
Preface,
Contents

Creating PLC Blocks 1

Creating Faceplates 2

Creating Online Help 3

Creating a Library and Setup 4

Glossary, Index

SIMATIC

Programming Instructions,
Creating Blocks for PCS 7

Manual

Edition 01/2001
A5E00092264-01

01.02.2001

Copyright © Siemens AG 2001 All rights reserved

The reproduction, transmission or use of this document or its
contents is not permitted without express written authority.
Offenders will be liable for damages. All rights, including rights
created by patent grant or registration of a utility model or design,
are reserved.

Siemens AG
Bereich Automatisierungs- und Antriebstechnik
Geschaeftsgebiet Industrie-Automatisierungssysteme
Postfach 4848, D- 90327 Nuernberg

Disclaimer of Liability

We have che#ked the contents of this manual for agreement with
the hardware and software described. Since deviations cannot be
precluded entirely, we cannot guarantee full agreement. However,
the data in this manual are reviewed regularly and any necessary
corrections included in subsequent editions. Suggestions for
improvement are welcomed.

©Siemens AG 2001
Technical data subject to change.

Siemens Aktiengesellschaft A5E00092264

Safety Guidelines

This manual contains notices intended to ensure personal safety, as well as to protect the products and

connected equipment against damage. These notices are highlighted by the symbols shown below and

graded according to severity by the following texts:

! Danger
indicates that death, severe personal injury or substantial property damage will result if proper
precautions are not taken.

! Warning
indicates that death, severe personal injury or substantial property damage can result if proper
precautions are not taken.

! Caution
indicates that minor personal injury can result if proper precautions are not taken.

Caution
indicates that property damage can result if proper precautions are not taken.

Notice
draws your attention to particularly important information on the product, handling the product, or to a
particular part of the documentation.

Qualified Personnel

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are

defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and

systems in accordance with established safety practices and standards.

Correct Usage

Note the following:

! Warning
This device and its components may only be used for the applications described in the catalog or the

technical description, and only in connection with devices or components from other manufacturers

which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed
correctly, and operated and maintained as recommended.

Trademarks

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to trademarks might

infringe upon the rights of the trademark owners.

01.02.2001

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 iii

Preface

Purpose of the Programming Instructions

These Programming Instructions describe how to create PCS 7-compliant PLC
blocks or faceplates.

The essential differences between a PCS 7-compliant PLC block and a
straightforward S7 block are as follows:

• The option of monitoring parameter values in a faceplate

• The option of controlling parameter values and therefore the way the block
executes in a faceplate

• The option of sending messages relating to asynchronous events and block
states to the OS and to display these messages in a faceplate or a WinCC
message list.

Audience

These programming instructions are intended for developers of automation blocks
(PLC blocks) and/or faceplates that will be used and fully integrated in the same
systems as the PCS 7 process control blocks supplied by Siemens.

Requirements

To use these programming instructions, you therefore require experience in the
development and application of PLC blocks and faceplates and should be familiar
with the relevant hardware and software. These instructions describe only the
measures necessary to achieve conformity between blocks you have created
yourself and the PCS 7 blocks. Where necessary, you will find further information
in the documentation listed in the References at the end of this manual.

You will find general information on the use of PCS 7 components in the PCS 7
Configuration Manual.

01.02.2001

Preface

Programming Instructions, Creating Blocks for PCS 7
iv A5E00092264-01

General Outline

These programming instructions provide you with an overview of the individual
components of a PCS 7-compliant block. The order in which they are introduced is
the same order you would follow to develop function blocks and faceplates.

• You develop the "CONTROL" PLC block, a simple controller block, step by
step by first defining the block header, the parameters of the block and its local
variables. You then create the source code.

• The next step is to develop a faceplate. You create this with the WinCC
Graphics Designer and the elements of the Faceplate Designer.

• The last step is to develop an online help system for the block and then a
shippable library MYLIB made up of all the components.

As you work through the instructions, you will see the sections of the sample block
required to understand the current topic. Section 1.10 contains a printout of the
entire sample PLC block.

01.02.2001

Preface

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 v

Customer Support, Technical Support
Open round the clock, worldwide:

Johnson City

Nuremberg

Singapore

SIMATIC Hotline

Worldwide (Nuremberg)
Technical Support

Worldwide (Nuremberg)
Technical Support

(FreeContact)

Local time: Mo.-Fr. 7:00 to 17:00

Phone: +49 (180) 5050 222

Fax: +49 (180) 5050 223

E-mail: techsupport@
ad.siemens.de

GMT: +1:00

(charged, only with
SIMATIC Card)
Local time: Mo.-Fr. 0:00 to 24:00

Phone: +49 (911) 895-7777

Fax: +49 (911) 895-7001
GMT: +01:00

Europe / Africa (Nuremberg)
Authorization

America (Johnson City)
Technical Support and
Authorization

Asia / Australia (Singapore)

Technical Support and
Authorization

Local time: Mo.-Fr. 7:00 to 17:00

Phone: +49 (911) 895-7200

Fax: +49 (911) 895-7201

E-mail: authorization@
nbgm.siemens.de

GMT: +1:00

Local time: Mo.-Fr. 8:00 to 19:00

Phone: +1 423 461-2522

Fax: +1 423 461-2289

E-mail: simatic.hotline@
sea.siemens.com

GMT: -5:00

Local time: Mo.-Fr. 8:30 to 17:30

Phone: +65 740-7000

Fax: +65 740-7001

E-mail: simatic.hotline@
sae.siemens.com.sg

GMT: +8:00

English and German are spoken on all hotlines. On the authorization hotline, French, Italian and Spanish are also
spoken.

01.02.2001

Preface

Programming Instructions, Creating Blocks for PCS 7
vi A5E00092264-01

SIMATIC Customer Support Online Services
The SIMATIC Customer Support team provides you with comprehensive additional
information on SIMATIC products in its online services:

• You can obtain general current information:

- on the Internet at http://www.ad.siemens.de/simatic

• Current Product Information leaflets and downloads which you may find useful
for your product are available:

- on the Internet at http://www.ad.siemens.de/simatic-cs

- Via the Bulletin Board System (BBS) in Nuremberg (SIMATIC Customer
Support Mailbox) number +49 (911) 895-7100.

To access the mailbox, use a modem with V.34
(28.8 kilobauds) capability whose parameters you should set as follows: 8, N,
1, ANSI, or dial in using ISDN (x.75, 64 kbit/s).

• You can find your local contact for Automation & Drives in our contacts
database:

- On the Internet at http://www3.ad.siemens.de/partner/search.asp

01.02.2001

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 vii

Contents

1 Creating PLC Blocks

1.1 Requirements and Previous Experience...1-1
1.1.1 Supplied Sample Block ...1-1
1.2 Structure of a PLC Block...1-2
1.2.1 Settings for the SCL Compiler...1-3
1.2.2 Settings in the SIMATIC Manager...1-5
1.2.3 Block Header...1-6
1.2.4 Declaration Section ...1-11
1.2.5 Code Section...1-19
1.3 Initial Start ...1-20
1.4 Time Dependencies ..1-21
1.5 Handling Asynchronous Startup and Error OBs ...1-23
1.6 Operator Control and Monitoring and Messages..1-26
1.6.1 Message Suppression during Startup...1-31
1.6.2 Suppressing Specific Messages ...1-32
1.6.3 Compiling the Source File ...1-32
1.7 Configuring Messages ..1-33
1.8 Linking BATCH flexible ...1-36
1.9 Creating CFC Block Types..1-37
1.9.1 Example: CONTROL2...1-37
1.10 Naming Conventions and Numeric Range..1-38
1.11 Source Code of the Samples ..1-39

2 Creating Faceplates

2.1 Steps in Creating a Faceplate...2-1
2.1.1 Designing the Faceplate ...2-1
1.1.2 Configuring the Faceplate ...2-2
1.1.3 Testing the Faceplate..2-3
1.2 Creating Faceplates with the Faceplate Designer ..2-4
1.1.1 Templates of the Faceplate Designer ...2-4
1.1.2 Steps in Configuration...2-6
1.1.3 Preparing Faceplates for Dynamic Display...2-14
1.1.4 Changing Languages ..2-15

3 Creating Online Help

3.1 Structure of the Help File ..3-1
3.2 Structure of the Registry File...3-3

4 Creating a Library and Setup

4.1 Creating a Library..4-1
4.2 Creating a Setup ...4-2

Glossary

Index

01.02.2001

Contents

Programming Instructions, Creating Blocks for PCS 7
viii A5E00092264-01

01.02.2001

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-1

1 Creating PLC Blocks

1.1 Requirements and Previous Experience

The blocks described here are intended for use with PCS 7 V5.1 and higher on an
S7-4xx CPU. To create the blocks, you require the following software packages:

• STEP 7 standard, V5.1 or higher

• SCL Compiler, V5.1 or higher

• CFC, V5.1 or higher

PLC blocks for PCS 7 are created with the SCL programming language. This is
therefore the only method described in this manual. For further information on SCL,
refer to the following:

• The online help in the SIMATIC Manager
(start help on the optional packages > Programming Blocks with S7-SCL).

• The "S7-SCL for S7-300 and S7-400" manual

These manuals are installed on your hard disk (Start > Simatic >
Documentation).

1.1.1 Supplied Sample Block

The "CONTROL" block described here is supplied as the SCL source file
"S7_CONTA.SCL" (German) and "S7_CONTB.SCL" (English) with PCS7TOOLS
and installed in ...\STEP7\Examples\ZDt25_01 or\ZEn25_01 respectively.

To include the block in your project, follow the steps outlined below:

• Select the source folder in your project and then select Insert > External
Source.... In the "Insert External Source File" dialog box, navigate through the
folder structure to the location of the SCL source file, select the file, and then
click "Open".

The SCL source file is now in the source folder and must be compiled with the SCL
compiler.

Before you compile, make sure that the "OP_A_LIM" block (FB46) is located in the
block folder of your project. If this is not the case, copy it to your project from the
"PCS 7 Library\Technological Blocks" library.

• Double-click the "S7_CONTA or S7_CONTB" SCL source file to open it, start
the compilation, and close the SCL compiler again after error-free compilation.

The sample block FB501 is now located in the block folder of your project.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-2 A5E00092264-01

1.2 Structure of a PLC Block

A PLC block can only run correctly in the PCS 7 environment if it meets certain
formal criteria and has a certain minimum content. The following sections describe
what is necessary to meet these criteria.

The block diagram shown below shows the basic structure of the "CONTROL"
block (FB501). The individual elements of the block are explained in greater detail
in the sections shown in brackets.

Declaration section (see Section 1.2.4)

Block header (see Section 1.2.3)

Block parameters (see Section 1.2.4.1)

Local variables (see Section 1.2.4.2)

Code section (see Section 1.2.5)

Handling asynchronous startup and error
OBs (see Section 1.5)

Operator control and monitoring
(see Section 1.6)

Messages with ALARM_8P
(see Section 1.6)

Technological section
(see Section 1.6.1)

Initial start
(see Section 1.3)

Figure 1-1: Structure of the "CONTROL" (FB501) Sample Block

Function Block or Function?

If you want your block to save values, signal messages, or to be available for
operator control and monitoring, you must implement it as a function block (FB). An
FB has a "memory" in the form of a data block (DB), also known as instance data.

If you do not require this, you can implement your block as a function (FC).

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-3

1.2.1 Settings for the SCL Compiler

Settings for "Creating Blocks"

In the SCL compiler, you can set the following options with Options > Customize
> Create Block:

• Overwrite blocks

Existing blocks in the "Blocks" folder of an S7 program are overwritten if blocks
with the same name are created during compilation.

Blocks with the same name on the PLC are also overwritten when you
download the blocks.

If you do not select this option, you must confirm a message before the block is
overwritten.

• Display warnings

This option decides whether warnings are also indicated along with errors
following compilation.

• Display errors before warnings

This option decides whether errors are listed before warnings in the message.

• Generate reference data

Select this option if you want reference data to be generated automatically
when a block is created.

With the Options > Reference Data menu command, you can nevertheless
create or update the reference data later.

• Include system attribute "S7_server"

Select this option if you want the system attribute for the "S7_server"
parameter to be taken into account when a block is created. You assign this
attribute if the parameter is relevant for connection or message configuration.
The parameter contains the connection or message numbers.

Note for this sample block:

You must select the "Include system attribute ’S7_server’" check box since this
block contains messages. Otherwise, importing or inserting the block in a CFC
chart would be stopped with an error message.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-4 A5E00092264-01

Settings for "Compiler"

You can select or clear the following three check boxes in the dialog in the SCL
Compiler displayed with Options > Customize > Compiler:

• "Monitor array limits"

• "Create debug info"

• "Set OK flag"

The other check boxes should remain selected. For more detailed information on
the individual options, refer to the SCL manual.

When you decide whether or not to select these options, remember the following
points:

• Monitor array limits

If you use ARRAYs in the program, during run time a check is made to
determine whether the index and declared array lengths are within the
permitted range. An error changes the OK flag and the ENO output is reset.
This check takes up a considerable amount of run time.

If you use arrays, you should only leave this option selected until you have
adequately tested your block and are sure that the index and array length
match.

• Create debug info

This option allows a test to be made with the debugger after the program has
been compiled and downloaded to the CPU. This option does, however,
increase the memory required for the program and the run times on the PLC.
You should therefore only select this option during the test phase of the block
but not include it in the final version.

• Set OK flag

The OK flag is a system-internal variable. If an error occurs during execution of
an option, for example overflow with arithmetic operations, the OK flag is
changed by the system and passed to the ENO output. This check takes up a
considerable amount of run time. It is therefore advisable to disable the
automatic setting of the OK flag and to detect illegal operations/limit violations
in the block algorithm yourself. If an error occurs, you can then set the OK flag
explicitly if you want to interconnect the ENO output. (This is handled by the
system and does not mean any loss in performance since the state of the OK
flag is always passed to the output by the system.)

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-5

1.2.2 Settings in the SIMATIC Manager

In a PCS 7-compliant PLC block, the interface to the user (parameter names,
comments etc.) should be in English. You can develop the blocks themselves in
any language. The description and the samples relate to "English".

Selecting the Language

If you want to put your blocks together in a library (see also Chapter 4), the
language must also be set to English so that the folders in your library have PCS 7-
compliant names (Sources, Symbols and Blocks). To achieve this, you must set
"English" for the language and for the mnemonics in the SIMATIC Manager with
Options > Customize > Language.

Entry in the Symbol Table

The name of the block to be entered in the block header (as described below) must
be entered in the symbol table as the symbolic name.

To make this entry, open the symbol table in the S7 program by double-clicking
"Symbols". Enter the symbolic name (here: "CONTROL") in the "Symbol" column
and assign an FB number to it in the "Address" column (here: FB 501).
See also Section 1.10, Naming Conventions and Numeric Range.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-6 A5E00092264-01

1.2.3 Block Header

The block header contains the management information (known as block
attributes) of the block. These attributes are used by the PCS 7 tools for various
purposes. They are shown in the object properties of the block in the
SIMATIC Manager and can also be changed there (see also
KNOW_HOW_PROTECT attribute).

