) (Page 129)).
Data are transferred to the FB using input parameters or in/out parameters; the data are
returned from the FB using in/out or output parameters.

● Program ("program in program")
You also have the option of calling a program within a different program or a function block.
This requires the following compiler options to be activated (see Global compiler settings
(Page 53) and Local compiler settings (Page 54)):

– "Permit language extensions" for the program source of the calling program or function
block and

– "Only create program instance data once" for the program source of the called program.
The static data of the called program is stored in the user memory of the program source
(unit) of said called program.

Most of the programming work involved in assigning the programs to the tasks can be
performed by calling up programs within another program. In the execution system, only
one associated calling program needs to be assigned to the tasks concerned.
A program is called without parameters or return values.
Further information on calling a program within a program can be found in the ST
Programming and Operating Manual.

Note

The activated "Only create program instance data once" compiler option causes:
● The static variables of the programs (program instance data) to be stored in the user

memory of the program source (unit) (see the SIMOTION ST Programming and Operating
Manual). This also causes the initialization behavior to change (see the SIMOTION ST
Programming and Operating Manual).

● All called programs with the same name to use the same program instance data.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
168 Programming and Operating Manual, 07/2017, A5E33438246B

Exchange of information between the subroutine and calling program
Function (FC) and function block (FB) as a subroutine

Information is exchanged between the subroutine and the calling program using transfer
parameters or global variables (e.g. unit variables).

Transfer parameters can be input, input/output or output parameters. They are defined in the
declaration table for the subroutine:

● Input parameters: As variable type VAR_INPUT

● In/out parameter: As variable type VAR_IN_OUT

● Output parameter (for FB only): As variable type VAR_OUTPUT

For functions, a function value can be returned; you specify the data type of the return value
when you paste in (create) the function (see Paste in function (FC) or function block (FB)
(Page 169)).

You assign current values to the input and/or in/out parameters when you call the subroutine
(FC or FB instance). You may only assign user-defined variables to the in/out parameters of
an FB because the called FB accesses the assigned variables directly and can therefore
change them.

The output parameters of an FB can be read-accessed as often as required in the calling
program.

A function does not formally contain any output parameters, since the result of the function
can in this case be assigned to the return value of the function.

See also the examples of functions (Page 174) and function blocks (Page 179).

Program as subroutine ("program in program")

A program is called without parameters or return values. This means that information can only
be exchanged between the calling program and the called program (subroutine) using global
variables (e.g. unit variables).

See also
Inserting a subroutine call into the LAD/FBD program and assigning parameters (Page 170)

4.18.1 Inserting a function (FC) or function block (FB)
The creation dialog is similar to that of an LAD/FBD program:

1. LAD/FBD unit must already exist (see Managing LAD/FBD programs (Page 59)).

2. In the project navigator, open the relevant LAD/FBD unit.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 169

3. Double-click the entry Insert LAD/FBD program.
The input screen form opens.

– Enter the name of the LAD/FBD program (see Rules for identifiers (Page 97)).

– For the creation type, select Function or Function block.

– With creation type Function only:
Select the data type of the return value as the return type (<--> for no return value).

– Check the Exportable option if the function or function block is to be used in other
program source files (LAD/FBD, MCC or ST source files).
When the checkbox is cleared, the LAD/FBD program can only be used in the associated
LAD/FBD unit.

– You can also enter an author, version, and a comment.

– Confirm with OK.

4. Program the instructions in the function or function block.
Assign an expression to the return value of a function (= function name) or to the output
parameters of a function block.

5. Accept and compile the LAD/FBD unit. The subroutine you have created will then be
displayed in the list.

4.18.2 Inserting a subroutine call into the LAD/FBD program and assigning parameters

In order to execute a call of a subroutine (function, function block, or program), the relevant
subroutine must have been inserted into the network of an LAD/FBD program from the project
navigator using drag-and-drop. When the subroutine inserted into the network is reached
during a program run, the subroutine is called and the program branches from the current task
into the subroutine.

You can use drag-and-drop to insert the following FCs, FBs, and programs into an LAD/FBD
program and call them as a subroutine:

● Functions, function blocks, or programs of the same LAD/FBD unit or a different program
source (e.g. MCC unit, ST source file).

● Library functions or library function blocks from a program library.

The subroutine call is parameterized, i.e. specifications are made as to which variables are to
be transferred when the subroutine is called and returned once it has been executed, in the
Enter Call Parameter parameter screen form.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
170 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-40 Parameterization of a function's subroutine call

Note
Saving a project in a format older than Version V4.2 of SIMOTION SCOUT

Pay attention to the order of the LAD/FBD programs in an LAD/FBD unit. A subroutine (function,
function block, or program ("program in program")) must be defined before it is used. This is
the case when the subroutine appears above the LAD/FBD program in which it is used in the
project navigator. If necessary, reorder the LAD/FBD programs.

See also: Subroutine call of the function (FC) (Page 176)

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

4.18.2.1 Overview of parameters for
You can set the following parameters when parameterizing the subroutine call:

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 171

Overview of Subroutine call parameters

Field/Button Explanation/instructions
Subroutine type/
Subroutine

The type and name of the subroutine are displayed here:
Function
A function is a sub-program that has no memory beyond the call. In other words, the data is
lost once the function has run and the output parameters and return value have been trans‐
ferred.
A function can also have a return value (function value) in addition to input, in/out and output
parameters.
Function block
A function block is a sub-program which has a memory beyond the call. In other words, the
values of the function block are retained after it has run.
Variables of the data type for this function block must be declared. These variables are iden‐
tified as instances of the function block; they include the memory of the function block beyond
the calls.
A function block only has input, in/out and output parameters but does not have a return
value. The output parameters of the function block can be accessed even at a later time (after
the function block has run) at the function block instance.
Program ("program in program")
You also have the option of calling a program within a different program or a function block.
This requires the following compiler options to be activated, see Global compiler settings
(Page 53) and Local compiler settings (Page 54):
● "Permit language extensions" for the program source of the calling program or function

block and
● "Only create program instance data once" for the program source of the called program.

The static data of the called program is stored in the user memory of the program source
(unit) of said called program. The same program instance data is used every time the
program is called.

A program is called without parameters or return values.
Subprogram type/
subprogram
(continued)

Method
Methods are structuring tools for object-oriented programming. They largely correspond with
functions, but are encapsulated in higher-level structuring tools (classes, function blocks).
You can only generate methods and classes in the Structured Text (ST) programming lan‐
guage. Nevertheless classes and public methods (access identifier PUBLIC) can be used in
LAB/FBD. A SIMOTION Kernel as of version V4.5 is mandatory for classes and their methods.
Activating the following compiler options is recommended, see Global settings of the compil‐
er (Page 53) and Local settings of the compiler (Page 54):
● “Permit object-oriented programming” for the LAD/FBD source file of the LAD/FBD

program being called.
Variables of the data type for the higher-level structuring tools (class, function block) must
be declared. These variables are identified as instances, and include the memory of the
higher-level structuring tool beyond the calls.
The methods themselves have no memory beyond the call. In other words, the data is lost
once the method has run and the output parameters and return value have been transferred.
A method can also have a return value (function value) in addition to input, in/out and output
parameters.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
172 Programming and Operating Manual, 07/2017, A5E33438246B

Field/Button Explanation/instructions
Instance For subprogram type "function block" or “method":

● In the case of a “function block” subprogram type:
Here, enter the name of the function block instance. The instance contains the memory
of the function block in the form of instance data.
You define the instance as a variable whose data type is the name of the function block
in one of the following ways:
– In the declaration table of the LAD/FBD source as VAR_GLOBAL or
– In the declaration table of the LAD/FBD program as VAR.

● The following applies to “method” subprogram types:
Enter the name of the class or function block instance to which the method belongs here.
The instance contains the memory of the class or the function block in the form of instance
data.
You define the instance as a variable whose data type is the name of the class or of a
class derived from this or the name of the function block in one of the following ways:
– In the declaration table of the LAD/FBD source as VAR_GLOBAL or
– In the declaration table of the LAD/FBD program as VAR.

Return value For subprogram type "Function" or “Method":
Here, you enter the variable in which the return value is to be stored. The type of variable
must match the return value type.

Type For subprogram type "Function" or “Method":
The data type of the return value is displayed.

List of transfer parameters
Name The name of the transfer parameter is displayed here.
On / Off The variable type of the transfer parameter is displayed here.

VAR_INPUT
Input parameters (for functions, function blocks and methods)
VAR_IN_OUT
In/out parameters (for functions, function blocks and methods)
VAR_OUTPUT
Output parameters (for functions, function blocks and methods)

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 173

Field/Button Explanation/instructions
Data type The data type of the transfer parameter is displayed here.
Value Mandatory parameters are marked with "<???>” and optional parameters with "...".

● The following applies to functions (FC) and methods:
– Input parameters without a declared initial value and in/out parameters are mandatory

parameters.
– Input parameters with a declared initial value and output parameters are optional

parameters.
A subroutine call will only be functional if all the mandatory parameters are set.

● The following applies to function blocks (FB):
All parameters are optional.

● The following applies to programs ("program in program”):
No parameters present.

Here, you can assign current variables or values to the transfer parameters:
● Input parameter (variable type VAR_IN):

Here, you enter a variable name or an expression. The assignment of system variables
or I/O variables is permissible; type transformations are possible.

● In/out parameter (variable type VAR_IN):
Enter a variable name; the variable must be directly writable and readable. System
variables of SIMOTION devices and technology objects are not permitted nor are I/O
variables. The data type of the in/out parameter must correspond to that of the assigned
variables; application of type transformation functions is not possible.

● Output parameter (variable type VAR_OUTPUT):
The assignment of an output parameter to a variable is optional.
– The following applies to function blocks:

You can also access an output parameter after executing the function block.
– The following applies to functions and methods:

The values for the output parameters are lost after executing the function or method
unless they have been assigned in the parameter screen.

When assigned in this parameter screen form: Enter a variable name. The data type of
the output parameter must correspond to that of the assigned variables; the application
of type transformation functions is not possible.

4.18.3 Example: Function (FC)

You want to create a subroutine with a circumference calculation for a circle. The calculation
is performed in a function (FC). This is named Circumference.

The circle circumference calculation can thus be called as a subroutine by any task.

Formula for circumference calculation: Circumference = PI * 2 * radius

You define the Radius and PI variables in the declaration table of the function.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
174 Programming and Operating Manual, 07/2017, A5E33438246B

4.18.3.1 Creating and programming the function (FC)
1. In the project navigator, open the LAD/FBD unit in which you want to create the function.

2. Double-click the entry Insert LAD/FBD program.

– Enter the name Circumference.

– For creation type, select Function.

– For return type (data type of return value), select REAL.

– Click OK to confirm.

3. In the declaration table, define the radius input parameters, the diameter parameter, and
the PI constant.

Figure 4-41 Declaring variables (e.g. input parameters) in the LAD/FBD program

4. Click the Insert Network button on the LAD editor toolbar.
A network is inserted into the Circumference function.

5. Drag the LAD/FBD element MUL from the command library and drop it into the network of
the circumference function twice.

6. Program the circumference calculation for the return value by assigning the variables
accordingly to the input/output parameters of the two MUL LAD/FBD elements.

Figure 4-42 Programming the Circumference subroutine (e.g. assignment to a return value)

7. Accept and compile the LAD/FBD unit.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 175

You have now finished programming the Circumference function.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

4.18.3.2 Subroutine call of function (FC)
The function (FC) is called from a program in the example.

1. Create an LAD/FBD program as a program in the same LAD/FBD unit (see Inserting a new
LAD/FBD program (Page 59)):

– Enter the name Program_circumference.

– For creation type, select Program.

– Click OK to confirm.

2. Declare the following in the LAD/FBD unit or the LAD/FBD program:

– The mycircum variable.
The return value of the "Circumference" function is assigned to this variable.

– The myradius variable.
This variable contains the radius and is assigned to the input parameter Radius of the
Circumference function.

Note that the validity range of the variables is dependent on the declaration location (see
Define variables (Page 112)).

① You can continue to use the myumfang (mycircum) variable in the program.

Figure 4-43 Declaring a variable in the LAD/FBD program

3. Click the Insert Network button on the LAD editor toolbar.
A network is inserted into the Program_circumference program.

4. Drag the Circumference function from the project navigator and drop it into the network of
the Program_circumference program.

5. Select the inserted function, Circumference, followed by the Parameterize call command
from the context menu.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
176 Programming and Operating Manual, 07/2017, A5E33438246B

6. Assign parameters to the subroutine call in the Enter Call Parameter parameter screen
form.

Figure 4-44 Opened parameter screen form for assigning parameters to the subroutine call

Note

Mandatory parameters are marked with "<???>" and optional parameters with "...". A
subroutine call will only be functional if all the mandatory parameters are set.

7. Accept and compile the LAD/FBD unit.

You have now finished programming the subroutine call.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 177

Note
Saving a project in a format older than Version V4.2 of SIMOTION SCOUT

Pay attention to the order of the LAD/FBD programs in the LAD/FBD unit (see figure below).
A subroutine (function, function block, or program ("program in program")) must be defined
before it is used. This is the case when the MCC chart of the subroutine appears in the project
navigator above the chart in which it is used.

As far as the example described here is concerned, the LAD/FBD program with the function
(FC) must appear in the project navigator above the LAD/FBD program containing the program
with the subroutine call.

In other words, the circumference function must be positioned above the
program_circumference program in the project navigator. If necessary, reorder the LAD/FBD
programs by selecting the relevant LAD/FBD program in the project navigator, then selecting
the Down or Up command in the context menu.

① Circumference function
② Program_circumference program, which contains the subroutine call of the Circumference func‐

tion

Order of LAD/FBD programs

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
178 Programming and Operating Manual, 07/2017, A5E33438246B

4.18.3.3 Opening the function (FC) directly from the subroutine call
You can open subprograms directly from their respective subprogram call by using the context
menu:

● This works regardless of the programming language (ST, MCC, LAD/FBD) used to create
the subprogram.

● The subprogram opens in a separate editor or an editor already opened for the subprogram
is moved to the foreground.

A subprogram may be a:

● User-defined function (FC)

● User-defined function block (FB)

● User-defined program called as a subprogram ("program in program")

● Library function

● Library function block

● Library program called as a subprogram ("program in program")

Procedure
To open the FC directly from the subprogram call, proceed as follows:

1. In the LAD/FBD network, select the subprogram call used to call the FC.

2. Select the Open called block command in the context menu (Ctrl+Alt+O shortcut).

The FC opens in a separate editor or an editor already opened for the FC is moved to the
foreground.

Note

If the called FC has not yet been created, the Open called block command appears inactive
(grayed out) in the context menu.

Note

If the called FC is in a program source with know-how protection, the same steps that apply
when opening the protected program source directly also apply here (see Know-how protection
for LAD/FBD units (Page 48)).

4.18.4 Example: Function block (FB)

You want to calculate a following error. The calculation is performed in a function block (FB)
named FollError. The following error calculation can thus be called as a subroutine by any task.

Formula for following error calculation: Difference = Specified position – Actual position

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 179

Define the required input and output parameters Set position, Actual position, and Difference
(with the other variables, if necessary) in the LAD/FBD program (function block) or LAD/FBD
unit.

4.18.4.1 Creating and programming the function block (FB)
1. In the project navigator, open the LAD/FBD unit in which you want to create the function

block.

2. Double-click the entry Insert LAD/FBD program.

– Enter the name FollError.

– For creation type, select Function block.

– Confirm with OK.

3. In the declaration table, define the variables (e.g. input and output parameters).

Figure 4-45 Declaring variables (e.g. input and output parameters) in the LAD/FBD program

4. Click the Insert network button on the LAD editor toolbar.
A network is inserted into the FollError function block.

5. Drag the LAD/FBD element SUB from the command library and drop it into the network of
the FollError function block.

6. Program the following error calculation by assigning the variables accordingly to the input/
output parameters of the SUB LAD/FBD element.

Figure 4-46 Programming the following error calculation

7. Accept and compile the LAD/FBD unit.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
180 Programming and Operating Manual, 07/2017, A5E33438246B

You have now finished programming the FollError function block.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

4.18.4.2 Subroutine call of function block (FB)
In this example, the function block (FB) is called from a program.

1. Create an LAD/FBD program as a program (see Inserting a new LAD/FBD program
(Page 59)).

2. Create a function block instance.

– In the LAD/FBD unit or LAD/FBD program, declare the instances of the function block
along with the variables.

Note that the validity range of the instance and variables is dependent on the declaration
location (see Define variables (Page 112)).

3. Call the function block:

– Program the subroutine call.

4. After executing an instance of the function block, you can access the output parameters at
any location in the calling program.

– Program the MOVE command.

5. Accept and compile the program.

You have now finished programming the subroutine call.

4.18.4.3 Creating a function block instance
Before you can use a function block, you must define an instance. Each instance of an FB is
independent of the others; once an instance has ended, its static variables remain stored.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 181

Instances of an FB are defined in the declaration tables of the LAD/FBD source or of the LAD/
FBD program. The scope of the instance declaration is dependent on the location of the
declaration:

● In the interface section of the declaration table of the LAD/FBD source:
The instance behaves like a unit variable; it is valid for the entire LAD/FBD source; all LAD/
FBD programs (programs, function blocks, and functions) within the LAD/FBD source can
access the instance.
The instance is also available:

– On HMI devices

– In other LAD/FBD source files (or other units) once connected, see “How to define
connections to other units (program sources)” (Page 165).

The total size of all unit variables in the interface section is limited to 64 Kbytes.

● In the implementation section of the declaration table of the LAD/FBD source:
The instance behaves like a unit variable which is only valid in the LAD/FBD source; all
LAD/FBD programs (programs, function blocks, and functions) within the LAD/FBD source
can access the instance.

● In the declaration table of the LAD/FBD program (for programs and function blocks only):
The instance behaves like a local variable; it can only be accessed within the LAD/FBD
program in which it is declared.

Proceed as follows (the LAD/FBD source or the LAD/FBD program with the declaration table
is open, see “Opening an existing LAD/FBD source” (Page 46) or “Opening an existing LAD/
FBD program” (Page 61):

1. Select the declaration table and, if applicable, the section of the declaration table for the
desired scope.

2. Select the Parameters tab.

3. Enter or select the following:

– Name of instance (variable name – see Rules for identifiers (Page 97))

– Variable type VAR or VAR_GLOBAL, depending on the declaration location (in LAD/
FBD program or LAD/FBD source respectively)

– Designation of the function block as data type.

4. Declare the other variables.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
182 Programming and Operating Manual, 07/2017, A5E33438246B

① The output parameter Difference is assigned to the variable Result_2 during subsequent pro‐
gram runtime. You can use the Result_2 variable for other purposes in the program.

② The output parameter Difference is assigned to the variable Result in the subroutine call. You
can use the Result variable for other purposes in the program.

③ Creating an instance
④ Select the required FB as the data type.

The created function blocks are offered as data types in the drop-down list box depending on
the LAD/FBD editor settings (Page 39):
● Only function blocks with the same program source or from connected program sources or

libraries
● All function blocks defined in the project

Figure 4-47 Defining an instance of the function block and variables in the LAD/FBD program or the
LAD/FBD unit

4.18.4.4 Programming the subroutine call of the function block
1. Drag the FollError function block from the project navigator and drop it into the network of

the program_FollError LAD/FBD program.

2. Select the inserted function block, FollError, followed by the Display > All Box Parameters
command from the context menu.
All the input/output parameters of the inserted function block FollError are shown.

Note

Mandatory parameters are marked with "???” in the LAD/FBD network and optional
parameters with "...". Function blocks (FBs) only have optional parameters.

3. Select the inserted function block, FollError, followed by the Parameterize call command
from the context menu.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 183

4. Assign parameters to the subroutine call in the Enter Call Parameter parameter screen
form:

– Enter the instance myfollerror, defined in the declaration table, in the Instance field.

Figure 4-48 Opened parameter screen form for assigning parameters to the subroutine call

Note

Mandatory parameters are marked with "<???>" and optional parameters with "...".
Function blocks (FBs) only have optional parameters.

Assign the current values to the transfer parameters:

– Input parameters: Variable or expression

– In/out parameter: Directly readable/writable variable

– Output parameter (optional): Variable
In the example, for the Difference output parameter select the Result variable in the
Value column.

You can use drag-and-drop to assign unit variables and system variables from the detail
view to the input, output, or in/out parameters of the instance of the FollError function block
inserted into the LAD/FBD network.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
184 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-49 Assigning system variables from the detail view to the transfer parameters using drag-and-
drop

5. Confirm with OK.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 185

Note
Saving a project in a format older than Version V4.2 of SIMOTION SCOUT

Pay attention to the order of the LAD/FBD programs in the LAD/FBD unit. A subroutine
(function, function block, or program ("program in program")) must be defined before it is used.
This is the case when the LAD/FBD program of the subroutine appears in the project navigator
above the LAD/FBD program in which it is used.

As far as the example described here is concerned, the LAD/FBD program with the function
block (FB) must appear in the project navigator above the LAD/FBD program containing the
program with the subroutine call.

In other words, the distance function block must be positioned above the program_distance
program in the project navigator. If necessary, reorder the LAD/FBD programs by selecting
the relevant LAD/FBD program in the project navigator, then selecting the Down or Up
command in the context menu.

See also: Subroutine call of the function (FC) (Page 176).

4.18.4.5 Opening the function block (FB) directly from the subroutine call
You can open subprograms directly from their respective subprogram call by using the context
menu:

● This works regardless of the programming language (ST, MCC, LAD/FBD) used to create
the subprogram.

● The subprogram opens in a separate editor or an editor already opened for the subprogram
is moved to the foreground.

A subprogram may be a:

● User-defined function (FC)

● User-defined function block (FB)

● User-defined program called as a subprogram ("program in program")

● Library function

● Library function block

● Library program called as a subprogram ("program in program")

Procedure
To open the FB directly from the subprogram call, proceed as follows:

1. In the LAD/FBD network, select the subprogram call used to call the FB.

2. Select the Open called block command in the context menu (Ctrl+Alt+O shortcut).

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
186 Programming and Operating Manual, 07/2017, A5E33438246B

The FB opens in a separate editor or an editor already opened for the FB is moved to the
foreground.

Note

If the called FB has not yet been created, the Open called block command appears inactive
(grayed out) in the context menu.

Note

If the called FB is in a program source with know-how protection, the same steps that apply
when opening the protected program source directly also apply here (see Know-how protection
for LAD/FBD units (Page 48)).

4.18.4.6 Accessing the output parameters of the function block retrospectively
After an instance of the function block has been executed, the static variables of the function
block (including the output parameters) are retained. You can access the output parameters
at any point in the calling program.

If you have defined the FB instance as VAR_GLOBAL, you can also access the output
parameter in other LAD/FBD programs.

1. Insert the MOVE command into the LAD/FBD program.

2. Program the command (see figure).

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 187

① Name of the FB instance ② Output parameter

Figure 4-50 Programming a variable assignment

4.18.5 Example: Method

4.18.5.1 Example: Methods
In LAD/FDB programs you can call up public methods which have been defined in ST source
files within classes and function blocks.

You can use methods in function blocks irrespective of the SIMOTION Kernel version.

Methods in classes can only be used in SIMOTION Kernel as of version V4.5.

No classes or methods can be defined in the LAD/FBD programming language itself. The same
applies to methods within function blocks.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
188 Programming and Operating Manual, 07/2017, A5E33438246B

Requirements
In an ST source file the COUNTER class is defined with both public methods UP and DOWN:
Both methods increment or decrement an internal counter variable until either the maximum
value or minimum value is reached.

● The UP method has the following interface:

– Input parameter INC with data type INT and initial value 1.
You enter the increment here (standard = 1).

– Output parameter QU with data type BOOL and initial value FALSE.
The maximum value is reached when QU = TRUE.

– Return value with data type INT.
The return value shows the latest status for the internal counter variables.

● The DOWN method has the following interface:

– Input parameter DECC with data type INT and initial value 1.
You enter the increment here (standard = 1).

– Output parameter QU with data type BOOL and initial value TRUE.
The minimum value is reached when QU = FALSE.

– Return value with data type INT.
The return value shows the latest status for the internal counter variables.

The maximum value and minimum value for the counting range are stipulated in the private
variables MAX_Val and MIN_Val for the class. They are pre-assigned with 100 or 0 respectively
as standard. However, the initial values can be overwritten with the declaration of an instance
for this class.

4.18.5.2 Subprogram call of the method
The method is called from a program in the example.

1. Generate an LAD/FBD program as a program (see Inserting a new LAD/FBD program).

2. Create an instance for the higher-level class.

– In the LAD/FBD source or LAD/FBD program, declare the instances of the class along
with the variables.

Note that the validity range of the instance and variables is dependent on the declaration
location (see Define variables).

3. Call the method:

– Program the Subroutine call command.

4. Accept and compile the program.

You have now finished programming the subroutine call.

4.18.5.3 Creating an instance for the class or the function block
Before you can use a method, you must define an instance for the higher-level class or the
higher-level function block. Each instance of a class or FB is independent of the others; once
an instance has ended, its static variables remain stored.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 189

Instances of a class or of an FB are defined in the declaration tables of the LAD/FBD source
or of the LAD/FBD program. The scope of the instance declaration is dependent on the location
of the declaration:

● In the interface section of the declaration table of the LAD/FBD source:
The instance behaves like a unit variable; it is valid for the entire LAD/FBD source; all LAD/
FBD programs (programs, function blocks, and functions) within the LAD/FBD source can
access the instance.
The instance is also available:

– On HMI devices.

– In other LAD/FBD source files (or other units) once connected, see “How to define
connections to other units (program sources)” (Page 165).

The total size of all unit variables in the interface section is limited to 64 Kbytes.

● In the implementation section of the declaration table of the LAD/FBD source:
The instance behaves like a unit variable which is only valid in the LAD/FBD source; all
LAD/FBD programs (programs, function blocks, and functions) within the LAD/FBD source
can access the instance.

● In the declaration table of the LAD/FBD program (for programs and function blocks only):
The instance behaves like a local variable; it can only be accessed within the MCC chart
in which it is declared.

Proceed as follows (the LAD/FBD source or the LAD/FBD program with the declaration table
is open, see “Opening an existing LAD/FBD source” (Page 46) or “Opening an existing LAD/
FBD program” (Page 61):

1. Select the declaration table and, if applicable, the section of the declaration table for the
desired scope.

2. Select the Parameters tab.

3. Enter or select the following:

– Name of instance (variable name – see Rules for identifiers (Page 97))

– Variable type VAR or VAR_GLOBAL, depending on the declaration location (in LAD/
FBD program or LAD/FBD source respectively)

– Designation of the function block as data type.

4. Declare the other variables.

4.18.5.4 Programming the subprogram call of the method
1. From the project navigator drag the UP method from the COUNTER class to the network

for the LAD/FBD program KOP/FUP_1.

2. Select the counter.up method inserted and select the Display > All box parameters
command from the shortcut menu.
All input/output parameters for the UP method inserted are displayed.

Note

Mandatory parameters are marked with "???” in the LAD/FBD network and optional
parameters with "...".

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
190 Programming and Operating Manual, 07/2017, A5E33438246B

3. Select the inserted counter.up method followed by the Assign parameters to a call
command from the shortcut menu.

4. Assign parameters to the subroutine call in the Enter Call Parameter parameter screen
form:

– Enter the instance C1 defined in the declaration table in the Instance field.

– Select the CountOut variable in the return value field defined in the declaration table.

Note

Mandatory parameters are marked with "<???>” and optional parameters with "...".

5. Assign the current values to the transfer parameters:

– Input parameters: Variable or expression

– In/out parameter: Directly readable/writable variable

– Output parameter (optional): Variable
In the example for the output parameters QU in the Value column select the variable
UpValReached.

You can use drag-and-drop to assign unit variables and system variables from the detail
view to the input, output, or in/out parameters of the instance of the counter.up method
inserted into the LAD/FBD network.

6. Confirm with OK.

Note

The term "LAD/FBD program" is a generic term and may refer to a program, a function (FC),
or a function block (FB).

Note
Saving a project in a format older than Version V4.5 of SIMOTION SCOUT

Projects which include classes and methods cannot be saved in a format older than
Version V4.5 of SIMOTION SCOUT.

4.18.5.5 Opening the method directly from the subprogram call
You can open subprograms directly from their respective subprogram call by using the context
menu:

● This works regardless of the programming language (ST, MCC, LAD/FBD) used to create
the subprogram.

● The subprogram opens in a separate editor or an editor already opened for the subprogram
is moved to the foreground.

A subprogram may be a:

● User-defined function (FC)

● User-defined function block (FB)

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 191

● User-defined program called as a subprogram ("program in program")

● Library function

● Library function block

● Library program called as a subprogram ("program in program")

Procedure
To open the method directly from the subprogram call, proceed as follows:

1. In the LAD/FBD network, select the subprogram call used to call the method.

2. Select the Open called block command in the context menu (Ctrl+Alt+O shortcut).

The method opens in the ST editor or the ST editor opened for the method is placed in the
foreground.

Note

If the called method is in a program source with know-how protection, the same steps that
apply when opening the protected program source directly also apply here, see Know-how
protection for LAD/FBD sources (Page 48).

4.18.6 Limitations with advance signal switching
An output from an LAD/FBD element can only be connected in advance of an LAP/FBD
element input if both the input and output are of data type BOOL. As a result, only Boolean
advance signal switching is possible in a network.

An output parameter from an FB or a return value from an FC cannot be switched to an input
parameter of a different FB/FC, i.e. Boolean advance signal switching is not possible here
either.

Non-Boolean advance signal switching and output/input parameter switching with the FB/FC
can be implemented with the aid of an additional network and a temporary variable. If the
output from an LAD/FBD element cannot be assigned directly to the input of the other LAD/
FBD element, then the former LAD/FBD element is added to this additional network. The same
temporary variable is assigned to both output and input, and so the output and input are
switched via the temporary variable.