Excerpt from the Sample Block:

//Copyright (C) Siemens AG 1999. All Rights Reserved. Confidential
(***
 BRIEF DESCRIPTION:

 This block is a sample showing how to develop a PCS 7-compliant
 PLC block.

 It implements a simple control algorithm according to the formula:
 Manipulated variable = gain * (setpoint - actual value)

If the manipulated variable exceeds the upper alarm limit, the error output QH_ALM
is set. A message to the OS is also generated with ALARM_8P. The message can be
suppressed with the M_SUP_AH variable.

 If the manipulated variable falls below the lower alarm limit, the error output
QL_ALM
is set. A message to the OS is also generated with ALARM_8P. The message can be
suppressed with the M_SUP_AL variable.

 The block supports BATCH flexible and therefore has the required parameters
 BA_EN, BA_NA, BA_ID, OCCUPIED and STEP_NO.

 To indicate a time delay, the block has additional inputs:
 The SUPP_OUT output tracks the SUPP_IN input after a selectable wait time
SUPPTIME.
 ***)

//Author: ABC Date: 13.08.00 Vers.:1.00
//Modified: Date: Vers.:
//Change:

//**
// Block header
//**

FUNCTION_BLOCK "CONTROL"
TITLE = ’CONTROL’

{ // List of system attributes
S7_tasklist:= ’OB80,OB100’; // Block called if a time error occurs and at warm restart
S7_m_c:= ’true’; // Block can be controlled and monitored
S7_alarm_ui:= ’1’ // Setting for PCS 7 message dialog (’0’=standard message dialog)
}
AUTHOR: ABC
NAME: CONTROL
VERSION: ’0.01’
FAMILY: XYZ
KNOW_HOW_PROTECT

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-7

The following two screenshots show the object properties of the compiled sample
block with arrows showing the attributes of the block header.

FUNCTION_BLOCK

TITLE

Figure 1-2: Object Properties of the Block (Part 1)

• FUNCTION_BLOCK

Here you specify the name of the block with a maximum of 8 characters. This
name is displayed in the object properties of the block, in the detailed display in
the SIMATIC Manager, and in the CFC catalog. Before you compile the block,
a block number must be assigned to this name in the symbol table.

• TITLE

This information is not evaluated in PCS 7, however, it is displayed in the
SIMATIC Manager in the object properties of the block in the comment field.
Comments entered directly below this attribute are also displayed in the object
properties of the block in the comment box. All the other comments in the block
header can only be seen using the SCL editor.

It is advisable to enter the same name as for FUNCTION_BLOCK.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-8 A5E00092264-01

NAME

KNOW_HOW_PROTECT

FAMILY VERSION AUTHOR

Figure 1-3: Object Properties of the Block (Part 2)

• NAME

Here, enter the same name as for FUNCTION_BLOCK. If you intend to use an
online help, this name (and FAMILY) forms part of the key for locating the help
text of this block in the help file.

• VERSION

Here, enter a version identifier from 0.00 to 15.15.

• FAMILY

If you want to put your blocks together in a separate library and want to
arrange the blocks in various groups within the library, enter a family name for
the block with a maximum of 8 characters.

If you intend to use an online help, the FAMILY and NAME form part of the key
for locating the help text of the block in the help file.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-9

• AUTHOR

This attribute normally contains the name or department of the author of the
block. In PCS 7-compliant blocks, this is also used for two further purposes:

- If you want to put your blocks together to form a library, enter a common
name for all blocks of the library with a maximum of 8 characters.

- If you use an online help, the relevant help file is located using this name.

• KNOW_HOW_PROTECT

Using this attribute, you can protect the algorithm and the attributes of the
block from being viewed and modified. If this attribute is set, the attributes of
the block are only displayed in the SIMATIC Manager in the object properties
of the block but they cannot be modified. Outside your project, the block itself
can only be opened without the corresponding source file using the STL editor
and can no longer be opened with SCL. Even in this case, only the block
parameters are displayed. In your own project, the SCL compiler is started.

• List of System Attributes for Blocks

Using the system attributes, you prepare a block for the connection with the
OS. The attribute: S7_m_c, for example, specifies whether or not the block is
relevant for an OS; in other words, whether internal data structures will be
created for it on the OS. You can also control the installation of the block in an
SFC chart using the system attributes. The attribute S7_tasklist, for example,
specifies the OBs in which the block will be installed automatically.

Table 1-1: System Attributes for PCS 7-Compliant Blocks

System
Attribute

Meaning Default

S7_tasklist Contains a list of the OBs (for example error or
startup OBs) in which the block will be installed by
CFC.

Not installed more
than once

S7_m_c Specifies whether the block can be controlled or
monitored from an OS.

false

S7_alarm_ui Identifier for message server:
S7_alarm_ui :=’0’ standard message dialog
S7_alarm_ui :=’1’ PCS 7 message dialog

S7_alarm_ui :=’0’

S7_tag If this system attribute has the value ’false’, the
block is not entered in the tag list of the OS; in
other words, it cannot be selected for "Loop in
Alarm" on the OS. This is useful for blocks that only
send messages but do not have a faceplate.

false

The system attributes are displayed in the object properties of the block in the
"Attributes" tab in the SIMATIC Manager where they can also be modified if the
block is not write-protected (KNOW_HOW_PROTECT attribute in the block
header).

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-10 A5E00092264-01

Figure 1-4: System Attributes of the Block

Note:

You can display a complete list of system attributes in the context-sensitive help
and/or in the "Attributes for Blocks and Parameters" help topic.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-11

1.2.4 Declaration Section

1.2.4.1 Block Parameters

The block parameters define the interface of the block to other blocks and to the
operator control and monitoring tools (CFC, WinCC ...).

Parameter Types

The following parameter types exist:

• Input parameters

Input parameters must be specified for PCS 7-compliant blocks in the following
situations:

- You want to fetch parameter values from another block or

- You want to control parameters at the OS or

- You want to be able to influence the display of a faceplate on the OS using
parameters (for example limits for the displayed ranges) or

- You want to control parameters for test purposes when working in CFC or

- You want to set parameters to generate messages (message event ID of
the ALARM_8P block)

• Output parameters

Output parameters must be specified for PCS 7-compliant blocks in the
following situations:

- You want to pass parameter values to another block or

- You want to monitor parameters at the OS or

- You want to monitor parameters for test purposes when working in CFC

• In/out parameters

In/out parameters can be both read and written back by the block algorithm.
In/out parameters must be specified for PCS 7-compliant blocks when you
require a bumpless switchover between input values from the program (PLC)
and values entered by the operator (OS). To implement this functionality, you
require three parameters:

- An input parameter for switchover

- An input parameter for the connected value

- An in/out parameter for the value input by the operator. This parameter
must be an in/out parameter since the connected value must always be
written back to the value input by the operator. This ensures that the
switchover from the connected to the operator value is bumpless.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-12 A5E00092264-01

Comments for Parameters

If you want to add comments to the block parameters, these must be preceded by
"//" after the parameter definition.

Comments are displayed in the CFC chart in the object properties of the I/O and in
the object properties of the block in the "Inputs/Outputs" tab. They can also be
modified here regardless of the block protection (KNOW_HOW_PROTECT
attribute in the block header).

System Attributes for Parameters

Just like the block itself, block parameters can also be specified in greater detail
using system attributes.

This allows you to define the following:

- How the parameter is displayed on the OS.
Example: S7_unit defines the unit of the parameter (for example liters).
You can also display the text specified for this attribute in your faceplate.

- Whether and how the parameter is handled in CFC.
Example: S7_visible defines whether or not the parameter is displayed in
the CFC chart.

Table 1-2: System Attributes for Parameters for PCS 7-Compliant Blocks

System
Attribute

Affects Meaning Default

S7_sample-
time

Time
respon
se

If a parameter has this system attribute it is automatically
assigned the cycle time of the calling cyclic OB. When
you compile the CFC chart, the "Update sampling time"
check box must be selected (see also Section 1.4).

false

S7_dynamic CFC If a parameter has this system attribute, it is
automatically registered for testing in the test mode of
CFC.

false

S7_edit CFC This decides whether or not the parameter can be edited
in the SIMATIC Manager in the "Edit
Parameters/Signals" table (without opening the CFC
chart).

false

S7_link CFC This decides whether or not the parameter can be
interconnected in the CFC chart.

true

S7_param CFC This decides whether or not the parameter value can be
set in the CFC chart.

true

S7_visible CFC If this system attribute is set to ’false’ for a parameter, it
is not displayed in the CFC chart.

true

S7_m_c OCM This decides whether or not the parameter can be
controlled or monitored from an OS.

false

S7_shortcut OCM This contains a maximum 16 character long identifier for
the parameter. This name (for example "Setpoint"), can
also be displayed in a faceplate on the OS.

- -

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-13

System
Attribute

Affects Meaning Default

S7_string_0 OCM This system attribute is only relevant for input
parameters (or in/out parameters) of the data type
BOOL. It contains a text with a maximum of 16
characters that can be displayed in a faceplate as an
operator text (for example "Open Valve"). When the
operator selects this function, the parameter is given the
value 0.

- -

S7_string_1 OCM This system attribute is only relevant for input
parameters (or in/out parameters) of the data type
BOOL. It contains a text with a maximum of 16
characters that can be displayed in a faceplate as an
operator text (for example "Close Valve"). When the
operator selects this function, the parameter is given the
value 1.

- -

S7_unit OCM This contains the unit of the parameter and can have a
maximum of 16 characters. The unit (for example
"mbar") can be displayed in CFC at the block I/O.

- -

S7_server Server The interface parameter is assigned to a server.
Message server: S7_server:=’alarm_archiv’

No
server
call

S7_a_type No
server
call

The interface parameter is the message number input of
message type x or archive number input

- -

Using and Modifying System Attributes

When using the system attributes "S7_string_0" and "S7_string_1", remember the
following points:

The specified value can be displayed in the faceplate as an operator text. If the
operator executes the function, the value 0 or 1 is transferred to the PLC. In CFC,
the current value of the parameter is displayed. You can also adapt this value
output using the system attribute.

To do this, you divide the system attribute into two parts separated by an equality
character, for example, S7_string_1 := ’Suppress HH =YES’. CFC recognizes the
equality character and replaces the value output of the parameter by the section
following the equality character; in other words, in this case instead of the value 1
the word "YES" is output.

In CFC, a maximum of 8 characters are displayed even if you specify more. In the
faceplate, the entire text is always displayed, in this case, "Suppress HH =YES".

In CFC, the system attributes are displayed in the object properties of the I/O and
can also be modified there. The following screenshots show the object properties
of parameters of the data type BOOL and parameters that are not of the data type
BOOL (Figure 1-6). The screenshots include arrows indicating the relevant system
attributes.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-14 A5E00092264-01

Figure 1-5: Object Properties of Parameters of the BOOL Data Type

Figure 1-6: Object Properties of Parameters not of the BOOL Data Type

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-15

The following excerpt from the sample block shows the coding of the block
parameters:

//**
// Declaration Section: Block Parameters
//**
VAR_INPUT
SAMPLE_T {S7_sampletime:= ’true’; // Param. of block sampling time (cycle of task)
 S7_visible:=’false’; // Parameter not visible
 S7_link:= ’false’ // Parameter cannot be linked
 } :REAL := 1; // sample time [s] (default 1 sec)

 L_ALM {S7_m_c := ’true’; // Parameter has op cont and mon capability
 S7_visible:=’false’; // Parameter not visible
 S7_link := ’false’ // and cannot be linked
 } :REAL := 0; // lower alarm limit (default 0)

 H_ALM {S7_m_c := ’true’;
 S7_visible:=’false’;
 S7_link := ’false’} :REAL :=100; // upper alarm limit (default 100)

 M_SUP_AL {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_string_0:= ’Suppress LL=No’; // Operator text for value (M_SUP_AL)= 0
 S7_string_1:= ’Suppress LL=Yes’ // Operator text for value (M_SUP_AL)= 1
 } :BOOL; // suppress alarm low

 M_SUP_AH {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_string_0:= ’Suppress HH=No’;
 S7_string_1:= ’Suppress HH=Yes’
 } :BOOL; // suppress alarm high

 SP_OP_ON {S7_visible:=’false’;
 S7_dynamic:=’true’ // CFC in test/commissioning: display of actual value in PLC)
 } :BOOL := 1; // Enable 1=operator for setpoint input

 SPBUMPON {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_string_0:=’SP bumpless=Off’;
 S7_string_1:=’SP bumpless=On’
 }
 :BOOL := 1; // Enable 1=bumpless for setpoint on
 SP_EXTON {S7_visible:=’false’;
 S7_dynamic:=’true’ // CFC in test/commissioning: display of actual value in PLC)
 }
 :BOOL := 1; // 1: Select SP_EXT

 SP_EXT {S7_dynamic:=’true’}

 :REAL := 0; // External setpoint
 SP_HLM {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_shortcut:=’SP high limit’; // Text (max 16 chars) for display on OS
 S7_unit:=’’} // Unit (max 16 chars)
 :REAL := 100; // Setpoint high limit

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-16 A5E00092264-01

 SP_LLM {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_shortcut:=’SP low limit’;
 S7_unit:=’’}
 :REAL := 0; // Setpoint low limit

GAIN {S7_link:=’false’;
 S7_edit:=’para’; // Parameter setting in Import/Export Assistant (IEA)
 S7_m_c:=’true’;
 S7_shortcut:=’Gain’;
 S7_unit:=’’} :REAL := 1; // Proportional gain

 EV_ID {S7_visible:=’false’;
 S7_link:=’false’;
 S7_param :=’false’; // Parameter cannot be set in CFC
 S7_server:=’alarm_archiv’; // Message no. assigned by server
 S7_a_type:=’alarm_8p’ // Block signals with ALARM_8P
 } :DWORD := 0; // Message ID

 // Parameters for BATCH flexible
 STEP_NO {S7_visible := ’false’;
 S7_m_c := ’true’} :WORD; // Batch step number
 BA_ID {S7_visible := ’false’;
 S7_m_c := ’true’} :DWORD; // Batch ID
 BA_EN {S7_visible := ’false’; // Parameter not visible in CFC chart
 S7_m_c := ’true’ // Parameter has op cont and mon capability
 } :BOOL := 0; // Batch enable
 BA_NA {S7_visible := ’false’;
 S7_m_c := ’true’} :STRING[16] := ’’; // Batch name

 OCCUPIED {S7_visible := ’false’;
 S7_m_c := ’true’} :BOOL := 0; // Occupied by Batch

 RUNUPCYC {S7_visible:=’false’;
 S7_link:=’false’} :INT := 3; // Number of run up cycles
 SUPPTIME :REAL := 0; // Sample delay
 SUPP_IN :REAL := 0; // Input value for sample delay
END_VAR

VAR_OUTPUT
 LMN {S7_shortcut:=’pressure’; // Name of the parameter on OS
 S7_unit := ’mbar’; // Unit of the parameter
 S7_m_c := ’true’ // Can be monitored
 } :REAL; // Manipulated value

 QH_ALM :BOOL := false; // 1 = HH alarm active

 QL_ALM :BOOL := false; // 1 = LL alarm active

 QSP_HLM {S7_visible:=’false’;
 S7_dynamic:=’true’} : BOOL := 0; // 1=Setpoint output high limit active

 QSP_LLM {S7_visible:=’false’;
 S7_dynamic:=’true’} : BOOL := 0; // 1=Setpoint output low limit active

 Q_SP_OP {S7_visible:=’false’;
 S7_dynamic:=’true’;
 S7_m_c:=’true’} : BOOL := 0; // Status: 1=Operator may enter setpoint

 QOP_ERR {S7_visible:=’false’;
 S7_dynamic:=’true’} : BOOL := 0; // 1=Operator error

 QMSG_ERR {S7_visible:=’false’;
 S7_dynamic:=’true’} : BOOL := 0; // ALARM_8P: Error output

 MSG_STAT {S7_visible:=’false’;
 S7_dynamic:=’true’} : WORD := 0; // Message: STATUS output

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-17

 MSG_ACK {S7_visible:=’false’; S7_dynamic:=’true’} : WORD := 0; // Message: ACK_STATE output

 SUPP_OUT :REAL := 0; // Output value for sample delay
 SP {S7_dynamic:=’true’;
 S7_m_c:=’true’} : REAL := 0; // Active setpoint

END_VAR

VAR_IN_OUT
 PV_IN {S7_dynamic:=’true’;
 S7_m_c:=’true’;
 S7_unit:=’%’} : REAL := 0; // Process value (to AUX_PR04 of message)

 SP_OP {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_shortcut:=’Setpoint’;
 S7_unit:=’’} : REAL := 0; // Operator input setpoint

 // Freely assignable auxiliary values of ALARM_8P

 AUX_PR05 {S7_visible := ’false’} : ANY; // Auxiliary value 5
 AUX_PR06 {S7_visible := ’false’} : ANY; // Auxiliary value 6
 AUX_PR07 {S7_visible := ’false’} : ANY; // Auxiliary value 7
 AUX_PR08 {S7_visible := ’false’} : ANY; // Auxiliary value 8
 AUX_PR09 {S7_visible := ’false’} : ANY; // Auxiliary value 9
 AUX_PR10 {S7_visible := ’false’} : ANY; // Auxiliary value 10

END_VAR

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-18 A5E00092264-01

1.2.4.2 Local Variables

Additional variables that are not output in any way as block parameters must be
defined as local variables.

There are two types of local variables:

• Static variables

• Temporary variables

Static Variables

Static variables, in contrast to temporary variables, retain their value over multiple
block calls until you change the value in the block algorithm.

In PCS 7-compliant blocks, these variables are particularly important if you want to
call existing blocks, either your own or standard blocks, within your block. In this
case, you must implement a multiple instance block. This is done by defining an
instance of the called block within the static variables.

Before the calling block can be compiled free of errors, the called blocks must exist
in the block folder of the S7 program.

If you want to make parameters of the called block visible to the outside world and
interconnectable, you must copy the parameters from your block algorithm or into
parameters of your block. The parameters of the called block itself are not visible to
the outside world.

Multiple Instances

You will find examples of multiple instance applications in the section on the CFC
block types and in the relevant SCL code in the sample project.

Note:

Called SFBs and SFCs, such as SFC6 (RD_SINFO) or SFB0 (CTU) are found
automatically in the standard library and entered in your S7 program when you
compile the calling block.

Called FBs are copied to the block folder when you insert the calling block in a
CFC chart if they are located in the same library as the calling block. Otherwise,
you must copy them yourself.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-19

Temporary Variables

Temporary variables are valid only during one block call; in other words, they must
be recalculated at each block call.

Here, there are no special rules for PCS 7-compliant blocks.

Excerpt from the Sample Block:

//**
// Declaration Section: Temporary Variables
//**

VAR_TEMP
 // Start info: Structure with info for the OB that has just called the block
 TOP_SI: STRUCT
 EV_CLASS :BYTE;
 EV_NUM :BYTE;
 PRIORITY :BYTE;
 NUM :BYTE;
 TYP2_3 :BYTE;
 TYP1 :BYTE;
 ZI1 :WORD;
 ZI2_3 :DWORD;
 END_STRUCT;

// Start info: Structure with info for the last called startup OB
 START_UP_SI: STRUCT
 EV_CLASS :BYTE;
 EV_NUM :BYTE;
 PRIORITY :BYTE;
 NUM :BYTE;
 TYP2_3 :BYTE;
 TYP1 :BYTE;
 ZI1 :WORD;
 ZI2_3 :DWORD;
 END_STRUCT;

 S7DT :DATE_AND_TIME; // Local time variable
 DUMMY :INT; // Auxiliary variable
END_VAR

1.2.5 Code Section

The code section contains the actual algorithm of the block. With PCS 7-compliant
blocks, this means that you must implement not only the technological functions of
the blocks but also the properties, for example, to signal asynchronous events and
block states to the OS and to display them on the OS in a faceplate or WinCC
message list.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-20 A5E00092264-01

1.3 Initial Start

When your block is called for the first time, various parameters normally need to be
initialized. Depending on the technological function of your block, there may also
be other activities that your block needs to execute once. If this is the case in your
block, you must implement an initial start section.

You do this by defining a variable of the BOOL data type (for example
sbRESTART). You can implement the variables as static variables.

Since there is no guarantee that your block will be executed for the first time only
during a restart (for example after the block has been downloaded again with the
CPU in the RUN mode), it is normally necessary to integrate the initial start section
in the cyclic part of your block. This allows you to extend the execution of the initial
start, when necessary, over several call cycles of the block.

//**
// Dependence on Calling OB
//**

 // Read out start info with SFC6 (RD_SINFO)
 DUMMY := RD_SINFO (TOP_SI := TOP_SI, START_UP_SI := START_UP_SI);

 IF sbRESTART THEN
 // Initial start
 TOP_SI.NUM := 100; // Execute initial start as warm restart
 sbRESTART := FALSE; // Reset initial start
 END_IF;
// In which OB was the block called ?

 CASE WORD_TO_INT(BYTE_TO_WORD(TOP_SI.NUM)) OF

//**
// Handling error OBs
//**

 // OB80: time error
 80:
 QH_ALM := 0; // Reset error outputs
 QL_ALM := 0;

//**
// Startup
//**

 // OB100: Warm restart
 100:
 QH_ALM := 0; // Reset error outputs
 QL_ALM := 0;
 siRUNUPCNT := RUNUPCYC; // Save RUNUPCYC value
 ELSE
....

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-21

1.4 Time Dependencies

If your block is executed in a timed interrupt level in the constant scan time mode
and if it needs to evaluate the length of the interval to execute time-dependent
activities (for example controller blocks), define an input parameter (for example
SAMPLE_T) of the REAL data type at which the length of the time interval can be
specified.

Depending on the cyclic interrupt OB in which your block is called, these
parameters must be given new values. This makes sure that your block algorithm
always operates with the correct time.

If you give these parameters the system attribute S7_sampletime, and set this to
’true’, CFC automatically sets the value to match the calling OB. A scan rate is also
taken into account. You should also give the parameter the system attributes
S7_visible and S7_link and set them to ’false’. The parameter is then invisible
and cannot be interconnected in the CFC chart preventing its value being changed
accidentally by the user.

Automatic assignment of a value to the parameter by the CFC chart functions,
however, only when the "Update sampling time" check box is activated when the
program is compiled.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-22 A5E00092264-01

The following section of the sample block illustrates the implementation of a time-
dependent action. Using the SUPPTIME parameter, a wait time can be set in the
block. Changes at the SUPP_IN input are passed on to the SUPP_OUT output
once this wait time has elapsed.

//**
// Declaration Section: Block Parameters
//**
VAR_INPUT

 SAMPLE_T {S7_sampletime:= ’true’ // Block sampling time parameter (=cycle of the task)
 S7_visible:=’false’; // Parameter not visible
 S7_link:= ’false’ // Parameter cannot be linked
 } :REAL := 1; // sample time [s] (default 1 second)
....
END_VAR

//**
// Declaration Section: Static Variables
//**
VAR
....
 sSUPP_IN :REAL := 0; // Old value of sample delay input
 ACT_TIME :REAL := 0; // Time counter
....
END_VAR

VAR_OUTPUT
....
SUPP_OUT :REAL := 0; // Output value for sample delay
....
END_VAR

//**
// Technological Section
//**

 IF (SUPP_IN <> sSUPP_IN) THEN
 ACT_TIME := SUPPTIME; // Initialize time counter
 sSUPP_IN := SUPP_IN;
 END_IF;

 IF (ACT_TIME > 0) THEN // If wait time not yet elapsed
 ACT_TIME := ACT_TIME-SAMPLE_T; // Count down wait time
 ELSE
 SUPP_OUT := SUPP_IN; // Connect input to output
 END_IF;
....

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-23

1.5 Handling Asynchronous Startup and Error OBs

If an asynchronous event occurs, such as warm restart or removing/inserting a
module, rack failure and similar events, the PLC calls an asynchronous OB. If you
want your block to react to such an event, you must install your block in the
relevant OB and check whether such an event has occurred in the block algorithm.

Installation in Asynchronous OBs

To install your block in specific OBs, use the "S7_tasklist" system attribute. As the
value for this attribute, you then enter all the OBs you require (for example,
S7_tasklist := ’OB80,OB100’). When you insert the block in a CFC chart, CFC
automatically installs the block in the current cyclic interrupt OB and in all the OBs
specified by S7_tasklist.

Checking the Calling OB

To find out the OB in which your block is currently being executed, you must call
SFC6 (RD_SINFO) in the block algorithm. This reads the startup information of
your block and provides information about the currently active OB (parameter
TOP_SI) and the last startup OB to be called (parameter START_UP_SI).

The two parameters have identical structures that must both be defined in your
temporary variables. The elements of the structure have the following significance:

Table 1-3: TOP_SI and START_UP_SI Parameters

Structure Element Data Type Meaning

EV_CLASS BYTE Bits 0 to 3: Event ID

Bits 4 to 7: Event class

EV_NUM BYTE Event number

PRIORITY BYTE Priority class number

NUM BYTE Number of the calling OB

TYP2_3 BYTE Data ID for ZI2_3

TYP1 BYTE Data ID for ZI1

ZI1 WORD Additional info 1

ZI2_3 DWORD Additional info 2_3

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-24 A5E00092264-01

In terms of their content, the structure elements correspond to the temporary
variables of the calling OB. Depending on the OB, however, they can have different
names and data types. This means that you must assign the individual structure
elements to each other and evaluate them according to the relevant OB description
(refer to the "STEP 7 - System and Standard Functions manual). The following
table and excerpt from the sample block illustrate this based on the example of
OB80 (time error).
Table 1-4: Assignment of the Elements of the TOP_SI Startup Information to the

Temporary Variables of OB80

TOP_SI / STARTUP_SI OB80

Structure Element Data Type Temporary Variable Data Type

EV_CLASS BYTE OB80_EV_CLASS BYTE

EV_NUM BYTE OB80_FLT_ID BYTE

PRIORITY BYTE OB80_PRIORITY BYTE

NUM BYTE OB80_OB_NUMBR BYTE

TYP2_3 BYTE OB80_RESERVED_1 BYTE

TYP1 BYTE OB80_RESERVED_2 BYTE

ZI1 WORD OB80_ERROR_INFO WORD

OB80_ERR_EV_CLASS BYTE

OB80_ERR_EV_NUM BYTE

OB80_OB_PRIORITY BYTE

ZI2_3 DWORD

OB80_OB_NUM BYTE

Note:
• In its temporary variables, each OB contains the date and time of the call. These are,

however, not included in the startup information read with SFC6.

• PCS 7-compliant blocks are not installed in the hot restart OB (OB101).

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-25

The following excerpt from the sample block shows the way in which the OB is
handled:

//**
// Code Section
//**

 CASE WORD_TO_INT(BYTE_TO_WORD(TOP_SI.NUM)) OF

//**
// Handling error OBs
//**

 // OB80: time error
 80:
 QH_ALM := 0; // Reset error outputs
 QL_ALM := 0;

//**
// Startup
//**

 // OB100: Warm restart
 100:
 QH_ALM := 0; // Reset error outputs
 QL_ALM := 0;
 siRUNUPCNT := RUNUPCYC; // Save RUNUPCYC value
 ELSE

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-26 A5E00092264-01

1.6 Operator Control and Monitoring and Messages

A block whose parameters can be controlled and monitored by the operator at
the OS must be prepared for this connection to the OS. This involves both the
required parameters and the block itself.

Operator Control

If you want to control a parameter value solely from the OS, you require an in/out
or input parameter for the value to be controlled (with the system attribute
S7_m_c).

If, on the other hand, you want the option of either fetching a parameter value from
another block or setting the value at the OS and want the switchover from the
connected to operator-controlled value to be bumpless, you require a total of three
parameters as follows:

• An input parameter for switching over between operator input and
interconnected value

• An input parameter for the connected value

• An in/out parameter for the operator-controlled value (with the system attribute
S7_m_c). This parameter must be an in/out parameter since the
interconnected value for bumpless switchover from the block algorithm to the
operator-controlled value must be written back as long as the interconnected
value is selected.

All the operator input functions should be handled using the operator control blocks
of the "PCS 7 Technological Blocks" library and their corresponding operator input
method on the OS. All the required interlocks and the (optionally bumpless)
switchover between the operator control value and the interconnected value then
exist (for example, for manual/automatic switchover). You can install the operator
control blocks in your block using the multiple instance technique.

In PCS 7, for example, the OP_A_LIM (operation analog limited) block can be
used.

The OP_A_LIM block provides you with a limiting reaction to operator input. As an
alternative, you can use the OP_A_RJC block that the rejects the operator input if a
limit value would otherwise be violated. If you do not require a limit value check,
use the OP_A block.

Note:

The execution of a PLC block and faceplate is asynchronous; on other words,
when an operator enters a value in faceplate, the value is written to the instance
DB of the PLC block and evaluated later by the PLC block. Since the relevant
limits may already have changed at this point in time, the operator input value
should be checked for errors both on the PLC and on the OS.

For binary operator input, you can use the OP_D (FB48), OP_D3 (FB49) and
OP_TRIG (FB50) blocks of the PCS 7 "Technological Blocks" library (for further
information, refer to the online help).

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-27

The following excerpt shows the definition of an operator input:

//**
// Operator Input of Setpoint SP_OP (Real Value) or Connected Setpoint SP_EXT
//**

// Multiple instance call OP_A_LIM (for meaning of parameters, see online help OP_A_LIM)

 OP_A_LIM_1(U := SP_OP, U_HL:= SP_HLM, U_LL:= SP_LLM, OP_EN:= SP_OP_ON, BTRACK:=
SPBUMPON, LINK_ON:= SP_EXTON, LINK_U:= SP_EXT);

 OK := OK AND ENO; //Enter enable out of OP_A_LIM in OK flag of the block

 Q_SP_OP := OP_A_LIM_1.QOP_EN; // 1: Enable operator input of SP
 SP_OP := OP_A_LIM_1.U; // Write back setpoint

 QOP_ERR := OP_A_LIM_1.QOP_ERR; // 1: Operator error
 QSP_HLM := OP_A_LIM_1.QVHL; // 1: High limit
 QSP_LLM := OP_A_LIM_1.QVLL; // 1: High limit
 SP := OP_A_LIM_1.V; // Effective setpoint

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-28 A5E00092264-01

Messages

If you want your block to send messages and/or events to the OS, you can define a
multiple instance of an alarm block in the static variables. The properties of the
installed alarm block determine the message and acknowledgment response as well
the passing of auxiliary values.