Alternatively, this can also be implemented with just one network and a temporary variable,
with the result that both LAD/FBD elements are in the same network.

Example of output/input parameter switching with FB/FC
In the ST programming language, with TO commands from the commands library the
"commandid" input parameter can be assigned directly with the _getcommandid function.

This output/input parameter switch with FB/FC can be implemented in the LAD/FBD
programming language with an additional network for the _getcommandid function and a
temporary variable.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
192 Programming and Operating Manual, 07/2017, A5E33438246B

The _getcommandid function is added to the upper network, and the temporary variable
"var_commandid" is assigned to its output "OUT". The TO command _pos is added to the
lower network, and the temporary variable "var_commandid" is likewise assigned to its input
"commandid". The switching of the output "OUT" of _getcommandid and of the input
"commandid" of _pos is thus effected using the temporary variable.

Figure 4-51 Output/input parameter switching with FB/FC

4.18.7 Interface adjustment with FB/FC
If the properties of an FB/FC that has been added to the network are modified, then in the
following cases there will be an interface adjustment:

1. One or more new input/output parameters are added

2. One or more unused input/output parameters are deleted

3. One or more used input/output parameters are deleted

In cases 1 and 2 the network is updated immediately when it is opened in the LAD/FBD editor,
or immediately after it is opened.

In case 3 the FB/FC call is shown in red in the network, and a manual update must be carried
out. An existing Boolean advance switching of a deleted input parameter is not deleted; instead
it is merely separated off and, for instance, shown in the LAD display as an as an open ladder
diagram in the network.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 193

Manual update of a specific FB/FC call
To manually update a particular FB/FC call, follow these steps:

1. Click on the desired FB/FC call.

2. Select the Update call command in the context menu.
The FB/FC call is shown with the input/output parameters which are currently present, i.e.
without the deleted input/output parameters.

Manually updating all FB/FC calls
To manually update all the FB/FC calls for the program organization unit (POU) currently
displayed in the working area, follow these steps:

1. Click on an empty position in the network.

2. Select the Update all calls for all networks command in the context menu.
The FB/FC calls are shown with the input/output parameters which are currently present,
i.e. without the deleted input/output parameters.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
194 Programming and Operating Manual, 07/2017, A5E33438246B

For the following cases there is no interface adjustment available, and so updating must be
performed by entering data manually or with Find/Replace (Page 205):

● Changing the name of the instance variable (only for FBs)

● Changing the name, the data type of the box type of the FB/FC call

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 195

① Instance variable (instance name)
Only used with FBs.
In the declaration table an FB instance is declared by specifying the instance variable with the name of the FB as
the data type. This instance variable (instance name) is used for calling up the FB.

② Data type
The relevant FB is assigned to the instance variable as its data type.
In order for an FB call to work correctly, the data type and box type must be identical, otherwise the FB call will be
displayed in red in the network.

③ Box type, consisting of:
● The type name, e.g. MOVE, ADD etc. or the names of user programs/FBs/FCs
● The type, i.e. the selected creation type (program, FB or FC) of the LAD/FBD program

④ Instance variable (instance name)
Only for FBs.

⑤ Name of the FB/FC (type of a (user-defined) FB/FC)
FB: The name of the FB is used as the data type in the FB instance declaration in the declaration table.
FC: The name of the FC is used as the box type.

LAD/FBD programming
4.18 Subroutine

SIMOTION LAD/FBD
196 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 4-52 Overview of FB/FC terms used

Display in the Detail view
Only in case 3 are the deleted input/output parameters and the deleted variables assigned to
them displayed in the Detail view in the Compile/check output window immediately after a
manual update. Deleted input parameters with Boolean advance switching are not displayed
because the advance switching is merely separated off and therefore continues to exist in the
network.

4.19 Reference data
The reference data provide you with an overview of:

● on utilized identifiers with information about their declaration and use
(Cross-reference list (Page 197)).

● on function calls and their nesting
(Program structure (Page 201))

● on the memory requirement for various data areas of the program sources
(Code attributes (Page 203))

4.19.1 Cross reference list

The cross-reference list shows all identifiers in program sources (e.g. ST source files, MCC
units):

● Declared as variables, data types, or program organization units (program, function,
function block)

● Used as previously defined types in declarations

● Used as variables in the statement section of a program organization unit.

4.19.1.1 Generating and updating a cross-reference list
Initially, the cross-reference list is generated automatically when opening. Open a cross-
reference list, e.g. after selecting an ST source file or library via the Edit > Display reference
data > Cross-references menu. After changes, the update is partly performed automatically
and can always be triggered manually in the detail view via the button. When updating via
the button, a check is performed as to whether a compilation is required. If a compilation is
required, this is indicated by a yellow triangle next to the button.

Update of the cross-reference list when selecting a program
The list is updated automatically when opening the selected program. The local defined
identifiers are therefore up-to-date.

External identifiers in the program are not updated when opening.

LAD/FBD programming
4.19 Reference data

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 197

The opened cross-reference list is also updated automatically when compiling the program.

Update of the cross-reference list when selecting a tree (CPU, project, library, program folder)
The cross-reference list is generated automatically when opening the first time. There is no
automatic update when opened again.

Note

An error-free compilation is required for a correct, consistent display of the reference data. If
required, compile the project, the CPU, the program or the library first.

4.19.1.2 Content of the cross-reference list
The cross-reference list contains all the identifiers assigned to the element selected in the
project navigator. The applications for the identifiers are also listed in a table:

Details of how to work with the cross-reference list are provided in the section titled "Working
with the cross-reference list (Page 200)".

Table 4-34 Meanings of columns and selected entries in the cross-reference list

Column Entry in column Meaning
Name Identifier name
Type Identifier type
 Name ● Data type of a variable (e.g. REAL, INT)

● POU type (e.g. PROGRAM, FUNCTION)
 DERIVED Derived data type
 DERIVED ANY_OBJECT TO data type
 ARRAY … ARRAY data type
 ENUM … Enumerator data type
 STRUCT … STRUCT data type
Declaration Location of declaration
 Name (UNIT) Declaration in the program source name
 Name (LIB) Declaration in the library name
 Name (TO) System variable of the technology object name
 Name (TP) Declaration in the default library specified:

● Technology package name
● std_fct = IEC library
● device = device-specific library

 Name (DV) Declaration on the SIMOTION device name (e.g. I/O variable or global device
variable)

 _project Declaration in the project (e.g. technology object)
 _device Internal variable on the SIMOTION device (e.g. TaskStartInfo)
 _task Task in the execution system
Use Use of identifier
 CALL Call as subprogram (static binding)

LAD/FBD programming
4.19 Reference data

SIMOTION LAD/FBD
198 Programming and Operating Manual, 07/2017, A5E33438246B

Column Entry in column Meaning
 CALL VTAB Call of a method of the dynamic binding
 ENUM name As element when declaring the enumerator data type name
 I/O Declaration as I/O variable
 R Read access
 R (TYPE) As data type in a declaration
 R/W Read and write access
 STRUCT name As component when declaring the structure name
 TYPE Declaration as data type or POU
 Variable type (e.g. VAR,

VAR_GLOBAL)
Declaration as variable of the variable type specified

 W Write access
Path specification Path specification for the SIMOTION device or program source
 Name SIMOTION device name
 Name1/Name2 ● Program source name2 on SIMOTION device name1

● Program source name2 in library name1
 Name/taskbind.hid Execution system of the SIMOTION device name
Range Range within the SIMOTION device or program source
 INTERFACE Interface section of the program source
 POE type name (i.e.

CLASS name,
FUNCTION name,
FUNCTION_BLOCK name
INTERFACE name
PROGRAM name)

Program Organization Unit (POU) Name within the program source.
● In an MCC chart: Additional

serial numbers for the command (block numbers)
● In a LAD/FBD program:

Additional serial numbers of the network
 I/O address I/O variable
 METHOD Name_1::Name_2 Method Name_2 within the class or the function block Name_1
 TASK name Assignment for the task name
 UNIT Implementation section of the program source, additional specification as POU

to be made public in the interface section of the program source
 UNIT - IMPLEMENTATION Implementation section of the program source
 _device Global device variable
Language Programming language of the program source
Line/Block ● In an ST source:

Line number within the program source
● In an MCC or LAD/FBD source:

Relative line number within the command (block) or network.
Note
The absolute line number within the program source, which you need, for
example, for the trace function "Trigger to code point", is obtained as follows:
– Press the Determine program line button.
– In the dialog box, press the button Copy program line to the clipboard.

LAD/FBD programming
4.19 Reference data

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 199

Note
Single-step tracking and trace diagnostic functions in MCC programming

Additional variables and functions are created or used for these diagnostics functions:
● The variables TSI#dwuser_1 and TSI#dwuser_2 of the TaskStartInfo are used for the single-

step tracking diagnostic function.
● Various internal functions and variables, whose identifier begins with an underscore, are

automatically created by the compiler for the trace diagnostic function. The
TSI#currentTaskId variable of the TaskStartInfo is also used.

With activated diagnostic function, these variables and functions are used for the control of
the diagnostics function. These variables and functions must not be used in the user program.

4.19.1.3 Working with a cross-reference list
In the cross-reference list you are able to:

● Sort the column contents alphabetically:

– To do this, click the header of the appropriate column.

● Search for an identifier or entry:

– Click the "Search" button and enter the search term.

● Filter (Page 200) the identifiers and entries displayed.

● Copy contents to the clipboard in order to paste them into a spreadsheet program,
for example.

– Select the appropriate lines and columns.

– Press the CTRL+C shortcut.

● Print the content (Project > Print).

● Open the referenced program source and position the cursor on the relevant line of the ST
source file (or MCC command or LAD/FBD element):

– Double-click on the corresponding line in the cross-reference list.
or

– Place the cursor in the corresponding line of the cross-reference list and click the "Go
to application" button.

Further details about working with cross-reference lists can be found in the online help.

4.19.1.4 Filtering the cross-reference list
You can filter the entries in the cross-reference list so that only relevant entries are displayed:

1. Click the "Filter settings" button.
The "Filter Setting for Cross References" window will appear.

2. Activate the "Filter active" checkbox.

LAD/FBD programming
4.19 Reference data

SIMOTION LAD/FBD
200 Programming and Operating Manual, 07/2017, A5E33438246B

3. If you also want to display system variables and system functions:

– Deactivate the "Display user-defined variables only" checkbox.

4. Set the desired filter criterion for the relevant columns:

– Select the relevant entry from the drop-down list box or enter the criterion.

– If you want to search for a character string within an entry: Deactivate the "Whole words
only" checkbox.

5. Confirm with OK.

The contents of the cross-reference list will reflect the filter settings selected.

Note

A filter is automatically activated after the cross-reference list has been created.

4.19.2 Program structure

The program structure contains all the function calls and their nesting within a selected element.

You can display the program structure selectively for:

● An individual program source (e.g. ST source file, MCC unit, LAD/FBD source file)

● All program sources of a SIMOTION device

● All program sources and libraries of the project

● Libraries (all libraries, single library, individual program source within a library)

Proceed as follows:

1. In the project navigator, select the element for which you want to display the program
structure.

2. Select the Edit > Display reference data > Program structure menu command.
The cross-reference tab is replaced by the program structure tab in the detail view.

Note

The display data is updated every time the program structure is opened.

You can update the detail view of an opened program structure with the F5 key.

LAD/FBD programming
4.19 Reference data

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 201

4.19.2.1 Content of the program structure
A tree structure appears, showing:

● as base respectively

– the program organization units (programs, functions, function blocks) declared in the
program source, or

– the execution system tasks used

● below these, the subroutines referenced in this program organization unit or task.

For structure of the entries, see table:

Table 4-35 Elements of the display for the program structure

Element Description
Base
(declared POU or
task used))

List separated by a comma
● Identifier of the program organization unit (POU) or task

The specification Name_1::Name_2 means: Method Name_2 within the
class or the function block Name_1.

● Identifier of the program source in which the POU or task was declared, with
add-on [UNIT]

● Minimum and maximum stack requirement (memory requirement of the
POU or task on the local data stack), in bytes [Min, Max]

● Minimum and maximum overall stack requirement (memory requirement of
the POU or task on the local data stack including all called POUs), in bytes
[Min, Max]

Referenced POU List separated by a comma:
● Identifier of called POU

The specification Name_1::Name_2 means: Method Name_2 within the
class or the function block Name_1.

● Optionally: Identifier of the program source / technology package in which
the POU was declared:
Add-on (UNIT): User-defined program source
Add-on (LIB): Library
Add-on (TP): System function from technology package

● with function blocks or methods only: Identifier of the instance of the function
block or the higher-level class

● with function blocks or methods only: Identifier of program source in which
the instance of the function block or of the higher-level class was declared:
Add-on (UNIT): User-defined program source
Add-on (LIB): Library

● Number of the line in the (compiled) source in which the POE is called;
several line numbers are separated by “/".

LAD/FBD programming
4.19 Reference data

SIMOTION LAD/FBD
202 Programming and Operating Manual, 07/2017, A5E33438246B

4.19.3 Code attributes

You can find information on or the memory requirement of various data areas of the program
sources under code attribute.

You can display the code attributes selectively for:

● An individual program source (e.g. ST source file, MCC unit, LAD/FBD source file)

● All program sources of a SIMOTION device

● All program sources and libraries of the project

● Libraries (all libraries, single library, individual program source within a library)

Proceed as follows:

1. In the project navigator, select the element for which you want to display the code attributes.

2. Select the Edit > Display reference data > Code attributes menu command.
The Cross-references tab is now replaced by the Code attributes tab in the detail view.

Note

The display data is updated every time the code attributes are opened.

You can update the detail view of the opened code attributes with the F5 key.

4.19.3.1 Code attribute contents
The following are displayed in a table for all selected program sources:

● Identifier of program source,

● Memory requirement, in bytes, for the following data areas of the program source:

– Dynamic data: All unit variables (retentive and non-retentive, in the interface and
implementation sections),

– Retain data: Retentive unit variables in the interface and implementation section,

– Interface data: Unit variables (retentive and non-retentive) in the interface section,

● the Code size during the last compilation in bytes,

● the Number of referenced sources:
The maximum number of connected sources is displayed (including system libraries),
regardless of whether they are downloaded to the target system at a later date.

4.19.4 Reference to variables
If you have selected the identifier of a variable in the open Editor window for each programming
language, you can use the other places of use over the context menu to list or to skip these
variables.

LAD/FBD programming
4.19 Reference data

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 203

You select the identifier of a variable:

● In SIMOTION ST: In the Editor window of an ST source.

● In SIMOTION MCC: In the input field on the parameter screen of an open MCC command
within an MCC chart

● In SIMOTION LAD/FBD: In the Editor window of a LAD/FBD program

An identifier is recognized as a variable under the following conditions:

1. The identifier is declared as a variable. The scope of the variable includes the respective
window (ST source, MCC chart, LAD/FBD program).

2. The program source is compiled.

3. The variable is selected as follows (in an open parameter screen within an MCC chart):

– The identifier is fully marked
or

– The cursor is within the identifier.

Note

In arrays and structures, only the variable can be selected, not a single element.

Using the Go to context menu, you have the following options:

● To jump to the next local place of use:
Select the context menu Go to > Local use >>.
The next place of use of the variables within the same Editor window (ST source, MCC
chart, LAD/FBD program) is selected. In an MCC chart, the corresponding MCC command
opens.

● Jump to the previous local place of use:
Select the context menu Go to > Local use <<.
The previous place of use of the variables within the same Editor window (ST source, MCC
chart, LAD/FBD program) is selected. In an MCC chart, the corresponding MCC command
opens.

● Jump to the declaration position:
Select the context menu Go to > Declaration position.
The declaration position of the variables is selected. The corresponding program source is
opened, if necessary.

● List all places of use
Select the context menu Go to > Places of use
In the detailed view, all places of use of the variables within their scope (including the
declaration position) are listed The structure of this list is similar to the List of cross
references (Page 198).
This is how you jump to a preferred place of use:

– Double-click on the corresponding line.
or

– Place the cursor in the corresponding line and click the "Go to application" button.

LAD/FBD programming
4.19 Reference data

SIMOTION LAD/FBD
204 Programming and Operating Manual, 07/2017, A5E33438246B

4.20 Find and replace
The following options are available when searching for a given piece of text or for variables
only:

● Find or find and replace in the entire project (project-wide search).
This is described in detail in the Online help.

Note

Following a find and replace operation in the whole project, it may be necessary to compile
the project, so as to update all symbol information.

● Find or find and replace in a certain program source or their subprograms (local search).
The following is described in this manual:

– Finding in an LAD/FBD unit or an LAD/FBD program (Page 205)

– Finding and replacing in an LAD/FBD unit or an LAD/FBD program (Page 206)

See the respective manuals for a description of the local search in the other programming
languages.

4.20.1 Find in LAD/FBD unit or LAD/FBD program

Range of the local search
With local searching, only the contents of the window (LAD/FBD unit or LAD/FBD program) in
which the local search was triggered are searched.

● The following are searched in an LAD/FBD unit:

– All tabs of the declaration table (INTERFACE and IMPLEMENTATION)

The assigned LAD/FBD programs are not searched.

● The following are searched in an LAD/FBD program:

– All tabs of the declaration table

– Program title and comment

– All networks (title, comment, LAD/FBD elements with parameter labelling)

The dialog box open during the local search is assigned to the respective window and is hidden
when changing to another window and displayed again when returning.

Procedure
If you want to conduct local searching for arbitrary text in an LAD/FBD unit or LAD/FBD
program, proceed as follows:

1. Open the desired LAD/FBD unit (Page 46) or the LAD/FBD program (Page 61).

2. In the menu, select Edit > Find (shortcut Ctrl+F).
The Find dialog box opens.
A character string selected in the LAD/FBD editor is automatically taken as a search term.

LAD/FBD programming
4.20 Find and replace

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 205

3. Enter the required search term in the Find input field.
Wildcards such as "*" or "?" are not permitted.

4. If required, select a search option as well as the search direction (Up/Down).

– If you activate the Whole words only checkbox, only a whole word is searched for.

– If you activate the Match case checkbox, the search takes upper- and lower-case into
account.

– If you activate the Variables only checkbox, the search is performed only in fields that
contain identifiers of variables.

5. Click the Find next button (shortcut F3).
The search is started in the selected direction. The first matching text pattern is highlighted.

6. Click the Find next button again to display the next matching text pattern.

Note

You can also continue searching with F3 even when the dialog box is closed.

Displaying search results
● The relevant tab is automatically activated in a declaration table and the found search term

is highlighted.

● The found search term is highlighted in the LAD/FBD program.

The respective editor window can also be edited when the dialog box is open.

4.20.2 Find and replace in LAD/FBD unit or LAD/FBD program
The process of finding and replacing on a local basis works like local finding (Page 205), but
also makes it possible to specify an expression to replace a search term once found.

Procedure
If you want to conduct local searching for arbitrary text in an LAD/FBD unit or LAD/FBD
program, proceed as follows:

1. Open the desired LAD/FBD unit (Page 46) or the LAD/FBD program (Page 61).

2. In the menu, select Edit > Replace (shortcut Ctrl+H).
The Replace dialog box opens.
A character string selected in the LAD/FBD editor is automatically taken as a search term.

3. Enter the required search term in the Find input field.
Wildcards such as "*" or "?" are not permitted.

LAD/FBD programming
4.20 Find and replace

SIMOTION LAD/FBD
206 Programming and Operating Manual, 07/2017, A5E33438246B

4. If required, select a search option.

– If you activate the Whole words only checkbox, the search looks for a whole word.

– If you activate the Match case checkbox, the search takes upper- and lower-case into
account.

– If you activate the Variables only checkbox, the search is performed only in fields that
contain identifiers of variables.

5. Enter the expression that should replace the search term in the Replace with input field.

6. Click the Find next button (shortcut F3).
The search begins in the Down direction and the first matching text pattern is highlighted.
The Replace button also becomes active if a replacement is permitted at this position, see
Rules for replacing.

– If you want to replace the search term found, click the Replace button.
The search term found, now selected and displayed, is replaced and the next length of
text to match the criteria is displayed.

– If you do not want to replace the search term found, click the Find next button.
The next length of text to match the criteria is displayed.

Rules for replacing
When replacing, a check is made as to whether the resulting term after replacement is
permitted in principle at this position, for example:

● For identifiers of variables and data types, a check is made as to whether the Rules for
identifiers (Page 97) have been observed.

● For selection fields (combo boxes), a check is made whether the resulting term is available
as a selection option. Some examples are shown below:

– In the declaration table of an LAD/FBD unit, VAR_GLOBAL cannot be replaced by VAR
or VAR_TEMP.

– The LAD/FBD element ADD can be replaced by other mathematical functions, but not,
for example, by MAX or a comparison operator.

– A comparison operator can only be replaced by another comparison operator, but not,
for example, by a mathematical or logical function.

● Generally, the following cannot be replaced:

– Wildcards, such as "..." or "???"

– The elements listed in the command library under "LAD elements" and "FBD elements".

Note

If an item cannot be replaced at a particular position, the Replace button appears inactive
(grayed out).

LAD/FBD programming
4.20 Find and replace

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 207

Further checks are not made, for example

● Whether variables or data types have already been defined.

● Whether there are further dependencies between fields and will be violated by the
replacement.

In declaration tables, some columns are generally blocked for replacing, for example:

● The Absolute identifier column in the I/O symbols tab

● The Type column in the Connections tab

4.21 Execution order

4.21.1 Non-optimized execution order

Requirements
The non-optimized execution order is active for LAD networks by default. In the "Global settings
of the compiler" (Page 53), the Optimize execution order (LAD/FBD) checkbox is inactive.

Calculation of the non-optimized execution order
The LAD network is calculated in the following order:

1. At the end of the last parallel branching (at ① in the example), the lower parallel branches
are calculated first in the order 2 - 3 - 4 … before the top parallel branch is calculated.

2. The elements are calculated from left to right within a parallel branch.

3. Within the lower parallel branches, further parallel branches (at ② in the example) are
calculated in the normal order from top to bottom.

4. In the top parallel branch, further parallel branches (at ③ in the example) are calculated
in the order described in 1.

This produces the specified order (1 … 7) in the following example.

LAD/FBD programming
4.21 Execution order

SIMOTION LAD/FBD
208 Programming and Operating Manual, 07/2017, A5E33438246B

Example of a non-optimized execution order

Figure 4-53 Example of a non-optimized execution order

4.21.2 Optimized execution order

Requirements
The setting for the optimized execution order is made globally for the entire project in the
"Global compiler settings" (Page 54). The Optimize execution order (LAD/FBD) checkbox is
active.

Note

Note when saving the project in the old project format: In project formats up to version V4.2,
the optimized execution order is not taken into account.

LAD/FBD programming
4.21 Execution order

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 209

Calculation for the optimized execution order
The LAD network is calculated in the following order:

1. At the end of parallel branching (at ① in the example), the parallel branches are calculated
from top to bottom.

2. The elements are calculated from left to right within a parallel branch.

3. Within the parallel branches, further parallel branches (at ② or ③ in the example) are
calculated from top to bottom.

This produces the specified order (1 … 7) in the following example.

Example of an optimized execution order

Figure 4-54 Example of an optimized execution order

LAD/FBD programming
4.21 Execution order

SIMOTION LAD/FBD
210 Programming and Operating Manual, 07/2017, A5E33438246B

Functions 5
This chapter provides a detailed description of the commands with the parameters. The
commands described are applicable to both the LAD editor and the FBD editor. Examples are
provided to illustrate individual commands in the LAD and FBD editors. Where there are
differences such as bit logic, you should refer to the relevant LAD bit logic instructions
(Page 211) editor.

Note

Functions not described in this section can be found in the Function Descriptions of the ST
programming language.

5.1 LAD bit logic instructions
Bit logic operations work with the numbers 1 and 0. These numbers form the basis of the binary
system and are called binary digits or bits. In connection with AND, OR, XOR and outputs, a
1 stands for logic YES and a 0 for logic NO.

The bit logic operations interpret the signal states 1 and 0 and link them according to boolean
logic.

The following bit logic operations are available:

● ---| |--- NO contact

● ---| / |--- NC contact

● XOR Linking EXCLUSIVE OR

● ---() Relay coil, output

● ---(#)--- Connector

● ---|NOT|--- Invert signal state

The following operations react to a signal state of 1:

● ---(S) Set output

● ---(R) Reset output

● SR Prioritize set flip-flop

● RS Prioritize reset flipflop

Some operations react to a rising or falling edge change, so that you can perform one of the
following operations:

● --(N)-- Scan edge 1 -> 0

● --(P)-- Scan edge 0 -> 1

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 211

● NEG edge detection (falling)

● POS edge detection (rising)

5.1.1 ---| |--- NO contact

Symbol
<Operand>

 ---| |---

Parameter Data type Description
<Operand> BOOL Scanned bit

Description
---| |--- (NO contact) is closed if the value of the scanned bit, saved at the specified
<Operand>, is equal to 1.

Otherwise, if the signal state at the specified <address> is "0", the contact is open.

With series connections, the ---| |--- contact is linked by AND. With parallel connections, the
contact is linked by OR.

Example

Output %Q 4.0 is 1, if (%I 0.0 = 1 AND %I 0.1 = 1) OR %I 0.2 = 1.

5.1.2 ---| / |--- NC contact

Symbol
<Operand>

 —| / |—

Parameter Data type Description
<Operand> BOOL Scanned bit

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
212 Programming and Operating Manual, 07/2017, A5E33438246B

Description
---| / |--- (NC contact) is closed if the value of the scanned bit, saved at the specified
<Operand>, is equal to 0.

Otherwise, if the signal state at the specified <address> is "1", the contact is open.

With series connections, the ---| / |--- contact is linked bit for bit by AND. With parallel
connections, the contact is linked by OR.

Example

Output %Q 4.0 is 1, if (%I 0.0 = 1 AND %I 0.1 = 1) OR %I 0.2 = 0.

5.1.3 XOR Linking EXCLUSIVE OR

Symbol
For the function XOR, a network of NC contacts and NO contacts must be created:

Parameter Data type Description
<Operand_1> BOOL Scanned bit
<Operand_2> BOOL Scanned bit

Description
The value of an XOR (Link EXCLUSIVE OR) link is 1 if the signal states of both specified bits
are different.

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 213

Example

Output %Q 4.0 is 1 if (%I 0.0 = 0 AND %I 0.1 = 1) OR (%I 0.0 = 1 AND %I 0.1 = 0).

5.1.4 ---|NOT|--- Invert signal state

Symbol
---|NOT|---

Description
---|NOT|--- (Invert signal state) inverts the signal bit.

Example

Output %Q 4.0 is 0, if %I 0.0 = 1 OR (%I 0.1 = 1 AND %I 0.2 = 1).

5.1.5 ---() Relay coil, output

Symbol
<Operand>

---()

Parameter Data type Description
<Operand> BOOL Assigned bit

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
214 Programming and Operating Manual, 07/2017, A5E33438246B

Description
--- () (Relay coil, output) works like a coil in a circuit diagram. If current flows to the coil, the
bit at the <Operand>is set to 1. If no current flows to the coil, the bit at the <Operand> is set
to 0. An output coil can only be positioned at the right-hand end of a ladder diagram line in a
ladder logic. A negated output can be created with the operation ---|NOT|---.

Example

Output %Q 4.0 is 1, if (%I 0.0 = 1 AND %I 0.1 = 1) OR %I 0.2 = 0.

5.1.6 ---(#)--- Connector (LAD)

Symbol
<Operand>

 ---(#)---

Parameters Data type Description
<Operand> BOOL Assigned bit

Description
---(#)--- (Connector) is an interposed element with assignment function which saves the
current signal state of the signal flow at a specified <Operand>. This assignment element saves
the bit logic of the last opened branch in front of the assignment element. If connected in series
with other elements, the ---(#)---operation is pasted in as a contact. The ---(#)--- element
can never be connected to the conductor bar, nor positioned directly behind a branch, nor used
as the end of a branch. A negated element ---(#)--- can be created with the element ---|NOT|---
(Invert signal state).

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 215

Example

5.1.7 ---(R) Reset output (LAD)

Symbol
<Operand>

---(R)

Parameter Data type Description
<Operand> BOOL Assigned bit

Description
---(R) (Reset output) is executed only if the signal state of the previous operations is 1 (signal
flow at the coil). If the signal state is 1, the specified <Operand> of the element is set to 0.

A signal state of 0 (no signal flow at the coil) has no effect, so that the signal state of the
operand of the specified element is not changed.

Example

Output %Q 4.0 is set to 0, if (%I 0.0 = 1 AND %I 0.1 = 1) OR %I 0.2 = 0.

If the signal state is 0, the signal state of %Q 4.0 remains the same.

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
216 Programming and Operating Manual, 07/2017, A5E33438246B

5.1.8 ---(S) Set output (LAD)

Symbol
<Operand>

---(S)

Parameter Data type Description
<Operand> BOOL Set bit

Description
---(S) (Set output) is executed only if the signal state of the previous operations is 1 (signal
flow at the coil). If the signal state is 1, the specified <Operand> of the element is set to 1.

A signal state = 0 has no effect, so that the current signal state of the specified element's
operand is not changed.

Example

Output %Q 4.0 is set to 1, if %I 0.0 = 1 AND %I 0.1 = 1) OR %I 0.2 = 0.

If the signal state is 0, the signal state of %Q 4.0 remains the same.

5.1.9 RS Prioritize reset flipflop

Symbol

Parameters Data type Description
<Operand> RS Instance variable of FB type RS
S BOOL Set

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 217

Parameters Data type Description
R1 BOOL Reset
Q1 BOOL Signal state of <address>

Description
RS (Prioritize reset flip-flop) is reset if the state at input R1 is 1. For the state at output Q1, this
means:

● Q1 = 0, if input R1 has state 1 irrespective of the state at the S input.