The "Standard Library" contains ready-made alarm blocks as SFBs.
These, for example, include the following:

ALARM SFB33 Monitoring a signal with 1 to 10 auxiliary values with confirmation
prompt

ALARM_8 SFB34 Monitoring of up to 8 signals

ALARM_8P SFB35 Monitoring of up to 8 signals with 1 to 10 auxiliary values

NOTIFY SFB36 Monitoring a signal with 1 to 10 auxiliary values without
confirmation prompt

Entries in the Block Header

To allow the block to be controlled and/or monitored at the OS, first set the system
attribute "S7_m_c" to ’true’ in the list of system attributes in the block header. This
also applies to messages. To call the PCS 7 message dialog, enter the attribute
S7_alarm_ui := ’1’ in the block header (if you enter the value ’0’, the STEP 7-
compliant dialog is called).

Entries in the Declaration Section

To allow the parameters of your block to be controlled and monitored at the OS, set
the system attribute "S7_m_c" to ’true’ for each parameter of your block that you
want to control and monitor.

If you want your block to send messages and/or events to the OS, define an input
with the DWORD data type (here: EV_ID). In the instance DB, this input adopts the
message number automatically assigned by the system (message server).

The message number is unique in the entire S7 project so that there are no
collisions in projects involving several PLCs and operator stations. The numbers for
individual messages required by WinCC are derived from this message number
during data transfer.

For this input, specify the system attribute "S7_server" with the value ’alarm_archiv’
and the system attribute "S7_a_type" with the value ’alarm_8p’ (depending on the
message block you have actually installed).
The input should not be visible in the CFC chart and it should not be possible to
interconnect or assign parameters to the input to avoid accidentally changing data
assigned by the system.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-29

The following excerpt from the sample block illustrates the use of the system
attributes in the block header and for the input EV_ID that will receive the
message.

//**
// Block header
//**

FUNCTION_BLOCK "CONTROL"
TITLE= ’CONTROL’

{ // List of system attributes
S7_tasklist:= ’OB80,OB100’; // Block is called if there is a time error and at a
 // warm restart
S7_m_c:= ’true’; // Block can be controlled and monitored
S7_alarm_ui:= ’1’ // Setting for PCS 7 message dialog (’0’=standard dialog)
}
AUTHOR: ABC
NAME: CONTROL
VERSION: ’0.01’
FAMILY: XYZ
KNOW_HOW_PROTECT

//**
// Declaration Section: Block Parameters
//**

VAR_INPUT
.... // EVENT ID parameter for message no.
 EV_ID {S7_visible:=’false’; // Parameter not visible in CFC
 S7_link:=’false’; // Parameter cannot be linked in CFC
 S7_param :=’false’; // Parameter cannot be set in CFC
 S7_server:=’alarm_archiv’; // Message no. assigned by server
 S7_a_type:=’alarm_8p’ // Block signals with ALARM_8P
 } :DWORD := 0; // Message ID
...
END_VAR

The inputs of the ALARM block not required in the block can be applied to the
block interface to allow the later user further options for messages. If no further
action is taken, these messages are handled as process control messages and can
only be disabled by the message system of the OS. This also applies to unused a
auxiliary values. You can then use these in the messages as described in Section
1.7.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-30 A5E00092264-01

The following example shows the definition of ALARM_8P:

//**
// Declaration Section: Block Parameters
//**
....
 // Freely assignable auxiliary values of ALARM_8P
 AUX_PR05 {S7_visible := ’false’} : ANY; // Auxiliary value 5
 AUX_PR06 {S7_visible := ’false’} : ANY; // Auxiliary value 6
 AUX_PR07 {S7_visible := ’false’} : ANY; // Auxiliary value 7
 AUX_PR08 {S7_visible := ’false’} : ANY; // Auxiliary value 8
 AUX_PR09 {S7_visible := ’false’} : ANY; // Auxiliary value 9
 AUX_PR10 {S7_visible := ’false’} : ANY; // Auxiliary value 10
....

//**
// Declaration Section: Static Variables
//**
....
//**
// Declaration Section Multiple Instances
//**
 OP_A_LIM_1: OP_A_LIM; // Operator control block 1

 ALARM_8P_1: ALARM_8P; // Generation of max. 8 messages with max. 10 auxiliary values
...
//**
// Messages with ALARM_8P
//**

 // STRING variables must not be linked to ALARM8_P as auxiliary values
 // and are transferred as array of bytes

 FOR DUMMY := 1 TO 16
 DO
 sbyBA_NA[DUMMY] := 0; //Delete array as default
 END_FOR;

 DUMMY := BLKMOV (SRCBLK:= BA_NA,DSTBLK:=sbyBA_NA);
 swSTEP_NO := STEP_NO; // Batch step number (due to I/O aux val ALARM_8P)
 sdBA_ID := BA_ID; // Batch ID (due to I/O aux val ALARM_8P)

 ALARM_8P_1(EN_R := TRUE, // Update output ACK_STATE
 ID := 16#EEEE, // Data channel for messages (always 16#EEEE)
 EV_ID:= EV_ID, // Message number > 0
 SIG_1:= M_SUP_AH AND QH_ALM, // Signal to be monitored 1 -> high alarm message
 SIG_2:= M_SUP_AL AND QL_ALM, // Signal to be monitored 2 -> low alarm message
 SIG_3:= 0, // Signal to be monitored 3 -> no message
 SIG_4:= 0, // Signal to be monitored 4
 SIG_5:= 0, // Signal to be monitored 5
 SIG_6:= 0, // Signal to be monitored 6
 SIG_7:= 0, // Signal to be monitored 7
 SIG_8:= 0, // Signal to be monitored 8
 SD_1 := sbyBA_NA, // Auxiliary value 1
 SD_2 := swSTEP_NO, // Auxiliary value 2
 SD_3 := sdBA_ID, // Auxiliary value 3
 SD_4 := PV_IN, // Auxiliary value 4
 SD_5 := AUX_PR05, // Auxiliary value 5
 SD_6 := AUX_PR06, // Auxiliary value 6
 SD_7 := AUX_PR07, // Auxiliary value 7
 SD_8 := AUX_PR08, // Auxiliary value 8
 SD_9 := AUX_PR09, // Auxiliary value 9
 SD_10:= AUX_PR10); // Auxiliary value 10

 QMSG_ERR := ALARM_8P_1.ERROR; // ERROR status parameter
 MSG_STAT := ALARM_8P_1.STATUS; // STATUS status parameter
 MSG_ACK := ALARM_8P_1.ACK_STATE; // Current OS confirmation status
....

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-31

1.6.1 Message Suppression during Startup

If you want to reduce the load on the PLC during startup caused by the
simultaneous generation of several messages (by various blocks), define an input
parameter RUNUPCYC with the INT data type. With this parameter, you can
specify the number of startup cycles during which no message should be
generated. In the block algorithm, you then count the number of calls and enable
messages only after the set number of cycles has elapsed. The following excerpt
from the sample block illustrates how this is done.

//***
// Declaration Section: Block Parameters
//***
VAR_INPUT
...
 H_ALM {S7_m_c := ’true’;
 S7_visible:=’false’;
 S7_link := ’false’
 } :REAL :=100; // Upper alarm limit (default 100)
 L_ALM {S7_m_c := ’true’; // Parameter has op cont and mon capability
 S7_visible:=’false’; // Parameter not visible
 S7_link := ’false’ // and cannot be linked
 } :REAL := 0; // lower alarm limit (default 0)
...
 RUNUPCYC {S7_visible:=’false’;
 S7_link:=’false’} :INT := 3; // Number of run up cycles
END_VAR
//**
// Declaration Section: Static Variables
//**
VAR
...
siRUNUPCNT :INT := 0; // Counter for RUNUPCYC execution
...
END_VAR
//**
// Startup
//**
 // OB100: Warm restart
 100:
...
 siRUNUPCNT := RUNUPCYC; // Save RUNUPCYC value
...
//**
// Technological Section
//**
 IF siRUNUPCNT = 0 // RUNUPCYC cycle already elapsed ?
 THEN
 IF (LMN > H_ALM) THEN // If the manipulated variable violates the high alarm limit
 QH_ALM := 1; // set error output
 QL_ALM := 0; // reset error output

 ELSIF (LMN < L_ALM) THEN // If the manipulated variable violates the low alarm limit
 QL_ALM := 1; // set error output
 QH_ALM := 0; // reset error output
 ELSE
 QH_ALM := 0; // Reset error outputs
 QL_ALM := 0;

 END_IF;
 ELSE
 siRUNUPCNT := siRUNUPCNT - 1;
 END_IF;
 END_CASE;

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-32 A5E00092264-01

1.6.2 Suppressing Specific Messages

If you want to suppress specific messages that you expect to be otherwise
generated, you can use the technique explained below:

Define an input parameter with the BOOL data type in your block that is evaluated
in your block algorithm so that if the message is suppressed, the event is not
passed to the SIG input of the ALARM block.

In the following example, the inputs M_SUP_AL and M_SUL_AH are used to
suppress a single alarm:

//**
// Declaration Section: Block Parameters
//**

VAR_INPUT
.....

// Suppressing ALARM LOW
 M_SUP_AL {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_string_0:= ’Suppress LL=No’; // Operator text for value (M_SUP_AL)= 0
 S7_string_1:= ’Suppress LL=Yes’ // Operator text for value (M_SUP_AL)= 1
 } :BOOL // Suppress alarm low

// Suppressing ALARM HIGH
 M_SUP_AH {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_string_0:= ’Suppress HH=No’; // Operator text for value (M_SUP_AH)= 0
 S7_string_1:= ’Suppress HH=Yes’ // Operator text for value (M_SUP_AH)= 1
 } :BOOL; // Suppress alarm high
...
END_VAR

//***
// Messages with ALARM_8P
//***
.....
 ALARM_8P_1(EN_R := TRUE, // Update output ACK_STATE
 ID := 16#EEEE, // Data channel for messages (always 16#EEEE)
 EV_ID:= EV_ID, // Message number > 0
 SIG_1:= M_SUP_AH AND QH_ALM, // Signal to be monitored 1 -> high alarm message
 SIG_2:= M_SUP_AL AND QL_ALM, // Signal to be monitored 2 -> low alarm message
 SIG_3:= 0, // Signal to be monitored 3 -> no message
 SIG_4:= 0, // Signal to be monitored 4
.....
.....

1.6.3 Compiling the Source File

When you have completed programming, you compile the source file using the
SCL compiler. Select "File > Compile" or the click the Compile button in the toolbar.
Following error-free compilation, the FB501 block exists in the block folder of the
S7 program.

For more detailed information, refer to the "S7-SCL for S7-300 and S7-400"
manual.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-33

1.7 Configuring Messages

General

If you want your block to send messages to the OS, you must define the multiple
instance of an alarm block in the static variables.

With the ALARM_8 / ALARM_8P block, you can monitor up to 8 signals that you
specify as parameters in the alarm block. Each time it is called, the block records
the current state of the signals and sends a message to the OS the next time it is
called if one of the signals has changed.

Configuring Messages in the SIMATIC Manager

You can edit EV_ID in the SIMATIC Manager in the
Edit > Special Object Properties > Message dialog.

You can interlock individual parts of the messages (for example, message text,
message class etc.) to prevent changes; in other words, you can prevent the
message from being modified in the block instance when you install your block in a
CFC chart.

Figure 1-7 : Configuring Messages in the SIMATIC Manager

You first enter the texts for all the messages of this block. The individual texts
correspond to the user text blocks in AlarmLogging in WinCC.

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-34 A5E00092264-01

Origin:

Here, you can specify the origin of the message.

If you specify the keyword $$AKZ$$, the path of the hierarchy folder, the chart
name, and block name are obtained and entered in the OS message texts by the
PLC-OS connection configuration when the data are transferred.
Note: The PH path is entered only if the relevant hierarchy folders are included in
the name (properties of the plant hierarchy folder or settings for the PH).

OS area:

Here, you can specify the area assignment of the message.

If you enter the keyword $$AREA$$ as the area or make no entry here, the
corresponding attribute of the hierarchy folder is evaluated and entered in the OS
message texts by the PLC-OS connection configuration when the data are
transferred.

Batch ID:

Here, you can specify a batch ID for the message.

If you enter the batch ID, the corresponding attribute is evaluated and entered in
the "Charge Name" column in the message list of WinCC by the PLC-OS
connection configuration when the data are transferred. This is, however, not the
batch ID but rather the batch name. If you want your block to be suitable for the
BATCH flexible S7 optional package, you must enter @1%s@ here. With this
entry, the message includes the BATCH batch identifier as the first auxiliary value
(see also Section 1.8). If you do not use BATCH flexible, do not make any entry
here.

Message Classes

You can then specify the message class for each message. As soon as you click
on a message row in the message class column, the cell changes to a combo box
in which you can select the message class. Messages that are not used must have
the message class "< no message >". For more detailed information on handling
messages, refer to the WinCC documentation.

Enter a description of the cause of the error in the "Event text" column (maximum
40 characters including any auxiliary values) and whether or not the message must
be acknowledged individually in the "Individual acknowledgment" column (if the
check box is selected) or whether the message can be acknowledged by a group
acknowledgment.

In the "Locked" column (green key symbol), you decide whether the message text
can be modified by the user of the block (check box not selected) or whether the
message text is locked (check box selected).

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-35

Auxiliary Values for Messages

If you want additional information (for example, measured values) to be transferred
to the OS with the message, you must use an ALARM block that allows you to
specify auxiliary values (ALARM_8P = 10 auxiliary values). The values transferred
with the parameters SD_1 to SD_10 of the ALARM block can be included in the
message texts as follows:

@ Parameter number format statement @

In the example shown below, the value for the parameter SD_4 is displayed in
decimal format. The format statements that you can specify comply with C syntax.

@4%d@

Languages

If you want your messages displayed in various languages (depending on the
language selection in ALARM Logging in WinCC), you must configure them for
each required language by selecting the "Options >Translating Text > User
texts" dialog in the SIMATIC Manager. Enter the texts you require in the relevant
language columns in the table displayed.

Figure 1-8: Translating Message Texts

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-36 A5E00092264-01

1.8 Linking BATCH flexible

If you want to use your blocks with the "BATCH flexible" S7 optional package,
define the following input and in/out parameters:

 Parameter Name Meaning Parameter
Type

 Data type

BA_EN BATCH enable INPUT BOOL

BA_NA BATCH batch name INPUT STRING [16]

BA_ID Consecutive batch number INPUT DWORD

OCCUPIED BATCH occupied ID INPUT BOOL

STEP_NO BATCH step number INPUT WORD

Excerpt from the sample block:

//**
// Declaration Section: Block Parameters
//**
VAR_INPUT
....
 // Parameters for BATCH flexible
 STEP_NO {S7_visible := ’false’;
 S7_m_c := ’true’}

:WORD; // Batch step number
 BA_ID {S7_visible := ’false’;
 S7_m_c := ’true’}

:DWORD; // Batch ID
 BA_EN {S7_visible := ’false’; // Parameter not visible in CFC chart
 S7_m_c := ’true’ // Parameter has op cont and mon capability, but

 // is only monitored for binary change
 } :BOOL := 0; // Batch enable

 BA_NA {S7_visible := ’false’;
 S7_m_c := ’true’}
 :STRING[16] := ’’; // Batch name

 OCCUPIED {S7_visible := ’false’;
 S7_m_c := ’true’}

:BOOL := 0; // Occupied by batch
....
END_VAR

To generate messages in a block such as the one shown above, you must use the
inputs BA_NA, STEP_NO and BA_ID (in this order) as auxiliary values .

The auxiliary values have the following significance:

 Associated
Value

 Meaning

1 BATCH batch name BA_NA

2 BATCH step number STEP_NO

3 BATCH: consecutive batch number BA_ID

4 to 7 Block-specific significance or free for the user

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-37

1.9 Creating CFC Block Types

In contrast to programming with SCL in which the variables are declared and
assignments are programmed, CFC is based on the interconnection of graphic
objects. This means that you can develop new blocks by positioning and
interconnecting existing blocks. This is therefore a typical application of the multiple
instance technique.

The following description represents an overview and explains the basic
procedures. For a detailed description of creating blocks in CFC, refer to the "CFC
for S7" manual or the CFC online help.

1.9.1 Example: CONTROL2

The existing sample block "CONTROL" will be extended by adding a multiplier. The
process value will be formed by multiplying two input values (IN1 and IN2). The
extended block will be generated as CONTROL2 (FB601).

To extend a block:

• Open a new CFC chart and place the sample block CONTROL in it.

• From the CFC library \ELEMENTA, drag a multiplier MUL_R (FC63) to the
chart.

• Interconnect the "OUT" output of MUL_R with the process value (parameter
"PV_IN") of the sample block.

• Open the view of the chart I/Os "Chart Inputs/Outputs" in the chart and select
the symbol "IN" in the "Interface" window.

• Interconnect the inputs "IN1"and "IN2" of MUL_R with the chart I/Os; drag the
block I/O to the chart I/O (right hand window).

• Interconnect all inputs and outputs of the sample block (except for the process
value that is already interconnected) with the chart I/Os of the CFC chart.

• Compile the CFC chart as a block in the "Chart > Compile > Chart as Block
Type" dialog.

- Enter the FB number (in this case, 601) in the "General" tab. Then enter
the other properties in the relevant fields: Family, Author, Version. The
name of the CFC chart has already been entered in the Name (header)
field.

- Enter the block attributes and system attributes you require in the
"Attributes" tab. Do not specify the "S7_tasklist" system attribute here (refer
to the following rule).

- Start compilation with "OK".

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-38 A5E00092264-01

Installation rule:

The CFC block type is installed in every OB contained in the task lists of the blocks
it contains; in other words, its task list is made up of the task list of its blocks. The
blocks contained in the block type are themselves only called in the OBs listed in
their own task list. In the example shown here, this means the following:

The sample block CONTROL has the task list "S7_tasklist = ’OB80,OB100’ ".

The multiplier MUL_R has no task list.

The CFC block type therefore has the task list "S7_tasklist = ’OB80,OB100’ ". Only
CONTROL is called, however, in OB80 and OB100 but not MUL_R.

1.10 Naming Conventions and Numeric Range

Numeric Range

To prevent conflicts with the process control PCS 7 blocks supplied by Siemens,
you should start numbering your blocks starting at number 501. When selecting
the block numbers for your blocks, you should also keep in mind the performance
data of the CPU types supported by your library.

Names

When naming your block parameters, you should keep to the following rule:

Binary outputs begin with Q, for example, QH_ALM or Q_L_ALM

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-39

1.11 Source Code of the Samples

//Author: ABC Date: 13.08.00 Vers.:1.00
//Modified: Date: Vers.:
//Change:

//**
// Block header
//**

FUNCTION_BLOCK "CONTROL"
TITLE = ’CONTROL’
{ // List of system attributes
S7_tasklist:= ’OB80,OB100’; // Block called if a time error occurs and at warm restart
S7_m_c:= ’true’; // Block can be controlled and monitored
S7_alarm_ui:= ’1’; // Setting for PCS 7 message dialog (’0’=standard message dialog)
}
AUTHOR: ABC
NAME: CONTROL
VERSION: ’0.01’
FAMILY: XYZ
KNOW_HOW_PROTECT

//**
// Declaration Section: Block Parameters
//**

VAR_INPUT
 SAMPLE_T {S7_sampletime:= ’true’; // Param. of block sampling time (cycle of task)
 S7_visible:=’false’; // Parameter not visible
 S7_link:= ’false’ // Parameter cannot be linked
 } :REAL := 1; // sample time [s] (default 1 sec)

 L_ALM {S7_m_c := ’true’; // Parameter has op cont and mon capability
 S7_visible:=’false’; // Parameter not visible
 S7_link := ’false’ // and cannot be linked
 }
 :REAL := 0; // Lower alarm limit (default 0)
 H_ALM {S7_m_c := ’true’;
 S7_visible:=’false’;
 S7_link := ’false’} :REAL :=100; // upper alarm limit (default 100)

 M_SUP_AL {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_string_0:= ’Suppress LL=No’; // Operator text for value (M_SUP_AL)= 0
 S7_string_1:= ’Suppress LL=Yes’ // Operator text for value (M_SUP_AL)= 1
 } :BOOL; // suppress alarm low

 M_SUP_AH {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_string_0:= ’Suppress HH=No’;
 S7_string_1:= ’Suppress HH=Yes’
 } :BOOL; // suppress alarm high

 SP_OP_ON {S7_visible:=’false’;
 S7_dynamic:=’true’ // CFC in test/commissioning: display of actual value in PLC)
 }
 :BOOL := 1; // Enable 1=operator for setpoint input

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-40 A5E00092264-01

 SPBUMPON {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_string_0:=’SP bumpless=Off’;
 S7_string_1:=’SP bumpless=On’
 }
 :BOOL := 1; // Enable 1=bumpless for setpoint on
 SP_EXTON {S7_visible:=’false’;
 S7_dynamic:=’true’ // CFC in test/commissioning: display of actual value in PLC)
 }
 :BOOL := 1; // 1: Select SP_EXT

 SP_EXT {S7_dynamic:=’true’}

 :REAL := 0; // External setpoint
 SP_HLM {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_shortcut:=’SP high limit’; // Text (max 16 chars) for display on OS
 S7_unit:=’’} // Unit (max 16 chars)
 :REAL := 100; // Setpoint high limit

 SP_LLM {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_shortcut:=’SP low limit’;
 S7_unit:=’’}
 :REAL := 0; // Setpoint low limit

 GAIN {S7_link:=’false’;
 S7_edit:=’para’; // Parameter setting in Import/Export Assistant (IEA)
 S7_m_c:=’true’;
 S7_shortcut:=’Gain’;
 S7_unit:=’’}
 :REAL := 1; // Proportional gain

 EV_ID {S7_visible:=’false’;
 S7_link:=’false’;
 S7_param :=’false’; // Parameter cannot be set in CFC
 S7_server:=’alarm_archiv’; // Message no. assigned by server
 S7_a_type:=’alarm_8p’ // Block signals with ALARM_8P
 } :DWORD := 0; // Message ID

 // Parameters for BATCH flexible
 STEP_NO {S7_visible := ’false’;
 S7_m_c := ’true’} :WORD; // Batch step number
 BA_ID {S7_visible := ’false’;
 S7_m_c := ’true’} :DWORD; // Batch ID
 BA_EN {S7_visible := ’false’; // Parameter not visible in CFC chart
 S7_m_c := ’true’ // Parameter has op cont and mon capability
 } :BOOL := 0; // Batch enable

 BA_NA {S7_visible := ’false’;
 S7_m_c := ’true’} :STRING[16] := ’’; // Batch name

 OCCUPIED {S7_visible := ’false’;
 S7_m_c := ’true’} :BOOL := 0; // Occupied by Batch

 RUNUPCYC {S7_visible:=’false’;
 S7_link:=’false’} :INT := 3; // Number of run up cycles
 SUPPTIME :REAL := 0; // Sample delay
 SUPP_IN :REAL := 0; // Input value for sample delay
END_VAR

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-41

VAR_OUTPUT
 LMN {S7_shortcut:=’pressure’; // Name of the parameter on OS
 S7_unit := ’mbar’; // Unit of the parameter
 S7_m_c := ’true’ // Can be monitored
 } :REAL; // Manipulated value

 QH_ALM :BOOL := false; // 1 = HH alarm active

 QL_ALM :BOOL := false; // 1 = LL alarm active

 QSP_HLM {S7_visible:=’false’;
 S7_dynamic:=’true’} : BOOL := 0; // 1=Setpoint output high limit active

 QSP_LLM {S7_visible:=’false’;
 S7_dynamic:=’true’} : BOOL := 0; // 1=Setpoint output low limit active

 Q_SP_OP {S7_visible:=’false’;
 S7_dynamic:=’true’;
 S7_m_c:=’true’} : BOOL := 0; // Status: 1=operator may enter setpoint

 QOP_ERR {S7_visible:=’false’;
 S7_dynamic:=’true’} : BOOL := 0; // 1=operator error

 QMSG_ERR {S7_visible:=’false’;
 S7_dynamic:=’true’} : BOOL := 0; // ALARM_8P: Error output

 MSG_STAT {S7_visible:=’false’;
 S7_dynamic:=’true’} : WORD := 0; // Message: STATUS output

 MSG_ACK {S7_visible:=’false’;
 S7_dynamic:=’true’} : WORD := 0; // Message: ACK_STATE output

 SUPP_OUT :REAL := 0; // Output value for sample delay
 SP {S7_dynamic:=’true’;
 S7_m_c:=’true’} : REAL := 0; // Active setpoint

END_VAR

VAR_IN_OUT
 PV_IN {S7_dynamic:=’true’;
 S7_m_c:=’true’;
 S7_unit:=’%’} : REAL := 0; // Process value (to AUX_PR04 of message)

 SP_OP {S7_visible:=’false’;
 S7_link:=’false’;
 S7_m_c:=’true’;
 S7_shortcut:=’Setpoint’;
 S7_unit:=’’} : REAL := 0; // Operator input setpoint

 // Freely assignable auxiliary values of ALARM_8P

 AUX_PR05 {S7_visible := ’false’} : ANY; // Auxiliary value 5
 AUX_PR06 {S7_visible := ’false’} : ANY; // Auxiliary value 6
 AUX_PR07 {S7_visible := ’false’} : ANY; // Auxiliary value 7
 AUX_PR08 {S7_visible := ’false’} : ANY; // Auxiliary value 8
 AUX_PR09 {S7_visible := ’false’} : ANY; // Auxiliary value 9
 AUX_PR10 {S7_visible := ’false’} : ANY; // Auxiliary value 10

END_VAR

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-42 A5E00092264-01

//**
// Declaration Section: Static Variables
//**
VAR

 sbRESTART :BOOL := TRUE; // Initial start memory bit
 siRUNUPCNT :INT := 0; // Counter for RUNUPCYC execution
 sSUPP_IN :REAL := 0; // Old value of sample delay input
 ACT_TIME :REAL := 0; // Time counter

 swSTEP_NO :WORD; // Batch step number
 sdBA_ID :DWORD; // Batch ID

 sbyBA_NA :ARRAY[1..16] OF BYTE := 16(0);

//**
// Declaration Section Multiple Instances
//**
 OP_A_LIM_1: OP_A_LIM; // Operator control block 1

 ALARM_8P_1: ALARM_8P; // Generation of max. 8 messages with max. 10 auxiliary
values
END_VAR

//**
// Declaration Section: Temporary Variables
//**

VAR_TEMP
 // Start info: Structure with info for the OB that has just called the block
 TOP_SI: STRUCT
 EV_CLASS :BYTE;
 EV_NUM :BYTE;
 PRIORITY :BYTE;
 NUM :BYTE;
 TYP2_3 :BYTE;
 TYP1 :BYTE;
 ZI1 :WORD;
 ZI2_3 :DWORD;
 END_STRUCT;

// Start info: Structure with info for the last called startup OB
 START_UP_SI: STRUCT
 EV_CLASS :BYTE;
 EV_NUM :BYTE;
 PRIORITY :BYTE;
 NUM :BYTE;
 TYP2_3 :BYTE;
 TYP1 :BYTE;
 ZI1 :WORD;
 ZI2_3 :DWORD;
 END_STRUCT;

 S7DT :DATE_AND_TIME; // Local time variable
 DUMMY :INT; // Auxiliary variable
END_VAR

//***
// Code Section
//***

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 1-43

//***
// Dependence on Calling OB
//***

// Read out start info with SFC6 (RD_SINFO)
 DUMMY := RD_SINFO (TOP_SI := TOP_SI, START_UP_SI := START_UP_SI);

 IF sbRESTART THEN
 // Initial start
 TOP_SI.NUM := 100; // Execute initial start as warm restart
 sbRESTART := FALSE; // Reset initial start
 END_IF;

// In which OB was the block called ?