● Q1 = 1, if input S has state 1 and input R1 has state 0.

● Q1 unchanged, if both R1 and S inputs have state 0.

Example

VAR1 is declared as a variable of data type RS and is used as instance of the function block.
The I/O addresses %I 0.0 and %I 0.0 (process image of the inputs) are connected to the inputs
S and R1 of the function block. Output Q1 of the function block is connected to I/O address
%Q 4.0 (process image of the outputs).

The following applies for the signal state at output address %Q 4.0 depending of the signal
state at input addresses %I 0.0 and %I0.1:

● %I 0.0 = 1 and %I 0.1 = 1 ⇒ %Q 4.0 = 0.

● %I 0.0 = 1 and %I 0.1 = 0 ⇒ %Q 4.0 = 1.

● %I 0.0 = 0 and %I 0.1 = 1 ⇒ %Q 4.0 = 0.

● %I 0.0 = 0 and %I 0.1 = 0 ⇒ %Q 4.0 remains the same.

5.1.10 SR Prioritize set flipflop

Symbol

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
218 Programming and Operating Manual, 07/2017, A5E33438246B

Parameters Data type Description
<Operand> SR Instance variable from FB type SR
S1 BOOL Set
R BOOL Reset
Q1 BOOL Signal state of <address>

Description
SR (Prioritize set flip-flop) is set if input S1 has state 1. For the state at output Q1, this means:

● Q1 = 1, if input S1 has state 1 irrespective of the state at the R input.

● Q1 = 0, if input R has state 1 and input S1 has state 0.

● Q1 unchanged, if both R and S1 inputs have state 0.

Example

VAR1 is declared as a variable of data type SR and is used as instance of the function block.
The I/O addresses %I 0.0 and %I 0.0 (process image of the inputs) are connected to the inputs
S1 and R of the function block. Output Q1 of the function block is connected to I/O address
%Q 4.0 (process image of the outputs).

The following applies for the signal state at output address %Q 4.0 depending of the signal
state at input addresses %I 0.0 and %I0.1:

● %I 0.0 = 1 and %I 0.1 = 1 ⇒ %Q 4.0 = 1.

● %I 0.0 = 1 and %I 0.1 = 0 ⇒ %Q 4.0 = 1.

● %I 0.0 = 0 and %I 0.1 = 1 ⇒ %Q 4.0 = 0.

● %I 0.0 = 0 and %I 0.1 = 0 ⇒ %Q 4.0 remains the same.

5.1.11 --(N)-- Scan edge 1 -> 0 (LAD)

Symbol
<Operand>

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 219

---(N)---

Parameters Data type Description
<Operand> BOOL N connector bit, saves the previous signal state

Description
---(N)--- (Scan edge 1 -> 0) recognizes a signal state change in the operand from 1 to 0 and
displays this after the operation with signal state = 1. The current signal state is compared to
the signal state of the operand, the N connector. If the signal state of the operand is 1 and the
signal state before the operation is 0, then the signal after the operation is 1 (pulse), in all other
cases 0. The signal before the operation is saved in the operand.

Example

The N-connector saves the signal state of the result of the entire bit logic.

If the signal state changes from 1 to 0 the jump to the CAS1 jump label is performed.

5.1.12 --(P)-- Scan edge 0 -> 1 (LAD)

Symbol
<Operand>

---(P)---

Parameters Data type Description
<Operand> BOOL P connector bit, saves the previous signal state

Description
---(P)--- (Scan edge 0 -> 1) recognizes a signal state change in the operand from 0 to 1 and
displays this after the operation with signal state = 1. The current signal state is compared to
the signal state of the operand, the P connector. If the signal state of the operand is 0 and the
signal state before the operation is 1, then the signal after the operation is 1 (pulse), in all other
cases 0. The signal before the operation is saved in the operand.

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
220 Programming and Operating Manual, 07/2017, A5E33438246B

Example

The P-connector saves the signal state of the result of the entire bit logic. If the signal state
changes from 0 to 1 the jump to the CAS1 jump label is performed.

5.1.13 NEG edge detection (falling)

Symbol

Parameters Data type Description
<Operand1> BOOL Scanned signal
<Operand2> BOOL Connector bit, saves the previous signal state from <Oper‐

and1>
Q BOOL Signal change detection

Description
NEG (edge detection) compares the signal state of <Operand1> with the signal state of the
previous scan, which is saved in <Operand2>. If the current state of the signal is 0 and the
previous state was 1 (detection of a falling edge), output Q is 1 after this function, in all other
cases 0.

Example

Output %Q 4.0 is 1 if:

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 221

(The state at %I 0.0 AND at %I 0.1 AND at %I 0.2 = 1) AND VAR1 has a falling edge AND the
state at %I 0.4 = 1.

5.1.14 POS edge detection (rising)

Symbol

Parameters Data type Description
<Operand1> BOOL Scanned signal
<Operand2> BOOL Connector bit, saves the previous signal state from <Oper‐

and1>
Q BOOL Signal change detection

Description
POS (edge detection) compares the signal state of <Operand1> with the signal state of the
previous scan, which is saved in <Operand2>. If the current state of the signal is 1 and the
previous state was 0 (detection of a rising edge), output Q is 1 after this operation, in all other
cases 0.

Example

Output %Q 4.0 is 1 if:

(The state at %I 0.0 AND at %I 0.1 AND at %I 0.2 = 1) AND VAR1 has a rising edge AND the
state at %I 0.4 = 1.

5.1.15 Open branch
Parallel branches are opened downward.

Parallel branches are always opened behind the selected LAD element.

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
222 Programming and Operating Manual, 07/2017, A5E33438246B

Procedure
To open a parallel branch downward, follow these steps:

1. Use the cursor to select the position where the branch is to be opened.

2. Click the button (shortcut Shift+F8) on the LAD editor toolbar.
The branch is opened behind the selected element.

5.1.16 Close branch
Parallel branches are closed upward.

Parallel branches are always closed behind the selected LAD element.

Procedure
To close a parallel branch upward, follow these steps:

1. Use the cursor to select the position where the branch is to be closed.

2. Click the button (shortcut Shift+F9) on the LAD editor toolbar.
The branch is closed behind the selected element.

Functions
5.1 LAD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 223

Or:

1. Using the cursor, select the parallel branch to be closed.

2. Holding down the left mouse button, move the selected branch to the position at which it
is to be closed.

3. Release the left mouse button.
The branch is closed at the selected position.

5.2 FBD bit logic instructions

FBD bit logic instructions
Bit logic operations work with the numbers 1 and 0. These numbers form the basis of the binary
system and are called binary digits or bits. In connection with AND, OR, XOR and outputs, a
1 stands for logic YES and a 0 for logic NO.

The bit logic operations interpret the signal states 1 and 0 and link them according to boolean
logic.

The following bit logic operations are available in the FBD editor:

● & AND box

● >=1 OR box

● XOR Exclusive OR box

● [=] Assignment

● [#] Connector

The following operations react to a signal state of 1:

● [R] Reset assignment

● [S] Set assignment

● RS Prioritize reset flipflop

● SR Prioritize set flip-flop

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
224 Programming and Operating Manual, 07/2017, A5E33438246B

Some operations react to a rising or falling edge change, so that you can perform one of the
following operations:

● [N] Scan edge 1 -> 0

● [P] Scan edge 0 -> 1

● NEG edge detection (falling)

● POS edge detection (rising)

The other operations directly affect the signal states:

● --| Inserting a binary input

● --o| Negating a binary input

5.2.1 & AND box

Symbol

Parameters Data type Description
<Operand> BOOL Scanned bit

Description
With the AND operation, you can scan the signal states of two or more specified operands at
the inputs of an AND box. If the signal status of all operands is 1, the condition is fulfilled and
the result of the operation is 1. If the signal status of one operand is 0, the condition is not
fulfilled and the operation returns a result of 0.

Example

Output %Q 4.0 is set when the signal state at input %I 1.0 AND %I 1.1 is 1.

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 225

5.2.2 >=1 OR box

Symbol

Parameters Data type Description
<Operand> BOOL Scanned bit

Description
With the OR operation, you can scan the signal states of two or more specified operands at
the inputs of an OR box. If the signal status of one of the operands is 1, the condition is fulfilled
and the result of the operation is 1. If the signal status of all operands is 0, the condition is not
fulfilled and the operation returns a result of 0.

Example

Output %Q 4.0 is set when the signal state at input %I 1.0 OR %I 1.1 is 1.

5.2.3 XOR EXCLUSIVE OR box

Symbol

Parameters Data type Description
<Operand> BOOL Scanned bit

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
226 Programming and Operating Manual, 07/2017, A5E33438246B

Description
In an EXCLUSIVE OR box, the signal state is 1 if the signal state of one of the two specified
operands is 1.

Example

At output %Q 4.0, the signal state is 1 if the signal state is 1 either EXCLUSIVELY at input %I
0.0 OR at input %I 0.1.

5.2.4 --| Inserting a binary input

Symbol
<Operand>

 ---|

Parameters Data type Description
<Operand> BOOL Scanned bit

Description
The Insert binary input operation inserts a binary input in an AND, OR, or XOR box behind the
selection mark.

Example

Output % Q 4.0 is 1 when the state %I 1.0 AND %I 1.1 AND %I 1.2 = 1.

5.2.5 --o| Negating a binary input

Symbol
<Operand>

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 227

 –o|

Parameters Data type Description
<Operand> BOOL Scanned bit

Description
The Negate binary input operation negates the signal state.

All binary inputs of any elements can be negated.

Example

Output %Q 4.0 is 1 if:

● The signal state at %I 1.0 AND %I 1.1 is NOT 1

● AND the signal state at %I 1.2 AND %I 1.3 is NOT 1

● OR the signal state at %I 1.4 = 1.

5.2.6 [=] Assignment

Symbol

Parameters Data type Description
<Operand> BOOL Assigned bit

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
228 Programming and Operating Manual, 07/2017, A5E33438246B

Description
The Assignment operation supplies the value. The box at the end of the logic operation carries
a signal of 1 or 0 according to the following criteria:

● The output carries a signal of 1 when the conditions of the logic operation are fulfilled before
the output box.

● The output carries a signal of 0 when the conditions of the logic operation are not fulfilled
before the output box.

The FBD logic operation assigns the signal state to the output that is addressed by the
operation. If the conditions of the FBD logic operation are fulfilled, the signal state at the output
box is 1. Otherwise, the signal state is 0.

Example

Output %Q 4.0 is 1 if:

● At inputs %I 0.0 AND %I 0.1, the signal state is 1,

● OR %I 0.2 = 0.

5.2.7 [#] Connector (FBD)

Symbol

Parameters Data type Description
<Operand1> BOOL Assigned bit

Description
The Connector operation is an intermediate assignment element that stores the signal state.
Specifically, this assignment element saves the bit logic of the last opened branch in front of
the assignment element.

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 229

Example

Connectors store the following logic operation results:

VAR4 saves the negated signal state of

%I1.0

%I1.1

VAR1 saves the negated signal state of

%I1.2

%I1.3

VAR2 saves the negated signal state of %I 1.4.

VAR3 saves the negated signal state of the entire bit logic operation.

5.2.8 [R] Reset assignment (FBD)

Symbol

Parameters Data type Description
<Operand> BOOL Assigned bit

Description
The Reset assignment operation then is only performed when the signal state = 1. If the signal
state = 1, the specified operand is reset to 0 by the operation. If the signal state = 0, the
operation does not affect the specified operand. The operand remains unchanged.

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
230 Programming and Operating Manual, 07/2017, A5E33438246B

Example

The signal state at output %Q 4.0 is only reset to 0 if:

● The signal state is 1 at inputs %I 0.0 AND %I 0.1

● OR the signal state at input %I 0.2 = 0

If the signal state of the branch = 0, the signal state at output %Q 4.0 is not changed.

5.2.9 [S] Set assignment (FBD)

Symbol

Parameters Data type Description
<Operand> BOOL Set bit

Description
The Set assignment operation is only performed when the signal state = 1. If the signal state
= 1, the specified operand is reset to 1 by the operation. If the signal state = 0, the operation
does not affect the specified operand. The operand remains unchanged.

Example

The signal state at output %Q 4.0 is only reset to 1 if:

● The signal state is 1 at inputs %I 0.0 AND %I 0.1

● OR the signal state at input %I 0.2 = 0

If the signal state of the branch = 0, the signal state of %Q 4.0 is not changed.

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 231

5.2.10 RS Prioritize reset flipflop

Symbol

Parameters Data type Description
<Operand> RS Instance variable of FB type RS
S BOOL Enable set
R1 BOOL Enable reset
Q1 BOOL Signal state of <address>

Description
The Prioritize reset flipflop operation only performs operations such as Set assignment (S) or
Reset assignment (R1) if the signal state = 1. A signal state of 0 has no effect on these
operations; the operand specified in the operation is not changed.

Prioritize reset flipflop is reset when the signal state at input R1 = 1 and the signal state at
input S = 0. The flipflop is set when input R1 = 0 and input S = 1. If the signal state at both
inputs is 1, the flipflop is reset.

Example

If the state at input %I 0.0 = 1 and at input %I 0.1 = 0, the variable VAR1 is set and output
%Q 4.0 is 1. Otherwise, if the signal state at input %I 0.0 = 0 and the signal state at input
%I 0.1 = 1, the variable VAR1 is reset and %Q 4.0 is 0.

If both signal states are 0, nothing is changed. If both signal states are 1, the reset operation
has priority. VAR1 is reset and %Q 4.0 is 0.

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
232 Programming and Operating Manual, 07/2017, A5E33438246B

5.2.11 SR Prioritize set flipflop

Symbol

Parameters Data type Description
<Operand> SR Instance variable from FB type SR
S1 BOOL Enable set
R BOOL Enable reset
Q1 BOOL Signal state of <address>

Description
The Prioritize set flipflop operation only performs operations such as Set (S1) or Reset (R) if
the signal state = 1. A signal state of 0 has no effect on these operations; the operand specified
in the operation is not changed.

Prioritize set flipflop is set when the signal state at input S1 = 1 and the signal state at input
R = 0. The flipflop is reset when input S1 = 0 and input R = 1. If the signal state at both inputs
is 1, the flipflop is set.

Example

If the state at input %I 0.0 = 1 and at input %I 0.1 = 0, the variable VAR1 is set and output
%Q 4.0 is 1. Otherwise, if the signal state at input %I 0.0 = 0 and the signal state at input
%I 0.1 = 1, the variable VAR1 is reset and %Q 4.0 is 0.

If both signal states are 0, nothing is changed. If both signal states are 1, the set operation has
priority. VAR1 is set and %Q 4.0 is 1.

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 233

5.2.12 [N] Scan edge 1 -> 0 (FBD)

Symbol

Parameters Data type Description
<Operand> BOOL N connector bit, saves the previous signal state

Description
The Scan edge 1 -> 0 recognizes a signal state change in the specified operands from 1 to 0
(falling edge) and displays this after the operation with signal state = 1. The current signal state
is compared to the signal state of the operand, the edge variable. If the signal state of the
operand is 1 and the signal state before the operation is 0, then the signal after the operation
is 1 (pulse), in all other cases 0. The signal state before the operation is saved in the operand.

Example

The VAR4 variable saves the signal state.

5.2.13 [P] Scan edge 0 -> 1 (FBD)

Symbol

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
234 Programming and Operating Manual, 07/2017, A5E33438246B

Parameters Data type Description
<Operand> BOOL P connector bit, saves the previous signal state

Description
The Scan edge 0 -> 1 recognizes a signal state change in the specified operands from 0 to1
(rising edge) and displays this after the operation with signal state = 1. The current signal state
is compared to the signal state of the operand, the edge variable. If the signal state of the
operand is 0 and the signal state before the operation is 1, then the signal state after the
operation is 1, in all other cases 0. The signal state before the operation is saved in the operand.

Example

The VAR1 variable saves the signal state.

5.2.14 NEG edge detection (falling)

Symbol

Parameters Data type Description
<Operand1> BOOL Scanned signal
M_BIT BOOL The M-BIT operand indicates the variable in which the pre‐

vious signal state of NEG is saved.
Q BOOL Signal change detection

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 235

Description
The Edge detection (falling) operation compares the signal state of <Operand1> with the signal
state of the previous scan, which is saved in M_BIT. If a change has occurred from 1 to 0, then
output Q = 1, in all other cases 0.

Example

Output %Q 4.0 is 1 if:

● Input %I 0.3 has a falling edge

● AND the signal state at input %I 0.4 = 1.

5.2.15 POS edge detection (rising)

Symbol

Parameters Data type Description
<Operand1> BOOL Scanned signal
M_BIT BOOL The M-BIT operand indicates the variable in which the pre‐

vious signal state of POS is saved.
Q BOOL Signal change detection

Description
The Edge detection (rising) operation compares the signal state of <Operand1> with the signal
state of the previous scan, which is saved in M_BIT. If a change has occurred from 0 to 1, then
output Q = 1, in all other cases 0.

Functions
5.2 FBD bit logic instructions

SIMOTION LAD/FBD
236 Programming and Operating Manual, 07/2017, A5E33438246B

Example

Output %Q 4.0 is 1 if:

● Input %I 0.3 has a rising edge

● AND the signal state at input %I 0.4 = 1.

5.3 Relational operators

5.3.1 Overview of comparison operations

Description
The inputs IN1 and IN2 are compared using the following comparison methods:

= IN1 is equal to IN2
<> IN1 is not equal to IN2
> IN1 is greater than IN2
< IN1 is less than IN2
>= IN1 is greater than or equal to IN2
<= IN1 is less than or equal to IN2

The following comparison operation is available:

● CMP comparator

5.3.2 CMP Compare numbers

Icons

Functions
5.3 Relational operators

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 237

Table 5-1 Parameters for CMP <, CMP > CMP >=, CMP <=

Parameter Data type Description
Box output BOOL Result of the comparison,

processing is only continued if the signal state at
the box input = 1.

IN1 ANY_NUM1

ANY_BIT
DATE
TIME_OF_DAY (TOD)
DATE_AND_TIME (DT)
TIME
STRING2

First comparison value

IN2 ANY_NUM1

ANY_BIT
DATE
TIME_OF_DAY (TOD)
DATE_AND_TIME (DT)
TIME
STRING2

Second comparison value

The first and second comparison values must be of the same data type, e.g. ANY_NUM and ANY_NUM,
DATE and DATE, STRING and STRING.
1 It must be possible to convert both comparison values into the most powerful data type by means of
implicit conversion.
2 Variables of the STRING data type can be compared irrespective of the declared length of the string.

Table 5-2 Parameter for CMP =, CMP <>

Parameter Data type Description
Box output BOOL Result of the comparison,

processing is only continued if the signal state at
the box input = 1.

IN1 ANY_NUM1

ANY_BIT
DATE
TIME_OF_DAY (TOD)
DATE_AND_TIME (DT)
TIME
STRING2

Enumeration3

Array3

Structure3

STRUCTTASKID
STRUCTALARMID
ANYOBJECT

First comparison value

Functions
5.3 Relational operators

SIMOTION LAD/FBD
238 Programming and Operating Manual, 07/2017, A5E33438246B

Parameter Data type Description
IN2 ANY_NUM1

ANY_BIT
DATE
TIME_OF_DAY (TOD)
DATE_AND_TIME (DT)
TIME
STRING2

Enumeration3

Array3

Structure3

STRUCTTASKID
STRUCTALARMID
ANYOBJECT

Second comparison value

The first and second comparison values must be of the same data type, e.g. ANY_NUM and ANY_NUM,
DATE and DATE, STRING and STRING.
1 It must be possible to convert both comparison values into the most powerful data type by means of
implicit conversion.
2 Variables of the STRING data type can be compared irrespective of the declared length of the string.
3 The data type specifications (see the SIMOTION ST Programming and Operating Manual) must be
identical for both comparison values.

Description
CMP (Compare numbers) can be used like a normal contact. The box can be used at the
positions where a normal contact can also be positioned. IN1 and IN2 are compared with the
comparison method selected by you.

If the comparison is true, then the value of the operation is 1. The value of the whole ladder
diagram line is linked by AND if the comparison element is connected in series or by OR if the
box is connected in parallel.

Example

Representation in the LAD editor

Functions
5.3 Relational operators

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 239

Representation in the FBD editor

%Q 4.0 is set when:

● VAR1 >= VAR2

● AND the signal state at input %I 0.0 is (1).
AND the signal state at input %I 0.1 is (1).
AND the signal state at input %I 0.2 is (1).

5.4 Conversion instructions

5.4.1 TRUNC Generate integer

Symbol

Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_REAL Number which is to be converted
OUT ANY_INT Integral part of the value from IN

Description
TRUNC (generate integer) reads the contents of the IN parameter as a floating-point number
and converts this value to an integer (32-bit). The result is the integral part of the floating-point
number which is output by the OUT parameter.

Example

Representation in the LAD editor

Functions
5.4 Conversion instructions

SIMOTION LAD/FBD
240 Programming and Operating Manual, 07/2017, A5E33438246B

Representation in the FBD editor

If %I 0.0 = 1, the contents of VAR1 are read as a floating-point number and converted to an
integer (32-bit). The result is the integral part of the floating-point number which is saved in
VAR2.
Output %Q 4.0 is 1 if an overflow occurs or the statement is not processed (%I 0.0 = 0).

5.4.2 Generating numeric data types and bit data types

Symbol
e.g. BOOL_TO_TYPE

Description
You can carry out the explicit data type conversion with the standard functions listed in the
tables below.

● Input parameters
Each function for the conversion of a data type has exactly one input parameter.

● Function value
The function value is always the return value of the function. The table shows the rules with
which a data type can be converted.

● Naming
Because the data types of the input parameter and the function value come from the
respective function name, they are not listed specially in the table "Functions for conversion
of numerical data types and bit data types": E.g. with function BOOL_TO_BYTE, the data
type of the input parameter is BOOL, the data type of the function value BYTE.

Table 5-3 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

BOOL_TO_BYTE Accept as least significant bit and fill the rest with 0. yes
BYTE_TO_BOOL Accept the least significant bit. no
BYTE_TO_SINT Accept bit string as SINT value. no

Functions
5.4 Conversion instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 241

Function name Conversion rule Implicit
okay

BYTE_TO_USINT Accept bit string as USINT value. no
BYTE_TO_WORD Accept least significant bit and fill the rest with 0. yes

Table 5-4 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

DINT_TO_DWORD Accept value as bit string. no
DINT_TO_INT Cut off two most significant bytes. no
DINT_TO_LREAL Accept value. yes
DINT_TO_REAL Accept value (accuracy may be lost). no
DINT_TO_UDINT Accept value as bit string. no
DINT_TO_UINT Cut off two most significant bytes. no
DINT_TO_WORD Cut off two most significant bytes. no

Table 5-5 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

DWORD_TO_DINT Accept bit string as DINT value. no
DWORD_TO_INT Accept the two least significant bytes as INT value. no
DWORD_TO_REAL Accept bit string as REAL value (validity check of the RE‐

AL number is not carried out!).
no

DWORD_TO_UDINT Accept bit string as UDINT value. no
DWORD_TO_UINT Accept the two least significant bytes as UINT value. no
DWORD_TO_WORD Accept the two least significant bytes of the bit string. no

Table 5-6 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

INT_TO_DINT Accept value. yes
INT_TO_LREAL Accept value. no
INT_TO_REAL Accept value. yes
INT_TO_SINT Cut off the most significant byte. no
INT_TO_UDINT Accept value as bit string; the two most significant bytes

are filled with the most significant bit of the input parame‐
ter.

no

INT_TO_UINT Accept value as bit string. no
INT_TO_WORD Accept value as bit string. no

Functions
5.4 Conversion instructions

SIMOTION LAD/FBD
242 Programming and Operating Manual, 07/2017, A5E33438246B

Table 5-7 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

LREAL_TO_DINT Round off to integer part. no
LREAL_TO_INT Round off to integer part. no
LREAL_TO_REAL Accept value (accuracy may be lost). no
LREAL_TO_UDINT Round off to integer part. no
LREAL_TO_UINT Round off to integer part. no

Table 5-8 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

REAL_TO_DINT Round off to integer part. no
REAL_TO_DWORD Accept bit string. no
REAL_TO_INT Round off to integer part. no
REAL_TO_LREAL Accept value. yes
REAL_TO_UDINT Round off to integer part. no
REAL_TO_UINT Round off to integer part. no

Table 5-9 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

SINT_TO_BYTE Accept bit string. no
SINT_TO_INT Accept value. yes
SINT_TO_USINT Accept bit string. no

Table 5-10 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

UDINT_TO_DINT Accept bit string. no
UDINT_TO_INT Cut off numerical sequence (2 most significant bytes). no
UDINT_TO_DWORD Accept bit string. no
UDINT_TO_LREAL Accept value. yes
UDINT_TO_REAL Accept value (accuracy may be lost). no
UDINT_TO_UINT Cut off numerical sequence (2 most significant bytes). no
UDINT_TO_WORD Cut off numerical sequence (2 most significant bytes). no

Functions
5.4 Conversion instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 243

Table 5-11 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

UINT_TO_DINT Accept value. yes
UINT_TO_DWORD Accept bit string, fill rest with zeros. no
UINT_TO_INT Accept bit string. no
UINT_TO_LREAL Accept value (accuracy may be lost). no
UINT_TO_REAL Accept value. yes
UINT_TO_UDINT Accept value. yes
UINT_TO_USINT Cut off numerical sequence (most significant byte). no
UINT_TO_WORD Accept bit string. no

Table 5-12 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

USINT_TO_BYTE Accept bit string. no
USINT_TO_INT Accept value. yes
USINT_TO_DINT Accept value. no
USINT_TO_SINT Accept bit string. no
USINT_TO_UINT Accept value. yes

Table 5-13 Functions for conversion of numerical data types and bit data types

Function name Conversion rule Implicit
okay

WORD_TO_BYTE Cut off most significant byte. no
WORD_TO_DINT Accept bit string, fill rest with zeros. no
WORD_TO_DWORD Accept the two least significant bytes and fill the rest with

0.
yes

WORD_TO_INT Accept bit string and interpret this as an integer. no
WORD_TO_UDINT Accept bit string, fill rest with zeros. no
WORD_TO_UINT Accept bit string. no

Functions
5.4 Conversion instructions

SIMOTION LAD/FBD
244 Programming and Operating Manual, 07/2017, A5E33438246B

5.4.3 Generating date and time

Symbol

Description
The table below shows the standard functions for date and time data types:

Table 5-14 Standard functions for date and time

Function
name

Data type of
input parameter

Data type of function
value

Description

CONCAT 1: DATE
2: TIME_OF_DAY

DATE_AND_TIME Compress DATE and
TIME_OF_DAY to
DATE_AND_TIME.

DT_TO_TOD DATE_AND_TIME TIME_OF_DAY Accept time of day.
DT_TO_DATE DATE_AND_TIME DATE Accept date.

Note

Data type TIME can be converted to numerical data types as follows:

● To data type UDINT:
Divide it by a standardization factor of data type TIME.
Multiply the reconversion by the same standardization factor.

5.5 Edge detection
System function block R_TRIG can be used to detect a rising edge; F_TRIG can detect a falling
edge. You can use this function, for example, to set up a sequence of your own function
blocks.

Functions
5.5 Edge detection

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 245

5.5.1 Detection of rising edge R_TRIG

Symbol

Description
If a rising edge (R_TRIG, Rising Trigger), i.e. a status change from 0 to 1, is present at the
input, 1 is applied at the output for the duration of one cycle.

TA Cycle time

Figure 5-1 Mode of operation of R_TRIG (rising edge) function block

Table 5-15 Call parameters for R_TRIG

Identifier Parameter Data type Description
CLK Input BOOL Input for edge detection
Q Output BOOL Status of edge

5.5.2 Detection of falling edge F_TRIG

Symbol

Functions
5.5 Edge detection

SIMOTION LAD/FBD
246 Programming and Operating Manual, 07/2017, A5E33438246B

Description
When a falling edge (F_TRIG, falling trigger), i.e. a status change from 1 to 0, occurs at the
input, the output is set to 1 for the duration of one cycle time.

TA Cycle time

Figure 5-2 Mode of operation of F_TRIG (falling edge) function block

Table 5-16 Call parameters for F_TRIG

Identifier Parameter Data type Description
CLK Input BOOL Input for edge detection
Q Output BOOL Status of edge

5.6 Counter operations

5.6.1 Overview of counter operations
Every call-up of the function block and the function should be recorded in a counter.

5.6.2 CTU up counter

Symbol

Functions
5.6 Counter operations

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 247

Description
The CTU counter allows you to perform upward counting operations:

● If the input is R = TRUE when the FB is called up, then the CV output is reset to 0.

● If the CU input changes from FALSE to TRUE (0 to 1) when the FB is called (positive edge),
then the CV output is incremented by 1.

● Output Q specifies whether CV is greater than or equal to comparison value PV.

The CV and PV parameters are both INT data types, which means that the maximum counter
reading possible is 32767 (= 16#7FFF).

Table 5-17 Parameters for CTU

Identifier Parameter Data type Description
CU Input BOOL Count up if value changes from FALSE to

TRUE
(positive edge)

R Input BOOL Reset the counter to 0
PV Input INT Comparison value
Q Output BOOL Status of counter (CV >= PV)
CV Output INT Counter value

5.6.3 CTU_DINT up counter

Symbol

Description
The method of operation is the same as for the CTU incrementer except for the following:

Functions
5.6 Counter operations

SIMOTION LAD/FBD
248 Programming and Operating Manual, 07/2017, A5E33438246B

The CV and PV parameters are both DINT data types, which means that the maximum counter
reading possible is 2147483647 (= 16#7FFF_FFFF).