 CASE WORD_TO_INT(BYTE_TO_WORD(TOP_SI.NUM)) OF

//**
// Handling Error OBs
//**
// OB80: time error
 80:
 QH_ALM := 0; // Reset error outputs
 QL_ALM := 0;
//**
// Startup
//**
// OB100: Warm restart
 100:
 QH_ALM := 0; // Reset error outputs
 QL_ALM := 0;
 siRUNUPCNT := RUNUPCYC; // Save RUNUPCYC value
 ELSE
//**
// Operator Input of Setpoint SP_OP (Real Value) or Connected Setpoint SP_EXT
//**

// Multiple instance call OP_A_LIM (for meaning of parameters, see online help OP_A_LIM)

 OP_A_LIM_1(U := SP_OP, U_HL:= SP_HLM, U_LL:= SP_LLM, OP_EN:= SP_OP_ON, BTRACK:=
SPBUMPON, LINK_ON:= SP_EXTON, LINK_U:= SP_EXT);

 OK := OK AND ENO; //Enter enable out of OP_A_LIM in OK flag of the block
 Q_SP_OP := OP_A_LIM_1.QOP_EN; // 1: Enable operator input of SP
 SP_OP := OP_A_LIM_1.U; // Write back setpoint
 QOP_ERR := OP_A_LIM_1.QOP_ERR; // 1: Operator error
 QSP_HLM := OP_A_LIM_1.QVHL; // 1: High limit
 QSP_LLM := OP_A_LIM_1.QVLL; // 1: High limit
 SP := OP_A_LIM_1.V; // Effective setpoint

//**
// Technological Section
//**
IF (SUPP_IN <> sSUPP_IN) THEN
 ACT_TIME := SUPPTIME; // Initialize time counter
 sSUPP_IN := SUPP_IN;
END_IF;

 IF (ACT_TIME > 0) THEN // If wait time not yet elapsed
 ACT_TIME := ACT_TIME-SAMPLE_T; // Count down wait time
 ELSE
 SUPP_OUT := SUPP_IN; // Connect input to output
 END_IF;

 LMN := GAIN * (SP - PV_IN); // Calculate manipulated variable

 IF siRUNUPCNT = 0 // RUNUPCYC cycle already elapsed ?
 THEN
 IF (LMN > H_ALM) THEN // If the manipulated variable violates the high alarm limit

01.02.2001

Creating PLC Blocks

Programming Instructions, Creating Blocks for PCS 7
1-44 A5E00092264-01

 QH_ALM := 1; // set error output QL_ALM := 0; // reset error output

 ELSIF (LMN < L_ALM) THEN // If the manipulated variable violates the low alarm limit
 QL_ALM := 1; // set error output
 QH_ALM := 0; // reset error output
 ELSE
 QH_ALM := 0; // Reset error outputs
 QL_ALM := 0;

 END_IF;
 ELSE
 siRUNUPCNT := siRUNUPCNT - 1;
 END_IF;
END_CASE;

//**
// Messages with ALARM_8P
//**

// STRING variables must not be linked to ALARM8_P as auxiliary values
// so transfer in array of bytes

 FOR DUMMY := 1 TO 16
 DO
 sbyBA_NA[DUMMY] := 0; //Delete array as default
 END_FOR;

 DUMMY := BLKMOV (SRCBLK:= BA_NA,DSTBLK:=sbyBA_NA);
 swSTEP_NO := STEP_NO; // Batch step number (due to I/O aux val ALARM_8P)
 sdBA_ID := BA_ID; // Batch ID (due to I/O aux val ALARM_8P)

 ALARM_8P_1(EN_R := TRUE, // Update output ACK_STATE
 ID := 16#EEEE, // Data channel for messages (always 16#EEEE)
 EV_ID:= EV_ID, // Message number > 0
 SIG_1:= M_SUP_AH AND QH_ALM, // Signal to be monitored 0 -> high alarm message
 SIG_2:= M_SUP_AL AND QL_ALM, // Signal to be monitored 1 -> low alarm message
 SIG_3:= 0, // Signal to be monitored 2 -> no message
 SIG_4:= 0, // Signal to be monitored 3
 SIG_5:= 0, // Signal to be monitored 4
 SIG_6:= 0, // Signal to be monitored 5
 SIG_7:= 0, // Signal to be monitored 6
 SIG_8:= 0, // Signal to be monitored 7
 SD_1 := sbyBA_NA, // Auxiliary value 1
 SD_2 := swSTEP_NO, // Auxiliary value 2
 SD_3 := sdBA_ID, // Auxiliary value 3
 SD_4 := PV_IN, // Auxiliary value 4
 SD_5 := AUX_PR05, // Auxiliary value 5
 SD_6 := AUX_PR06, // Auxiliary value 6
 SD_7 := AUX_PR07, // Auxiliary value 7
 SD_8 := AUX_PR08, // Auxiliary value 8
 SD_9 := AUX_PR09, // Auxiliary value 9
 SD_10:= AUX_PR10); // Auxiliary value 10

 QMSG_ERR := ALARM_8P_1.ERROR; // ERROR status parameter
 MSG_STAT := ALARM_8P_1.STATUS; // STATUS status parameter
 MSG_ACK := ALARM_8P_1.ACK_STATE; // Current OS confirmation status
END_FUNCTION_BLOCK

01.02.2001

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 2-1

2 Creating Faceplates

Requirements and Previous Experience

The faceplates described here are intended for use in WinCC. To create the
blocks, you require the basic WinCC package with the process control options
"Basic Process Control" and "Advanced Process Control".

It is assumed that you have participated in the following courses:

• SIMATIC WinCC System Course
(offered by the A&D Training Center under ST-BWINCCS)

• SIMATIC WinCC Openness N
(offered by the A&D Training Center under ST-BWINCCN)

2.1 Steps in Creating a Faceplate

The following steps have proved to be the most successful method of creating a
faceplate:

• Designing the faceplate (Section 2.1.1)

• Configuring the faceplate (Section 2.1.2)

• Testing the faceplate (Section 2.1.3)

2.1.1 Designing the Faceplate

Appearance

A faceplate is the operator control and monitoring interface to a PLC block. There
are two ways in which a faceplate can be displayed:

• Group display: Display of the PLC values in various views with an element for
selecting the loop display.

• Loop display: Display of the elements of all views of the group display.

System Attributes

Which input, output, and in/out parameters of a PLC block can be controlled and
monitored is specified based on the system attributes when the PLC block is
created. For details of the system attributes, refer to the description of the
declaration section in "Structure of a PLC Block".

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
2-2 A5E00092264-01

Parameters

The parameters are selected according to the following criteria:

• Which data do the operators require to recognize the current status both
quickly and without the risk of misinterpretation?

• How will these values be displayed?

• Which values will operators be able to change?
Which authorization level is required for the particular operator input?
Are process-dependent operator input interlocks necessary?

• In which view of the faceplate will the individual values be displayed? You
should group the individual parameters according to their functions. Place the
most important elements and particularly those that change continuously in the
"Standard" view.

Design

After specifying the parameters and their display, you design the faceplate; in other
words, select the picture elements, their names, the setting of parameters for the
picture elements, and their positions. You should always use names that relate
directly to the displayed object and that can also be pronounced easily.

Example: You want to display the "OCCUPIED" variable in a status display
name the status display "OCCUPIED".
Keeping to this rule makes both project documentation and maintenance easier.

2.1.2 Configuring the Faceplate

When configuring the faceplate, you can use the "WinCC Graphics Designer" tool.
Starting with the templates provided by the Faceplate Designer, you convert your
picture design into WinCC pictures. For a detailed description, refer to Section 2.2
"Creating Faceplates with the Faceplate Designer".

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 2-3

2.1.3 Testing the Faceplate

You should test the faceplate in two steps:

1. Check the properties of the pictures you have created in the WinCC
Explorer:

- Are the parameter names written correctly?

- Do parameters that are displayed more than once have the identical
WinCC cycle? Different cycles can confuse operators (for example, if the
bar display is not consistent with the numeric display) and increase the
communication load of the system.

- Are the direct connections correct?

- Are all the event-triggered scripts present?

2. Checks in WinCC run time:

- Does the faceplate open in the group display when you click on the block
icon?

- Does the switchover to individual views from the group display function
correctly?

- Does the faceplate open in the loop display when you click the "loop
display" button?

- Are the values of the PLC block displayed correctly?

- Is the display of the message and trend view correct?

- Does the enabling of the controllable parameters function correctly?

- Are the values written to the PLC block following operator input?

- Is the operator input log correct?

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
2-4 A5E00092264-01

2.2 Creating Faceplates with the Faceplate Designer

One of the components of the "Advanced Process Control" WinCC optional
package is the Faceplate Designer. This contains templates for PCS 7-compliant
creation of faceplates.

Compatibility with PCS 7 Faceplates

The faceplates supplied with PCS 7 (.ocx standard faceplates) cannot be modified
with the Faceplate Designer. It is, however, possible to create new faceplates with
the Faceplate Designer that have the same names as the standard faceplates (for
example MOTOR, VALVE, MEAS_MON, ...). With this method, the standard
faceplates are then overwritten.

The "old" .ocx faceplates (symbolic display) must be replaced by the "new" block
icons in the process picture , otherwise the correct faceplate cannot be called. If
you have already installed ocx faceplates, these are not overwritten by the "new"
ones.

The newly created faceplates can then be treated as standard faceplates during
configuration and in run time.

If standard faceplates are accidentally overwritten in the project, you can copy the
standard faceplates from the library back to the project by starting the Split Screen
Wizard.

Further Information

For more detailed information about the components and functionality of the
Faceplate Designer, refer the WinCC online help Å WinCC Options Å Faceplate
Designer.

2.2.1 Templates of the Faceplate Designer

When you create faceplates, you can use the following templates that are available
in WinCC:

• Block icons (ready-made symbols for process pictures)

• Template pictures

• Object construction kit with objects for creating faceplates

• Global scripts

You will find a list of all the files in the online help "WinCC Options > Faceplate
Designer > Components of the Faceplate Designer > Faceplate Designer File List".

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 2-5

2.2.1.1 Block Icons

The block icons can be found in the WinCC picture "@@PCS7Typicals.PDL", for
example Valve, Drive, Measured Value, Controller etc. stored in the path
"Siemens\WinCC\Options\PDL\Base_Data_Pool". After running the Split Screen
Wizard, this is located in the "GraCS" folder of the project folder.

• The sample templates can be edited and modified so that you can change the
shape, color, layout etc. and adapt them to faceplates created for a specific
project.

• The ready-made call scripts for the faceplates are already included and do not
need to be configured.

• They can be interconnected quickly and simply using the "Connect picture
block to tag structure" dynamic wizard.

Note:

If you make changes, save the picture under the name "@PCS7Typicals.PDL".
The search engine in the PH searches for this name first. The templates from
"@@PCS7Typicals.PDL" are used only if this is not found.

2.2.1.2 Template Pictures

The pictures and bitmaps are stored in the folder
"WinCC\options\pdl\FaceplateDesigner".

2.2.1.3 Object Construction Kit

The WinCC picture "@PCS7Elements.PDL" contains a selection of ready-made
objects (user objects) for creating a faceplate, for example, I/O fields, texts etc.
The picture is stored in the path
"Siemens\WinCC\Options\PDL\FaceplateDesigner" and is copied to the "GraCS"
folder of the project folder when you run the Split Screen Wizard.

2.2.1.4 Global Scripts

The faceplate calls take the form of global scripts and are stored in the folder
"WinCC\aplib\FaceplateDesigner".

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
2-6 A5E00092264-01

2.2.2 Steps in Configuration

To create a faceplate:

• Open the OS in the SIMATIC Manager.
The WinCC Explorer opens.

• Start the Graphics Designer in the WinCC Explorer.
In the project data, you will find the templates for creating a faceplate. The
template pictures required are stored in the path

"Siemens/WinCC/options/pdl/FaceplateDesigner".

• Before you first use the pictures, run the Split Screen Wizard (in Base Data) so
that the files are copied to the "GraCS" folder of the project folder.

Notes on Configuration

• If you accidentally overwrite a template file (for example,
@PG_%Type%_%View%.PDL), you can copy the original from the
Siemens\WinCC\Options\Pdl\FaceplateDesigner folder.

• We recommend that you initially store all files you create yourself for faceplates
in the GraCS folder of the current project. If you do not want the files to be
overwritten by the originals the next time you run the Split Screen Wizard, they
must be copied to the Siemens\WinCC\Options\Pdl\FaceplateDesigner folder.

• If you want to use a project on a different computer, you can create a new
folder with the name "FaceplateDesigner" in the project folder \GraCS. The
faceplates stored in this folder are copied to the GraCS folder of the project
when you start the Split Screen Wizard. Files with the same name are
overwritten.

• If required, the functions configured in your own faceplates can be protected
from viewing and modification in the "Global Script" editor. For more
information, refer to the documentation on the "Global Script" editor.

• The dynamics of the faceplates created with the Faceplate Designer can be
controlled completely during configuration. The performance of a faceplate
therefore depends to a large extent on the selection of suitable dynamics
during configuration. In this respect, an optimized, "trim" interface between the
PLC and OS functions is particularly important. This applies above all to the
block icons.

• No C script with fixed coded instance names must be used in the dynamics of
the faceplates.

• Different faceplate types must not be mixed in a picture used to create a
faceplate; in other words, a faceplate containing, for example, a valve
controller and a motor controller is not permitted.

For further information, refer to the WinCC documentation in "Configuration Notes,
Tips and Tricks".

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 2-7

Procedure

The following sections contain a step-by-step description of how to create a
finished faceplate based on the example of the MEAS_MON block type.

You create a faceplate in four consecutive steps.

3. Adapt the group display frame to the faceplate type (Section 2.2.2.1)

4. Adapt the view list to the faceplate type (Section 2.2.2.2)

5. Edit type and view-specific pictures (Section 2.2.2.3)

6. Adapt the loop display frame to the faceplate type (Section 2.2.2.4)

2.2.2.1 Adapting the Group Display Frame to the Faceplate Type

The picture "@PG_%Type%.PDL" represents the frame for the group display of a
faceplate. To adapt it to the block type MEAS_MON, follow the steps below:

• Open the template picture "@PG_%Type%.PDL" in the WinCC Graphics
Designer

• Specify the faceplate type by selecting the object "Block Type" (%Type%) and
opening the properties dialog ("Properties" tab).
Object properties window �3URSHUWLHV� �,�2�)LHOG� �2XWSXW�,QSXW� �2XWSXW
value ���7\SH���
Replace "%Type%" with "MEAS_MON"

• If necessary, switch the group display "EventState" invisible:
object properties window �3URSHUWLHV� �0LVFHOODQHRXV� �'LVSOD\� �QR
This is not necessary in the MEAS_MON example.

• Save the picture under the name of the block type "@PG_MEAS_MON.PDL"

2.2.2.2 Adapting the View List to the Block Type

The picture "@PG_%Type%_VIEWLIST.PDL" contains all views that can be used
for the PCS 7 standard faceplates V5.1.

Standard

Maintenance

Messages

Parameter

Limits

Trend

Batch

StandardS

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
2-8 A5E00092264-01

To adapt it to the block type MEAS_MON, follow the steps below:

• Open the picture "@PG_%Type%_VIEWLIST.PDL" in the WinCC Graphics
Designer

• Remove the views you do not require. For MEAS_MON, these are:
"Maintenance", "Parameters" and "StandardS" (select and delete).

• Place the entries in the required order without any gaps by selecting the entries
in the list and moving them with the arrow buttons.

• Adapting the frame and picture size:

- For the picture size, open the properties dialog of the
"@PG_%Type%_VIEWLIST" picture object. In Properties/Picture
Object/Geometry, you can make the required static modifications (for
example, picture width 90, height 100).

- Now open the properties dialog of the "Comboframe" object. In
Properties/Rectangle/Geometry, you can now adapt the frame (to fit the
picture size).

The picture then appears as shown below:

Standard

Messages

Limits

Trend

Batch

• Save this picture with the block type name, in our example, as
"@PG_MEAS_MON_VIEWLIST.PDL".

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 2-9

2.2.2.3 Editing Type and View-Specific Pictures

The picture "@PG_%Type%_%VIEW%.PDL" is the template for a view of the
faceplate.

For the alarm, trend, and batch view, the pictures "@PCS7_ALARM.PDL",
"@PCS7_TREND.PDL", and "@PCS7_BATCH.PDL" are available. These are
identical for all faceplates in PCS 7 and they need to be adapted only to meet
special requirements. Change the %VIEW% placeholder for other views. The views
must adhere to the following naming convention:

 Purpose Placeholder Name

Limits %VIEW% = LIMITS

Parameter %VIEW% = PARAMETERS

Standard %VIEW% = STANDARD

Standard S %VIEW% = STANDARDS

Maintenance %VIEW% = MAINTENANCE

To adapt it to the block type MEAS_MON, follow the steps below:

• Open the picture "@PG_%Type%_%View%.PDL" in the WinCC Graphics
Designer

• Save this picture for the standard view as
"@PG_MEAS_MON_STANDARD.PDL".

• Open the picture "@PG_%Type%_%View%.PDL" in the WinCC Graphics
Designer

• Save this picture for the limits view as "@PG_MEAS_MON_LIMITS.PDL".

Changing the picture size

If you change the size in the Properties dialog (Properties > Geometry), remember
the following points:

• The views of the pictures are displayed in the group display and in the loop
display.

• At the present time, universally valid pictures are used for Alarm, Batch, and
Trend. Names, see above.

• If you change the size of the other views, you may also need to modify these
universal pictures.

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
2-10 A5E00092264-01

2.2.2.4 Adapting the Loop Display Frame to the Block Type

The picture "@PL_%Type%.PDL" represents the frame for the loop display of a
faceplate. To adapt it to the block type MEAS_MON, follow the steps below:

• Open the picture "@PL_%Type%.PDL" in the WinCC Graphics Designer

• In the I/O field of the object type "BlockType" replace the text "%Type%" with
the block type name:
Object properties window �3URSHUWLHV� �,�2�)LHOG� �2XWSXW�,QSXW� �2XWSXW
Value ���7\SH��
Replace "%Type%" with "MEAS_MON"

• If necessary, switch the group display "EventState" invisible:
object properties window �3URSHUWLHV� �0LVFHOODQHRXV� �'LVSOD\� �QR
This is not necessary in the MEAS_MON example.

• Enter the required view in the "@VIEWS" object

Figure 2-1 : "@VIEWS" Check Box

• Object properties window �3URSHUWLHV� �&KHFN�%R[� �2XWSXW�,QSXW��'RXEOH�
click on "Selected Boxes".

• Click on the first required view (for example, "1" for STANDARD).

• Click the index of the view for the other required views while holding down the
CTRL key.

• Confirm your selection with the OK button.

• Check whether the required views are shown as "selected" (check mark in the
appropriate check box).

• Remove the views you do not require (for MEAS_MON, these are the elements
"MAINTENANCE", "PARAMETERS" and "STANDARDS".

• Place the elements in the required order in the picture and adapt the picture
size to the size of the picture window.

• Save the picture under the name of the block type "@PL_MEAS_MON.PDL"

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 2-11

2.2.2.5 Configuring the Trend View

In the steps up to now, you have only created type-specific pictures. The trend view
requires additional configuration for the specific tags. The trend view
"@PCS7_TREND.PDL" available for all PCS 7 faceplates contains the picture
window "TrendPicture". To include a trend picture for a tag at this point, follow the
steps below:

• Open "Tag Logging" in the WinCC editor.

• Create a tag archive for the trend view using the Archive Wizard

• Create the tags for this archive

For detailed instructions explaining the steps above, refer to "Tag Logging" in the
WinCC online help.

• Open the picture "@CONL1_.PDL" in the Graphics Designer

• Configure the TlgOnlineTrend object "Control1" according to your
requirements; you can get more information with the "Help" button.

• Save the picture as "@CONL1_<tagname>.PDL". The <tagname> must be
identical to the tag name of the PLC block. You must replace the character "/"
in the name with "_", since Windows does not accept "/" in file names.

Example of the window name of the MEAS_MON_1 block:
@CONL1_Measurements_Opinputs_MEAS_MON_1.PDL

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
2-12 A5E00092264-01

2.2.2.6 Configuring Further Views

In configuration step 3 (Section 2.2.2.3), you already created the views for a
faceplate type. The picture elements are now inserted in the prepared views and
assigned parameters according the picture design. The finished samples
"@PG_MEAS_MON_STANDARD.PDL" and "@PG_MEAS_MON_LIMITS.PDL"
are on the CD so that at this point, only a general outline of the steps is necessary.
You can find out which objects are installed in the pictures and see the properties
of the objects in "Object Properties".

For the "Limits" view of MEAS_MON, follow the steps below:

• Open the picture "@PG_MEAS_MON_LIMITS.PDL" in the WinCC Graphics
Designer.

• Open the picture "@PCS7Elements.PDL" in the WinCC Graphics Designer.

• Arrange the pictures one beside the other: Window > Tile Vertically.

• Copy the required picture elements from "@PCS7Elements.PDL" to
"@PG_MEAS_MON_LIMITS.PDL".

• Include other WinCC objects such as rectangles in your picture.

• Assign meaningful (object-related) object names.

• Set the positions of the individual objects.

• Interconnect the dynamic attributes of the picture elements with the parameters
of the PLC block type. The interconnection has already been configured for the
objects "PCS7_MSG_LOCK" and "PCS7_OCCUPIED".

• Set up the "authorization sequences". The template pictures include the
objects "@Level5" and "@Level6". Both objects are influenced by the control of
the higher-level picture "@PG_MEAS_MON.PDL" or
"@PL_MEAS_MON.PDL".

If a user is logged in with authorization level 5, the background color "white" is
set for the "@Level5" object and the operator enable is set to "yes". If the user
does not have these rights, the background color is "gray" and the operator
enable is "no".
The "@Level6" object is used to control the operator authorization level 6. Both
elements serve as "anchors" for all the operator-controlled objects in your
picture. After the events "background color" and "operator authorization", direct
connections are established from one element to the next. No direct
connection is necessary for binary variables.

In the "@PG_MEAS_MON_LIMITS.PDL" picture, the sequences for operator
authorization level 6 are as follows:

"Operator authorization": @Level6 > U_AH > U_WH > U_WL > U_AL >
MO_PVHR > MO_PVLR > M_SUP_AH > M_SUP_WH > M_SUP_WL >
M_SUP_AL

"Background color": @Level6 > U_AH > U_WH > U_WL > U_AL >
MO_PVHR > MO_PVLR

• Save the picture.

The steps for the "Standard" view of MEAS_MON are analogous.

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 2-13

2.2.2.7 Creating Your Own View of a Block Type

The description below explains how you can create a new view that applies to only
one block type from a view that was previously used for all PCS 7 blocks. In this
example, we are using an alarm view.

• Save the original picture "@PCS7_Alarm" as "@PG_%Type%_Alarm" (type =
MEAS_MON).

• Copy the objects "@Level5" and "@Level6" to your picture from an existing
view, for example, from "@PG_ MEAS_MON_Standard.PDL".

If you lose the "@" characters when you copy, they must be inserted again so
that they precede the names of the two objects Level5 and Level6.

• The following script must be inserted for "@Level5" below the C action:

double dToolbarButtons;

if (value)

 dToolbarButtons = 62000;

else

 dToolbarButtons = 61952;

 SetPropDouble(lpszPictureName, "AlarmList",
 "ToolbarButtons", dToolbarButtons);

Tip: Simply copy this text from the documentation.

• Open the "@PG_%Type%_VIEWLIST.PDL" picture and increase its size so
that there is room for a new view to be added as text at the bottom.

• Copy a text box, for example "Standard", insert it and give the view a new
name.

The object name must match the new view name, in this case, "Alarm".

• Modify the display text for the view list; this can differ from the picture name
and can be entered in more than one language (see Graphics-Designer > View
> Language menu).

• Open the loop display "@PL_%Type%.PDL" and add an additional field to the
existing check box:
In the "@Views" properties of the check box, select "Geometry" and increase
the number of fields by 1 (for example, from 8 to 9).

• This new field must be named after the new view:
Properties > Text > Index: Enter the number of the field you have added (here:
9) and enter the name (here: "Alarm") in the "Text" field .

• To make the field visible later in run time:
Select "@Views" > Output/Input in the properties and double-click on "Selected
Fields". Select the index "9" in the list and close with "OK". Note: You can
make multiple selections by holding down the CTRL key.

• Insert a picture window for the new view in the loop display frame:
Copy the "picture window" object from an existing view (for example,
STANDARD) and give it a new name (here: "Alarm").

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
2-14 A5E00092264-01

2.2.3 Preparing Faceplates for Dynamic Display

There are different ways of achieving a dynamic display:

1. The extensions of the required variables are known.

Open the object properties of the object you want to display dynamically (for
example, a bar). Double-click the bulb symbol for the required attribute in the
"Dynamics" column of the Properties window. You can now enter the extension
in the input field.

2. Tag from the tag list

The normal method, for example with process pictures, is to use the tag list.
However, this lists all tags. Right-click on the bulb symbol in the Properties
window and select "Tag".

Locate the required tag and double-click on it.
In the dynamic display, however, you now have the full tag name. Delete the
text up to the extension, including the dot (".").

Procedure for Dynamic Display

• Open the view you want to display dynamically, for example,
"@PG_MEAS_MON_STANDARD.PDL".

• Switch the message status display invisible if you do not require it by selecting
the "EventState" object and opening the properties dialog.

Change the "Display" attribute to "No" using properties/group
display/miscellaneous.

• Install the objects in the picture and assign the parameters to them: For
standard faceplates, the necessary objects are already prepared and can be
copied directly from the template files to the picture, for example, copy bars
from the "@PCS7Elements.PDL" and insert them in the picture. You must then
interconnect the properties of the objects. If the target names are known, you
can enter these directly. Otherwise, you can establish the link using the tag
browser. Remember that the name of the PLC instance must not be included in
the tag name but only the extension. For example, in the tag name
"Plant1_Motor2.U_AH" the name of the instance "Plant1_Motor2." must be
deleted (including "."). The name is then "U_AH". When using the extension,
remember that it is case-sensitive. To improve performance, the update cycles
should be identical whenever possible (standard = 2 sec.).

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 2-15

• Starting with the objects "@Level5" and "@Level6", set up a chain of direct
connections for the individual authorization levels.

Example: If you want to protect several I/O fields with authorization level 6, the
"Operator Control Enable" property of the object "@Level6" must be connected
directly with the "Operator Control Enable" property of the first I/O field.

- Select the first I/O field and open the Object Properties dialog. With the
"Event" tab, you can now configure the direct connection to the object
"@Level6".

- The second I/O field must now be connected directly with the first, etc.

During configuration, remember that added operator interface elements are
always added at the end of the authorization sequence.
It is advisable to document the order of the authorization sequence.

The change in the background color for operator control rights can be chained
in the same way.

• Save the picture with the appropriate type name, here:
"@PG_MEAS_MON_STANDARD.PDL".

2.2.4 Changing Languages

The templates of the Faceplate Designer are in three languages
(German/English/French). This means that after you change to another language in
WinCC, the texts will be displayed in the selected language. If you add text
elements to a picture, and want to be able to change to one of the other languages,
then remember to enter these texts in the Graphics Designer in all the languages
you require. You can change to another language in the Graphics Designer with
the View > Language... > Select Language menu command.

01.02.2001

Creating Faceplates

Programming Instructions, Creating Blocks for PCS 7
2-16 A5E00092264-01

01.02.2001

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 3-1

3 Creating Online Help

Requirements

You require the following:

• The "Notepad" ASCII editor integrated in WINDOWS NT or a similar editor for
creating a registry file.

• A tool for authoring the help topics (for example, "RoboHelp").

3.1 Structure of the Help File

If you want to create an online help system for your blocks, you write a help file
with the aid of a help authoring system. You can select any name for the file,
however it is advisable to use the name of your library (or a common name that
you have used for your blocks), for example "MYLIB__B.HLP".

Create a separate topic for each of your blocks. You must then define the MAP ID
for each topic in the online help and enter them in the registry file (see also Section
3.2). These must be unique within the online help system but can otherwise be
used as required.

If you have a relatively large library, you can also create an hm file containing all
the IDs used. The RoboHelp authoring tool can use this file when assigning MAP
IDs.

Entries in the hm file:

// Header File for Online Help on Mylib Function Blocks
//
#define CONTROL 0x10 // dec. 16
#define CONTROL2 0x11 // dec. 17
#define CONTROL3 0x12 // dec. 18
....

Apart from the help text, each help topic includes the following information:

 Topic title Title of the help topic for this block
(normally the same as the block name)

 Topic ID Name and MAP ID of the topic
(as specified in the registry file)

 Index Keywords with which the user can jump to a topic from
the help index

01.02.2001

Creating Online Help

Programming Instructions, Creating Blocks for PCS 7
3-2 A5E00092264-01

The help system can consist of two files, an HLP file (help topics) and a CNT file
(contents).

The CNT file is useful if the block help system is not intended solely as a context-
sensitive help system (F1 with the block selected). If you have a library with several
blocks, the individual topics can be listed in a table of contents. This allows the
user to select the topics of other blocks without the block having to exist.

The CNT file can also be included in the CNT file of another help project using an
INCLUDE statement (for example, ":include Mylib__b.cnt"). The included CNT file
is then displayed in the contents of the other help project if both are installed in the
same folder.

If you want to provide your online help system in several languages, you must
create a separate help file for each language required. In PCS 7, the name
consists of 8 characters with the last character being used as the language
identifier:

a German

b English

c French

d Spanish

e Italian

Not currently supported by
PCS 7

y Not language-dependent For example, for the reg file

By registering (see also Section 3.2), PCS 7 then calls the language as selected in
the "Options > Customize > National Language" dialog.

Finally, you copy the help file (and, if it exists, the CNT file) to the subfolder of the
STEP 7 folder in which your library or the project with your blocks is installed.

01.02.2001

Creating Online Help

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 3-3

3.2 Structure of the Registry File

Using the ASCII editor, write a registry file that will enter the information for your
blocks in the WINDOWS NT registry. You can select any name for the registry file,
however it is generally advisable to use the name of your library (or a common
name that you have used for your blocks), for example "Mylib_y.reg".

Example of a reg file for 3 blocks and 3 language versions

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\STEP7\2.0\Applications\s7libs\mylib\ABC]
"Version"="0.1"
"VersionDate"="03.05.2000"
"HelpFileGerman"="S7libs\\mylib\\MYLIB__a.hlp"
"HelpFileEnglish"="S7libs\\mylib\\MYLIB__b.hlp"
"HelpFileFrench"="S7libs\\mylib\\MYLIB__c.hlp"

[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\STEP7\2.0\Applications\s7libs\mylib\ABC\XYZ]
"CONTROL"=dword:00000010
"CONTROL2"=dword:00000011
"CONTROL3"=dword:00000012

Note:

Please note that incorrect entries in the registry can lead to problems in program
execution or can result in a function not being executed.
You should therefore use the key as shown in this example.

The following values must be entered in the registry key:

[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\STEP7\2.0\Applications\s7libs\Name
OfLibrary\Author]

Here, the library name stands for the name you selected for your library (here:
mylib). This is the same as the name of the STEP 7 subfolder in which your help
file is stored. You library is displayed in the CFC editor under this name. Author
stands for the name you specified for the AUTHOR attribute in the block header
(here: ABC).

Version
This contains the version number of the entire library. This entry is optional.

VersionDate
This contains the date on which the complete library was created. This entry is
optional.

01.02.2001

Creating Online Help

Programming Instructions, Creating Blocks for PCS 7
3-4 A5E00092264-01

Path to the help file
This contains the path relative to the STEP 7 folder for the required help file, for
example:

"HelpFileEnglish"="S7libs\\mylib\\MYLIB__b.hlp".

Please note that double delimiters must be specified (\\). Using this entry, the help
file matching the language set in the SIMATIC Manager is called.