Table 5-18 Parameters for CTU_DINT

Identifier Parameter Data type Description
CU Input BOOL Count up if value changes from FALSE to

TRUE
(positive edge)

R Input BOOL Reset the counter to 0
PV Input DINT Comparison value
Q Output BOOL Status of counter (CV >= PV)
CV Output DINT Counter value

5.6.4 CTU_UDINT up counter

Symbol

Description
The method of operation is the same as for the CTU incrementer except for the following:

The CV and PV parameters are both UDINT data types, which means that the maximum
counter reading possible is 4294967295 (=16# FFFF_FFFF).

Table 5-19 Parameters for CTU_UDINT

Identifier Parameter Data type Description
CU Input BOOL Count up if value changes from FALSE to

TRUE (positive edge)
R Input BOOL Reset the counter to 0
PV Input UDINT Comparison value
Q Output BOOL Status of counter (CV >= PV)
CV Output UDINT Counter value

Functions
5.6 Counter operations

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 249

5.6.5 CTD down counter

Symbol

Description
The CTD counter allows you to perform downward counting operations.

● If the LD input = TRUE when the FB is called, then the CV output is reset to start value PV.

● If the CD input changes from FALSE to TRUE (0 to 1) when the FB is called (positive edge),
then the CV output is decremented by 1.

● Output Q specifies whether CV is less than or equal to 0.

The CV and PV parameters are both INT data types, which means that the minimum counter
reading possible is -32,768 (= 16#8000).

Table 5-20 Parameters for CTD

Identifier Parameter Data type Description
CD Input BOOL Count down if value changes from FALSE to

TRUE
(positive edge)

LD Input BOOL Reset the counter to start value
PV Input INT Start value of counter
Q Output BOOL Status of counter (CV <= 0)
CV Output INT Counter value

Functions
5.6 Counter operations

SIMOTION LAD/FBD
250 Programming and Operating Manual, 07/2017, A5E33438246B

5.6.6 CTD_DINT down counter

Symbol

Description
The method of operation is the same as for the CTD up counter except for the following:

The CV and PV parameters are both DINT data types, which means that the minimum counter
reading possible is -2147483648 (= 16#8000_0000).

Table 5-21 Parameters for CTD_DINT

Identifier Parameter Data type Description
CD Input BOOL Count down if value changes from FALSE to

TRUE
(positive edge)

LD Input BOOL Reset the counter to start value
PV Input DINT Start value of counter
Q Output BOOL Status of counter (CV <= 0)
CV Output DINT Counter value

5.6.7 CTD_UDINT down counter

Symbol

Description
The method of operation is the same as for the CTD up counter except for the following:

Functions
5.6 Counter operations

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 251

The CV and PV parameters are both UDINT data types, which means that the minimum counter
value possible is 0.

Table 5-22 Parameters for CTD_DINT

Identifier Parameter Data type Description
CD Input BOOL Count down if value changes from FALSE to

TRUE
(positive edge)

LD Input BOOL Reset the counter to start value
PV Input UDINT Start value of counter
Q Output BOOL Status of counter (CV <= 0)
CV Output UDINT Counter value

5.6.8 CTUD up/down counter

Symbol

Functions
5.6 Counter operations

SIMOTION LAD/FBD
252 Programming and Operating Manual, 07/2017, A5E33438246B

Description
The CTUD counter allows you to perform both upward and downward counting operations.

● Reset the CV count variable:

– If the input is R = TRUE when the FB is called up, then the CV output is reset to 0.

– If the LD input = TRUE when the FB is called, then the CV output is reset to start value
PV.

● Count:

– If the CU input changes from FALSE to TRUE (0 to 1) when the FB is called (positive
edge), then the CV output is incremented by 1.

– If the CD input changes from FALSE to TRUE (0 to 1) when the FB is called up (positive
edge), then the CV output is decremented by 1.

● Counter status QU or QD:

– Output Q specifies whether CV is greater than or equal to comparison value PV.

– Output QD specifies whether CV is less than or equal to 0.

Table 5-23 Parameters for CTUD

Identifier Parameters Data type Description
CU Input BOOL Count up if value changes from FALSE to

TRUE
(positive edge)

CD Input BOOL Count down if value changes from FALSE to
TRUE
(positive edge)

R Input BOOL Reset the counter to 0 (up counter)
LD Input BOOL Reset the counter to PV start value (down

counter)
PV Input INT Comparison value (for up counter)

Start value (for down counter)
QU Output BOOL Status as up counter (CV >= PV)
QD Output BOOL Status as down counter (CV <= 0)
CV Output INT Counter value

Functions
5.6 Counter operations

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 253

5.6.9 CTUD_DINT up/down counter

Symbol

Description
The method of operation is the same as for the CTUD up counter except for the following:

The CV and PV parameters are both DINT data types.

Table 5-24 Parameters for CTD_DINT

Identifier Parameters Data type Description
CU Input BOOL Count up if value changes from FALSE to

TRUE
(positive edge)

CD Input BOOL Count down if value changes from FALSE to
TRUE
(positive edge)

R Input BOOL Reset the counter to 0 (up counter)
LD Input BOOL Reset the counter to PV start value (down

counter)
PV Input DINT Comparison value (for incrementer) Start val‐

ue (for decrementer)
QU Output BOOL Status as up counter (CV >= PV)
QD Output BOOL Status as down counter (CV <= 0)
CV Output DINT Counter value

Functions
5.6 Counter operations

SIMOTION LAD/FBD
254 Programming and Operating Manual, 07/2017, A5E33438246B

5.6.10 CTUD_UDINT up/down counter

Symbol

Description
The method of operation is the same as for the CTUD up counter except for the following:

The CV and PV parameters are both UDINT data types.

Table 5-25 Parameters for CTD_DINT

Identifier Parameter Data type Description
CU Input BOOL Count up if value changes from FALSE to

TRUE
(positive edge)

CD Input BOOL Count down if value changes from FALSE to
TRUE
(positive edge)

R Input BOOL Reset the counter to 0 (up counter)
LD Input BOOL Reset the counter to PV start value (down

counter)
PV Input UDINT Comparison value (for incrementer) Start val‐

ue (for decrementer)
QU Output BOOL Status as up counter (CV >= PV)
QD Output BOOL Status as down counter (CV <= 0)
CV Output UDINT Counter value

Functions
5.6 Counter operations

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 255

5.7 Jump instructions

5.7.1 Overview of jump operations

Description
Jump operations can be used in all logic blocks, e.g. programs, function blocks (FBs), and
functions (FCs).

Jump label as operand
The operand of a jump operation is a jump label. The jump label specifies the point to where
the program is to jump.

Enter the jump label via the JMP coil. The jump label consists of up to 480 characters. The
first character must be a letter, the other characters can be either letters or numbers (e.g.
SEG3).

Jump label as target
The target jump label can be at the start of a network.

See also
Showing/hiding a jump label (Page 73)

5.7.2 ---(JMP) Jump in block if 1 (conditional)

Symbol
<jump label>

---(JMP)

Description
---(JMP) (Jump in block if 1) functions as a conditional jump if the pending signal of the
previous logic operation is 1.

There must also be a target (LABEL) for every ---(JMP).

The operations between the jump operation and the jump label are not executed!

Note

An unconditional jump is created by hanging the --(JMP) element directly on the power rail.

Functions
5.7 Jump instructions

SIMOTION LAD/FBD
256 Programming and Operating Manual, 07/2017, A5E33438246B

5.7.3 ---(JMPN) Jump in block if 0 (conditional)

Symbol
<jump label>

---(JMPN)

Description
---(JMPN) (Jump in block if 0) functions as a conditional jump if the pending signal of the
previous logic operation is 0.

There must also be a target (LABEL) for every ---(JMPN).

The operations between the jump operation and the jump label are not executed!

5.7.4 LABEL Jump label

Symbol

Description
LABEL marks the target of a jump operation. It can have a maximum of 80 characters. The
first character must be a letter, the other characters can be letters or numbers, e.g. CAS1.

There must be a target (LABEL) for every ---(JMP) or ---(JMPN).

Note

Only alphanumeric characters are allowed during input. The jump label is deleted if it contains
an error and cannot be corrected.

Functions
5.7 Jump instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 257

5.8 Non-binary logic

Symbol
e.g. AND

e.g. NOT

Description
Logic operations (AND, OR, XOR, NOT) are also provided as boxes with EN/ENO for non-
binary values in the LAD/FBD editor.

The logical operations are listed in the table below.

There is only one operand for NOT.

Note

In the Command library tab of the project navigator, the elements AND, XOR, and OR, NOT
are represented in the Logic entry.

Table 5-26 Non-binary logic

Operator
Parameters

AND XOR OR NOT

IN1 ANY_BIT ANY_BIT ANY_BIT ANY_BIT
IN2 ANY_BIT ANY_BIT ANY_BIT
EN BOOL BOOL BOOL BOOL
ENO BOOL BOOL BOOL BOOL
OUT ANY_BIT ANY_BIT ANY_BIT ANY_BIT

Functions
5.8 Non-binary logic

SIMOTION LAD/FBD
258 Programming and Operating Manual, 07/2017, A5E33438246B

5.9 Arithmetic operators

Symbol
e.g. addition

Description
An arithmetic expression is composed of arithmetic operators. These expressions allow
numerical data types to be processed.

The divide operators DIV and MOD require that the second operand is not equal to zero.

Note

In the Command library tab of the project navigator, the elements ADD, SUB, MUL, and DIV
are represented as +, -, *, and /.

The execution of a network, for example, is simply aborted in the event of an overflow, and
the relevant/assigned event-triggered task (ExecutionFaultTask) is started.

The table below contains a list of the arithmetic operators:

Table 5-27 Arithmetic operators

Instruction Operator 1. Operand (IN1) 2. Operand (IN2) Result (OUT)
Addition ADD ANY_NUM ANY_NUM ANY_NUM1

BYTE BYTE BYTE
WORD WORD WORD
DWORD DWORD DWORD
TIME TIME TIME2

TOD TIME TOD2

DT TIME DT3

Multiplication MUL ANY_NUM ANY_NUM ANY_NUM1

BYTE BYTE BYTE
WORD WORD WORD
DWORD DWORD DWORD
TIME ANY_INT TIME

Functions
5.9 Arithmetic operators

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 259

Instruction Operator 1. Operand (IN1) 2. Operand (IN2) Result (OUT)
Subtraction SUB ANY_NUM ANY_NUM ANY_NUM1

BYTE BYTE BYTE
WORD WORD WORD
DWORD DWORD DWORD
TIME TIME TIME
TOD TIME4 TOD
TOD TOD TIME5

DT TIME DT
DT DT TIME5

Division DIV ANY_NUM ANY_NUM6 ANY_NUM1

BYTE BYTE6 BYTE
WORD WORD6 WORD
DWORD DWORD6 DWORD
TIME ANY_INT6 TIME
TIME TIME6 UDINT

Modulo division. MOD ANY_INT ANY_INT6 ANY_INT1

BYTE BYTE6 BYTE
WORD WORD6 WORD
DWORD DWORD6 DWORD

1 The data types of the operands and of the result must be identical.
2 Addition, possibly with overflow.
3 Addition with date correction.
4 Restriction of TIME to TOD before calculation.
5 These operations are based on the modulo of the maximum value of the TIME data type.
6 The second operand must not be equal to zero.

5.10 Numeric standard functions
Every numeric standard function has an input parameter. The result is always the function
value.

Functions
5.10 Numeric standard functions

SIMOTION LAD/FBD
260 Programming and Operating Manual, 07/2017, A5E33438246B

5.10.1 General numeric standard functions

Symbol
e.g. absolute value

Description
General numeric standard functions are used for:

● Calculation of the absolute value of a variable

● Calculation of the square root of a variable

The table below shows the general numeric standard functions:

Table 5-28 General numeric standard functions

Function name Input parameter
data type (IN)

Function value
data type (OUT)

Description

ABS ANY_NUM ANY_NUM1 Absolute value
SQRT ANY_REAL ANY_REAL1 Square root
1 Identical to the data type of the input parameter IN

5.10.2 Logarithmic standard functions

Symbol
e.g. exponential value

 Description
Logarithmic standard functions are functions for calculating an exponential value or a logarithm
of a value.

Functions
5.10 Numeric standard functions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 261

The table below shows the logarithmic standard functions:

Table 5-29 Logarithmic standard functions

Function name Input parameter
data type (IN)

Data type of func‐
tion value (OUT)

Description

EXP ANY_REAL ANY_REAL1 ex (natural exponential function)
EXPD ANY_REAL ANY_REAL1 10x (decimal exponential function)
EXPT ANY_REAL (IN1)

ANY_NUM (IN2)
ANY_REAL2 Exponentiation

LN ANY_REAL ANY_REAL1 Natural logarithm
LOG ANY_REAL ANY_REAL1 Common logarithm
1 Identical to the data type of the input parameter IN
2 Identical to the data type of the input parameter IN1

5.10.3 Trigonometric standard functions

Symbol
e.g. COS

Description
The trigonometric standard functions listed in the table expect and calculate variables of angles
in radian measure.

Table 5-30 Trigonometric standard functions

Function name Input parameter
data type

Data type of func‐
tion value

Description

ACOS ANY_REAL ANY_REAL Arc cosine (main value)
ASIN ANY_REAL ANY_REAL Arc sine (main value)
ATAN ANY_REAL ANY_REAL Arc tangent (main value)
COS ANY_REAL ANY_REAL Cosine (radian measure input)
SIN ANY_REAL ANY_REAL Sine (radian measure input)
TAN ANY_REAL ANY_REAL Tangent (radian measure input)

Functions
5.10 Numeric standard functions

SIMOTION LAD/FBD
262 Programming and Operating Manual, 07/2017, A5E33438246B

5.11 Move

5.11.1 MOVE Transfer value

Symbol

Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY Source value
OUT ANY Destination address

Description
MOVE (Assign a value) is activated by the enable input EN. The value specified by the IN input
is copied to the value specified in the OUT output. ENO has the same signal state as EN.

5.12 Shifting operations

5.12.1 Overview of shifting operations

Description
The contents of input IN can be moved bit-by-bit to the left or right using shifting operations.
A shift of n bits to the left multiplies the contents of input IN by 2 to the power of n; a shift of n
bits to the right divides the contents of input IN by 2 to the power of n. If, for example, you
move the binary equivalent of the decimal value 3 by 3 bits to the left, this gives the binary
equivalent of the decimal value 24. Shift the binary equivalent of the decimal value 16 by 2
bits to the right, this gives the binary equivalent of the decimal value 4.

The number that you specify at input N indicates the number of bits by which to shift. The
places which become free as a result of the shifting operation are filled up with zeroes.

The following shifting operations are available:

● shift bit to the left

● shift bit to the right

Functions
5.11 Move

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 263

5.12.2 SHL Shift bit to the left

Symbol

Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_BIT Value to be shifted
N USINT Number of bit positions to be shifted
OUT ANY_BIT Result of shifting operation

Description
SHL (e.g. shift left by 32 bits) is activated if the enable input (EN) has the signal state 1. The
operation SHL shifts the bits 0 to 31 of the input IN bit-by-bit to the left. Input N specifies the
number of bit positions to be shifted. If N is greater than 32, the command writes a 0 in the
OUT output. The same number (N) of zeros is shifted from the right in order to occupy the
positions which have become free. The result of the shifting operation can be queried at output
OUT.

ENO has the same signal state as EN.

5.12.3 SHR Shift bit to the right

Symbol

Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_BIT Value to be shifted
N USINT Number of bit positions to be shifted
OUT ANY_BIT Result of shifting operation

Functions
5.12 Shifting operations

SIMOTION LAD/FBD
264 Programming and Operating Manual, 07/2017, A5E33438246B

Description
SHR (e.g. shift right by 32 bits) is activated if the enable input (EN) has the signal state 1. The
operation SHR shifts the bits 0 to 31 of the input IN bit-by-bit to the right. Input N specifies the
number of bit positions to be shifted. If N is greater than 32, the command writes a 0 in the
OUT output. The same number (N) of zeros is shifted from the left in order to occupy the
positions which have become free. The result of the shifting operation can be queried at output
OUT.

ENO has the same signal state as EN.

5.13 Rotating operations

5.13.1 Overview of rotating operations

Description
The entire contents of input IN can be rotated bit-by-bit to the left or right using rotating
operations. The positions which become free are filled up with the signal states of the bits
which have been moved out of the IN input.

At the input N you can specify the number of bits for the rotation.

5.13.2 ROL Rotate bit to the left

Symbol

Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_BIT Value to be rotated
N USINT Number of bit positions to be rotated
OUT ANY_BIT Result of rotation operation

Functions
5.13 Rotating operations

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 265

Description
ROL (e.g. rotate left by 32 bits) is activated if the enable input (EN) has the signal state 1. The
operation ROL rotates the entire contents of the IN input bit-by-bit to the left. Input N specifies
the number of bit positions by which to rotate. If N is greater than 32, the double word IN is
rotated by ((N-1) modulo 32)+1 positions. The bit positions coming from the right are occupied
with the signal state of the bits which have been rotated to the left (left rotation). The result of
the rotation operation can be queried at output OUT.

ENO has the same signal state as EN.

Example

Figure 5-3 Representation in the FBD editor

Figure 5-4 Representation in the LAD editor

The ROL box is executed if %I 0.0 = 1. VAR1 is loaded and rotated to the left by the number
of bits specified in VAR2. The result is written to VAR3. %Q 4.0 is set.

5.13.3 ROR Rotate bit to the right

Symbol

Functions
5.13 Rotating operations

SIMOTION LAD/FBD
266 Programming and Operating Manual, 07/2017, A5E33438246B

Parameter Data type Description
EN BOOL Enable input
ENO BOOL Enable output
IN ANY_BIT Value to rotate
N USINT Number of bit positions to rotate
OUT ANY_BIT Result of rotation operation

Description
ROR (e.g. rotate right by 32 bits) is activated if the enable input (EN) has the signal state 1.
The operation ROR rotates the entire contents of the IN input bit-by-bit to the right. Input N
specifies the number of bit positions by which to rotate. If N is greater than 32, the double word
IN is rotated by ((N-1) modulo 32)+1 positions. The bit positions coming from the left are
occupied by the signal state of the bits which have been rotated to the right (right rotation).
The result of the rotation operation can be queried at output OUT.

ENO has the same signal state as EN.

Example

Figure 5-5 Representation in the LAD editor

Figure 5-6 Representation in the FBD editor

The ROR box is executed if %I 0.0 = 1. VAR1 is loaded and rotated to the right by the number
of bits specified in VAR2. The result is written to VAR3. %Q 4.0 is set.

Functions
5.13 Rotating operations

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 267

5.14 Program control instructions

5.14.1 Calling up an empty box

Symbol

Parameters Data type Description
EN BOOL Enable input
ENO BOOL Enable output
<Type> FB / FC FC/FB type
<Instance variable> FB FB instance variable

Description
The symbol for an empty box depends on the function block/function (according to how many
parameters there are). EN, ENO and the name of the FB/FC must be available.

You do not have to specify EN/ENO in the variable declaration. The input and output are
automatically allocated by the system.

The EN input can be used to inhibit a block call and redirect the block of the EN input to the
ENO output.

It is not possible to control the ENO output in the block itself.

Note

You can use an empty box to insert a call (Page 80). As soon as you enter the type, the box
transforms and displays the parameters of the specified FB/FC call.

See also
Inserting LAD/FBD elements (Page 80)

5.14.2 RET Jump back

Symbol
---(RET)

Functions
5.14 Program control instructions

SIMOTION LAD/FBD
268 Programming and Operating Manual, 07/2017, A5E33438246B

Description
RET (jump back) is used for the conditional exit from blocks. A preceding logic operation is
necessary for this output.

Example

Figure 5-7 Representation in the LAD editor

Figure 5-8 Representation in the FBD editor

The operation is executed if %I 0.0 = 1.

5.15 Timer instructions

5.15.1 TP pulse

Symbol

Functions
5.15 Timer instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 269

Description
With a signal state change from 0 to 1 at the IN input, time ET is started. Output Q remains at
1 until elapsed time ET is equal to programmed time value PT. As long as time ET is running,
the IN input has no effect.

Figure 5-9 Mode of operation of TP pulse timer

Table 5-31 Call parameters for TP

Identifier Parameters Data type Description
IN Input Input Start input
PT Input TIME Duration of pulse
Q Output BOOL Status of time
ET Output TIME Elapsed time

5.15.2 TON ON delay

Symbol

Functions
5.15 Timer instructions

SIMOTION LAD/FBD
270 Programming and Operating Manual, 07/2017, A5E33438246B

Description
With the signal state change from 0 to 1 at the IN input, time ET is started. The output signal
Q only changes from 0 to 1 if the time ET = PT has elapsed and the input signal IN still has
the value 1, i.e. the output Q is switched on with a delay. Input signals of shorter durations
than programmed time PT do not appear at the output.

Figure 5-10 Mode of operation of TON on delay timer

Table 5-32 Call parameters for TON

Identifier Parameters Data type Description
IN Input BOOL Start input
PT Input TIME Duration for which the rising edge at input IN

is delayed.
Q Output BOOL Status of time
ET Output TIME Elapsed time

5.15.3 TOF OFF delay

Symbol

Functions
5.15 Timer instructions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 271

Description
With a signal state change from 0 to 1 at start input IN, state 1 appears at output Q. If the state
at the start input IN changes from 1 to 0, then time ET is started. If a change occurs at input
IN from 0 to 1 before time ET has elapsed, then the timer operation is reset. A start is initiated
again when the state at input IN changes from 1 to 0. Only after the duration ET = PT has
elapsed does output Q adopt a signal state of 0. This means that the output is switched off
with a delay.

Figure 5-11 Mode of operation of TOF off delay timer

Table 5-33 Call parameters for TOF

Identifier Parameters Data type Description
IN Input BOOL Start input
PT Input TIME Duration for which the falling edge at input IN

is delayed.
Q Output BOOL Status of time
ET Output TIME Elapsed time

Functions
5.15 Timer instructions

SIMOTION LAD/FBD
272 Programming and Operating Manual, 07/2017, A5E33438246B

5.16 Selection functions

5.16.1 SEL Binary selection

Symbol

Parameters Input parameter
data type

Description

EN BOOL Enable input
ENO BOOL Enable output
G BOOL Input parameter
IN0 ANY Input parameter
IN1 ANY Input parameter

Description
The function value is one of the input parameters IN0 or IN1, depending on the value of the
input parameter G.

The input parameters IN0 and IN1 must be the same data type or must be capable of implicit
conversion into the same data type.

The return value is data type ANY.

Selected input parameter

IN0 if G = 0 (FALSE)

IN1 if G = 1 (TRUE)

The data type corresponds to the common data type of the input parameters IN0 and IN1.

Functions
5.16 Selection functions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 273

5.16.2 MAX Maximum function

Symbol

Parameter Input parameter
data type

Description

EN BOOL Enable input
ENO BOOL Enable output
IN0 ANY_ELEMENTARY Input parameter
IN1 ANY_ELEMENTARY Input parameter

Description
The function value is the maximum value of both input parameters IN0 and IN1.

The input parameters IN0 and IN1 must be the same data type or must be capable of implicit
conversion into the most powerful data type.

The return value is of data type ANY_ELEMENTARY.

Maximum of the input parameters.

The data type corresponds to the most powerful data type of the input parameters IN0 and
IN1.

5.16.3 MIN Minimum function

Symbol

Parameter Input parameter
data type

Description

EN BOOL Enable input
ENO BOOL Enable output
IN0 ANY_ELEMENTARY Input parameter
IN1 ANY_ELEMENTARY Input parameter

Functions
5.16 Selection functions

SIMOTION LAD/FBD
274 Programming and Operating Manual, 07/2017, A5E33438246B

Description
The function value is the minimum value of both input parameters IN0 and IN1.

All IN0 and IN1 input parameters must be the same data type or capable of implicit conversion
into the most powerful data type.

The return value is of data type ANY_ELEMENTARY.

Minimum of the input parameters.

The data type corresponds to the most powerful data type of the input parameters IN0 and
IN1.

5.16.4 LIMIT Limiting function

Symbol

Parameters Input parameter
data type

Description

EN BOOL Enable input
ENO BOOL Enable output
MN ANY_ELEMENTARY Input parameter

Lower limiting value
IN ANY_ELEMENTARY Input parameter

Value to be limited
MX ANY_ELEMENTARY Input parameter

Upper limiting value

Description
The input parameter IN is limited to values lying between the lower limit value MN and the
upper limit value MX.

All input parameters must be the same data type or capable of conversion into the most
powerful data type by implicit conversion.

The return value is of data type ANY_ELEMENTARY.

MIN (MAX (IN, MN), MX)

The data type corresponds to the most powerful data type of the input parameters.

Functions
5.16 Selection functions

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 275

5.16.5 MUX Multiplex function

Symbol

Parameters Input parameter
data type

Description

EN BOOL Enable input
ENO BOOL Enable output
C ANY_INT Input parameter
IN0 ANY Input parameter
IN1 ANY Input parameter

Description
The function value is one of the two input parameters IN0 or IN1, depending on the value of
the input parameter K.

The input parameters IN0 and IN1 must be the same data type or must be capable of implicit
conversion into the same data type.

The return value is data type ANY.

The data type corresponds to the common data type of the input parameters IN0 and IN1.

Functions
5.16 Selection functions

SIMOTION LAD/FBD
276 Programming and Operating Manual, 07/2017, A5E33438246B

Commissioning (software) 6
6.1 Commissioning

This chapter describes how to assign created programs to the task system of a control unit
and how to download them to the target system.

6.2 Assigning programs to a task
Programs must be assigned to a task before they can be downloaded to the target system (the
SIMOTION device).

Various tasks are made available by SIMOTION, each with different priorities or system
responses (e.g. during initialization).

Further information can be found in the SIMOTION SCOUT Basic Functions Function Manual,
and in SIMOTION online help.

Assigning programs to a task:

1. In the project navigator, double-click under the corresponding SIMOTION device the
EXECUTION SYSTEM element.
The configuration window for the execution system opens.

2. Select the required task (e.g. MotionTask_1) from the left pane.

3. Select the Program assignment tab.

4. Select the program to be assigned from the Programs list.

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 277

5. Click the button >>.

6. Select the Task configuration tab to specify additional settings for the task if required.

Figure 6-1 Configure execution system

Figure 6-2 Assigning a program to a motion task

Commissioning (software)
6.2 Assigning programs to a task

SIMOTION LAD/FBD
278 Programming and Operating Manual, 07/2017, A5E33438246B

6.3 Execution levels and tasks in SIMOTION
Here the execution levels and the tasks assigned are shown in tabular format for an initial
overview.

Further information on execution levels and tasks can be found in the SIMOTION Basic
Functions Function Manual.

Table 6-1 Description of the execution levels and of the tasks

Execution level Description
Time-controlled Cyclic tasks:

They are restarted automatically once the assigned programs have been executed.
● SynchronousTasks Tasks are started periodically, synchronous with specified system cycle clock.

● ServoTask_Fast: Synchronous with Servo_fast cycle clock.
The Servo_fast cycle clock is a second servo cycle clock and only available:
– For D445‑2 DP/PN and D455‑2 DP/PN as of version V4.2
– For D435‑2 DP/PN as of version V4.3.

● ServoSynchronousTask: Synchronous with the position control cycle clock
● IpoTask_Fast: Synchronous with IPO_fast cycle clock.

The IPO_fast cycle clock is the IPO cycle clock for the second servo cycle clock
and only available:
– For D445‑2 DP/PN and D455‑2 DP/PN as of version V4.2
– For D435‑2 DP/PN as of version V4.3.

● IPOsynchronousTask: Synchronous with interpolator cycle clock IPO
● IPOsynchronousTask_2: Synchronous with interpolator cycle clock IPO_2
● PWMsynchronousTask: Synchronous with PWM cycle clock

(for TControl technology package)
● InputSynchronousTask_1: Synchronous with Input1 cycle clock

(for TControl technology package)
● InputSynchronousTask_2: Synchronous with Input2 cycle clock

(for TControl technology package)
● PostControlTask_1: Synchronous with Control1 cycle clock

(for TControl technology package)
● PostControlTask_2: Synchronous with Control2 cycle clock

(for TControl technology package)
● TimerInterruptTasks Tasks are started periodically in a fixed time frame. This time frame must be a multiple

of interpolator cycle clock IPO.
Interrupts Sequential tasks:

They are executed once after the start and then terminated.
● SystemInterruptTasks Started when a system event occurs:

● ExecutionFaultTask: Error processing a program
● PeripheralFaultTask: Error on I/O
● TechnologicalFaultTask: Error on the technology object
● TimeFaultBackgroundTask: BackgroundTask timeout
● TimeFaultTask: TimerInterruptTask timeout

● UserInterruptTasks They are started when a user-defined event occurs.

Commissioning (software)
6.3 Execution levels and tasks in SIMOTION

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 279

Execution level Description
Round robin MotionTasks and BackgroundTasks share the free time remaining after execution of

the higher-priority system and user tasks. The proportion of the two levels can be
assigned.

● MotionTasks Sequential tasks:
They are executed once after the start and then terminated. Start takes place:
● Explicitly via a task control command in a program assigned to another task.
● Automatically when RUN operating state is attained if the corresponding attribute

was set during task configuration.
The priority of a MotionTask can be increased temporarily:
● In the MCC programming language with the "Wait for..." commands, see Wait for

axis, Wait for signal, Wait for condition.
● In the ST programming language with the WAITFORCONDITION statement.

● BackgroundTask Cyclic task:
It is restarted automatically once the assigned programs have been executed. The task
cycle time depends on the runtime.

StartupTask Task is executed once when there is a transition from STOP or STOP U operating state
to RUN operating state.
SystemInterruptTasks are started by their triggering system event.

ShutdownTask Task is executed once when there is a transition from RUN operating state to STOP
or STOP U operating state.
STOP or STOP U operating state is reached by:
● Activating the operating state switch
● Calling the relevant system function, for example, MCC Change operating state

command
● Occurrence of a fault with the appropriate error response
SystemInterruptTasks and PeripheralFaultTasks are started by their triggering system
event.