Note:

Italian and Spanish are not yet supported by PCS 7.

Then enter the following key:

[HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\STEP7\2.0\Applications\s7libs\Name
OfLibrary \Author\Family]

Below this, you must specify the MAP ID for the help file, for example
"CONTROL"=dword:00000888. Where Family stands for the name you specified
for the FAMILY attribute in the block header (here: XYZ). The MAP ID is the
number of the topic ID.

If you have grouped your blocks in several families, you must insert a separate key
in the registry file for each family.

Once the registry file has been executed (for example by double clicking it) when
you next select a block in the CFC chart or in the SIMATIC Manager and then
press the F1 key, the corresponding help file is located and displayed using the
selected language and the block attributes AUTHOR, FAMILY, and
FUNCTION_BLOCK in the WINDOWS NT registry.

01.02.2001

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 4-1

4 Creating a Library and Setup

Requirements

To create a distributable library including the setup, you require a program for
creating installation programs, for example"InstallShield".

4.1 Creating a Library

If you want to put your blocks together in a library , follow the steps outlined below:

1. Create a new S7 library and create an S7 program in it.

2. Enter the names and numbers of your blocks as well as the corresponding
comments in the symbol table of the library.

3. Source files:
If you want to ship the source files as well, copy the source files from the
sources folder of your project to the sources folder of the library.

4. Copy your blocks from the block folder of your project to the block folder of the
library.

5. If you call blocks in your multiple instance blocks that are not generally
available (SFBs, SFCs), copy these to the block folder of the library as well.

01.02.2001

Creating a Library and Setup

Programming Instructions, Creating Blocks for PCS 7
4-2 A5E00092264-01

4.2 Creating a Setup

If you want to install your library using setup on the target computer, write an
installation script with the setup authoring tool that will perform the following
actions:

• Copy the block library to the subfolder S7libs of the STEP 7 folder

• Copy the program S7bin\S7alibxx.exe in the STEP 7 folder to make the new
library known to SIMATIC Manager

• Copy the help file (HLP and CNT file) to the subfolder of the STEP 7 folder into
which the block library was copied (for example, the subfolder S7libs\mylib)

• Call the registry file belonging to the help file

• Copy the prototype pictures to any subfolder in the Options\Pdl subfolder in
the WinCC folder. It is advisable for this folder to have the same name as the
folder into which the block library was copied.

• Copy the scripts to any subfolder in the aplib subfolder in the WinCC folder. It
is advisable for this folder to have the same name as the folder into which the
block library was copied (for example, Options\Pdl\mylib).

• Create an uninstall option

Note that the block library and the online help system can only be installed when
STEP 7 exists on the target computer. The prototype pictures can only be installed
in a subfolder of WinCC. Make sure that you query the existence of STEP 7 and
WinCC in your installation dialog, for example by querying the following entries in
the registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\STEP7
the name STEP7_VERSION must be set to the value "5.1"
and in the key HKEY_LOCAL_MACHINE\SOFTWARE\Siemens\WinCC\Setup
the name Version must be set to the value "R 5.1".

01.02.2001

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 Glossary-1

Glossary

Asynchronous OBs

Asynchronous OBs (organization blocks) are called by the operating system of the
CPU when asynchronous events occur (for example errors).

AUTHOR

Í Block attribute:

When a block library is used, this contains the library name. It is also used to
identify the help file belonging to the library.

BATCH flexible

A program package for creating complex recipe controls for the entire range from
small to large-scale applications.

Block attribute

Using the block attributes (Í FUNCTION_BLOCK, Í TITLE, Í List of system
attributes, Í AUTHOR, Í NAME, Í VERSION, Í FAMILY, Í
KNOW_HOW_PROTECT) of the block, you can influence the object properties of
your block.

Block header

1. Section of the Í PLC block with administrative information (Í block
attributes).

2. The upper part of the block in the graphic representation in CFC containing the
name (block type, block name), comment and the task assignment (run-time
property).

Block icon

Symbolic display of the most important information of a Í PLC block. The
corresponding Í faceplate can be opened with the block icon.

01.02.2001

Glossary

Programming Instructions, Creating Blocks for PCS 7
Glossary-2 A5E00092264-01

CFC

Continuous Function Chart

1. This is a function chart on which blocks can be placed, interconnected, and
assigned parameters. A CFC chart consists of 1 to 26 chart partitions each
with 6 sheets.

2. Editor for plant-oriented graphic configuration of automation tasks. Using the
CFC editor, a complete software structure (CFC chart) can be created from
ready-made blocks.

CNT file

Optional part of an online help system. The CNT file contains the contents of the
online help system.

Code section

Part of a block containing the algorithm of the block.

Declaration section

Part of a block defining the interface of the block and the data it uses internally.

Faceplate

Graphic representation of all the elements of a PLC block intended for operator
control and monitoring on an OS.

FAMILY

Í Block attribute:

When a block library is used, this contains a common name for a subset of the
blocks. FAMILY and Í NAME form part of the key for locating the help text of a
block in the online help system.

Function (FC)

Specified in IEC 1131–3 as a software unit that provides a single result when it
executes (can also be a structured data type) and does not have memory for
storing data. The major difference between an FC and an FB is the absence of
data storage.

01.02.2001

Glossary

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 Glossary-3

FUNCTION_BLOCK

Í Block attribute:

Contains the symbolic name of the block. This is used to display the name of the
block in the SIMATIC Manager and in the CFC chart.

Function block (FB)

According to IEC 1131-3, a function block is a logic block with static data. Using
FBs, parameters can be passing in the user program. This makes function blocks
suitable for programming frequently repeated complex functions, such as
controllers, mode selection. Since the FB has a memory (instance data block), its
parameters, for example outputs, can be accessed at any point in the user
program.

Global script

Within Í WinCC, global script is the generic term for C functions created by the
user that can be used throughout a project and in multiple projects.

Graphics Designer

Graphic editor in Í WinCC for creating faceplates.

HID

Higher-level identifier: This is made up of the name of the plant hierarchy folders
that are selected to form part of the name and of the CFC chart and the block in the
CFC chart.

Initial start

The first time that a block is executed following its instantiation. Following this first
execution, the parameters and modes of the block are in a defined state.

KNOW_HOW_PROTECT

Í Block attribute:

When this attribute is set, it protects the algorithm of the block from being viewed or
modified unless the source file is in the same program.

Library

Software package with Í PLC blocks and/or Í faceplates grouped according to
common features.

01.02.2001

Glossary

Programming Instructions, Creating Blocks for PCS 7
Glossary-4 A5E00092264-01

Message list

From within the run-time system of Í WinCC, it is possible to display and edit lists
of messages. The messages displayed in the lists relate only the currently active
project.

Monitoring

Part of the functions of an OS allowing visualization of the process parameters and
statuses in various forms (numeric, graphic).

Multiple instance block

A block made up of several blocks. Its instance (data storage) contains the
instances (data storage) of the FBs that are called in it.

NAME

Í Block attribute:

Contains the symbolic name of the block; identical to Í FUNCTION_BLOCK.
NAME and Í FAMILY form part of the key for locating the help text of a block in
the online help system.

OK flag

The OK flag is a system-internal variable. If an error occurs during execution of an
option, for example overflow with arithmetic operations, the OK flag is changed by
the system and passed to the ENO block output.

Operator authorization

The right assigned to the operator to modify the Í PLC block parameter.

Operator control

Procedure in which the operator changes the value or status of a block. Generally,
such operations involve input at the operator station which is then checked and
passed to the block on the PLC. Here, the instruction is checked again before is
assigned to the block since it is possible that process conditions have changed
since the instruction was sent from the OS and received at the PLC.

PLC block
An object belonging to a library or a block structure that contains part of the S7
user program. The blocks that are executed in the CPU of a PLC are known as
PLC blocks.

01.02.2001

Glossary

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 Glossary-5

Prototype picture

Prototype pictures are used by Í WinCC to reuse picture components that have
already been configured. The prototype picture technique makes use of template
pictures that can be included more than once in one or more parent pictures. A
prototype is simply a template that only "comes to life" in a real object. An object
based on a template is created by instantiation. Several instances (on other words
real objects) can be created from a template.

Registration file

And ASCII file (.reg) containing all the information such as path, MAP IDs for online
help systems, for example to enter a block in the WINDOWS NT registry. Using
this registration file, the online help for a selected block can be started in the
required language in CFC or in the SIMATIC Manager.

SCL

Higher-level programming language for formulating solutions to technological tasks
in SIMATIC S7 (similar to PASCAL) complying with the ST (structured text)
language specified in IEC 1131–3.

Split Screen Wizard

Component of Í WinCC: This initializes the monitor and display settings on the
OS.

Standard view

Í View of a Í faceplate in which the most important values of the corresponding
Í PLC block are visualized.

Start info

The start information is part of an organization block (OB). It informs the S7 user in
detail of the event that triggered the OB call.

STL

Statement List: Statement List is a textual programming language complying with
IEC 1131-3 and resembling machine code.

System attributes for blocks

Special attributes that prepare the Í PLC block for the connection to the OS or
influence the installation of a block in a CFC chart.

01.02.2001

Glossary

Programming Instructions, Creating Blocks for PCS 7
Glossary-6 A5E00092264-01

System attributes for parameters

Special attributes that influence the display of the parameter in the Í faceplate or
its handling in the CFC chart.

TITLE

Í Block attribute:

This information is not evaluated in PCS 7, however, it is displayed in the
SIMATIC Manager in the object properties of the block in the comment field.

Trend view

Í View of a Í faceplate in which the most important values of the corresponding
Í PLC block are visualized over time.

UDT

Í User-defined data types

User-defined data types (UDT)

User-defined data types are special data structures that can be used in the entire
CPU program after they have been defined. They cam be used like elementary or
complex data types in the variable declaration of logic blocks (FCs, FBs, OBs) or
as templates for creating data blocks with the same data structure.

VERSION

Í Block attribute:

Contains the version number of the block
View

View of a block in which certain values of a PLC block are displayed (for example,
trend view, alarm view, standard view etc.).

WinCC
Windows Control Center: A software package for plant-oriented graphic development of
Í faceplates and for operator control and monitoring of the PLC.

01.02.2001

Programming Instructions, Creating Blocks for PCS 7
A5E00092264-01 Index-1

Index

A
Advanced Process Control.............................2-1
ALARM_8...1-33
ALARM_8P...1-35
Area assignment ..1-34
Asynchronous event.....................................1-23
Authorization ..2-12
Auxiliary values ..1-35

B
Basic Process Control2-1
BATCH flexible ...1-36
Batch ID ...1-34
Block diagram of CONTROL1-2
Block header ..1-6
Block icon...2-5
Block parameters ...1-11

C
CFC block types...1-37
Chart I/Os...1-37
CNT file ..3-2
Code section ..1-19
Comments..1-12
Compatibility with PCS 72-4
CONTROL2..1-37
Cyclic interrupt OB1-23

D
Declaration section.......................................1-11
Dynamic display ...2-14

F
Faceplate

configuring..2-2
design...2-1
test ...2-3

Faceplate Designer ..2-4

G
Global scripts ...2-5
Group display frame.......................................2-7

H
Help file.. 3-1
HLP file .. 3-2

I
In/out parameters... 1-11
INCLUDE statement 3-2
Initial start .. 1-20
Input parameters.. 1-11
Installation script .. 4-2
InstallShield ... 4-1

L
Language... 1-5
Language identifier .. 3-2
Languages.. 1-35, 2-15
Library.. 4-1
Local variables... 1-18
Loop display frame 2-10

M
MAP ID .. 3-1
Message auxiliary values............................. 1-36
Message class ... 1-34
Message configuration................................. 1-33
Message origin .. 1-34
Messages .. 1-28
Multiple instance .. 1-18

N
Naming conventions 1-38
Numeric range ... 1-38

O
Object construction kit 2-5
Object properties of the block 1-7, 1-8
Online help... 3-1
OP_A ... 1-26
OP_A_LIM ... 1-26
OP_A_RJC .. 1-26
Operator control... 1-26
Output parameters....................................... 1-11

01.02.2001

Index

Programming Instructions, Creating Blocks for PCS 7
Index-2 A5E00092264-01

P
Parameter types... 1-11
Picture size

changing .. 2-9
PLC block

structure... 1-2
user interface ... 1-5

process picture .. 2-4

R
Registry file .. 3-3

S
S7 library.. 4-1
SAMPLE_T .. 1-21
SCL compiler

settings .. 1-3
Setup ... 4-2
Source code... 1-39
Split Screen Wizard 2-5
Static variables .. 1-18

SUPPTIME ...1-22
Symbol table...1-5
System attributes

blocks ...1-9
parameters ...1-12

T
Tag Logging ...2-11
Template pictures...2-5
Templates...2-4
Temporary variables.....................................1-19
Time-dependent activities.............................1-21
Topic...3-1
Trend view..2-11

V
View list ..2-7

W
WinCC Graphics Designer2-2

01.02.2001

	Title
	Preface
	Contents
	1 Creating PLC Blocks
	1.1 Requirements and Previous Experience
	1.1.1 Supplied Sample Block

	1.2 Structure of a PLC Block
	1.2.1 Settings for the SCL Compiler
	1.2.2 Settings in the SIMATIC Manager
	1.2.3 Block Header
	1.2.4 Declaration Section
	1.2.4.1 Block Parameters
	1.2.4.2 Local Variables
	1.2.5 Code Section

	1.3 Initial Start
	1.4 Time Dependencies
	1.5 Handling Asynchronous Startup and Error OBs
	1.6 Operator Control and Monitoring and Messages
	1.6.1 Message Suppression during Startup
	1.6.2 Suppressing Specific Messages
	1.6.3 Compiling the Source File

	1.7 Configuring Messages
	1.8 Linking BATCH
	1.9 Creating CFC Block Types
	1.9.1 Example: CONTROL2

	1.10 Naming Conventions and Numeric Range
	1.11 Source Code of the Samples

	2 Creating Faceplates
	2.1 Steps in Creating a Faceplate
	2.1.1 Designing the Faceplate
	2.1.2 Configuring the Faceplate
	2.1.3 Testing the Faceplate

	2.2 Creating Faceplates with the Faceplate Designer
	2.2.1 Templates of the Faceplate Designer
	2.2.1.1 Block Icons
	2.2.1.2 Template Pictures
	2.2.1.3 Object Construction Kit
	2.2.1.4 Global Scripts
	2.2.2 Steps in Configuration
	2.2.2.1 Adapting the Group Display Frame to the Faceplate Type
	2.2.2.2 Adapting the View List to the Block Type
	2.2.2.3 Editing Type and View-Specific Pictures
	2.2.2.4 Adapting the Loop Display Frame to the Block Type
	2.2.2.5 Configuring the Trend View
	2.2.2.6 Configuring Further Views
	2.2.2.7 Creating Your Own View of a Block Type
	2.2.3 Preparing Faceplates for Dynamic Display
	2.2.4 Changing Languages

	3 Creating Online Help
	3.1 Structure of the Help File
	3.2 Structure of the Registry File

	4 Creating a Library and Setup
	4.1 Creating a Library
	4.2 Creating a Setup

	Glossary
	Index
	A
	B
	C
	D
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