For information on the behavior of sequential and cyclic tasks:
● During initialization of local program variables:

See Initialization of local variables (Page 127).
● In the event of execution errors in the program:

See SIMOTION Basic Functions Function Manual.
For information about options for accessing the process image and I/O variables:
see Important properties for direct access and process image (Page 141).

6.4 Task start sequence
When the StartupTask is completed, RUN mode is reached.

The following tasks are then started:

● SynchronousTasks

● TimerInterruptTasks

● BackgroundTask

● MotionTasks with startup attribute.

Commissioning (software)
6.4 Task start sequence

SIMOTION LAD/FBD
280 Programming and Operating Manual, 07/2017, A5E33438246B

Note

The sequence in which these tasks are first started after RUN mode has been reached does
not conform to the task priorities.

Figure 6-3 Task configuration of a motion task

6.5 Downloading programs to the target system
The program has to be downloaded into the target system, together with the technology objects
etc., before being executed.

To download the program to the target system, proceed as follows:

1. Select Project > Save and recompile all.
The project is locally saved on the hard disk and compiled, with due regard for all
dependencies.

2. Select the Project > Check consistency menu command to check the project for consistency.
This is not necessary if the Check consistency before loading option is activated under
Options > Settings on the Download tab (this option is activated by default). This means
the consistency check is performed automatically during the download to the target system.

Commissioning (software)
6.5 Downloading programs to the target system

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 281

3. Select the Project > Connect to selected target devices menu command or click .
Online mode is activated.

4. Select the Target system > Load > Download project to target system menu command or
click .
The project data (including the sample program) and the data of the hardware configuration
are downloaded to the RAM of the target system.

For more information about downloading a program to the target system, see the SIMOTION
Basic Functions Function Manual.

Commissioning (software)
6.5 Downloading programs to the target system

SIMOTION LAD/FBD
282 Programming and Operating Manual, 07/2017, A5E33438246B

Debugging Software / Error Handling 7
7.1 Operating modes for program testing

7.1.1 Modes of the SIMOTION devices
Various SIMOTION device operating modes are available for program testing.

Table 7-1 Operating modes of a SIMOTION device

Operating mode Meaning
Process mode Program execution on the SIMOTION device is optimized for maximum system performance.

The following diagnostic functions are available, although they may have only restricted function‐
ality because of the optimization for maximum system performance:
● Monitor variables in the symbol browser or a watch table
● Program status (only restricted):

– Restricted monitoring of variables (e.g. variables in loops, return values for system
functions).

– Maximum of 1 program source (e.g. ST source file, MCC unit, LAD/FBD unit)1 can be
monitored.

● Trace tool (only restricted) with measuring functions for drives and function generator, see
online help:
– Maximum of 1 trace on each SIMOTION device.

Test mode The diagnostic functions of the process mode are available to the full extent:
● Monitor variables in the symbol browser or a watch table
● Program status:

– Monitoring of all variables possible.
– As of version V4.0 of the SIMOTION Kernel:

Several program sources (e.g. ST source files, MCC units, LAD/FBD units)1 can be
monitored per task.

– For version V3.2 of the SIMOTION Kernel:
Maximum of 1 program source (e.g. ST source file, MCC unit, LAD/FBD unit)1 can be
monitored per task.

● Trace tool with measuring functions for drives and function generator, see online help:
– Maximum of 4 traces on each SIMOTION device.

In addition, the following diagnostics function is available:
● Trace for monitoring the program execution in program branches which are executed cyclically

(only for the MCC programming language and for SIMOTION Kernel V4.2 and higher).

Note
Runtime and memory utilization increase as the use of diagnostic functions increases.

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 283

Operating mode Meaning
Debug mode In addition to the diagnostic functions of the test mode, you can use the following functions:

● Breakpoints
Within a program source, you can set breakpoints (Page 302). When an activated breakpoint
is reached, selected tasks will be stopped.

● Controlling MotionTasks
On the "Task Manager" tab of the device diagnostics, you can use task control commands for
MotionTasks; see the SIMOTION Basic Functions Function Manual.

No more than 1 SIMOTION device of the project can be switched to debug mode. SIMO‐
TION SCOUT is in online mode, i.e. connected to the target system.
Observe the following section: Important information about the life-sign monitoring (Page 285).

1 Each with 1 MCC chart or 1 LAD/FBD program in a program source.

Selecting the operating mode
How to select the operating mode of a SIMOTION device:

1. Make sure a connection to the target system has been established (online mode).

2. Highlight the SIMOTION device in the project navigator.

3. Select the "Operating mode" context menu.

4. Select the required operating mode (see the table above).
If you have selected "Debug mode":

– Accept the safety information.

– Parameterize the sign-of-life monitoring.

Observe the following section: Important information about the life-sign monitoring
(Page 285).

5. Confirm with OK.
The SIMOTION device switches to the selected operating mode (apart from with debug
mode; see the explanation below).

Special features with debug mode
Debug mode can only be selected for one SIMOTION device.

If you have selected debug mode, only SIMOTION SCOUT switches to it; the SIMOTION
device is in test mode.

● The project navigator indicates that debug mode is activated for SIMOTION SCOUT by
means of a symbol next to the SIMOTION device.

● The breakpoints toolbar (Page 307) is displayed.

Debug mode is not enabled for the SIMOTION device until at least one set breakpoint is
activated. If all breakpoints are deactivated, debug mode is canceled for the SIMOTION device.

The status bar indicates that debug mode is activated for the SIMOTION device.

Debugging Software / Error Handling
7.1 Operating modes for program testing

SIMOTION LAD/FBD
284 Programming and Operating Manual, 07/2017, A5E33438246B

7.1.2 Important information about the life-sign monitoring.

WARNING

Dangerous plant states possible

If problems occur in the communication link between the PC and the SIMOTION device, this
may result in dangerous plant states (e.g. the axis may start moving in an uncontrollable
manner).

Therefore, use the debug mode or a control panel only with the life-sign monitoring function
activated with a suitably short monitoring time!

You must observe the appropriate safety regulations.

The function is released exclusively for commissioning, diagnostic and service purposes. The
function should generally only be used by authorized technicians. The safety shutdowns of
the higher-level control have no effect.

Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

In the following cases, the SIMOTION device and SIMOTION SCOUT regularly exchange life-
signs to ensure a correctly functioning connection:

● In debug mode with activated breakpoints.

● When controlling an axis or a drive via the control panel (control priority at the PC):

If the exchange of the life-signs is interrupted longer than the set monitoring time, the following
reactions are triggered:

● In debug mode for activated breakpoints:

– The SIMOTION device switches to the STOP operating state.

– The outputs are deactivated (ODIS).

● For controlling an axis or a drive using the control panel (control priority for the PC):

– The axis is brought to a standstill.

– The enables are reset.

Accept safety notes
After selecting the debug mode or a control panel, you must accept the safety notes. You can
set the parameters for the life-sign monitoring.

Proceed as follows:

1. Click the Settings button.
The "Debug Settings" window opens.

2. Read there, as described in the following section, the safety notes and parameterize the
life-sign monitoring.

Debugging Software / Error Handling
7.1 Operating modes for program testing

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 285

Parameterizing the life-sign monitoring
In the "Life-Sign Monitoring Parameters" window, proceed as described below:

1. Read the warning!

2. Click the Safety notes button to open the window with the detailed safety notes.

3. Do not make any changes to the defaults for life-sign monitoring.
Changes should only be made in special circumstances and in observance of all danger
warnings.

4. Click Accept to confirm you have read the safety notes and have correctly parameterized
the life-sign monitoring.

Note

The life-sign monitoring also responds in the following cases:
● Pressing the spacebar.
● Switching to a different Windows application.
● Too high a communication load between the SIMOTION device and SIMOTION SCOUT

(e.g. by uploading task trace data).

The following reactions are triggered:
● In debug mode for activated breakpoints:

– The SIMOTION device switches to the STOP operating state.
– The outputs are deactivated (ODIS).

● For controlling an axis or a drive using the control panel (control priority for the PC):
– The axis or the drive is brought to a standstill.
– The enables are reset.

WARNING

Dangerous plant states possible

This function is not guaranteed in all operating states.

Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

Debugging Software / Error Handling
7.1 Operating modes for program testing

SIMOTION LAD/FBD
286 Programming and Operating Manual, 07/2017, A5E33438246B

7.1.3 Life-sign monitoring parameters

Table 7-2 Life-sign monitoring parameter description

Field Description
Life-sign monitoring The SIMOTION device and SIMOTION SCOUT regularly ex‐

change life-signs to ensure a correctly functioning connection. If
the exchange of the life-signs is interrupted longer than the set
monitoring time, the following reactions are triggered:
● In debug mode for activated breakpoints:

– The SIMOTION device switches to the STOP operating
state.

– The outputs are deactivated (ODIS).
● For controlling an axis or a drive using the control panel

(control priority for the PC):
– The axis is brought to a standstill.
– The enables are reset.

The following parameterizations are possible:
● Checkbox active:

If the checkbox is activated, life-sign monitoring is active.
The deactivation of the life-sign monitoring is not always
possible.

● Monitoring time:
Enter the timeout.

Prudence
Do not make any changes to the defaults for life-sign monitoring,
if possible.
Changes should only be made in special circumstances and in
observance of all danger warnings.

Safety information Please observe the warning!
Click the button to obtain further safety information.
See: Important information about the life-sign monitoring
(Page 285)

7.2 Editing program sources in online mode

Online editing in process or test mode
If SIMOTION SCOUT is connected to a target system which is in the "process mode" or "test
mode" operating mode, program sources (e.g. ST source files, MCC units with MCC charts)
can generally be edited, compiled, and loaded to the target system in STOP operating mode.
For information on downloading in RUN operating mode, see the corresponding section in the
"SIMOTION Basic Functions" Function Manual.

Debugging Software / Error Handling
7.2 Editing program sources in online mode

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 287

However, you can only activate the "program status", "monitor program execution" (only for
MCC), and trace (only for MCC) test functions for a program source or a program organization
unit (POU) if the following conditions are met:

1. This program source or any POU of this source (e.g. MCC chart) does not contain any
changes which have not been saved.

2. The program source (unit) in SCOUT is consistent with the target system.

Note

If the "program status" test function is activated, editing of the corresponding program source
or one of its POUs is disabled.

If an MCC unit or MCC chart is changed and the "monitor program execution" or trace test
functions are active for that unit or chart, the test functions are canceled.

Online editing in debug mode
If SIMOTION SCOUT is in debug mode, editing is possible as long as the SIMOTION device
is not in debug mode, i.e. no breakpoints are activated.

You can only activate breakpoints and, as a result, switch the SIMOTION device to debug
mode if the corresponding program source and all its POUs are saved, compiled so they are
up to date, and consistent with the target system.

If you attempt to edit a program source or POU when the SIMOTION device is in debug mode,
you are requested to deactivate all breakpoints and, as a result, to switch the SIMOTION device
out of debug mode.

Note

If breakpoints have been activated and the SIMOTION device is in debug mode:

Entering a space switches the SIMOTION device to STOP operating mode and deactivates
all outputs (ODIS).

7.3 Symbol Browser

7.3.1 Characteristics
In the symbol browser, you can view and, if necessary, change the name, data type, and
variable values. You can see the following variables in particular:

● Unit variables and static variables of a program or function block

● System variables of a SIMOTION device or a technology object

● I/O variables or global device variables.

Debugging Software / Error Handling
7.3 Symbol Browser

SIMOTION LAD/FBD
288 Programming and Operating Manual, 07/2017, A5E33438246B

For these variables, you can:

● View a snapshot of the variable values

● Monitor variable values as they change

● Change (modify) variable values

However, the symbol browser can only display/modify the variable values if the project has
been loaded in the target system and a connection to the target system has been established.

7.3.2 Using the symbol browser

Requirements
● Make sure that a connection to the target system has been established and a project has

been downloaded to the target system (see Download programs to the target system
(Page 281)).

● You can run the user program, but you do not have to. If the program is not run, you only
see the initial values of the variables.

The procedure depends on the memory area in which the variables to be monitored are stored.

Procedure
Proceed as follows:

1. Select the appropriate element in the project navigator in accordance with the following
table.

2. In the detail view, click the Symbol browser tab.
The corresponding variables are displayed in the symbol browser.

3. Select how each variable in the "Display format" column should be displayed.

Debugging Software / Error Handling
7.3 Symbol Browser

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 289

Table 7-3 Elements in the project navigator and variables to be monitored in the symbol browser

Variables to be monitored in the symbol browser Element to be selected in the
project navigator

Variables in the unit's user memory or in the retentive memory, see SIMOTION ST
Programming and Operating Manual:
● Retentive and non-retentive unit variables of the interface section of a program

source (unit)
● Retentive and non-retentive unit variables of the implementation section of a

program source (unit)
● Static variables of the function blocks whose instances are declared as unit

variables.
● In addition, if the program source (unit) has been compiled with the "Only create

program instance data once" compiler option (Page 53):
– Static variables of the programs.
– Static variables of the function blocks whose instances are declared as static

variables of programs.

Program source (unit)

Variables in the user memory of the task, see SIMOTION ST Programming and Oper‐
ating Manual:
If the program source (unit) was compiled without the "Only create program instance
data once" (default) compiler option (Page 53), the user memory of the task to which
the program was assigned contains the following variables:
● Static variables of the programs.
● Static variables of the function blocks whose instances are declared as static

variables of programs.

EXECUTION SYSTEM

System variables of a SIMOTION device SIMOTION device
System variables of a technology object Instance of the technology object
Global device variables GLOBAL DEVICE VARIABLES
I/O variables (in the Address list tab of the detail view).
The Address list tab of the detail view can be opened by double-clicking the ADDRESS
LIST element in the project navigator.

ADDRESS LIST

Note

You can monitor temporary variables (together with unit variables and static variables) with
Program status (see Properties of the program status (Page 297)).

Note
Trace diagnostic function for MCC programming

Various internal variables, whose identifier begins with an underscore, are automatically
created by the compiler for the trace diagnostic function. These variables are displayed in the
symbol browser.

With activated diagnostic function, these variables are used for the control of the diagnostics
function. These variables must not be used in the user program.

Debugging Software / Error Handling
7.3 Symbol Browser

SIMOTION LAD/FBD
290 Programming and Operating Manual, 07/2017, A5E33438246B

Status and controlling variables
In the Status value column, the current variable values are displayed and periodically updated.

You can change the value of one or several variables. Proceed as follows for the variables to
be changed:

1. Enter a value in the Control value column.

2. Activate the checkbox in this column

3. Click the Immediate control button.

The values you entered are written to the selected variables.

WARNING

Dangerous plant states possible

You assign the entered values to the variables during control. This can result in dangerous
plant states, e.g. unexpected axis motion.

Note

Note when you change the values of several variables:

The values are written sequentially to the variables. It can take several milliseconds until the
next value is written. The variables are changed from top to bottom in the symbol browser.
There is therefore no guarantee of consistency.

Working with the symbol browser
The functions of the symbol browser and how you work with them are described in detail in
the online help.

Display invalid floating-point numbers
Invalid floating-point numbers are displayed as follows in the symbol browser (independently
of the SIMOTION device):

Table 7-4 Display invalid floating-point numbers

Display Meaning
1.#QNAN
-1.#QNAN

Invalid bit pattern in accordance with IEEE 754 (NaN Not a Number). There is no
distinction between signaling NaN (NaNs) and quiet NaN (NaNq).

1.#INF
-1.#INF

Bit pattern for + infinity in accordance with IEEE 754
Bit pattern for – infinity in accordance with IEEE 754

-1.#IND Bit pattern for indeterminate

Debugging Software / Error Handling
7.3 Symbol Browser

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 291

7.4 Watch tables

7.4.1 Monitoring variables in watch table

Watch table options
With the symbol browser, you see only the variables of an object within the project. With
program status, you see only the variables for a freely selectable monitoring area in the program

With watch tables, by contrast, you can monitor selected variables from different sources as
a group (e.g. program sources, technology objects, SINAMICS drives - even on different
devices).

You can see the data type of the variables in offline mode. You can view and also modify the
value of the variables in online mode.

Creating a watch table
Procedure for creating a watch table and assigning variables:

1. In the project navigator, open the Monitor folder.

2. Double-click the Insert watch table entry to create a watch table and enter a name for it. A
watch table with this name appears in the Monitor folder.

3. In the project navigator, click the object from which you want to move variables to the watch
table.

4. In the symbol browser, select the corresponding variable line by clicking its number in the
left column.

5. From the context menu, select Add to watch table and the appropriate watch table, e.g.
Watch table_1.

6. If you click the watch table, you will see in the detail view of the Watch table tab that the
selected variable is now in the watch table.

7. Repeat steps 3 to 6 to monitor the variables of various objects.

If you are connected to the target system, you can monitor the variable contents.

Status and controlling variables
In the Status value column, the current variable values are displayed and periodically updated.

You can change the value of one or several variables. Proceed as follows for the variables to
be changed:

1. Enter a value in the Control value column.

2. Activate the checkbox in this column

3. Click the Immediate control button.

Debugging Software / Error Handling
7.4 Watch tables

SIMOTION LAD/FBD
292 Programming and Operating Manual, 07/2017, A5E33438246B

The values you entered are written to the selected variables.

WARNING

Dangerous plant states possible

You assign the entered values to the variables during control. This can result in dangerous
plant states, e.g. unexpected axis motion.

Note

Note when you change the values of several variables:

The values are written sequentially to the variables. It can take several milliseconds until the
next value is written. The variables are changed from top to bottom in the watch table. There
is therefore no guarantee of consistency.

Working with the watch table
The functions of the watch table and how you work with them are described in detail in the
Online help.

Display invalid floating-point numbers
Invalid floating-point numbers are displayed as follows in the watch table (independently of the
SIMOTION device):

Table 7-5 Display invalid floating-point numbers

Display Meaning
1.#QNAN
-1.#QNAN

Invalid bit pattern in accordance with IEEE 754 (NaN Not a Number). There is no
distinction between signaling NaN (NaNs) and quiet NaN (NaNq).

1.#INF
-1.#INF

Bit pattern for + infinity in accordance with IEEE 754
Bit pattern for – infinity in accordance with IEEE 754

-1.#IND Bit pattern for indeterminate

7.5 Variable status
"Variable status" enables you to monitor the current value for an individual variable, selected
using the cursor, in an open program source or program organization unit (e.g. ST source file,
MCC chart, LAD program).

Debugging Software / Error Handling
7.5 Variable status

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 293

Requirements
● Make sure that a connection to the target system has been established and a project has

been downloaded to the target system. For information on loading a project, see
"Downloading programs to the target system (Page 281)".

● The program source containing the program organization unit (POE) whose variables you
want to monitor must be consistent with the target system.

● The associated source (e.g. ST source file, MCC chart, LAD program) must be open.

● With the MCC programming language only: The parameter screen form for the command
in which the variable you want to monitor is being used must be open.

● You can run the user program, but you do not have to. If the program is not run, you only
see the initial values of the variables.

Procedure
To monitor an individual variable using variable status:

1. Position the cursor above the identifier for a variable.

– With the ST programming language: in the open ST source file

– With the ST programming language: within an input field in the open parameter screen
form

– With the LAD/FBD programming language: within a network of the LAD/FBD program

2. Briefly position the cursor above the identifier.

The tool tip shows the current value of the variable. If you keep the cursor above the identifier
for a longer period, the value is updated on an ongoing basis.

Note

With "variable status", the current value for the variable is displayed, wherever the selected
variable is being used.

The "variable status" function enables you to monitor all those variables you are also able to
monitor in the symbol browser (Page 289) or the address list. These are:

● System variables of SIMOTION devices

● System variables of technology objects

● Global device variables

● Retentive and non-retentive unit variables of the interface section of a program source (unit)

● Retentive and non-retentive unit variables of the implementation section of a program
source (unit)

● Static variables of the programs

● Static variables of the function blocks whose instances are declared as unit variables

Debugging Software / Error Handling
7.5 Variable status

SIMOTION LAD/FBD
294 Programming and Operating Manual, 07/2017, A5E33438246B

● Static variables of the function blocks whose instances are declared as static variables of
programs

● I/O variables

7.6 Trace

Trace options
Trace allows you to record and save signal characteristics of inputs/outputs or the variable
values. This allows you to document the optimization, for example, of axes.

You can set the recording time, display up to four channels with eight values each in the test
or debug mode, select trigger conditions, parameterize timing adjustments, select between
different curve displays and scalings, etc.

The SIMOTION online help provides additional information on the trace tool.

7.7 Program run

7.7.1 Program run: Display code location and call path
You can display the position in the code (e.g. line of an ST source file) that a MotionTask is
currently executing along with its call path.

Follow these steps:

1. Click the Show program run button on the Program run toolbar.
The "Program run call stack (Page 296)" window opens.

2. Select the desired MotionTask.

3. Click the Update button.

The window shows:

● The position in the code being executed (e.g. line of the ST source file) stating the program
source and the POU.

● Recursively positions in the code of other POUs that call the code position being executed.

The following names are displayed for the SIMOTION RT program sources:

Table 7-6 SIMOTION RT program sources

Name Meaning
taskbind.hid Execution system
stdfunc.pck IEC library

Debugging Software / Error Handling
7.6 Trace

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 295

Name Meaning
device.pck Device-specific library
tp-name.pck Library of the tp-name technology package,

e.g. cam.pck for the library of the CAM technology package

7.7.2 Program run parameters
You can display the following for all configured tasks:

● the current code position in the program code (e.g. line of an ST source file)

● the call path of this code position

Table 7-7 Program run parameter description

Array Description
Selected CPU The selected SIMOTION device is displayed.
Refresh Clicking the button reads the current code positions from the SIMO‐

TION device and shows them in the open window.
Calling task Select the task for which you want to determine the code position

being executed.
All configured tasks of the execution system.

Current code position The position being executed in the program code (e.g. line of an ST
source file) is displayed (with the name of the program source, line
number, name of the POU).

is called by The code positions that call the code position being executed within
the selected task are shown recursively (with the name of the program
source, line number, name of the POU, and name of the function block
instance, if applicable).

For names of the SIMOTION RT program sources, refer to the table in Program run
(Page 295).

7.7.3 Program run toolbar
You can display the position in the code (e.g. line of an ST source file) that a MotionTask is
currently executing along with its call path with this toolbar.

Table 7-8 Program run toolbar

Symbol Meaning
Display program run
Click this symbol to open the Program run call stack window. In this window, you can
display the currently active code position with its call path.
See: Program run: Display code position and call path (Page 295)

Debugging Software / Error Handling
7.7 Program run

SIMOTION LAD/FBD
296 Programming and Operating Manual, 07/2017, A5E33438246B

7.8 Program status (monitoring program execution)

Monitoring the program execution
Monitoring the program execution does not affect the actual execution of the program, but
does increase the communication load. This has an impact on the execution of MotionTasks
and the BackgroundTask.

Program status can be switched on and off during all operating modes of a SIMOTION
device (Page 283).

Note

In the process mode, the program status can be called only once for a LAD/FBD program, FB
or FC. If you do not observe the restriction, error message 25023 "No resources in the runtime"
will appear.

In the test mode, the program status can be called simultaneously for several LAD/FBD
programs, FB or FC. The maximum possible number depends on the utilization of the
SIMOTION device.

The values of the following variables are displayed:

● Simple data type variables (INT, REAL, etc.)

● Individual elements of a structure, provided an assignment is made

● Individual elements of an array, provided an assignment is made

● Enumeration data type variables

Note

The values of constants are not displayed.

Due to the restricted buffer capacity and the requirement for minimum runtime tampering, the
following variables cannot be displayed:
● Complete arrays
● Complete structures

Individual array elements or individual structure elements are displayed, however, provided
an assignment is made in the ST source file.

Debugging Software / Error Handling
7.8 Program status (monitoring program execution)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 297

7.8.1 Starting and stopping program status (monitoring program execution)
You can call up information on network status in two different ways using program status:

● You can select specific networks to display their status. Multiple selection (Shift key) and
the selection of all networks (Ctrl+A) is possible. The boxes will be displayed in the same
color as the corresponding output.
The left-hand border of a selected network is highlighted in blue.

● If you do not select a network, the status is displayed for those networks that are visible on
the screen. If you scroll down, the status of those visible networks is now displayed.

Preparing program status
Before you can work with program status, additional code must be generated during
compilation:

1. Select the Project > Connect to selected target devices menu command or click the
button.
Online mode is activated.

2. Select the SIMOTION device, followed by Operating mode in the context menu.

3. Select Test mode.
Program status is available in this operating mode without restrictions, see Operating
modes for SIMOTION devices (Page 283).

4. Open the Properties window for the LAD/FBD unit, see Defining the properties of an LAD/
FBD unit (Page 51).

5. Activate the Permit program status compiler option on the Compiler tab as the local compiler
setting (Page 54) for this LAD/FBD unit.

Note

Alternatively, select Options > Settings > Compiler, then activate the Permit program
status compiler option as the global compiler setting (Page 53) for all program sources (ST,
MCC and LAD/FBD units).

6. Select the LAD/FBD unit > Accept and compile menu command.
The LAD/FBD unit is compiled.

Note

If the Permit program status global compiler option is changed, you need to select Project
> Save and compile changes to compile all the program sources affected by the change.

7. Select the Target system > Load > Project to target system menu command or click the
 button.

The programs are downloaded to the target system. Make sure that the target system is in
STOP mode.

Debugging Software / Error Handling
7.8 Program status (monitoring program execution)

SIMOTION LAD/FBD
298 Programming and Operating Manual, 07/2017, A5E33438246B

Starting the Status program

Requirement
● The corresponding LAD/FBD program is opened.

● The LAD/FBD program does not contain any unsaved changes.

● The LAD/FBD unit in SCOUT must be consistent with the target system.

Procedure
To start program status, proceed as follows:

1. Select the LAD/FBD program > Program status on/off menu command or click the button
 for Program status (Ctrl+F7 shortcut) to start this test mode.

2. If the LAD/FBD program is assigned to more than one task, the Call path/task selection
Program status dialog box opens:

– In this dialog box, select the task in which you want to monitor the program.

The symbol on the tab for the open LAD/FBD program indicates that program
status has started, as does the symbol for the respective combination of the currently
activated test functions (program status, breakpoints).

Note
Start program status for multiple windows for each SIMOTION device

A window can be an open ST source file, an open LAD/FBD program or an open MCC chart.
An active window is located in the foreground and the current status values are displayed
(MCC: open MCC command).

In Process mode, program status can only be started for one window.

In Test mode, program status can be started simultaneously for several windows per task. The
maximum possible number depends on the utilization of the SIMOTION device.

If program status is started for an additional window (Process mode) or starting it causes the
maximum possible number to be exceeded (Test mode), program status is automatically
deactivated for the currently active window (Process mode) or the oldest active window (Test
mode), i.e. momentarily paused, but not stopped. If a window with deactivated program status
is brought to the foreground (MCC: open MCC command), program status is automatically
reactivated and the current status values are displayed again.

If the program execution monitoring is activated, the ladder diagram lines/signal paths of the
selected networks or the networks displayed on the screen are colored according to the current
values:

Debugging Software / Error Handling
7.8 Program status (monitoring program execution)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 299

① Green: Lines: Value = TRUE (Data type BOOL)
Boxes: Result = TRUE or box is activated (enable input EN = TRUE).

Non-binary connections are shown in green.
Binary connections are displayed according to their values (green or red).

② Gray: Only when boxes are active: Non-binary values are shown on gray background.
③ Red: Lines: Value = FALSE (Data type BOOL)

Boxes: Result = TRUE or box is activated (enable input EN = TRUE).
Non-binary connections are shown in red.
When the boxes are inactive, binary connections are shown in cyan.

Figure 7-1 Online display in the LAD/FBD editor

Note

When a constant is used in a network, the current value of the constant is also displayed during
program execution.

A constant which is not included is colored turquoise.

Debugging Software / Error Handling
7.8 Program status (monitoring program execution)

SIMOTION LAD/FBD
300 Programming and Operating Manual, 07/2017, A5E33438246B

Stopping program status
To stop program status, proceed as follows:

1. Select the LAD/FBD program > Program status on/off menu command or click the button
for Program status (Ctrl+F7 shortcut).
Program status is stopped.

Disabling program status
Disabling program status frees up CPU resources.

To disable program status, proceed as follows:

1. First, stop the program status function, see Stopping program status.

2. Open the Properties window for the LAD/FBD unit, see Defining the properties of an LAD/
FBD unit (Page 51).

3. Deactivate the Permit program status compiler option on the Compiler tab as the local
compiler setting (Page 54) for this LAD/FBD unit and confirm by clicking OK.

Note

If the Permit program status compiler option is activated as the global setting for the
compiler (Page 53), you can deactivate this for either one LAD/FBD unit by deactivating
the relevant Use global settings checkbox, see Local compiler settings (Page 54) or for all
the program sources by selecting Options > Settings > Compiler.

4. Select the SIMOTION device, followed by Operating mode in the context menu.

5. Select Process mode.
Program execution is optimized for this operating mode to ensure maximum performance,
see Operating modes for SIMOTION devices (Page 283).

6. Recompile the program and download it to the target system.

Note

If the Permit program status global compiler option is changed, you need to select Project >
Save and compile changes to compile all the program sources affected by the change.

Debugging Software / Error Handling
7.8 Program status (monitoring program execution)

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 301

7.9 Breakpoints

7.9.1 General procedure for setting breakpoints
You can set breakpoints within a POU of a program source (e.g. ST source, MCC chart, LAD/
FBD source). On reaching an activated breakpoint, the task in which the POU with the
breakpoint is called is stopped. If the breakpoint that initiated the stopping of the tasks is located
in a program or function block, the values of the static variables for this POU are displayed in
the "Variables status" tab of the detail display. Temporary variables (also in/out parameters
for function blocks) are not displayed. You can monitor static variables of other POUs or unit
variables in the symbol browser.

Requirement:
● The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.

Procedure
Follow these steps:

1. Select "Debug mode" for the associated SIMOTION device; see Setting debug mode
(Page 303).

2. Specify the tasks to be stopped, see Specifying the debug task group (Page 304).

3. Set breakpoints, see Setting breakpoints (Page 306).

4. Define the call path, see Defining a call path for a single breakpoint (Page 309).

5. Activate the breakpoints, see Activating breakpoints (Page 312).

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
302 Programming and Operating Manual, 07/2017, A5E33438246B

7.9.2 Setting the debug mode

WARNING

Dangerous plant states possible

If problems occur in the communication link between the PC and the SIMOTION device, this
may result in dangerous plant states (e.g. the axis may start moving in an uncontrollable
manner).

Therefore, use the debug mode only with activated life-sign monitoring (Page 285) with a
suitably short monitoring time!

You must observe the appropriate safety regulations.

The function is released exclusively for commissioning, diagnostic and service purposes. The
function should generally only be used by authorized technicians. The safety shutdowns of
the higher-level control have no effect!

Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

Requirement
1. A connection to the target system must have been established (online mode)

2. Debug mode must not be selected for any SIMOTION device.

Procedure
To set the debug mode, proceed as follows:

1. Highlight the SIMOTION device in the project navigator.

2. Select Operating mode from the context menu.

3. Select Debug mode (Page 283).

4. Accept the safety information

5. Parameterize the sign-of-life monitoring.
See also section: Important information about the life-sign monitoring (Page 285).

6. Confirm with OK.

SIMOTION SCOUT switches to debug mode for this device; the SIMOTION device itself
remains in "test mode", as long as at least one breakpoint is activated:

The project navigator indicates that debug mode is activated for SIMOTION SCOUT by means
of a symbol next to the SIMOTION device.

The breakpoints toolbar (Page 307) is displayed.

As long as no breakpoints are activated, you can edit program sources in debug mode
(Page 287).

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 303

Debug mode is not enabled for the SIMOTION device until at least one set breakpoint is
activated. If all breakpoints are deactivated, debug mode is canceled for the SIMOTION device.
The status bar indicates that debug mode is activated for the SIMOTION device.

Note

Pressing the spacebar or switching to a different Windows application causes the following to
happen if the SIMOTION device is in debug mode (breakpoints activated):
● The SIMOTION device switches to the STOP operating state.
● The outputs are deactivated (ODIS).

WARNING

Dangerous plant states possible

This function is not guaranteed in all operating states.

Therefore, there must be an EMERGENCY STOP circuit in the hardware. The appropriate
measures must be taken by the user.

7.9.3 Define the debug task group
On reaching an activated breakpoint, all tasks that are assigned to the debug task group are
stopped.

Requirement
1. A connection to the target system must have been established (online mode).

2. SIMOTION SCOUT is in debug mode for the corresponding SIMOTION device; see Setting
debug mode (Page 303).

Procedure
How to assign a task to the debug task group:

1. Highlight the relevant SIMOTION device in the project navigator.

2. Select Debug task group from the context menu.
The Debug Task group window opens.

3. Select the tasks to be stopped on reaching the breakpoint:

– If you only want to stop individual tasks (in RUN operating state): Activate the Debug
task group selection option.
Assign all tasks to be stopped on reaching a breakpoint to the Tasks to be stopped list.

– If you only want to stop individual tasks (in HOLD operating state): Activate the All
tasks selection option.
In this case, also select whether the outputs and technology objects are to be released
again after resumption of program execution.

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
304 Programming and Operating Manual, 07/2017, A5E33438246B

Note

Note the different behavior when an activated breakpoint is reached, see the following table.

Table 7-9 Behavior at the breakpoint depending on the tasks to be stopped in the debug task group.

Property Tasks to be stopped
Single selected tasks
(debug task group)

All tasks

Behavior on reaching the breakpoint
 Operating state RUN STOP
 Stopped tasks Only tasks in the debug task group All tasks
 Outputs Active Deactivated (ODIS activated)
 Technology Closed-loop control active No closed-loop control (ODIS activated)
 Runtime measurement of the

tasks
Active for all tasks Deactivated for all tasks

 Time monitoring of the tasks Deactivated for tasks in the debug task
group

Deactivated for all tasks

 Real-time clock Continues to run Continues to run
Behavior on resumption of program execution
 Operating state RUN RUN
 Started tasks All tasks in the debug task group All tasks
 Outputs Active The behavior of the outputs and the tech‐

nology objects depends on the 'Continue'
activates the outputs (ODIS deactivated)
checkbox.
● Active: ODIS will be deactivated. All

outputs and technology objects are
released.

● Inactive: ODIS remains activated. All
outputs and technology objects are
only enabled for one STOP-RUN
transition.

 Technology Closed-loop control active

Note

You can only make changes to the debug task group if no breakpoints are active.

The settings of the debug task group are retained after exiting "Debug mode".

Proceed as follows:
1. Set breakpoints (see Setting breakpoints (Page 306)).

2. Define the call path (see Defining a call path for a single breakpoint (Page 309)).

3. Activate the breakpoints (see Activating breakpoints (Page 312)).

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 305

7.9.4 Setting breakpoints

Requirements:
1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.

2. A connection to the target system must have been established (online mode).

3. SIMOTION SCOUT is in debug mode for the corresponding SIMOTION device; see Setting
debug mode (Page 303).

4. The tasks to be stopped are specified, see Specifying the debug task group (Page 304).

Procedure
How to set a breakpoint:

1. Select the code location where no breakpoint has been set:

– SIMOTION ST: Place the cursor on a line in the ST source file that contains a statement.

– SIMOTION MCC: Select an MCC command in the MCC chart (except module or
comment block).

– SIMOTION LAD/FBD: Set the cursor in a network of the LAD/FBD program.

2. Perform the following (alternatives):

– Select the Debug > Set/remove breakpoint menu command (shortcut F9).

– Click the button in the Breakpoints toolbar.

To remove a breakpoint, proceed as follows:

1. Select the code position with the breakpoint.

2. Perform the following (alternatives):

– Select the Debug > Set/remove breakpoint menu command (shortcut F9).

– Click the button in the Breakpoints toolbar.

To remove all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:

● Perform the following (alternatives):

– Select the Debug > Remove all breakpoints menu command (shortcut CTRL+F5).

– Click the button in the Breakpoints toolbar.

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
306 Programming and Operating Manual, 07/2017, A5E33438246B

Note

You cannot set breakpoints:
● For SIMOTION ST: In lines that contain only comment.
● For SIMOTION MCC: On the module or comment block commands.
● For SIMOTION LAD/FBD: Within a network.
● At code locations in which other debug points (e.g. trigger points) have been set.

You can list the debug points in all program sources of the SIMOTION device in the debug
table:
● Click the button for "debug table" in the Breakpoints toolbar.

In the debug table, you can also remove all breakpoints (in all program sources) of the
SIMOTION device:
● Click the button for "Clear all breakpoints".

The breakpoints set also remain saved after leaving debug mode; they are displayed in debug
mode only.

You can use the program status (Page 298) diagnosis functions and breakpoints together in
a program source or POU. However, the following restrictions apply depending on the program
languages:

● SIMOTION ST: For version V3.2 of the SIMOTION Kernel, the (marked) ST source file lines
to be tested with program status must not contain a breakpoint.

● SIMOTION MCC and LAD/FBD: The commands of the MCC chart (or networks of the LAD/
FBD program) to be tested with program status must not contain a breakpoint.

Proceed as follows
1. Define the call path, see Defining a call path for a single breakpoint (Page 309).

2. Activate the breakpoints, see Activating breakpoints (Page 312).

7.9.5 Breakpoints toolbar
This toolbar contains important operator actions for setting and activating breakpoints:

Table 7-10 Breakpoints toolbar

Symbol Meaning
Set/remove breakpoint
Click this icon to set at breakpoint for the selected code position or to remove an existing
breakpoint.
See: Setting breakpoints (Page 306).
Activate/deactivate breakpoint
Click this icon to activate or deactivate the breakpoint at the selected code position.
See: Activating breakpoints (Page 312).

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 307

Symbol Meaning
Edit the call path
Click this icon to define the call path for the breakpoints:
● If a code position with breakpoint is selected: The call path for this breakpoint.
● If a code position without breakpoint is selected: The call path for all breakpoints of

the POU.
See: Defining the call path for a single breakpoint (Page 309), Defining the call path for
all breakpoints (Page 311).
Activate all breakpoints of the active POU
Click this symbol to activate all breakpoints in the active program source or POU
(e.g. ST source file, MCC chart, LAD/FBD program).
See: Activating breakpoints (Page 312).
Deactivate all breakpoints of the active POU
Click this symbol to deactivate all breakpoints in the active program source or POU
(e.g. ST source file, MCC chart, LAD/FBD program).
See: Activating breakpoints (Page 312).
Remove all breakpoints of the active POU
Click this symbol to remove all breakpoints from the active program source or POU
(e.g. ST source file, MCC chart, LAD/FBD program).
See: Setting breakpoints (Page 306).
Debug table
Click this icon to display the debug table.
See: Debug table parameters.
Display call stack
Click this icon after reaching an activated breakpoint to:
● View the call path at the current breakpoint.
● View the code positions at which the other tasks of the debug task group have been

stopped together with their call path.
See: Displaying the call stack (Page 315).
Resume
Click this icon to continue the program execution after reaching an activated breakpoint.
See: Resuming program execution (Page 315), Displaying the call stack (Page 315).
Next step (SIMOTION Kernel as of version V4.4)
Only available for the MCC and LAD/FBD programming languages:
Click this icon to resume the program execution until the next MCC command or LAD/
FBD network is reached.
See: Resume program execution in single steps (Page 316).
Step through the subprogram (SIMOTION Kernel as of version V4.4)
Only available for the MCC programming language.
Click this icon to jump to the called subprogram and stop at the first command. The
subprogram must be created in the MCC or LAD/FBD programming language.
See: Resume program execution in single steps (Page 316).

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
308 Programming and Operating Manual, 07/2017, A5E33438246B

7.9.6 Defining the call path for a single breakpoint

Requirements:
1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.

2. A connection to the target system must have been established (online mode).

3. SIMOTION SCOUT is in debug mode for the corresponding SIMOTION device; see Setting
debug mode (Page 303).

4. The tasks to be stopped are specified, see Specifying the debug task group (Page 304).

5. Breakpoint is set, see Setting breakpoints (Page 306).

Procedure
To define the call path for a single breakpoint, proceed as follows:

1. Select the code location where a breakpoint has already been set:

– SIMOTION ST: Set the cursor in an appropriate line of the ST source.

– SIMOTION MCC: Select an appropriate command in the MCC chart.

– SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD program.

2. Click the button for "edit call path" in the Breakpoints toolbar.
In the Call path / task selection breakpoint window, the marked code position is displayed
(with the name of the program source, line number, name of the POU).

3. Select the task in which the user program (i.e. all tasks in the debug task group) will be
stopped when the selected breakpoint is reached.
The following are available:

– All calling locations starting at this call level
The user program will always be started when the activated breakpoint in any task of
the debug task group is reached.

– The individual tasks from which the selected breakpoint can be reached.
The user program will be stopped only when the breakpoint in the selected task is
reached. The task must be in the debug task group.
The specification of a call path is possible.

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 309

4. Only for functions and function blocks: Select the call path, i.e. the code position to be called
(in the calling POU).
The following are available:

– All calling locations starting at this call level
No call path is specified. The user program is always stopped at the activated breakpoint
if the POU in the selected tasks is called.

– Only when a single task is selected: The code positions to be called within the selected
task (with the name of the program source, line number, name of the POU).
The call path is specified. The user program will be stopped at the activated breakpoint
only when the POU is called from the selected code position.
If the POU of the selected calling code position is also called from other code positions,
further lines are displayed successively in which you proceed similarly.

5. If the breakpoint is only to be activated after the code position has been reached several
times, select the number of times.

Note

You can also define the call path to the individual breakpoints in the debug table:
1. Click the button for "debug table" in the Breakpoints toolbar.

The "Debug table" window opens.
2. Click the appropriate button in the "Call path" column.
3. Proceed in the same way as described above:

– Specify the task.
– Define the call path (only for functions and function blocks).
– Specify the number of passes after which the breakpoint is to be activated.

Proceed as follows:
● Activate the breakpoints, see Activating breakpoints (Page 312).

Note

You can use the "Display call stack (Page 315)" function to view the call path at a current
breakpoint and the code positions at which the other tasks of the debug task group were
stopped.

See also
Defining the call path for all breakpoints (Page 311)

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
310 Programming and Operating Manual, 07/2017, A5E33438246B

7.9.7 Defining the call path for all breakpoints
With this procedure, you can:

● Select a default setting for all future breakpoints in a POU (e.g. MCC chart, LAD/FBD
program or POU in an ST source file).

● Accept and compare the call path for all previously set breakpoints in this POU.

Requirements
1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.

2. A connection to the target system must have been established (online mode).

3. SIMOTION SCOUT is in debug mode for the corresponding SIMOTION device; see Setting
debug mode (Page 303).

4. The tasks to be stopped are specified, see Specifying the debug task group (Page 304).

Procedure
To define the call path for all future breakpoints of a POU, proceed as follows:

1. Select the code location where no breakpoint has been set:

– SIMOTION ST: Set the cursor in an appropriate line of the ST source.

– SIMOTION MCC: Select an appropriate command in the MCC chart.

– SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD program.

2. Click the button for "edit call path" in the Breakpoints toolbar.
In the "Call path / task selection all breakpoints for each POU" window, the marked code
position is displayed (with the name of the program source, line number, name of the POU).

3. Select the task in which the user program (i.e. all tasks in the debug task group) will be
stopped when a breakpoint in this POU is reached.
The following are available:

– All calling locations starting at this call level
The user program will always be started when an activated breakpoint of the POU in
any task of the debug task group is reached.

– The individual tasks from which the selected breakpoint can be reached.
The user program will be stopped only when a breakpoint in the selected task is reached.
The task must be in the debug task group.
The specification of a call path is possible.

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 311

4. Only for functions and function blocks: Select the call path, i.e. the code position to be called
(in the calling POU).
The following are available:

– All calling locations starting at this call level
No call path is specified. The user program is always stopped at an activated breakpoint
when the POU in the selected tasks is called.

– Only when a single task is selected: The code positions to be called within the selected
task (with the name of the program source, line number, name of the POU).
The call path is specified. The user program will be stopped at an activated breakpoint
only when the POU is called from the selected code position.
If the selected calling code position is in turn called by other code positions, further lines
are displayed successively in which you proceed similarly.

5. If a breakpoint is only to be activated after the code position has been reached several
times, select the number of times.

6. If you want to accept and compare this call path for all previously set breakpoints in this
POU:

– Click Accept.

Proceed as follows:
● Activate the breakpoints, see Activating breakpoints (Page 312).

Note

You can use the "Display call stack (Page 315)" function to view the call path at a current
breakpoint and the code positions at which the other tasks of the debug task group were
stopped.

See also
Defining the call path for a single breakpoint (Page 309)

7.9.8 Activating breakpoints
Breakpoints must be activated if they are to have an effect on program execution.

Requirements
1. The program source with the POU (e.g. ST source file, MCC chart, LAD/FBD program) is

open.

2. A connection to the target system must have been established (online mode).

3. SIMOTION SCOUT is in debug mode for the corresponding SIMOTION device; see Setting
debug mode (Page 303).

4. The tasks to be stopped are specified, see Specifying the debug task group (Page 304).

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
312 Programming and Operating Manual, 07/2017, A5E33438246B

5. Breakpoints are set, see Setting breakpoints (Page 306).

6. Call paths are defined, see Defining a call path for a single breakpoint (Page 309).

Activating breakpoints
How to activate a single breakpoint:

1. Select the code location where a breakpoint has already been set:

– SIMOTION ST: Set the cursor in an appropriate line of the ST source file.

– SIMOTION MCC: Select an appropriate command in the MCC chart.

– SIMOTION LAD/FBD: Set the cursor in an appropriate network of the LAD/FBD program.

2. Perform the following (alternatives):

– Select the Debug > Activate/deactivate breakpoint menu command (shortcut F12).

– Click the button in the Breakpoints toolbar.

To activate all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:

● Perform the following (alternatives):

– Select the Debug > Activate all breakpoints menu command.

– Click the button in the Breakpoints toolbar.

Once the first breakpoint has been activated, the SIMOTION device switches to debug mode.
It remains in this mode until the last breakpoint is deactivated.

In the Task status function bar, (Page 317) the tasks with activated breakpoints are highlighted
in gray ().

Note

Breakpoints of all program sources of the SIMOTION device can also be activated and
deactivated in the debug table:
1. Click the button for "debug table" in the Breakpoints toolbar.

The "Debug Table" window opens.
2. Perform the action below, depending on which breakpoints you want to activate or

deactivate:
– Single breakpoints: Check or clear the corresponding checkboxes.
– All breakpoints (in all program sources): Click the corresponding button.

The following applies up to version V4.3 of the SIMOTION Kernel:
● In the case of activated breakpoints, the "Single step" test function of the SIMOTION MCC

programming language cannot be used.

The following applies as of version V4.4 of the SIMOTION Kernel:
● The "Single step" test function of the SIMOTION MCC programming language is not

available in the Debug mode.

Breakpoints cannot be activate if the control priority is at the axis control panel. Conversely,
you cannot fetch the control priority for the axis control panel when a breakpoint activated.

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 313

Behavior at the activated breakpoint
On reaching an activated breakpoint (possibly using the selected call path (Page 309)), all
tasks assigned to the debug task group will be stopped. The behavior depends on the tasks
in the debug task group and is described in "Defining a debug task group (Page 304)". The
breakpoint is highlighted.

In the Task status function bar, (Page 317) the task in which the breakpoint was reached is
highlighted in red ().

The following applies to the programming languages MCC or LAD/FBD: If the debug task group
is stopped by a breakpoint, then the user has the option to change to another task, belonging
to the debug task group, in the combo box. Always the breakpoint of the currently selected
task is visualized.

If the breakpoint that initiated the stopping of the tasks is located in a program or function block,
the values of the static variables for this POU are displayed in the "Variables status" tab of the
detail display. Temporary variables (also in/out parameters for function blocks) are not
displayed. You can monitor static variables of other POUs or unit variables in the symbol
browser (Page 289).

You can use the "Display call stack (Page 315)" function to:

● View the call path at the current breakpoint.

● View the code positions with the call path at which the other tasks of the debug task group
have been stopped.

Resuming program execution
You can resume the execution of the stopped tasks, see "Resuming program execution"
(Page 315).

As of version V4.4 of the SIMOTION Kernel, you can resume the task in single steps that has
been stopped at the activated breakpoint in the MCC and LAD/FBD programming languages,
see Resuming program execution in single steps (Page 316).

Deactivate breakpoints
To deactivate a single breakpoint, proceed as follows:

1. Select the code position with the activated breakpoint.

2. Perform the following (alternatives):

– Select the Debug > Activate/deactivate breakpoint menu command (shortcut F12).

– Click the button in the Breakpoints toolbar.

To deactivate all breakpoints (in all program sources) of the SIMOTION device, proceed as
follows:

● Perform the following (alternatives):

– Select the Debug > Deactivate all breakpoints menu command.

– Click the button in the Breakpoints toolbar.

Once the last breakpoint has been deactivated, the SIMOTION device switches to "test mode";
SIMOTION SCOUT continues to run in debug mode.

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
314 Programming and Operating Manual, 07/2017, A5E33438246B

7.9.9 Display call stack
You can use the "Display call stack" function to:

● View the call path at the current breakpoint.

● View the code positions with the call path at which the other tasks of the debug task group
have been stopped.

Requirement
The user program is stopped at an activated breakpoint, i.e. the tasks of the debug task
group (Page 304) have been stopped.

Procedure
To call the "Display call stack" function, proceed as follows:

● Click the button for "display call stack" in the Breakpoints toolbar.
The "Breakpoint call stack" dialog opens. The current call path (including the calling task
and the number of the set passes) is displayed.
The call path cannot be changed.

To use the "Display call stack" function, proceed as follows:

1. Keep the "Breakpoint call stack" dialog open.

2. To display the code position at which the other task was stopped, proceed as follows:

– Select the appropriate task. All tasks of the debug task group can be selected.

The code position, including the call path, is displayed. If the code position is contained in
a user program, the program source with the POU (e.g. ST source file, MCC chart, LAD/
FBD program) will be opened and the code position marked.

3. How to resume program execution:

– Click the button for "resume" (Ctrl+F8 shortcut) on the Breakpoint toolbar.

When the next activated breakpoint is reached, the tasks of the debug task group will be
stopped again. The current call path, including the calling task, is displayed.

4. Click OK to close the "Breakpoint call stack" dialog box.

For names of the SIMOTION RT program sources, refer to the table in "Program run
(Page 295)".

7.9.10 Resuming program execution
How to resume program execution:

● Perform the following (alternatives):

– Select the Debug > Continue menu command (shortcut CTRL+F8).

– Click the button on the Breakpoint toolbar (Page 307) to "Continue".

The stopped task is continued until the next active breakpoint is reached.

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 315

7.9.11 Resuming program execution in single steps (as of Kernel V4.4)
This function is available as of SIMOTION Kernel version V4.4.

In the MCC and LAD/FBD programming languages you can resume the task in single steps
that was stopped at an activated breakpoint (Page 302).

The current MCC command or the current LAD/FBD network and all stopped tasks of the debug
task group are executed.

All tasks that are assigned to the debug task group are stopped at the following MCC command
or LAD/FBD network or the next activated breakpoint within the debug task group.

Next step
To execute the current MCC command or the current LAD/FBD network at which the program
has been stopped, proceed as follows:

● Perform the following (alternatives):

– Select the Debug > Next step menu command (shortcut CTRL+F10).

– Click the button for "Next step" in the Breakpoints toolbar (Page 307).

The current MCC command or the current LAD/FBD network is executed. The program is
stopped at the following MCC command or the current LAD/FBD network.

A subprogram call is executed without interruption as long as no breakpoint is activated within
the subprogram. If a

Stepping through the subprogram (MCC only)
If the program execution has been stopped at the "Subprogram call" command in the MCC
programming language, you can jump to the subprogram and run through it in single steps.
The subprogram must have been created in the MCC or LAD/FBD programming language.

● Perform the following (alternatives):

– Select the Debug > Step through subprogram menu command (shortcut CTRL+SHIFT
+F10).

– Click the button on the Breakpoint toolbar (Page 307) to "Step through subprogram".

The appropriate MCC chart or LAD/FBD program is opened and the program execution
stopped at the first MCC command or LAD/FBD network.

Note

Stepping is not possible in MCC charts and LAD/FBD programs whose sources are in libraries.

Stepping is not possible in ST source files.

You can only open MCC charts and LAD/FBD programs with know-how protection if you have
the required authorization (e.g. password).

Debugging Software / Error Handling
7.9 Breakpoints

SIMOTION LAD/FBD
316 Programming and Operating Manual, 07/2017, A5E33438246B

7.10 Task status function bar
In a combo box, the Task status function bar displays all tasks of the active SIMOTION device,
to which a program is assigned.

They are displayed under the following conditions:

1. SIMOTION SCOUT is in online mode.

2. The affected SIMOTION device is active, e.g.

– In the project navigator, the SIMOTION device or an element in its subtree is selected
(such as program source, technology object).

– In the working area, an open window is active that belongs to an element in the subtree
of the SIMOTION device.

3. The SIMOTION device is consistent.

A background color highlights the occurrence of specific events in the affected task, see the
following table. The task in question is displayed in the combo box of the function bar according
to the event priority.

Table 7-11 Meaning of background colors in the Task status function bar

Background color Meaning Priority
 Cyan The affected task waits for a command at the "Single

step" test function (only for SIMOTION MCC program‐
ming language).

Highest

Lowest

Red The affected task is located at a breakpoint (Page 312).
 Blue In the affected task, the "Single step" test function is

activated (only for SIMOTION MCC programming lan‐
guage)

 Gray In the affected task, at least 1 breakpoint (Page 312) is
activated.

 Yellow In the affected task, the "Monitoring" test function is ac‐
tivated (only for SIMOTION MCC programming lan‐
guage).

 White In the affected task, none of the above-mentioned test
functions are activated.

Note

A selection of a task in the combo box is only possible:
● For the following test functions of the SIMOTION MCC programming language:

– Monitoring
– Single step
– Trace

● at activated breakpoints (Page 312) in the MCC or LAD/FBD programming languages.

Debugging Software / Error Handling
7.10 Task status function bar

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 317

7.11 Project comparison
SIMOTION SCOUT has a project comparison function (start this via the Start object comparison

 button) for comparing objects within the same project and/or objects from different projects
(online or offline).

Project comparison allows you to establish any differences and, if necessary, run a data
transfer to rectify them.

Objects are devices and their sub-objects, programs, technology objects (TOs) or drive objects
(DOs), and libraries. Comparing projects is useful if you need to carry out service work on the
system.

Further information on project and detail comparisons can be found in the SIMOTION Project
Comparison Function Manual.

Debugging Software / Error Handling
7.11 Project comparison

SIMOTION LAD/FBD
318 Programming and Operating Manual, 07/2017, A5E33438246B

Application Examples 8
8.1 Examples

You will be given an introduction to the LAD and FBD programming languages using two simple
examples.

8.2 Creating sample programs

Requirements for program creation
The project is the highest level in the data management hierarchy. SIMOTION SCOUT saves
all data which belongs, for example, to a production machine, in the project directory.

This means that the project therefore brackets together all SIMOTION devices, drives, etc.,
belonging to one machine.

Within the project, the hardware used must be made known to the system, including:

● SIMOTION device

● Centralized I/O (with I/O addresses)

● Distributed I/O (with I/O addresses)

A SIMOTION device must be configured before you can insert and edit LAD/FBD sources.

Sample programs
We will create two short programs (position blinker program, axis program) that demonstrate
all the work steps from the creation through to the start and testing of a program.

8.3 Blinker program

Prerequisites
A project must have been created and the hardware used in the project must be known to the
system.

Task specification
Output of a cyclically changing bit pattern after exceeding a limit value.

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 319

This task is divided into the following parts:

● Insert LAD/FBD source file

● Insert LAD/FBD program
Network one
A program variable is incremented and compared to a reference value
Network two
When the reference value is exceeded, the program variable is reset and a bit pattern is
output

● Compiling

● Insert program in a task

● Download program onto target device

You can observe the result of your program at the outputs of your target system.

This example deals only with the LAD programming aspect.

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
320 Programming and Operating Manual, 07/2017, A5E33438246B

8.3.1 Insert LAD/FBD source file
To insert a new LAD/FBD unit using the context menu:

1. Select the PROGRAMS folder of the relevant SIMOTION device in the project navigator.

2. Double-click the entry Insert LAD/FBD unit.

Figure 8-1 Project folder

The Insert LAD/FBD Unit dialog box appears.

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 321

Figure 8-2 Insert LAD/FBD Unit dialog box

3. Enter the name of the LAD/FBD unit.
The names of program sources must comply with the rules for identifiers (Page 97): They
are made up of letters (A … Z, a … z), numbers (0 … 9), or single underscores (_) in any
order, whereby the first character must be a letter or underscore. No distinction is made
between upper- and lower-case letters.
The permissible length of the name depends on the SIMOTION Kernel version:

– SIMOTION Kernel as of version V4.1: Maximum 128 characters.

– SIMOTION Kernel up to version V4.0: Maximum 8 characters.

Names must be unique within the SIMOTION device. Protected or reserved identifiers
(Page 361) are not permitted.
Existing program sources (e.g. LAD/FBD units, ST source files) are displayed.

4. Activate the Permit program status compiler option to be able to use the online status
display later:

– Deactivate the associated checkbox in the "Global settings" column.

– Activate the associated checkbox in the "Current settings" column.

5. In the Compiler tab, activate the Permit program status checkbox

6. You can also enter an author, version, and a comment.

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
322 Programming and Operating Manual, 07/2017, A5E33438246B

7. Activate the Open editor automatically checkbox.

8. Confirm with OK.
The declaration tables for exported and source-internal variables appear in the working
area.
No variables are defined here in the sample program.

Figure 8-3 Declaration tables for exported and source-internal declarations

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 323

8.3.2 Insert LAD/FBD program
To insert an LAD/FBD program, proceed as follows:

1. In the PROGRAMS folder in the project navigator, open the LAD/FBD unit you just inserted.

2. Double-click the entry Insert LAD/FBD program in the LAD/FBD unit.

Figure 8-4 Opening a project folder

The Insert LAD/FBD Program dialog box appears.

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
324 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 8-5 Insert LAD/FBD Program dialog box

3. Enter the name of the program in the Insert LAD/FBD Program dialog box.
Names for LAD/FBD programs must comply with the Rules for identifiers (Page 97): They
are made up of letters (A … Z, a … z), numbers (0 … 9), or single underscores (_) in any
order, whereby the first character must be a letter or underscore. No distinction is made
between upper- and lower-case letters. Protected or reserved identifiers (Page 361) are
not permitted.
The permissible length of the name is 25 characters.
The names must be unique within the LAD/FBD unit. The names of all exportable program
organization units (POUs) must also be unique within the SIMOTION device. The names
of all LAD/FBD programs of the program source as well as the names of all exportable
POUs of the device are displayed.

4. For Creation type, select program.

5. Activate the Exportable checkbox that must be available for the LAD/FBD program in the
execution system.

6. Activate the Open editor automatically checkbox.

7. Confirm with OK.

A blank LAD/FBD program is opened.

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 325

Figure 8-6 Open LAD/FBD program

8.3.3 Entering variables in the declaration table
To enter variables, proceed as follows:

1. Select the Parameters/variables tab.

2. Enter name, variable type, data type and/or start value in the declaration table (as shown
in the figure below).

Figure 8-7 Variables in the declaration table

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
326 Programming and Operating Manual, 07/2017, A5E33438246B

3. Select the I/O Symbols tab.

4. Enter the name and absolute identifier (in accordance with the figure below).
The data type is entered automatically.

Figure 8-8 I/O symbols in the declaration table

8.3.4 Entering a program title
To enter a program title, proceed as follows:

1. Click in the title line.

2. Enter the program name in the window.

Figure 8-9 Program title

8.3.5 Inserting network
To paste in a network:

1. Select LAD/FBD program > Insert network.

Figure 8-10 Menu selection

2. Click in the title line.

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 327

3. Enter the network name in the window.

Figure 8-11 Network with entered name

4. Click the power rail to the left of the coil.

8.3.6 Inserting an empty box
To insert an empty box, proceed as follows:

1. From the menu, select the LAD/FBD program > Insert element > Empty box menu item.

Figure 8-12 Insert an empty box

An empty box is inserted.

Mandatory parameters in a network are identified by ???, optional parameters by

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
328 Programming and Operating Manual, 07/2017, A5E33438246B

8.3.7 Selecting box type

Figure 8-13 Empty box

To select a box type, proceed as follows:

1. Press the Enter key in the selected empty box.
A drop-down menu appears.

2. Select the ADD box type from the drop-down menu and confirm your selection by pressing
the Enter key.

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 329

Figure 8-14 Selection of box type

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
330 Programming and Operating Manual, 07/2017, A5E33438246B

8.3.8 Parameterizing the ADD call-up
To parameterize the ADD call-up, proceed as follows:

1. Click in the other mandatory input fields ???.

Figure 8-15 ADD box

2. Enter the appropriate values.

Figure 8-16 Parameterized ADD box

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 331

8.3.9 Inserting comparator
To insert a comparator, proceed as follows:

1. Select the ADD box.

Figure 8-17 Selected ADD box

2. Select LAD/FBD program > Insert element >Comparator > > =.

Figure 8-18 Select comparator

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
332 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 8-19 Inserted comparator

8.3.10 Labeling the comparator
To label the comparator, proceed as follows:

1. Click each comparator input field individually.

2. Enter the appropriate values for the comparator.

Figure 8-20 Labeled comparator

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 333

8.3.11 Initializing a coil
To initialize a coil, proceed as follows:

1. Click in the input field ??? of the coil.

2. Enter the appropriate variable.

Figure 8-21 Initialized coil

8.3.12 Inserting next network
To paste in another network, proceed as follows:

1. To paste in the second network, repeat the steps used to paste in the first network.

Figure 8-22 Project with two networks

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
334 Programming and Operating Manual, 07/2017, A5E33438246B

8.3.13 Details view
To show the detail view, proceed as follows:

1. Select the View > Detail view menu command.
Information, e.g. compiler messages, will be displayed during the compilation of a program.

Figure 8-23 Detail view menu selection

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 335

8.3.14 Compiling
To compile the created program, proceed as follows:

1. Select the program in the project navigator.

2. Open the LAD/FBD program menu and select Accept and compile.
The source file and its POUs are saved and compiled.
During the compilation process, messages on the successful compilation status are
displayed in the detail view. Should any error occur during compilation, they will be
displayed in plain text there.

Figure 8-24 Save and compile menu selection

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
336 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 8-25 Compiled project with compiler information in the detail view

8.3.15 Assigning a sample program to an execution level
To assign a program to an execution level, proceed as follows:

1. Double-click the EXECUTION SYSTEM folder in the project navigator.

2. Click BackgroundTask.

3. Click the Program assignment tab.

4. Select the program Q_blink.p_blink.

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 337

5. Click the button >>.

Figure 8-26 Assigning a program to the BackgroundTask

6. Click Close and acknowledge the message saying the execution system has changed by
clicking Yes.
The changes are accepted into the project.

8.3.16 Starting sample program
To start a program, proceed as follows:

1. Make sure the LAD/FBD unit creates the additional debug code for program status during
compilation:
Open the Properties window for the LAD/FBD unit (see Defining the properties of an LAD/
FBD unit (Page 51)).

2. Activate the Permit program status compiler option on the Compiler tab as the local compiler
setting (see Local compiler settings (Page 54)) for this LAD/FBD unit.
See also the description relating to Effectiveness of local or global compiler settings (see
the SIMOTION ST Programming and Operating Manual).

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
338 Programming and Operating Manual, 07/2017, A5E33438246B

3. Select Project > Save and recompile all.
The project is locally saved on the hard disk and compiled.

4. Select the Project > Connect to selected target devices menu command or click .
Online mode is activated.

5. Select the Target system > Load > Download project to target system menu command or
click .
The project data (including the sample program) and the data of the hardware configuration
are downloaded to the RAM of the target system.

6. Select both networks and click the button for program status (Ctrl+F7 shortcut) in the
LAD editor function bar (Page 26).
Monitoring the program execution (Page 297) is switched on.

7. Mark the SIMOTION device in the project navigator and select Target device > Operating
mode in the context menu.
The Operating mode window with the software switch for modes opens.

8. Click the RUN button in the software switch.
The SIMOTION device is in RUN mode. The sample program is run and the current paths/
signal paths are color-coded in accordance with the current signal values (Page 297).

Figure 8-27 Sample program is started

Application Examples
8.3 Blinker program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 339

8.4 Position axis program

Requirements
A project must be created. In the project, a CPU and a virtual position axis must be created
(name of the axis: posAxis).

Task specification
An axis is to be traversed at a velocity of 10 mm/s from the current position 100 mm in the
negative direction.

This task is divided into the following parts:

● Insert LAD/FBD unit

● Insert LAD/FBD program

– Insert network

– Set axis enable signals

– Traverse axis to position

– Remove axis enable

● Compile program

● Insert program in a task

● Download program onto target device

PLCopen blocks are used for the programming. The PLCopen blocks are designed for use in
cyclic programs/tasks and enable motion control programming in a PLC environment. They
are used primarily in the LAD/FBD programming language.

PLCopen blocks are available as standard functions (directly from the command library).

You can find further information about PLCopen blocks in the SIMOTION PLCopen Blocks
Function Manual.

There is a TO-specific command available for the aforementioned subtasks Set axis enable
and Traverse axis to position/Remove axis enable. Each command is represented by a box
in LAD/FBD. The parameters for individual commands (position = 100, speed = 10 etc.) are
entered

via the Variable declaration dialog box.

- or -

via the Enter call parameters dialog box

- or -

by entering the values in the input fields on each connector.

The task is implemented using LAD programming.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
340 Programming and Operating Manual, 07/2017, A5E33438246B

8.4.1 Insert LAD/FBD source file
To insert an LAD/FBD unit (for details of how to insert the unit and program, see also the blinker
program (Page 319) example), proceed as follows:

1. Open the PROGRAMS folder of the relevant SIMOTION device in the project navigator.

2. Double-click the entry Insert LAD/FBD unit.
The Insert LAD/FBD Unit dialog box appears.

3. Enter the name of the LAD/FBD unit.
The names of program sources must comply with the rules for identifiers (Page 97): They
are made up of letters (A … Z, a … z), numbers (0 … 9), or single underscores (_) in any
order, whereby the first character must be a letter or underscore. No distinction is made
between upper- and lower-case letters.
The permissible length of the name depends on the SIMOTION Kernel version:

– SIMOTION Kernel as of version V4.1: Maximum 128 characters.

– SIMOTION Kernel up to version V4.0: Maximum 8 characters.

Names must be unique within the SIMOTION device. Protected or reserved identifiers
(Page 361) are not permitted.
Existing program sources (e.g. ST source files, MCC units) are displayed.

4. In the Compiler tab, activate the Permit program status checkbox, to use the online status
display later.

5. You can also enter an author, version, and a comment.

6. Activate the Open editor automatically checkbox.

7. Confirm with OK.
The declaration tables for global and unit-local variables appear in the working area.

8.4.2 Insert LAD/FBD program
To insert an LAD/FBD program, proceed as follows:

1. In the PROGRAMS folder within the project navigator, open the LAD/FBD unit you just
pasted in.

2. Double-click the entry Insert LAD/FBD program in the LAD/FBD unit.
The Insert LAD/FBD Program dialog box appears.

3. Enter the name of the program in the Insert LAD/FBD Program dialog box.
Names for LAD/FBD programs must comply with the Rules for identifiers (Page 97): They
are made up of letters (A … Z, a … z), numbers (0 … 9), or single underscores (_) in any
order, whereby the first character must be a letter or underscore. No distinction is made
between upper- and lower-case letters. Protected or reserved identifiers (Page 361) are
not permitted.
The permissible length of the name is 25 characters.
The names must be unique within the LAD/FBD unit. The names of all exportable program
organization units (POUs) must also be unique within the SIMOTION device. The names
of all LAD/FBD programs of the program source as well as the names of all exportable
POUs of the device are displayed.

4. For Creation type, select program.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 341

5. Activate the Open editor automatically checkbox.

6. Confirm with OK.
A blank LAD/FBD program is opened.

7. Click the working area and select LAD/FBD program > Insert network from the menu to
paste in a new network.

Figure 8-28 Pasted network

Note

Mandatory parameters in a network are identified by ???, optional parameters by

8. Select the pasted box and select Delete in the context menu.
The box is removed from the network.

Figure 8-29 Pasted network without a box

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
342 Programming and Operating Manual, 07/2017, A5E33438246B

8.4.3 Inserting a TO-specific command
To insert a TO-specific command, proceed as follows:

1. To enhance the display in the working area, open the shortcut menu of the network and
select Display > Mandatory and assigned box parameters.

2. Select the Command library tab in the project navigator.
The command groups appear.

3. Click the relevant plus sign to open the PLCopen > SingleAxis command group.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 343

4. Drag and drop the _MC_Power command into the network (see Network with RET
assignment).
This command serves to enable the command.

Figure 8-30 TO-specific command (_MC_Power) from the command library

Figure 8-31 Network with inserted _MC_Power Box

5. Mark the network and select LAD/FBD program > Insert network from the menu to insert a
second network.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
344 Programming and Operating Manual, 07/2017, A5E33438246B

6. Mark the inserted box from the second network and select Delete in the context menu.
The box is removed from the network.

7. Drag and drop the _MC_MoveRelative command from the command library to the marked
position in the second network.
The axis is positioned at the specified speed with this command.

Figure 8-32 TO-specific command (_MC_MoveRelative) from the command library

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 345

Figure 8-33 Network with inserted _MC_MoveRelative box

8.4.4 Connecting the enable inputs
The enable input for the _MC_Power command and the execute enable input for the
_MC_MoveRelative command still have to be connected to NO contacts.

How to insert the NO contacts:

1. Click in the working area and select Display > All box parameters in the context menu.
All the inputs and outputs of the boxes are shown.

2. Select the Command library tab in the project navigator.
The command groups appear.

3. Click the plus symbol to open the command group LAD elements.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
346 Programming and Operating Manual, 07/2017, A5E33438246B

4. Drag and drop the NO contact LAD element to the enable input of the _MC_Power function
block.

Figure 8-34 Drag&drop the NO contact LAD element to the connector of the enable input

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 347

Figure 8-35 Network with a NO contact LAD element inserted

5. Drag and drop two NO contact LAD elements to the execute enable input of the
_MC_MoveRelative function block.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
348 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 8-36 Networks with NO contacts inserted

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 349

8.4.5 Entering variables in the declaration table
To enter variables, proceed as follows:

1. Select the Parameters/variables tab.

2. Enter name, variable type, data type and/or start value in the declaration table (as shown
in the figure below).
In order to use PLCopen blocks, you must create one instance for each the used blocks
(_MC_Power and _MC_MoveRelative). The data type of the instance corresponds to the
block name. The variables i_mc_power and i_mc_moverelative are instance variables for
the two function blocks _MC_Power and _MC_MoveRelative.
You can find further information about the declaration and use of instance variables in
Example: Function block (FB) (Page 179).

Figure 8-37 Variables in the declaration table

8.4.6 Parameterization of the NO contacts
How to parameterize each of the NO contacts:

1. Click in the input field ??? for the NO contact.

2. Enter the appropriate variable.

3. Press Enter.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
350 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 8-38 Parameterization of the NO contacts

8.4.7 Setting call parameters for the _MC_Power command

Note

The Enter Call Parameters dialog box displayed below is available for each SIMOTION
command.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 351

To set the call parameters, proceed as follows:

1. Double-click the box.

2. Select the instance, the homing axis, the axis enables to be set, stop mode and enable
mode for the axis.
If you print the project, your parameters appear in the printout according to your settings,
e.g. only allocated box parameters.

3. Confirm with OK.

Figure 8-39 Set call parameters for the PLCopen block _MC_Power

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
352 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 8-40 Labelled _MC_Power box

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 353

8.4.8 Setting call parameters for the _MC_MoveRelative command
To set the call parameters, proceed as follows:

1. Double-click the _mc_moverelative box.

2. Select the instance and the homing axis. Enter values for the difference in distance traveled
and for the maximum speed of the axis.
If you print the project, your parameters appear in the printout according to your settings,
e.g. only allocated box parameters.

3. Confirm with OK.

Figure 8-41 Set call parameters for the PLCopen block _MC_MoveRelative

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
354 Programming and Operating Manual, 07/2017, A5E33438246B

Figure 8-42 Network with entered variables

8.4.9 Details view
To show the detail view, proceed as follows:

1. Select the View > Detail view menu item.
Information, e.g. compiler messages, will be displayed during the compilation of a program.

8.4.10 Compiling
To compile the program, proceed as follows:

1. Select the program in project navigation.

2. Open the LAD/FBD program menu and select Accept and compile.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 355

During the compilation process, messages on the successful compilation status are displayed
in the detail view. Should any error occur during compilation, they will be displayed in plain
text there.

8.4.11 Assigning a sample program to an execution level
Before you can run the sample program, you must assign it to an execution level or a task.
When you have done this, you can establish the connection to the target system, download
the program to the target system, and then start it.

To assign the program to an execution level (see also the blinker program (Page 337)
example), proceed as follows:

1. Double-click the EXECUTION SYSTEM folder in the project navigator.

2. Mark the BackgroundTask.

3. Click the Program assignment tab.

4. Select the program.

5. Click the button >>.

6. Click Close.

See also
Assigning a sample program to an execution level (Page 337)

8.4.12 Starting sample program
To start a program, proceed as follows:

1. Make sure the LAD/FBD unit creates the additional debug code for program status during
compilation:
Open the Properties window for the LAD/FBD unit (see Defining the properties of an LAD/
FBD unit (Page 51)).

2. Activate the Permit program status compiler option on the Compiler tab as the local compiler
setting (see Local compiler settings (Page 54)) for this LAD/FBD unit.
See also the description relating to Effectiveness of local or global compiler settings (see
the SIMOTION ST Programming and Operating Manual).

3. Select Project > Save and recompile all.
The project is locally saved on the hard disk and compiled.

4. Select the Project > Connect to selected target devices menu command or click .
Online mode is activated.

5. Select the Target system > Load > Download project to target system menu command or
click .
The project data (including the sample program) and the data of the hardware configuration
are downloaded to the RAM of the target system.

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
356 Programming and Operating Manual, 07/2017, A5E33438246B

6. Select both networks and click the button for program status (CTRL+F7 shortcut) in the
LAD editor function bar (Page 26).
Monitoring the program execution (Page 298) is switched on.

7. Mark the SIMOTION device in the project navigator and select Target device > Operating
mode in the context menu.
The Operating mode window with the software switch for modes opens.

8. Click the RUN button in the software switch.
The SIMOTION device is in RUN mode. The sample program is run and the current paths/
signal paths are color-coded in accordance with the current signal values (Page 298).

Figure 8-43 Sample program is started

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 357

Application Examples
8.4 Position axis program

SIMOTION LAD/FBD
358 Programming and Operating Manual, 07/2017, A5E33438246B

Appendix A
A.1 Key combinations

The following key combinations are available:

With LAD/FBD editor open
Left/right arrow buttons
Up/down arrow buttons

With a selected operator: Navigation between the individual operators

Ctrl+down arrow button Selects previous network
Ctrl+up arrow button Selects next network
Ctrl+F7 Switches the program status (Page 297) function on and off
Ctrl+space Automatic completion (Autocomplete) (Page 30)
Pg Up Selects the network at the start of the visible editor area
Pg Dn Selects the network at the end of the visible editor area
Del Deletes an operator
Tab / Shift+Tab Jumps forward to next button / input field / jumps back to previous button / input field
Return Opens the input field of the current operand or confirms the entry made in the input field
Esc Aborts the entry while input field is open
Shift+F6 Switches between declaration table and editor area
Ctrl+Alt+H Opens the symbol input help dialog window

Window menu
Ctrl+Shift+F5 Rearranges all windows opened in this application in horizontal tiled format
Ctrl+Shift+F3 Rearranges all windows opened in this application in vertical tiled format
Ctrl+Tab Switches between windows of the working area

View menu
Ctrl+F11 Maximizes the working area
Ctrl+F12 Maximizes the detail view
Ctrl+Num+ Enlarges the contents of the working area
Ctrl+Num- Reduces the contents of the working area
F5 Updates the view

LAD/FBD unit menu
Ctrl+F4 Closes the LAD/FBD unit
Alt+Enter Displays the properties of the active/selected object for editing
Ctrl+B Accepts and compiles the active/selected object
Ctrl+R Inserts a new network

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 359

LAD/FBD program menu
Ctrl+F4 Closes the LAD/FBD program
Alt+Enter Displays the properties of the active/selected object for editing
Ctrl+B Accepts and compiles the active/selected object
Ctrl+R Inserts a new network
Ctrl+L Jump label ON/OFF
Ctrl+Shift+K Shows/hides the comment line
Ctrl+Shift+B Display options for boxes
Ctrl+T Symbol check and type update
Ctrl+F7 Program status On/Off
Alt+Shift+F8 Inserts a comparator
Alt+Shift+F9 Inserts an empty box
Ctrl+1 Switches to LAD
Ctrl+3 Switches to FBD

Edit menu
Ctrl+Z Undoes the last action (except: Save)
Ctrl+Y Redoes the last action which was undone
Ctrl+X Cuts a command
Ctrl+C Copies a command
Ctrl+V Inserts a command
Del Deletes selected commands in the LAD editor
F2 Renames the active/selected object
Alt+Enter Displays the properties of the active/selected object for editing
Ctrl+Alt+O Opens the selected object
Ctrl+A Selects all objects in the current window
Ctrl+F Local search
Ctrl+Shift+F Find in the project
F3 Find next (for local search)
Ctrl+H Local find and replace
Ctrl+Shift+G Find and replace in a project
Ctrl+J Next position (for search in the project)

Debug menu
F12 Activates or deactivates a set breakpoint
Ctrl+F8 Continues the program execution at the activated breakpoint
Ctrl+F10 Next step

LAD elements
Shift+F2 Inserts an NO contact
Shift+F3 Inserts an NC contact

Appendix
A.1 Key combinations

SIMOTION LAD/FBD
360 Programming and Operating Manual, 07/2017, A5E33438246B

LAD elements
Shift+F7 Inserts a coil
Shift+F8 Opens a branch
Shift+F9 Closes a branch

FBD elements
Shift+F2 Inserts an AND box
Shift+F3 Inserts an OR box
Shift+F4 Inserts an XOR box
Shift+F7 Assignment or jump
Shift+F8 Inserts a binary input
Shift+F9 Negates a binary input

A.2 Protected and reserved identifiers
Reserved identifiers may only be used as predefined. You may not declare a variable or data
type with the name of a reserved identifier.

There is no distinction between upper and lower case notation.

The ST programming language includes protected and reserved identifiers (see the SIMOTION
ST Programming and Operating Manual). The same list also applies to the LAD/FBD
programming languages. The LAD/FBD programming language also includes the protected
and reserved identifiers listed in the table.

You can find a list of all the identifiers whose meanings are predefined in SIMOTION in the
SIMOTION Basic Functions Function Manual.

Table A-1 Protected identifiers applicable only to the LAD/FBD programming language

A
ANDN
C
CAL
CALC

CALCN

J
JMP
JMPC

JMPCN

L
LD LDN
O
ORN
R
RET
RETC

RETCN

S

Appendix
A.2 Protected and reserved identifiers

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 361

ST STN
X
XORN

Appendix
A.2 Protected and reserved identifiers

SIMOTION LAD/FBD
362 Programming and Operating Manual, 07/2017, A5E33438246B

Index

-
-1.#IND, 293
-1.#INF, 291, 293
-1.#QNAN, 291, 293

"
"

Dereferencing, 139

:
:=, 138

?
?=, 139

_
_AdditionObjectType, 110
_CamTrackType, 110
_ControllerObjectType, 110
_device, 164
_direct, 140, 145, 164
_FixedGearType, 110
_FormulaObjectType, 110
_getcommandid

Advance signal switching, 192
_getSafeValue

Application, 164
_PathAxis, 110
_PathObjectType, 110
_quality, 151, 167
_SensorType, 110
_setSafeValue

Application, 164

1
1.#IND, 291
1.#INF, 291, 293
1.#QNAN, 291, 293

A
Activating

Automatic symbol check, 36
Type update, 36

Advance signal switching
_getcommandid, 192
Boolean, 192
Non-Boolean, 192

Advance switching, 192
AND box, 225
ANY, 106
ANY_BIT, 106
ANY_DATE, 106
ANY_ELEMENTARY, 106
ANY_INT, 106
ANY_NUM, 106
ANY_REAL, 106
ANYOBJECT, 110
Arithmetic operators, 259
Array element

Initial value, 99
Initialization value, 99
Variables, 98

Assignment, 228
Resetting, 230
Setting, 231

Autocomplete, 30
Automatic completion, 30
Automatic symbol check

activating, 36
Deactivating, 38
LAD/FBD editor, 33

Automatic syntax check
LAD/FBD elements, 80

Availability
I/O variable, 151

B
Backward compatibility, 63
Binary input

Inserting, 227
Negate, 227

Bit data types, 103, 241
BOOL, 103
Boolean advance signal switching, 192

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 363

Box type
Interface adjustment, 193
Selecting, 329

Breakpoint, 302
Activating, 312
Call path, 309, 311
Call stack, 315
Deactivating, 314
remove, 306
Setting, 306
Toolbar, 307

BYTE, 103

C
Call parameters

Making individual settings for LAD/FBD
elements, 88
Making settings for LAD/FBD elements, 89, 352,
354

Call path
Breakpoint, 309, 311
Call stack, 315
Program run, 295

CamType, 110
Change

LAD/FBD program creation type, 66
Changing

Colors, 40
Fonts, 40

Close
LAD/FBD program, 63
LAD/FBD unit, 47

Close parallel branch, 223
Code attributes, 203
Colors

Changing, 40
Command call

Drag-and-drop, 29
Command library, 91

Pasting in functions, 92
Pasting in LAD/FBD elements, 92
Special features, 94

Command name
Drag-and-drop, 29

Comment
Print, 68

Commissioning
Execution levels and tasks, 279

Commissioning (software)
Assigning programs to a task, 277

Downloading the project to the target
system, 281
Task start sequence, 280

Comparator, 237
Comparison operations

Comparator, 237
Overview, 237

Compiler
Global settings, 53
Local settings, 54

Compiling
Defining the order of the POU, 62
Detail view, 46, 63
LAD/FBD program, 63, 336, 355
LAD/FBD unit, 46

CONCAT, 245
Conductor bar

LAD/FBD elements, 74
Connections

Defining, 164
to LAD/FBD programs, 164
To libraries, 164
to MCC charts, 164
to ST source files, 164

Connector, 215, 229
CONSTANT, 112
Constants

Time specifications, 104
Context menu

LAD/FBD editor, 26
Subprogram call, 179, 186, 191

Conversion functions
Bit data types, 241
Date and time, 245
Numeric data types, 241
TRUNC, 240

Copy
LAD/FBD elements, 82

Copying
LAD/FBD network, 73
LAD/FBD source file, 47

Counter instructions
CTD down counter, 250
CTD_DINT down counter, 251
CTD_UDINT down counter, 251
CTU up counter, 247
CTU_DINT up counter, 248
CTU_UDINT up counter, 249
CTUD up/down counter, 252
CTUD_DINT up/down counter, 254
CTUD_UDINT up/down counter, 255
Overview, 247

Index

SIMOTION LAD/FBD
364 Programming and Operating Manual, 07/2017, A5E33438246B

Creation type, 66
Cross-reference list, 197

Displayed data, 198
Filtering, 200
Generating, 197
Single-step monitoring (MCC), 198
Sorting, 200
Trace (MCC), 198
TSI#currentTaskId, 198
TSI#dwuser_1, 198
TSI#dwuser_2, 198

Cut
LAD/FBD elements, 82

Cutting
LAD/FBD network, 73
LAD/FBD source file, 47

Cyclic program execution
Effect on I/O access, 140, 145, 153
Effect on variable initialization, 123

D
Data type list

Setting in declaration tables, 39
Data types

Bit data type, 103
elementary, 103
Enumeration, 108
Inheritance, 110
Interface adjustment, 193
Numeric, 103
STRING, 104
Structure, 107
Technology object, 109
Time, 104

DATE, 104
Date and time, 245
DATE_AND_TIME, 104
Deactivating

Automatic symbol check, 38
Type update, 38

Debug mode, 284, 303
Declaration

Scope, 96
declaration table

Comment, 101
Defining enumerations, 108
Defining structures, 107
Initial value, 99
Initialization value, 99

Declaration table
Declaring variables, 326, 350

Drag-and-drop, 28
Enlarging/reducing, 25
Field length and field element, 98
Implementation section, 107
Interface section, 107
Printing, 67
Scope of derived data types, 107
Setting the data type list, 39
show/hide, 25
Workbench, 23

Delete
LAD/FBD elements, 82
LAD/FBD program, 64

Deleting
LAD/FBD network, 74
LAD/FBD source file, 47

Derived data type
Enumeration, 108
Scope, 107
Structure, 107

Detail view
Workbench, 23

Detail View
Maximize, 24

Detail view
Compiling, 46, 63
Displaying, 335, 355

DINT, 104
DINT#MAX, 105
DINT#MIN, 105
Direct access, 140, 144

Properties, 141, 142, 143, 144
Rules for I/O variables, 147
Update, 142

Display
Detail view, 335, 355

Down counter
CTD, 250
CTD_DINT, 251
CTD_UDINT, 251

Download
Effect on variable initialization, 123

Drag&Drop
Elements in a network, 29

Drag-and-drop
Command call, 29
Command name, 29
from the declaration tables, 28
Function blocks from other sources, 30
Functions from other sources, 30
LAD/FBD elements, 28

Index

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 365

Variables, 27
within the declaration table, 28

DriveAxis, 109
DT, 104
DT_TO_DATE, 245
DT_TO_TOD, 245
DWORD, 103

E
Edge detection

F_TRIG, 246
Falling, 221, 235
Overview, 245
R_TRIG, 246
Rising, 222, 236
Scan edge 0 -> 1, 220, 234
Scan edge 1 -> 0, 219, 234

Editor area, 69
Elementary data types

Overview, 103
Empty box

Calling, 268
Inserting, 328
Selecting the box type, 329

Enumeration
Defining, 108
Example, 109

Error location, 63
Exclusive OR

Exclusive OR box, 226
Linking, 213

Execution system
Assigning programs to a task, 277, 337, 356
Execution levels and tasks, 279
Task start sequence, 280

EXP format, 50, 51
Exporting

Exporting a LAD/FBD unit in XML format, 48
LAD/FBD unit in EXP format, 50
POU in XML format, 49

ExternalEncoderType, 109

F
FBD, 22
FBD bit instructions

AND box, 225
Assignment, 228
Connector, 229
Edge detection (falling), 235

Edge detection (rising), 236
Exclusive OR box, 226
Insert binary input, 227
Negate binary input, 227
OR box, 226
Overview, 224
Prioritize reset flip-flop, 232
Prioritize set flip-flop, 233
Reset assignment, 230
Scan edge 0 -> 1, 234
Scan edge 1 -> 0, 234
Set assignment, 231

Field length
Variables, 98

Find
In LAD/FBD program, 205
In LAD/FBD unit, 205

Finding and replacing
In LAD/FBD program, 206
In LAD/FBD unit, 206

Flipflop
Priority reset, 232
Priority set, 233

Flip-flop
Priority reset, 217
Priority set, 218

Floating-point number
Data types, 103

FollowingAxis, 110
FollowingObjectType, 110
Fonts

Changing, 40
Function

Call via context menu, 179
Function (FC), 66

Example, 174
Inserting, 169
Using drag&drop for functions from other source
files, 30

Function block
Call via context menu, 186, 191

Function block (FB), 66
Inserting, 169
PLCopen block, 92
Using drag&drop for function blocks from other
source files, 30

Function block diagram, 22

G
General numeric standard functions, 261

Index

SIMOTION LAD/FBD
366 Programming and Operating Manual, 07/2017, A5E33438246B

General reference
define, 136
form, 137
Operations, 138

Global device user variables
Defining, 113

I
I/O variable

Availability, 151
Creating, 148, 163
Direct access, 140, 144
Process image, 140, 145
Process image of the BackgroundTask, 155
Rules, 147
Status, 151
Update, 142

Identifier
Rules for assigning names, 97

Identifiers
Reserved LAD/FBD, 361

Importing
Importing a LAD/FBD source file from XML
data, 49
LAD/FBD unit in EXP format, 51
POU in XML format, 50

Inheritance
For technology objects, 110

Initialization
Relay coil, output, 334
Time of the variable initialization, 123

Insert
Empty box, 328
LAD/FBD elements, 80, 332

Inserting
LAD/FBD elements, 343, 346
LAD/FBD program, 59, 324, 341
LAD/FBD unit, 43, 321, 341
TO-specific command, 343, 346

Instance variable
Interface adjustment, 193

INT, 104
INT#MAX, 105
INT#MIN, 105
Integer

Data types, 103
Interface adjustment

Detail view, 193
Manual update FB/FC call, 193
Restrictions, 193

Invert signal, 214

J
Jump label, 257

Showing/hiding in the LAD/FBD network, 73
Jump operations

Jump in block if 0, 257
Jump in block if 1, 256
Jump label, 257
Overview, 256

K
Know-how protection, 48

L
LAD, 21
LAD bit instructions

Close parallel branch, 223
Connector, 215
Edge detection (falling), 221
Edge detection (rising), 222
Invert signal, 214
Link exclusive OR, 213
NC contact, 212
NO contact, 212
Open parallel branch, 222
Overview, 211
Prioritize reset flip-flop, 217
Prioritize set flip-flop, 218
Relay coil, output, 214
Reset output, 216
Scan edge 0 -> 1, 220
Scan edge 1 -> 0, 219
Set output, 217

LAD/FBD editor
Automatic symbol check, 33
Calling up the online help, 41
Changing colors, 40
Changing fonts, 40
Context menu, 26
Display of networks, 69
Enlarging/reducing the view, 24
Menu bar, 26
moving to the foreground, 24
On-the-fly variables declaration, 118
Settings, 33
Shortcut, 27
Toolbars, 26

Index

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 367

Type update, 33
Workbench, 23

LAD/FBD elements, 69
Automatic syntax check, 80
Conductor bar, 74
Copying, 82
Cutting, 82
Deleting, 82
Display of box parameters, 83
Drag-and-drop, 28
Enable input (EN) of the LAD box, 76
Enable output (ENO) of the LAD box, 76
Entering parameters using Symbol Input Help, 82
FBD diagram definition, 77
Inserting, 80, 332, 343, 346
LAD diagram definition, 74
Ladder diagram line, 74
Parameter input, 82, 331, 333, 350
Rules for FBD statements, 77
Rules for LAD statements, 75
Selecting, 81
Setting call parameters, 352, 354
Setting individual call parameters, 88
Setting the call parameters, 89
Switchover: FBD to LAD representation, 79
Switchover: LAD to FBD representation, 78

LAD/FBD network, 69
Comment field, 72
copying, 73
cutting, 73
deleting, 74
Entering a title, 327
Numbering, 71
pasting, 70, 73, 327, 334
Redoing an action, 74
selecting, 71
Showing/hiding a jump label, 73
Title field, 72
Undoing an action, 74

LAD/FBD program, 22, 59, 66
Accept, 63
accepting, 336, 355
Assigning to an execution level, 337, 356
Changing the creation type, 66
Close, 63
compiling, 336, 355
Compiling, 63
Copying, 62
Define order, 62
Deleting, 64
Entering a title, 327
Find, 205

Find and replace, 206
Inserting, 59, 324, 341
Opening, 61
Pragma lines, 120
Printing, 66
Program status, 298
Properties, 64
Rename, 65
RUN, 338, 356
starting, 338, 356

LAD/FBD sample programs
"Blinker" LAD program, 319
"Position axis" FBD program, 340
Prerequisites, 319

LAD/FBD source file
copying, 47
cutting, 47
Define order, 62
deleting, 47
Export, 48
Importing, 48
Importing from XML data, 49
pasting, 48
Printing, 66
Rename, 53

LAD/FBD unit
Accept, 46
Close, 47
Compiling, 46
exporting in EXP format, 50
exporting in XML format, 48
Find, 205
Find and replace, 206
Importing in EXP format, 51
Inserting, 43, 321, 341
Know-how protection, 48
Local compiler settings, 54
Opening, 46
Pragma lines, 120
Program organization unit (POU), 43
SIMOTION device, 43
Toolbars, 26

Ladder diagram line
LAD/FBD elements, 74

Ladder logic, 21
LIMIT Limiting function, 275
Local search, 205
Logarithmic standard functions, 261
Logical operations

Non-binary logic, 258
LREAL, 104

Index

SIMOTION LAD/FBD
368 Programming and Operating Manual, 07/2017, A5E33438246B

M
MAX Maximum function, 274
MCC chart

Pragma lines, 120
MCC editor

On-the-fly variables declaration, 118
MCC unit

Pragma lines, 120
MeasuringInputType, 109
Menu bar

LAD/FBD editor, 26
Workbench, 23, 26

MIN Minimum function, 274
Monitoring variables

Variable status, 293
MOVE (Assign a value), 263
Move instructions

MOVE (Assign a value), 263

N
Name space, 166
NC contact, 212
Network, 69
Network range

Printing, 68
New

I/O variable, 148, 163
LAD/FBD program, 59
LAD/FBD unit, 43

NO contact, 212
Numeric data types, 103, 241
Numeric standard functions

General standard numeric functions, 261
Logarithmic standard functions, 261
Trigonometric standard functions, 262

O
Offline mode

Watch table, 292
Online help

LAD/FBD editor, 41
Online mode

Watch table, 292
On-the-fly variables declaration

LAD/FBD editor, 118
MCC editor, 118

Open parallel branch, 222

Opening
LAD/FBD program, 61
LAD/FBD unit, 46

Operating mode
Debug mode, 284, 303
Process mode, 283
Test mode, 283

OR box, 226
Output

Resetting, 216
Setting, 217

OutputCamType, 109

P
Parameter input

LAD/FBD elements, 82, 331, 333, 350
Technology-object-specific command, 350

Pasting
LAD/FBD network, 70, 73, 327, 334
LAD/FBD source file, 48

PLCopen block, 92
PosAxis, 110
Pragma lines

LAD/FBD program, 120
LAD/FBD unit, 120
MCC chart, 120
MCC unit, 120

Preprocessor
activating, 56
Using, 56

Print
Comments, 68
Declaration tables, 67
Defining print variants, 68
Empty pages, 69
LAD/FBD program, 66
LAD/FBD unit, 66
Network range, 68
Position networks, 69

Process image
Cyclic tasks, 145
principle and use, 140, 153
Properties, 141, 142, 143, 144
Rules for I/O variables, 147
Update, 142

Process image of the BackgroundTask, 140
Process image of the cyclic tasks, 140
Process mode, 283
Program control

Calling up an empty box, 268
RET Jump back, 268

Index

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 369

Program organization unit (POU), 22
Exporting in XML format, 49
Function (FC), 22
Function block (FB), 22
Importing in XML format, 50
LAD/FBD unit, 43
Program, 22

Program run, 295
Toolbar, 296

Program source, 22
LAD/FBD unit, 22
MCC source file, 22
ST source file, 22

Program status
Overview, 297
Starting and stopping, 298, 299

Program structure, 201
Project

Download, 281
Project comparison

Overview, 318
Project navigator

SIMOTION device, 43
Workbench, 23

Properties
LAD/FBD program, 64

R
REAL, 104
REF, 137
Reference, 109

define, 136
form, 137
general, 136
Operations, 138

Reference data, 197
References, 4
Relay coil, output, 214

Initialization, 334
Rename

LAD/FBD program, 65
LAD/FBD source file, 53

Replace
In LAD/FBD program, 206
In LAD/FBD unit, 206

Reserved identifiers, 361
RET Jump back, 268
RETAIN, 112
ROL Rotate bit to the left, 265
ROR Rotate bit to the right, 266

Rotation operations
Overview, 265
ROL Rotate bit to the left, 265
ROR Rotate bit to the right, 266

RUN
Effect on variable initialization, 123
LAD/FBD program, 338, 356

S
Scope of the declarations, 96
SEL Binary selection, 273, 276
Selecting

LAD/FBD elements, 81
LAD/FBD network, 71

Selection functions
LIMIT Limiting function, 275
MAX Maximum function, 274
MIN Minimum function, 274
MUX Multiplex function, 276
SEL Binary selection, 273

Sequential program execution
Effect on I/O access, 140, 144
Effect on variable initialization, 123

Settings
LAD/FBD editor, 33

Shifting operations
Overview, 263
SHL Shift bit to the left, 264
SHR Shift bit to the right, 264

SHL Shift bit to the left, 264
Shortcut

LAD/FBD editor, 27, 359
SHR Shift bit to the right, 264
SIMOTION device

LAD/FBD unit, 43
Project navigator, 43

SINT, 104
SINT#MAX, 105
SINT#MIN, 105
ST

_alarm, 167
_device, 167
_direct, 167
_project, 167
_task, 167
_to, 167

Starting
LAD/FBD program, 338, 356

Status
I/O variable, 151

Index

SIMOTION LAD/FBD
370 Programming and Operating Manual, 07/2017, A5E33438246B

STOP to RUN
Effect on variable initialization, 123

STRING, 104
StructAlarmId, 106
STRUCTALARMID#NIL, 107
StructTaskId, 106
STRUCTTASKID#NIL, 107
Structure

define, 107
Example, 108

Subprogram
Call via context menu, 179, 186, 191

Subroutine, 167
information exchange, 169

Switchover
FBD to LAD representation, 79
LAD to FBD representation, 78

Symbol browser, 288
Symbol Input Help

Labeling LAD/FBD elements, 82
System data types, 111
System functions

Inheritance, 110
System variables

Inheritance, 110

T
T#MAX, 105
T#MIN, 105
Task

Assigning programs to a task, 277
Cyclic tasks, 279
Effect on variable initialization, 123
Execution levels, 279
sequential tasks, 279
Start sequence, 280

Technology object
Data type, 109
Inheritance, 110

Technology-object-specific command
Parameter input, 350

TemperatureControllerType, 110
Test mode, 283
TIME, 104
Time types

Overview, 104
TIME#MAX, 105
TIME#MIN, 105
TIME_OF_DAY, 104
TIME_OF_DAY#MAX, 105
TIME_OF_DAY#MIN, 105

Timer instructions
TOF Switch-off delay, 271
TON Switch-on delay, 270
TP Pulse, 269

TO#NIL, 110
TOD, 104
TOD#MAX, 105
TOD#MIN, 105
TOF Switch-off delay, 271
TON Switch-on delay, 270
Toolbar

FBD editor, 26
LAD editor, 26
LAD/FBD editor, 26
LAD/FBD unit, 26
Workbench, 23

TO-specific command
Inserting, 343, 346

TP Pulse, 269
Trace, 295
Trigonometric standard functions, 262
TRUNC, 240
TSI#currentTaskId

Cross-reference list, 198
TSI#dwuser_1

Cross-reference list, 198
TSI#dwuser_2

Cross-reference list, 198
Type update

Activating, 36
Deactivating, 38

U
UDINT, 104
UDINT#MAX, 105
UDINT#MIN, 105
UINT, 104
UINT#MAX, 105
UINT#MIN, 105
Unit, 22
Up counter

CTU, 247
CTU_DINT, 248
CTU_UDINT, 249

Up/down counter
CTUD, 252
CTUD_DINT, 254
CTUD_UDINT, 255

User-defined data type
UDT, 107

USINT, 104

Index

SIMOTION LAD/FBD
Programming and Operating Manual, 07/2017, A5E33438246B 371

USINT#MAX, 105
USINT#MIN, 105

V
VAR, 112
VAR CONSTANT, 112
VAR OVERRIDE, 112
VAR_GLOBAL, 111
VAR_GLOBAL CONSTANT, 112
VAR_GLOBAL RETAIN, 112
VAR_IN_OUT, 112
VAR_INPUT, 112
VAR_OUTPUT, 112
VAR_TEMP, 112
Variable status

Monitoring variables, 293
Variable types, 94

Keywords, 111
Variables, 111

Defining, 112, 326, 350
Drag-and-drop, 27
Field length and field element, 98
Initial value, 99
Initialization value, 99
Local, 115
Process image, 140, 153
timing of initialization, 123
unit variable, 114
Watch table, 292

W
Watch table, 292

Creating, 292
Offline mode, 292
Online mode, 292
Overview, 292
Status and controlling variables, 292

WORD, 103
Work Area

Maximize, 24
Workbench

Declaration tables, 23
Detail view, 23
LAD/FBD editor, 23
Menu bar, 23, 26
Project navigator, 23
Tool bars, 23
Toolbars, 26
Working area, 23

Working area
Enlarging/reducing the view, 24
Workbench, 23

Index

SIMOTION LAD/FBD
372 Programming and Operating Manual, 07/2017, A5E33438246B

	SIMOTION LAD/FBD
	Legal information - Warning notice system
	Preface
	Table of contents
	1 Fundamental safety instructions
	1.1 General safety instructions
	1.2 Industrial security
	1.3 Danger to life due to software manipulation when using removable storage media

	2 Description
	2.1 Description
	2.2 What is LAD?
	2.3 What is FBD?
	2.4 Unit, program organization unit (POU) and program source

	3 LAD/FBD editor
	3.1 The LAD/FBD editor in the workbench
	3.2 Maximizing working area and detail view
	3.3 Enlarging or reducing the content of the working area
	3.4 Bringing the LAD/FBD editor to the foreground
	3.5 Hiding and displaying the declaration table
	3.6 Enlarging/reducing the declaration table
	3.7 Operation
	3.7.1 Operating the LAD/FBD editor
	3.7.2 Menu bar
	3.7.3 Context menu
	3.7.4 Toolbars
	3.7.5 Key combinations
	3.7.6 Drag&Drop of variables
	3.7.7 Drag&drop from the declaration tables
	3.7.8 Drag&drop within the declaration table
	3.7.9 Using Drag&Drop for LAD/FBD elements
	3.7.10 Command call drag&drop
	3.7.11 Drag&Drop of command names
	3.7.12 Using drag&drop for elements in a network
	3.7.13 Using drag&drop for functions and function blocks from other sources
	3.7.14 Automatic completion (Autocomplete)

	3.8 Settings
	3.8.1 Settings in the LAD/FBD editor
	3.8.2 Activating automatic symbol check and type update
	3.8.3 Example of a type update
	3.8.4 Example of a symbol check
	3.8.5 Deactivating automatic symbol check and type update
	3.8.6 Perform symbol check and type update at a specified time
	3.8.7 Setting the data type list of the declaration table
	3.8.8 Changing fonts
	3.8.9 Changing colors
	3.8.10 Calling online help in the LAD/FBD editor

	4 LAD/FBD programming
	4.1 Programming software
	4.2 Managing LAD/FBD source file
	4.2.1 Inserting a new LAD/FBD source file
	4.2.2 Opening an existing LAD/FBD source file
	4.2.3 Saving and compiling a LAD/FBD source file
	4.2.4 Closing a LAD/FBD source file
	4.2.5 Cut/copy/delete operations in a LAD/FBD source file
	4.2.6 Inserting a cut or copied LAD/FBD source file
	4.2.7 Know-how protection for LAD/FBD source files

	4.3 Exporting and importing LAD/FBD source files
	4.3.1 Exporting a LAD/FBD source file in XML format
	4.3.2 Importing LAD/FBD source files as XML data
	4.3.3 Exporting a POU in XML format
	4.3.4 Importing a POU from XML format
	4.3.5 Exporting a LAD/FBD source file in EXP format
	4.3.6 Importing EXP data into a LAD/FBD source file

	4.4 LAD/FBD source files - defining properties
	4.4.1 Defining the properties of a LAD/FBD source file
	4.4.2 Renaming a LAD/FBD source file
	4.4.3 Making settings for the compiler
	4.4.3.1 Global compiler settings
	4.4.3.2 Local compiler settings

	4.5 Managing LAD/FBD programs
	4.5.1 Inserting a new LAD/FBD program
	4.5.2 Opening an existing LAD/FBD program
	4.5.3 Defining the order of the LAD/FBD programs in the LAD/FBD source file
	4.5.4 Copying the LAD/FBD program
	4.5.5 Saving and compiling a LAD/FBD program
	4.5.6 Closing a LAD/FBD program
	4.5.7 Deleting the LAD/FBD program

	4.6 LAD/FBD programs - defining properties
	4.6.1 Renaming a LAD/FBD program
	4.6.2 Changing the LAD/FBD program creation type

	4.7 Printing source files and programs
	4.7.1 Printing a declaration table
	4.7.2 Printing a network area
	4.7.3 Printing comments
	4.7.4 Defining print variants
	4.7.5 Placing networks
	4.7.6 Blank pages

	4.8 LAD/FBD networks and elements
	4.8.1 Inserting networks
	4.8.2 Selecting networks
	4.8.3 Numbering the networks
	4.8.4 Enter title/comment
	4.8.5 Showing/hiding a jump label
	4.8.6 Copying/cutting/pasting networks
	4.8.7 Undo/redo actions
	4.8.8 Deleting networks

	4.9 Displaying LAD/FBD elements
	4.9.1 LAD diagram
	4.9.2 Meaning of EN/ENO
	4.9.3 FBD diagram
	4.9.4 Converting between LAD and FBD representation

	4.10 Editing LAD/FBD elements
	4.10.1 Inserting LAD/FBD elements
	4.10.2 Syntax check in LAD
	4.10.3 Selecting LAD/FBD elements
	4.10.4 Copy/cut/delete operations in LAD/FBD elements
	4.10.5 LAD/FBD elements - defining parameters (labeling)
	4.10.6 Labeling LAD/FBD elements with the symbol input help dialog
	4.10.7 Setting the LAD/FBD element display
	4.10.8 Select box type with empty box
	4.10.8.1 Specify the box type via the editable combo box
	4.10.8.2 Specify box type via call assistance

	4.10.9 Setting the call parameter for an individual parameter
	4.10.10 Setting call parameters

	4.11 Command library
	4.11.1 LAD/FBD functions in the command library
	4.11.2 Inserting elements/functions from the command library
	4.11.3 Description of PLCopen blocks
	4.11.4 Special features of the command library

	4.12 General information about variables and data types
	4.12.1 Overview of variable types
	4.12.2 Scope of the declarations
	4.12.3 Rules for identifiers
	4.12.4 Frequently used arrays in declarations
	4.12.4.1 Reference (as of kernel V4.5)
	4.12.4.2 Array length and array element
	4.12.4.3 Initial value
	4.12.4.4 Comments

	4.12.5 Sorting in the declaration tables

	4.13 Data Types
	4.13.1 Elementary data types
	4.13.1.1 Value range limits of elementary data types
	4.13.1.2 General data types
	4.13.1.3 Elementary system data types

	4.13.2 User-defined data types
	4.13.2.1 Defining user-defined data types (UDT)
	4.13.2.2 Scope of the data type declaration
	4.13.2.3 Defining structures
	4.13.2.4 Defining enumerations

	4.13.3 Technology object data types
	4.13.3.1 Description of the technology object data types
	4.13.3.2 Inheritance of the properties for axes

	4.13.4 System data types

	4.14 Variables
	4.14.1 Keywords for variable types
	4.14.2 Defining variables
	4.14.2.1 Use of global device variables
	4.14.2.2 Declaring a unit variable in the source file
	4.14.2.3 Declaring local variables
	4.14.2.4 Defining variables in the Variable declaration dialog box ("on-the-fly" variable declaration)
	4.14.2.5 Pasting pragma lines during variable definition

	4.14.3 Time of the variable initialization
	4.14.3.1 Initialization of retentive global variables
	4.14.3.2 Initialization of non-retentive global variables
	4.14.3.3 Initialization of local variables
	4.14.3.4 Initialization of static program variables
	4.14.3.5 Initialization of instances of function blocks (FBs) or classes
	4.14.3.6 Initialization of system variables of technology objects
	4.14.3.7 Version ID of global variables and their initialization during download

	4.14.4 Variables and HMI devices

	4.15 General references (as of kernel V4.5)
	4.15.1 Defining general references
	4.15.2 Forming general references
	4.15.3 Operations with general references

	4.16 Access to inputs and outputs (process image, I/O variables)
	4.16.1 Overview of access to inputs and outputs
	4.16.2 Important features of direct access and process image access
	4.16.3 Direct access and process image of cyclic tasks
	4.16.3.1 Address range of the SIMOTION devices
	4.16.3.2 Rules for I/O addresses for direct access and the process image of the cyclical tasks
	4.16.3.3 Creating I/O variables for direct access or process image of cyclic tasks
	4.16.3.4 Syntax for entering I/O addresses
	4.16.3.5 Possible data types of I/O variables
	4.16.3.6 Detailed status of the I/O variables (as of Kernel V4.2)

	4.16.4 Access to fixed process image of the BackgroundTask
	4.16.4.1 Common process image (as of Kernel V4.2)
	4.16.4.2 Separate process image (up to Kernel V4.1)
	4.16.4.3 Absolute access to the fixed process image of the BackgroundTask (absolute PI access)
	4.16.4.4 Syntax for the identifier for an absolute process image access
	4.16.4.5 Defining symbolic access to the fixed process image of the BackgroundTask
	4.16.4.6 Possible data types for symbolic PI access
	4.16.4.7 Example: Defining symbolic access to the fixed process image of the BackgroundTask
	4.16.4.8 Creating an I/O variable for access to the fixed process image of the BackgroundTask

	4.16.5 Accessing I/O variables

	4.17 Connections to other program source files or libraries
	4.17.1 Defining connections
	4.17.1.1 Procedure for defining connections to other program sources (units)
	4.17.1.2 Procedure for defining connections to libraries

	4.17.2 Using the name space

	4.18 Subroutine
	4.18.1 Inserting a function (FC) or function block (FB)
	4.18.2 Inserting a subroutine call into the LAD/FBD program and assigning parameters
	4.18.2.1 Overview of parameters for

	4.18.3 Example: Function (FC)
	4.18.3.1 Creating and programming the function (FC)
	4.18.3.2 Subroutine call of function (FC)
	4.18.3.3 Opening the function (FC) directly from the subroutine call

	4.18.4 Example: Function block (FB)
	4.18.4.1 Creating and programming the function block (FB)
	4.18.4.2 Subroutine call of function block (FB)
	4.18.4.3 Creating a function block instance
	4.18.4.4 Programming the subroutine call of the function block
	4.18.4.5 Opening the function block (FB) directly from the subroutine call
	4.18.4.6 Accessing the output parameters of the function block retrospectively

	4.18.5 Example: Method
	4.18.5.1 Example: Methods
	4.18.5.2 Subprogram call of the method
	4.18.5.3 Creating an instance for the class or the function block
	4.18.5.4 Programming the subprogram call of the method
	4.18.5.5 Opening the method directly from the subprogram call

	4.18.6 Limitations with advance signal switching
	4.18.7 Interface adjustment with FB/FC

	4.19 Reference data
	4.19.1 Cross reference list
	4.19.1.1 Generating and updating a cross-reference list
	4.19.1.2 Content of the cross-reference list
	4.19.1.3 Working with a cross-reference list
	4.19.1.4 Filtering the cross-reference list

	4.19.2 Program structure
	4.19.2.1 Content of the program structure

	4.19.3 Code attributes
	4.19.3.1 Code attribute contents

	4.19.4 Reference to variables

	4.20 Find and replace
	4.20.1 Find in LAD/FBD unit or LAD/FBD program
	4.20.2 Find and replace in LAD/FBD unit or LAD/FBD program

	4.21 Execution order
	4.21.1 Non-optimized execution order
	4.21.2 Optimized execution order

	5 Functions
	5.1 LAD bit logic instructions
	5.1.1 ---| |--- NO contact
	5.1.2 ---| / |--- NC contact
	5.1.3 XOR Linking EXCLUSIVE OR
	5.1.4 ---|NOT|--- Invert signal state
	5.1.5 ---() Relay coil, output
	5.1.6 ---(#)--- Connector (LAD)
	5.1.7 ---(R) Reset output (LAD)
	5.1.8 ---(S) Set output (LAD)
	5.1.9 RS Prioritize reset flipflop
	5.1.10 SR Prioritize set flipflop
	5.1.11 --(N)-- Scan edge 1 -> 0 (LAD)
	5.1.12 --(P)-- Scan edge 0 -> 1 (LAD)
	5.1.13 NEG edge detection (falling)
	5.1.14 POS edge detection (rising)
	5.1.15 Open branch
	5.1.16 Close branch

	5.2 FBD bit logic instructions
	5.2.1 & AND box
	5.2.2 >=1 OR box
	5.2.3 XOR EXCLUSIVE OR box
	5.2.4 --| Inserting a binary input
	5.2.5 --o| Negating a binary input
	5.2.6 [=] Assignment
	5.2.7 [#] Connector (FBD)
	5.2.8 [R] Reset assignment (FBD)
	5.2.9 [S] Set assignment (FBD)
	5.2.10 RS Prioritize reset flipflop
	5.2.11 SR Prioritize set flipflop
	5.2.12 [N] Scan edge 1 -> 0 (FBD)
	5.2.13 [P] Scan edge 0 -> 1 (FBD)
	5.2.14 NEG edge detection (falling)
	5.2.15 POS edge detection (rising)

	5.3 Relational operators
	5.3.1 Overview of comparison operations
	5.3.2 CMP Compare numbers

	5.4 Conversion instructions
	5.4.1 TRUNC Generate integer
	5.4.2 Generating numeric data types and bit data types
	5.4.3 Generating date and time

	5.5 Edge detection
	5.5.1 Detection of rising edge R_TRIG
	5.5.2 Detection of falling edge F_TRIG

	5.6 Counter operations
	5.6.1 Overview of counter operations
	5.6.2 CTU up counter
	5.6.3 CTU_DINT up counter
	5.6.4 CTU_UDINT up counter
	5.6.5 CTD down counter
	5.6.6 CTD_DINT down counter
	5.6.7 CTD_UDINT down counter
	5.6.8 CTUD up/down counter
	5.6.9 CTUD_DINT up/down counter
	5.6.10 CTUD_UDINT up/down counter

	5.7 Jump instructions
	5.7.1 Overview of jump operations
	5.7.2 ---(JMP) Jump in block if 1 (conditional)
	5.7.3 ---(JMPN) Jump in block if 0 (conditional)
	5.7.4 LABEL Jump label

	5.8 Non-binary logic
	5.9 Arithmetic operators
	5.10 Numeric standard functions
	5.10.1 General numeric standard functions
	5.10.2 Logarithmic standard functions
	5.10.3 Trigonometric standard functions

	5.11 Move
	5.11.1 MOVE Transfer value

	5.12 Shifting operations
	5.12.1 Overview of shifting operations
	5.12.2 SHL Shift bit to the left
	5.12.3 SHR Shift bit to the right

	5.13 Rotating operations
	5.13.1 Overview of rotating operations
	5.13.2 ROL Rotate bit to the left
	5.13.3 ROR Rotate bit to the right

	5.14 Program control instructions
	5.14.1 Calling up an empty box
	5.14.2 RET Jump back

	5.15 Timer instructions
	5.15.1 TP pulse
	5.15.2 TON ON delay
	5.15.3 TOF OFF delay

	5.16 Selection functions
	5.16.1 SEL Binary selection
	5.16.2 MAX Maximum function
	5.16.3 MIN Minimum function
	5.16.4 LIMIT Limiting function
	5.16.5 MUX Multiplex function

	6 Commissioning (software)
	6.1 Commissioning
	6.2 Assigning programs to a task
	6.3 Execution levels and tasks in SIMOTION
	6.4 Task start sequence
	6.5 Downloading programs to the target system

	7 Debugging Software / Error Handling
	7.1 Operating modes for program testing
	7.1.1 Modes of the SIMOTION devices
	7.1.2 Important information about the life-sign monitoring.
	7.1.3 Life-sign monitoring parameters

	7.2 Editing program sources in online mode
	7.3 Symbol Browser
	7.3.1 Characteristics
	7.3.2 Using the symbol browser

	7.4 Watch tables
	7.4.1 Monitoring variables in watch table

	7.5 Variable status
	7.6 Trace
	7.7 Program run
	7.7.1 Program run: Display code location and call path
	7.7.2 Program run parameters
	7.7.3 Program run toolbar

	7.8 Program status (monitoring program execution)
	7.8.1 Starting and stopping program status (monitoring program execution)

	7.9 Breakpoints
	7.9.1 General procedure for setting breakpoints
	7.9.2 Setting the debug mode
	7.9.3 Define the debug task group
	7.9.4 Setting breakpoints
	7.9.5 Breakpoints toolbar
	7.9.6 Defining the call path for a single breakpoint
	7.9.7 Defining the call path for all breakpoints
	7.9.8 Activating breakpoints
	7.9.9 Display call stack
	7.9.10 Resuming program execution
	7.9.11 Resuming program execution in single steps (as of Kernel V4.4)

	7.10 Task status function bar
	7.11 Project comparison

	8 Application Examples
	8.1 Examples
	8.2 Creating sample programs
	8.3 Blinker program
	8.3.1 Insert LAD/FBD source file
	8.3.2 Insert LAD/FBD program
	8.3.3 Entering variables in the declaration table
	8.3.4 Entering a program title
	8.3.5 Inserting network
	8.3.6 Inserting an empty box
	8.3.7 Selecting box type
	8.3.8 Parameterizing the ADD call-up
	8.3.9 Inserting comparator
	8.3.10 Labeling the comparator
	8.3.11 Initializing a coil
	8.3.12 Inserting next network
	8.3.13 Details view
	8.3.14 Compiling
	8.3.15 Assigning a sample program to an execution level
	8.3.16 Starting sample program

	8.4 Position axis program
	8.4.1 Insert LAD/FBD source file
	8.4.2 Insert LAD/FBD program
	8.4.3 Inserting a TO-specific command
	8.4.4 Connecting the enable inputs
	8.4.5 Entering variables in the declaration table
	8.4.6 Parameterization of the NO contacts
	8.4.7 Setting call parameters for the _MC_Power command
	8.4.8 Setting call parameters for the _MC_MoveRelative command
	8.4.9 Details view
	8.4.10 Compiling
	8.4.11 Assigning a sample program to an execution level
	8.4.12 Starting sample program

	A Appendix
	A.1 Key combinations
	A.2 Protected and reserved identifiers

	Index

